

1 **Robust Neutralization of SARS-CoV-2 Variants Including JN.1 and BA.2.87.1 by**

2 **Trivalent XBB Vaccine-Induced Antibodies**

3 Xun Wang¹, Shujun Jiang^{2,3}, Wentai Ma^{4,5}, Chen Li¹, Changyi Liu¹, Faren Xie^{2,3}, Jinsheng Zhu⁶,

4 Yan Zhan⁶, Shibo Jiang⁷, Mingkun Li^{4,5}, Yanliang Zhang^{2,3} and Pengfei Wang¹

5

6 ¹Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of
7 Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life
8 Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai,
9 China;

10 ²Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing
11 University of Chinese Medicine, Nanjing, Jiangsu, China;

12 ³Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western
13 Medicine, Nanjing, Jiangsu, China;

14 ⁴Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for
15 Bioinformation, Beijing, China;

16 ⁵University of Chinese Academy of Sciences, Beijing, China;

17 ⁶Dongshan Street Community Health Service Center, Jiangning District, Nanjing, China;

18 ⁷Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of
19 Infectious Disease and Biosecurity and School of Basic Medical Sciences, Fudan University,
20 Shanghai, China

21

22 Correspondence: Mingkun Li (limk@big.ac.cn) or Yanliang Zhang (fsyy00404@njucm.edu.cn) or
23 Pengfei Wang (pengfei_wang@fudan.edu.cn)

24 These authors contributed equally: Xun Wang, Shujun Jiang, Wentai Ma

25 **Newly emerged SARS-CoV-2 variants like JN.1, and more recently, the hypermutated**
26 **BA.2.87.1, have raised global concern. We recruited two groups of participants who had**
27 **BA.5/BF.7 breakthrough infection post three doses of inactivated vaccines: one group**
28 **experienced subsequent XBB reinfection, while the other received the XBB-containing**
29 **trivalent WSK-V102C vaccine. Our comparative analysis of their serum neutralization**
30 **activities revealed that the WSK-V102C vaccine induced stronger antibody responses against**
31 **a wide range of variants, notably including JN.1 and the highly escaped BA.2.87.1.**
32 **Furthermore, our investigation into specific mutations revealed that fragment deletions in**
33 **NTD significantly contribute to the immune evasion of the BA.2.87.1 variant. Our findings**
34 **emphasize the necessity for ongoing vaccine development and adaptation to address the**
35 **dynamic nature of SARS-CoV-2 variants.**

36

37 **INTRODUCTION**

38 The rapid and widespread transmission of SARS-CoV-2 has led to the emergence of
39 multiple variants of concern (VOCs), most notably Omicron variant, which continues
40 to evolve and diversify into a range of sub-lineages. Our previous research has shown
41 that these Omicron sub-lineages, spanning BA.1 to BA.2.86, have been evolving to
42 exhibit increased neutralization escape capabilities¹⁻⁵. Since November 2023, the JN.1
43 variant, stemming from BA.2.86's antigenic diversity and acquiring an additional
44 mutation (L455S) in RBD, has rapidly emerged as the dominant strain (Fig. 1a).
45 Additionally, a newly identified, highly mutated SARS-CoV-2 variant, BA.2.87.1, was

46 detected in South Africa between September and November 2023, which has recently
47 been classified as a variant under monitoring (VUM) and has sparked global concern.
48 While it originates from the ancestral BA.2 lineage, BA.2.87.1 is genetically distinct
49 from the currently circulating Omicron lineages (Fig. 1b). It exhibits over 100
50 mutations, with more than 30 in the spike protein (Supplementary Table 1), including
51 notable changes in the receptor binding domain (RBD) like K417T, K444N, V445G,
52 and L452M, which are crucial for antibody recognition. Intriguingly, this variant has 7
53 fragment deletions, including 3 in the spike protein, with 2 of which encompasses over
54 10 crucial amino acids (Del 15-26 and Del 136-146) in the N-terminal domain (NTD)
55 (Fig. 1c, d). This evolutionary strategy, which involves sacrificing parts of the virus to
56 evade the immune system, makes these deletions potentially more significant than
57 nonsynonymous mutations. Given our existing immunity from vaccinations and past
58 infection, the effectiveness of this immunity against BA.2.87.1 remains to be
59 determined.

