

1

Milteforan, a promising veterinary commercial product against feline sporotrichosis

4

5

6 Laura C. García Carnero¹, Thaila F. dos Reis¹, Camila Diehl¹, Patricia Alves de
7 Castro¹, Lais Pontes¹, Camila Figueiredo Pinzan¹ and Gustavo H. Goldman¹

8

⁹ ¹Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São
⁰ Paulo, Ribeirão Preto, Brazil

11

12

13

14 * Corresponding author: ggoldman@usp.br

15

16 Key words: *Sporothrix brasiliensis*, *Sporothrix schenckii*, sporotrichosis,
17 milteforan, miltefosine, antifungal agent.

18

19

20

31

22 Abstract

23 Sporotrichosis, the cutaneous mycosis most commonly reported in Latin
24 America, is caused by the *Sporothrix* clinical clade species, including *Sporothrix*
25 *brasiliensis* and *Sporothrix schenckii* *sensu stricto*. In Brazil, *S. brasiliensis*
26 represents a vital health threat to humans and domestic animals due to its
27 zoonotic transmission. Itraconazole, terbinafine, and amphotericin B are the most
28 used antifungals for treating sporotrichosis. However, many strains of *S.*
29 *brasiliensis* and *S. schenckii* have shown resistance to these agents, highlighting
30 the importance of finding new therapeutic options. Here, we demonstrate that
31 milteforan, a commercial veterinary product against dog leishmaniasis whose
32 active principle is miltefosine, is a possible therapeutic alternative for the
33 treatment of sporotrichosis, as observed by its fungicidal activity *in vitro* against
34 different strains of *S. brasiliensis* and *S. schenckii*, and by its antifungal activity
35 when used to treat infected epithelial cells and macrophages. Our results suggest
36 milteforan as a possible alternative to treat feline sporotrichosis.

37 **Introduction**

38 Sporotrichosis, a chronic cutaneous and subcutaneous infection, is the most
39 commonly reported mycosis in Latin America and Asia, with a high prevalence in
40 tropical and subtropical areas, including Brazil, Mexico, Argentina, India, Japan,
41 and China (1, 2). Since 1998, Brazil has experienced large outbreaks of
42 sporotrichosis that have been expanding throughout the country, mainly in the
43 southeastern regions, the reason for which Brazil is considered a hyperendemic
44 area (3–5).

45 Until 2007, *Sporothrix schenckii* was assumed to be the unique etiological
46 agent for sporotrichosis, but recent molecular analyses have revealed the
47 existence of several cryptic species capable of causing infection (6). These
48 species comprise the *S. schenckii* clinical/pathogenic clade, which includes *S.*
49 *schenckii sensu stricto*, *S. brasiliensis*, *Sporothrix globosa*, and *Sporothrix lutei*
50 (7, 8). These species are thermodimorphic fungi, with a mycelial phase that grows
51 in decaying organic matter at 25°C (known as the infectious morphology) and a
52 yeast phase that develops inside the host during infection (known as the parasitic
53 morphology) (9, 10). The virulence profile varies among the species of the
54 pathogenic clade being *S. brasiliensis* the most virulent, followed by *S. schenckii*,
55 both with the capacity to cause severe infection even in immunocompetent
56 individuals, while *S. globosa* and *S. lutei* are classified as low virulent species
57 (11, 12).

58 Sporotrichosis can present different clinical manifestations, such as
59 cutaneous (lymphocutaneous and fixed cutaneous), disseminated cutaneous,
60 and extracutaneous (pulmonary, osteoarticular, ocular, meningeal, and visceral)
61 (13). The development of one or other clinical forms depends on different factors,
62 which include the host immune competence, site and depth of inoculation,
63 amount of inoculum, and the etiological agent, all of which should be considered
64 for proper patient management (14).

65 The transmission of the *Sporothrix* species is through traumatic
66 implantation with contaminated material, the sapronosis, and the classical route.
67 However, in hyperendemic zones, such as Brazil, zoonotic infection by *S.*
68 *brasiliensis* is highly reported, transmitted mainly by cats through scratching,

69 biting, and even through contact with fluids from infected animals. This zoonotic
70 transmission is considered a severe health problem in Brazil, especially in the
71 area of Rio de Janeiro, due to the rapid spread of *S. brasiliensis*, which is
72 associated with severe clinical manifestations in both humans and cats (15–18).
73 Besides cats, dogs, albeit to a lesser extent, have also been affected by
74 sporotrichosis, making this infection a significant veterinarian problem. Five
75 thousand hundred-thirteen cases of feline sporotrichosis (from 1988 to 2017) and
76 244 canine cases (from 1988 to 2014) have been reported by the Evandro
77 Chagas National Institute of Infectious Diseases in Rio de Janeiro, Brazil.
78 However, this number is likely underestimated because sporotrichosis incidence
79 is a mandatory notification only in a few states of Brazil (18).

80 Identification of the sporotrichosis causative agent is essential for
81 treatment since the *Sporothrix* species show different antifungal susceptibility
82 profiles (19–21), but this is not always possible given that the identification of the
83 species requires molecular tools (8). In general, for the treatment of the
84 cutaneous forms, itraconazole (ITZ) is considered the gold standard for the
85 cutaneous clinical forms, while amphotericin B (AMB) is the first-line antifungal
86 therapy used for disseminated forms (22, 23). However, in the last few years,
87 many *S. brasiliensis* clinical strains have been reported to show resistance to
88 both azoles and AMB (24–26), which complicates sporotrichosis treatment.

89 Miltefosine (MFS), also known as hexadecyl phosphocholine, is a
90 synthetic glycerol-free phospholipid analog initially used as an antineoplastic drug
91 (27, 28). Nowadays, MFS is the only available oral drug used in the treatment of
92 visceral and cutaneous leishmaniasis in dogs and humans due to its significant
93 antiparasitic activity, *in vitro* and *in vivo*, against *Leishmania* species (29–32).
94 MFS's action mechanism(s) has yet to be entirely understood. However, it has
95 been demonstrated to act as a multi-target drug associated with the disruption of
96 many vital pathways, such as (i) the inhibition of the biosynthesis of
97 phosphatidylcholine, which causes low levels of this phospholipid (33, 34); (ii) the
98 interference of the cell membrane calcium channels, which induces an increase
99 of intracellular Ca^{2+} (35, 36); (iii) the inhibition of the sphingomyelin biosynthesis,
100 which increases ceramide concentration (37), resulting in cell apoptosis; and (iv)
101 the immune response, in which its immunomodulatory effects induce the

102 activation of the Th1 response, mainly through the increased production of IFN γ
103 and IL-12, which prevails over the Th2 response driven by *Leishmania* sp (38).

104 MFS has also been reported as an antifungal agent *in vitro* against some
105 of the most clinically significant pathogenic and opportunistic fungi, such as
106 *Candida* spp., *Aspergillus* spp., *Fusarium* spp., and *Cryptococcus* spp. (39–44).
107 In addition, it was recently shown that MFS has *in vitro* fungicidal activity against
108 *Sporothrix* spp., inhibiting the growth of the mycelial phase of *S. brasiliensis*, *S.*
109 *schenckii*, and *Sporothrix globosa* (45), and the yeast phase of *S. brasiliensis*
110 strains resistant to (ITZ) and AMB (46). It was also demonstrated that alone or in
111 combination with potassium iodide, MFS inhibits the biofilm formation of *S.*
112 *brasiliensis*, *S. schenckii*, and *S. globosa* (47, 48). All of this evidence suggests
113 the potential of MFS for treating sporotrichosis. Repurposing orphan drugs, which
114 are the application of existing drugs for different therapeutic purposes than the
115 ones initially marketed for, is a good alternative for treating infections caused by
116 susceptible or resistant microorganisms (49). Such is the case of MFS, which,
117 besides being repurposed for treating leishmaniasis, has been recently
118 designated for treating primary amebic meningoencephalitis and invasive
119 candidiasis (50).

120 Here, we demonstrate that MFS has fungicidal *in vitro* activity against both
121 morphologies (hyphae and yeast) of different *S. brasiliensis* and *S. schenckii*
122 strains. We also showed that milteforan (ML), a commercial veterinary product
123 against dog leishmaniasis whose active principle is miltefosine (Virbac), can
124 inhibit and kill *Sporothrix* spp *in vitro*. ML treatment also increases the killing of *S.*
125 *brasiliensis* yeast by the epithelial cells A549 and bone marrow-derived
126 macrophages (BMDMs). Our results suggest ML as a possible veterinary
127 alternative to treat feline sporotrichosis.

128

129 **Results**

130 **ML and MFS have fungicidal activity against *Sporothrix* spp. *in vitro***

131 Several drugs' *in vitro* antifungal activity against six strains of *S. schenckii* and *S.*
132 *brasiliensis*, three from each species, were assessed according to their MIC and

133 MFC values for the mycelial and yeast phases (Table 1). From these drugs, ITZ
134 has already been reported to show fungistatic activity against *Sporothrix* spp.,
135 while terbinafine (TRB), AMB, and MFS are fungicidal drugs (19, 23, 24). On the
136 other hand, voriconazole (VCZ) was reported to show low activity in inhibiting
137 *Sporothrix* growth, while caspofungin (CSP) does not exhibit antifungal activity *in*
138 *vitro* (20). We also included brilacidin (BRI), a host defense peptide mimetic that
139 synergizes CSP against several human pathogenic fungi (51), to assess its
140 antifungal activity against *Sporothrix* species.

141 Similar to previous reports, we found that none of the *Sporothrix* strains, in
142 either yeast or mycelium states, were inhibited by CSP or VCZ. At the same time,
143 both morphologies from all the isolates were sensitive to low concentrations of
144 TRB and AMB ($\text{MIC} \leq 2 \mu\text{g/mL}$). For ITZ, all strains' conidia were highly resistant
145 ($\text{MFC} > 8 \mu\text{g/mL}$). At the same time, the yeast phase was more sensitive with
146 MIC and MFC values $\leq 2 \mu\text{g/mL}$, except the *S. brasiliensis* clinical isolate 4823
147 yeast phase, which shows resistance to the drug ($\text{MFC} > 8 \mu\text{g/mL}$), as already
148 reported (52). In the case of BRI, the yeast morphology from all of the *Sporothrix*
149 strains was susceptible to low concentrations ($\text{MIC} \leq 5 \mu\text{g/mL}$) of the drug, while
150 conidia are highly resistant. TRB, AMB, and BRI present fungicidal activity
151 against *Sporothrix* species, while ITZ is a fungistatic drug (Table 1). MFS and ML
152 also have fungicidal activity *in vitro* against both morphologies from the *S.*
153 *schenckii* and *S. brasiliensis* strains, with MIC and MFC values $\leq 2 \mu\text{g/mL}$ (Table
154 1 and Figure 1).

155 Once we showed the antifungal activity of MFS and ML against *Sporothrix*
156 spp., we evaluated their ability to interact with some of the drugs already being
157 used for treating sporotrichosis. MIC and MFC values of CSP, VCZ, ITZ, TRB,
158 BRI, and AMB in combination with half MIC of MFS or ML were determined for
159 the yeast morphology of each *Sporothrix* strain (Table 2). No differences in the
160 activity of CSP and VCZ were observed since neither of these drugs could inhibit
161 *S. schenckii* or *S. brasiliensis* growth in the presence of MFS or ML. Combining
162 BRI and MFS or ML does not increase BRI fungicidal activity, as the MIC and
163 MFC values are the same as those of BRI alone. On the other hand, the
164 interaction of MFS or ML with either ITZ, TRB, or AMB increases the antifungal

165 activity against all of the *Sporothrix* strains tested, decreasing their MIC and MFC
166 values.

167 Next, in order to determine what kind of interaction MFS has with ITZ, TRB,
168 and AMB, the drug combination responses were analyzed using checkerboard
169 assays and the SynergyFinder software (53), which evaluates the potential
170 synergy of 2 or more drugs. The dose-response data obtained for combining MFS
171 with either TRB, ITZ, or AMB against *S. brasiliensis* and *S. schenckii* yeast cells
172 shows a likely additive interaction (synergy score from -10 to 10) (Figure 2). As
173 previously reported for ITZ (46), we found that MFS does not synergize with the
174 drug against *S. brasiliensis* and *S. schenckii*.

