

# Engineering the cyanobacterial ATP-driven BCT1 bicarbonate transporter for functional targeting to C<sub>3</sub> plant chloroplasts

Sarah Rottet<sup>1, #</sup>, Loraine M. Rourke<sup>1, #</sup>, Isaiah C.M. Pabuayon<sup>2,3</sup>, Su Yin Phua<sup>1</sup>, Suyan Yee<sup>1</sup>, Hiruni N. Weerasooriya<sup>2,4</sup>, Xiaozhuo Wang<sup>2</sup>, Himanshu S. Mehra<sup>2</sup>, Nghiem D. Nguyen<sup>1</sup>, Benedict M. Long<sup>1,5,6,\*</sup>, James V. Moroney<sup>2</sup>, and G. Dean Price<sup>1</sup>

<sup>1</sup>Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia.

<sup>2</sup>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

<sup>3</sup>Current address: Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA

<sup>4</sup>Current address: Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA

<sup>5</sup>Current address: School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, Australia.

<sup>6</sup>ARC Centre of Excellence in Synthetic Biology

# Co-first author

\* Corresponding author: [ben.long@newcastle.edu.au](mailto:ben.long@newcastle.edu.au), +61 2 4055 4137

| Authors                | ORCID               | Authors           | ORCID               |
|------------------------|---------------------|-------------------|---------------------|
| Sarah Rottet           | 0000-0003-3120-8608 | Xiaozhuo Wang     | 0009-0003-5186-8029 |
| Lorraine M. Rourke     | 0000-0002-2600-8073 | Himanshu S. Mehra | 0009-0005-1964-0934 |
| Isaiah C.M. Pabuayon   | 0000-0002-2433-9119 | Nghiem D. Nguyen  | 0000-0002-4322-4755 |
| Su Yin Phua            | 0000-0002-7556-1211 | Benedict M. Long  | 0000-0002-4616-2967 |
| Suyan Yee              | 0000-0001-5196-7500 | James V. Moroney  | 0000-0002-3652-5293 |
| Hiruni N. Weerasooriya | 0000-0001-5826-7072 | G. Dean Price     | 0000-0001-5906-4912 |

**Running title:** Engineering the BCT1 bicarbonate transporter for C<sub>3</sub> plants

**Information:** Submitted on 09 February 2024, 8 figures, 0 table, 4,790 words, 7 supplemental figures and 3 supplemental tables.

## 1    **Highlight**

2    We describe the directed evolution and rational design of a cyanobacterial four-component  
3    bicarbonate transporter and the localization of its subunits to various chloroplast sub-  
4    compartments for improving C<sub>3</sub> plant photosynthesis.

## 5    **Abstract**

6    The ATP-driven bicarbonate transporter 1 (BCT1), a four-component complex in the  
7    cyanobacterial CO<sub>2</sub>-concentrating mechanism, could enhance photosynthetic CO<sub>2</sub> assimilation  
8    in plant chloroplasts. However, directing its subunits (CmpA, CmpB, CmpC and CmpD) to  
9    three chloroplast sub-compartments is highly complex. Investigating BCT1 integration into  
10   *Nicotiana benthamiana* chloroplasts revealed promising targeting strategies using transit  
11   peptides from the intermembrane space protein Tic22 for correct CmpA targeting, while the  
12   transit peptide of the chloroplastic ABCD2 transporter effectively targeted CmpB to the inner  
13   envelope membrane. CmpC and CmpD were targeted to the stroma by RecA and recruited to  
14   the inner envelope membrane by CmpB. Despite successful targeting, expression of this  
15   complex in CO<sub>2</sub>-dependent *Escherichia coli* failed to demonstrate bicarbonate uptake. We then  
16   used rational design and directed evolution to generate new BCT1 forms that were  
17   constitutively active. Several mutants were recovered, including a CmpCD fusion. Selected  
18   mutants were further characterized and stably expressed in *Arabidopsis thaliana*, but the  
19   transformed plants did not have higher carbon assimilation rates or decreased CO<sub>2</sub>  
20   compensation points in mature leaves. While further analysis is required, this directed  
21   evolution and heterologous testing approach presents potential for iterative modification and  
22   assessment of CO<sub>2</sub>-concentrating mechanism components to improve plant photosynthesis.

23 **Keywords**

24 ABC transporter, bicarbonate transport, chloroplast engineering, chloroplast envelope, CO<sub>2</sub>-  
25 concentrating mechanism, improving photosynthesis.

26 **Abbreviations**

|    |             |                                                                                  |
|----|-------------|----------------------------------------------------------------------------------|
| 27 | ABC         | ATP-binding cassette                                                             |
| 28 | <i>A/Ci</i> | CO <sub>2</sub> assimilation rate as a function of intercellular CO <sub>2</sub> |
| 29 | <i>At</i>   | <i>Arabidopsis thaliana</i>                                                      |
| 30 | BCT1        | bicarbonate transporter 1                                                        |
| 31 | CA          | carbonic anhydrase                                                               |
| 32 | CA-free     | specialized <i>E. coli</i> strain that lacks CAs                                 |
| 33 | CCM         | CO <sub>2</sub> -concentrating mechanism                                         |
| 34 | Ci          | inorganic carbon                                                                 |
| 35 | <i>cmp</i>  | cytoplasmic membrane protein                                                     |
| 36 | cTP         | chloroplast transit peptide                                                      |
| 37 | IEM         | inner envelope membrane                                                          |
| 38 | IMAC        | immobilized metal affinity chromatography                                        |
| 39 | IMS         | intermembrane space                                                              |
| 40 | IPTG        | isopropyl β-D-1-thiogalactopyranoside                                            |
| 41 | LB          | lysogeny broth                                                                   |
| 42 | NBD         | nucleotide-binding domain                                                        |
| 43 | OEM         | outer envelope membrane                                                          |
| 44 | PCR         | polymerase chain reaction                                                        |
| 45 | <i>Ps</i>   | <i>Pisum sativum</i>                                                             |
| 46 | SBP         | substrate-binding protein                                                        |
| 47 | SP          | signal peptide                                                                   |
| 48 | TMD         | transmembrane domain                                                             |
| 49 | WT          | wild-type                                                                        |

## 50 Introduction

51 A crop improvement approach of ongoing global interest is the utilisation of cyanobacterial  
52 and algal CO<sub>2</sub>-concentrating mechanisms (CCMs) to enhance photosynthetic performance  
53 through improved carbon fixation (Price *et al.*, 2013; Long *et al.*, 2016; Hennacy and Jonikas,  
54 2020; Nguyen *et al.*, 2024). Carboxylation of ribulose-1,5-bisphosphate by the bifunctional  
55 enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major limitation to  
56 efficient carbon acquisition by crops (Long *et al.*, 2015). Cyanobacterial and algal CCMs,  
57 however, have evolved to actively accumulate bicarbonate (HCO<sub>3</sub><sup>-</sup>) within cellular  
58 compartments to supply high CO<sub>2</sub> concentrations to fast Rubisco enzymes for highly efficient  
59 carbon acquisition (Rae *et al.*, 2017). A number of strategies exist for the creation of a  
60 functional CCM in C<sub>3</sub> crop plants (Moroney *et al.*, 2023), but crucial to all of these is a  
61 requirement to increase HCO<sub>3</sub><sup>-</sup> concentration in the chloroplast stroma to supply either the  
62 native Rubisco, or one that has evolved in a CCM, so that the CO<sub>2</sub> fixation reaction is optimized  
63 (Price *et al.*, 2011; Rottet *et al.*, 2021).

64 Cyanobacterial and algal CCMs utilise a suite of dedicated bicarbonate transporters that  
65 consume cellular energy to elevate HCO<sub>3</sub><sup>-</sup> ion concentrations inside cellular membranes (Rae  
66 *et al.*, 2017; Rottet *et al.*, 2021), to levels up to 1,000-fold higher than the external environment  
67 (Price *et al.*, 2008). Since passive diffusion of HCO<sub>3</sub><sup>-</sup> across membranes is very slow compared  
68 to CO<sub>2</sub> (Tolleter *et al.*, 2017), a key to CCM function is that active bicarbonate pumping leads  
69 to the successful elevation of HCO<sub>3</sub><sup>-</sup> inside cells. Then, specific carbonic anhydrase (CA)  
70 enzymes located with Rubisco interconvert the accumulated HCO<sub>3</sub><sup>-</sup> to CO<sub>2</sub>, enabling a  
71 localized elevation of CO<sub>2</sub> for use by Rubisco (Moroney *et al.*, 2023). Within crop-CCM  
72 strategies, the successful elevation of chloroplastic HCO<sub>3</sub><sup>-</sup> concentrations via bicarbonate  
73 transporters alone is expected to provide increased photosynthetic output through provision of  
74 a net increase in CO<sub>2</sub> supply to Rubisco (Price, 2011; McGrath and Long, 2014; Wu *et al.*,  
75 2023).

76 To date, efforts to successfully express and deliver functional bicarbonate transporters to  
77 the correct location in plants have highlighted complexity with respect to protein targeting and  
78 function in crop systems (Pengelly *et al.*, 2014; Atkinson *et al.*, 2016; Rolland *et al.*, 2016;  
79 Uehara *et al.*, 2016, 2020; Nölke *et al.*, 2019; Förster *et al.*, 2023). Those studies predominantly  
80 addressed the use of relatively simple, single or dual gene bicarbonate pump systems (e.g.

81 SbtA/B, BicA, LCIA, HLA3), as opposed to the more complex higher-order bicarbonate pumps  
82 and CO<sub>2</sub>-to-bicarbonate conversion complexes found in native CCMs (Rottet *et al.*, 2021).  
83 Despite these complexities, some higher-order bicarbonate pumps present desirable  
84 characteristics for HCO<sub>3</sub><sup>-</sup> accumulation in the chloroplast stroma such as energization and no  
85 ion co-transport dependencies (Rottet *et al.*, 2021).

86 Here we address the potential to make use of a relatively complex bicarbonate pump system,  
87 bicarbonate transporter 1 (BCT1), in the engineering of crop chloroplast CCMs. BCT1 is an  
88 ideal candidate for HCO<sub>3</sub><sup>-</sup> accumulation in the chloroplast stroma, owing to its high affinity for  
89 bicarbonate, its ability to transport HCO<sub>3</sub><sup>-</sup> against a concentration gradient, and because it is  
90 energized by ATP hydrolysis. In cyanobacteria, BCT1 is a low-inorganic carbon (Ci)-inducible  
91 ATP-binding cassette (ABC) transporter encoded by the *cmpABCD* operon under the control  
92 of the transcriptional regulator CmpR (Omata *et al.*, 1999b, 2001; Nishimura *et al.*, 2008; Pan  
93 *et al.*, 2016). The operon gives rise to the expression of four protein components; CmpA,  
94 CmpB, CmpC and CmpD which occupy different locations associated with the cyanobacterial  
95 plasma membrane (*Figure 1A*). The *cmpABCD* operon is found in both  $\alpha$ - and  $\beta$ -cyanobacterial  
96 species (Rae *et al.*, 2011; Sandrini *et al.*, 2014; Cabello-Yeves *et al.*, 2022), and therefore a  
97 ubiquitous element in cyanobacterial CCMs.

98 BCT1 is a high affinity transporter, exhibiting an apparent  $K_m$  of 15  $\mu$ M for HCO<sub>3</sub><sup>-</sup> (Omata  
99 *et al.*, 1999b), and is a multi-subunit ABC transporter, closely related to the nitrate transporter  
100 NrtABCD (Omata, 1995; Klanchui *et al.*, 2017). The substrate-binding protein (SBP)  
101 component, CmpA, binds HCO<sub>3</sub><sup>-</sup> with high affinity ( $K_d = 5 \mu$ M) and transfers it to the  
102 membrane transport complex (Maeda *et al.*, 2000). The first 28 N-terminal residues of CmpA  
103 form a lipoprotein signal peptide, which, when removed, results in a functional soluble protein  
104 in *Escherichia coli* (Maeda *et al.*, 2000). The signal peptidase II recognises the cleavage site  
105 <sup>26</sup>LKG<sup>29</sup>, which, following cleavage and removal of the lipoprotein, creates a covalent bond  
106 between CmpA and lipids via Cys<sup>29</sup> (Maeda and Omata, 1997; Tjalsma *et al.*, 1999). CmpB is  
107 the transmembrane domain (TMD) component of BCT1 and is likely to form a homodimer that  
108 functions as the channel for the transport of HCO<sub>3</sub><sup>-</sup> across the plasma membrane (Omata *et al.*,  
109 2002). Finally, the nucleotide-binding domain (NBD) proteins, CmpC and CmpD, are likely to  
110 form a heterodimer that hydrolyses ATP to power the transport of HCO<sub>3</sub><sup>-</sup> (Omata *et al.*, 1999a;  
111 Smith *et al.*, 2002). In cyanobacteria, both sit on the cytoplasmic side of the plasma membrane  
112 (*Figure 1A*). CmpD is a canonical NBD containing highly conserved ATP binding motifs (i.e.

113 Walker A, Walker B, ABC signature; Schneider and Hunke, 1998). In contrast, CmpC is a non-  
114 canonical NBD harboring an additional C-terminal domain that is 50% similar to NrtA,  
115 homologous to CmpA, and thought to act as a solute-binding regulatory domain.

116 The engineering complexity of constructing a functional form of BCT1 in a crop plant  
117 chloroplast is evidenced by the requirement for each protein component of the BCT1 complex  
118 to be targeted to a specific sub-compartment of the chloroplast. Given the limited applicability  
119 of plastome transformation technologies across diverse crop species (Hanson *et al.*, 2013), we  
120 here use a nuclear transformation approach, which has broader applicability (*Figure 1B*). Our  
121 previous work demonstrated that unmodified BCT1 had no bicarbonate uptake activity when  
122 expressed in *E. coli* (Du *et al.*, 2014). This highlights the potential requirement for regulatory  
123 systems that exist in cyanobacteria to modify BCT1 function, such as post-translational  
124 phosphorylation (Spät *et al.*, 2021), suggesting the requirement of other factors external to the  
125 complex itself in order to control function. Moreover, CmpC regulatory domain function is not  
126 yet fully understood, potentially due to the absence of native regulatory mechanisms.

127 Here, we investigated strategies for targeting *Synechococcus sp.* PCC7942 BCT1 subunits  
128 to plant chloroplast locations and used mutagenesis to obtain variants with activation  
129 independent of unidentified control mechanisms. A synthetic biology approach that combined  
130 chloroplast sub-compartment targeting peptides with fluorescent reporter proteins was used to  
131 identify the best targeting systems for each BCT1 component. We also employed a directed  
132 evolution approach in a specialized *E. coli* strain that lacks CA (hereafter CA-free) and requires  
133 high levels of CO<sub>2</sub> for growth (Du *et al.*, 2014; Desmarais *et al.*, 2019; Förster *et al.*, 2023).  
134 We were therefore able to control the function of a stand-alone BCT1 complex and eliminate  
135 regulatory requirements absent in heterologous systems. This resulted in the generation of  
136 constitutively active forms of BCT1 in *E. coli*. However, the expression of BCT1 in  
137 Arabidopsis did not result in the expected elevation in CO<sub>2</sub> supply to Rubisco. Although the  
138 tested BCT1 constructs did not exhibit functionality in Arabidopsis at this stage, our work has  
139 established a framework to assess correct protein targeting in *N. benthamiana*, activity in *E.*  
140 *coli*, and eventual functionality in plants. We have developed tools for assessing bicarbonate  
141 uptake activity *in vivo* in both *E. coli* and Arabidopsis. Moving forward, this process is likely  
142 to be iterative, with the next steps involving the evaluation of constructs generated through  
143 directed evolution to ascertain their targeting efficiency and expression levels in Arabidopsis.