60 The swift rise of antigenically diverse SARS-CoV-2 variants and decreasing
61 vaccine efficacy against infection have necessitated updates in COVID-19 vaccine
62 formulations. In September 2023, the monovalent XBB.1.5 mRNA vaccine received
63 approval from the United States Food and Drug Administration (FDA). Concurrently,
64 China approved several XBB-adapted vaccines, both multivalent and monovalent,
65 including SYS6006 (CSPC Pharmaceutical Group), RQ3033 (Watson Biotech),
66 SCTV01E-2 (SinocellTech), and WSK-V102C (WestVac Biopharma). The WestVac
67 BioPharma's Covaccine® Trivalent XBB Vaccine (WSK-V102C) incorporates the

68 RBDs of the XBB.1.5, BA.5, and Delta variants, fused with the spike protein's heptad
69 repeat (HR) domain and self-assembling into stable trimeric protein particles. The
70 vaccine is further enhanced with a squalene-based oil-in-water emulsion adjuvant,
71 added post-purification and mixing for increased efficacy⁶.

72 From December 2022 to January 2023, over 80% of China's population
73 experienced BA.5/BF.7 infections despite receiving three doses of inactivated vaccines.
74 Subsequently, from May to July 2023, approximately one-fifth of the population was
75 affected by the XBB wave^{7,8}. It is critical to assess whether the immunity in these
76 subpopulations from XBB reinfection remains protective. For those uninfected by XBB,
77 understanding how the efficacy of XBB-containing booster vaccines compares to
78 natural immunity from breakthrough infection is vital, especially considering the
79 emergence of new variants like JN.1 and BA.2.87.1.

80

81 **RESULTS**

82 In this study, we collected blood samples from two groups of individuals who had
83 previously experienced BA.5/BF.7 breakthrough infections following three doses of
84 inactivated vaccines. One group (n=20) experienced XBB reinfection, while the other
85 (n=11) received the WSK-V102C vaccine. Samples were collected about 1-month post-
86 infection or vaccination (Supplementary Table 2). To evaluate their serum
87 neutralization potency and breadth, we employed a panel of SARS-CoV-2
88 pseudoviruses (PsVs), including the wildtype (WT), B.1.617.2, BA.2, BA.5, XBB.1.5,

89 XBB.1.16, EG.5.1, HK.3, BA.2.86, JN.1, and BA.2.87.1. Our previous study⁴ revealed
90 that individuals with BA.5/BF.7 breakthrough infections primarily had high
91 neutralizing titers against WT, moderately reduced (~2-fold) against Delta and early
92 Omicron variants, but significantly lower (~10-fold) against XBB sub-lineages and
93 BA.2.86. Interestingly, sera from XBB reinfection displayed a shifted neutralization
94 pattern, showing the highest geometric mean titer (GMT) of 3,343 and 2,232 against
95 BA.5 and BA.2, respectively, *i.e.*, about 2-3-fold higher than that against WT. However,
96 these sera showed remarkably decreased titers against XBB descendant subvariants
97 (*e.g.*, XBB.1.5, XBB.1.16, EG.5.1, HK.3) as well as BA.2.86 and its descendant JN.1,
98 approximately 1.2-1.8-fold lower than that against WT. Notably, the lowest titer was
99 observed against the latest variant, BA.2.87.1, with a GMT below 500 (Fig. 2a).

100 In contrast, sera from the group having received the WSK-V102C vaccine exhibited
101 markedly higher neutralizing titers against all the tested variants. The highest
102 neutralization titers were observed against BA.5 (GMT=9,151), followed by BA.2
103 (GMT=6,596) and Delta (GMT=4,398). While these sera also demonstrated reduced
104 titers against XBB descendant subvariants, BA.2.86, JN.1, and BA.2.87.1, they
105 maintained higher neutralization titers compared to the sera from the XBB reinfection
106 group, although BA.2.87.1 exhibited a significantly higher escape potential than
107 BA.2.86 and JN.1 (Supplementary Fig. 1). Even so, the sera from individuals
108 vaccinated with the WSK-V102C vaccine maintained a GMT above 1,000 against
109 BA.2.87.1 (Fig. 2b), suggesting that booster vaccination with WSK-V102C is expected
110 to be effective in protecting individuals from BA.2.87.1 infection. Interestingly, we

