

1 **Spatiotemporal Changes in Netrin/Dscam1 Signaling Dictate Axonal
2 Projection Direction in *Drosophila* Small Ventral Lateral Clock
3 Neurons**

4 Jingjing Liu¹, Yuedong Wang¹, Junhai Han^{1,2,*}, Yao Tian^{1,*}

5 ¹ School of Life Science and Technology, the Key Laboratory of Developmental Genes and
6 Human Disease, Southeast University, Nanjing 210096, China

7 ² Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China

8 * Correspondence: junhaihan@seu.edu.cn, yaotian@seu.edu.cn,

9

10 **Abstract**

11

12 Axon projection is a spatial and temporal-specific process in which the growth cone receives
13 environmental signals guiding axons to their final destination. However, the mechanisms
14 underlying changes in axonal projection direction without well-defined landmarks remain elusive.
15 Here, we present evidence showcasing the dynamic nature of axonal projections in *Drosophila*'s
16 small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an
17 initial vertical projection in the early larval stage, followed by a subsequent transition to a
18 horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons
19 correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell
20 adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a
21 specific temporal window, locally newborn dorsal clock neurons (DNs) secrete Netrins,
22 facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a
23 compelling *in vivo* model to probe the mechanisms of axonal projection direction switching in the
24 absence of clear landmarks. These findings underscore the significance of dynamic local
25 microenvironments in the synergetic regulation of axonal projection direction transitions.

26

27 **Keywords:** Axon projection; projection direction switch; Dscam1; Netrin; s-LNvs; *Drosophila*;

28

29 **Introduction**

30 During nervous system development, neurons extend axons to reach their targets in order to build
31 functional neural circuits (Cang & Feldheim, 2013; Kaas, 1997). The growth cone, which is
32 specialized at the tip of the extending axon, is critical for receiving multiple guidance signals from
33 the external environment to guide axon projection (Lowery & Vactor, 2009; Mortimer et al., 2008;
34 Vitriol & Zheng, 2012). Guidance cues regulate cytoskeletal dynamics through growth
35 cone-specific receptors, steering axons via attractive or repulsive signals (Araújo & Tear, 2003;
36 Koch et al., 2012; Kolodkin & Tessier-Lavigne, 2011; Esther T Stoeckli, 2018; Zang et al., 2021).
37 Over the last 30 years, several guidance cues have been identified and divided into four classical
38 families: Semaphorins, Ephrins, Netrins, and Slits (Derijck et al., 2010; Dickson, 2002; Goodhill,
39 2016; X.-T. Li et al., 2014; Orioli & Klein, 1997). The emergence of other kinds of guidance cues,
40 including morphogens, growth factors, and cell adhesion molecules, increases the complexity of
41 axon pathfinding (Chan & Odde, 2008; Chédotal et al., 2012; Kahn & Baas, 2016; Vitriol &
42 Zheng, 2012).

43

44 When going through a long-distance pathfinding process in the complex and highly dynamic *in*
45 *vivo* environment, axons frequently undergo multiple changes in their projection directions
46 (Squarzoni et al., 2015). Crucially, intermediate targets play a pivotal role by providing vital
47 guiding information that enables axons to transition their projection directions and embark upon
48 the subsequent stages of their journey, ultimately leading them to their final destination (de Ramon
49 Francàs et al., 2017; Garel & Rubenstein, 2004; Squarzoni et al., 2015). Certain intermediate
50 targets can respond to the growth cone's signaling to maintain a dynamic balance between
51 attractive and repulsive forces(Bron et al., 2007; Martins et al., 2022). One of the well-studied
52 intermediate target projection types is the midline cross model (Derijck et al., 2010; Yang et al.,
53 2009). As a clear landmark, axons need to project to the midline first and then leave it
54 immediately (Gorla & Bashaw, 2020; Neuhaus-Follini & Bashaw, 2015). The midline floor plate
55 cells secreted long-range attractive signals to attract commissural axons towards them (Kennedy et
56 al., 1994; Serafini et al., 1996). Once there, these cells emit signals of rejection to prevent
57 excessive closeness of axons, thus aiding the axon in departing the floor plate to reach its intended
58 destination (Kidd et al., 1998; Long et al., 2004; E T Stoeckli et al., 1997). Comparatively, the

59 typical axonal projection process within the *in vivo* milieu undergoes multiple transitions in
60 projection direction without a distinct landmark, such as the midline (Garel & López-Bendito,
61 2014; Gezelius & López-Bendito, 2017). However, how the axons change their projection
62 direction without well-defined landmarks is still unclear.

63

64 *Drosophila* small ventral lateral clock neurons (s-LNvs) exhibit the typical tangential projection
65 pattern in the central brain (Agrawal & Hardin, 2016; Gummadova et al., 2009; Hardin, 2017;
66 Helfrich-Förster, 1997). The s-LNv axons originate from the ventrolateral soma and project to the
67 dorsolateral area of the brain, and subsequently undergo a axon projection direction shift,
68 projecting horizontally toward the midline with a short dorsal extension (Helfrich-Förster et al.,
69 2007). Several studies have reported the impact of various factors, including the Slit-Robo signal
70 (Oliva et al., 2016), Lar (leukocyte-antigen-related) (Agrawal & Hardin, 2016), dfmr1 (Okray et
71 al., 2015), dTip60 (Pirooznia et al., 2012), and Dscam1 long 3' UTR (Zhang et al., 2019), on the
72 axon outgrowth of s-LNvs in the adult flies' dorsal projection. However, the mechanism
73 underlying the projection direction switch of s-LNv axons remains largely unknown. Here, we
74 show that s-LNvs and newborn dorsal clock neurons (DNs) generate spatiotemporal-specific
75 guidance cues to precisely regulate the transition of projection direction in s-LNv axons. This
76 regulation uncovers unexpected interdependencies between axons and local microenvironment
77 dynamics during the navigation process, enabling accurate control over axon projection.

78

79 **Results**

80 **s-LNvs axons change their projection direction in the early-to-mid third instar larvae**

81 The stereotypical trajectory of the s-LNvs axon projection can be succinctly characterized as an
82 initial vertical extension originating from the ventrolateral brain, followed by a directional pivot at
83 the dorsolateral protocerebrum, ultimately leading to a horizontal projection towards the midline.
84 Immunoreactivity for pigment-dispersing factor (PDF) (Cyran et al., 2005), representing the
85 pattern of LNv neurons, is initially detected in the brains of 1st-instar larvae 4-5 hours after larval
86 hatching (ALH) (Helfrich-Förster, 1997). To elucidate the intricate axon pathfinding process
87 during development, we employed a dual-copy *Pdf-GAL4* to drive the expression of double-copy
88 UAS-mCD8::GFP, visualizing the s-LNvs at the larval stage (Figure 1A). At 8 hours ALH, the

89 GFP signal strongly co-localized with the PDF signal within the axons. This remarkable
90 co-localization continued throughout the larval stage, particularly concentrated at the axon's
91 terminal end (Figure 1A).

92

93 We then quantified the process of s-LNvs axonal projection. The vertical projection distance of the
94 s-LNvs axon was ascertained by measuring the vertical span between the lowest point of the
95 optical lobe and the highest point of the axon's projection terminal. Statistical analyses revealed a
96 steadfast linear increase in the vertical projection distance of the s-LNvs axon as larval
97 development progressed (Figure 1A-B). To determine the horizontal projection distance of the
98 s-LNvs axon, we applied the methodology employed by Olive *et al.* for measuring adult flies
99 (Oliva et al., 2016). A tangent line is drawn precisely at the pivotal juncture where the s-LNvs
100 axon undergoes a shift in its projection direction. We define the Arbitrary Unit (A.U.) as the ratio
101 between the horizontal distances from this point to both the end of the axon projection and the
102 midline (Figure 1A and 1C). Remarkably, at the time points of 8, 24, 48, and 72 hours ALH, the
103 A.U. value for s-LNvs axon projection in the horizontal direction remained relatively stable at
104 approximately 0.13. However, at 96 and 120 hours ALH, a significant and striking increase in the
105 A.U. value ensued, eventually reaching approximately 0.25 (Figure 1C). These findings suggest
106 that the precise transition of s-LNv axon projection from vertical towards the horizontal direction
107 occurs in the early-to-mid third instar larvae, specifically during 72 to 96 hours ALH (Figure 1D).

108

109 **Vertical projection of s-LNvs axons correlate with mushroom body calyx expansion**

110 The axons of s-LNv project dorsally, coming in close proximity to the dendritic tree of the
111 mushroom body (MB), specifically the calyx (Figures 2A and 2C). This spatial arrangement
112 facilitates potential interactions between the s-LNvs axon and the MB. MB predominantly
113 comprises 2500 intrinsic neurons, known as Kenyon Cells (KCs) (Puñal et al., 2021). The
114 development of the MB is a dynamic process characterized by three primary types of KCs: α/β ,
115 α'/β' , and γ , each following distinct temporal schedules of birth. The γ cells emerge from the
116 embryonic stage until early 3rd-instar larval phase, while the α'/β' cells are born during the latter
117 half of larval life, and the α/β cells appear in the post-larval stage (Lee et al., 1999; Puñal et al.,
118 2021). We noticed that s-LNv axons exhibit only vertical growth before early 3rd-instar larval

119 stage, which coincides with the emergence of γ KCs. Consequently, we have contemplated the
120 potential correlation between the vertical projection of s-LNv axons and the growth of the
121 mushroom body.

122

123 Next, we closely monitored the spatial relationship between the calyx and the axon projections of
124 the s-LNvs throughout different larval developmental stages (Figure 2A). We used *OK107-GAL4*
125 and *Tab2-201Y-GAL4* to drive the expression of mCD8::GFP in all KC subtypes or specifically in
126 γ KCs (Pauls et al., 2010), respectively, to visualize MB KCs. As development progressed, the
127 calyx area defined by both GAL4 drivers exhibited a consistent expansion. Statistical analyses
128 further confirmed that the calyx area increased proportionally with the advancement of
129 developmental time, demonstrating a linear relationship (Figure 2B-C). Additionally, Pearson
130 correlation analysis unveiled a robust positive correlation between the calyx area and the vertical
131 projection distance of s-LNvs axon ($r = 0.9987, P < 0.0001$ for *OK107-GAL4*; $r = 0.9963, P =$
132 0.0003 for *Tab2-201Y-GAL4*) (Figure 2B-C). These compelling observations suggest that the MB
133 calyx, and potentially specifically the calyx of γ KCs, exert significant influence on the vertical
134 projection of the s-LNvs axon.

135

136 To validate our idea, we employed a straightforward approach to evaluate any changes in s-LNvs
137 axon projection after ablating γ KCs using the apoptosis-promoting factors RPRC and HID driven
138 by the *Tab2-201Y GAL4*. Initially, we confirmed the effectiveness of our approach. In the control
139 group, the GFP signal in γ KCs remained unchanged, while the ablation group showed a
140 significant reduction or complete absence of the signal (Figure 2-figure supplement 1).
141 Subsequently, we examined the axon projection of s-LNvs under these conditions. In the
142 non-ablated group, the vertical distance increased linearly during development, following the
143 expected pattern (Figure 2D-E). However, in the ablation group, although the initial vertical
144 projection of s-LNvs appeared normal, there was a noticeable decrease in vertical projection
145 distance at 48 hours ALH. This vertical development trend ceased thereafter, with the vertical
146 projection distance measuring only 20 to 30 μm at 72 hours ALH (Figure 2D-E). Importantly, in
147 later larval stages, we observed that s-LNvs in certain larvae became undetectable (data not
148 shown), suggesting the potential occurrence of apoptosis in these neurons following MB ablation.

149 These results underscore a significant association between MB development, specifically the γ
150 KCs, and the vertical projection dynamics of s-LNv axons.

151

152 **s-LNv-expressed Dscam1 mediate s-LNv axons horizontal projection**

153 To decipher the signaling pathways governing s-LNvs axon horizontal projection, we performed a
154 screening with a total of 285 targets by using the RNA-interfering (RNAi) approach
155 (Supplementary File 3). To optimize efficiency, we chose to use *Clk856-GAL4*, which exhibits
156 high expression in s-LNv during early larval stages, despite also being expressed in subsets of
157 other clock neurons (Gummadova et al., 2009). Significantly, the knockdown of Down syndrome
158 cell adhesion molecule (Dscam1) exhibited a marked reduction in the horizontal projection
159 distance of s-LNv axons (Figure 3-figure supplement 1A-B). To validate the role of
160 s-LNv-expressed Dscam1 in governing axon horizontal projection, we employed the *Pdf-GAL4*,
161 which specifically targeted s-LNvs during the larval stage. At 96 hours ALH, vertical projection
162 showed no significant changes in *Pdf-GAL4;UAS-Dscam1-RNAi* flies, but a noticeable deficit was
163 observed in the horizontal projection of the s-LNvs axon (Figure 3A-C). These observations
164 strongly indicate that Dscam1 specifically regulates the horizontal projection of s-LNvs axon.

165

166 We further checked s-LNvs axon projection in several well-defined *Dscam1* mutants, including
167 *Dscam1²¹*, *Dscam1¹*, and *Dscam1⁰⁵⁵¹⁸* (Hummel et al., 2003; Schmucker et al., 2000). While all
168 heterozygous mutants displayed normal horizontal axon projection in s-LNvs, trans-heterozygous
169 mutants and homozygotes exhibited shortened horizontal axon projection (Figure 3D-E).
170 Additionally, our immunostaining results indicated concentrated Dscam1 expression at the growth
171 cone of s-LNv axons in 3rd-instar larvae (Figure 3F). Taken together, these data demonstrate that
172 Dscam1 controls the horizontal axon projection of s-LNvs in a cell-autonomous manner.