175

176 **MFS localizes to the *Sporothrix* cell membrane and mitochondria and**
177 **causes cell death**

178 Although the antifungal effect of MFS against *Sporothrix* has been reported, the
179 localization of the drug in the yeast is still unknown. In *Leishmania* (54) and *A.*
180 *fumigatus* (43), MFS localizes in the cell membrane and the mitochondria,
181 increasing mitochondrial fragmentation and damage. Here, we found that in *S.*
182 *brasiliensis*, fluorescent MFS is also localized in the cell membrane and the
183 mitochondria in 47% of the cells investigated (three repetitions of 100 cells each),
184 as shown by MitoTracker colocalization (Figure 3).

185 Subsequently, to evaluate the viability of the yeast in the presence of MFS,
186 drug-treated cells were stained with propidium iodide (PI) and analyzed by
187 fluorescence microscopy. Since PI only penetrates cells with damaged
188 membranes, PI⁺ cells are considered to be going through late apoptosis or early
189 necrosis (55). Treatment of *S. brasiliensis* yeasts with 2, 4, and 8 μ g/mL of MFS
190 showss dose-dependent damage of the cells since the PI signal increased with
191 the drug concentration (Figure 4), as early as 6 hours of exposure, confirming the
192 MFS fungicidal activity against *Sporothrix*.

193

194

195 **ML decreases *S. brasiliensis* fungal burden in A549 pulmonary cells and**
196 **bone marrow-derived macrophages (BMDM)**

197 To determine the antifungal activity of ML against *S. brasiliensis* in the host
198 tissues, two cell lines were used: lung A549 cells and Bone Marrow-Derived
199 Macrophages (BMDMs). As shown in Figure 5a, ML concentrations of 40 μ g/mL
200 and lower did not reduce A549 cell viability compared to the control. A549 cells
201 were challenged with 1:10 and 1:20 ratios (A549-yeast), and we observed a
202 significant reduction of more than 90 % in the fungal viability in both ML
203 treatments, which contrasts with TRB treatment that shows about 50 % viability
204 (Figure 5b).

205 When we challenged BMDMs with *S. brasiliensis* at a 1:10 ratio (BMDMs-
206 yeast) in the presence of 20 and 40 μ g/ml ML, we observed complete clearing of
207 *S. brasiliensis* compared to TRB that showed about 80 and 40 % clearing,
208 respectively, at 24 and 48 h (Figure 6). Our results strongly indicated that ML can
209 help both A549 and BMDMs to clear *S. brasiliensis* infection.

210 We also assessed the ability of the BMDMs to produce cytokines after
211 stimulation by *S. brasiliensis* and treatment with the drug. It has already been
212 reported that *S. brasiliensis* yeast stimulates higher production of TNF- α , IL-6, IL-
213 1 β , and IL-10 in human monocyte-derived macrophages when compared to *S.*
214 *schenckii*, and it is also more phagocytosed under these conditions (56), which
215 might contribute to the higher virulence of this species.

216 After infection of BMDMs and treatment during 24h, we observed a
217 significant decrease in the stimulation of TNF- α and IL-6 when the yeast cells
218 were treated with TRB and 20 and 40 μ g/mL of ML, when compared to untreated
219 cells (1:10) (Figure 7a). However, when compared to TRB treatment, a significant
220 decrease was observed in the stimulation of TNF- α only at 40 μ g/mL of ML. In
221 contrast, no difference was observed in the case of IL-6 with both ML
222 concentrations compared to TRB. Finally, for the secretion of IL-10, a significant
223 decrease was only observed when the yeast cells were treated with both ML
224 concentrations. However, no difference was found with the TRB treatment
225 compared to untreated cells (Figure 7a).

226 After 48h of infection, treatment with TRB did not cause a significant
227 decrease in the TNF- α production, while both ML concentrations did when
228 compared to untreated cells and TRB treatment (Figure 7b). In the case of the IL-
229 6 secretion, the same trend as that of 24h was observed, with the only exception
230 that treatment with 20 and 40 μ g/mL of ML results in a significant decrease
231 compared to TRB (Figure 7b). The secretion of IL-10 did not decrease with the
232 TRB treatment, while significantly decreased in macrophages infected and
233 uninfected treated with ML, confirming the participation of this drug in the immune
234 response modulation (Figure 7b).

235

236 **Discussion**

237 Although there are several therapeutic options for the treatment of sporotrichosis,
238 fungal resistance and cytotoxicity of the drugs to the host are essential obstacles
239 that hinder the efficient recovery of the patient. ITZ is considered the first-line
240 treatment, an azole known for its fungistatic activity against *Sporothrix* species
241 (22, 24), which has increased the development of resistance in some isolates,
242 mainly from *S. brasiliensis* (46, 57, 58). TRB, a drug with fungicidal activity
243 against *Sporothrix*, has been reported to be effective in treating the cutaneous
244 forms but not for the disseminated infections for which AMB is used. AMB is
245 considered a second-line treatment and is commonly used to treat the invasive
246 and disseminated forms, with the disadvantage that it is very toxic in the doses
247 and time needed to eradicate the infection, in addition to recent reports of isolates
248 resistant to this antifungal agent (22, 46).

249 In Brazil, cat-transmitted sporotrichosis, caused by *S. brasiliensis*, is a vital
250 health treat that has been spreading since 1998 (5, 8) across the country,
251 affecting domestic animals and humans, another reason for which is of great
252 importance to find new drugs for the treatment and control of this mycosis. For
253 this objective, drug repurposing is an excellent alternative to finding new
254 treatments since these drugs already approved to be used in humans and
255 animals, initially developed to treat other diseases, can help treat infections
256 caused by different pathogens (59, 60). Such is the case of commercial MFS,
257 which was initially used as an antineoplastic drug (27, 28) that is now the only

258 available oral treatment for leishmaniasis in dogs and humans (29–32), and was
259 recently proven to be effective for the treatment of infections caused by *Candida*
260 species (39, 40). As previously demonstrated (45, 46, 48), MFS also has *in vitro*
261 fungicidal activity against *Sporothrix* species by inhibiting the growth of both
262 fungal morphologies. *S. brasiliensis* and *S. schenckii* strains are sensitive to low
263 concentrations of this drug, with an antifungal activity of 2 μ g/mL for both hyphae
264 and yeast cells. Unlike ITZ, we found no strain resistant to MFS or ML.

265 We also assessed the ability of MFS to synergize with other drugs used
266 for the treatment of sporotrichosis, including TRB, ITZ, and AMB, and as
267 previously reported for ITZ (45), MFS does not synergize the activity of other
268 antifungals. However, it has instead an additive effect, which suggest they do not
269 interact, or act on independent pathways (61). Similarly to *A. fumigatus* (43), MFS
270 is directed to the mitochondria of *S. brasiliensis* yeast, staying also on the cell
271 surface and causing cell death, suggesting that this drug might be affecting the
272 mitochondria and membrane integrity, which might be related to its mechanism
273 of action.

274 This drug has been reported to be toxic in high doses in mice, with high
275 mortality in concentrations higher than 25mg/kg (62, 63), with maximum
276 concentrations in the kidney and liver, probably due to its amphiphilic nature (64,
277 65). We assessed ML cytotoxicity in A549 human pulmonary cells and observed
278 a significant viability reduction at 80 μ g/mL. When we tested the ability of ML to
279 decrease the fungal burden in A549 cells and BMDMs, at 24h and 24 and 48h,
280 respectively, we observed that ML could significantly decrease the CFUs more
281 efficiently than the fungicidal drug TRB in both cell types, with an almost complete
282 clearing of the yeast cells as early as 24 h of treatment.

283 One of the proposed mechanisms of action for MFS is its
284 immunomodulatory ability, which is essential for the treatment of leishmaniasis
285 since the drug induces the Th1 response and suppresses the Th2, by increasing
286 the production of proinflammatory cytokines such as IFN γ , TNF α , and IL-12 for
287 the clearance of intracellular pathogens, while relapses of leishmaniasis have
288 been related with an increase of the Th2 response and the production of IL-10
289 (32, 38). We observed that ML decreases the fungal burden and the production

290 of TNF α , IL-6, and IL-10, secreted by the infected BMDMs. We propose three
291 non-excluded hypotheses to explain it: (i) The cytokines reduction might be
292 related to the fact that the drug is killing the yeast cells before being
293 phagocytosed, where there is the death of the yeast cells as early as 6 hours of
294 MFS treatment; (ii) since the drug is localized to the cell surface, MFS could act
295 as an opsonizing agent helping in the macrophage recognition and further
296 phagocytosis; and (iii) MFS could bind to essential virulence factors, such as
297 adhesins, or immunogenic components, such as β -glucans, in a way that is
298 attenuating *S. brasiliensis* ability to infect and generate an immune response. All
299 three options would reduce the fungal load, tissue damage, and inflammation,
300 making this veterinary drug a suitable treatment alternative for feline
301 sporotrichosis.

302

303 **Materials and Methods**

304 **Fungal strains and culture conditions**

305 In this study, three *Sporothrix schenckii* (ATCC-MYA 4820, ATCC-MYA 4821,
306 and ATCC-MYA 4822) and three *S. brasiliensis* strains (ATCC-MYA 4823, ATCC-
307 MYA 4824, and ATCC-MYA 4858) were used for the *in vitro* antifungal
308 susceptibility assays; *S. schenckii* ATCC-MYA 4821 and *S. brasiliensis* ATCC-
309 MYA 4823 were used for the checkerboard assays; and *S. brasiliensis* ATCC-
310 MYA 4823, a highly virulent clinical isolate obtained from feline sporotrichosis
311 (66), was used for the infection assays.

312 The mycelial phase from *Sporothrix* spp. was obtained and maintained on solid
313 YPD pH 4.5 (yeast extract 1% (w/v), gelatin peptone 2% (w/v), and dextrose 3%
314 (w/v)) at 28°C for four days. In contrast, the yeast morphology was grown in liquid
315 YPD pH 7.8, at 37°C under orbital agitation for four days, as previously reported
316 (67). Each phase was confirmed by observing the cells with light microscopy.

317

318

319

320 **Antifungal drugs**

321 For the *in vitro* assays, voriconazole (VCZ, Sigma-Aldrich), itraconazole (ITZ,
322 Sigma-Aldrich), amphotericin B (AMB, Sigma-Aldrich), terbinafine (TRB, Sigma-
323 Aldrich), and brilacidin (BRI, supplied by Innovation Pharmaceuticals) were
324 diluted in dimethyl sulfoxide (DMOS); while miltefosine (MFS, Sigma-Aldrich), the
325 milteforan active compound, was diluted in ethanol; and caspofungin (CSP,
326 Sigma-Aldrich) was diluted in distilled water. Milteforan (miltefosine 2%) was
327 purchased from Virbac as an oral solution.

328

329 ***In vitro* antifungal susceptibility testing**

330 The minimum inhibitory concentrations (MICs) were determined by the broth
331 microdilution method adapted from protocols published by the Clinical Laboratory
332 Standard Institute for the mycelial and yeast phases (24, 68). Briefly, serial two-
333 fold dilutions of the antifungal drugs were performed in YPD pH 4.5 and 7.8, for
334 mycelial and yeast, respectively, into 96-well microtiter plates to obtain
335 concentrations of 4-0.06 μ g/mL for CSP, VCZ and TRB; 8-0.125 μ g/mL for ITZ and
336 AMB; 16-0.25 μ g/mL for MFS and ML; and 80-1.25 μ M for BRI, with a final
337 concentration of 2x10³ and 2x10⁴ conidia or yeast cells, respectively, in a volume
338 of 100 μ L. The plates were incubated at 28°C (for conidia) or 37°C (for yeast) for
339 four days, and the MIC was determined by visual inspection and defined as the
340 lowest concentration that inhibits 90-100% of fungal growth about untreated cells.
341 Finally, 5 μ L of conidia or yeast cells from each well were grown in drug-free solid
342 YPD pH 4.5 and pH 7.8 at 28°C and 37°C, respectively, for four days. The
343 minimum fungicidal concentration (MFC) value was the lowest concentration,
344 showing no fungal growth. Three independent experiments were performed by
345 duplicate.