111 observed distinct antibody responses in the participants of the three groups: 1) those
112 with BA.5/BF.7 breakthrough infections⁴, 2) those with additional XBB reinfection,
113 and 3) those vaccinated with WSK-V102C post-breakthrough infection. The XBB
114 reinfection group showed recalled antibody responses against post-Omicron variants,
115 but less against pre-Omicron variants like WT and Delta. In contrast, the trivalent
116 vaccine induced significantly more potent and broader neutralization activity (Fig. 2c).
117 The elevated titers against Omicron variants may be attributed to the BA.5 and XBB.1.5
118 components in the vaccine, while the heightened response to Delta variants may be due
119 to the vaccine's Delta component.

120 For the BA.2.87.1 variant, the most notable mutations are likely the two fragment
121 deletions in NTD. To assess their impact on neutralization sensitivity, we constructed
122 PsVs with each of these fragment deletions, and a combination of both, based on the
123 spike protein of BA.2 variant. The sera from individuals with XBB reinfection
124 demonstrated a 1.6-fold reduction in neutralizing titer against the BA.2-ΔNTD1 (Del
125 15-26) PsV and a 2.2-fold reduction against BA.2-ΔNTD2 (Del 136-146) PsV,
126 compared to the parental BA.2 PsV. Additionally, the PsV carrying spike protein with
127 both fragment deletions (BA.2-ΔNTD1+2) showed an even further reduced sensitivity,
128 at 2.5-fold lower than BA.2 PsV (Fig. 2d). A similar pattern was observed with sera
129 from the individuals having received WSK-V102C vaccine (Fig. 2e), indicating that
130 both fragment deletions in NTD contribute to the immune evasion of BA.2.87.1.
131 However, as expected, these fragment deletions in NTD did not impact the efficacy of
132 monoclonal antibodies (mAbs) targeting regions outside the NTD, as demonstrated by

133 mAbs previously reported^{5,9} to retain activity against BA.2 (S309, S2K146, SA55,
134 S3H3), nor did they affect ACE2-targeting mAbs, 3E8 and H11B11 (Fig. 2f).

135

136 **DISCUSSION**

137 The rapid evolution of SARS-CoV-2 variants poses significant challenges in
138 understanding and combating the virus. This study focuses on serum neutralization
139 capacity against the newly emerged variants, particularly JN.1 and BA.2.87.1, which is
140 crucial for evaluating the efficacy of existing vaccines. Our results show that sera from
141 both XBB-reinfection and WSK-V102C-vaccination groups exhibited significantly
142 lower neutralization titers against BA.2.87.1 than those against XBB sub-lineages,
143 BA.2.86, and JN.1. We found that fragment deletions NTD in BA.2.87.1 spike protein
144 made an important contribution to its escape from neutralization. However, BA.2.87.1
145 exhibited more significant resistance to neutralizing antibodies than the variant with
146 combination of the two fragment deletions in NTD, suggesting that other mutations,
147 like those in the RBD, also play a role in its immune evasion. This adds to our
148 understanding of SARS-CoV-2's immune evasion strategies.

149 The inclusion of participants with prior BA.5/BF.7 breakthrough infections and
150 their responses to either XBB reinfection or the WSK-V102C vaccination provides
151 valuable insights. Our study reveals that the WSK-V102C vaccine elicits more potent
152 antibody responses compared to XBB reinfection, effectively against a broad spectrum
153 of SARS-CoV-2 variants, which include Delta, BA.5, XBB sublineages, and notably,

154 the more challenging subvariants JN.1 and BA.2.87.1. These findings suggest that all
155 three components of the trivalent vaccine are functional and effective. Furthermore, the
156 differential immune responses between individuals with XBB reinfection and those
157 vaccinated with WSK-V102C highlight the complexity of immune memory and
158 response to SARS-CoV-2, suggesting varied immunity patterns from natural infection
159 and vaccination.

160 In summary, our study underscores the dynamic nature of SARS-CoV-2 evolution,
161 particularly with the Omicron sub-lineages and emerging subvariants such as JN.1 and
162 BA.2.87.1, which exhibit significant genetic divergence and enhanced escape
163 capabilities. This situation calls for ongoing modifications in vaccine strategies.
164 Updated vaccine formulations, such as SCTV01E we previously reported and WSK-
165 V102C investigated in this study, demonstrate promising efficacy in generating high
166 neutralizing titers against a spectrum of variants, including those with notable escape
167 mutations. These findings highlight the crucial need for continuous monitoring and
168 updating of vaccine formulations to keep pace with the rapidly evolving virus.

