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Abstract

Sporotrichosis, the cutaneous mycosis most commonly reported in Latin
America, is caused by the Sporothrix clinical clade species, including Sporothrix
brasiliensis and Sporothrix schenckii sensu stricto. In Brazil, S. brasiliensis
represents a vital health threat to humans and domestic animals due to its
zoonotic transmission. ltraconazole, terbinafine, and amphotericin B are the most
used antifungals for treating sporotrichosis. However, many strains of S.
brasiliensis and S. schenckii have shown resistance to these agents, highlighting
the importance of finding new therapeutic options. Here, we demonstrate that
milteforan, a commercial veterinary product against dog leishmaniasis whose
active principle is miltefosine, is a possible therapeutic alternative for the
treatment of sporotrichosis, as observed by its fungicidal activity in vitro against
different strains of S. brasiliensis and S. schenckii, and by its antifungal activity
when used to treat infected epithelial cells and macrophages. Our results suggest
milteforan as a possible alternative to treat feline sporotrichosis.
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Introduction

Sporotrichosis, a chronic cutaneous and subcutaneous infection, is the most
commonly reported mycosis in Latin America and Asia, with a high prevalence in
tropical and subtropical areas, including Brazil, Mexico, Argentina, India, Japan,
and China (1, 2). Since 1998, Brazil has experienced large outbreaks of
sporotrichosis that have been expanding throughout the country, mainly in the
southeastern regions, the reason for which Brazil is considered a hyperendemic
area (3-5).

Until 2007, Sporothrix schenckii was assumed to be the unique etiological
agent for sporotrichosis, but recent molecular analyses have revealed the
existence of several cryptic species capable of causing infection (6). These
species comprise the S. schenckii clinical/pathogenic clade, which includes S.
schenckii sensu stricto, S. brasiliensis, Sporothrix globosa, and Sporothrix lurei
(7, 8). These species are thermodimorphic fungi, with a mycelial phase that grows
in decaying organic matter at 25°C (known as the infectious morphology) and a
yeast phase that develops inside the host during infection (known as the parasitic
morphology) (9, 10). The virulence profile varies among the species of the
pathogenic clade being S. brasiliensis the most virulent, followed by S. schenckii,
both with the capacity to cause severe infection even in immunocompetent
individuals, while S. globosa and S. lurei are classified as low virulent species
(11, 12).

Sporotrichosis can present different clinical manifestations, such as
cutaneous (lymphocutaneous and fixed cutaneous), disseminated cutaneous,
and extracutaneous (pulmonary, osteoarticular, ocular, meningeal, and visceral)
(13). The development of one or other clinical forms depends on different factors,
which include the host immune competence, site and depth of inoculation,
amount of inoculum, and the etiological agent, all of which should be considered
for proper patient management (14).

The transmission of the Sporothrix species is through traumatic
implantation with contaminated material, the sapronosis, and the classical route.
However, in hyperendemic zones, such as Brazil, zoonotic infection by S.
brasiliensis is highly reported, transmitted mainly by cats through scratching,
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69  biting, and even through contact with fluids from infected animals. This zoonotic
70 transmission is considered a severe health problem in Brazil, especially in the
71 area of Rio de Janeiro, due to the rapid spread of S. brasiliensis, which is
72  associated with severe clinical manifestations in both humans and cats (15-18).
73 Besides cats, dogs, albeit to a lesser extent, have also been affected by
74 sporotrichosis, making this infection a significant veterinarian problem. Five
75 thousand hundred-thirteen cases of feline sporotrichosis (from 1988 to 2017) and
76 244 canine cases (from 1988 to 2014) have been reported by the Evandro
77 Chagas National Institute of Infectious Diseases in Rio de Janeiro, Brazil.
78 However, this number is likely underestimated because sporotrichosis incidence
79 is a mandatory notification only in a few states of Brazil (18).