346

347 **Checkerboard assays and synergy testing**

348 The drug combination effect was determined through the MIC and MFC values
349 of the yeast phase, as described before. Briefly, serial twofold dilutions of the
350 antifungal drugs were performed in liquid YPD pH 7.8 containing half MIC of MFS

351 or ML (1 μ g/mL) in 96-well microtiter plates to obtain concentrations of 16-
352 0.25 μ g/mL for CSP and VCZ; 8-0.125 μ g/mL for ITZ and AMB; 4-0.06 μ g/mL for
353 TRB; and 80-1.25 μ M for BRI, with a final concentration of 2×10^4 yeast, in a
354 volume of 100 μ L. The plates were incubated at 37°C for four days, and the MIC
355 was determined by visual inspection. It was defined as the lowest concentration
356 inhibiting 90-100% of fungal growth in cells treated only with 1 μ g/mL of MFS or
357 ML. After MIC determination, 5 μ L of yeast from each well were grown in drug-
358 free solid YPD pH 7.8 at 37°C for four days. The MFC value was the lowest
359 concentration, which showed no fungal growth.

360 Checkerboard assays were performed to quantify the interaction (synergistic,
361 additive, or antagonistic) between MFS and ITZ, AMB, or TRB. Briefly, a stock
362 solution of 2×10^5 yeast/mL and each drug (8 μ g of MFS and 16 μ g/mL of ITZ, 16 μ g
363 of AMB, or 8 μ g of TRB) were prepared in RMPI-1640. In 96-well microtiter plates,
364 the first antibiotic (MFS) was diluted sequentially along the ordinate. In contrast,
365 the second drug (ITZ, AMB, or TRB) was diluted along the abscissa to obtain a
366 final volume of 100 μ L. The plates were incubated at 37°C for four days, and the
367 metabolic activity was determined through the XTT reduction assay (47). Briefly,
368 50 μ L of a solution of XTT 1mg/mL and menadione 1mM resuspended in water
369 were added to each well, mixed, and incubated in the dark at 37°C for three h.
370 The supernatant of each well was transferred to a new plate and read in a
371 spectrophotometer at 492nm. Results are expressed as means \pm SD of three
372 independent experiments.

373 To determine the type of drug interaction, the SynergyFinder software (53) was
374 used, with the following parameters: detect outliers: yes; curve fitting: LL4;
375 method: Bliss; correction: on. The summary synergy scores represent the
376 average excess response due to drug interaction, in which a value less than -10
377 suggest an antagonistic interaction between two drugs; values from -10 to 10
378 suggest an additive interaction; and values larger than 10 suggest a synergistic
379 interaction.

380

381

382 **Yeast cells death**

383 The effect of ML on the cell membrane potential was assessed by staining with
384 propidium iodide (PI). Yeast cells grown for 4 days in liquid YPD pH 7.8 were
385 treated with 0, 2, 4 and 8 μ g/mL of ML during 6 h, stained with PI 20mM for 30
386 minutes, and washed with PBS 1X three times. Fluorescence was analyzed at an
387 excitation wavelength of 572/25nm and emission of 629/62nm with the Observer
388 Z1 fluorescence microscope using a 100x oil immersion lens objective.
389 Differential interference contrast (DIC) and fluorescent images were capture with
390 an AxioCam camera (Carl Zeiss) and processed using AxioVision software
391 (version 4.8). The experiment was performed twice, and for each treatment at
392 least 100 cells were counted. The results were plotted using Graphpad Prism
393 (GraphPad software, Inc.). A p -value<0.001 was considered significant.

394

395 **Miltefosine localization**

396 *S. brasiliensis* yeast cells cultured for 4 days in YPD pH 7.8 were washed 3 times
397 with PBS 1X and then treated with the fluorescent MFS analogue MT-11 C-BDP
398 (excitation wavelength 450-490nm and emission wavelength 500-550nm) for 6
399 hours, also in liquid YPD pH 7.8. The cells were washed 3 times and stained with
400 250nM of MitoTracker Deep Red FM (Invitrogen) (wavelength
401 absorbance/emission 644/665nm) and washed again. The yeast cells were
402 visualized in slides with the Observer Z1 fluorescent microscope using a 100x oil
403 immersion lens objective. DIC and fluorescent images were capture with an
404 AxioCam camera (Carl Ziess) and processed using AxioVision software (version
405 4.8). Two independent experiments were performed, and 100 cells were counted
406 of each to calculate the merge %.

407

408 **Cytotoxicity assay**

409 The cytotoxicity of ML was determined in A549 human lung cancer cells using
410 the XTT reduction assay. 2x10⁵ cells/well were seeded in 96-well tissue plates
411 and incubated in Dulbecco's Modified Eagle Medium (DMEM, ThermoFischer).
412 After 24 h of incubation with CO₂ 5%, the cells were treated with different

413 concentrations of ML (0, 2.5, 5, 10, 20, 40, 80 and 160 μ g/mL), and after 48 h of
414 incubation, cell viability was assessed using the XTT assay. Briefly, 80 μ L of a
415 solution of XTT 1mg/mL in DMEM, HEPES 1M, and menadione 8 μ g/mL were
416 added to each well, and after 30 min, formazan formation was quantified
417 spectrophotometrically at 450nm using a microplate reader. Each treatment was
418 performed by triplicate and the results were plotted using Graphpad Prism
419 (GraphPad Software, Inc.). A p -value<0.0001 was considered significant.

420

421 **A549 and bone marrow derived macrophages (BMDMs) killing assays**

422 The cell line A549 and BMDMs were cultured using DMEM supplemented with
423 fetal bovine serum (FBS) 10% and penicillin-streptomycin 1% (Sigma-Aldrich),
424 and seeded at a concentration of 1x10⁶ cells/mL in 24-well plates (Corning). The
425 cells were challenged with *S. brasiliensis* yeasts at a multiplicity of infection of
426 1:10 and were then treated with ML 20 and 40 μ M. As control, we included
427 untreated cells and cells treated with TRB 5 μ g/mL. For the BMDMs, cells treated
428 with LPS were also included as control. The A549 were incubated during 24 h at
429 37°C with CO₂ 5%, while the BMDM were incubated for 24 and 48h under the
430 same conditions. After incubation, the culture media was removed, each well was
431 washed 3 times with PBS 1X, and 1mL of sterile cold water was added to recover
432 and collect the cell monolayer. To assess the number of CFUs, 100 μ L of the cell
433 suspensions were plated on YDP pH 4.5 and incubated at 28°C for 4 days. When
434 necessary, the cell suspensions were diluted at 1:100 or 1:1000 and 100 μ L were
435 plated. 50 μ L of the inoculum adjusted to 1x10³ cells/mL was also plated to correct
436 the CFU count. Each treatment was performed by triplicate to calculate the CFU
437 %, and the results were plotted using Graphpad Prism (GraphPad Software, Inc.).
438 A p -value<0.0001 was considered significant.

439

440 **Cytokines quantification**

441 The Elisa-assay kits (R&D Systems) were used to evaluate the concentration of
442 the proinflammatory cytokines TNF α and IL-6, and the anti-inflammatory cytokine
443 IL-10 in the supernatants of the *S. brasiliensis* and BMDMs interaction for 24 and

444 48 h, according to the manufacturers instruction. The plates absorbance was read
445 at 450nm and the cytokine concentration (pg/mL) was calculated according to the
446 values obtained in the standard curve of each cytokine. The results were plotted
447 using Graphpad Prism (GraphPad software, Inc.).

448

449 **Statistical analyses**

450 The GraphPad Prism 10 (GraphPad Software, Inc.) was used for the statistical
451 analyses. The results are reported as the media \pm SD from two or three
452 independent experiments performed by duplicate and were analyzed using the
453 Ordinary one-way ANOVA or the Unpaired T test. The statistical significance was
454 considered with a *p*-value<0.05 or lower.

455

456 **Acknowledgements**

457

458 We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo
459 (FAPESP) grant numbers 2021/04977-5 (GHG) and 2022/08556-7 (LCGC)
460 2022/08796-8 (CD), 2022/09882-5 (LP), the Conselho Nacional de
461 Desenvolvimento Científico e Tecnológico (CNPq), FAPESP and Fundação
462 Coordenação de Aperfeiçoamento do Pessoal do Ensino Superior (CAPES)
463 grant number 405934/2022-0 (The National Institute of Science and Technology
464 INCT Funvir), and CNPq 301058/2019-9 from Brazil to GHG., both from Brazil,
465 the National Institutes of Health/National Institute of Allergy and Infectious
466 Diseases from the USA, grant R01AI153356 to GHG. This work was also funded
467 by the Joint Canada-Israel Health Research Program, jointly supported by the
468 Azrieli Foundation, Canada's International Development Research Centre,
469 Canadian Institutes of Health Research, and the Israel Science Foundation
470 (GHG).

471

472

473

474 **Figure legends**

475
476 **Figure 1. *In vitro* fungicidal activity of miltefosine and milteforan against the**
477 **yeast morphology of *S. schenckii* and *S. brasiliensis*.** a) *S. schenckii* (strains
478 4820, 4821, and 4822) yeast were grown in liquid YDP pH 7.8 at 37°C in the
479 presence of several concentrations of MFS or ML (16, 8, 4, 2, 1, 0.5, and
480 0.25 μ g/mL). After 4 days of incubation, the cells were plated in solid YPD pH 7.8
481 and incubated for 4 days at 37°C. b) *S. brasiliensis* (strains 4823, 4824, and 4858)
482 yeast were grown in liquid YDP pH 7.8 at 37°C in the presence of several
483 concentrations of MFS or ML (16, 8, 4, 2, 1, 0.5, and 0.25 μ g/mL). After 4 days of
484 incubation, the cells were plated in solid YPD pH 7.8 and incubated for 4 days at
485 37°C. As control, yeast cells of each strain were grown without the drugs. Results
486 represent the average of three independent experiments performed by duplicate.
487

488 **Figure 2. MFS has an additive interaction with ITZ, TRB, and AMB against**
489 ***S. brasiliensis* and *S. schenckii* yeast cells.** The synergy score for MFS x TRB,
490 MFS x ITZ, and MFS x AMB against *Sporothrix* was determined by analyzing the
491 SynergyFinder software's checkerboard data. a) *S. schenckii* and b) *S.*
492 *brasiliensis* yeast were grown in liquid YDP pH 7.8 at 37°C in different
493 concentrations of the selected drugs. After 4 days of incubation, the metabolic
494 activity of the cells was assessed by the XTT reduction assay. Results are
495 expressed as the % of metabolic activity and represent the average of three
496 independent experiments.

497
498 **Figure 3. MFS is localized in the mitochondria and cell surface of *S.***
499 ***brasiliensis* yeast.** *S. brasiliensis* yeast cells were exposed to fluorescent MFS
500 (2 μ g/mL) for 1 h and then stained with MitoTracker Deep Red FM. The MFS and
501 MitoTracker signals merge on the mitochondria, while the MFS signal is observed
502 on the cell surface. Three independent experiments were performed, and 100
503 cells were counted for each to calculate a 47.06 ± 1.01 % of MFS and MitoTracker
504 colocalization (merge).

505

506 **Figure 4. MFS causes dose-dependent death in *S. brasiliensis* yeast.** a) *S.*
507 *brasiliensis* yeast were exposed to 0, 2, 4, and 8 μ g/mL of MFS for 6 hours,
508 stained with PI, and analyzed by fluorescence microscopy. b) Quantification of
509 PI $^+$ yeast exposed to MFS, in which 100 yeast-like cells were counted for each
510 condition. Results represent the average of two independent experiments. ** p -
511 value<0.001 when compared to untreated cells. ns: not significant.

512

513 **Figure 5. Concentrations up to 40 μ g/mL of ML are not toxic to human cells**
514 **and can significantly decrease *S. brasiliensis* survival in A549 epithelial**
515 **cells.** a) A459 epithelial cells were treated with different ML concentrations, with
516 a decrease of cell viability only at 80 μ g/mL or higher concentrations. b) A459 cells
517 were challenged with *S. brasiliensis* yeast at a proportion of 1:10 and 1:20 and
518 then treated with 20 and 40 μ g/mL of ML. The fungicidal drug TRB was included
519 as a control. ** p -value<0.01 when compared to untreated cells. **** p -
520 value<0.0001 when compared to untreated cells. # p -value<0.0001 when
521 compared to cells treated with TRB.