169

170 **DATA AVAILABILITY**

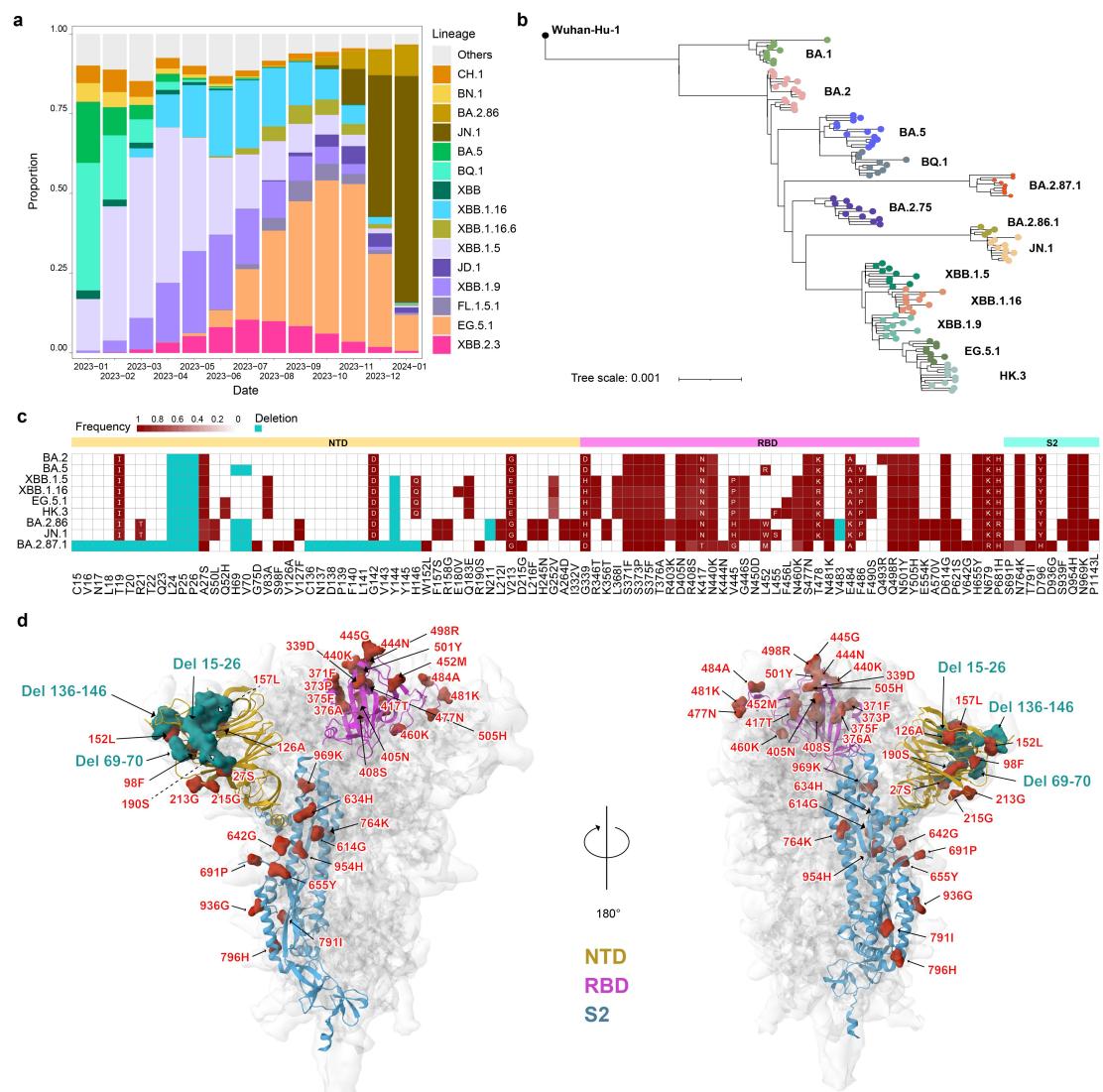
171 All the data are provided in the main or the supplementary figures.