80 Identification of the sporotrichosis causative agent is essential for
81 treatment since the Sporothrix species show different antifungal susceptibility
82  profiles (19-21), but this is not always possible given that the identification of the
83 species requires molecular tools (8). In general, for the treatment of the
84  cutaneous forms, itraconazole (ITZ) is considered the gold standard for the
85 cutaneous clinical forms, while amphotericin B (AMB) is the first-line antifungal
86 therapy used for disseminated forms (22, 23). However, in the last few years,
87 many S. brasiliensis clinical strains have been reported to show resistance to

88  both azoles and AMB (24-26), which complicates sporotrichosis treatment.

89 Miltefosine (MFS), also known as hexadecyl phosphocholine, is a
90 synthetic glycerol-free phospholipid analog initially used as an antineoplastic drug
91 (27, 28). Nowadays, MFS is the only available oral drug used in the treatment of
92  visceral and cutaneous leishmaniasis in dogs and humans due to its significant
93  antiparasitic activity, in vitro and in vivo, against Leishmania species (29-32).
94 MFS's action mechanism(s) has yet to be entirely understood. However, it has
95 been demonstrated to act as a multi-target drug associated with the disruption of
96 many vital pathways, such as (i) the inhibition of the biosynthesis of
97 phosphatidylcholine, which causes low levels of this phospholipid (33, 34); (ii) the
98 interference of the cell membrane calcium channels, which induces an increase
99 of intracellular Ca?* (35, 36); (iii) the inhibition of the sphingomyelin biosynthesis,
100  which increases ceramide concentration (37), resulting in cell apoptosis; and (iv)
101 the immune response, in which its immunomodulatory effects induce the
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102  activation of the Th1 response, mainly through the increased production of IFNy

103 and IL-12, which prevails over the Th2 response driven by Leishmania sp (38).

104 MFS has also been reported as an antifungal agent in vitro against some
105 of the most clinically significant pathogenic and opportunistic fungi, such as
106  Candida spp., Aspergillus spp., Fusarium spp., and Cryptococcus spp. (39-44).
107 In addition, it was recently shown that MFS has in vitro fungicidal activity against
108  Sporothrix spp., inhibiting the growth of the mycelial phase of S. brasiliensis, S.
109  schenckii, and Sporothrix globosa (45), and the yeast phase of S. brasiliensis
110 strains resistant to (ITZ) and AMB (46). It was also demonstrated that alone or in
111  combination with potassium iodide, MFS inhibits the biofilm formation of S.
112 prasiliensis, S. schenckii, and S. globosa (47, 48). All of this evidence suggests
113  the potential of MFS for treating sporotrichosis. Repurposing orphan drugs, which
114  are the application of existing drugs for different therapeutic purposes than the
115 ones initially marketed for, is a good alternative for treating infections caused by
116  susceptible or resistant microorganisms (49). Such is the case of MFS, which,
117 besides being repurposed for treating leishmaniasis, has been recently
118 designated for treating primary amebic meningoencephalitis and invasive
119  candidiasis (50).

120 Here, we demonstrate that MFS has fungicidal in vitro activity against both
121 morphologies (hyphae and yeast) of different S. brasiliensis and S. schenckii
122  strains. We also showed that milteforan (ML), a commercial veterinary product
123 against dog leshmaniasis whose active principle is miltefosine (Virbac), can
124  inhibit and kill Sporothrix spp in vitro. ML treatment also increases the killing of S.
125  pbrasiliensis yeast by the epithelial cells A549 and bone marrow-derived
126 macrophages (BMDMs). Our results suggest ML as a possible veterinary
127  alternative to treat feline sporotrichosis.