144 **Results**

145 ***Individual targeting of BCT1 components to the chloroplast***

146 To determine the optimal route for installing BCT1 subunits to the correct location in  
147 chloroplasts, we employed a transient expression approach in *Nicotiana benthamiana*  
148 combined with fluorescent reporter constructs and confocal microscopy. Targeting foreign  
149 proteins to specific chloroplast sub-compartments is a significant engineering challenge as  
150 there are at least six sub-compartments (i.e. outer envelope membrane [OEM], intermembrane  
151 space [IMS], inner envelope membrane [IEM], stroma, thylakoid membrane, and thylakoid  
152 lumen; Rolland *et al.*, 2017). Specifically, we targeted nucleus-encoded CmpA, CmpB, CmpC,  
153 and CmpD individually to the chloroplast IMS, IEM, or stroma using a variety of chloroplast  
154 transit peptides (cTP; *Figure 1B*).

155 To date, the targeting of only two IMS proteins, Tic22 and MGD1, have been studied  
156 (Kouranov *et al.*, 1999; Vojta *et al.*, 2007; Chuang *et al.*, 2021). While *At*MGD1 cTP targeted  
157 CmpA to the stroma, Tic22 isoforms from *Arabidopsis thaliana* and *Pisum sativum* proved  
158 more successful in targeting CmpA to the IMS (*Supplementary Figure S1*). Notably, the first  
159 64 residues of the protein *At*Tic22-IV targeted CmpA to the IMS of *N. benthamiana* (*At*Tic22-  
160 IV<sub>64</sub>-CmpA, *Figure 2*).

161 To target CmpB to the IEM, ABC transporters predicted to localize to the IEM were  
162 identified from chloroplast proteomes (Ferro *et al.*, 2010; Simm *et al.*, 2013; Bouchnak *et al.*,  
163 2019). The targeting efficiency of a subset of leader sequences from ABC transporters  
164 (*At*TAP1, *At*ABCD2, *At*ABCG7) and other candidates (e.g. *At* PLGG1<sub>92</sub>; Rolland *et al.*, 2016)  
165 were assessed (*Supplementary Figure S2*). We found that the first 97 residues of *At*ABCD2  
166 transporter effectively targeted CmpB to the IEM (*At*ABCD2<sub>97</sub>-CmpB, *Figure 2*), while some  
167 targeting sequences (i.e. *At*ABCG7) completely failed to deliver CmpB to the chloroplast  
168 (*Supplementary Figure S2*).

169 In cyanobacteria, CmpC and CmpD are cytoplasmic NBD components of the BCT1  
170 complex and are expected to bind transiently to their membrane anchor, CmpB. As a result, in  
171 a chloroplastic CCM, targeting of CmpC and CmpD to the IEM is unnecessary. Instead, we  
172 attempted to target them to the chloroplast stroma. To achieve this, we employed the well-  
173 established stromal targeting sequence from *At*RecA (Köhler *et al.*, 1997). While it efficiently

174 targeted CmpD to the stroma, CmpC targeting was effective but less efficient, also being  
175 detected in the cytosol after 3-days post-infiltration (*AtRecA*<sub>68</sub>-CmpD and *AtRecA*<sub>68</sub>-CmpC,  
176 *Figure 2*).

177 ***Recruitment of CmpC and CmpD to the inner envelope membrane by CmpB***

178 To determine whether CmpB is properly oriented in the membrane to interact with its  
179 stromal NBDs, a strategy involving co-expression of individual NBD with CmpB in *N.*  
180 *benthamiana* was employed. CmpC and CmpD were tagged with fluorescent reporters, while  
181 CmpB carried a small non-fluorescent label (HA-H<sub>6</sub>) to reduce potential interference (*Figure*  
182 *3A*). Confocal microscopy was used to track NBD localization and detect a shift from the  
183 stroma to the IEM.

184 While *AtRecA*<sub>68</sub>-CmpD (GL372) alone was targeted to the stroma, it was successfully  
185 recruited to the IEM when co-expressed with *AtABCD297*-CmpB (GL239; *Figure 3B*). We  
186 could not obtain conclusive evidence of *AtRecA*<sub>68</sub>-CmpC (GL370) relocalization to the IEM  
187 when co-expressed with *AtABCD297*-CmpB, likely due to its slow delivery to the chloroplast  
188 and relative accumulation in the cytosol (*Figure 3B*). However, the removal of the regulatory  
189 domain in CmpC (*AtRecA*<sub>68</sub>-CmpC<sub>263</sub>, GL371) allowed for cleaner targeting to the stroma and  
190 obvious recruitment to the IEM by *AtABCD297*-CmpB (*Figure 3C*). Successful recruitment of  
191 the two NBDs suggests that *AtABCD297*-CmpB not only sits in the chloroplast IEM but is also  
192 in the correct orientation to allow appropriate protein:protein interactions with stromal CmpC  
193 and CmpD.

194 Considering the limited understanding of membrane protein orientation determinants, we  
195 utilized our system to explore the influence of various targeting sequences on the orientation  
196 of CmpB in the membrane. Although some targeting sequences were less efficient in delivering  
197 CmpB to the IEM, they did not affect its orientation. All seven tested targeting sequences for  
198 CmpB triggered the relocalization of *AtRecA*<sub>54</sub>-CmpC<sub>263</sub> (GL199) to the IEM (*Supplementary*  
199 *Figure S3*). In contrast, the control construct lacking a targeting sequence for CmpB (GL234,  
200 no SP) did not induce the shift of CmpC<sub>263</sub> from the stroma to the IEM (*Supplementary Figure*  
201 *S3*).

202 ***Generation of active BCT1 mutants by rational design***

203 Previous results showed that unmodified BCT1 is inactive in *E. coli* (Du *et al.*, 2014). To  
204 address this, we initially removed putative regulatory requirements of BCT1 by rational design.  
205 For this purpose, we used a Loop Assembly (Pollak *et al.*, 2019) approach, enabling high  
206 throughput design and construction of flexible linkers, point mutations, and domain deletions  
207 (*Figure 4*). Since we hypothesized the lack of BCT1 function in heterologous systems may be  
208 due to the absence of regulatory mechanisms present in cyanobacteria, an obvious rational  
209 design approach was to remove the regulatory domain of CmpC (*Figure 4C*). CmpC is a 663-  
210 residue protein, of which only 263 residues fold into a canonical NBD (*Supplementary Figure*  
211 *S4*). The additional C-terminal domain is thought to be involved in BCT1 regulation (Omata *et*  
212 *al.*, 2002; Koropatkin *et al.*, 2006). We therefore generated a construct that only encoded the  
213 first 263 residues of CmpC, namely CmpC<sub>263</sub>.

214 We also generated point mutations in CmpA and CmpB to mimic potential phosphorylation  
215 events found in *Synechocystis* sp. PCC6803 (CmpA: S110, T129; and CmpB: T3; Spät *et al.*,  
216 2021). We identified the corresponding residues in *Synechococcus elongatus* PCC7942 and  
217 mimicked phosphorylation by serine/threonine-to-glutamic acid substitutions in CmpA<sup>S107E</sup>,  
218 CmpB<sup>T126E</sup> and CmpB<sup>T3E</sup> (*Figure 4D*).

219 In prokaryotes, the two TMDs and two NBDs of ABC transporters are often encoded by  
220 separate genes, while in eukaryotes, these domains are typically connected by linker region(s)  
221 to form so-called ‘full-‘ or ‘half-transporters’ (Theodoulou and Kerr, 2015; Ford *et al.*, 2019).  
222 Half-transporter fusions of CmpB with CmpC (hereafter CmpBC) and CmpB with CmpD  
223 (hereafter CmpBD) were generated using flexible linkers of approx. 40 residues (*Figure 4E*).  
224 This should ensure domain assembly when expressed in more complex heterologous systems  
225 and reduce targeting complexity (Ford *et al.*, 2019).

226 In ABC transporters, it is accepted that ATP hydrolysis is carried out by the NBDs and that  
227 a glutamate-to-glutamine substitution in the conserved Walker B motif causes ATP hydrolysis  
228 deficiency (Orelle *et al.*, 2003). A putatively inactive BCT1 mutant was created as a negative  
229 control (*Figure 4F*) by mutating the catalytic glutamate in both CmpC<sup>E164Q</sup> and CmpD<sup>E179Q</sup>.

230 ***Generation of active BCT1 mutants by directed evolution***

231 We also employed a directed evolution approach within a specialized *E. coli* strain lacking  
232 CAs (CA-free; Desmarais *et al.*, 2019) to evolve functional forms of BCT1. This strain only  
233 grows under high levels of CO<sub>2</sub> or in the presence of a functional bicarbonate transporter or  
234 CA (Du *et al.*, 2014; Förster *et al.*, 2023). By controlling the CO<sub>2</sub> supply, we determined that  
235 a 0.85% (v/v) CO<sub>2</sub> allowed CA-free to survive for extended periods in liquid culture with slow  
236 growth, providing an opportunity for random mutations in the BCT1 plasmid to confer growth  
237 advantages. Upon improved growth, cells were transferred to air levels of CO<sub>2</sub> to increase  
238 selection pressure and select functional mutants. The culture was further incubated until it  
239 exhibited consistent overnight growth. The duration of the entire process varied from days to  
240 weeks. BCT1 plasmids were isolated from single colonies, sequenced and re-transformed into  
241 CA-free to confirm the mutations were responsible for the observed growth.

242 This directed evolution approach led to the generation of two distinct BCT1 mutants (*Figure*  
243 *4G-H*). In the first, the deletion of the last 450 residues of CmpC (including the regulatory  
244 domain) and the first 240 residues of CmpD, resulted in a CmpCD chimera of 263 residues (29  
245 kDa). This mutant also harboured a point mutation in the non-coding intergenic sequence  
246 between *cmpA* and *cmpB*. In the second, the deletion of the intergenic space between *cmpC*  
247 and *cmpD* produced a CmpCD fusion of 942 residues (105 kDa) that maintained the integrity  
248 of both CmpC and CmpD. This mutant also harbored a point mutation in the regulatory domain  
249 of CmpC<sup>H409Q</sup>.

250 ***High-throughput screening of BCT1 mutants in CA-free E. coli***

251 A high-throughput complementation plate assay was used to rapidly assess BCT1 function  
252 of rational design and directed evolution mutants in CA-free *E. coli*. We screened 72 genetic  
253 constructs of BCT1 (*Supplementary Table S2*), of which 14 are shown in *Figure 5*, with each  
254 construct identified by a unique identification number. Initially, we confirmed that the  
255 unmodified BCT1 construct (GN18) failed to complement CA-free at ambient CO<sub>2</sub> (0.04%,  
256 *Figure 5*). We also evaluated our rational designs, including without a regulatory domain  
257 (GN109), phosphorylation mimic (GN113), and half-transporter (GN135). None of these  
258 designs supported growth at air (*Figure 5*). However, removing CmpC regulatory domain in  
259 our half-transporter design enabled growth at ambient CO<sub>2</sub> (GN138; *Figure 5*). The addition

260 of small epitope tags to this improved half-transporter design still allowed partial growth at air  
261 (GN133; *Figure 5*).

262 Among the selected BCT1 constructs, two directed evolution mutants (CmpCD chimera  
263 [GN19] and CmpCD fusion [GN128]), exhibited successful complementation of CA-free at  
264 air. Given its robust complementation ability, we focused our efforts on the CmpCD fusion  
265 construct (also containing the H409Q mutation in the regulatory domain of CmpC, *Figure 4H*).  
266 Firstly, we demonstrated that the complementation depends on BCT1's ability to hydrolyse  
267 ATP by mutating the catalytic glutamate in CmpC<sup>E164Q</sup> and CmpD<sup>E179Q</sup>. The ATPase deficient  
268 CmpCD fusion failed to complement CA-free (GM322; *Figure 5*). Secondly, we teased apart  
269 the influence of the fusion event (between *cmpC* and *cmpD*) and the H409Q mutation in the  
270 regulatory domain of CmpC. When the residue Q409 was mutated back into a histidine, the  
271 resulting fusion construct failed to complement CA-free (GM321; *Figure 5*). But when a stop  
272 codon and an intergenic space were reintroduced between *cmpC*<sup>H409Q</sup> and *cmpD*, the resulting  
273 construct weakly complemented CA-free (GN130; *Figure 5*). Finally, we looked at the  
274 influence of epitope tags on the CmpCD fusion revealing that while the addition of a tag on  
275 CmpA and/or CmpCD fusion had little impact on BCT1 function (GM310, GM319, *Figure 5*;  
276 GM315, GM317, *Supplementary Table S2*), a C-terminal tag on CmpB always resulted in a  
277 loss of function (GN129, *Figure 5*; GM316, GM318, GM320, *Supplementary Table S2*).

278 ***Functional analysis of selected BCT1 mutants in E. coli***

279 To gain insights into the functional properties of some BCT1 mutants, we conducted  
280 H<sup>14</sup>CO<sub>3</sub><sup>-</sup> uptake assays in *E. coli* as described by Förster et al. (2023). Bicarbonate uptake rates  
281 were measured for a subset of seven genetic constructs (*Figure 6A*), with the CmpCD fusion  
282 exhibiting the highest uptake rate (GN128, 104.2±4.6 nmol·OD<sub>600</sub><sup>-1</sup>·h<sup>-1</sup>). The addition of a myc  
283 tag on CmpA and an mCitrine tag on CmpCD led to a 1.5-fold decrease in uptake rate (GM319,  
284 69.3±10.1 nmol·OD<sub>600</sub><sup>-1</sup>·h<sup>-1</sup>). Furthermore, replacing mCitrine with HA-H<sub>6</sub> on CmpCD resulted  
285 in a total loss of activity (GM310, 5.5±1.6 nmol·OD<sub>600</sub><sup>-1</sup>·h<sup>-1</sup>). The improved half-transporter  
286 design displayed moderate performance (GN138, 22.5±9.3 nmol·OD<sub>600</sub><sup>-1</sup>·h<sup>-1</sup>), but the addition  
287 of tags reduced the transporter's activity (GN133, 10±2.3 nmol·OD<sub>600</sub><sup>-1</sup>·h<sup>-1</sup>) to the same  
288 negligible level observed with the unmodified BCT1 (GN18, 10.8±4 nmol·OD<sub>600</sub><sup>-1</sup>·h<sup>-1</sup>). The  
289 CmpCD chimera also exhibited a negligible uptake rate (GN19, 13.4±2.8 nmol·OD<sub>600</sub><sup>-1</sup>·h<sup>-1</sup>).  
290 The kinetic constants were determined for a subset of three constructs which revealed a

291 bicarbonate affinity of approximately 150  $\mu$ M for both the CmpCD fusion with tags (GM319;  
292  $K_M = 0.17 \pm 0.03$  mM) and without tags (GN128;  $K_M = 0.12 \pm 0.02$  mM; *Figure 6B*).