173

174 Dscam1 is a well-recognized cell adhesion molecule that plays a crucial role in axon guidance
175 (Chen et al., 2006; Hummel et al., 2003; Zhan et al., 2004; Zhang et al., 2019). The receptors
176 present on growth cones sensor the extracellular axon guidance molecules to initiate the
177 reorganization of the cellular cytoskeleton, leading to the facilitation of axonal projection.
178 Convincingly, knockdown of the cytoskeletal molecules *tsr* (the *Drosophila* homolog of *cofilin*)

179 (Sudarsanam et al., 2020) and *chic* (the *Drosophila* homolog of *profilin*) (Shields et al., 2014) in
180 s-LNvs recaptured the horizontal axon projection deficits in *Dscam1* knockdown flies or *Dscam1*
181 mutants (Figure 3-figure supplement 1C-D). Consistently, knockdown of *Dock* and *Pak*, the
182 guidance receptor partners of *Dscam1* (Schmucker et al., 2000), or *SH3PX1*, the critical linker
183 between *Dscam1* and the cytoskeleton (Worby et al., 2001), phenocopied *Dscam1* knockdown
184 flies or *Dscam1* mutants (Figure 3-figure supplement 1C-D). Taken together, these findings
185 provide solid evidence to support that *Dscam1* signaling as a crucial regulator of s-LNvs axon
186 horizontal projection (Figure 3-figure supplement 1E).

187

188 **Neuronal-derived Netrins act upstream of Dscam1 to govern the horizontal projection of**
189 **s-LNvs axon**

190 Two classical guidance molecules, Slit and Netrin, have been shown to specifically bind to the
191 extracellular domain of *Dscam1* (Alavi et al., 2016; Andrews et al., 2008). The *Drosophila*
192 genome contains the sole *slit* gene and two *Netrin* genes: *Netrin-A* (*NetA*) and *Netrin-B* (*NetB*)
193 (Harris et al., 1996; Mitchell et al., 1996). Interestingly, knockdown of both *NetA* and *NetB*
194 (hereafter referred to as *Netrins*), rather than *slit*, resulted in the defective horizontal axon
195 projection of s-LNvs. Convincingly, *NetA*,*NetB* double mutant (Brankatschk & Dickson, 2006),
196 but not *NetA* or *NetB* single mutant, exhibited the defective horizontal axon projection of s-LNvs
197 (Figure 4A-B and Figure 4-figure supplement 1). These results imply that two Netrin molecules
198 function redundantly in regulating horizontal axon projection of s-LNvs.

199

200 To determine the source of Netrins, which are known to be secreted axon guidance molecules, we
201 conducted experiments using pan-neuronal (*nsyb-GAL4*) and pan-glial (*repo-GAL4*) drivers to
202 selectively knock down *Netrins* (Figure 4C-D). Strikingly, when *Netrins* were knocked down in
203 neurons but not in glia, we observed severe defects in the horizontal axon projection of s-LNvs.
204 These findings reveal that neuron-secreted Netrins serve as ligands for *Dscam1*, controlling the
205 horizontal axon projection of s-LNvs.

206

207 **Dorsal neuron-secreted Netrins mediate the horizontal axon projection of s-LNvs**

208 To further identify the source of Netrins, we focused on the neurons located in the dorsolateral

209 protocerebrum, where the s-LNvs axons change their projection direction. We first excluded the
210 possibility that MB-secreted Netrins mediate the horizontal axon projection of s-LNvs, as
211 knockdown of *Netrins* with *OK107-GAL4* showed normal horizontal axon projection of s-LNvs
212 (Figure 5A-B).

213

214 The Dorsal neurons (DNs), a subset of clock neurons, also situate in the dorsolateral
215 protocerebrum. DNs are categorized into three types, DN1, DN2, and DN3 (Reinhard et al., 2022),
216 and previous studies have shown that both DN2 and DN1 form synaptic connections with s-LNvs
217 axon terminals at the adult stage (Schlichting et al., 2022). Interestingly, knockdown of *Netrins* in
218 a substantial portion of DN2, DN3, and DN1 (Kaneko et al., 1997) (*Per-GAL4*,
219 *Pdf-GAL80;UAS-Netrins-RNAi*) resulted in the defective horizontal axon projection of s-LNvs
220 (Figure 5A-B). To further validate the involvement of DNs in mediating the horizontal axon
221 projection of s-LNvs, we conducted cell ablation experiments. Notably, the impairments in the
222 horizontal axonal projection of s-LNvs due to DNs ablation were exclusively observed at 96 hours
223 ALH, which is after the occurrence of horizontal projection (Figure 5C-D). In contrast, ablating
224 *crz*⁺ neurons, which occupy a similar location to DNs, had no significant effects on the horizontal
225 axon projection of the s-LNvs (Figure 5-figure supplement 1). Moreover, by expressing NetB in
226 DNs in *NetA,NetB* double mutants, we successfully restored the defective horizontal axon
227 projection of s-LNvs (*NetAB*⁴; *Per-GAL4, Pdf-GAL80;UAS-NetB*) (Figure 5E-F). These results
228 demonstrate that DNs secrete Netrins to guide the horizontal axon projection of s-LNvs.

229

230 **Newborn DNs secret Netrins to regulate the horizontal axon projection of s-LNvs**

231 Finally, we wonder which population of DNs secret Netrins to regulate the horizontal axon
232 projection of s-LNvs. Therefore, we monitored the number and location of DNs during the s-LNvs
233 axon projection and found that the number of DNs significantly increased during this process.
234 *Per-GAL4, Pdf-GAL80; UAS-mCD8::GFP* only labeled 4-5 cells at 48 hours ALH, and raise to
235 10-15 by 72 hours, and subsequently increased to approximately 25 by 96 hours ALH (Figure
236 6A-B). It is worth noting that the location of these newly formed DNs resides lateral to the
237 transition point of axon projection direction of the s-LNvs, while maintaining a basic parallelism
238 with the horizontal axon projection of the s-LNvs (Figure 6A). The sharp increase in the number

239 of DNs coincides remarkably with the timing of the switch in axon projection direction of the
240 s-LNvs.

241

242 Next, we asked whether these newly generated DNs expressed Netrins. To visualize the expression
243 of endogenous NetB, we applied the fly strains that insert either GFP or myc tag in *NetB* gene. At
244 72 hours ALH, we were unable to detect any NetB signals within the DNs. In contrast, at 96 hours
245 ALH, we easily detected prominent NetB signals in approximately 6-8 newborn DNs (Figure
246 6C-D, Figure 6-figure supplement 1A).

247

248 Previous studies have shown that DSCAM is involved in Netrin-1-mediated axonal attraction
249 (Andrews et al., 2008; G. Liu et al., 2009; Ly et al., 2008). In addition, DSCAM also functions as
250 a repulsive receptor, associating with Uncoordinated-5C (UNC5C) to mediate Netrin-1-induced
251 axon growth cone collapse (Purohit et al., 2012). To dissect the role of Netrin signaling, we
252 ectopically expressed Netrins in neurons marked by *R78G02-GAL4* (Jenett et al., 2012; Suzuki et
253 al., 2022), located in front of the horizontal projection of s-LNv axons, closer to the midline
254 (Figure 6-figure supplement 1B). Expression of either NetA or NetB in *R78G02-GAL4*-labeled
255 neurons significantly suppressed the horizontal axon projection of s-LNvs (Figure 6-figure
256 supplement 1B-C). Taken together, these findings reveal that newborn DNs secrete Netrins to
257 orchestrate the transition of axon projection in s-LNvs from a vertical to a horizontal direction
258 (Figure 7).

259

260 **Discussion**

261 The mechanisms underlying axonal responses to intricate microenvironments and the precise
262 development of axons within the brain have long remained enigmatic. In the past, researchers have
263 identified a large number of axon guidance cues and receptors using different models *in vivo* and
264 *in vitro* (Esther T Stoeckli, 2018). In addition, transient cell-cell interactions through intermediate
265 targets play a crucial role in guiding axonal projection step by step towards its final destination
266 (Chao et al., 2009; Garel & Rubenstein, 2004). The landmark midline, a crucial intermediate target,
267 serves as a model in the majority of early studies exploring the directional transitions of axonal
268 projections (Evans & Bashaw, 2010). However, so many neural projections do not cross the

269 midline that it is challenging to understand how these axon projections are guided (Goodhill,
270 2016). In our study, we established an excellent model to investigate the mechanism of axonal
271 projection direction switch by the *Drosophila* s-LNvs. We discovered a coordinated growth pattern
272 between the vertical projection of s-LNvs and the MB calyx. Furthermore, the synergistic
273 interaction between Dscam1 expressed in s-LNvs and the emerging DN-secreted Netrins precisely
274 modulates the transition of s-LNv axons from a vertical to a horizontal projection within a specific
275 time window (Figure 7). These findings reveal the mechanism behind the transition of axonal
276 projection direction, emphasizing the significance of developmental microenvironments in
277 ensuring precise axon projection.

278

279 **The dependence of s-LNv vertical projection on mushroom body calyx expansion**

280 During our monitoring of the axonal projection of s-LNvs, we observed that the axon terminals
281 reached the dorsolateral brain area at an early stage but continued their vertical growth. This
282 phenomenon raises the question of what drives this growth. The mushroom body, a sophisticated
283 central hub within the fruit fly's brain, exhibits proximity to the projection of s-LNv axons in
284 spatial arrangement. Upon careful examination, we found a positive correlation between the
285 vertical length increase of s-LNv axons and the growth of the mushroom body calyx (Figure 2).
286 Remarkably, when we selectively removed KC cells, we observed a striking effect on the axonal
287 projection of s-LNvs. The s-LNv axonal projections either stalled at the initial stage or even
288 completely disappeared (Figure 2 and data not shown). Hence, the vertical projection of s-LNv
289 axons is dependent on mushroom body calyx expansion. Our hypothesis is supported by the
290 findings of Helfrich-Förster *et al.*, who reported locomotor activity and circadian rhythm defects
291 in some MB mutants (HELFRICH-FÖRSTER *et al.*, 2002), potentially attributed to the
292 abnormality of s-LNvs axon. Moreover, it was observed that the MB mutants had minimal impact
293 on the l-LNvs. This can be attributed to the fact that l-LNvs fibers emerge at a later stage during
294 pupal development and are situated at a spatial distance from the mushroom body.

295

296 Unfortunately, we did not identify any molecules that have a discernible impact on the vertical
297 projection of s-LNv axons through screening. This indicates that the successful completion of the
298 vertical projection process may play a pivotal role in determining the overall existence of s-LNv

299 axonal projections. Furthermore, the dorsal projection of s-LNv axons intersects with the ventral
300 projection of neurons such as DN1 in the dorsolateral region adjacent to the calyx (Keene et al.,
301 2011), resembling the corpus callosum in mammals (Fothergill et al., 2014; Hutchins et al., 2011;
302 Keeble et al., 2006; Piper et al., 2009; Unni et al., 2012). Thus, during early developmental stages,
303 multiple guiding cues may redundantly function between the mushroom body calyx and
304 neighboring neural processes to ensure the smooth progression of neural development and
305 establish a stable brain structure. However, to gain a more comprehensive understanding, it is
306 worthwhile to explore whether the development of the mushroom body calyx influences the
307 projection of other neurons traversing the same territory and the guidance cues involved. Insights
308 from existing single-cell sequencing data obtained from multiple stages of larval life (Avalos et al.,
309 2019; Corrales et al., 2022), might offer some clues and indications.

310

311 **Netrin/Dscam signaling specifically controls the horizontal projection of s-LNv axons**

312 In this paper, when we specifically knockdown *Dscam1* in s-LNvs, we observed a significant
313 defect in the axonal horizontal projection. This suggests that Dscam1 autonomously regulates the
314 horizontal axonal projection of s-LNvs (Figure 3). Our findings align with a recent study that
315 reported abnormal horizontal axonal projection of s-LNv neurons in adult flies when *Dscam1*
316 mRNAs lack the long 3' UTR (Zhang et al., 2019).

317

318 The extracellular domain of Dscam1 has been verified to be capable of binding to Netrin or Slit
319 (Alavi et al., 2016). In *Drosophila*, at the midline of the embryonic central nervous system,
320 Dscam1 forms a complex with Robo1 to receive the Slit signal and promote the growth of
321 longitudinal axons (Alavi et al., 2016). In adult flies, Slit/Robo signaling restricts the medial
322 growth of s-LNv axons (Oliva et al., 2016). However, we found that reducing *Netrins* levels,
323 rather than *slit*, led to a decrease in the horizontal projection distance of s-LNv axons. Moreover,
324 in the *NetAB*⁴ double mutant, the extent of defects in the horizontal axonal projection of s-LNv
325 neurons is similar to that observed when knocking down *Dscam1* in s-LNvs. Indeed, previous
326 studies have provided evidence showcasing the widespread involvement of Dscam1 as a receptor
327 for Netrin in mediating axon growth and pathfinding (G. Liu et al., 2009; Ly et al., 2008;
328 Matthews & Grueber, 2011). When we disturbed the expression of Netrin signals in the axon

329 targeting microenvironment, it was also sufficient to cause abnormal s-LNv projection (Figure
330 6-figure supplement 1B-C). Therefore, our findings suggest that Netrin, as a ligand for Dscam1,
331 regulates the process of switching axon projection direction (Figure 4).

332

333 **The newborn DNs-secreted Netrin coordinates with s-LNv-expressed Dscam1 to switch the**
334 **projection direction of s-LNv axons**

335 While the midline serves as a prominent landmark, it presents a daunting challenge to comprehend
336 the guidance and directional transitions of axons in many neural projections that do not actually
337 cross this central axis (Evans & Bashaw, 2010). Following vertical projection, the s-LNvs growth
338 cones remain within the dorsolateral area for at least 48 hours before initiating horizontal
339 projection (Figure 1). This phenomenon aligns harmoniously with the outcomes observed in
340 earlier studies that the axonal growth of other types of neurons slows down at the specific choice
341 point, the midline (Bak & Fraser, 2003; Godement et al., 1994; T. Li et al., 2021), indicating that
342 the dorsolateral area serves as an intermediate targets to facilitate the subsequent phase of s-LNvs
343 projection journey.