522

523 **Figure 6. Killing of *S. brasiliensis* yeast by BMDM is significantly increased**
524 **in the presence of ML.** a) BMDM cells were infected with *S. brasiliensis* yeast
525 and then treated with 20 and 40 μ g/mL for 24h, which decreased the fungal
526 survival by almost 100% compared to untreated cells. b) BMDM cells were
527 infected with *S. brasiliensis* yeast and were then treated with 20 and 40 μ g/mL for
528 48h, which decreased the fungal survival to 100% when compared to untreated
529 cells. The fungicidal drug TRB was included as a control. * p -value<0.05 when
530 compared to untreated cells. *** p -value<0.0005 when compared to untreated
531 cells. **** p -value<0.0001 when compared to untreated cells. # p -value<0.01 when
532 compared to cells treated with TRB. ## p -value<0.01.

533

534 **Figure 7. Cytokine secretion by BMDM infected with *S. brasiliensis* and**
535 **treated with ML.** a) BMDM cells were infected with *S. brasiliensis* yeast and
536 treated with ML 20 and 40 μ g/mL for 24h. The interaction supernatant was
537 collected and the cytokines TNF- α (ns: not significant; ** p -value<0.005 when
538 compared to untreated cells; *** p -value<0.0005 when compared to untreated

539 cells; *****p*-value<0.0001 when compared to untreated cells; #*p*-value<0.01 when
540 compared to TRB treatment), IL-6 (ns: not significant; ****p*-value<0.0005 when
541 compared to untreated cells; *****p*-value<0.0001 when compared to untreated
542 cells), and IL-10 (ns: not significant; ***p*-value<0.005 when compared to
543 untreated cells; *****p*-value<0.0001 when compared to untreated cells; #*p*-
544 value<0.0005 when compared to TRB treatment; ##*p*-value<0.0001 when
545 compared to TRB treatment) were measured. b) BMDM cells were infected with
546 *S. brasiliensis* yeast and treated with 20 and 40 μ g/mL for 48h. The interaction
547 supernatant was collected and the cytokines TNF- α (ns: not significant; *****p*-
548 value<0.0001 when compared to untreated cells; #*p*-value<0.0005 when
549 compared to TRB treatment; ##*p*-value<0.0001 when compared to TRB
550 treatment), IL-6 (****p*-value<0.001 when compared to untreated cells; (*****p*-
551 value<0.0001 when compared to untreated cells; #*p*-value<0.005 when
552 compared to TRB treatment; ##*p*-value<0.0001 when compared to TRB
553 treatment), and IL-10 (ns: not significant; **p*-value<0.05 when compared to
554 untreated cells; ***p*-value<0.01 when compared to untreated cells; #*p*-value<0.05
555 when compared to TRB treatment; ##*p*-value<0.01 when compared to TRB
556 treatment) were measured.

557

558

559 References

- 560 1. Rodrigues AM, Della Terra PP, Gremião ID, Pereira SA, Orofino-Costa R,
561 de Camargo ZP. 2020. The threat of emerging and re-emerging pathogenic
562 *Sporothrix* species. *Mycopathologia* 185(5):813-842.
<https://doi.org/10.1007/s11046-020-00425-0>.
- 563 2. Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Mochizuki T, Li S. 2014.
564 Global epidemiology of sporotrichosis. *Med Mycol* 53(1):3-14.
<https://doi.org/10.1093/mmy/myu062>.
- 565 3. Barros MBL, Schubach AO, Schubach TMP, Wanke B, Lambert-Passos
566 SR. 2008. An epidemic of sporotrichosis in Rio de Janeiro, Brazil:
567 Epidemiological aspects of a series of cases. *Epidemiol Infect* 136(9):1192-
568 1196. <https://doi.org/10.1017/S0950268807009727>.
- 569 4. Falcão EMM, Pires MCDS, Andrade HB, Gonçalves MLC, Almeida-Paes
570 R, Do Valle ACF, Bastos FI, Gutierrez-Galhardo MC, Freitas DFS. 2020.
571 Zoonotic sporotrichosis with greater severity in Rio de Janeiro, Brazil: 118
572 hospitalizations and 11 deaths in the last 2 decades in a reference
573 institution. *Med Mycol* 58(1):141-143.
<https://doi.org/10.1093/mmy/myz024>.
- 574 5. Gremião IDF, Marques M, Oliveira E, de Miranda LHM, Freitas DFS,
575 Pereira SA. 2020. Geographic expansion of sporotrichosis, Brazil. *Emerg
576 Infect Dis* 26(3):621-624. <https://doi.org/10.3201/eid2603.190803>.
- 577 6. Marimon R, Cano J, Gené J, Sutton DA, Kawasaki M, Guarro J. 2007.
578 *Sporothrix brasiliensis*, *S. globosa*, and *S. mexicana*, three new *Sporothrix*
579 species of clinical interest. *J Clin Microbiol* 45(10):3198-3206.
<https://doi.org/10.1128/jcm.00808-07>.
- 580 7. de Beer ZW, Duong TA, Wingfield MJ. 2016. The divorce of *Sporothrix* and
581 *Ophiostoma*: Solution to a problematic relationship. *Stud Mycol* 83:165-
582 191. <https://doi.org/10.1016/j.simyco.2016.07.001>.
- 583 8. Lopes-Bezerra LM, Mora-Montes HM, Zhang Y, Nino-Vega G, Rodrigues
584 AM, de Camargo ZP, de Hoog S. 2018. Sporotrichosis between 1898 and
585 2017: The evolution of knowledge on a changeable disease and on
586 emerging etiological agents. *Med Mycol* 56(S1):126-143.
<https://doi.org/10.1093/mmy/myx103>.
- 587 9. de Lima Barros MB, de Almeida Paes R, Schubach AO. 2011. *Sporothrix*
588 *schenckii* and sporotrichosis. *Clin Microbiol Rev* 24(4):354-633.
<https://doi.org/10.1128/cmr.00007-11>.
- 589 10. de Carolis E, Posteraro B, Sanguinetti M. 2022. Old and new insights into
590 *Sporothrix schenckii* complex biology and identification. *Pathogens* 11(3),
591 297. <https://doi.org/10.3390/pathogens11030297>.
- 592 11. Arrillaga-Moncrieff I, Capilla J, Mayayo E, Marimon R, Mariné M, Gené J,
593 Cano J, Guarro J. 2009. Different virulence levels of the species of
594 *Sporothrix* in a murine model. *Clinical Microbiology and Infection* 15(7):651-
595 655. <https://doi.org/10.1111/j.1469-0691.2009.02824.x>.
- 596 12. Della Terra PP, Rodrigues AM, Fernandes GF, Nishikaku AS, Burger E, de
597 Camargo ZP. 2017. Exploring virulence and immunogenicity in the
598 emerging pathogen *Sporothrix brasiliensis*. *PLoS Negl Trop Dis* 11(8).
<https://doi.org/10.1371/journal.pntd.0005903>.

600
601
602
603
604
605
606

607 13. Gutierrez-Galhardo MC, Freitas DFS, Do Valle ACF. 2015. Clinical forms
608 of human sporotrichosis and host immunocompetence, 73–82. In: Zeppone
609 Carlos, I. (eds) *Sporotrichosis*. Springer, Cham.
610 https://doi.org/10.1007/978-3-319-11912-0_5.

611 14. García-Carnero LC, Lozoya-Pérez NE, González-Hernández SE,
612 Martínez-Álvarez JA. 2018. Immunity and treatment of sporotrichosis.
613 *Journal of Fungi* 4 (3),100. <https://doi.org/10.3390/jof4030100>.

614 15. Gremião IDF, Miranda LHM, Reis EG, Rodrigues AM, Pereira SA. 2017.
615 Zoonotic epidemic of sporotrichosis: cat to human transmission. *PLoS
616 Pathog* 13(1). <https://doi.org/10.1371/journal.ppat.1006077>.

617 16. de Oliveira Bento A, de Sena Costa AS, Lima SL, Do Monte Alves M, de
618 Azevedo Melo AS, Rodrigues AM, da Silva-Rocha WP, Milan EP, Chaves
619 GM. 2021. The spread of cat-transmitted sporotrichosis due to *Sporothrix
620 brasiliensis* in Brazil towards the Northeast region. *PLoS Negl Trop Dis* 15
621 (8). <https://doi.org/10.1371/journal.pntd.0009693>.

622 17. Boechat JS, Oliveira MME, Gremião IDF, Almeida-Paes R, Machado AC
623 de S, Zancopé-Oliveira RM, Oliveira R de VC, Morgado DS, Corrêa ML,
624 Figueiredo ABF, Menezes RC, Pereira SA. 2022. *Sporothrix brasiliensis*
625 and feline sporotrichosis in the metropolitan region of Rio de Janeiro, Brazil
626 (1998-2018). *Journal of Fungi* 8(7),749.
627 <https://doi.org/10.3390/jof8070749>.

628 18. Morgado DS, Castro R, Ribeiro-Alves M, Corrêa-Moreira D, Castro-Alves
629 J, Pereira SA, Menezes RC, Oliveira MME. 2022. Global distribution of
630 animal sporotrichosis: a systematic review of *Sporothrix* sp. identified using
631 molecular tools. *Curr Res Microb Sci* 19(3).
632 <https://doi.org/10.1016/j.crmicr.2022.100140>.

633 19. Marimon R, Serena C, Gené J, Cano J, Guarro J. 2008. *In vitro* antifungal
634 susceptibilities of five species of *Sporothrix*. *Antimicrob Agents Chemother*
635 52(2):732-734. <https://doi.org/10.1128/aac.01012-07>.

636 20. Rodrigues AM, de Hoog GS, de Cássia Pires D, Brihante RSN, da Costa
637 Sidrim JJ, Gadelha MF, Colombo AL, De Camargo ZP. 2014. Genetic
638 diversity and antifungal susceptibility profiles in causative agents of
639 sporotrichosis. *BMC Infect Dis* 14,219. <https://doi.org/10.1186/1471-2334-14-219>.

641 21. Flórez-Muñoz SV, Alzate JF, Mesa-Arango AC. 2019. Molecular
642 identification and antifungal susceptibility of clinical isolates of *Sporothrix
643 schenckii* complex in Medellin, Colombia. *Mycopathologia* 184:53-63.
644 <https://doi.org/10.1007/s11046-018-0310-5>.

645 22. Kauffman CA, Bustamante B, Chapman SW, Pappas PG. 2007. Clinical
646 practice guidelines for the management of sporotrichosis: 2007 Update by
647 the Infectious Diseases Society of America. *Clinical Infectious Diseases*
648 45(10):1255-1265. <https://doi.org/10.1086/522765>.

649 23. Orofino-Costa R, Freitas DFS, Bernardes-Engemann AR, Rodrigues AM,
650 Talhari C, Ferraz CE, Veasey JV, Quintella L, de Sousa MSLA, Vettorato
651 R, de Almeida-Paes R, de Macedo PM. 2022. Human sporotrichosis:
652 recommendations from the Brazilian Society of Dermatology for the clinical,
653 diagnostic and therapeutic management. *An Bras Dermatol* 97(6):757-777.
654 <https://doi.org/10.1016/j.abd.2022.07.001>.

655 24. Borba-Santos LP, Rodrigues AM, Gagini TB, Fernandes GF, Castro R, de
656 Camargo ZP, Nucci M, Lopes-Bezerra LM, Ishida K, Rozental S. 2015.

657 Susceptibility of *Sporothrix brasiliensis* isolates to amphotericin B, azoles,
658 and terbinafine. *Med Mycol* 53(2):178-188.
659 <https://doi.org/10.1093/mmy/myu056>.

660 25. Waller SB, Dalla Lana DF, Quatrini PM, Ferreira MRA, Fuentefria AM,
661 Mezzari A. 2021. Antifungal resistance on *Sporothrix* species: an overview.
662 Brazilian Journal of Microbiology 52(1):73-80.
663 <https://doi.org/10.1007/s42770-020-00307-z>.

664 26. Bombassaro A, Spruijtenburg B, Medeiros F, Favoreto de Souza Lima BJ,
665 Ballardin LB, Rodrigues de Farias M, Vicente VA, de Queiroz-Telles F,
666 Meis JF, de Groot T. 2023. Genotyping and antifungal susceptibility testing
667 of *Sporothrix brasiliensis* isolates from Southern Brazil. *Mycoses*
668 66(7):585-593. <https://doi.org/10.1111/myc.13584>.