293 We also explored the assembly of the BCT1 complex in *E. coli*. To facilitate this assessment,  
294 each BCT1 protein was tagged with a small epitope (*Figure 6C*). CmpC, the bait protein, was  
295 purified by virtue of its C-terminal hexa-histidine tag using Immobilized Metal Affinity  
296 Chromatography (IMAC), with the expectation that interacting proteins (prey) would co-  
297 purify. A negative control involved using a BCT1 construct with identical tags, except for the  
298 absence of the hexa-histidine tag on CmpC (GM336). This control confirmed the effectiveness  
299 of the column washes, as no signal was detected in the eluate fraction for GM336 (*Figure 6D*).  
300 The IMAC pull-down was then repeated with three different BCT1 constructs. The eluate of  
301 the unmodified BCT1 (GM337) contained all four proteins, indicating that the presence of a  
302 tag on CmpB does not obstruct transporter assembly. The NBD-only construct (GM339)  
303 revealed that CmpC and CmpD can directly interact without necessitating CmpB to form a  
304 heterodimer. Lastly, in GM341, where CmpC is fused with CmpD, the interaction with CmpB  
305 persisted, with both CmpB and CmpA detected in the eluate fraction.

306 ***Functional analysis of selected BCT1 mutants in Arabidopsis***

307 Six BCT1 genetic constructs were adapted for plant expression and introduced into the  
308 Arabidopsis  $\beta ca5$  mutant (*Supplementary Figure S5*).  $\beta ca5$  lacks the plastidial carbonic  
309 anhydrase  $\beta$ CA5, and like CA-free *E. coli*, is unable to grow at air unless expressing a functional  
310 bicarbonate transporter or a plastid-localized CA (Weerasooriya *et al.*, 2022; Förster *et al.*,  
311 2023). However, when transformed into  $\beta ca5$ , none of the tested BCT1 constructs, including  
312 unmodified (GN23), no regulatory domain (GN24), phosphorylation mimic (GN55), half-  
313 transporter (GN64), half-transporter with CmpC<sub>263</sub> (GN65), and CmpCD fusion (GN139),  
314 restored  $\beta ca5$  growth at air (*Figure 7*).

315 To further our analysis, the two half-transporter constructs (GN64, GN65), and CmpCD  
316 fusion (GN139) were introduced into wild-type (WT) Arabidopsis. These plants were then  
317 grown on air levels of CO<sub>2</sub> (400 ppm) or low CO<sub>2</sub> (200 ppm) to determine whether the BCT1  
318 constructs might enhance growth. None of these constructs enhanced growth of WT  
319 Arabidopsis when grown at these CO<sub>2</sub> levels (*Figure 8, Supplementary Figure S6*). In addition,  
320 the mature leaves of the transformed plants displayed lower or similar CO<sub>2</sub> assimilation rates

321 (A/C<sub>i</sub> curves; CO<sub>2</sub> assimilation rate as a function of intercellular CO<sub>2</sub>) as compared to WT,  
322 with CO<sub>2</sub> compensation points unchanged or higher than WT (*Supplementary Table S3*).

323 **Discussion**

324 In this study, we present compelling evidence supporting the independent functional  
325 evolution, and precise subcellular targeting of a complex cyanobacterial bicarbonate  
326 transporter. Our primary objective was to introduce a functional Ci transporter into plants,  
327 aiming to enhance CO<sub>2</sub> assimilation in C<sub>3</sub> crops (Price *et al.*, 2013). Previous research in this  
328 field predominantly focused on simpler single or dual-gene bicarbonate pump systems, often  
329 encountering difficulties related to targeting or additional ion requirements for function  
330 (Pengelly *et al.*, 2014; Atkinson *et al.*, 2016; Rolland *et al.*, 2016; Uehara *et al.*, 2016, 2020;  
331 Nölke *et al.*, 2019; Rottet *et al.*, 2021; Förster *et al.*, 2023). The successful integration of the  
332 *Chlamydomonas* passive channel LCIA into C<sub>3</sub> plant chloroplasts was previously  
333 accomplished; however, this transporter's inherent characteristics as a passive channel limit its  
334 capacity for high-rate bicarbonate transport (Atkinson *et al.*, 2016; Nölke *et al.*, 2019; Förster  
335 *et al.*, 2023).

336 For the first time, we addressed dual challenges described in previous reports: independently  
337 achieving transporter functionality, and correct subcellular localization of a foreign bicarbonate  
338 transporter in plants. Notably, we directed the ABC transporter BCT1 to the chloroplast  
339 envelope, a complex task given its four subunits, each needing precise localization (*Figure 1*).  
340 BCT1 was previously reported to be inactive in *E. coli*, potentially due to unknown regulatory  
341 mechanisms likely present in its native cyanobacterial cellular environment (Du *et al.*, 2014).  
342 To remove regulatory requirements, BCT1 was engineered, and its functionality assessed in a  
343 specialized *E. coli* strain. Despite these complexities, BCT1 possesses favourable attributes,  
344 including a high affinity for bicarbonate and the reliance on ATP as its sole power source  
345 (Omata *et al.*, 1999b,a), eliminating the need for co-transported ions, as is the case for the  
346 single gene transporters SbtA and BicA (Price *et al.*, 2004, 2008).

347 The ability to import nuclear-encoded proteins into chloroplasts has a broad application to  
348 the majority of globally important crops. The assembly of a multi protein membrane complex  
349 in a heterologous system is a significant engineering challenge. It requires the components to  
350 be co-localized and for the membrane proteins to be inserted in the correct orientation (Wojcik  
351 and Kriegbaumer, 2021). Factors such as stoichiometry and chaperones may also have to be

352 considered (Barrera *et al.*, 2009; Bae *et al.*, 2013; Hallworth *et al.*, 2013; Thornell and  
353 Bevensee, 2015). We found that the BCT1 complex assembled in *E. coli* (*Figure 6*) and in *N.*  
354 *benthamiana* (*Figure 3*). A critical observation was the recruitment of CmpC and CmpD to  
355 the chloroplast IEM when co-expressed with CmpB, which suggests that CmpB is oriented  
356 correctly in the membrane irrespective of which leader sequences was used (*Figure 3* and  
357 *Supplementary Figure S3*). This is not only essential for the complex formation but also  
358 guarantees the intended direction of transport. Notably, we observed that not all leader  
359 sequences were equally effective at targeting BCT1 component proteins to the correct locations  
360 within the chloroplast. For example, *AtMGD1* failed to target CmpA to the IMS  
361 (*Supplementary Figure S1*). Additionally, while the *AtRecA* leader sequence proved highly  
362 efficient for directing CmpD to the stroma, it could not efficiently deliver CmpC, possibly due  
363 to steric hindrance issues (*Figure 2*; Köhler *et al.*, 1997; Shen *et al.*, 2017). As more leader  
364 sequences become available, our toolkit for subcellular targeting will expand, and the use of  
365 modular cloning will enable rapid screening of additional sequences.

366 Initially, native BCT1 was inactive in *E. coli* (*Figures 5* and *6*; Du *et al.*, 2014). We  
367 hypothesized the lack of function was due to the absence of regulatory factors in heterologous  
368 systems (e.g. specific activation kinases; Spät *et al.*, 2021). To overcome this problem, we used  
369 two approaches. Logical changes were made to the proteins by rational design, and directed  
370 evolution was employed to evolve active forms of BCT1 (*Figures 4* and *5*). Directed evolution  
371 led to large changes such as the fusion of the two NBDs in a CmpCD fusion. With rational  
372 design, we explored the fusion of the TMD with each NBDs in the CmpBC and CmpBD half-  
373 transporter design (Theodoulou and Kerr, 2015; Ford *et al.*, 2019). In both approaches we  
374 obtained some level of activity, suggesting that subunit stoichiometry plays an important role  
375 for the functionality of BCT1, as protein fusion likely altered the CmpB:CmpC/D ratio.

376 We also hypothesised that eliminating the CmpC regulatory domain could produce an active  
377 transporter. While this rationally designed form, CmpC<sub>263</sub>, did not show the predicted activity,  
378 directed evolution produced a CmpCD chimera which had measurable activity in the absence  
379 of this regulatory domain (*Figures 4*). Additionally, a CmpCD fusion, which was the best-  
380 performing mutant, harboured a point mutation in the regulatory domain of CmpC<sup>H409Q</sup>. This  
381 mutation played a more significant role than the fusion event itself. However, both the mutation  
382 and fusion were found to be necessary for achieving maximal activity of the transporter. A  
383 multiple sequence alignment (*Supplementary Figure S7*) showed that residue H409 in CmpC

384 corresponds to putative ligand-binding residues in NrtA (H196) and CmpA (Q198; Koropatkin  
385 *et al.*, 2006, 2007). Considering this, we speculate that the H409Q mutation might interfere  
386 with ligand binding in some manner. Further research is needed to understand the role of H409  
387 but with eight potential binding sites identified in CmpA and NrtA, we predict there are still  
388 many unexplored rational designs that could lead to an improved functionality of BCT1.

389 Based on functional modification of BCT1 through rational design and directed evolution,  
390 and the ability to successfully target BCT1 components to their destinations within the  
391 chloroplasts, we generated transgenic *Arabidopsis* lines expressing several modified BCT1  
392 constructs (*Supplementary Figure S5*). Notably, none of these, either in  $\beta$ ca5 mutant (*Figure*  
393 7) or in WT plants (*Figure 8*), displayed phenotypes consistent with bicarbonate uptake into  
394 the chloroplast. Also, the expected decrease in CO<sub>2</sub> compensation point was not apparent  
395 (*Supplementary Table S3*). Bicarbonate uptake into the chloroplast should enhance  
396 chloroplastic CO<sub>2</sub> concentrations, elevating Rubisco carboxylation even at low ambient CO<sub>2</sub>  
397 supply (Price *et al.*, 2011). The lack of a CO<sub>2</sub> compensation point reduction in our BCT1 lines  
398 and the failure of these constructs to enhance the growth of plants indicates that BCT1 is not  
399 significantly changing chloroplast Ci uptake in these plants.

400 We hypothesise that further evolution and refinement of function of BCT1 in the CA-free  
401 *E. coli* system may be required to deliver improved function *in planta*. Notably, the large  
402 sequence changes observed using directed evolution in this study, and the similarity between  
403 evolved outcomes and some of the rational designs, highlights two things. Firstly, that well-  
404 considered rational design approaches using known variation in evolution of ABC transporter  
405 systems (e.g., half-transporter protein fusion arrangement) is a valid approach to modify this  
406 type of transporter. Secondly, our directed evolution approach enabled the generation of large  
407 and unexpected changes in sequence length and gene fusion that would have not been found in  
408 the screen of a sequence variant library. We are therefore encouraged that a combination of  
409 rational design and directed evolution of both existing chloroplast membrane proteins and  
410 bacterial bicarbonate uptake systems will allow significant progress in enabling the elevation  
411 of chloroplastic Ci using synthetic biology tools. In combination with high throughput DNA  
412 assembly technologies and plant-based platforms that enable functional testing, we expect  
413 significant progress toward this goal.

414 **Supplementary data**

415 The following supplementary data are available online.

416 *Figure S1* Targeting of CmpA to the chloroplast intermembrane space.  
417 *Figure S2* Targeting of CmpB to the chloroplast inner envelope membrane.  
418 *Figure S3* Orientation of CmpB in the inner envelope membrane.  
419 *Figure S4* Structure of CmpC.  
420 *Figure S5* Genetic constructs screened in *Arabidopsis*  $\beta$ *ca5* mutant.  
421 *Figure S6* Rosette area and assimilation rate in transgenic *Arabidopsis*.  
422 *Figure S7* Sequence alignment and corresponding WebLogo conservation sequence of  
423 CmpC, CmpA, NrtA and NrtC from  $\beta$ - and  $\alpha$ -cyanobacteria.  
424  
425 *Table S1* List of primers used in this study.  
426 *Table S2* List of constructs used in this study.  
427 *Table S3* CO<sub>2</sub> compensation points for BCT1 transformants in WT *Arabidopsis*.

428 **Materials and methods**

429 ***Construction of BCT1 expression vectors***

430 DNA plasmid constructs were produced using type IIS cloning strategies adapted from  
431 Golden Gate cloning and Loop Assembly (Engler *et al.*, 2014; Pollak *et al.*, 2019). BCT1 genes  
432 were amplified from *Synechococcus* *sp.* PCC7942 and domesticated to remove type IIS  
433 restriction sites. Primers were designed around the gene of interest with *Bpi*I recognition sites  
434 and an appropriate 4-bp overhang (*Supplementary Table S1*). Polymerase chain reaction (PCR)  
435 was performed using Phusion™ High-Fidelity DNA Polymerase (ThermoFisher Scientific,  
436 USA), the bands of desired sizes were gel-purified using Promega Wizard® SV Gel and PCR  
437 Clean-Up System (Promega, USA). PCR fragments were assembled into the Universal Level  
438 0 vector (pAGM9121) under cyclical digestion and ligation condition (37°C for 3 minutes,  
439 16°C for 4 minutes for 25 cycles) followed by heat inactivation (50°C for 5 minutes, 80°C for  
440 5 minutes). The same cyclical digestion and ligation condition with heat inactivation was  
441 performed when assembling Level 1, Level 2 and Level 3 constructs, but with different  
442 restriction enzymes and acceptor plasmids. While BbsI-HF® (New England BioLabs, USA)  
443 was used for Level 0 assembly, BsaI-HF®v2 (New England BioLabs, USA) was used for Level  
444 1 and 3 assembly and SapI (New England BioLabs, USA) for Level 2 assembly. Acceptors  
445 were pOdd1-4 (pCk1-4, Addgene plasmids # 136695-136698) for Level 1 and 3 and pEven1-  
446 4 (pCsA-E, Addgene plasmids # 136067-136070) for Level 2. To optimize BCT1 expression  
447 in *E. coli*, the low copy number pFA31 backbone (Addgene plasmid #162708; Flamholz *et al.*,  
448 2020) was modified into two terminal acceptors compatible with Loop Assembly (pFA-*Odd*  
449 and pFA-*Even*). For the ‘half-transporter’ designs, flexible linkers were adapted from  
450 BBa\_K365005, BBa\_K157013, BBa\_K157013, BBa\_K157009 (iGem Standard Biological  
451 Parts, <http://parts.igem.org/>). QIAprep Spin Miniprep Kit (Qiagen, USA) was used for all  
452 plasmid purification and construct sequences were confirmed by Sanger sequencing (Macrogen  
453 Inc., Seoul South Korea). Primers used for assembling and checking the different constructs  
454 can be found in *Supplementary Table S1*.