344

345 Extracellular cues released by the final or intermediate targets play a crucial role in guiding axonal
346 projection. The axon terminals of s-LNvs showed close spatial associations with the somas and
347 processes of DNs. In this study, the knockdown of *Netrins* specifically in *per⁺,Pdf* neurons, but
348 not in the mushroom body, resulted in axon projection defects in s-LNvs (Figure 5). Furthermore,
349 the ablation of DNs resulted in the inhibition of horizontal growth of s-LNvs axons (Figure 5).
350 These findings suggest that the Netrin signaling microenvironment secreted by DNs is involved in
351 regulating the horizontal projection of s-LNv axons.

352

353 **Ideas and Speculation**

354 The emergence of NetB-positive DNs and the aberrant axonal projection of s-LNv neurons caused
355 by DN ablation occur concurrently during development (Figure 6). In *Drosophila*, three types of
356 circadian oscillator neurons, including two DN1s, two DN2s, and 4-5 s-LNvs, can be identified as
357 early as embryonic stage 16 (Houl et al., 2008). The DN3 group, which represents the largest
358 contingent within the central circadian neuron network with over 35 neurons, emerges during the

359 larval stage (T. Liu et al., 2015). Little is known about the function of DN3 neurons, particularly
360 during the larval stage. Due to the lack of cell-specific labeling tools, we can only speculate about
361 the identity of these newly generated Netrin-secreting neurons as DN3s based on their spatial
362 distribution. Taken together, these results unveil a novel regulatory mechanism where axons,
363 during the process of pathfinding, await guidance cues from newly born guidepost cells. This
364 enables a switch in the direction of axon projection, facilitating the axon's subsequent journey.

365

366 **Acknowledgements**

367 We thank Dr. Haihuai He for providing *Dscam1* mutant flies; Dr. Yufeng Pan for the fly line used
368 in cell ablation; Dr. Renjun Tu for the *NetB-GFP* fly; Dr. Xuan Guo for collecting the tool flies;
369 the Bloomington stock center and Tsinghua fly center for providing flies; Dr. Tzumin Lee for
370 *Dscam1* antibodies; Dr. Ranhui Duan HA-NetA and HA-NetB plasmids. This work was supported
371 by the National Natural Science Foundation of China (32170970 to Y.T., 32230039 to J.H.), STI
372 2030- Major Projects-2021ZD0202500 to J.H., and the Guangdong Key Project-2018B030335001
373 to J.H.

374

375 **Author Contributions**

376 J. L. designed and performed experiments, interpreted data and wrote the manuscript; Y. W.
377 performed experiments, Y.T. designed experiments, interpreted data and wrote the manuscript; J.
378 H. designed experiments, interpreted data, wrote the manuscript, and supervised the project.

379

380 **Declaration of Interests**

381 The authors declare no competing financial interests.

382

383 **Corresponding authors**

384 Correspondence to: Yao Tian and Junhai Han, School of Life Science and Technology, Southeast
385 University, 2 Sipailou Road, Nanjing 210096, China. Tel: +86-25-83790962; Fax:
386 +86-25-83790962; E-mail: yaotian@seu.edu.cn, junhaihan@seu.edu.cn.

387

388 **Figure legends**

389 **Figure 1. s-LNvs axon projection dynamics during the larval stage.**

390 (A) Images showing the growth process of s-LNvs during larval development. Larval brains were
391 stained with anti-PDF (white) and HRP (magenta) antibodies. Different time points indicate the
392 hours after larval hatching (ALH).

393 (B) Left panel: schematic diagram illustrating the method used to measure the degree of vertical
394 projection. One hemisphere of the larvae brain is depicted. larval neuropil (gray), s-LNvs (green),
395 optic lobe (blue). Right panel: graphs showing the average vertical projection length at different
396 developmental stages, presented as mean \pm SD.

397 (C) Left panel: schematic diagram illustrating the method used to measure the degree of horizontal
398 projection. Right panel: graphs showing the average horizontal projection (A.U.: arbitrary unit) at
399 different developmental stages, presented as mean \pm SD. The red line segment indicates the stage
400 at which the axonal projection undergoes a directional transition.

401 (D) Schematic representation of s-LNvs vertical to horizontal projection directional shift during 72
402 -96 hours ALH. One hemisphere of the larvae brain (gray), larval neuropil (white), s-LNvs
403 (green).

404 For (B), (C), 8 h (n = 7), 24 h (n = 10), 48 h (n = 14), 72 h (n = 16), 96 h (n = 13), 120 h (n = 16).

405

406 **Figure 2. Development of vertical projection process alongside Mushroom Body growth.**

407 (A) Top: Spatial position relationship between calyx and s-LNvs labeled by *OK107-GAL4*, which
408 labels MB γ and $\alpha'\beta'$ neurons, at different developmental time points. Bottom: Spatial position
409 relationship between calyx and s-LNvs labeled by *Tab2-201Y-GAL4*, which labels MB γ neurons,
410 Larvae brains were stained with anti-PDF (green) and GFP (magenta) antibodies. Different time
411 indicated hours ALH. The white dotted line indicates the calyx region.

412 (B) Graphs showing the mushroom body calyx's area and vertical projection length averaged over
413 different development stage are presented as mean \pm SD. *OK107*: 24 h (n = 10), 48 h (n = 8), 72 h
414 (n = 12), 96 h (n = 12), 120 h (n = 9). Pearson's r = 0.9987, P < 0.0001. *Tab2-201Y*: 24 h (n = 6),
415 48 h (n = 12), 72 h (n = 13), 96 h (n = 13), 120 h (n = 11). Pearson's r = 0.9963, P = 0.0003.

416 (C) Schematic representation of synergistic development of s-LNvs vertical projection and
417 mushroom body calyx. Mushroom body (purple), s-LNvs (Green).

418 (D) Images of mushroom body ablation in the developing larval stages. Larvae brains were stained

419 with anti-PDF (white) and HRP (magenta) antibodies. Different time indicated hours ALH.
420 (E) Quantification of vertical projection length in Control (*Tab2-201Y >GFP*) and Ablation
421 (*Tab2-201Y >GFP,rpr,hid*) flies. Data are presented as mean \pm SD. Control: 24 h (n = 6), 48 h (n =
422 14), 72 h (n = 13), Ablation: 24 h (n = 6), 48 h (n = 12), 72 h (n = 12). Two-tailed Student's t tests
423 were used. ns, p > 0.05; ***p < 0.0001.

424

425 **Figure 2- figure supplement 1. Validation of MB ablation efficiency.**

426 (A) Images of mushroom body ablation in the developing larval stages. Larvae brains were stained
427 with anti-GFP (green) and HRP (magenta) antibodies. Different time indicated after larval
428 hatching (ALH).
429 (B) Quantification of MB calyx area in Control (*201Y >GFP*) and Ablation (*201Y >GFP,rpr,hid*)
430 flies. Data are presented as mean \pm SD. Control: 24 h (n = 6), 48 h (n = 12), 72 h (n = 13),
431 Ablation: 24 h (n = 6), 48 h (n = 12), 72 h (n = 12). Two-tailed Student's t tests, ***p < 0.0001.

432

433 **Figure 3. Critical role of *Dscam1* in horizontal projection.**

434 (A) Images of s-LNvs in *Pdf >GFP* and *Pdf >GFP, Dscam1^{RNAi}* fly. White line segment represents
435 the horizontal projection distance of s-LNvs. Larvae brains were stained with anti-PDF (white)
436 and HRP (magenta) antibodies at 96 hours ALH. *Pdf >GFP*: (n = 13), *Pdf >GFP, Dscam1^{RNAi}*: (n
437 = 15).

438 (B) Quantification of vertical projection length in *Pdf >GFP* and *Pdf >GFP, Dscam1^{RNAi}* flies.
439 Data are presented as mean \pm SD. Two-tailed Student's t tests, ns, p > 0.05.

440 (C) Quantification of horizontal A.U. in *Pdf >GFP* and *Pdf >GFP, Dscam1^{RNAi}* flies. Data are
441 presented as mean \pm SD. Two-tailed Student's t tests, ***p < 0.0001.

442 (D) Images of *Dscam1* mutant s-LNvs projection phenotype. Larvae brains were collected at late
443 3rd larvae. Heads were stained with anti-PDF (white) and HRP (magenta) antibodies.

444 (E) Quantification of horizontal A.U. in *Dscam1* mutant flies. Data are presented as mean \pm SD.
445 *w¹¹¹⁸* (n = 22) *Dscam1^{21/+}* (n = 5), *Dscam1^{1/+}* (n = 8), *Dscam1^{05518/+}* (n = 10), *Dscam1^{21/+}*/
446 *Dscam1⁰⁵⁵¹⁸* (n = 6), *Dscam1^{21/+}/Dscam1¹* (n = 10), *Dscam1⁰⁵⁵¹⁸* (n = 14). One-way ANOVA with
447 Tukey's post hoc, ns, p > 0.05, ***p < 0.0001.

448 (F) Endogenous *Dscam1* co-localizes with the s-LNvs axon terminal. *Pdf >GFP* fly heads were

449 collected at 120 h ALH and stained with anti-Dscam1 (red). The white dotted line indicates the
450 s-LNvs axon.
451

452 **Figure 3- figure supplement 1. Dscam1 and its downstream signaling pathway in s-LNvs**
453 **horizontal projection.**

454 (A) Images of immunostained in *Clk856-GAL4* knockdown Dscam1. Larvae brains were collected
455 at late 3rd larvae. Heads were stained with anti-PDF (white) and HRP (magenta) antibodies.

456 (B) Quantification of horizontal A.U. in *Clk856-GAL4* knockdown Dscam1. Data are presented as
457 mean \pm SD. *Clk856-GAL4/+* (n = 6), *Clk856-GAL4 >Dscam1^{RNAi}* (n = 10). Two-tailed Student's t
458 tests, ***p < 0.0001.

459 (C) Images of immunostained in *Pdf-GAL4* knockdown cytoskeleton-associated regulatory
460 proteins and Dscam1 interaction molecule. Larvae brains were collected at late 3rd larvae. Heads
461 were stained with anti-PDF (white) and HRP (magenta) antibodies.

462 (D) Quantification of horizontal A.U. in *Pdf-GAL4* knockdown *Dscam1* interaction molecule and
463 cytoskeleton-associated regulatory proteins. Data are presented as mean \pm SD. *Pdf-GAL4/+* (n =
464 14), *Pdf-GAL4 >tsr^{RNAi}* (n = 6), *Pdf-GAL4 >chic^{RNAi}* (n = 8), *Pdf-GAL4 >SH3PX1^{RNAi}* (n = 6),
465 *Pdf-GAL4 >Dock^{RNAi}* (n = 7), *Pdf-GAL4 >pak^{RNAi}* (n = 6). One-way ANOVA with Dunnett's post
466 hoc, ***p < 0.001 , ****p < 0.0001.

467 (E) Schematic representation of Dscam1 mediates s-LNvs horizontal projection downstream
468 signaling pathways. Dscam1 (brown) activates the downstream signaling cascade involving Dock
469 (cyan), SH3PX1 (yellow), Pak (blue), and cofilin/profilin (depicted in purple and blue balls,
470 respectively). These signaling events induce alterations in cell cytoskeleton proteins (gray balls),
471 facilitating the guidance of horizontal projection

472

473 **Figure 4. Neuron-derived Netrin guides s-LNvs horizontal projection.**

474 (A) Images of immunostained in *w^{III8}*, *NetA^Δ*, *NetB^Δ* and *NetAB^Δ* fly. Larvae brains were collected
475 at late 3rd larvae. Heads were stained with anti-PDF (white) and HRP (magenta) antibodies.

476 (B) Quantification of horizontal A.U. *w^{III8}*, *NetA^Δ*, *NetB^Δ* and *NetAB^Δ* fly. Data are presented as
477 mean \pm SD, *w^{III8}* (n = 17), *NetA^Δ* (n = 15), *NetB^Δ* (n = 24), *NetAB^Δ* (n = 23). One-way ANOVA

478 with Dunnett's post hoc, ns, p > 0.05, ***p < 0.001.

479 (C) Images of immunostained in *nSyb-GAL4* and *repo-GAL4* knockdown *Netrins*. Larvae brains
480 were collected at late 3rd larva heads were stained with anti-PDF (white) and HRP (magenta)
481 antibodies.

482 (D) Quantification of horizontal A.U. in *nSyb-GAL4* and *repo-GAL4* knockdown *Netrins* fly. Data
483 are presented as mean \pm SD. *nSyb-GAL4/+* (n = 13), *nSyb-GAL4 >Netrins^{RNAi}* (n = 16),
484 *repo-GAL4/+* (n = 34), *repo-GAL4 >Netrins^{RNAi}* (n = 20). Two-tailed Student's t tests, ns, p > 0.05,
485 ***p < 0.001.

486

487 **Figure 4- figure supplement 1. Identifying the upstream signal of Dscam1.**

488 (A) Images of immunostained in *tubulin-GAL4/+*, *tubulin-GAL4 >Netrins^{RNAi}*,
489 *tubulin-GAL4 >slit^{RNAi}* fly. Larvae brains were heads were collected at late 3rd larva. Head
490 stained with anti-PDF (white) and HRP (magenta) antibodies.

491 (B) Quantification of horizontal A.U. in *tubulin-GAL4/+*, *tubulin-GAL4 >Netrins^{RNAi}*,
492 *tubulin-GAL4 >slit^{RNAi}* fly. Data are presented as mean \pm SD. *tubulin-GAL4/+* (n = 13),
493 *tubulin-GAL4 >Netrins^{RNAi}* (n = 20), *tubulin-GAL4 >slit^{RNAi}* (n = 9). One-way ANOVA with
494 Dunnett's post hoc, ns, p > 0.05, **p < 0.01.