669 27. Unger C, Damenz W, Fleer EAM, Kim DJ, Breiser A, Hilgard P, Engel J,
670 Nagel G, Eibl H. 1989. Hexadecylphosphocholine, a new ether lipid
671 analogue studies on the antineoplastic activity *in vitro* and *in vivo*. *Acta*
672 *Oncol (Madr)* 28(2):213-217. <https://doi.org/10.3109/02841868909111249>.

673 28. SpruB T, Bernhardt G, Schonberger H, Engel J. 1993. Antitumour
674 activity of miltefosine alone and after combination with platinum complexes
675 on MXT mouse mammary carcinoma models. *J Cancer Res Clin Oncol*
676 119(3):142-149. <https://doi.org/10.1007/BF01229528>.

677 29. Croft SL, Snowdon D, Yardley V. 1996. The activities of four anticancer
678 alkyllysophospholipids against *Leishmania donovani*, *Trypanosoma cruzi*
679 and *Trypanosoma brucei*. *Journal of Antimicrobial Chemotherapy*
680 38(6):1041-1047. <https://doi.org/10.1093/jac/38.6.1041>.

681 30. Sundar S, Rosenkaimer F, Makharia MK, Goyal AK, Mandal AK, Voss A,
682 Hilgard P, Murray HW. 1998. Trial of oral miltefosine for visceral
683 leishmaniasis. *The Lancet* 352:1821-1823. [https://doi.org/10.1016/S0140-6736\(98\)04367-0](https://doi.org/10.1016/S0140-6736(98)04367-0).

685 31. Croft SL, Engel J. 2006. Miltefosine - discovery of the antileishmanial
686 activity of phospholipid derivatives. *Trans R Soc Trop Med Hyg* 100:S4-S8.
687 <https://doi.org/10.1016/j.trstmh.2006.03.009>.

688 32. Dorlo TPC, Balasegaram M, Beijnen JH, de vries PJ. 2012. Miltefosine: a
689 review of its pharmacology and therapeutic efficacy in the treatment of
690 leishmaniasis. *Journal of Antimicrobial Chemotherapy* 67(11):2576-2597.
691 <https://doi.org/10.1093/jac/dks275>.

692 33. Geilen CC, Wieder T, Reutter W. 1991. Hexadecylphosphocholine inhibits
693 translocation of CTP:Choline-phosphate cytidylyltransferase in Madin-
694 Darby canine kidney cells. *J Biol Chem* 267(10):6719-6724.

695 34. Cui Z, Houweling M, Chen MH, Record M, Chap H, Vance DE, Ois Tercé
696 F. 1996. A genetic defect in phosphatidylcholine biosynthesis triggers
697 apoptosis in Chinese hamster ovary cells. *J Biol Chem* 271(25):14668-
698 14671. <https://doi.org/10.1074/jbc.271.25.14668>.

699 35. Paris C, Loiseau PM, Bories C, Bréard J. 2004. Miltefosine induces
700 apoptosis-like death in *Leishmania donovani* promastigotes. *Antimicrob*
701 *Agents Chemother* 48(3):852-859. <https://doi.org/10.1128/aac.48.3.852-859.2004>.

703 36. Pinto-Martinez AK, Rodriguez-Durán J, Serrano-Martin X, Hernandez-
704 Rodriguez V, Benaim G. 2018. Mechanism of action of miltefosine on
705 *Leishmania donovani* involves the impairment of acidocalcisome function
706 and the activation of the sphingosine-dependent plasma membrane Ca^{2+}

707 channel. *Antimicrob Agents Chemother* 62(1).
708 <https://doi.org/10.1128/aac.01614-17>.

709 37. Wieder T, Orfanos CE, Geilen CC. 1998. Induction of ceramide-mediated
710 apoptosis by the anticancer phospholipid analog,
711 hexadecylphosphocholine. *J Biol Chem* 273(18):11025-11031.
712 <https://doi.org/10.1074/jbc.273.18.11025>.

713 38. Palic S, Bhairosing P, Beijnen JH, Dorlo TPC. 2019. Systematic review of
714 host-mediated activity of miltefosine in *Leishmaniasis* through
715 immunomodulation. *Antimicrob Agents Chemother* 63(7).
716 <https://doi.org/10.1128/aac.02507-18>.

717 39. Machado Vila TV, Sousa Quintanilha N, Rozental S. 2015. Miltefosine is
718 effective against *Candida albicans* and *Fusarium oxysporum* nail biofilms
719 *in vitro*. *J Med Microbiol* 64(11):1436-1449.
720 <https://doi.org/10.1099/jmm.0.000175>.

721 40. Vila T, Ishida K, Seabra SH, Rozental S. 2016. Miltefosine inhibits *Candida*
722 *albicans* and non-*albicans* *Candida* spp. biofilms and impairs the dispersion
723 of infectious cells. *Int J Antimicrob Agents* 48(5):512-520.
724 <https://doi.org/10.1016/j.ijantimicag.2016.07.022>.

725 41. de Castro Spadari C, Vila T, Rozental S, Ishida K. 2018. Miltefosine has a
726 postantifungal effect and induces apoptosis in *Cryptococcus* yeasts.
727 *Antimicrob Agents Chemother* 62(8). <https://doi.org/10.1128/aac.00312-18>.

729 42. Barreto TL, Rossato L, de Freitas ALD, Meis JF, Lopes LB, Colombo AL,
730 Ishida K. 2020. Miltefosine as an alternative strategy in the treatment of the
731 emerging fungus *Candida auris*. *Int J Antimicrob Agents* 56(2).
732 <https://doi.org/10.1016/j.ijantimicag.2020.106049>.

733 43. dos Reis TF, Crivelente Horta MA, Colabardini AC, Mota Fernandes C,
734 Pereira Silva L, Wesley Bastos R, de Lazari Fonseca MV, Wang F, Martins
735 C, Rodrigues ML, Silva Pereira C, Del Poeta M, Ho Wong K, Goldman GH.
736 2021. Screening of chemical libraries for new antifungal drugs against
737 *Aspergillus fumigatus* reveals sphingolipids are involved in the mechanism
738 of action of miltefosine. *mBio* 12(4). <https://doi.org/10.1128/mbio.01458-21>.

739 44. Nosratabadi M, Akhtari J, Faeli L, Haghani I, Aghili SR, Shokohi T, Hedayati
740 MT, Zarrinfar H, Mohammadi R, Najafzadeh MJ, Khodavaisy S, Al-Harrasi
741 A, Javan-Nikkhah M, Kachuei R, Salimi M, Fattahi M, Badali H, Al Hatmi
742 AMS, Abastabar M. 2022. *In vitro* antifungal susceptibility profile of
743 miltefosine against a collection of azole and echinocandins resistant
744 *Fusarium* strains. *Journal of Fungi* 8(7), 709.
745 <https://doi.org/10.3390/jof8070709>.

746 45. Nogueira Brilhante RS, Maia Malaquias ÂD, Pacheco Caetano É, de Souza
747 Collares Maia Castelo-Branco D, Chaves De Lima RA, de Farias Marques
748 FJ, Fechine Silva N, Pereira de Alencar L, Monteiro AJ, de Camargo ZP,
749 de Jesus Pinheiro Gomes Bandeira T, Rodrigues AM, de Aguiar Cordeiro
750 R, Bezerra Moreira JL, Costa Sidrim JJ, Gadelha Rocha MF. 2014. *In vitro*
751 inhibitory effect of miltefosine against strains of *Histoplasma capsulatum*
752 var. *capsulatum* and *Sporothrix* spp. *Med Mycol* 52(3):320-325.
753 <https://doi.org/10.1093/mmy/myt027>.

754 46. Borba-Santos LP, Gagini T, Ishida K, de Souza W, Rozental S. 2015.
755 Miltefosine is active against *Sporothrix brasiliensis* isolates with *in vitro* low

756 susceptibility to amphotericin B or itraconazole. *J Med Microbiol* 64(4):415-
757 422. <https://doi.org/10.1099/jmm.0.000041>.

758 47. Nogueira Brilhante RS, Queiroz Da Silva ML, Santos Pereira V, Sales de
759 Oliveira J, Maciel JM, Goes da Silva IN, Silva Garcia LG, de Melo Guedes
760 GM, de Aguiar Cordeiro R, de Aquino Pereira-Neto W, de Camargo ZP,
761 Rodrigues AM, Costa Sidrim JJ, de Souza Collares Maia Castelo-Branco
762 D, Gadelha Rocha MF. 2019. Potassium iodide and miltefosine inhibit
763 biofilms of *Sporothrix schenckii* species complex in yeast and filamentous
764 forms. *Med Mycol* 57(6):464-472. <https://doi.org/10.1093/mmy/myy119>.

765 48. dos Santos GMP, Borba-Santos LP, Vila T, Gremião IDF, Pereira SA, de
766 Souza W, Rozental S. 2022. *Sporothrix* spp. biofilms impact in the zoonotic
767 transmission route: feline claws associated biofilms, itraconazole tolerance,
768 and potential repurposing for miltefosine. *Pathogens* 11(2), 206.
769 <https://doi.org/10.3390/pathogens11020206>.

770 49. Peyclit L, Yousfi H, Rolain JM, Bittar F. 2021. Drug repurposing in medical
771 mycology: identification of compounds as potential antifungals to overcome
772 the emergence of multidrug-resistant fungi. *Pharmaceuticals* 14(5), 488.
773 <https://doi.org/10.3390/ph14050488>.

774 50. Profounda Pharmaceuticals. PROFOUNDA, INC.
775 <https://www.profounda.com>. Accessed 13 August 2023.

776 51. dos Reis TF, de Castro PA, Bastos RW, Pinzan CF, Souza PFN, Ackloo S,
777 Hossain MA, Drewry DH, Alkhazraji S, Ibrahim AS, Jo H, Lightfoot JD,
778 Adams EM, Fuller KK, deGrado WF, Goldman GH. 2023. A host defense
779 peptide mimetic, brilacidin, potentiates caspofungin antifungal activity
780 against human pathogenic fungi. *Nat Commun* 14(1), 2052.
781 <https://doi.org/10.1038/s41467-023-37573-y>

782 52. Ishida K, Castro RA, Torrado JJ, Serrano DR, Borba-Santos LP, Quintella
783 LP, de Souza W, Rozental S, Lopes-Bezerra LM. 2018. Efficacy of a poly-
784 aggregated formulation of amphotericin B in treating systemic
785 sporotrichosis caused by *Sporothrix brasiliensis*. *Med Mycol* 56(3):288-
786 296. <https://doi.org/10.1093/mmy/mxy040>.

787 53. Ianevski A, Giri KA, Aittokallio T. 2022. SynergyFinder 3.0: an interactive
788 analysis and consensus interpretation of multi-drug synergies across
789 multiple samples. *Nucleic Acids Res* 50(W1):W739-W743.
790 <https://doi.org/10.1093/nar/gkac382>.

791 54. Santa-Rita RM, Henriques-Pons A, Barbosa HS, de Castro SL. 2004. Effect
792 of the lysophospholipid analogues edelfosine, ilmofosine and miltefosine
793 against *Leishmania amazonensis*. *Journal of Antimicrobial Chemotherapy*
794 54(4):704-710. <https://doi.org/10.1093/jac/dkh380>.

795 55. Davey HM, Hexley P. 2011. Red but not dead? Membranes of stressed
796 *Saccharomyces cerevisiae* are permeable to propidium iodide. *Environ
797 Microbiol* 13(1):163-171. <https://doi.org/10.1111/j.1462-2920.2010.02317.x>.

799 56. Gómez-Gaviria M, Martínez-Duncker I, García-Carnero LC, Mora-Montes
800 HM. 2023. Differential recognition of *Sporothrix schenckii*, *Sporothrix*
801 *brasiliensis*, and *Sporothrix globosa* by human monocyte-derived
802 macrophages and dendritic cells. *Infect Drug Resist* 16:4817-4834.
803 <https://doi.org/10.2147/IDR.S419629>.

804 57. Kohler LM, Soares BM, de Assis Santos D, da Silva Barros ME, Hamdan
805 JS. 2006. *In vitro* susceptibility of isolates of *Sporothrix schenckii* to

806 amphotericin B, itraconazole, and terbinafine: Comparison of yeast and
807 mycelial forms. *Can J Microbiol* 52(9):843-847.
808 <https://doi.org/10.1139/w06-040>.