172

173 **ACKNOWLEDGMENTS**

174 This study was supported by funding from the National Natural Science Foundation of
175 China (32270142 to P.W.), Shanghai Rising-Star Program (22QA1408800 to P.W.), the
176 Program of Science and Technology Cooperation with Hong Kong, Macao and Taiwan
177 (23410760500 to P.W.), the National Key R&D Program of China (2023YFC2307800
178 to Shibo J.), Nanjing Research Center for Infectious Diseases of Integrated Traditional
179 Chinese and Western Medicine (YBZX2022 to Y.Zhang), and NATCM's Project of
180 High-level Construction of Key TCM Disciplines. Pengfei Wang acknowledges support
181 from AI for Science project of Fudan University (XM06231724), Open Research Fund
182 of State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-2304)
183 and Xiaomi Young Talents Program.

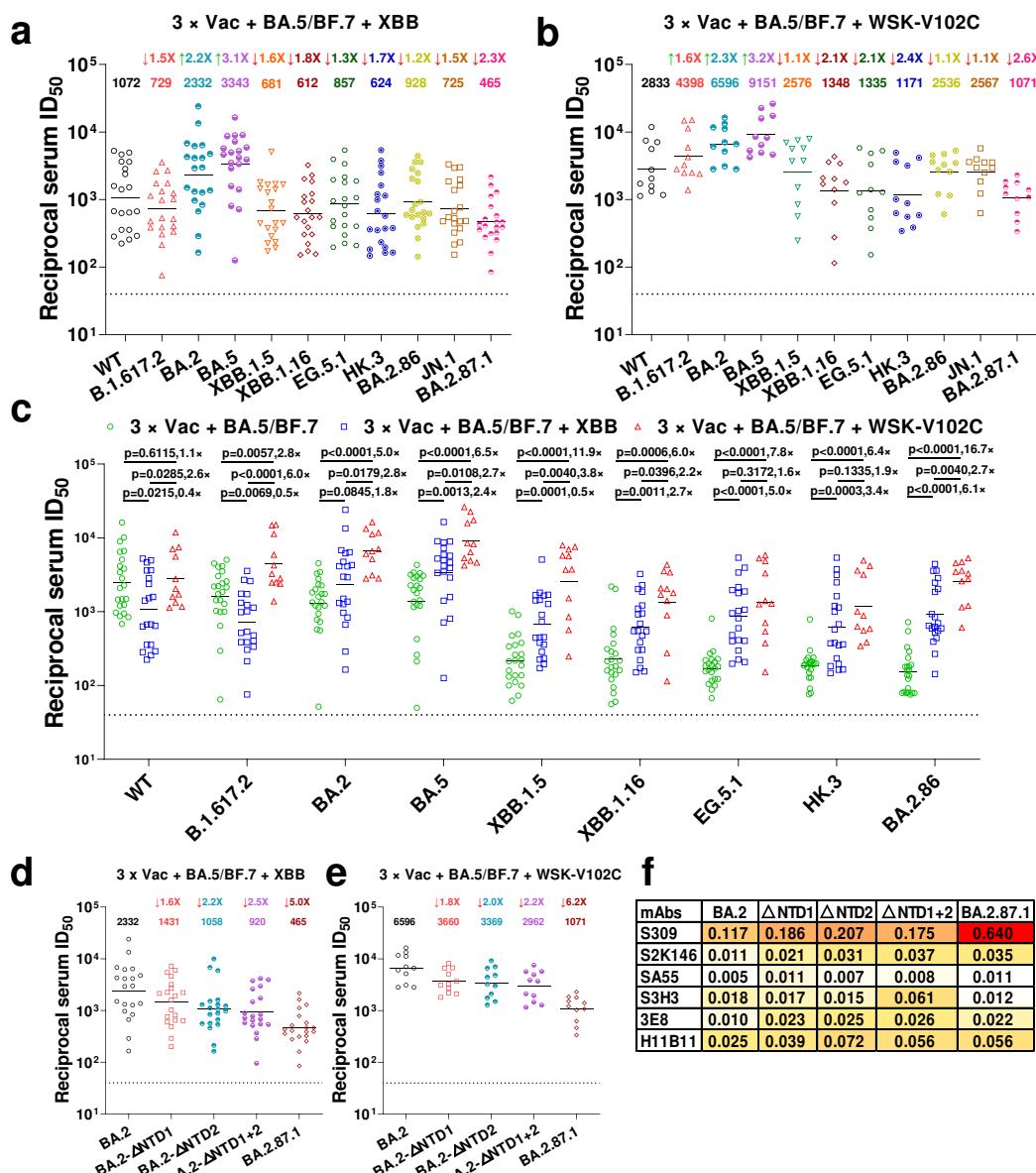
184


185 **AUTHOR CONTRIBUTIONS**

186 P.W., Y.Zhang, and M.L. designed and supervised the study; X.W., Shujun.J., and W.M.
187 performed the experiments with help from C.Li and C.Liu; Shujun J., F.X., Y.Zhan, and
188 J.Z. provided critical materials; P.W., Y.Zhang, M.L., X.W., Shujun J., Shibo J. and W.M.
189 analyzed the data and wrote the manuscript. All authors reviewed, commented, and
190 approved the manuscript.

191

192 **DECLARATION OF INTERESTS**


193 All authors declare no conflict of interest.

194

195 **Fig. 1** Characteristics of the recently emerging BA.2.87.1 variant. **a** The relative
196 frequencies of SARS-CoV-2 lineages over time. Data were obtained from the CNCB
197 RCoV19 database (ngdc.cncb.ac.cn/ncov/). **b** Phylogenetic tree of BA.2.87.1 and other
198 Omicron sub-lineages. Sequences were sub-sampled from the Nextstrain GISAID
199 global dataset of the last 6 months (updated on 2024 Feb 13). **c** The mutation frequency
200 heatmap of BA.2.87.1 and other related lineages. Only mutations with a frequency
201 higher than 0.75 are shown. Deletions are shown in cyan. Mutation frequency data was
202 retrieved from the outbreak.info website. **d** The mutations of BA.2.87.1 on the SARS-

203 CoV-2 spike glycoprotein trimer (PDB: 7WGV). Deletions are represented by the cyan
 204 molecular surface, while SNPs are represented by the red molecular surface. The NTD,
 205 RBD, and S2 regions were marked in yellow, pink, and blue, respectively.