495

496 **Figure 5. Netrin secreted by DN neurons guides time-specific horizontal projection of
497 s-LNvs.**

498 (A) Images of immunostained in *OK107-GAL4* and *per-GAL4*, *Pdf-GAL80* knockdown *Netrins*.
499 Larvae brains were collected at late 3rd larva. Heads were stained with anti-PDF (white) and
500 HRP (magenta) antibodies.

501 (B) Quantification of horizontal A.U. in *OK107-GAL4* and *per-GAL4*, *Pdf-GAL80* knockdown
502 *Netrins* fly. Data are presented as mean \pm SD. *OK107-GAL4/+* (n = 20),
503 *OK107-GAL4 >Netrins^{RNAi}* (n = 13). *per-GAL4*, *Pdf-GAL80/+* (n = 18), *per-GAL4*,
504 *Pdf-GAL80 >Netrins^{RNAi}* (n = 16), Two-tailed Student's t tests for *OK107-GAL4* knockdown
505 *Netrins*, ns, p > 0.05. Mann-Whitney test for *per-GAL4*, *Pdf-GAL80* knockdown *Netrins*, ***p <
506 0.0001.

507 (C) Images of DN ablation in the developing larval stages. Larvae brains were stained with

508 anti-PDF (white) and HRP (magenta) antibodies. Different time indicated hours ALH.

509 (D) Quantification of horizontal A.U. in Control (*per-GAL4, Pdf-GAL80 >GFP*) and Ablation
510 (*per-GAL4, Pdf-GAL80 >GFP, rpr, hid*) flies. Data are presented as mean \pm SD. Control: 72 h (n =
511 5), 96 h (n = 12), Ablation: 72 h (n = 5), 96 h (n = 10). Two-tailed Student's t tests were used to
512 compare conditions. ns, p > 0.05, ***p < 0.0001.

513 (E) Images of immunostained in *per-GAL4, Pdf-GAL80* overexpress *NetB* in *NetAB⁴*. Larvae
514 brains were collected at late 3rd larvae. Heads were stained with anti-PDF (white) and HRP
515 (magenta) antibodies.

516 (F) Quantification of horizontal A.U. in *per-GAL4, Pdf-GAL80* overexpress *NetB* in *NetAB⁴*. Data
517 are presented as mean \pm SD. *NetAB⁴*, *UAS-NetB* (n = 12), *NetAB⁴*, *per-GAL4, Pdf-GAL80* /+ (n =
518 5), *NetAB⁴, per-GAL4, Pdf-GAL80 >UAS-NetB* (n = 9). One-way ANOVA with Bonferroni post
519 hoc, ns, p > 0.05, ***p < 0.001.

520

521 **Figure 5- figure supplement 1. Ablation of DN neurons leads to reduced s-LNvs horizontal
522 projection.**

523 (A) Images of *per-GAL4, pdf-GAL80* and *crz-GAL4* ablation. Larvae brains were stained with
524 anti-PDF(white) and HRP(magenta) antibodies at 120 h ALH.

525 (B) Quantification of horizontal A.U. in *per-GAL4, Pdf-GAL80* and *crz-GAL4* ablation fly. Data
526 are presented as mean \pm SD. *per-GAL4, Pdf-GAL80 >GFP* (n = 14), *per-GAL4,*
527 *Pdf-GAL80 >GFP, rpr, hid* (n = 20), *crz-GAL4 >GFP* (n = 4), *crz-GAL4 >GFP, rpr, hid* (n = 3).
528 Two-tailed Student's t tests, ns, p > 0.05; ***p < 0.0001.

529

530 **Figure 6. Dynamic changes in DN neurons coordinated with s-LNvs axonal targeting.**

531 (A) Top: Images of s-LNvs axon and DNs growth process in the developing larval stages. Larvae
532 brains were stained with anti-PDF (white) and GFP (green) antibodies. Different time indicated
533 hours ALH are shown. Bottom: schematic diagram of s-LNvs horizontal projection and the
534 corresponding increase in the number of DN neurons. s-LNvs axon (gray), DN neurons (green).

535 (B) Quantification of the number of DN neurons labeled by *per-GAL4, Pdf-GAL80* at different
536 developmental stages. Data are presented as mean \pm SD.

537 (C) Images of newborn DN neurons were colocalized with *Netrin-B* at different developmental

538 times. Larvae brains were stained with anti-GFP (green), mcherry (red) and PDF (white)
539 antibodies. Different time indicated hours ALH. The white arrow demarcates the co-localization of
540 red and green signals.

541 (D) Schematic representation s-LNvs projection directional transition and the corresponding
542 increase in the number of DN neurons. s-LNvs axon (gray), DN neurons (green), newborn DN
543 neurons (light green at 72 h, orange at 96 h).

544

545 **Figure 6- figure supplement 1. Anterior Netrin ectopic expression reduces horizontal**
546 **projection length.**

547 (A) Left: Schematic representation s-LNvs projection directional transition and the corresponding
548 increase in the number of DN neurons. s-LNvs axon (gray), DN neurons(green), newborn DN
549 neurons (light green at 72 h, orange at 96h). Right: images of DN neurons were colocalized with
550 Netrin-B at different developmental times. Larvae brains were stained with anti-Myc (red) and
551 GFP (green) antibodies. Different time indicated after larval hatching (ALH). The white arrow
552 demarcates the co-localization of red and green signals.

553 (B) Images of Netrin ectopic expressed in *R78G02-GAL4*. Larvae brains were collected at late 3rd
554 larvae. Heads were stained with anti-PDF (white) and HRP (magenta) antibodies.

555 (C) Quantification of horizontal A.U. in Netrin ectopic expressed in *R78G02-GAL4* fly. Data are
556 presented as mean \pm SD. *R78G0-GAL4/+* (n = 11), *R78G02-GAL4 >UAS-NetA^{OE}* (n = 6),
557 *R78G02-GAL4 >UAS-NetB^{OE}* (n = 11). One-way ANOVA with Dunnett's post hoc, ***p < 0.001,
558 ****p < 0.0001.

559

560 **Figure 7. Dynamic cellular molecular environment during the s-LNv projection directional**
561 **shift.**

562 Cartoon depicting the dynamic cellular molecular microenvironment during the axonal projection
563 directional shift from vertical to horizontal projection in s-LNvs. 72 h and 96 h represent 72 h and
564 96 h after larval hatching, respectively. s-LNvs (blue), neuropile (pink), brain lobe (gray circule),
565 DNs (orange and light orange circles), optic lobe (gray dotted line), Netrin (Orange combination
566 molding), Dscam1 (purple).

567

568 **Materials and methods**

569 Fly Genetics

570 The flies were maintained on standard medium at 25°C with 60–80% relative humidity. The
571 wild-type flies used in this study were w^{1118} . The *Dscam1* (*CG17800*) null mutant allele, *Dscam1*²¹,
572 was obtained from Haihuai He's laboratory. *UAS-rprC*; *UAS-hid* fly were kindly provided by
573 Yufeng Pan's laboratory. The RNAi lines used in these studies were purchased from Tsinghua
574 University; other flies were obtained from Bloomington Stock Center. Full genotypes of the flies
575 shown in the main figures and supplemental figures are listed in Supplementary File 2.

576

577 Generation of Transgenic Flies

578 To generate the NetA and NetB transgenes, the full-length NetA cDNAs and the the full-length
579 NetB cDNAs were sub-cloned into the pUAST vectors and injected into w^{1118} flies.

580

581 Antibodies

582 Antibodies were obtained from Developmental Studies Hybridoma Bank (anti-PDF, anti-FasII)
583 Jackson Immuno Research (anti-HRP), Invitrogen (anti-GFP Alexa-488 goat anti-chicken IgY),
584 Rockland (anti-RFP), and Abcam (Alexa-555 goat anti-rabbit IgG, Alexa-647 goat anti-mouse
585 IgG, Alexa 488 goat anti-rabbit IgG and Alexa 488 goat anti-mouse IgG), gifted from Tzumin
586 Lee's Lab (anti-Dscam1).

587

588 Collection larvae

589 ~100 females lay eggs on the collecting medium (1% agar and 30% juice) in Petri dishes for a
590 4-hour period. To obtain larvae of defined ages, freshly emerged larvae were selected at 2 hours'
591 intervals. They were then allowed to grow on the cornmeal medium until they reached the desired
592 age, and they were dissected at 0.5 hour intervals.

593

594 Immunostaining

595 Larvae brain were dissected in phosphate-buffered saline (PBS) and fixed with 4% formaldehyde
596 (PFA) for 25 min at room temperature. After fixation and three washes with 0.3% Triton X-100 in
597 PBS. Brains were blocked with 5% goat serum in PBS with 0.3% Triton X-100 at 4°C 1 hour and

598 were incubated with primary antibodies in PBS with 0.3% Triton X-100 at 4°C overnight. After
599 four washes, brains were incubated with secondary antibodies in PBS with 0.3% Triton X-100 at
600 room temperature for 2-3 h. After four washes, brains were mounted for microscopy in vectashield
601 without DAPI (Vector Laboratories). Primary antibodies were mouse anti-PDF (1:300), mouse
602 anti-FasII (1:50), Rabbit anti- HRP (1:500), mouse anti-Dscam1- 18mAb (1:20), rabbit anti-GFP
603 (1:200), rabbit anti-RFP (1:500), chicken anti-GFP (1:2000), rabbit anti-Myc (1:200), Secondary
604 antibodies were Alexa Fluor 555 goat anti-Rabbit IgG (1:200), Alexa Fluor 647 goat anti-mouse
605 IgG (1:200), Alexa Fluor 488 goat anti-rabbit IgG (1:200) and Alexa Fluor 488 goat anti-chicken
606 IgY (1:200). Samples were imaged on an LSM 700 confocal microscope (Zeiss).

607

608 ImageJ software (National Institutes of Health) was used for the quantification vertical and
609 horizontal axonal length of PDF immunostaining in s-LNvs. For s-LNvs horizontal measurements,
610 results are presented as A.U. representing the fraction between the lengths of the horizontal
611 projections divided by the distance between cell bodies and midline. Data are presented as means
612 \pm standard deviation from examined brains.

613

614 RNAi Screening

615 The UAS-RNAi line were obtained from Tsinghua Fly Center, and Bloomington Drosophila Stock
616 Center. The RNAi screen fly was generated as follows: recombine *Pdf-GAL4* with
617 *UAS-mCD8-GFP* or use *Clk856-GAL4* directly, which has a broader expression pattern.
618 UAS-RNAi males were crossed to this two screening lines, and the resulting flies were kept at
619 25 °C, and dissected at desired age.

620

621 Neuron ablation

622 *Tab2-201Y-GAL4* which is expressed in larval mushroom body γ neuron and
623 *per-GAL4,Pdf-GAL80* which is expressed in DN neurons was used to drive the expression of
624 reaper (rpr) and hid .The GAL4 flies integrated UAS-GFP, and the efficiency of ablation was
625 confirmed by GFP signals in mushroom body and DN neurons. Animals were raised at 25°C to
626 desired time.

627

628 Quantification and Statistical Analysis

629 Statistical analysis was performed with GraphPad Prism V8.0.2 software. Data are presented as
630 means \pm standard deviation (SD). Shapiro-Wilk test was used to verify whether the data
631 conformed to the normal distribution. F test was used to verify homogenous variances between
632 two groups. Bartlett test was used to verify homogenous variances three or more conditions and
633 genotypes. Statistical significance was set as: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$; **** $p <$
634 0.0001, ns, no significance, $p > 0.05$. Statistical details of the experiments are found in the figure
635 legends.

636

637

638 **Supplemental Information**

639 Supplementary File 1. Key resource table

640 Supplementary File 2. Full genotypes of the flies that are shown in the main figures, supplemental
641 figures.

642 Supplementary File 3. List of genes used for RNAi screen

643

644 **Reference**

645 Agrawal, P., & Hardin, P. E. (2016). The drosophila receptor protein tyrosine phosphatase LAR is
646 required for development of circadian pacemaker neuron processes that support rhythmic activity
647 in constant darkness but not during light/dark cycles. *Journal of Neuroscience*, 36(13), 3860–
648 3870. <https://doi.org/10.1523/JNEUROSCI.4523-15.2016>

649 Alavi, M., Song, M., King, G. L. A., Gillis, T., Propst, R., Lamanuzzi, M., Bousum, A., Miller, A.,
650 Allen, R., & Kidd, T. (2016). Dscam1 Forms a Complex with Robo1 and the N-Terminal
651 Fragment of Slit to Promote the Growth of Longitudinal Axons. *PLoS Biology*, 14(9), 1–31.
652 <https://doi.org/10.1371/journal.pbio.1002560>

653 Andrews, G. L., Tanglao, S., Farmer, W. T., Morin, S., Brotman, S., Berberoglu, M. A., Price, H.,
654 Fernandez, G. C., Mastick, G. S., Charron, F., & Kidd, T. (2008). Dscam guides embryonic
655 axons by Netrin-dependent and -independent functions. *Development*, 135(23), 3839–3848.
656 <https://doi.org/10.1242/dev.023739>

657 Araújo, S. J., & Tear, G. (2003). Axon guidance mechanisms and molecules: Lessons from
658 invertebrates. *Nature Reviews Neuroscience*, 4(11), 910–922. <https://doi.org/10.1038/nrn1243>

659 Avalos, C. B., Brugmann, R., & Sprecher, S. G. (2019). Single cell transcriptome atlas of the
660 drosophila larval brain. *eLife*, 8, 1–25. <https://doi.org/10.7554/eLife.50354>

661 Bak, M., & Fraser, S. E. (2003). Axon fasciculation and differences in midline kinetics between
662 pioneer and follower axons within commissural fascicles. *Development*, 130(20), 4999–5008.
663 <https://doi.org/10.1242/dev.00713>

664 Brankatschk, M., & Dickson, B. J. (2006). Netrins guide Drosophila commissural axons at short range.
665 *Nature Neuroscience*, 9(2), 188–194. <https://doi.org/10.1038/nn1625>

666 Bron, R., Vermeren, M., Kokot, N., Andrews, W., Little, G. E., Mitchell, K. J., & Cohen, J. (2007).
667 Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a
668 semaphorin-plexin mechanism. *Neural Development*, 2, 21.
669 <https://doi.org/10.1186/1749-8104-2-21>

670 Cang, J., & Feldheim, D. A. (2013). Developmental mechanisms of topographic map formation and
671 alignment. *Annual Review of Neuroscience*, 36, 51–77.
672 <https://doi.org/10.1146/annurev-neuro-062012-170341>

673 Chan, C. E., & Odde, D. J. (2008). Traction dynamics of filopodia on compliant substrates. *Science*

674 (New York, N.Y.), 322(5908), 1687–1691. <https://doi.org/10.1126/science.1163595>

675 Chao, D. L., Ma, L., & Shen, K. (2009). Transient cell-cell interactions in neural circuit formation.

676 *Nature Reviews Neuroscience*, 10(4), 262–271. <https://doi.org/10.1038/nrn2594>

677 Chédotal, A., Richards, L. J., Dent, E. W., Gupton, S. L., Frank, B., Adams, R. H., Eichmann, A.,

678 Engle, E. C., Raper, J., & Mason, C. (2012). *Navigating Intermediate Targets : The Nervous*

679 *System Midline Navigating Intermediate Targets : The Nervous System Midline*.