455 ***Plant growth conditions***

456 *N. benthamiana* plants used for infiltration were grown under 400  $\mu\text{mol}$  photons  $\text{m}^{-2} \text{s}^{-1}$  light  
457 intensity, 60% relative humidity, a 16 h light/8 h dark photoperiod and 25°C day/20°C night  
458 temperatures. Only the 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup> true leaves from 4 to 5-week-old plants were kept for  
459 infiltration, while the rest were discarded. The plants were germinated and grown on  
460 pasteurized seed raising mix supplemented with 3 g/L Osmocote Exact Mini.

461 WT (Col-0) and  $\beta\text{ca5}$  mutant (SALK\_121932; obtained from TAIR) *A. thaliana* plants were  
462 used for transformation experiments with the various BCT1 constructs. The plants were grown  
463 in Metro-Mix 830 (Sun Gro Horticulture, Agawam, MA, USA) with 100  $\mu\text{mol}$  photons  $\text{m}^{-2} \text{s}^{-1}$   
464 light intensity under short days (8 h light/16 h dark). WT plants were grown in ambient (400  
465  $\mu\text{L L}^{-1}$   $\text{CO}_2$ ) and reduced  $\text{CO}_2$  (200  $\mu\text{L L}^{-1}$   $\text{CO}_2$ ) conditions, while  $\beta\text{ca5}$  mutants were  
466 supplemented with high  $\text{CO}_2$  (0.4% v/v  $\text{CO}_2$  or 4000  $\mu\text{L L}^{-1}$   $\text{CO}_2$ ) or very high  $\text{CO}_2$  (4% v/v  
467  $\text{CO}_2$  or 40000  $\mu\text{L L}^{-1}$   $\text{CO}_2$ ) to allow normal growth. The plants were maintained with distilled  
468  $\text{H}_2\text{O}$  and a 1:3 dilution of Hoagland's nutrient solution (Epstein and Bloom, 2005).

469 ***Agroinfiltration of Nicotiana benthamiana leaves***

470 Constructs for BCT1 localization studies (*Supplementary Table S2*) were transiently  
471 expressed in 4-5 week old *N. benthamiana* leaf tissue via Agrobacterium infiltration, as  
472 described previously (Rolland, 2018). Briefly, *A. tumefaciens* GV3101 (pMP90) were  
473 transformed with BCT1 constructs and grown in lysogeny broth (LB) media supplemented  
474 with 25  $\mu\text{g mL}^{-1}$  rifampicin, 50  $\mu\text{g mL}^{-1}$  gentamycin and 50  $\mu\text{g mL}^{-1}$  kanamycin or 100  $\mu\text{g}$   
475  $\text{mL}^{-1}$  spectinomycin for 24 hours at 28°C and 200 rpm. A vector encoding the tomato bushy  
476 stunt virus P19 protein was used to inhibit post-transcriptional gene silencing and to enable the  
477 expression of our constructs of interest (Roth *et al.*, 2004). For each infiltration, p19 culture  
478 was mixed with each construct of interest at an  $\text{OD}_{600}$  of 0.3 and 0.5, respectively. A p19-only  
479 control was prepared to an  $\text{OD}_{600}$  of 0.8 as a negative control. All cells for infiltration were  
480 pelleted at 2,150 g for 8 minutes and resuspended in 5 mL of infiltration solution (10 mM MES  
481 pH 5.6, 10 mM  $\text{MgCl}_2$ , 150  $\mu\text{M}$  acetosyringone). The solutions were incubated at room  
482 temperature for 2 hours with occasional swirling, then infiltrated into the abaxial surface of 4-  
483 week-old *N. benthamiana* leaves using a 1 mL slip tip syringe. Infiltrated plants were grown  
484 for another 3 days before protein expression was assessed via confocal microscopy.

485 ***Agrobacterium-mediated transformation of Arabidopsis thaliana***

486 BCT1 plant expression vectors were transformed into *Agrobacterium tumefaciens* strain  
487 GV3101. Cultures were grown in LB media with antibiotics (30 µg mL<sup>-1</sup> gentamycin, 10 µg  
488 mL<sup>-1</sup> rifampicin, and 50 µg mL<sup>-1</sup> kanamycin). *Arabidopsis* plants were transformed using the  
489 method described by (Zhang *et al.*, 2006). A 5 mL starter culture of *A. tumefaciens* was grown  
490 in LB media with antibiotics overnight at 28°C. This starter culture was used the following  
491 morning to propagate a larger 250 mL *A. tumefaciens* culture overnight at 28°C. The next day,  
492 the cells were harvested by centrifugation at 4,000 g for 10 minutes. The pelleted cells were  
493 resuspended in freshly prepared 5% (w/v) sucrose solution with 0.02% (v/v) of Silwet L-77.  
494 The resuspended cultures were generously applied to the *Arabidopsis* flower buds using  
495 transfer pipettes. Afterwards, the plants were placed sideways into the trays and were covered  
496 and allowed to recover in darkness overnight. Following recovery, the plants were grown in  
497 21°C in continuous light. Mature seeds were collected from plants and positive transformants  
498 were selected on soil by spraying seedlings with a 1:2000 dilution of BASTA (AgrEvo, Berlin,  
499 Germany). The presence of the transgene was also confirmed via gene-specific PCR for *cmpA*  
500 with the primer pair CmpA-F1 and CmpA-R1 and for the *bar* gene with the primer pair Basta-  
501 F and Basta-R (*Supplementary Table S1*). DNA was extracted using the protocol described by  
502 (Edwards *et al.*, 1991). Namely, about 20 mg of plant tissue was ground using micropesles in  
503 1.5 mL centrifuge tubes. These were further macerated in 400 µL of extraction buffer (200 mM  
504 Tris-HCl pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% [w/v] SDS). The samples were then  
505 centrifuged at 13,000 g for 5 minutes, and the supernatant was collected into a new tube. An  
506 equal volume (~400 µL) of isopropanol was added and mixed to the supernatant. The resulting  
507 mixture was again centrifuged at 13,000 g for 5 minutes. The resulting supernatant was  
508 discarded afterwards, and the pellet was allowed to air dry. After drying, the pellet was  
509 dissolved in 50 µL of 1X TE buffer (10 mM Tris-HCl, 1mM Na<sub>2</sub>EDTA, pH 8.0) and was used  
510 for subsequent confirmation of transformation.

511 ***Confocal microscopy***

512 Confocal laser microscopy was performed on *N. benthamiana* infiltrated with BCT1  
513 constructs at 3-4 dpi (days post-infiltration). In 3 independent experiments, leaf disks or  
514 protoplasts (Rolland, 2018) were observed and several images taken, using a Leica SP8  
515 confocal laser microscope, a 63x water immersion objective (NA= 1.2), PMT detectors and the

516 Leica Application Suite X software package. Confocal microscope settings for the detection of  
517 chlorophyll ( $\lambda_{\text{ex}}=488$  nm or 514 nm,  $\lambda_{\text{em}}=650\text{-}690$  nm), mCitrine ( $\lambda_{\text{ex}}=514$  nm,  $\lambda_{\text{em}}=520\text{-}540$   
518 nm), and mNeon ( $\lambda_{\text{ex}}=488$  nm,  $\lambda_{\text{em}}=512\text{-}530$  nm) were as described previously (Stoddard and  
519 Rolland, 2019).

520 ***Bacterial strains and growth conditions***

521 *E. coli* CA-free strain, kindly provided by Dave Savage (Desmarais *et al.*, 2019), was used  
522 for directed evolution and complementation assay. *E. coli* DH5 $\alpha$  strain was used for cloning  
523 and protein expression for IMAC (immobilized metal affinity chromatography) purification.  
524 Unless otherwise stated, bacteria were grown at 37°C in LB media (10 g/L tryptone, 10 g/L  
525 NaCl and 5 g/L yeast extract), supplemented with 15 g/L agar for solid media on plates. For  
526 culturing transformants with spectinomycin, ampicillin and kanamycin resistant genes, media  
527 were supplemented with 100  $\mu\text{g mL}^{-1}$ , 100  $\mu\text{g mL}^{-1}$  and 50  $\mu\text{g mL}^{-1}$  of the antibiotics  
528 respectively.

529 ***Directed evolution of BCT1 in CA-free E. coli***

530 By controlling the CO<sub>2</sub> supply, we determined that a 0.85% (v/v) CO<sub>2</sub> allowed CA-free to  
531 survive for extended periods in liquid culture, providing an opportunity for random mutations  
532 in the BCT1 plasmid to confer growth advantages.

533 A starter culture of CA-free harboring unmodified BCT1 genes in pEven1 backbone  
534 (GM186) was prepared by growing the cells from a glycerol stock in LB medium supplemented  
535 with 100  $\mu\text{g mL}^{-1}$  spectinomycin at 37°C in the presence of 4% CO<sub>2</sub> for approximately 18  
536 hours. This starter culture was then diluted 100  $\mu\text{L}$  into 5 mL of liquid media consisting of M9  
537 minimal medium supplemented with 1% LB, 100  $\mu\text{g mL}^{-1}$  spectinomycin, and 20  $\mu\text{M}$   
538 isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG). The cultures were incubated at 37°C with  
539 agitation at 120 rpm under a 0.85% CO<sub>2</sub> atmosphere. Regular subculturing in fresh media were  
540 performed while maintaining permissive CO<sub>2</sub> conditions, until the cultures were able to fully  
541 grow overnight.

542 The overnight culture was diluted 100-fold and placed under ambient CO<sub>2</sub> conditions  
543 (0.04%). Regular subculturing was again performed until the cultures reached a dense  
544 overnight growth. From the cultures that grew under ambient CO<sub>2</sub>, 100  $\mu\text{L}$  was plated on solid

545 LB media supplemented with 100  $\mu\text{g mL}^{-1}$  spectinomycin and 100  $\mu\text{M}$  IPTG, and incubated  
546 at ambient  $\text{CO}_2$  for 18 hours. Eight single colonies were selected and cultured, and their plasmid  
547 DNA was extracted using the QIAprep Spin Miniprep Kit (Qiagen, USA). The pDNA from  
548 these colonies was pooled together and used to retransform new CA-free cells. The transformed  
549 cells were then plated onto LB agar supplemented with 100  $\mu\text{g mL}^{-1}$  spectinomycin and 100  
550  $\mu\text{M}$  IPTG and incubated at ambient  $\text{CO}_2$  for 18 hours. Growth confirmed that the mutation(s)  
551 conferring the advantage at air was carried by the plasmid and not in the genome of the CA-  
552 free strain. Twelve colonies were selected from this plate, and the pDNA was isolated from  
553 each colony for DNA sequencing (Macrogen Inc., Seoul, South Korea).

554 For the isolation of the strain harbouring the CmpCD chimera, cells were subcultured four  
555 times at 0.85%  $\text{CO}_2$  and three times at air before it grew overnight. For the isolation of the  
556 strain harbouring the CmpCD fusion, cells were subcultured six times at 0.85%  $\text{CO}_2$  before it  
557 grew overnight at air.

#### 558 ***Complementation assay in CA-free E. coli***

559 We developed a high-throughput complementation assay to rapidly assess BCT1 function  
560 in CA-free. This involved cultivating liquid cultures at 4%  $\text{CO}_2$  for 6 hours at 37°C, spotting 5  
561  $\mu\text{L}$  onto four plates of LB agar with or without 0.1 mM IPTG, and incubating them overnight  
562 in selective (air, 0.04%  $\text{CO}_2$ ) or permissive conditions (4%  $\text{CO}_2$ ). To mitigate the negative  
563 growth effects caused by BCT1 overexpression, a modified plasmid backbone with lower copy  
564 number was employed in this assay (pFA-Odd and pFA-Even). After the overnight growth, the  
565 plates were imaged with a Bio-Rad ChemiDoc XRS+ imaging system (Bio-Rad, USA) under  
566 white epifluorescence.

#### 567 ***Bicarbonate uptake assay in E. coli***

568 Inorganic carbon uptake assays were carried out as described by Förster et al. (2023) with  
569 some modifications. The assays were performed in CA-free, and the cultures were induced  
570 with 100  $\mu\text{M}$  IPTG. The assay buffer used consisted of 20 mM bis-tris propane- $\text{H}_2\text{SO}_4$   
571 supplemented with 0.5 mM glucose and 1  $\mu\text{M}$   $\text{CaCl}_2$  with a pH of 7.5.

572 To prepare the cells for the assay, they were first washed twice with the assay buffer.  
573 Subsequently, the cells were incubated for ten minutes before undergoing a third round of

574 washing with the assay buffer. Following the washing steps, the assay was performed according  
575 to the protocol outlined in Förster et al. (2023). This method allowed us to measure the rates of  
576 bicarbonate uptake and determine kinetic parameters such as the Michaelis constant ( $K_M$ ) and  
577 maximum velocity ( $V_{MAX}$ ) for bicarbonate transport.

578 ***Protein induction and Immobilised Metal Affinity Chromatography purification***

579 Overnight cultures from glycerol stocks were used to inoculate 40 mL of LB medium  
580 supplemented with 100  $\mu$ g mL<sup>-1</sup> spectinomycin to an optical density ( $OD_{600}$ ) of 0.1-0.2.  
581 Cultures were grown at 37°C until  $OD_{600}$  reached 0.4-0.6. To induce protein expression, IPTG  
582 was added to a final concentration of 50  $\mu$ M. Cultures were returned to grow at either 37°C for  
583 two to three hours or 28°C for four to five hours. To prepare the cells for IMAC purification,  
584 the  $OD_{600}$  of each culture was measured and used to normalize the number of cells to pellet.  
585 The cell pellets were then harvested by centrifugation at 4,800 g for 10 minutes at 4°C and  
586 subsequently stored at -20°C until further use.

587 Cell pellets were resuspended with 1 mL of lysis buffer [5% (v/v) glycerol, 50 mM HEPES  
588 pH 8.0, 50 mM NaCl, 1% (v/v) bacterial protease inhibitor cocktail (P8849, Sigma, USA)  
589 added fresh before using] and incubated with 1  $\mu$ L of rLysozyme solution (71110-6000KU,  
590 EMD Millipore Corp, USA) for 30 minutes on ice. The suspension was topped up to 5 mL with  
591 lysis buffer supplemented with 12.5 mM CaCl<sub>2</sub>, 25 mM NaHCO<sub>3</sub>, 6.25 mM MgCl<sub>2</sub>, 6.25 mM  
592 ATP, 6.25 mM Na<sub>3</sub>VO<sub>4</sub> and 5mM imidazole before lysing with three passes through the  
593 Emulsiflex (Avestin, USA) at 60 psi. Lysates were incubated with 1% (w/v) n-Dodecyl- $\beta$ -D-  
594 Maltoside (DDM) detergent with constant gentle rotating at 4°C for 30 minutes, and then  
595 clarified via passing through Millex® -GP Fast Flow & Low Binding Millipore Express® PES  
596 Membrane 0.22  $\mu$ m syringe filter unit (SLGP033RS, Merck Millipore, USA).