809 58. Alvarado-Ramírez E, Torres-Rodríguez JM. 2007. *In vitro* susceptibility of
810 *Sporothrix schenckii* to six antifungal agents determined using three
811 different methods. *Antimicrob Agents Chemother* 51(7):2420-2423.
812 <https://doi.org/10.1128/aac.01176-06>.

813 59. Nosengo N. 2016. Can you teach old drugs new tricks? *Nature* 534:314-
814 316. <https://doi.org/10.1038/534314a>

815 60. Kaul G, Shukla M, Dasgupta A, Chopra S. 2019. Update on drug-
816 repurposing: is it useful for tackling antimicrobial resistance? *Future*
817 *Microbiol* 14(10). <https://doi.org/10.2217/fmb-2019-0122>.

818 61. Roell KR, Reif DM, Motsinger-Reif AA. 2017. An introduction to terminology
819 and methodology of chemical synergy-perspectives from across
820 disciplines. *Front Pharmacol* 8. <https://doi.org/10.3389/fphar.2017.00158>.

821 62. Lima Prado Godinho J, Simas-Rodrigues C, Silva R, Ürmenyi TP, de Souza
822 W, Fernandes Rodrigues JC. 2012. Efficacy of miltefosine treatment in
823 *Leishmania amazonensis*-infected BALB/c mice. *Int J Antimicrob Agents*
824 39(4):326-331. <https://doi.org/10.1016/j.ijantimicag.2011.11.008>.

825 63. García Bustos MF, Barrio A, Prieto GG, de Raspi EM, Cimino RO, Cardozo
826 RM, Parada LA, Yeo M, Soto J, Uncos DA, Parodi C, Basombrío MA. 2014.
827 *In vivo* antileishmanial efficacy of miltefosine against *Leishmania*
828 (*Leishmania*) *amazonensis*. *Journal of Parasitology* 100(6):840-847.
829 <https://doi.org/10.1645/13-376.1>.

830 64. Kotting J, Berger MR, Unger C, Eibl H. 1992. Alkylphosphocholines:
831 influence of structural variation on biodistribution at antineoplastically active
832 concentrations. *Cancer Chemother Pharmacol* 30(2):105-112.
833 <https://doi.org/10.1007/BF00686401>.

834 65. Jiménez-Antón MD, García-Calvo E, Gutiérrez C, Escribano MD, Kayali N,
835 Luque-García JL, Olías-Molero AI, Corral MJ, Costi MP, Torrado JJ, Alunda
836 JM. 2018. Pharmacokinetics and disposition of miltefosine in healthy mice
837 and hamsters experimentally infected with *Leishmania infantum*. *European*
838 *Journal of Pharmaceutical Sciences* 121:281-286.
839 <https://doi.org/10.1016/j.ejps.2018.06.002>.

840 66. Castro RA, Kubitschek-Barreira PH, Teixeira PAC, Sanches GF, Teixeira
841 MM, Quintella LP, Almeida SR, Costa RO, Camargo ZP, Felipe MSS, de
842 Souza W, Lopes-Bezerra LM. 2013. Differences in cell morphometry, cell
843 wall topography and Gp70 expression correlate with the virulence of
844 *Sporothrix brasiliensis* clinical isolates. *PLoS One* 8(10).
845 <https://doi.org/10.1371/journal.pone.0075656>.

846 67. Martínez-Álvarez JA, Pérez-García LA, Mellado-Mojica E, López MG,
847 Martínez-Duncker I, Lopes-Bezerra LM, Mora-Montes HM. 2017.
848 *Sporothrix schenckii* *sensu stricto* and *Sporothrix brasiliensis* are
849 differentially recognized by human peripheral blood mononuclear cells.
850 *Front Microbiol* 8. <https://doi.org/10.3389/fmicb.2017.00843>.

851 68. Wayne PA. 2017. Reference method for broth dilution antifungal
852 susceptibility testing of yeasts. 4th ed. CLSI standard M27. Clinical and
853 Laboratory Standard Institute.

854

856 **Table 1.** MIC and MFC values of several antifungals against *S. schenckii* and *S.*
857 *brasiliensis* yeast and mycelial phases.

858

		CSP (4-0.06 µg/mL)	VCZ (4-0.06 µg/mL)	BRI (80-1.25 µM)	ITZ (8-0.125 µg/mL)	MFS (16-0.25 µg/mL)	ML (16-0.25 µg/mL)	TRB (4-0.06 µg/mL)	AMB (8-0.125 µg/mL)	
Ss 4820	Y	MIC	>4	>4	5	0.25	2	2	1	2
	Y	MFC	>4	>4	5	0.5	2	2	1	2
	M	MIC	>4	>4	>80	2	2	2	1	ND
	M	MFC	>4	>4	>80	>8	2	2	1	ND
Ss 4821	Y	MIC	>4	>4	5	0.5	2	2	1	2
	Y	MFC	>4	>4	5	2	2	2	1	2
	M	MIC	>4	>4	>80	1	2	2	1	ND
	M	MFC	>4	>4	>80	>8	2	2	1	ND
Ss 4822	Y	MIC	>4	>4	2.5	0.125	2	2	0.5	2
	Y	MFC	>4	>4	2.5	0.25	2	2	0.5	2
	M	MIC	>4	>4	>80	2	2	2	1	ND
	M	MFC	>4	>4	>80	>8	2	2	1	ND
Sb 4823	Y	MIC	>4	>4	2.5	2	2	2	0.5	2
	Y	MFC	>4	>4	2.5	>8	2	2	0.5	2
	M	MIC	>4	>4	>80	1	2	2	1	ND
	M	MFC	>4	>4	>80	>8	2	2	1	ND
Sb 4824	Y	MIC	>4	>4	2.5	0.5	2	2	0.5	>8
	Y	MFC	>4	>4	2.5	1	2	2	0.5	>8
	M	MIC	>4	>4	>80	2	2	2	1	ND
	M	MFC	>4	>4	>80	>8	2	2	1	ND
Sb 4858	Y	MIC	>4	>4	2.5	0.125	2	2	0.125	2
	Y	MFC	>4	>4	2.5	2	2	2	0.125	2
	M	MIC	>4	>4	>80	1	2	2	1	ND
	M	MFC	>4	>4	>80	>8	2	2	1	ND

859 Ss: *S. schenckii*, Sb: *S. brasiliensis*, Y: yeast phase, M: mycelial phase; CSP: caspofungin, VCZ: voriconazole, BRI:
860 brilacidin, ITZ: itraconazole, MFS: miltefosine, ML: milteforan, TRB: terbinafine, AMB: amphotericin B; ND: not determined.

861

862

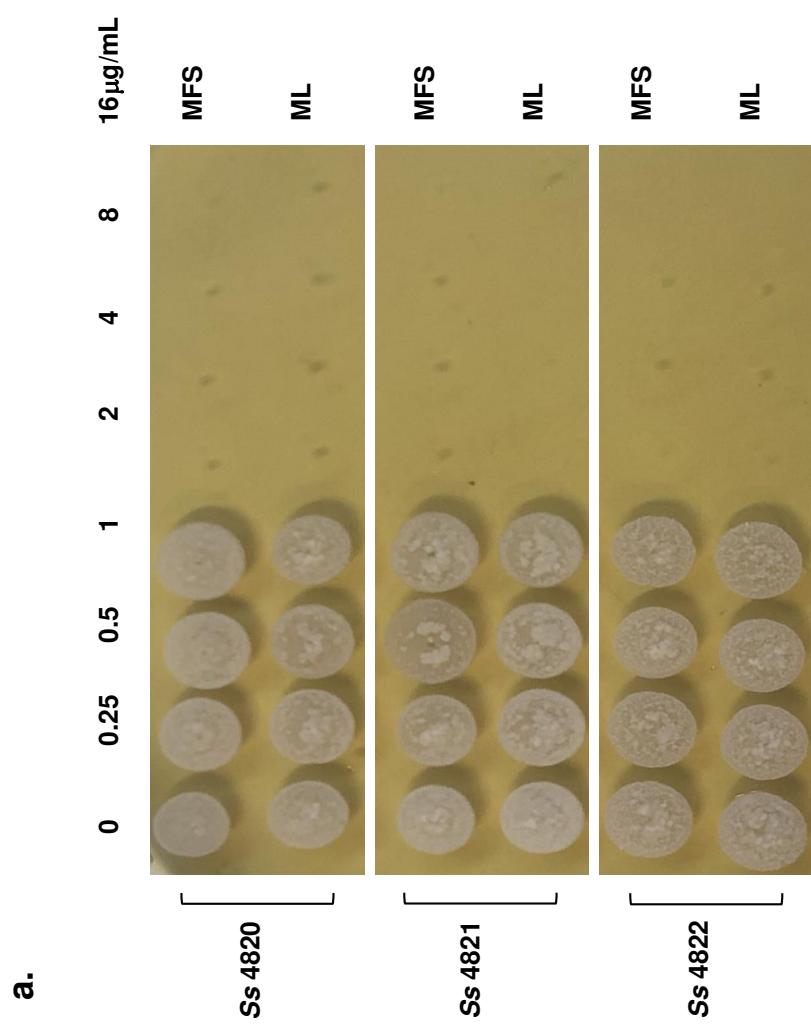
863

864

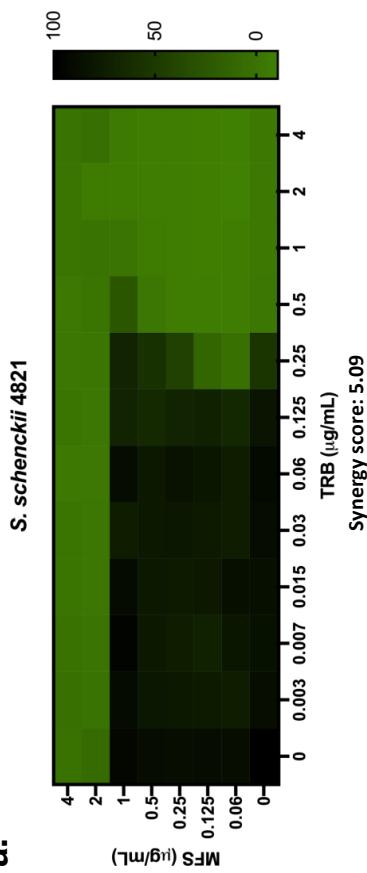
865

866 **Table 2.** MIC and MFC values of MFS and ML combination with several
 867 antifungals against *S. schenckii* and *S. brasiliensis* yeast phase.