680 <https://doi.org/10.1101/cshperspect.a002055>

681 Chen, B. E., Kondo, M., Garnier, A., Watson, F. L., Püettmann-Holgado, R., Lamar, D. R., &

682 Schmucker, D. (2006). The Molecular Diversity of Dscam Is Functionally Required for Neuronal

683 Wiring Specificity in Drosophila. *Cell*, 125(3), 607–620.

684 <https://doi.org/10.1016/j.cell.2006.03.034>

685 Corrales, M., Cocanougher, B. T., Kohn, A. B., Wittenbach, J. D., Long, X. S., Lemire, A., Cardona,

686 A., Singer, R. H., Moroz, L. L., & Zlatic, M. (2022). A single-cell transcriptomic atlas of

687 complete insect nervous systems across multiple life stages. *Neural Development*, 17(1), 8.

688 <https://doi.org/10.1186/s13064-022-00164-6>

689 Cyran, S. A., Yiannoulos, G., Buchsbaum, A. M., Saez, L., Young, M. W., & Blau, J. (2005). The

690 double-time protein kinase regulates the subcellular localization of the Drosophila clock protein

691 period. *The Journal of Neuroscience : The Official Journal of the Society for Neuroscience*,

692 25(22), 5430–5437. <https://doi.org/10.1523/JNEUROSCI.0263-05.2005>

693 de Ramon Francàs, G., Zuñiga, N. R., & Stoeckli, E. T. (2017). The spinal cord shows the way – How

694 axons navigate intermediate targets. *Developmental Biology*, 432(1), 43–52.

695 <https://doi.org/10.1016/j.ydbio.2016.12.002>

696 Derijck, A. A. H. A., Van Erp, S., & Pasterkamp, R. J. (2010). Semaphorin signaling: molecular

697 switches at the midline. *Trends in Cell Biology*, 20(9), 568–576.

698 <https://doi.org/10.1016/j.tcb.2010.06.007>

699 Dickson, B. J. (2002). Molecular mechanisms of axon guidance. *Science (New York, N.Y.)*, 298(5600),

700 1959–1964. <https://doi.org/10.1126/science.1072165>

701 Evans, T. A., & Bashaw, G. J. (2010). *Axon guidance at the midline : of mice and flies*. 79–85.

702 <https://doi.org/10.1016/j.conb.2009.12.006>

703 Fothergill, T., Donahoo, A.-L. S., Douglass, A., Zalucki, O., Yuan, J., Shu, T., Goodhill, G. J., &

704 Richards, L. J. (2014). Netrin-DCC Signaling Regulates Corpus Callosum Formation Through
705 Attraction of Pioneering Axons and by Modulating Slit2-Mediated Repulsion. *Cerebral Cortex*,
706 24(5), 1138–1151. <https://doi.org/10.1093/cercor/bhs395>

707 Garel, S., & López-Bendito, G. (2014). Inputs from the thalamocortical system on axon pathfinding
708 mechanisms. *Current Opinion in Neurobiology*, 27, 143–150.
709 <https://doi.org/https://doi.org/10.1016/j.conb.2014.03.013>

710 Garel, S., & Rubenstein, J. L. R. (2004). Intermediate targets in formation of topographic projections:
711 Inputs from the thalamocortical system. *Trends in Neurosciences*, 27(9), 533–539.
712 <https://doi.org/10.1016/j.tins.2004.06.014>

713 Gezelius, H., & López-Bendito, G. (2017). Thalamic neuronal specification and early circuit formation.
714 *Developmental Neurobiology*, 77(7), 830–843. <https://doi.org/https://doi.org/10.1002/dneu.22460>

715 Godement, P., Wang, L. C., & Mason, C. A. (1994). Retinal axon divergence in the optic chiasm:
716 dynamics of growth cone behavior at the midline [published erratum appears in J Neurosci 1995
717 Mar;15(3):following table of contents]. *The Journal of Neuroscience*, 14(11), 7024 LP – 7039.
718 <https://doi.org/10.1523/JNEUROSCI.14-11-07024.1994>

719 Goodhill, G. J. (2016). Can Molecular Gradients Wire the Brain? *Trends in Neurosciences*, 39(4), 202–
720 211. <https://doi.org/10.1016/j.tins.2016.01.009>

721 Gorla, M., & Bashaw, G. J. (2020). Molecular mechanisms regulating axon responsiveness at the
722 midline. *Developmental Biology*, 466(1), 12–21.
723 <https://doi.org/https://doi.org/10.1016/j.ydbio.2020.08.006>

724 Gummadova, J. O., Coutts, G. A., & Glossop, N. R. J. (2009). Analysis of the drosophila clock
725 promoter reveals heterogeneity in expression between subgroups of central oscillator cells and
726 identifies a novel enhancer region. *Journal of Biological Rhythms*, 24(5), 353–367.
727 <https://doi.org/10.1177/0748730409343890>

728 Hardin, P. E. (2017). VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in
729 Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila VRILLE Controls PDF
730 Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive
731 R. *Current Biology*, 27(22), 3442-3453.e4. <https://doi.org/10.1016/j.cub.2017.10.010>

732 Harris, R., Sabatelli, L. M., & Seeger, M. A. (1996). Guidance cues at the Drosophila CNS midline:
733 identification and characterization of two Drosophila Netrin/UNC-6 homologs. *Neuron*, 17(2),

734 217–228. [https://doi.org/10.1016/s0896-6273\(00\)80154-3](https://doi.org/10.1016/s0896-6273(00)80154-3)

735 Helfrich-Förster, C. (1997). Development of pigment-dispersing hormone-immunoreactive neurons in
736 the nervous system of *Drosophila melanogaster*. *Journal of Comparative Neurology*, 380(3),
737 335–354.
738 [https://doi.org/10.1002/\(SICI\)1096-9861\(19970414\)380:3<335::AID-CNE4>3.3.CO;2-M](https://doi.org/10.1002/(SICI)1096-9861(19970414)380:3<335::AID-CNE4>3.3.CO;2-M)

739 Helfrich-Förster, C., Shafer, O. T., Wülbeck, C., Grieshaber, E., Rieger, D., & Taghert, P. (2007).
740 Development and morphology of the clock-gene-expressing lateral neurons of *Drosophila*
741 *melanogaster*. *The Journal of Comparative Neurology*, 500(1), 47–70.
742 <https://doi.org/10.1002/cne.21146>

743 HELFRICH-FÖRSTER, C., WULF, J., & DE BELLE, J. S. (2002). MUSHROOM BODY
744 INFLUENCE ON LOCOMOTOR ACTIVITY AND CIRCADIAN RHYTHMS IN
745 *DROSOPHILA MELANOGASTER*. *Journal of Neurogenetics*, 16(2), 73–109.
746 <https://doi.org/10.1080/01677060213158>

747 Houl, J. H., Ng, F., Taylor, P., & Hardin, P. E. (2008). CLOCK expression identifies developing
748 circadian oscillator neurons in the brains of *Drosophila* embryos. *BMC Neuroscience*, 9, 119.
749 <https://doi.org/10.1186/1471-2202-9-119>

750 Hummel, T., Vasconcelos, M. L., Clemens, J. C., Fishilevich, Y., Vosshall, L. B., & Zipursky, S. L.
751 (2003). Axonal targeting of olfactory receptor neurons in *Drosophila* is controlled by Dscam.
752 *Neuron*, 37(2), 221–231. [https://doi.org/10.1016/S0896-6273\(02\)01183-2](https://doi.org/10.1016/S0896-6273(02)01183-2)

753 Hutchins, B. I., Li, L., & Kalil, K. (2011). Wnt/calcium signaling mediates axon growth and guidance
754 in the developing corpus callosum. *Developmental Neurobiology*, 71(4), 269–283.
755 <https://doi.org/https://doi.org/10.1002/dneu.20846>

756 Jenett, A., Rubin, G. M., Ngo, T.-T. B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B. D.,
757 Cavallaro, A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausenfluck, J. H., Peng, H., Trautman, E.
758 T., Svirskas, R. R., Myers, E. W., Iwinski, Z. R., Aso, Y., ... Zugates, C. T. (2012). A
759 GAL4-driver line resource for *Drosophila* neurobiology. *Cell Reports*, 2(4), 991–1001.
760 <https://doi.org/10.1016/j.celrep.2012.09.011>

761 Kaas, J. H. (1997). Topographic maps are fundamental to sensory processing. *Brain Research Bulletin*,
762 44(2), 107–112. [https://doi.org/10.1016/s0361-9230\(97\)00094-4](https://doi.org/10.1016/s0361-9230(97)00094-4)

763 Kahn, O. I., & Baas, P. W. (2016). Microtubules and Growth Cones: Motors Drive the Turn. *Trends in*

764 *Neurosciences*, 39(7), 433–440. [https://doi.org/https://doi.org/10.1016/j.tins.2016.04.009](https://doi.org/10.1016/j.tins.2016.04.009)

765 Kaneko, M., Helfrich-Förster, C., & Hall, J. C. (1997). Spatial and temporal expression of the period
766 and timeless genes in the developing nervous system of *drosophila*: Newly identified pacemaker
767 candidates and novel features of clock gene product cycling. *Journal of Neuroscience*, 17(17),
768 6745–6760. <https://doi.org/10.1523/jneurosci.17-17-06745.1997>

769 Keeble, T. R., Halford, M. M., Seaman, C., Kee, N., Macheda, M., Anderson, R. B., Stacker, S. A., &
770 Cooper, H. M. (2006). The Wnt Receptor Ryk Is Required for Wnt5a-Mediated Axon Guidance
771 on the Contralateral Side of the Corpus Callosum. *The Journal of Neuroscience*, 26(21), 5840 LP
772 – 5848. <https://doi.org/10.1523/JNEUROSCI.1175-06.2006>

773 Keene, A. C., Mazzoni, E. O., Zhen, J., Younger, M. A., Yamaguchi, S., Blau, J., Desplan, C., &
774 Sprecher, S. G. (2011). Distinct visual pathways mediate *Drosophila* larval light avoidance and
775 circadian clock entrainment. *The Journal of Neuroscience : The Official Journal of the Society
776 for Neuroscience*, 31(17), 6527–6534. <https://doi.org/10.1523/JNEUROSCI.6165-10.2011>

777 Kennedy, T. E., Serafini, T., de la Torre, J. R., & Tessier-Lavigne, M. (1994). Netrins are diffusible
778 chemotropic factors for commissural axons in the embryonic spinal cord. *Cell*, 78(3), 425–435.
779 [https://doi.org/10.1016/0092-8674\(94\)90421-9](https://doi.org/10.1016/0092-8674(94)90421-9)

780 Kidd, T., Brose, K., Mitchell, K. J., Fetter, R. D., Tessier-Lavigne, M., Goodman, C. S., & Tear, G.
781 (1998). Roundabout controls axon crossing of the CNS midline and defines a novel subfamily
782 of evolutionarily conserved guidance receptors. *Cell*, 92(2), 205–215.
783 [https://doi.org/10.1016/s0092-8674\(00\)80915-0](https://doi.org/10.1016/s0092-8674(00)80915-0)

784 Koch, D., Rosoff, W. J., Jiang, J., Geller, H. M., & Urbach, J. S. (2012). Strength in the periphery:
785 growth cone biomechanics and substrate rigidity response in peripheral and central nervous
786 system neurons. *Biophysical Journal*, 102(3), 452–460. <https://doi.org/10.1016/j.bpj.2011.12.025>

787 Kolodkin, A. L., & Tessier-Lavigne, M. (2011). Mechanisms and molecules of neuronal wiring: A
788 primer. *Cold Spring Harbor Perspectives in Biology*, 3(6), 1–14.
789 <https://doi.org/10.1101/csdperspect.a001727>

790 Lee, T., Lee, A., & Luo, L. (1999). Development of the *Drosophila* mushroom bodies: sequential
791 generation of three distinct types of neurons from a neuroblast. *Development (Cambridge,
792 England)*, 126(18), 4065–4076. <https://doi.org/10.1242/dev.126.18.4065>

793 Li, T., Fu, T.-M., Wong, K. K. L., Li, H., Xie, Q., Luginbuhl, D. J., Wagner, M. J., Betzig, E., & Luo,

794 L. (2021). Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging.

795 *Cell*, 184(20), 5107-5121.e14. <https://doi.org/https://doi.org/10.1016/j.cell.2021.08.030>

796 Li, X.-T., Zhou, Q.-S., Yu, Q., Zhao, X., & Liu, Q.-X. (2014). [Current progress in functions of axon

797 guidance molecule Robo and underlying molecular mechanism]. *Sheng li xue bao : [Acta*

798 *physiologica Sinica]*, 66(3), 373–385.