597 Each clarified lysate was incubated with 500  $\mu$ L bed volume of Profinity™ IMAC Ni-  
598 Charged Resin (156-0135, Bio-Rad, USA) in Poly-Prep® Chromatography Columns (731-  
599 1550, Bio-Rad, USA), pre-washed with 7 mL of binding buffer [5% (v/v) glycerol, 50 mM  
600 HEPES pH 8.0, 50 mM NaCl, 10 mM imidazole], under gentle inversion at 4°C for 1 hour.  
601 The resin with bound proteins was washed four times with 2.5 mL wash buffer [5% (v/v)  
602 glycerol, 50 mM HEPES pH 8.0, 50 mM NaCl, 1% (w/v) DDM, 10 mM CaCl<sub>2</sub>, 20 mM  
603 NaHCO<sub>3</sub>, 5 mM MgCl<sub>2</sub>, 5 mM ATP, 5 mM Na<sub>3</sub>VO<sub>4</sub>, 20 mM imidazole] by gravity flow.  
604 Proteins were eluted with 2 mL elution buffer [5% (v/v) glycerol, 50 mM HEPES pH 8.0, 300

605 mM NaCl, 1% (w/v) DDM, 250 mM imidazole]. Prior to SDS-PAGE analysis, eluates were  
606 concentrated ~ 20 times by trichloroacetic acid (TCA) precipitation via addition of 200 µL of  
607 0.15% (w/v) sodium deoxycholate and 200 µL of 72% (w/v) TCA solution. The mixtures were  
608 vortexed and incubated at ambient temperature for 5 minutes before being pelleted at 20,238 g  
609 for 8 minutes. Protein pellets were resuspended in 120 µL of resuspension buffer (Laemmli  
610 sample buffer, 50 mM DTT, 3.84 % (w/v) SDS, 400 mM Tris pH 7.4, 150 mM NaOH, pH 10),  
611 kept at 4°C for overnight. For longer storage, samples were kept at -20°C.

612 ***SDS-PAGE and Western blotting***

613 Protein samples were mixed with gel loading buffer (Laemmli Sample Buffer, 50 mM  
614 DTT), boiled at 95°C for 10 minutes, centrifuged for 2 minutes before running through 4-20%  
615 mini Protean TGX Stain Free Gel (BioRad, USA). The separated proteins were transferred to  
616 Immobilon®-P PVDF membrane (Merck Millipore, USA) and probed with primary antibodies  
617 overnight. Antibodies used for probing membrane include polyclonal anti-GFP antibody  
618 produced in rabbit (1:2000 dilution, abcam, USA), monoclonal anti-FLAG M2 antibody  
619 produced in mouse (1:2000 dilution, Sigma-Aldrich, USA), monoclonal anti-c-Myc antibody  
620 produced in mouse (1:5000 dilution, Sigma-Aldrich, USA), monoclonal anti-HA antibody  
621 produced in mouse (1:5000 dilution, Sigma-Aldrich, USA) and monoclonal anti-AcV5 tag  
622 antibody produced in mouse (1:5000 dilution, abcam, USA). Probed membrane was washed  
623 with TBS-T thrice before incubating with alkaline phosphatase-conjugated anti-mouse  
624 secondary antibody (1:10000 dilution, Sigma, USA) or goat anti-rabbit IgG (H+L) secondary  
625 antibody (1:5000 dilution, Invitrogen, USA) for one hour. The blot was washed as before and  
626 then visualised with Attaphos Substrate Kit (Promega, USA) using the Bio-Rad ChemiDoc  
627 XRS+ system.

628 ***Physiological measurements on Arabidopsis***

629 Images of different *Arabidopsis* genotypes were taken weekly, and rosette areas were  
630 measured as pixel area using the PhenoImage software (Zhu *et al.*, 2021) and Fiji ImageJ  
631 (Schindelin *et al.*, 2012). Rosette areas were measured on six plants per line. Four plants were  
632 later harvested for measuring fresh weights. Measurements of photosynthetic parameters were  
633 conducted using a LI-COR LI-6800 system (Lincoln, NE). Plants grown for rosette area and  
634 biomass measurements were also used for photosynthesis measurements. CO<sub>2</sub> response curves

635 for assimilation (A;  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) in response to intercellular  $\text{CO}_2$  (Ci;  $\mu\text{mol mol}^{-1}$ ) curves were  
636 generated from 50 to 1700  $\mu\text{mol mol}^{-1}$  ambient  $\text{CO}_2$ .

637 ***Data visualization and statistical analysis***

638 Growth and physiological parameter data were initially visualized using the R software  
639 environment and the ggplot2 package (Wickham, 2016; R Core Team, 2019). One-way  
640 ANOVA followed by Tukey's multiple comparisons test was performed using GraphPad Prism  
641 version 10.0.3 for Windows, GraphPad Software (Boston, Massachusetts USA,  
642 [www.graphpad.com](http://www.graphpad.com)).

643 **Acknowledgements**

644 The authors thank Hanjun Sun for early protocol development for the directed evolution  
645 system in CA-free. We also thank Sacha B. Pulsford and Wei Yih Hee for contributing to the  
646 design and construction of DNA parts. OpenAI's ChatGPT 3.5 was used for prose editing.

647 **Author contributions**

648 GDP, JVM, BML, and SR: conceptualization; GDP, and JVM: project administration;  
649 SR, LMR, SY, SYP and ICP: methodology; SR, LMR, ICP, XW, HSM and NDN: formal  
650 analysis; SR, LMR, ICP, SYP, SY, XW, HSM and HNW: investigation; BML, SR, JVM and  
651 GDP: supervision; SR, NDN and BML: visualization; SR, LMR, SYP, SY, ICP and BML:  
652 writing - original draft; all authors: writing - review & editing; GDP, and JVM: funding  
653 acquisition.

654 **Conflict of interest**

655 The authors declare that they have no conflicts of interest.

656 **Funding**

657 This work was supported by a sub-award from the University of Illinois to GDP and JVM  
658 as part of the research project Realizing Increased Photosynthetic Efficiency (RIPE) that is  
659 funded by the Bill & Melinda Gates Foundation, Foundation for Food and Agriculture  
660 Research, and the UK Government's Department for International Development under Grant  
661 Number OPP1172157 (funding ended in September 2022).

662 **Data availability**

663 All relevant data and plant materials are available from the authors upon request. Raw data  
664 corresponding to the figures and results described in this manuscript are available online at  
665 <https://doi.org/10.17632/vncj8cn6xs.1> (Rottet *et al.*, 2024). Additional data reported in this  
666 paper are presented in the Supplementary Data.

## References

**Atkinson N, Feike D, Mackinder LCM, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ.** 2016. Introducing an algal carbon-concentrating mechanism into higher plants: Location and incorporation of key components. *Plant Biotechnology Journal* **14**, 1302–1315.

**Bae JS, Koo NY, Namkoong E, Davies AJ, Choi SK, Shin Y, Jin M, Hwang SM, Mikoshiba K, Park K.** 2013. Chaperone stress 70 protein (STCH) binds and regulates two acid/base transporters NBCe1-B and NHE1. *Journal of Biological Chemistry* **288**, 6295–6305.

**Barrera NP, Isaacson SC, Zhou M, et al.** 2009. Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. *Nature Methods* **6**, 585–587.

**Bouchnak I, Brugiére S, Moyet L, Le Gall S, Salvi D, Kuntz M, Tardif M, Rolland N.** 2019. Unravelling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity. *Molecular & Cellular Proteomics* **18**, 1285–1306.

**Cabello-Yeves PJ, Scanlan DJ, Callieri C, et al.** 2022.  $\alpha$ -cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats. *ISME Journal* **16**, 2421–2432.

**Chuang M, Chen L, Li H.** 2021. Chloroplast import of an intermembrane space protein is facilitated by translocon components Toc75 and Tic236. *Plant Direct* **5**, e356.

**Desmarais JJ, Flamholz AI, Blikstad C, et al.** 2019. DABs are inorganic carbon pumps found throughout prokaryotic phyla. *Nature Microbiology* **4**, 2204–2215.

**Du J, Förster B, Rourke L, Howitt SM, Price GD.** 2014. Characterisation of cyanobacterial bicarbonate transporters in *E. coli* shows that SbtA homologs are functional in this heterologous expression system. *PLoS ONE* **9**, e115905.

**Edwards K, Johnstone C, Thompson C.** 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. *Nucleic acids research* **19**, 1349.

**Engler C, Youles M, Gruetzner R, Ehner T-M, Werner S, Jones JDG, Patron NJ, Marillonnet S.** 2014. A golden gate modular cloning toolbox for plants. *ACS Synthetic Biology* **3**, 839–843.

**Epstein E, Bloom AJ.** 2005. *Mineral nutrition of plants: Principles and perspectives*. Sinauer Associates, Sunderland, MA.

**Ferro M, Brugiére S, Salvi D, et al.** 2010. AT\_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. *Molecular & cellular proteomics* **9**, 1063–1084.

**Flamholz AI, Dugan E, Blikstad C, et al.** 2020. Functional reconstitution of a bacterial CO<sub>2</sub> concentrating mechanism in *Escherichia coli*. *eLife* **9**, e59882.

**Ford RC, Marshall-Sabey D, Schuetz J.** 2019. Linker domains : Why ABC transporters 'live in fragments no longer. *Trends in Biochemical Sciences* **45**, 137–148.

**Förster B, Rourke LM, Weerasooriya HN, et al.** 2023. The *Chlamydomonas reinhardtii* chloroplast envelope protein LCIA transports bicarbonate in *planta*. *Journal of Experimental Botany* **74**, 3651–3666.

**Hallworth R, Stark K, Zholudeva L, Currall BB, Nichols MG.** 2013. The conserved tetrameric subunit stoichiometry of Slc26 proteins. *Microscopy and Microanalysis* **19**, 799–807.

**Hanson MR, Gray BN, Ahner BA.** 2013. Chloroplast transformation for engineering of photosynthesis. *Journal of Experimental Botany* **64**, 731–742.

**Hennacy JH, Jonikas MC.** 2020. Prospects for engineering biophysical CO<sub>2</sub> concentrating mechanisms into land plants to enhance yields. *Annual Review of Plant Biology* **71**, 461–485.

**Klanchui A, Cheevadhanarak S, Prommeenate P, Meechai A.** 2017. Exploring components of the CO<sub>2</sub>-concentrating mechanism in alkaliphilic cyanobacteria through genome-based analysis. *Computational and Structural Biotechnology Journal* **15**, 340–350.

**Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR.** 1997. Exchange of protein molecules through connections between higher plant plastids. *Science* **276**, 2039–2042.

**Koropatkin NM, Koppenaal DW, Pakrasi HB, Smith TJ.** 2007. The structure of a cyanobacterial bicarbonate transport protein, CmpA. *Journal of Biological Chemistry* **282**, 2606–2614.

**Koropatkin NM, Pakrasi HB, Smith TJ.** 2006. Atomic structure of a nitrate-binding protein crucial for photosynthetic productivity. *Proceedings of the National Academy of Sciences of the United States of America* **103**, 9820–9825.

**Kouranov A, Wang H, Schnell DJ.** 1999. Tic22 is targeted to the intermembrane space of chloroplasts by a novel pathway. *Journal of Biological Chemistry* **274**, 25181–25186.

**Long SP, Marshall-Colon A, Zhu XG.** 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. *Cell* **161**, 56–66.

**Long BM, Rae BD, Rolland V, Förster B, Price GD.** 2016. Cyanobacterial CO<sub>2</sub>-concentrating mechanism components: Function and prospects for plant metabolic engineering. *Current Opinion in Plant Biology* **31**, 1–8.

**Maeda SI, Omata T.** 1997. Substrate-binding lipoprotein of the cyanobacterium *Synechococcus* sp. strain PCC 7942 involved in the transport of nitrate and nitrite. *Journal of Biological Chemistry* **272**, 3036–3041.

**Maeda S, Price GD, Badger MR, Enomoto C, Omata T.** 2000. Bicarbonate binding activity of the CmpA protein of the cyanobacterium *Synechococcus* sp. strain PCC 7942 involved in active transport of bicarbonate. *Journal of Biological Chemistry* **275**, 20551–20555.

**McGrath JM, Long SP.** 2014. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. *Plant Physiology* **164**, 2247–2261.

**Moroney J V., Rai AK, Weerasooriya H, Kasili R, Machingura M.** 2023. Improving proteins to optimize photosynthesis. In: Sharwood RE, ed. *Understanding and improving crop photosynthesis*. Western Sydney University, Australia: Burleigh Dodds Science Publishing, 249–276.

**Nguyen ND, Pulsford SB, Förster B, Rottet S, Rourke L, Long BM, Price GD.** 2024. A carboxysome-based CO<sub>2</sub> concentrating mechanism for C<sub>3</sub> crop chloroplasts: advances and the

road ahead. *The Plant Journal*, 1–13.

**Nishimura T, Takahashi Y, Yamaguchi O, Suzuki H, Maeda SI, Omata T.** 2008. Mechanism of low CO<sub>2</sub>-induced activation of the *cmp* bicarbonate transporter operon by a LysR family protein in the cyanobacterium *Synechococcus elongatus* strain PCC 7942. *Molecular Microbiology* **68**, 98–109.

**Nölke G, Barsoum M, Houdelet M, Arcalís E, Kreuzaler F, Fischer R, Schillberg S.** 2019. The integration of algal carbon concentration mechanism components into tobacco chloroplasts increases photosynthetic efficiency and biomass. *Biotechnology Journal* **14**, 1–12.

**Omata T.** 1995. Structure, function and regulation of the nitrate transport system of the cyanobacterium *Synechococcus* sp. PCC7942. *Plant and Cell Physiology* **36**, 207–213.

**Omata T, Gohta S, Takahashi Y, Harano Y.** 2001. Involvement of a CbbR homolog in low CO<sub>2</sub>-induced activation of the bicarbonate transporter operon in cyanobacteria. *Journal of Bacteriology* **183**, 1891–1898.

**Omata T, Okamura M, Ogawa T, Price GD, Badger MR.** 1999a. Involvement of the *cmpABCD* genes in bicarbonate transport of the cyanobacterium *Synechococcus* sp. strain PCC 7942. In: Peschek GA, Löffelhardt W, Schmetterer G, eds. *The Phototrophic Prokaryotes*. Boston, MA: Springer, 555–559.

**Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T.** 1999b. Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium *Synechococcus* sp. strain PCC 7942. *Proceedings of the National Academy of Sciences* **96**, 13571–13576.

**Omata T, Takahashi Y, Yamaguchi O, Nishimura T.** 2002. Structure, function and regulation of the cyanobacterial high-affinity bicarbonate transporter, BCT1. *Functional Plant Biology* **29**, 151–159.

**Orelle C, Dalmas O, Gros P, Di Pietro A, Jault JM.** 2003. The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. *Journal of Biological Chemistry* **278**, 47002–47008.

**Pan L-L, Onai K, Uesaka K, Ihara K, Natsume T, Takatani N, Ishiura M, Omata T.** 2016. Transcriptional regulation of CmpR, the LysR family protein involved in CO<sub>2</sub>-responsive gene regulation in the cyanobacterium *Synechococcus elongatus*. *Biomedical Genetics and Genomics* **1**, 1–6.

**Pengelly JJL, Föster B, von Caemmerer S, Badger MR, Price GD, Whitney SM.** 2014. Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts. *Journal of Experimental Botany* **65**, 3071–3080.