128
129 Results
130 ML and MFS have fungicidal activity against Sporothrix spp. in vitro

131  Several drugs' in vitro antifungal activity against six strains of S. schenckiiand S.
132 pbrasiliensis, three from each species, were assessed according to their MIC and
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133  MFC values for the mycelial and yeast phases (Table 1). From these drugs, ITZ
134 has already been reported to show fungistatic activity against Sporothrix spp.,
135  while terbinafine (TRB), AMB, and MFS are fungicidal drugs (19, 23, 24). On the
136  other hand, voriconazole (VCZ) was reported to show low activity in inhibiting
137  Sporothrix growth, while caspofungin (CSP) does not exhibit antifungal activity in
138  vitro (20). We also included brilacidin (BRI), a host defense peptide mimetic that
139 synergizes CSP against several human pathogenic fungi (51), to assess its
140  antifungal activity against Sporothrix species.

141 Similar to previous reports, we found that none of the Sporothrix strains, in
142  either yeast or mycelium states, were inhibited by CSP or VCZ. At the same time,
143 both morphologies from all the isolates were sensitive to low concentrations of
144 TRB and AMB (MIC <2 pug/mL). For ITZ, all strains' conidia were highly resistant
145 (MFC > 8 pg/mL). At the same time, the yeast phase was more sensitive with
146  MIC and MFC values < 2 ug/mL, except the S. brasiliensis clinical isolate 4823
147  yeast phase, which shows resistance to the drug (MFC > 8 ug/mL), as already
148  reported (52). In the case of BRI, the yeast morphology from all of the Sporothrix
149  strains was susceptible to low concentrations (MIC < 5 pug/mL) of the drug, while
150 conidia are highly resistant. TRB, AMB, and BRI present fungicidal activity
151  against Sporothrix species, while ITZ is a fungistatic drug (Table 1). MFS and ML
152 also have fungicidal activity in vitro against both morphologies from the S.
153  schenckii and S. brasiliensis strains, with MIC and MFC values < 2 pg/mL (Table
154 1 and Figure 1).

155 Once we showed the antifungal activity of MFS and ML against Sporothrix
156  spp., we evaluated their ability to interact with some of the drugs already being
157  used for treating sporotrichosis. MIC and MFC values of CSP, VCZ, ITZ, TRB,
158 BRI, and AMB in combination with half MIC of MFS or ML were determined for
159 the yeast morphology of each Sporothrix strain (Table 2). No differences in the
160 activity of CSP and VCZ were observed since neither of these drugs could inhibit
161  S. schenckii or S. brasiliensis growth in the presence of MFS or ML. Combining
162 BRI and MFS or ML does not increase BRI fungicidal activity, as the MIC and
163 MFC values are the same as those of BRI alone. On the other hand, the
164 interaction of MFS or ML with either ITZ, TRB, or AMB increases the antifungal
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165  activity against all of the Sporothrix strains tested, decreasing their MIC and MFC
166  values.

167 Next, in order to determine what kind of interaction MFS has with ITZ, TRB,
168 and AMB, the drug combination responses were analyzed using checkerboard
169 assays and the SynergyFinder software (53), which evaluates the potential
170  synergy of 2 or more drugs. The dose-response data obtained for combining MFS
171 with either TRB, ITZ, or AMB against S. brasiliensis and S. schenckii yeast cells
172 shows a likely additive interaction (synergy score from -10 to 10) (Figure 2). As
173  previously reported for ITZ (46), we found that MFS does not synergize with the
174  drug against S. brasiliensis and S. schenckii.

175

176  MFS localizes to the Sporothrix cell membrane and mitochondria and
177  causes cell death

178  Although the antifungal effect of MFS against Sporothrix has been reported, the
179 localization of the drug in the yeast is still unknown. In Leishmania (54) and A.
180 fumigatus (43), MFS localizes in the cell membrane and the mitochondria,
181 increasing mitochondrial fragmentation and damage. Here, we found that in S.
182  brasiliensis, fluorescent MFS is also localized in the cell membrane and the
183  mitochondria in 47% of the cells investigated (three repetitions of 100 cells each),
184  as shown by MitoTracker colocalization (Figure 3).