799 Liu, G., Li, W., Wang, L., Kar, A., Guan, K. L., Rao, Y., & Wu, J. Y. (2009). DSCAM functions as a

800 netrin receptor in commissural axon pathfinding. *Proceedings of the National Academy of*

801 *Sciences of the United States of America*, 106(8), 2951–2956.

802 <https://doi.org/10.1073/pnas.0811083106>

803 Liu, T., Mahesh, G., Houl, J. H., & Hardin, P. E. (2015). Circadian activators are expressed days before

804 they initiate clock function in late pacemaker neurons from *Drosophila*. *Journal of Neuroscience*,

805 35(22), 8662–8671. <https://doi.org/10.1523/JNEUROSCI.0250-15.2015>

806 Long, H., Sabatier, C., Ma, L., Plump, A., Yuan, W., Ornitz, D. M., Tamada, A., Murakami, F.,

807 Goodman, C. S., & Tessier-Lavigne, M. (2004). Conserved roles for Slit and Robo proteins in

808 midline commissural axon guidance. *Neuron*, 42(2), 213–223.

809 [https://doi.org/10.1016/s0896-6273\(04\)00179-5](https://doi.org/10.1016/s0896-6273(04)00179-5)

810 Lowery, L. A., & Vactor, D. Van. (2009). The trip of the tip: understanding the growth cone machinery.

811 *Nature Reviews Molecular Cell Biology*, 10(5), 332–343. <https://doi.org/10.1038/nrm2679>

812 Ly, A., Nikolaev, A., Suresh, G., Zheng, Y., Tessier-Lavigne, M., & Stein, E. (2008). DSCAM Is a

813 Netrin Receptor that Collaborates with DCC in Mediating Turning Responses to Netrin-1. *Cell*,

814 133(7), 1241–1254. <https://doi.org/10.1016/j.cell.2008.05.030>

815 Martins, L. F., Brambilla, I., Motta, A., de Pretis, S., Bhat, G. P., Badaloni, A., Malpighi, C., Amin, N.

816 D., Imai, F., Almeida, R. D., Yoshida, Y., Pfaff, S. L., & Bonanomi, D. (2022). Motor neurons

817 use push-pull signals to direct vascular remodeling critical for their connectivity. *Neuron*,

818 110(24), 4090-4107.e11. <https://doi.org/10.1016/j.neuron.2022.09.021>

819 Matthews, B. J., & Grueber, W. B. (2011). Dscam1-mediated self-avoidance counters netrin-dependent

820 targeting of dendrites in *drosophila*. *Current Biology*, 21(17), 1480–1487.

821 <https://doi.org/10.1016/j.cub.2011.07.040>

822 Mitchell, K. J., Doyle L., J. L., Serafini, T., Kennedy, T. E., Tessier-Lavigne, M., Goodman, C. S., &

823 Dickson, B. J. (1996). Genetic analysis of Netrin genes in *Drosophila*: Netrins guide CNS

824 commissural axons and peripheral motor axons. *Neuron*, 17(2), 203–215.

825 [https://doi.org/10.1016/S0896-6273\(00\)80153-1](https://doi.org/10.1016/S0896-6273(00)80153-1)

826 Mortimer, D., Fothergill, T., Pujic, Z., Richards, L. J., & Goodhill, G. J. (2008). Growth cone
827 chemotaxis. *Trends in Neurosciences*, 31(2), 90–98.
828 <https://doi.org/https://doi.org/10.1016/j.tins.2007.11.008>

829 Neuhaus-Follini, A., & Bashaw, G. J. (2015). Crossing the embryonic midline: molecular mechanisms
830 regulating axon responsiveness at an intermediate target. *WIREs Developmental Biology*, 4(4),
831 377–389. <https://doi.org/https://doi.org/10.1002/wdev.185>

832 Okray, Z., de Esch, C. E. F., Van Esch, H., Devriendt, K., Claeys, A., Yan, J., Verbeeck, J., Froyen, G.,
833 Willemse, R., de Vrij, F. M. S., & Hassan, B. A. (2015). A novel fragile X syndrome mutation
834 reveals a conserved role for the carboxy-terminus in FMRP localization and function. *EMBO
835 Molecular Medicine*, 7(4), 423–437. <https://doi.org/10.15252/emmm.201404576>

836 Oliva, C., Soldano, A., Mora, N., De Geest, N., Claeys, A., Erfurth, M. L., Sierralta, J., Ramaekers, A.,
837 Dascenco, D., Ejsmont, R. K., Schmucker, D., Sanchez-Soriano, N., & Hassan, B. A. (2016).
838 Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling
839 Complex. *Developmental Cell*, 39(2), 267–278. <https://doi.org/10.1016/j.devcel.2016.09.028>

840 Orioli, D., & Klein, R. (1997). The Eph receptor family: axonal guidance by contact repulsion. *Trends
841 in Genetics : TIG*, 13(9), 354–359. [https://doi.org/10.1016/s0168-9525\(97\)01220-1](https://doi.org/10.1016/s0168-9525(97)01220-1)

842 Pauls, D., Selcho, M., Gendre, N., Stocker, R. F., & Thum, A. S. (2010). Drosophila larvae establish
843 appetitive olfactory memories via mushroom body neurons of embryonic origin. *Journal of
844 Neuroscience*, 30(32), 10655–10666. <https://doi.org/10.1523/JNEUROSCI.1281-10.2010>

845 Piper, M., Plachez, C., Zalucki, O., Fothergill, T., Goudreau, G., Erzurumlu, R., Gu, C., & Richards, L.,
846 J. (2009). Neuropilin 1-Sema Signaling Regulates Crossing of Cingulate Pioneering Axons
847 during Development of the Corpus Callosum. *Cerebral Cortex*, 19(suppl_1), i11–i21.
848 <https://doi.org/10.1093/cercor/bhp027>

849 Pirooznia, S. K., Chiu, K., Chan, M. T., Zimmerman, J. E., & Elefant, F. (2012). Epigenetic Regulation
850 of Axonal Growth of Drosophila Pacemaker Cells by Histone Acetyltransferase Tip60 Controls
851 Sleep. *Genetics*, 192(4), 1327–1345. <https://doi.org/10.1534/genetics.112.144667>

852 Puñal, V. M., Ahmed, M., Thornton-Kolbe, E. M., & Clowney, E. J. (2021). Untangling the wires:
853 development of sparse, distributed connectivity in the mushroom body calyx. *Cell and Tissue*

854 *Research*, 383(1), 91–112. <https://doi.org/10.1007/s00441-020-03386-4>

855 Purohit, A. A., Li, W., Qu, C., Dwyer, T., Shao, Q., Guan, K. L., & Liu, G. (2012). Down syndrome
856 cell adhesion molecule (DSCAM) associates with uncoordinated-5C (UNC5C) in
857 netrin-1-mediated growth cone collapse. *Journal of Biological Chemistry*, 287(32), 27126–27138.
858 <https://doi.org/10.1074/jbc.M112.340174>

859 Reinhard, N., Schubert, F. K., Bertolini, E., Hagedorn, N., Manoli, G., Sekiguchi, M., Yoshii, T.,
860 Rieger, D., & Helfrich-Förster, C. (2022). The Neuronal Circuit of the Dorsal Circadian Clock
861 Neurons in *Drosophila melanogaster*. *Frontiers in Physiology*, 13, 886432.
862 <https://doi.org/10.3389/fphys.2022.886432>

863 Schlichting, M., Richhariya, S., Herndon, N., Ma, D., Xin, J., Lenh, W., Abruzzi, K., & Rosbash, M.
864 (2022). Dopamine and GPCR-mediated modulation of DN1 clock neurons gates the circadian
865 timing of sleep. *Proceedings of the National Academy of Sciences of the United States of
866 America*, 119(34), e2206066119. <https://doi.org/10.1073/pnas.2206066119>

867 Schmucker, D., Clemens, J. C., Shu, H., Worby, C. A., Xiao, J., Muda, M., Dixon, J. E., & Zipursky, S.
868 L. (2000). *Drosophila Dscam* is an axon guidance receptor exhibiting extraordinary molecular
869 diversity. *Cell*, 101(6), 671–684. [https://doi.org/10.1016/s0092-8674\(00\)80878-8](https://doi.org/10.1016/s0092-8674(00)80878-8)

870 Serafini, T., Colamarino, S. A., Leonardo, E. D., Wang, H., Beddington, R., Skarnes, W. C., &
871 Tessier-Lavigne, M. (1996). Netrin-1 is required for commissural axon guidance in the
872 developing vertebrate nervous system. *Cell*, 87(6), 1001–1014.
873 [https://doi.org/10.1016/s0092-8674\(00\)81795-x](https://doi.org/10.1016/s0092-8674(00)81795-x)

874 Shields, A. R., Spence, A. C., Yamashita, Y. M., Davies, E. L., & Fuller, M. T. (2014). The
875 actin-binding protein profilin is required for germline stem cell maintenance and germ cell
876 enclosure by somatic cyst cells. *Development*, 141(1), 73–82. <https://doi.org/10.1242/dev.101931>

877 Squarzoni, P., Thion, M. S., & Garel, S. (2015). Neuronal and microglial regulators of cortical wiring:
878 usual and novel guideposts. *Frontiers in Neuroscience*, 9, 248.
879 <https://doi.org/10.3389/fnins.2015.00248>

880 Stoeckli, E T, Sonderegger, P., Pollerberg, G. E., & Landmesser, L. T. (1997). Interference with
881 axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural
882 axons. *Neuron*, 18(2), 209–221. [https://doi.org/10.1016/s0896-6273\(00\)80262-7](https://doi.org/10.1016/s0896-6273(00)80262-7)

883 Stoeckli, Esther T. (2018). Understanding axon guidance: are we nearly there yet? *Development*,

884 145(10), dev151415. <https://doi.org/10.1242/dev.151415>

885 Sudarsanam, S., Yaniv, S., Meltzer, H., & Schuldiner, O. (2020). Cofilin regulates axon growth and
886 branching of Drosophila γ -neurons. *Journal of Cell Science*, 133(8).

887 <https://doi.org/10.1242/jcs.232595>

888 Suzuki, Y., Kurata, Y., & Sakai, T. (2022). Dorsal–lateral clock neurons modulate consolidation and
889 maintenance of long-term memory in Drosophila. *Genes to Cells*, 27(4), 266–279.

890 <https://doi.org/https://doi.org/10.1111/gtc.12923>

891 Unni, D. K., Piper, M., Moldrich, R. X., Gobius, I., Liu, S., Fothergill, T., Donahoo, A.-L. S., Baisden,
892 J. M., Cooper, H. M., & Richards, L. J. (2012). Multiple Slits regulate the development of
893 midline glial populations and the corpus callosum. *Developmental Biology*, 365(1), 36–49.

894 <https://doi.org/https://doi.org/10.1016/j.ydbio.2012.02.004>

895 Vitriol, E. A., & Zheng, J. Q. (2012). Growth cone travel in space and time: the cellular ensemble of
896 cytoskeleton, adhesion, and membrane. *Neuron*, 73(6), 1068–1081.

897 <https://doi.org/10.1016/j.neuron.2012.03.005>

898 Worby, C. A., Simonson-Leff, N., Clemens, J. C., Kruger, R. P., Muda, M., & Dixon, J. E. (2001). The
899 sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin
900 cytoskeleton. *The Journal of Biological Chemistry*, 276(45), 41782–41789.

901 <https://doi.org/10.1074/jbc.M107080200>

902 Yang, L., Garbe, D. S., & Bashaw, G. J. (2009). A frazzled/DCC-dependent transcriptional switch
903 regulates midline axon guidance. *Science (New York, N.Y.)*, 324(5929), 944–947.

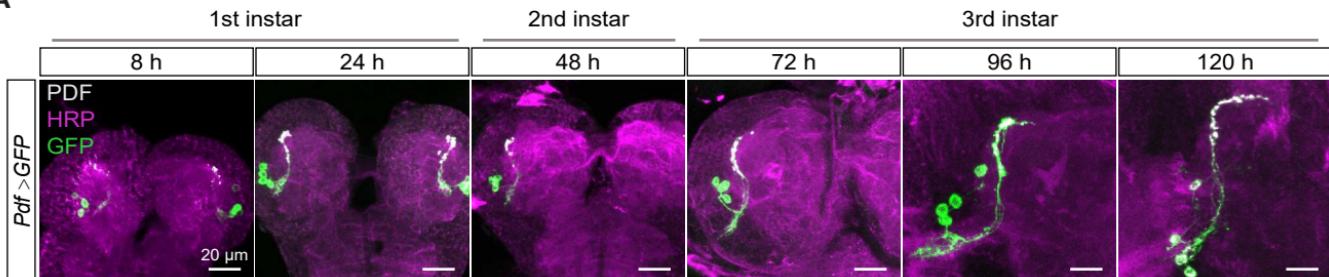
904 <https://doi.org/10.1126/science.1171320>

905 Zang, Y., Chaudhari, K., & Bashaw, G. J. (2021). New insights into the molecular mechanisms of axon
906 guidance receptor regulation and signaling. *Current Topics in Developmental Biology*, 142,
907 147–196. <https://doi.org/10.1016/bs.ctdb.2020.11.008>

908 Zhan, X. L., Clemens, J. C., Neves, G., Hattori, D., Flanagan, J. J., Hummel, T., Vasconcelos, M. L.,
909 Chess, A., & Zipursky, S. L. (2004). Analysis of Dscam diversity in regulating axon guidance in
910 Drosophila mushroom bodies. *Neuron*, 43(5), 673–686.