206

207 **Fig. 2** Neutralization of distinct SARS-CoV-2 sub-lineages by XBB reinfection and
 208 WSK-V102C vaccination sera. Neutralization of different SARS-CoV-2 variant PsVs
 209 by sera collected from two groups of individuals who had previously experienced
 210 BA.5/BF.7 breakthrough infections following three doses of inactivated vaccines: one

211 group were reinfection with XBB virus (**a**), the other group were boosted with the
212 WSK-V102C vaccine (**b**). **c** In parallel comparison of neutralization GMTs against
213 distinct Omicron subvariants by sera collected from individuals with XBB reinfection,
214 or with WSK-V102C booster vaccinations. Neutralization of PsVs representing
215 BA.2.87.1's single and combined NTD deletions by sera collected from individuals
216 with XBB reinfection (**d**), or with WSK-V102C booster vaccination (**e**). **f** The
217 neutralization IC₅₀ (μg/ml) of mAbs against Omicron sub-lineage PsVs, presented as a
218 heat map with darker colors implying greater change. Values above the symbols denote
219 GMTs and their fold increase or decrease relative to WT (for panels A-B) or BA.2 (for
220 panels D-E). Dotted lines indicate the threshold of detection (40 for all the cohorts). P
221 values were determined by using Multiple Mann–Whitney tests. WT wild-type.

222

223

224 **MATERIALS AND METHODS**

225 ***Serum samples***

226 Blood samples from two groups of individuals who had previously experienced
227 BA.5/BF.7 breakthrough infection following three doses of inactivated vaccines were
228 collected at the Nanjing Hospital of Chinese Medicine. One group (n=20) experienced
229 XBB reinfection, while the other (n=11) received the Trivalent XBB Vaccine (WSK-
230 V102C). For all COVID-19 participants, the clinical diagnosis criteria were based on
231 the ninth National COVID-19 guidelines. All participants involved in this study had
232 mild symptoms. Their baseline characteristics are summarized in Supplementary Table
233 2. All the participants provided written informed consents. All collections were
234 conducted according to the guidelines of the Declaration of Helsinki and approved by
235 the ethical committee of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing
236 University of Chinese Medicine (number KY2023073).