**Pollak B, Cerdá A, Delmans M, Álamos S, Moyano T, West A, Gutiérrez RA, Patron NJ, Federici F, Haseloff J.** 2019. Loop assembly: a simple and open system for recursive fabrication of DNA circuits. *New Phytologist* **222**, 628–640.

**Price GD.** 2011. Inorganic carbon transporters of the cyanobacterial CO<sub>2</sub>-concentrating mechanism. *Photosynthesis Research* **109**, 47–57.

**Price GD, Badger MR, von Caemmerer S.** 2011. The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C<sub>3</sub> crop plants. *Plant Physiology*

155, 20–26.

**Price GD, Badger MR, Woodger FJ, Long BM.** 2008. Advances in understanding the cyanobacterial CO<sub>2</sub>-concentrating- mechanism (CCM): Functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. *Journal of Experimental Botany* **59**, 1441–1461.

**Price GD, Pengelly JJL, Förster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR.** 2013. The cyanobacterial CCM as a source of genes for improving photosynthetic CO<sub>2</sub> fixation in crop species. *Journal of Experimental Botany* **64**, 753–768.

**Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L.** 2004. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 18228–18233.

**R Core Team.** 2019. R: A language and environment for statistical computing. <https://www.r-project.org/>.

**Rae BD, Förster B, Badger MR, Price GD.** 2011. The CO<sub>2</sub>-concentrating mechanism of *Synechococcus* WH5701 is composed of native and horizontally-acquired components. *Photosynthesis Research* **109**, 59–72.

**Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ.** 2017. Progress and challenges of engineering a biophysical CO<sub>2</sub>-concentrating mechanism into higher plants. *Journal of Experimental Botany* **68**, 3717–3737.

**Rolland V.** 2018. Determining the subcellular localization of fluorescently tagged proteins using protoplasts extracted from transiently transformed *Nicotiana benthamiana* leaves. In: Covshoff S, ed. *Photosynthesis. Methods in Molecular Biology*. New York: Humana Press, 263–283.

**Rolland V, Badger MR, Price GD.** 2016. Redirecting the cyanobacterial bicarbonate transporters BicA and SbtA to the chloroplast envelope: Soluble and membrane cargos need different chloroplast targeting signals in plants. *Frontiers in Plant Science* **7**, 1–19.

**Rolland V, Rae BD, Long BM.** 2017. Setting sub-organellar sights: Accurate targeting of multi-transmembrane-domain proteins to specific chloroplast membranes. *Journal of Experimental Botany* **68**, 5013–5016.

**Roth BM, Pruss GJ, Vance VB.** 2004. Plant viral suppressors of RNA silencing. *Virus Research* **102**, 97–108.

**Rottet S, Förster B, Hee WY, Rourke LM, Price GD, Long BM.** 2021. Engineered accumulation of bicarbonate in plant chloroplasts: Known knowns and known unknowns. *Frontiers in Plant Science* **12**, 727118.

**Rottet S, Rourke LM, Pabuayon ICM, et al.** 2024. Dataset for "Engineering the cyanobacterial ATP-driven BCT1 bicarbonate transporter for functional targeting to C<sub>3</sub> plant chloroplasts. Mendeley Data. doi: 10.17632/vncj8cn6xs.1.

**Sandrini G, Matthijs HCP, Verspagen JMH, Muyzer G, Huisman J.** 2014. Genetic diversity of inorganic carbon uptake systems causes variation in CO<sub>2</sub> response of the cyanobacterium *Microcystis*. *ISME Journal* **8**, 589–600.

**Schindelin J, Arganda-Carreras I, Frise E, et al.** 2012. Fiji: An open-source platform for biological-image analysis. *Nature Methods* **9**, 676–682.

**Schneider E, Hunke S.** 1998. ATP-binding-cassette (ABC) transport systems: Functional and structural aspects of the ATP-hydrolyzing subunits/domains. *FEMS Microbiology Reviews* **22**, 1–20.

**Shen BR, Zhu CH, Yao Z, Cui LL, Zhang JJ, Yang CW, He ZH, Peng XX.** 2017. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice. *Scientific Reports* **7**, 1–12.

**Simm S, Papasotiriou DG, Ibrahim M, Leisegang MS, Müller B, Schorge T, Karas M, Mirus O, Sommer MS, Schleiff E.** 2013. Defining the core proteome of the chloroplast envelope membranes. *Frontiers in Plant Science* **4**, 1–18.

**Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF.** 2002. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. *Molecular Cell* **10**, 139–149.

**Spät P, Barske T, Macek B, Hagemann M.** 2021. Alterations in the CO<sub>2</sub> availability induce alterations in the phosphoproteome of the cyanobacterium *Synechocystis* sp. PCC 6803. *New Phytologist*, 1123–1137.

**Stoddard A, Rolland V.** 2019. I see the light! Fluorescent proteins suitable for cell wall/apoplast targeting in *Nicotiana benthamiana* leaves. *Plant Direct* **3**, 1–15.

**Theodoulou FL, Kerr ID.** 2015. ABC transporter research: going strong 40 years on. *Biochemical Society Transactions* **43**, 1033–40.

**Thornell IM, Bevensee MO.** 2015. Regulators of *Slc4* bicarbonate transporter activity. *Frontiers in Physiology* **6**, 1–21.

**Tjalsma H, Kontinen VP, Prágai Z, Wu H, Meima R, Venema G, Bron S, Sarvas M, Van Dijl JM.** 1999. The role of lipoprotein processing by signal peptidase II in the gram-positive eubacterium *Bacillus subtilis*. Signal peptidase II is required for the efficient secretion of  $\alpha$ -amylase, a non-lipoprotein. *Journal of Biological Chemistry* **274**, 1698–1707.

**Tolleter D, Chochois V, Poiré R, Price GD, Badger MR.** 2017. Measuring CO<sub>2</sub> and HCO<sub>3</sub><sup>−</sup> permeabilities of isolated chloroplasts using a MIMS-<sup>18</sup>O approach. *Journal of Experimental Botany* **68**, 3915–3924.

**Uehara S, Adachi F, Ito-Inaba Y, Inaba T.** 2016. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in *Arabidopsis*. *Frontiers in Plant Science* **7**, 1–8.

**Uehara S, Sei A, Sada M, Ito-Inaba Y, Inaba T.** 2020. Installation of authentic BicA and SbtA proteins to the chloroplast envelope membrane is achieved by the proteolytic cleavage of chimeric proteins in *Arabidopsis*. *Scientific Reports* **10**, 1–10.

**Vojta L, Soll J, Böltner B.** 2007. Protein transport in chloroplasts - Targeting to the intermembrane space. *FEBS Journal* **274**, 5043–5054.

**Weerasooriya HN, DiMario RJ, Rosati VC, Rai AK, LaPlace LM, Filloon VD, Longstreth DJ, Moroney J V.** 2022. Arabidopsis plastid carbonic anhydrase  $\beta$ CA5 is important for normal plant growth. *Plant Physiology* **190**, 2173–2186.

**Wickham H.** 2016. *ggplot2: Elegant graphics for data analysis*. New York: Springer-Verlag.

**Wojcik S, Kriechbaumer V.** 2021. Go your own way: membrane-targeting sequences. *Plant Physiology* **185**, 608–618.

**Wu A, Brider J, Busch FA, et al.** 2023. A cross-scale analysis to understand and quantify the effects of photosynthetic enhancement on crop growth and yield across environments. *Plant Cell and Environment* **46**, 23–44.

**Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H.** 2006. *Agrobacterium*-mediated transformation of *Arabidopsis thaliana* using the floral dip method. *Nature Protocols* **1**, 641–646.

**Zhu F, Saluja M, Dharni JS, Paul P, Sattler SE, Staswick P, Walia H, Yu H.** 2021. *PhenoImage* : An open-source graphical user interface for plant image analysis. *The Plant Phenome Journal* **4**, 1–13.

## Figure legends

### **Figure 1 Structure of BCT1 and strategy for its installation in the chloroplast envelopes.**

**(A)** In cyanobacteria, BCT1 transports  $\text{HCO}_3^-$  across the plasma membrane. Firstly,  $\text{HCO}_3^-$  is captured by the substrate-binding protein CmpA and delivered to the membrane protein CmpB.  $\text{HCO}_3^-$  travels across the plasma membrane through the channel formed by a homodimer of the protein CmpB. CmpC and CmpD are nucleotide-binding proteins or ATPases which sit inside the cyanobacterial cell and hydrolyse ATP to provide the energy for the transport of  $\text{HCO}_3^-$  across the plasma membrane. Once in the cell,  $\text{HCO}_3^-$  diffuses into the carboxysome where it is converted into  $\text{CO}_2$  by a carbonic anhydrase. **(B)** The strategy for the installation of the cyanobacterial BCT1 complex in the chloroplast envelope is based on nucleus-encoded CmpA, CmpB, CmpC and CmpD. Each protein is individually targeted to the appropriate chloroplast sub-compartment using three different chloroplast transit peptides (cTP). CmpA is targeted to the intermembrane space (IMS). CmpB is sent to the inner envelope membrane (IEM), while CmpC and CmpD are targeted to the stroma. OEM, outer envelope membrane; TOC, translocon at the outer envelope membrane of chloroplasts; TIC, translocon at the inner envelope membrane of chloroplasts.

### **Figure 2 Individual targeting of CmpA, CmpB, CmpC, and CmpD to *Nicotiana benthamiana* chloroplasts.**

**(A)** Schematic of the genetic constructs used in this figure. The chloroplast transit peptides (cTPs) originate from *Arabidopsis thaliana* (At). The proteins used are *AtTic22-IV* (At4g33350, GL202), *AtABCD2* (At1g54350, GL273), and *AtRecA* (At1g79050, GL370, GL372). The length of the cTPs are shown as the number of residues in subscript. BCT1 genes are coloured as in *Figure 1*. CmpC NBD and regulatory domain are shown in light and dark green respectively. **(B)** Confocal microscopy images of *N. benthamiana* leaf surfaces transiently expressing BCT1 proteins fused with mCitrine. CmpA localized at the chloroplast intermembrane space (arrow head), CmpB at the inner envelope membrane (arrow head), and CmpD in the stroma (arrow head). CmpC localized in the stroma (arrow head) and in the cytosol.

**Figure 3 Combinatorial targeting of CmpC or CmpD with CmpB to the chloroplasts of *Nicotiana benthamiana*.**

**(A)** Schematic of the genetic constructs used in this figure. The chloroplast transit peptides (cTPs) originated from *AtABCD2* (At1g54350, GL239), and *AtRecA* (At1g79050, GL370-372). The length of the cTPs are shown as the number of residues in subscript. CmpB (GL239) is tagged with the non-fluorescent HA-H<sub>6</sub> epitope, while CmpC (GL370), CmpC<sub>263</sub> (GL371) and CmpD (GL372) are fused with mCitrine. **(B)** Confocal microscopy images of *N. benthamiana* leaf surfaces transiently expressing a combination of two BCT1 proteins. When CmpC was co-expressed with CmpB (row 1), CmpC mostly remained in the cytosol but seemed to also localize at the IEM (arrow head). When CmpD and CmpB were co-expressed (row 2), CmpD clearly localized at the IEM (arrow head). **(C)** Confocal microscopy images of *N. benthamiana* protoplasts transiently expressing a truncated form of CmpC that lacks the regulatory domain (CmpC<sub>263</sub>). Individual targeting of CmpC<sub>263</sub> (row 1) resulted in a stromal localization pattern, while co-expression with CmpB (row 2) led to the relocalization of CmpC<sub>263</sub> to the IEM.

**Figure 4 BCT1 mutants obtained by rational design and directed evolution.**

Schematic representation of BCT1 mutants generated by rational design **(C-F)** and directed evolution **(G-H)**. **(A)** BCT1 subunits are CmpA (gold), CmpB (brown), CmpC (green), and CmpD (teal). **(B)** Unmodified. **(C)** Without regulatory domain using CmpC<sub>263</sub>. **(D)** Phosphorylation mimics with CmpA<sup>S107E, T126E</sup> and CmpB<sup>T3E</sup>. **(E)** Translational fusions of CmpBC and CmpBD (reflecting a half-transporter design, Ford *et al.*, 2019). **(F)** ATP hydrolysis deficient with CmpC<sup>E164Q</sup> and CmpD<sup>E179Q</sup>. **(G)** CmpCD chimera. **(H)** CmpCD fusion with CmpC<sup>H409Q</sup>. Point mutations are shown as red circles with the new residue as single letter code.

**Figure 5 High-throughput spot test screening of BCT1 mutants in CA-free *E. coli*.**

Plasmids carrying BCT1 variants, depicted on the right-hand side, were introduced into CA-free *E. coli*. The plasmid backbone used is a Loop-compatible, modified version of pFA31, featuring a LacIQ-pTrc-pLac repressor/promoter cassette (grey arrow) and rrnB T1 & T2 terminator (grey box). On the left-hand side, cultures were plated in 5 µL spots on LB Agar

containing 0 or 100  $\mu$ M IPTG and incubated overnight at 37°C in high (4%) or ambient (0.04%) CO<sub>2</sub>. Successful complementation was achieved when the induced cells (100  $\mu$ M IPTG) were able to grow at ambient CO<sub>2</sub> (as observed in the last column). While unmodified BCT1 (GN18) was inactive, seven out of 13 mutants were able to complement CA-free *E. coli* to different extents at ambient levels of CO<sub>2</sub> (e.g. GN138, GN19, GN128, GM310). The corresponding schematic (see *Figure 4*) to which each plasmid relates to or derives from (indicated by an apostrophe) is presented on the far left as the panel letter from *Figure 4* itself. The black stars represent point mutations which are labelled, unless falling into a non-coding region (e.g. mutation between *cmpA* and *cmpB* in GN19), to show the change in residues (e.g. H409Q in GN128).

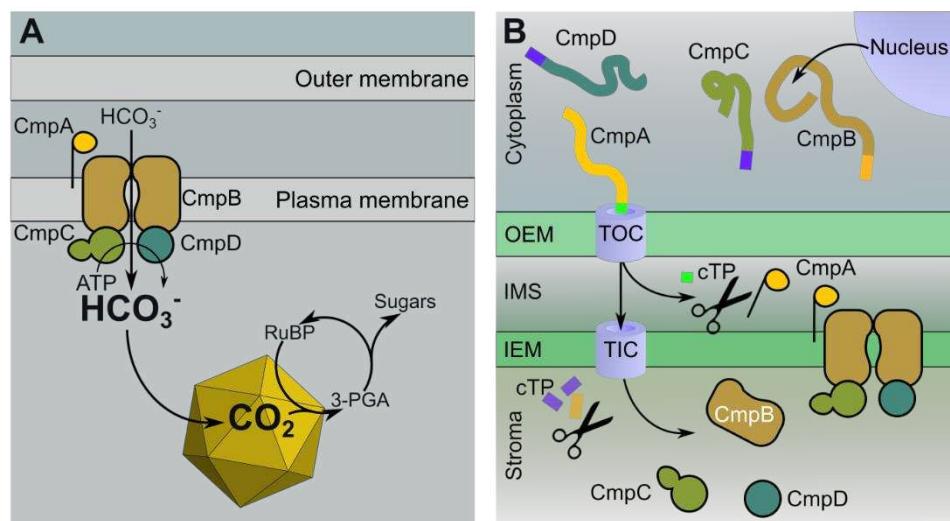
**Figure 6 Functional analysis of BCT1 mutants in *E. coli* by uptake (A-B) and pull-down (C-D) assays.**

**(A)** Representative bicarbonate uptake rates measured in *E. coli* in presence of 0.5 mM of Ci for a subset of seven BCT1 mutants. The constructs used here are depicted in *Figure 5*. The values obtained with an empty vector, representing background CO<sub>2</sub> diffusion, have been subtracted. Statistical differences across mutants were assessed with a one-way ANOVA followed by pairwise multiple comparisons. Asterisks are an indication of the *P*-value (\*\**P* < 0.001) relative to the unmodified BCT1 (GN18). Mean  $\pm$ SD (n=4). **(B)** Representative bicarbonate uptake curves for selected BCT1 mutants measured in *E. coli*. The Michaelis-Menten equation was fitted to the data by non-linear regression to obtain the maximal velocity (V<sub>MAX</sub>) and affinity constant (K<sub>M</sub>). Individual data points represent the mean of 4 technical replicates at each bicarbonate concentration ( $\pm$ SD). **(C)** Depiction of the constructs used for IMAC pull-downs. **(D)** Western blot of the IMAC eluate showing co-purification of the BCT1 complex in *E. coli*. Loaded 10  $\mu$ L of the concentrated eluate. Note that GM341 lacks a flag tag because CmpD is fused to CmpC and is detected with HA-H<sub>6</sub> around 107 kDa.