911 <https://doi.org/10.1016/j.neuron.2004.07.020>

912 Zhang, Z., So, K., Peterson, R., Bauer, M., Ng, H., Zhang, Y., Kim, J. H., Kidd, T., & Miura, P. (2019).
913 Elav-Mediated Exon Skipping and Alternative Polyadenylation of the Dscam1 Gene Are


914 Required for Axon Outgrowth. *Cell Reports*, 27(13), 3808-3817.e7.

915 <https://doi.org/10.1016/j.celrep.2019.05.083>

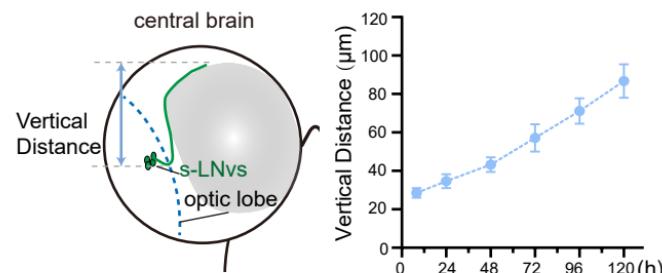
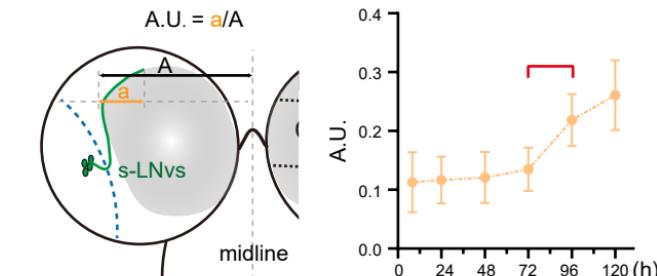
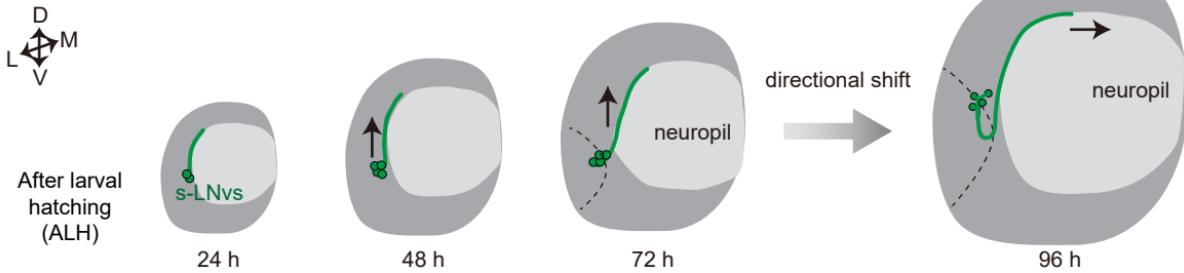
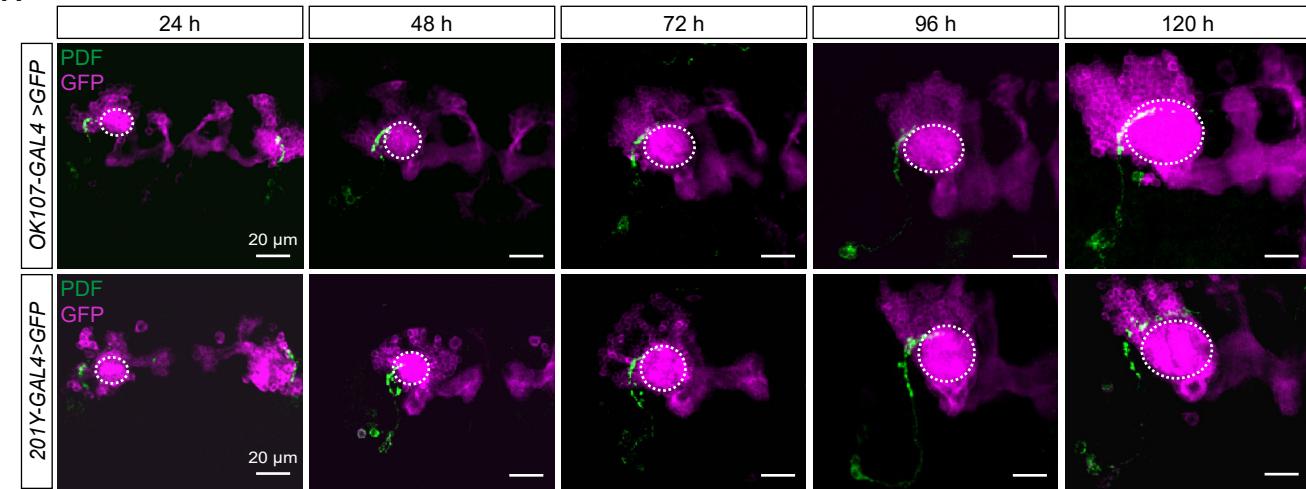
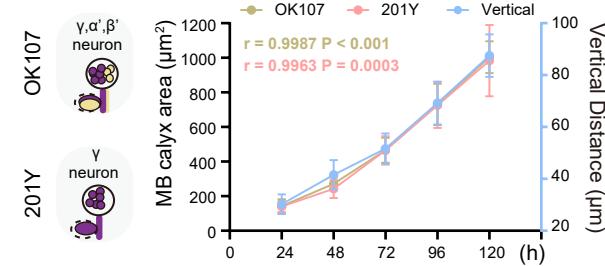
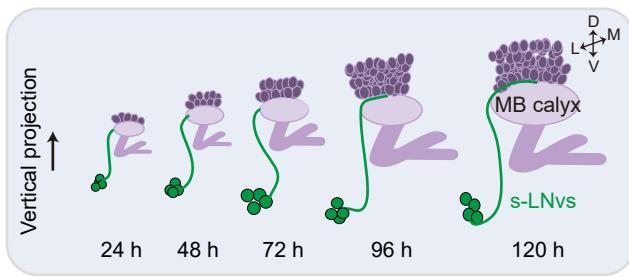
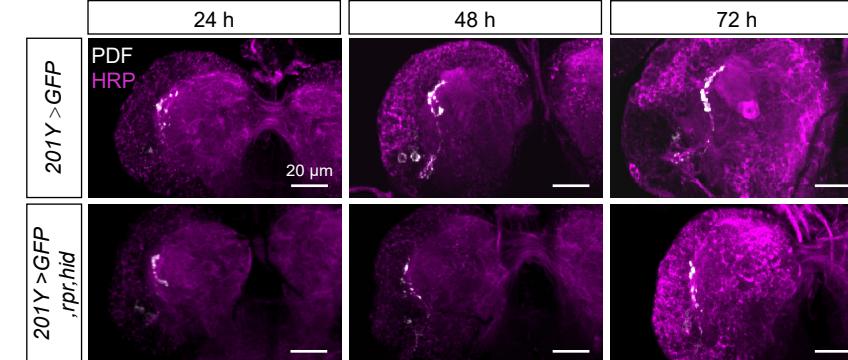
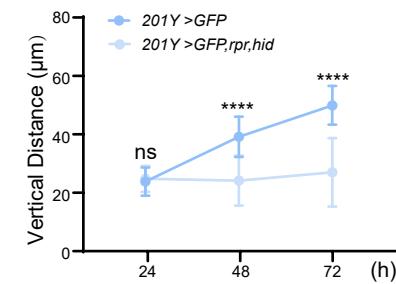
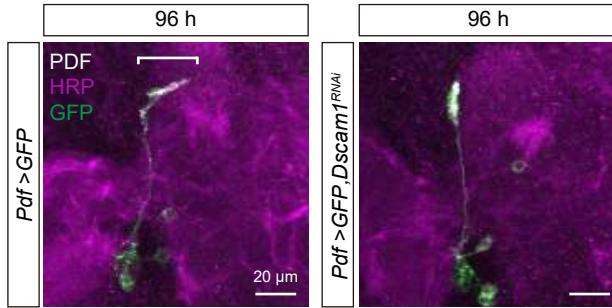
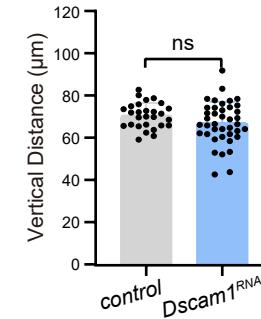
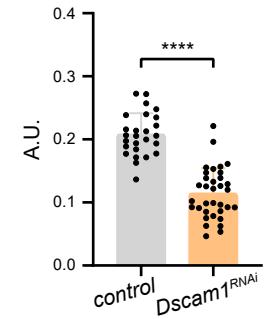
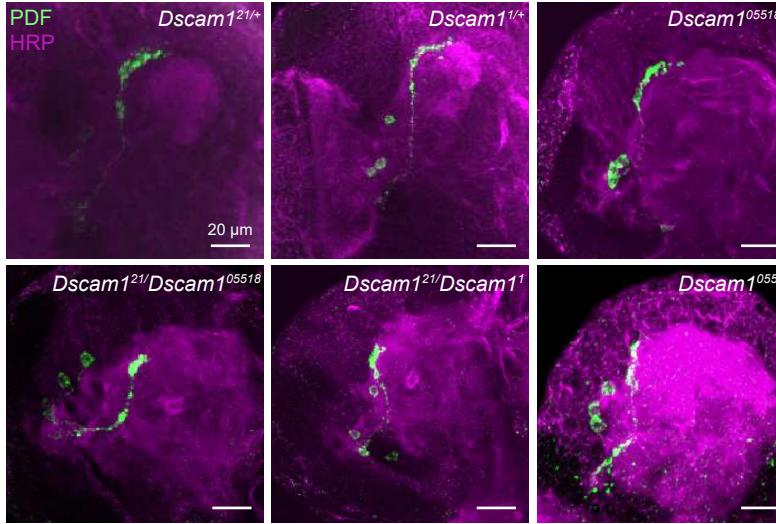
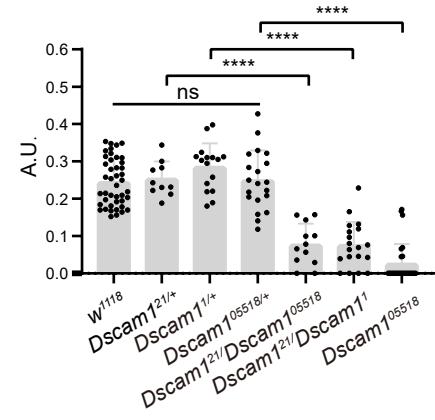
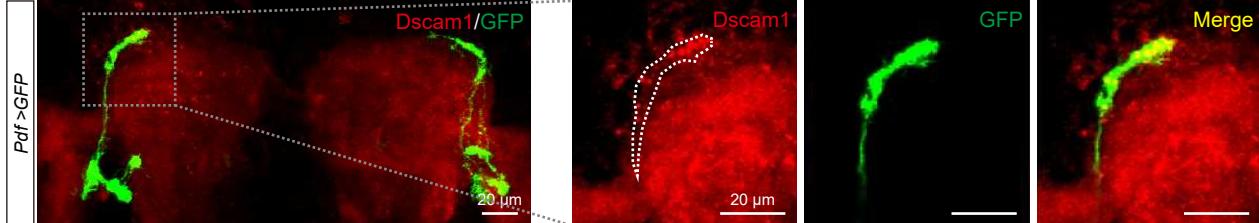

916

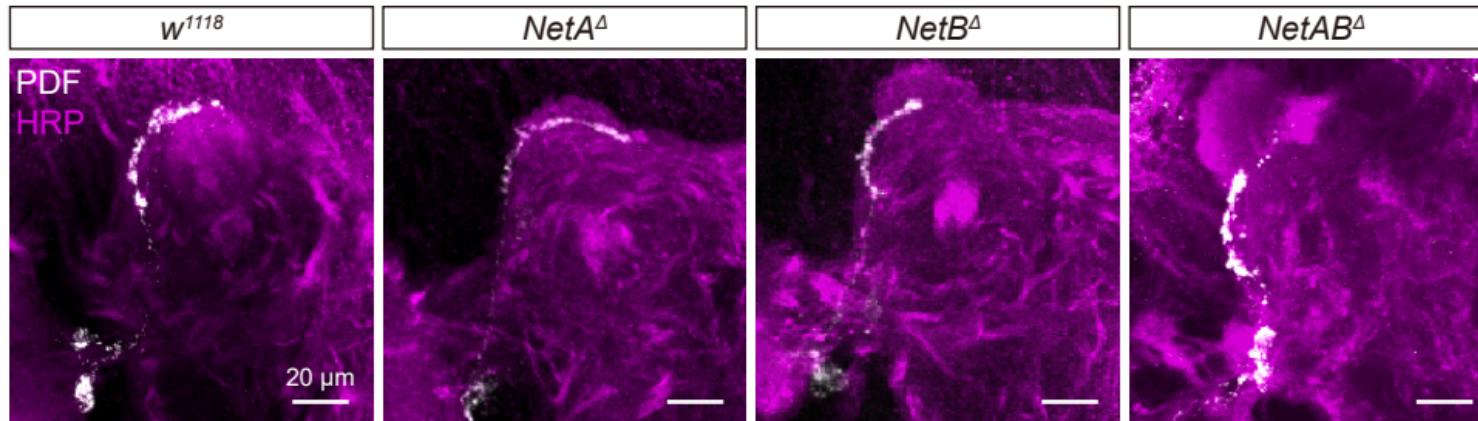
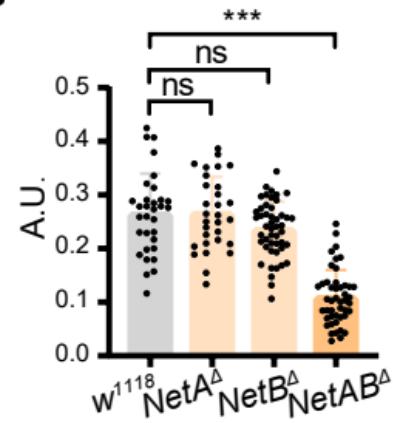
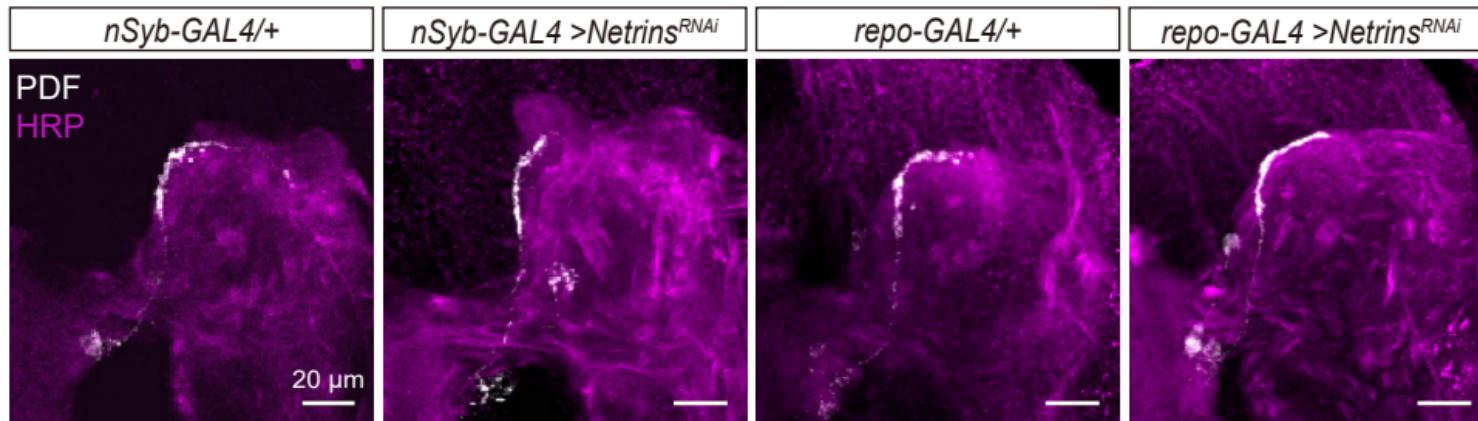
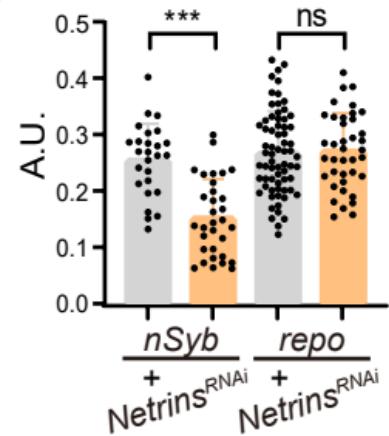
Figure 1