237 ***Cell lines***

238 Expi293F cells (Thermo Fisher Cat# A14527) were cultured in the serum-free SMM
239 293-TI medium (Sino Biological Inc.) at 37 °C with 8% CO₂ on an orbital shaker
240 platform. HEK293T cells (Cat# CRL-3216), Vero E6 cells (cat# CRL-1586) were
241 obtained from ATCC and cultured in 10% fetal bovine serum (FBS, GIBCO cat#
242 16140071) supplemented Dulbecco's Modified Eagle Medium (DMEM, ATCC cat#
243 30-2002) at 37 °C, 5% CO₂. I1 mouse hybridoma cells (ATCC, cat# CRL-2700) were

244 cultured in Eagle's Minimum Essential Medium (EMEM, ATCC cat# 30-2003) with
245 20% FBS.

246 ***Monoclonal antibodies***

247 Monoclonal antibodies tested in this study were constructed and produced in our
248 laboratories at Fudan University. For each antibody, variable genes were optimized for
249 human cell expression and synthesized by HuaGeneTM (China). VH and VL were
250 inserted separately into plasmids (gWiz or pcDNA3.4) that encode the constant region
251 for H chain and L chain. Monoclonal antibodies were expressed in Expi293F
252 (ThermoFisher, A14527) by co-transfection of H chain and L chain expressing plasmids
253 using Polyethylenimine and culture at 37 °C with shaking at 125 rpm and 8% CO₂. On
254 day 5, antibodies were purified using MabSelectTM PrismA (Cytiva, 17549801)
255 affinity chromatography.

256 ***Construction and production of variant pseudoviruses***

257 Plasmids encoding the WT (D614G) SARS-CoV-2 spike and Omicron sub-lineage
258 spikes, as well as the spikes with single or combined mutations were constructed.
259 HEK293T cells were transfection with the indicated spike gene using Polyethylenimine
260 (Polyscience). Cells were cultured overnight at 37°C with 5% CO₂ and VSV-G pseudo-
261 typed ΔG-luciferase (G*ΔG-luciferase, Kerafast) was used to infect the cells in DMEM
262 at a multiplicity of infection of 5 for 4 h before washing the cells with 1×DPBS three
263 times. The next day, the transfection supernatant was collected and clarified by
264 centrifugation at 3000g for 10 min. Each viral stock was then incubated with 20% I1

265 hybridoma (anti-VSV-G; ATCC, CRL-2700) supernatant for 1 h at 37 °C to neutralize
266 the contaminating VSV-G pseudotyped ΔG-luciferase virus before measuring titers and
267 making aliquots to be stored at -80 °C.

268 ***Pseudovirus neutralization assays***

269 Neutralization assays were performed by incubating pseudoviruses with serial dilutions
270 of monoclonal antibodies or sera, and scored by the reduction in luciferase gene
271 expression. In brief, Vero E6 cells were seeded in a 96-well plate at a concentration of
272 2×10^4 cells per well. Pseudoviruses were incubated the next day with serially diluted
273 samples tested in triplicate for 30 min at 37 °C. The mixture was added to cultured cells
274 and incubated for an additional 24 h. The luminescence was measured by Luciferase
275 Assay System (Beyotime). IC₅₀ was defined as the dilution at which the relative light
276 units were reduced by 50% compared with the virus control wells (virus + cells) after
277 subtraction of the background in the control groups with cells only. The IC₅₀ values
278 were calculated using nonlinear regression in GraphPad Prism.

279 ***Sequence data collection***

280 The sequencing data and corresponding genomic mutations of lineage BA.2.87.1 were
281 retrieved from the GISAID database¹⁰ using the accession number provided in the
282 Supplementary table 3. The global sequence metadata was retrieved from the CNGB
283 RCoV19 database (ngdc.cncb.ac.cn/ncov/)¹¹ on 2024 February 13 for the analysis of
284 lineage frequency over time. The lineage mutation frequency data was retrieved from
285 the outbreak.info website using its R package¹².

286 ***Construction of the phylogenetic tree***

287 Sequences were sub-sampled from the Nextstrain GISAID global dataset of the last 6
288 months (nextstrain.org/ncov/gisaid/global/6m, updated on 2024 Feb 13) with
289 approximately 8 to 20 sequences per clade. All 9 sequences from BA.2.87.1 were
290 included in the analysis. The phylogenetic reconstruction was performed following the
291 Nextstrain pipeline¹³. Visualization was done using iTOL¹⁴.