185 Subsequently, to evaluate the viability of the yeast in the presence of MFS,
186  drug-treated cells were stained with propidium iodide (Pl) and analyzed by
187 fluorescence microscopy. Since Pl only penetrates cells with damaged
188 membranes, PI* cells are considered to be going through late apoptosis or early
189 necrosis (55). Treatment of S. brasiliensis yeasts with 2, 4, and 8ug/mL of MFS
190 showss dose-dependent damage of the cells since the Pl signal increased with
191 the drug concentration (Figure 4), as early as 6 hours of exposure, confirming the
192  MFS fungicidal activity against Sporothrix.

193

194
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195 ML decreases S. brasiliensis fungal burden in A549 pulmonary cells and
196 bone marrow-derived macrophages (BMDM)

197 To determine the antifungal activity of ML against S. brasiliensis in the host
198 tissues, two cell lines were used: lung A549 cells and Bone Marrow-Derived
199 Macrophages (BMDMs). As shown in Figure 5a, ML concentrations of 40ug/mL
200 and lower did not reduce A549 cell viability compared to the control. A549 cells
201  were challenged with 1:10 and 1:20 ratios (A549-yeast), and we observed a
202  significant reduction of more than 90 % in the fungal viability in both ML
203  treatments, which contrasts with TRB treatment that shows about 50 % viability
204  (Figure 5b).

205 When we challenged BMDMs with S. brasiliensis at a 1:10 ratio (BMDMs-
206  yeast) in the presence of 20 and 40ug/ml ML, we observed complete clearing of
207  S. brasiliensis compared to TRB that showed about 80 and 40 % clearing,
208 respectively, at 24 and 48 h (Figure 6). Our results strongly indicated that ML can
209  help both A549 and BMDMs to clear S. brasiliensis infection.

210 We also assessed the ability of the BMDMs to produce cytokines after
211  stimulation by S. brasiliensis and treatment with the drug. It has already been
212  reported that S. brasiliensis yeast stimulates higher production of TNF-a., IL-6, IL-
213 1B, and IL-10 in human monocyte-derived macrophages when compared to S.
214  schenckii, and it is also more phagocytosed under these conditions (56), which
215  might contribute to the higher virulence of this species.

216 After infection of BMDMs and treatment during 24h, we observed a
217  significant decrease in the stimulation of TNF-o and IL-6 when the yeast cells
218  were treated with TRB and 20 and 40ug/mL of ML, when compared to untreated
219  cells (1:10) (Figure 7a). However, when compared to TRB treatment, a significant
220 decrease was observed in the stimulation of TNF-a only at 40ug/mL of ML. In
221  contrast, no difference was observed in the case of IL-6 with both ML
222 concentrations compared to TRB. Finally, for the secretion of IL-10, a significant
223  decrease was only observed when the yeast cells were treated with both ML
224 concentrations. However, no difference was found with the TRB treatment
225 compared to untreated cells (Figure 7a).
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226 After 48h of infection, treatment with TRB did not cause a significant
227 decrease in the TNF-a production, while both ML concentrations did when
228 compared to untreated cells and TRB treatment (Figure 7b). In the case of the IL-
229 6 secretion, the same trend as that of 24h was observed, with the only exception
230 that treatment with 20 and 40ug/mL of ML results in a significant decrease
231 compared to TRB (Figure 7b). The secretion of IL-10 did not decrease with the
232 TRB treatment, while significantly decreased in macrophages infected and
233 uninfected treated with ML, confirming the participation of this drug in the immune
234 response modulation (Figure 7b).

235
236 Discussion

237  Although there are several therapeutic options for the treatment of sporotrichosis,
238 fungal resistance and cytotoxicity of the drugs to the host are essential obstacles
239 that hinder the efficient recovery of the patient. ITZ is considered the first-line
240 treatment, an azole known for its fungistatic activity against Sporothrix species
241 (22, 24), which has increased the development of resistance in some isolates,
242 mainly from S. brasiliensis (46, 57, 58). TRB, a drug with fungicidal activity
243 against Sporothrix, has been reported to be effective in treating the cutaneous
244  forms but not for the disseminated infections for which AMB is used. AMB is
245 considered a second-line treatment and is commonly used to treat the invasive
246  and disseminated forms, with the disadvantage that it is very toxic in the doses
247  andtime needed to eradicate the infection, in addition to recent reports of isolates
248  resistant to this antifungal agent (22, 46).