A


B







6

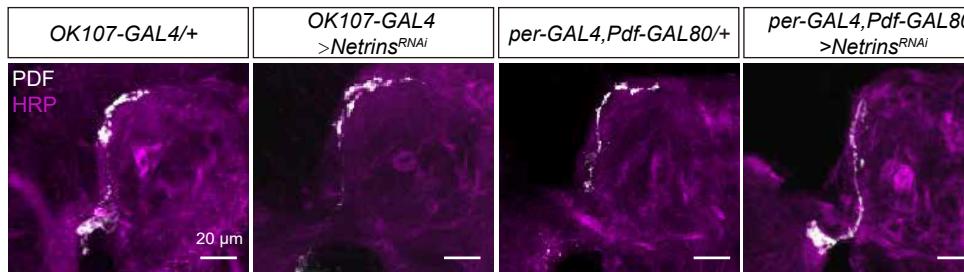
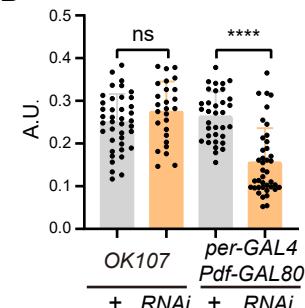
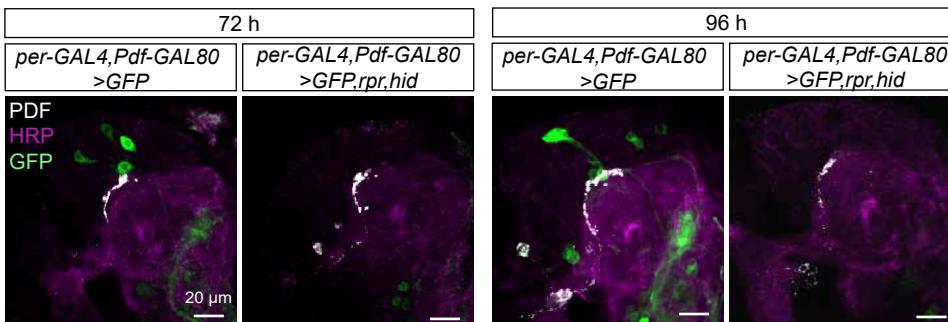
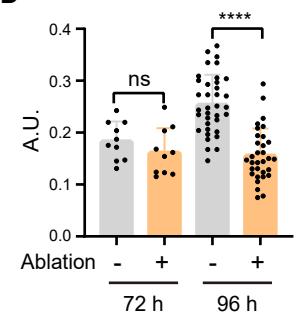
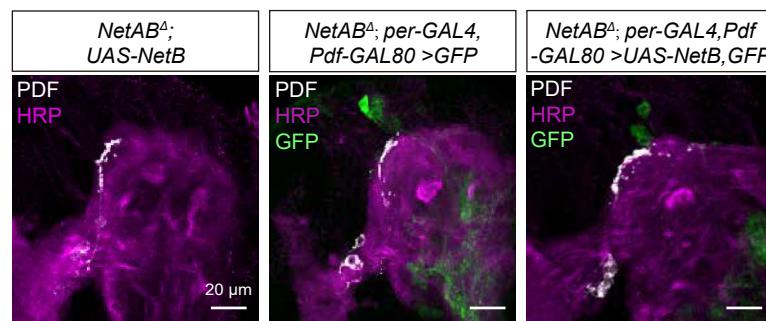
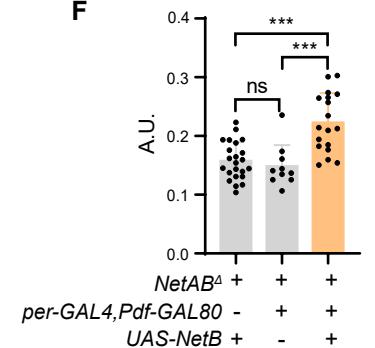






D

Figure 2**A****B****C****D****E**

Figure 3**A****B****C****D****E****F**

Figure 4**A****B****C****D**

Figure 5**A****B****C****D****E****F**

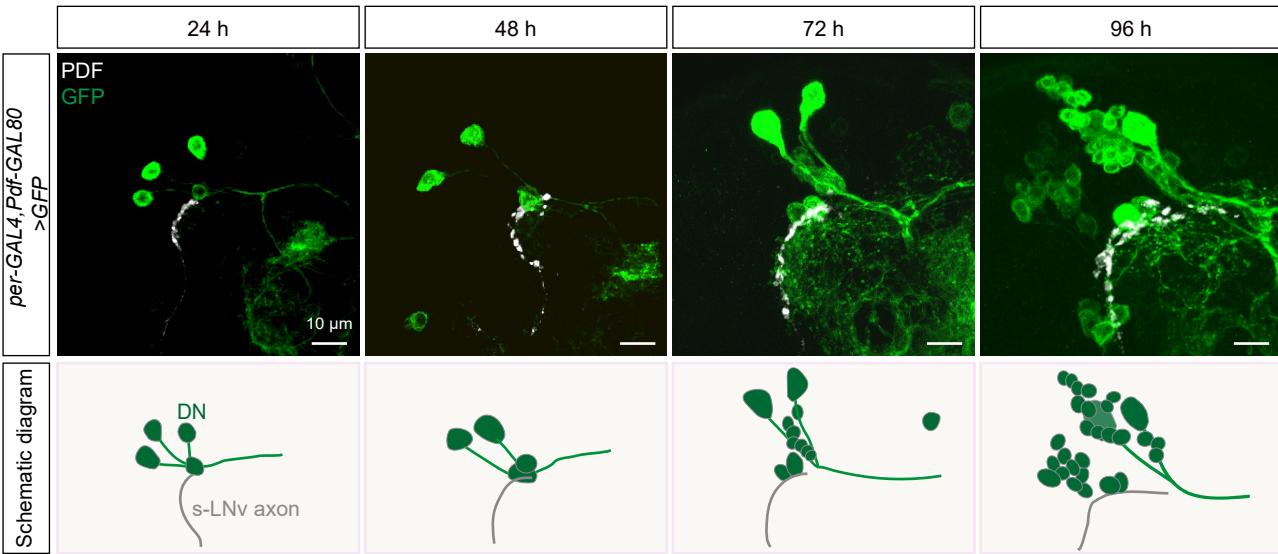
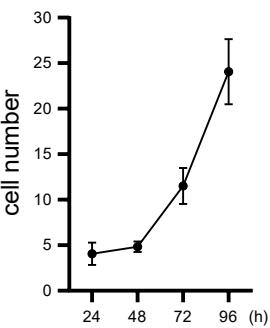
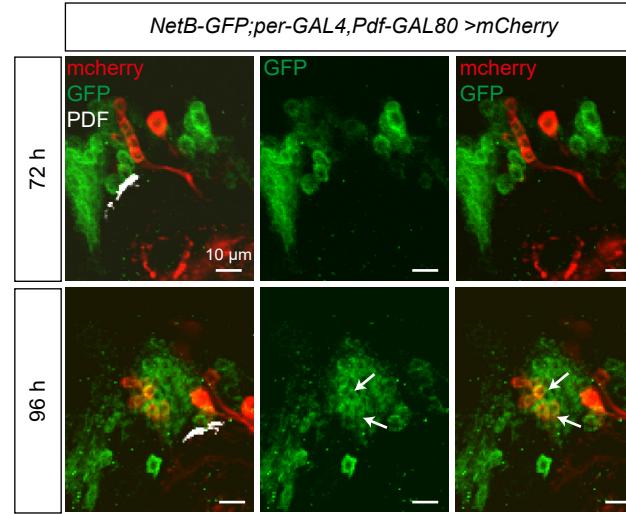
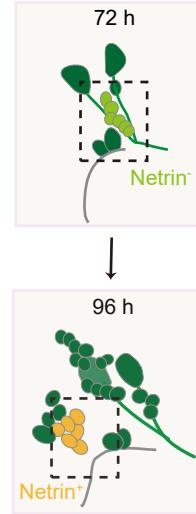
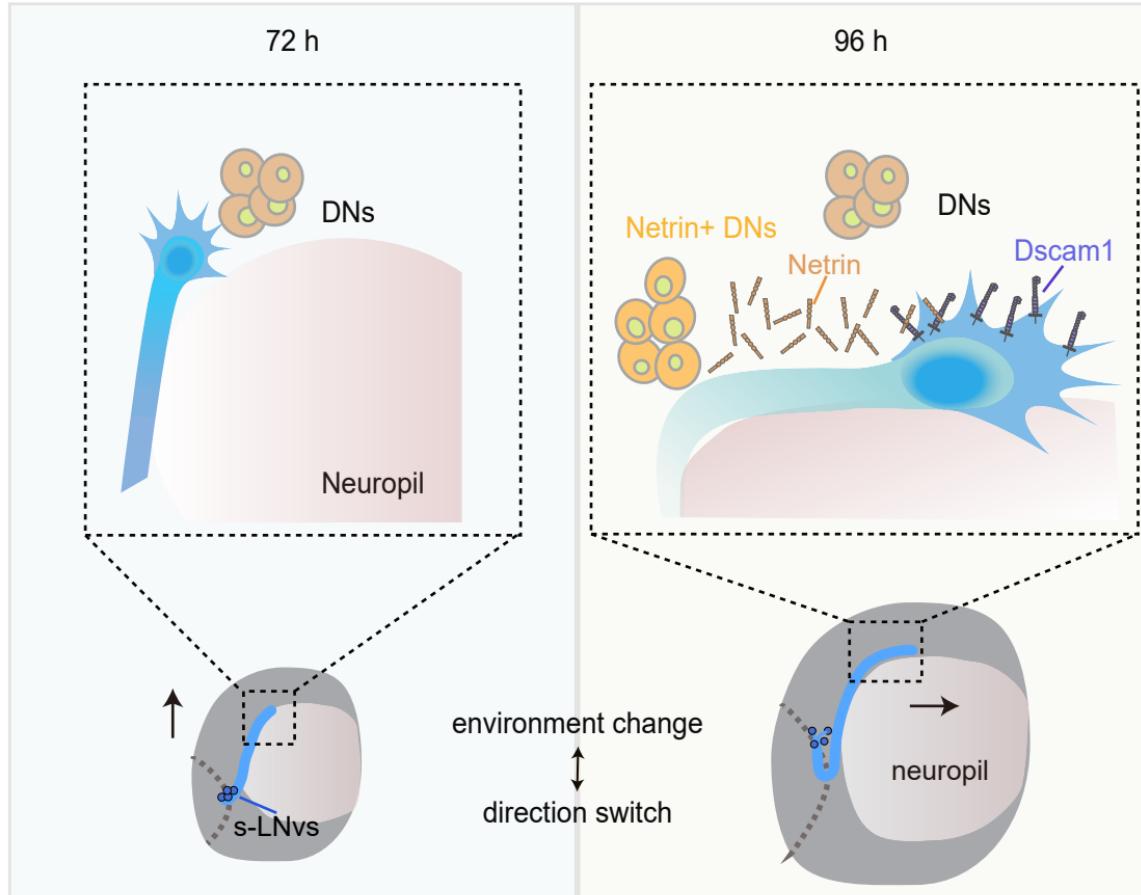





Figure 6**A****B****C****D**

Figure 7