292 ***Quantitative and statistical analysis***

293 The statistical analyses for the pseudovirus neutralization assessments were performed
294 using GraphPad Prism for calculation of mean value for each data point. Each specimen
295 was tested in triplicate. Antibody neutralization IC₅₀ values were calculated using a
296 five-parameter dose-response curve in GraphPad Prism. For comparing the serum
297 neutralization titers, statistical analysis was performed using Multiple Mann-Whitney
298 tests. Two-tailed p values are reported. No statistical methods were used to determine
299 whether the data met assumptions of the statistical approach.

300

301 **REFERENCES**

302 1 Ai, J. *et al.* Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-
303 lineages. *Cell Host Microbe* **30**, 1077-1083.e1074 (2022).
<https://doi.org/10.1016/j.chom.2022.05.001>

304 2 Wang, X. *et al.* Neutralization of Omicron BA.4/BA.5 and BA.2.75 by booster vaccination
305 or BA.2 breakthrough infection sera. *Cell Discov* **8**, 110 (2022).
<https://doi.org/10.1038/s41421-022-00472-5>

306 3 Wang, X. *et al.* Neutralization of distinct Omicron sublineages by longitudinal vaccination
307 sera. *J Med Virol* **94**, 5090-5092 (2022). <https://doi.org/10.1002/jmv.28017>

308 4 Wang, X. *et al.* Enhanced neutralization of SARS-CoV-2 variant BA.2.86 and XBB sub-
309 lineages by a tetravalent COVID-19 vaccine booster. *Cell Host Microbe* **32**, 25-34.e5 (2023).
<https://doi.org/10.1016/j.chom.2023.11.012>

310 5 Wang, X. *et al.* Neutralization of SARS-CoV-2 BQ.1.1 and XBB.1.5 by Breakthrough
311 Infection Sera from Previous and Current Waves in China. *bioRxiv*, 2023.02.07.527406
312 (2023). <https://doi.org/10.1101/2023.02.07.527406>

313 6 He, C. *et al.* A self-assembled trimeric protein vaccine induces protective immunity against
314 Omicron variant. *Nat Commun* **13**, 5459 (2022). <https://doi.org/10.1038/s41467-022-33209-9>

315 7 Liu, S. *et al.* Sera from breakthrough infections with SARS-CoV-2 BA.5 or BF.7 showed
316 lower neutralization activity against XBB.1.5 and CH.1.1. *Emerg Microbes Infect* **12**,
317 2225638 (2023). <https://doi.org/10.1080/22221751.2023.2225638>

318 8 Yang, X. *et al.* Immune escape of BA.2.86 is comparable to XBB subvariants from the
319 plasma of BA.5- and BA.5-XBB-convalescent subpopulations. *J Med Virol* **96**, e29417
320 (2024). <https://doi.org/10.1002/jmv.29417>

321 9 Cao, Y. *et al.* Rational identification of potent and broad sarbecovirus-neutralizing
322 antibody cocktails from SARS convalescents. *Cell Rep* **41**, 111845 (2022).
<https://doi.org/10.1016/j.celrep.2022.111845>

323 10 Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID's innovative
324 contribution to global health. *Glob Chall* **1**, 33-46 (2017).
<https://doi.org/10.1002/gch2.1018>

325 11 Zhao, W. M. *et al.* The 2019 novel coronavirus resource. *Yi Chuan* **42**, 212-221 (2020).
<https://doi.org/10.16288/j.yczz.20-030>

326 12 Gangavarapu, K. *et al.* Outbreak.info genomic reports: scalable and dynamic surveillance
327 of SARS-CoV-2 variants and mutations. *Nat Methods* **20**, 512-522 (2023).
<https://doi.org/10.1038/s41592-023-01769-3>

328 13 Hadfield, J. *et al.* Nextstrain: real-time tracking of pathogen evolution. *Bioinformatics* **34**,
329 4121-4123 (2018). <https://doi.org/10.1093/bioinformatics/bty407>

330 14 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
331 display and annotation. *Nucleic Acids Res* **49**, W293-w296 (2021).
<https://doi.org/10.1093/nar/gkab301>

332

333

334

335

336

337

338

339

340

341