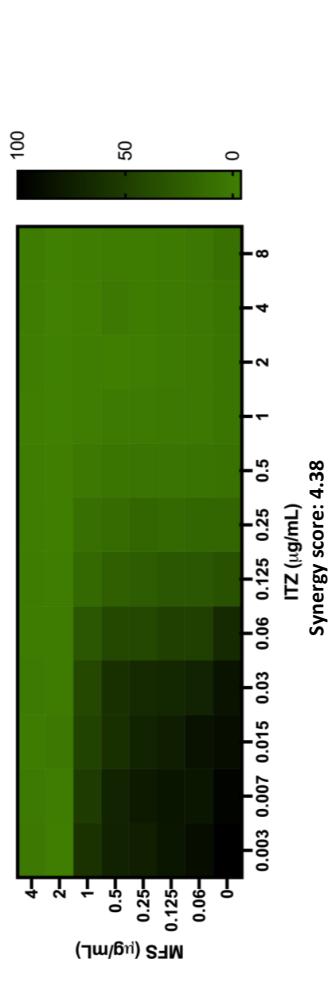
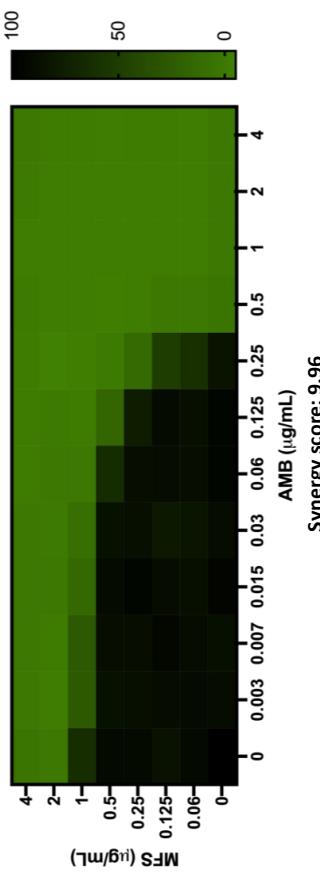
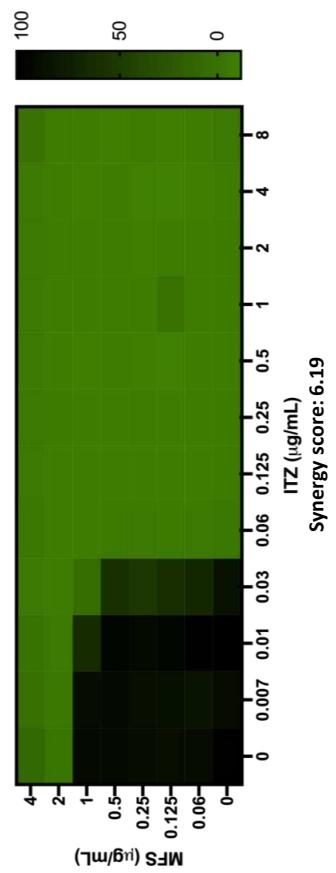
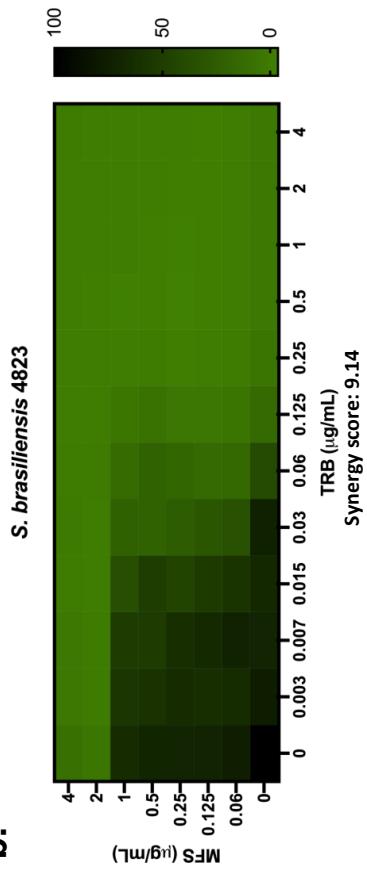
868

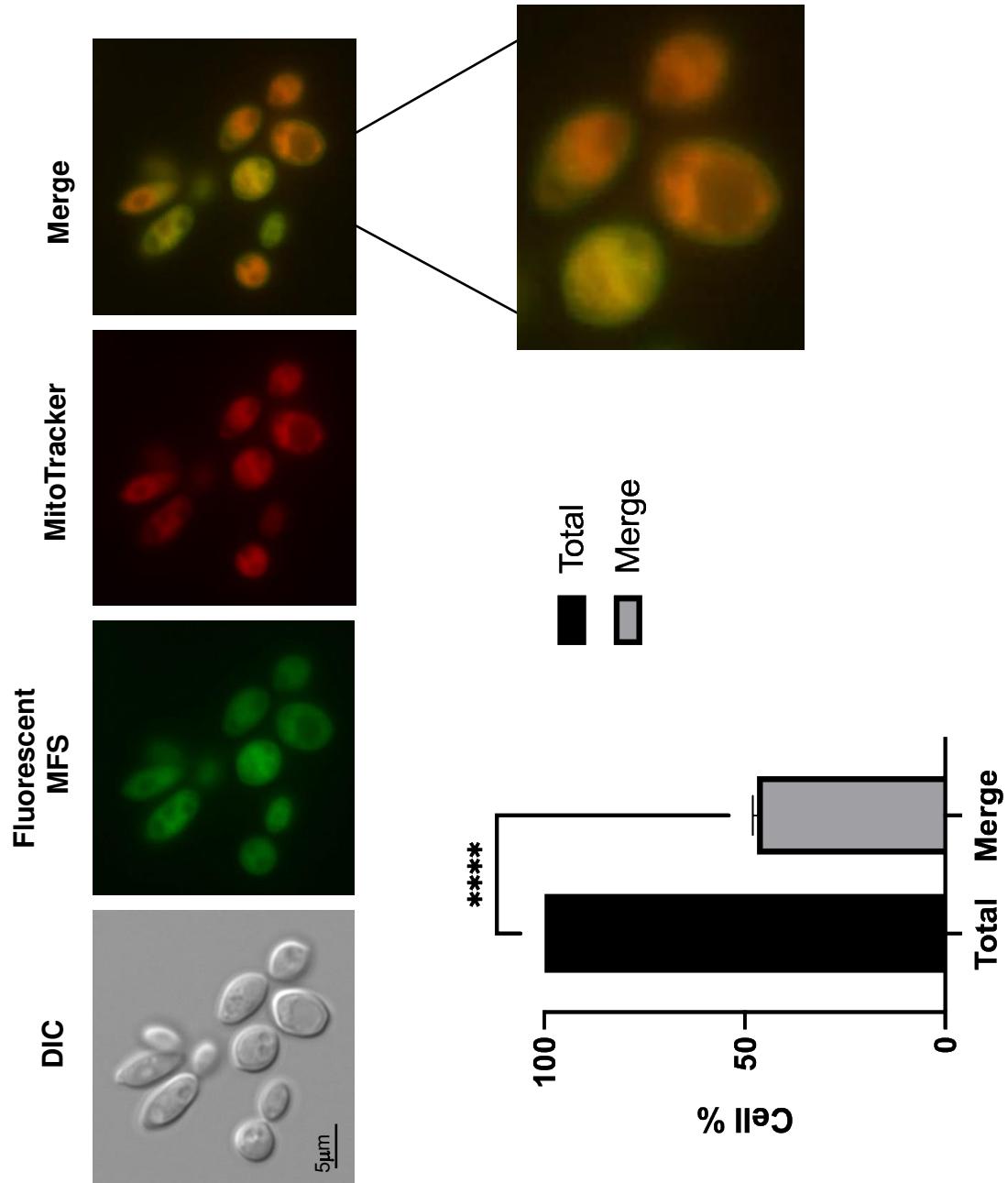

			CSP (16-0.25µg/mL)	VCZ (16-0.25µg/mL)	ITZ (8-0.125µg/mL)	TRB (4-0.06µg/mL)	BRI (20-0.03µM)	AMB (8µg-0.125µg/mL)
Ss 4820	Y	MIC	>16	>16	0.25	1	5	2
		MFC	>16	>16	0.5	1	5	2
	ML	MIC	>16	>16	<0.125	<0.06	5	1
		MFC	>16	>16	0.5	<0.06	5	1
	MFS	MIC	>16	>16	<0.125	<0.06	5	1
		MFC	>16	>16	0.5	<0.06	5	1
Ss 4821	Y	MIC	>16	>16	0.5	0.5	5	2
		MFC	>16	>16	2	0.5	5	2
	ML	MIC	>16	>16	<0.125	0.25	5	0.5
		MFC	>16	>16	0.5	0.25	5	0.5
	MFS	MIC	>16	>16	<0.125	0.25	5	0.5
		MFC	>16	>16	0.5	0.25	5	0.5
Ss 4822	Y	MIC	>16	>16	0.125	0.5	5	2
		MFC	>16	>16	0.25	0.5	5	2
	ML	MIC	>16	>16	ND	ND	5	1
		MFC	>16	>16	ND	ND	5	1
	MFS	MIC	>16	>16	ND	ND	5	1
		MFC	>16	>16	ND	ND	5	1
Sb 4823	Y	MIC	>16	>16	2	0.5	2.5	2
		MFC	>16	>16	>8	0.5	2.5	2
	ML	MIC	>16	>16	0.5	0.125	2.5	0.5
		MFC	>16	>16	>8	0.125	2.5	0.5
	MFS	MIC	>16	>16	0.5	0.125	2.5	0.5
		MFC	>16	>16	>8	0.125	2.5	0.5
Sb 4824	Y	MIC	>16	>16	0.5	0.5	2.5	>8
		MFC	>16	>16	1	0.5	2.5	>8
	ML	MIC	>16	>16	0.25	0.25	2.5	8
		MFC	>16	>16	0.25	0.25	2.5	8
	MFS	MIC	>16	>16	0.25	0.25	2.5	8
		MFC	>16	>16	0.25	0.25	2.5	8
Sb 4858	Y	MIC	>16	>16	0.125	0.125	5	2
		MFC	>16	>16	2	0.125	5	2
	ML	MIC	>16	>16	ND	ND	5	0.25
		MFC	>16	>16	ND	ND	5	0.25
	MFS	MIC	>16	>16	ND	ND	5	0.25
		MFC	>16	>16	ND	ND	5	0.25

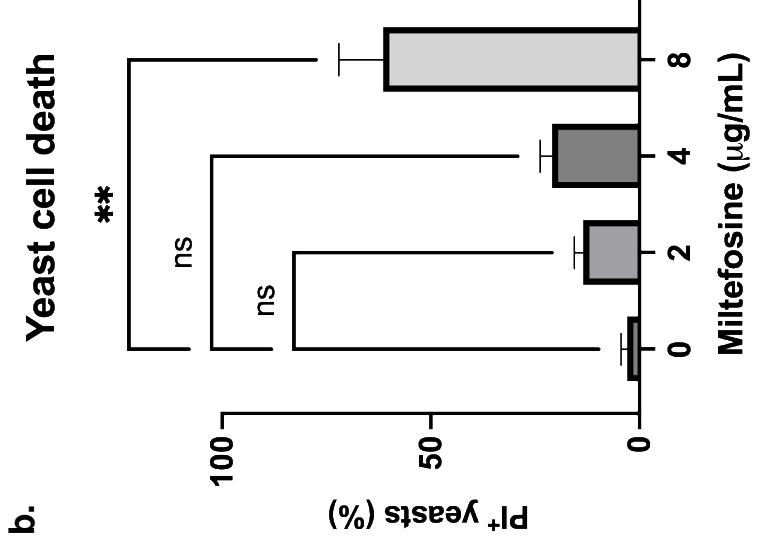
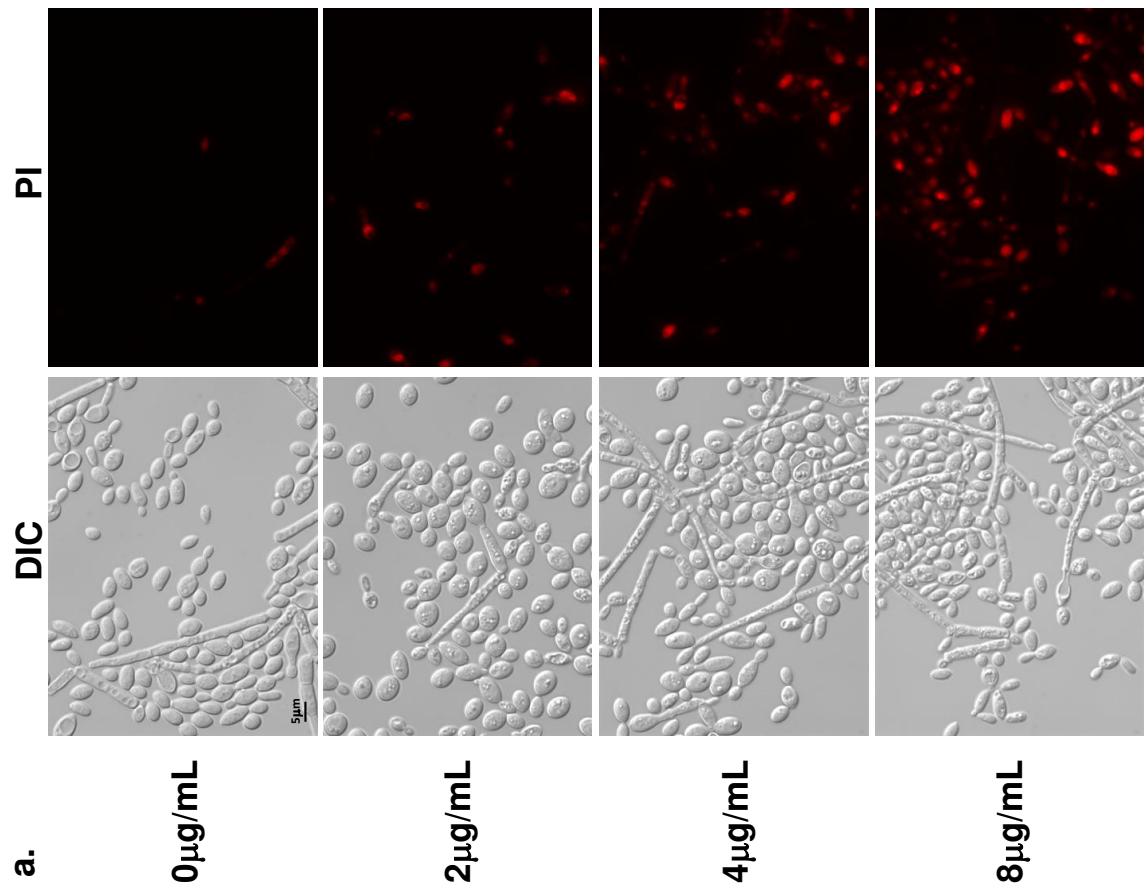
869 Ss: *S. schenckii*, Sb: *S. brasiliensis*; Y: untreated yeasts, ML: yeast treated with milteforan (1µg/mL), MFS: yeast treated
 870 with miltefosine (1µg/mL); CSP: caspofungin, VCZ: voriconazole, ITZ: itraconazole, TRB: terbinafine, BRI: brilacidin, AMB:
 871 amphotericin B; ND: Not determined.