249 In Brazil, cat-transmitted sporotrichosis, caused by S. brasiliensis, is a vital
250 health treat that has been spreading since 1998 (5, 8) across the country,
251 affecting domestic animals and humans, another reason for which is of great
252 importance to find new drugs for the treatment and control of this mycosis. For
253 this objective, drug repurposing is an excellent alternative to finding new
254  treatments since these drugs already approved to be used in humans and
255 animals, initially developed to treat other diseases, can help treat infections
256  caused by different pathogens (59, 60). Such is the case of commercial MFS,
257  which was initially used as an antineoplastic drug (27, 28) that is now the only
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258 available oral treatment for leishmaniasis in dogs and humans (29-32), and was
259  recently proven to be effective for the treatment of infections caused by Candida
260  species (39, 40). As previously demonstrated (45, 46, 48), MFS also has in vitro
261 fungicidal activity against Sporothrix species by inhibiting the growth of both
262 fungal morphologies. S. brasiliensis and S. schenckii strains are sensitive to low
263  concentrations of this drug, with an antifungal activity of 2ug/mL for both hyphae

264  and yeast cells. Unlike ITZ, we found no strain resistant to MFS or ML.

265 We also assessed the ability of MFS to synergize with other drugs used
266 for the treatment of sporotrichosis, including TRB, ITZ, and AMB, and as
267  previously reported for ITZ (45), MFS does not synergize the activity of other
268  antifungals. However, it has instead an additive effect, which suggest they do not
269 interact, or act on independent pathways (61). Similarly to A. fumigatus (43), MFS
270 is directed to the mitochondria of S. brasiliensis yeast, staying also on the cell
271  surface and causing cell death, suggesting that this drug might be affecting the
272 mitochondria and membrane integrity, which might be related to its mechanism

273  of action.

274 This drug has been reported to be toxic in high doses in mice, with high
275 mortality in concentrations higher than 25mg/kg (62, 63), with maximum
276  concentrations in the kidney and liver, probably due to its amphiphilic nature (64,
277  65). We assessed ML cytotoxicity in A549 human pulmonary cells and observed
278  a significant viability reduction at 80ug/mL. When we tested the ability of ML to
279  decrease the fungal burden in A549 cells and BMDMs, at 24h and 24 and 48h,
280 respectively, we observed that ML could significantly decrease the CFUs more
281 efficiently than the fungicidal drug TRB in both cell types, with an almost complete

282  clearing of the yeast cells as early as 24 h of treatment.

283 One of the proposed mechanisms of action for MFS is its
284  immunomodulatory ability, which is essential for the treatment of leishmaniasis
285  since the drug induces the Th1 response and suppresses the Th2, by increasing
286 the production of proinflammatory cytokines such as IFNy, TNFa, and IL-12 for
287 the clearance of intracellular pathogens, while relapses of leishmaniasis have
288 been related with an increase of the Th2 response and the production of IL-10
289 (32, 38). We observed that ML decreases the fungal burden and the production
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290 of TNFa, IL-6, and IL-10, secreted by the infected BMDMs. We propose three
291 non-excluded hypotheses to explain it: (i) The cytokines reduction might be
292 related to the fact that the drug is kiling the yeast cells before being
293  phagocytosed, where there is the death of the yeast cells as early as 6 hours of
294  MFS treatment; (ii) since the drug is localized to the cell surface, MFS could act
295 as an opsonizing agent helping in the macrophage recognition and further
296  phagocytosis: and (iii) MFS could bind to essential virulence factors, such as
297 adhesins, or immunogenic components, such a B-glucans, in a way that is
298 attenuating S. brasiliensis ability to infect and generate an immune response. All
299 three options would reduce the fungal load, tissue damage, and inflammation,
300 making this veterinary drug a suitable treatment alternative for feline

301  sporotrichosis.