**Figure 7 Complementation of the *Arabidopsis*  $\beta$ ca5 mutant.**

Plants were grown at ambient (400 ppm), high (4,000 ppm) or very high (40,000 ppm) CO<sub>2</sub> concentrations to assess the complementation ability of various BCT1 mutants. The genetic constructs used to transform the  $\beta$ ca5 mutant are depicted in *Supplementary Figure S5*. Colours

are used consistently between the three panels. **(A)** Images of wild-type (WT; Col-0) and transformed  $\beta ca5$  mutant (SALK\_121932) *A. thaliana* plants eight weeks after germination. The images are representative of six plants. Scale bar shown is 2 cm long. **(B)** Overhead images of plants grown at ambient CO<sub>2</sub> were taken weekly, and rosette areas were measured using the PhenoImage and ImageJ software. Mean  $\pm$ SE (n=6). **(C)** Plants were harvested for fresh weight eight weeks after germination. Statistical differences across genotypes were assessed with a one-way ANOVA followed by pairwise multiple comparisons between plants at each CO<sub>2</sub> concentration. Red asterisks are an indication of the *P*-value relative to WT (\**P* < 0.05; \*\**P* < 0.01; \*\*\**P* < 0.001). Mean  $\pm$ SE (n=3).

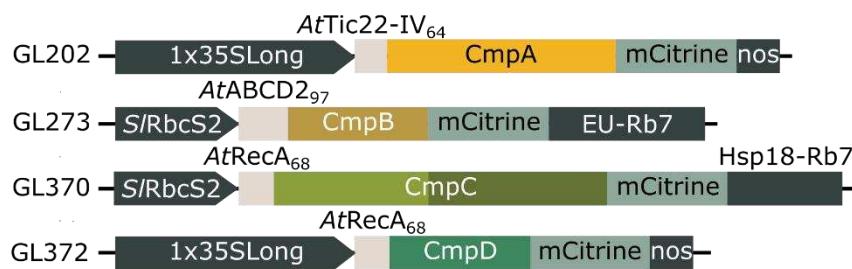

**Figure 8 Functional analysis of BCT1 transformants in WT *Arabidopsis***

**(A)** Images of 8-week-old *A. thaliana* (Col-0) plants transformed with three BCT1 constructs (GN64, GN65, GN139). The plants were grown at ambient (400 ppm) or reduced CO<sub>2</sub> concentrations (200 ppm). The images are representative of six plants. Scale bar shown is 2 cm long. Depictions of BCT1 mutants is on the right-hand side. GN64 and GN65 are translational fusions of CmpBC and CmpBD (reflecting a half-transporter design, Ford *et al.*, 2019) and GN139 is a CmpCD fusion obtained by directed evolution. In the half-transporter design, GN64 harbors full-length CmpC while in GN65 CmpC has no regulatory domain (i.e., CmpC<sub>263</sub>). BCT1 subunit colours are as described in *Figure 4A*.**(B)** Overhead images of the plants were taken weekly, and rosette areas were measured using the PhenoImage and ImageJ software. Mean  $\pm$ SE (n=6). **(C)** Plants were harvested for fresh weight 8 weeks after germination. Statistical differences across genotypes were assessed with a one-way ANOVA followed by pairwise multiple comparisons between plants at each CO<sub>2</sub> concentration. No statistical difference was recorded. Mean  $\pm$ SE (n=4). Colours are used consistently between the three panels and are the same as used in *Figure 7*.

# Figures

For “*Engineering the cyanobacterial ATP-driven BCT1 bicarbonate transporter for functional targeting to C<sub>3</sub> plant chloroplasts*” by Rottet et al.

**Figure 1**



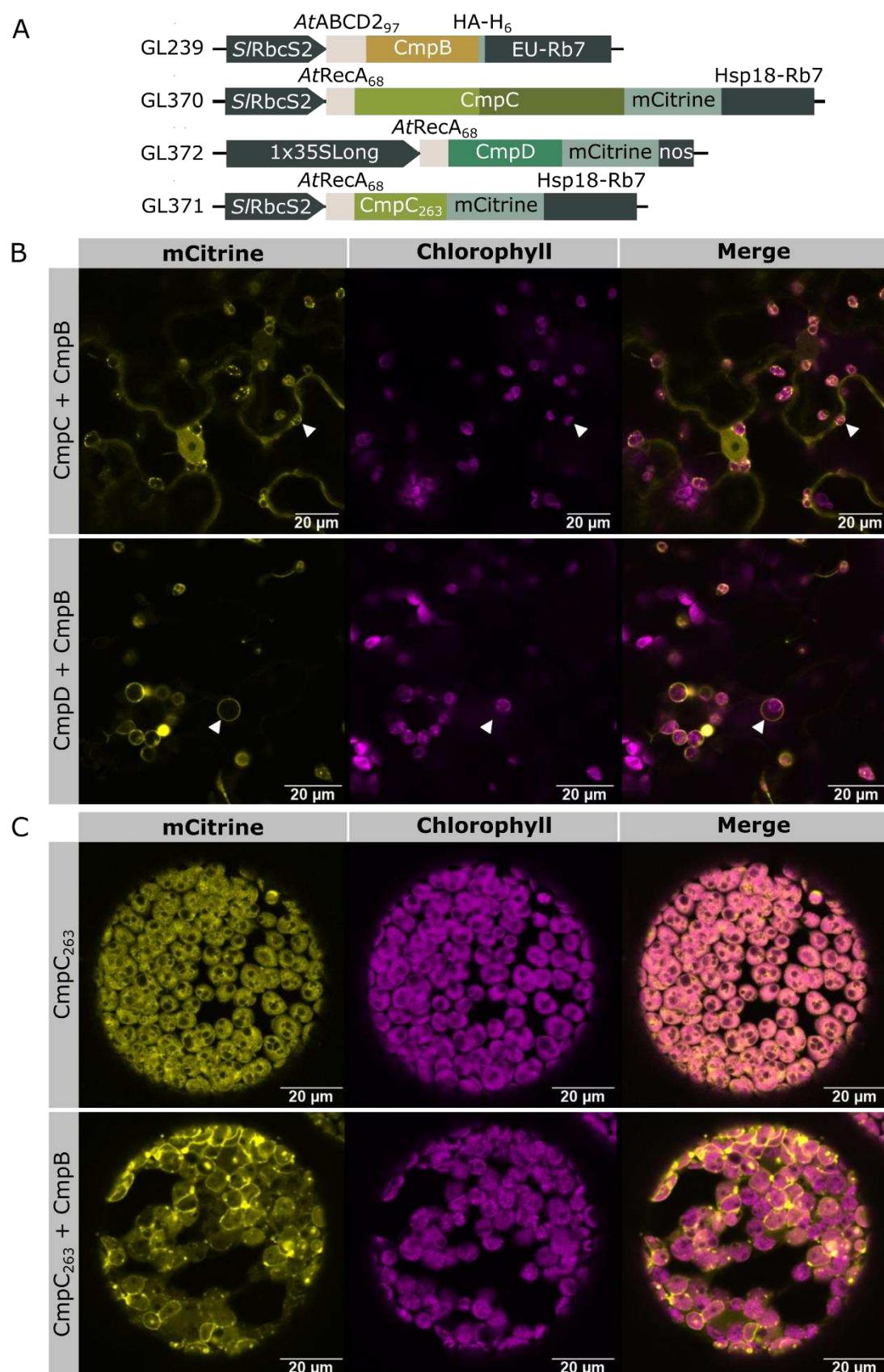

**Figure 1 Structure of BCT1 and strategy for its installation in the chloroplast envelopes.**

**(A)** In cyanobacteria, BCT1 transports  $\text{HCO}_3^-$  across the plasma membrane. Firstly,  $\text{HCO}_3^-$  is captured by the substrate-binding protein CmpA and delivered to the membrane protein CmpB.  $\text{HCO}_3^-$  travels across the plasma membrane through the channel formed by a homodimer of the protein CmpB. CmpC and CmpD are nucleotide-binding proteins or ATPases which sit inside the cyanobacterial cell and hydrolyse ATP to provide the energy for the transport of  $\text{HCO}_3^-$  across the plasma membrane. Once in the cell,  $\text{HCO}_3^-$  diffuses into the carboxysome where it is converted into  $\text{CO}_2$  by a carbonic anhydrase. **(B)** The strategy for the installation of the cyanobacterial BCT1 complex in the chloroplast envelope is based on nucleus-encoded CmpA, CmpB, CmpC and CmpD. Each protein is individually targeted to the appropriate chloroplast sub-compartment using three different chloroplast transit peptides (cTP). CmpA is targeted to the intermembrane space (IMS). CmpB is sent to the inner envelope membrane (IEM), while CmpC and CmpD are targeted to the stroma. OEM, outer envelope membrane; TOC, translocon at the outer envelope membrane of chloroplasts; TIC, translocon at the inner envelope membrane of chloroplasts.

**Figure 2**

**A**

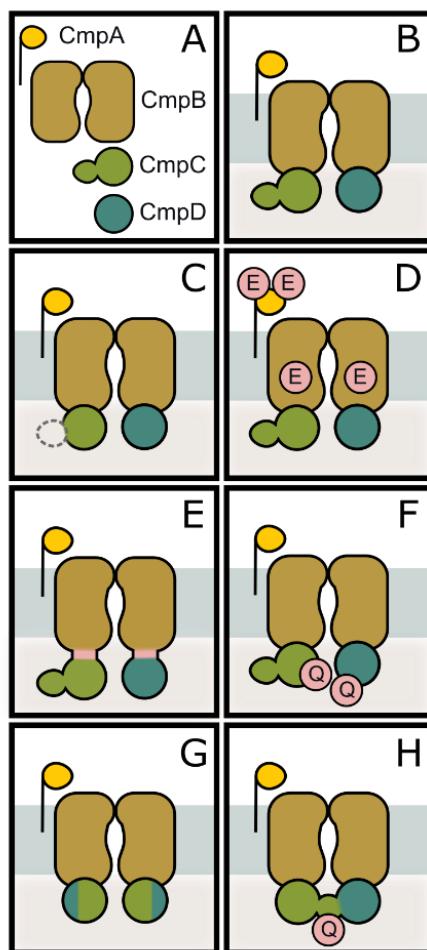



**B**



**Figure 2 Individual targeting of CmpA, CmpB, CmpC, and CmpD to *Nicotiana benthamiana* chloroplasts.**

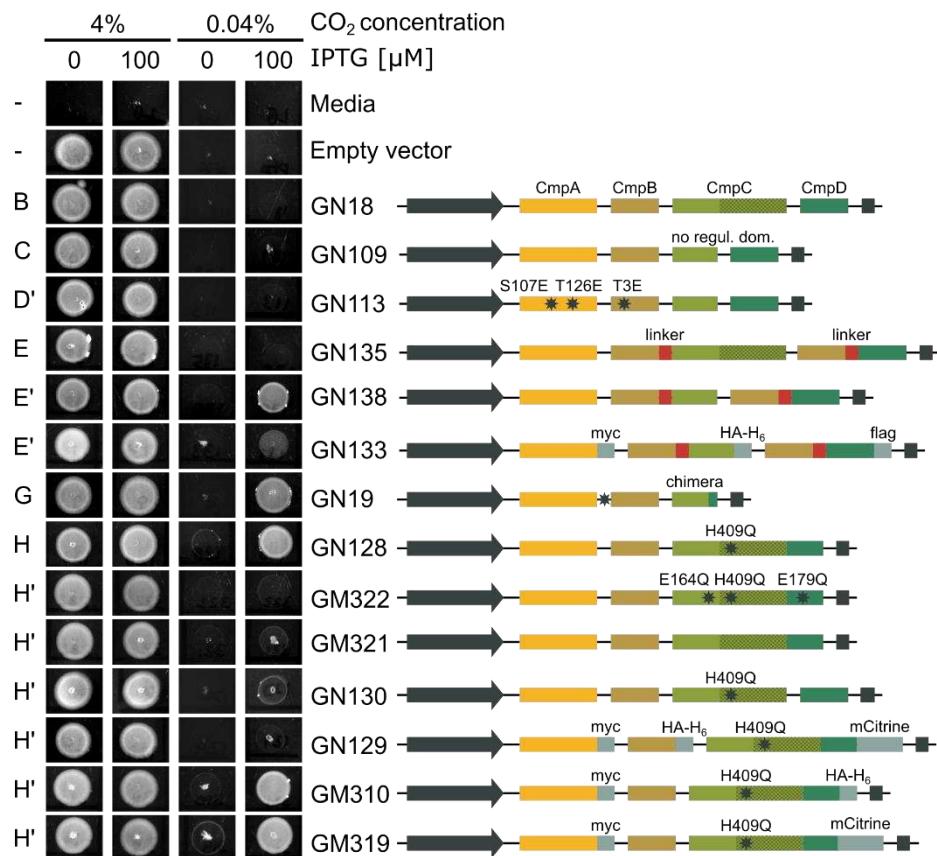
**(A)** Schematic of the genetic constructs used in this figure. The chloroplast transit peptides (cTPs) originate from *Arabidopsis thaliana* (At). The proteins used are *AtTic22-IV* (At4g33350, GL202), *AtABCD2* (At1g54350, GL273), and *AtRecA* (At1g79050, GL370, GL372). The length of the cTPs are shown as the number of residues in subscript. BCT1 genes are coloured as in *Figure 1*. CmpC NBD and regulatory domain are shown in light and dark green respectively. **(B)** Confocal microscopy images of *N. benthamiana* leaf surfaces transiently expressing BCT1 proteins fused with mCitrine. CmpA localized at the chloroplast intermembrane space (arrow head), CmpB at the inner envelope membrane (arrow head), and CmpD in the stroma (arrow head). CmpC localized in the stroma (arrow head) and in the cytosol.