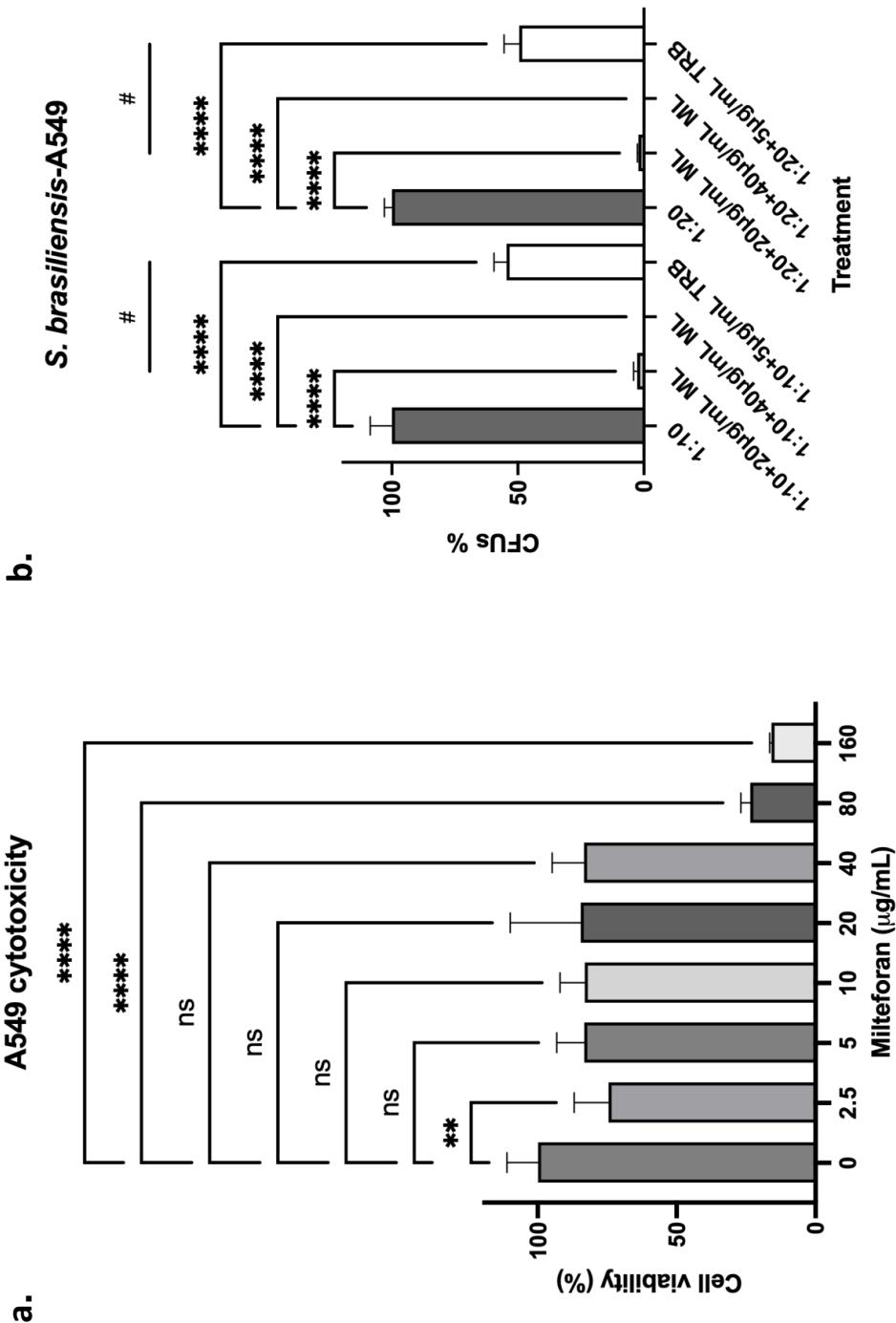

872

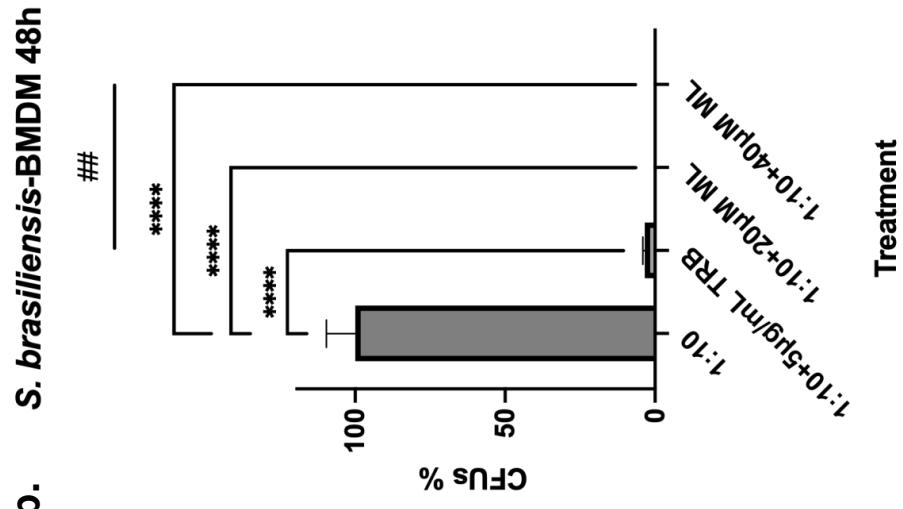
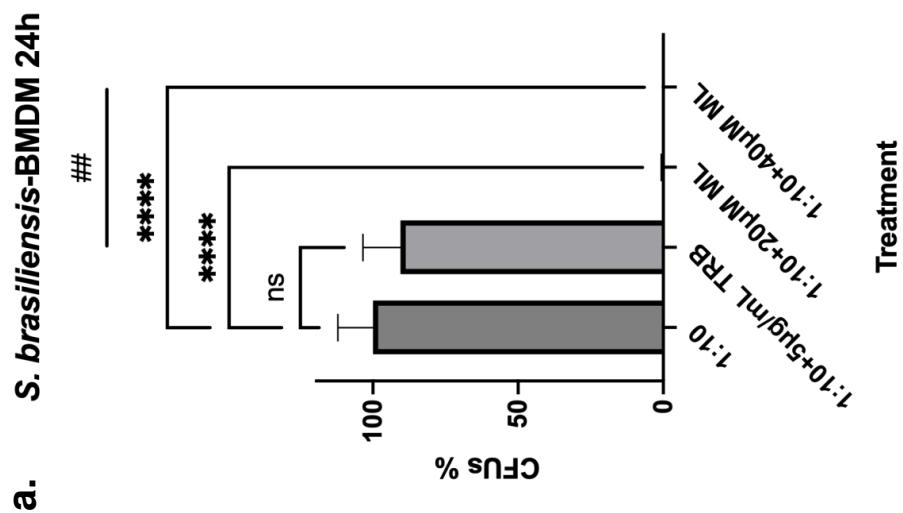
873

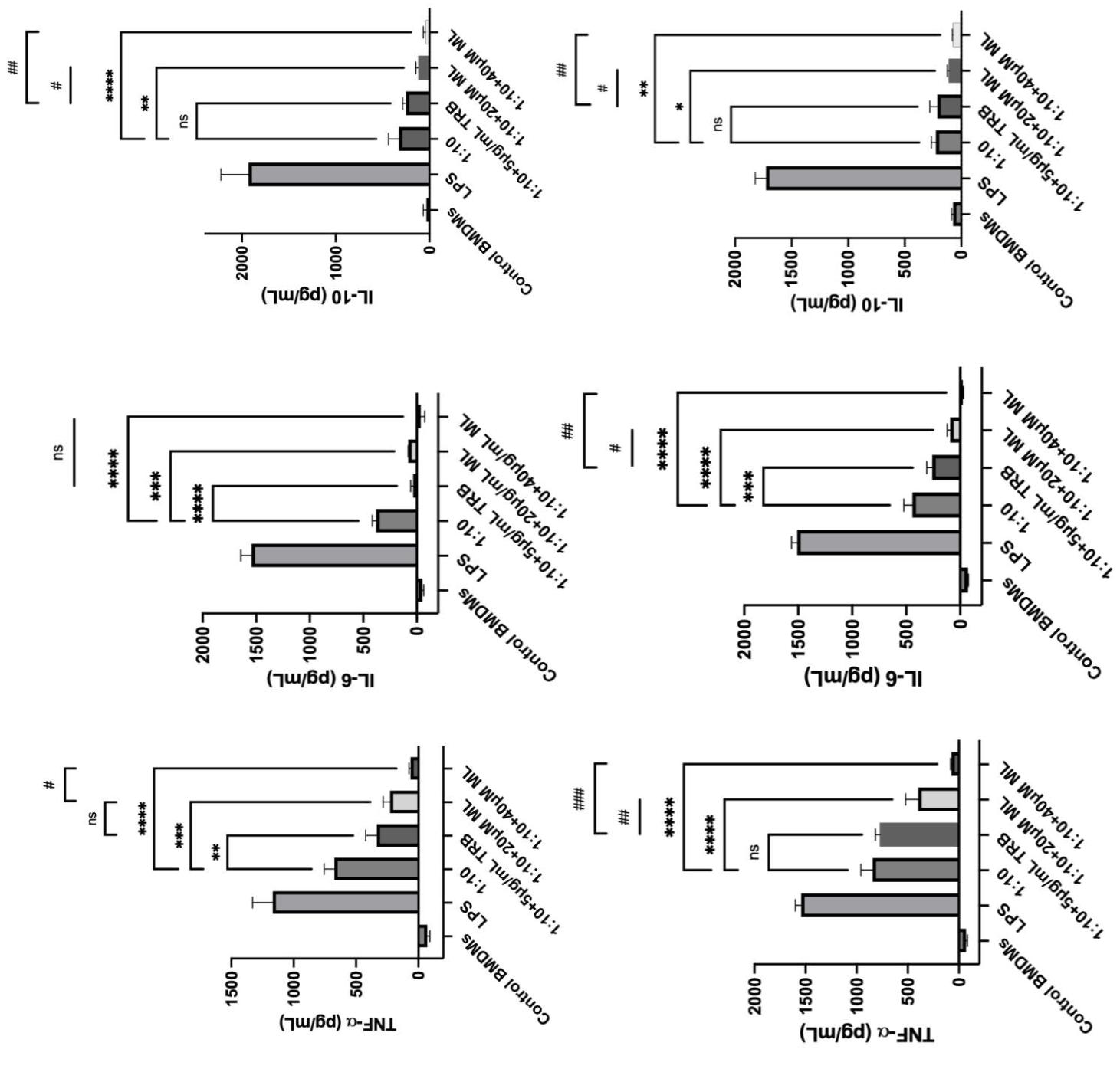




874





a.





b.



८

S. brasiliensis
BMDMs 24h

2

S. brasiliensis
BMDMs 48h