**Figure 3**



**Figure 3 Combinatorial targeting of CmpC or CmpD with CmpB to the chloroplasts of *Nicotiana benthamiana*.**

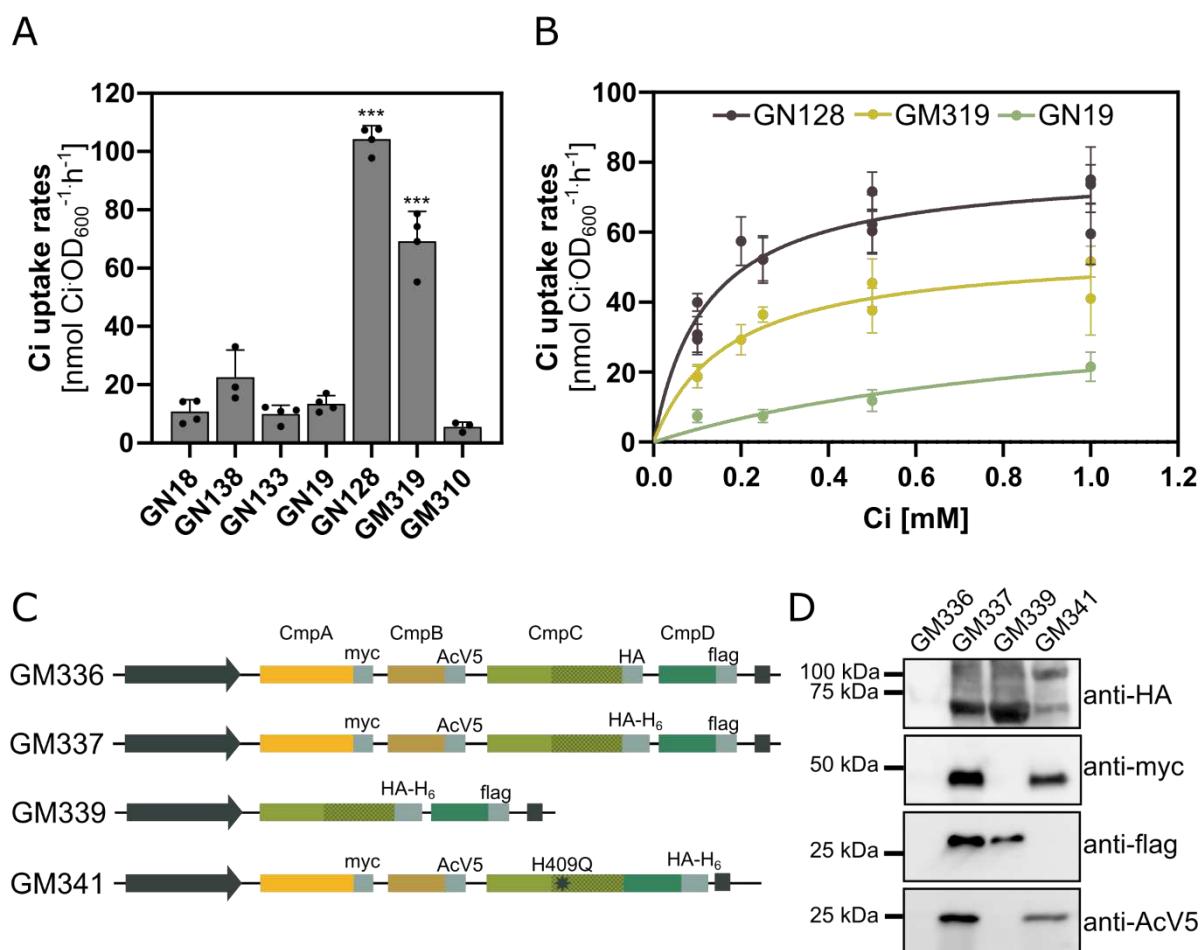
**(A)** Schematic of the genetic constructs used in this figure. The chloroplast transit peptides (cTPs) originated from *AtABCD2* (At1g54350, GL239), and *AtRecA* (At1g79050, GL370-372). The length of the cTPs are shown as the number of residues in subscript. CmpB (GL239) is tagged with the non-fluorescent HA-H<sub>6</sub> epitope, while CmpC (GL370), CmpC<sub>263</sub> (GL371) and CmpD (GL372) are fused with mCitrine. **(B)** Confocal microscopy images of *N. benthamiana* leaf surfaces transiently expressing a combination of two BCT1 proteins. When CmpC was co-expressed with CmpB (row 1), CmpC mostly remained in the cytosol but seemed to also localize at the IEM (arrow head). When CmpD and CmpB were co-expressed (row 2), CmpD clearly localized at the IEM (arrow head). **(C)** Confocal microscopy images of *N. benthamiana* protoplasts transiently expressing a truncated form of CmpC that lacks the regulatory domain (CmpC<sub>263</sub>). Individual targeting of CmpC<sub>263</sub> (row 1) resulted in a stromal localization pattern, while co-expression with CmpB (row 2) led to the relocalization of CmpC<sub>263</sub> to the IEM.


**Figure 4**



**Figure 4 BCT1 mutants obtained by rational design and directed evolution.**

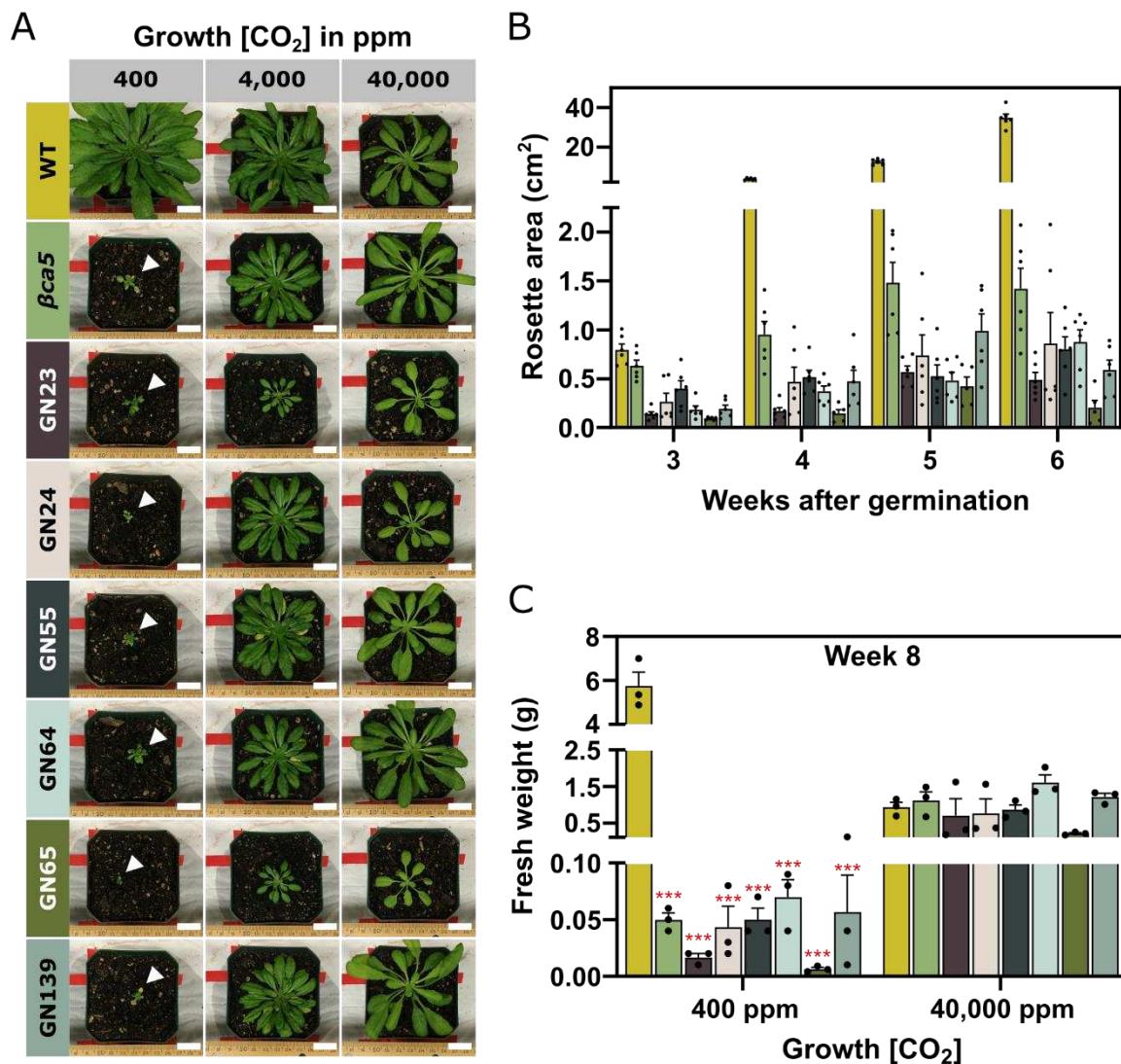
Schematic representation of BCT1 mutants generated by rational design (C-F) and directed evolution (G-H). (A) BCT1 subunits are CmpA (gold), CmpB (brown), CmpC (green), and CmpD (teal). (B) Unmodified. (C) Without regulatory domain using CmpC<sub>263</sub>. (D) Phosphorylation mimics with CmpA<sup>S107E, T126E</sup> and CmpB<sup>T3E</sup>. (E) Translational fusions of CmpBC and CmpBD (reflecting a half-transporter design, Ford et al., 2019). (F) ATP hydrolysis deficient with CmpC<sup>E164Q</sup> and CmpD<sup>E179Q</sup>. (G) CmpCD chimera. (H) CmpCD fusion with CmpC<sup>H409Q</sup>. Point mutations are shown as red circles with the new residue as single letter code.


**Figure 5**



**Figure 5 High-throughput spot test screening of BCT1 mutants in CA-free *E. coli*.**

Plasmids carrying BCT1 variants, depicted on the right-hand side, were introduced into CA-free *E. coli*. The plasmid backbone used is a Loop-compatible, modified version of pFA31, featuring a LacIQ-pTrc-pLac repressor/promoter cassette (grey arrow) and rrnB T1 & T2 terminator (grey box). On the left-hand side, cultures were plated in 5  $\mu$ L spots on LB Agar containing 0 or 100  $\mu$ M IPTG and incubated overnight at 37°C in high (4%) or ambient (0.04%) CO<sub>2</sub>. Successful complementation was achieved when the induced cells (100  $\mu$ M IPTG) were able to grow at ambient CO<sub>2</sub> (as observed in the last column). While unmodified BCT1 (GN18) was inactive, seven out of 13 mutants were able to complement CA-free *E. coli* to different extents at ambient levels of CO<sub>2</sub> (e.g. GN138, GN19, GN128, GM310). The corresponding schematic (see *Figure 4*) to which each plasmid relates to or derives from (indicated by an apostrophe) is presented on the far left as the panel letter from *Figure 4* itself. The black stars represent point mutations which are labelled, unless falling into a non-coding region (e.g. mutation between *cmpA* and *cmpB* in GN19), to show the change in residues (e.g. H409Q in GN128).


**Figure 6**



**Figure 6 Functional analysis of BCT1 mutants in *E. coli* by uptake (A-B) and pull-down (C-D) assays.**

**(A)** Representative bicarbonate uptake rates measured in *E. coli* in presence of 0.5 mM of Ci for a subset of seven BCT1 mutants. The constructs used here are depicted in *Figure 5*. The values obtained with an empty vector, representing background CO<sub>2</sub> diffusion, have been subtracted. Statistical differences across mutants were assessed with a one-way ANOVA followed by pairwise multiple comparisons. Asterisks are an indication of the *P*-value (\*\**P* < 0.001) relative to the unmodified BCT1 (GN18). Mean  $\pm$ SD (n=4). **(B)** Representative bicarbonate uptake curves for selected BCT1 mutants measured in *E. coli*. The Michaelis-Menten equation was fitted to the data by non-linear regression to obtain the maximal velocity (V<sub>MAX</sub>) and affinity constant (K<sub>M</sub>). Individual data points represent the mean of 4 technical replicates at each bicarbonate concentration ( $\pm$ SD). **(C)** Depiction of the constructs used for IMAC pull-downs. **(D)** Western blot of the IMAC eluate showing co-purification of the BCT1 complex in *E. coli*. Loaded 10  $\mu$ L of the concentrated eluate. Note that GM341 lacks a flag tag because CmpD is fused to CmpC and is detected with HA-H<sub>6</sub> around 107 kDa.


**Figure 7**



**Figure 7 Complementation of the *Arabidopsis*  $\beta$ ca5 mutant.**

Plants were grown at ambient (400 ppm), high (4,000 ppm) or very high (40,000 ppm) CO<sub>2</sub> concentrations to assess the complementation ability of various BCT1 mutants. The genetic constructs used to transform the  $\beta$ ca5 mutant are depicted in *Supplementary Figure S5*. Colours are used consistently between the three panels. **(A)** Images of wild-type (WT; Col-0) and transformed  $\beta$ ca5 mutant (SALK\_121932) *A. thaliana* plants eight weeks after germination. The images are representative of six plants. Scale bar shown is 2 cm long. **(B)** Overhead images of plants grown at ambient CO<sub>2</sub> were taken weekly, and rosette areas were measured using the PhenolImage and ImageJ software. Mean  $\pm$ SE (n=6). **(C)** Plants were harvested for fresh weight eight weeks after germination. Statistical differences across genotypes were assessed with a one-way ANOVA followed by pairwise multiple comparisons between plants at each CO<sub>2</sub> concentration. Red asterisks are an indication of the *P*-value relative to WT (\**P* < 0.05; \*\**P* < 0.01; \*\*\**P* < 0.001). Mean  $\pm$ SE (n=3).

**Figure 8**



**Figure 8 Functional analysis of BCT1 transformants in WT *Arabidopsis***

**(A)** Images of 8-week-old *A. thaliana* (Col-0) plants transformed with three BCT1 constructs (GN64, GN65, GN139). The plants were grown at ambient (400 ppm) or reduced CO<sub>2</sub> concentrations (200 ppm). The images are representative of six plants. Scale bar shown is 2 cm long. Depictions of BCT1 mutants is on the right-hand side. GN64 and GN65 are translational fusions of CmpBC and CmpBD (reflecting a half-transporter design, Ford et al., 2019) and GN139 is a CmpCD fusion obtained by directed evolution. In the half-transporter design, GN64 harbors full-length CmpC while in GN65 CmpC has no regulatory domain (i.e., CmpC<sub>263</sub>). BCT1 subunit colours are as described in *Figure 4A*. **(B)** Overhead images of the plants were taken weekly, and rosette areas were measured using the PhenoImage and ImageJ software. Mean  $\pm$ SE (n=6). **(C)** Plants were harvested for fresh weight 8 weeks after germination. Statistical differences across genotypes were assessed with a one-way ANOVA followed by pairwise multiple comparisons between plants at each CO<sub>2</sub> concentration. No statistical difference was recorded. Mean  $\pm$ SE (n=4). Colours are used consistently between the three panels and are the same as used in *Figure 7*.