302
303 Materials and Methods

304 Fungal strains and culture conditions

305 In this study, three Sporothrix schenckii (ATCC-MYA 4820, ATCC-MYA 4821,
306 and ATCC-MYA 4822) and three S. brasiliensis strains (ATCC-MYA 4823, ATCC-
307 MYA 4824, and ATCC-MYA 4858) were used for the in vitro antifungal
308 susceptibility assays; S. schenckii ATCC-MYA 4821 and S. brasiliensis ATCC-
309 MYA 4823 were used for the checkerboard assays; and S. brasiliensis ATCC-
310 MYA 4823, a highly virulent clinical isolate obtained from feline sporotrichosis

311  (66), was used for the infection assays.

312  The mycelial phase from Sporothrix spp. was obtained and maintained on solid
313  YPD pH 4.5 (yeast extract 1% (w/v), gelatin peptone 2% (w/v), and dextrose 3%
314  (w/v)) at 28°C for four days. In contrast, the yeast morphology was grown in liquid
315 YPD pH 7.8, at 37°C under orbital agitation for four days, as previously reported

316  (67). Each phase was confirmed by observing the cells with light microscopy.
317
318

319
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320 Antifungal drugs

321  For the in vitro assays, voriconazole (VCZ, Sigma-Aldrich), itraconazole (ITZ,
322  Sigma-Aldrich), amphotericin B (AMB, Sigma-Aldrich), terbinafine (TRB, Sigma-
323  Aldrich), and brilacidin (BRI, supplied by Innovation Pharmaceuticals) were
324  diluted in dimethyl sulfoxide (DMOS); while miltefosine (MFS, Sigma-Aldrich), the
325 milteforan active compound, was diluted in ethanol; and caspofungin (CSP,
326  Sigma-Aldrich) was diluted in distilled water. Milteforan (miltefosine 2%) was
327 purchased from Virbac as an oral solution.

328
329 In vitro antifungal susceptibility testing

330 The minimum inhibitory concentrations (MICs) were determined by the broth
331  microdilution method adapted from protocols published by the Clinical Laboratory
332  Standard Institute for the mycelial and yeast phases (24, 68). Briefly, serial two-
333  fold dilutions of the antifungal drugs were performed in YPD pH 4.5 and 7.8, for
334 mycelial and yeast, respectively, into 96-well microtiter plates to obtain
335 concentrations of 4-0.06pg/mL for CSP, VCZ and TRB; 8-0.125ug/mL for ITZ and
336 AMB; 16-0.25ug/mL for MFS and ML; and 80-1.25uM for BRI, with a final
337 concentration of 2x10% and 2x10* conidia or yeast cells, respectively, in a volume
338 of 100uL. The plates were incubated at 28°C (for conidia) or 37°C (for yeast) for
339 four days, and the MIC was determined by visual inspection and defined as the
340 lowest concentration that inhibits 90-100% of fungal growth about untreated cells.
341  Finally, 5uL of conidia or yeast cells from each well were grown in drug-free solid
342 YPD pH 4.5 and pH 7.8 at 28°C and 37°C, respectively, for four days. The
343 minimum fungicidal concentration (MFC) value was the lowest concentration,
344  showing no fungal growth. Three independent experiments were performed by

345 duplicate.
346
347 Checkerboard assays and synergy testing

348 The drug combination effect was determined through the MIC and MFC values
349 of the yeast phase, as described before. Briefly, serial twofold dilutions of the

350 antifungal drugs were performed in liquid YPD pH 7.8 containing half MIC of MFS
12
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351  or ML (1pg/mL) in 96-well microtiter plates to obtain concentrations of 16-
352 0.25pug/mL for CSP and VCZ; 8-0.125ug/mL for ITZ and AMB; 4-0.06pg/mL for
353 TRB; and 80-1.25uM for BRI, with a final concentration of 2x10* yeast, in a
354  volume of 100uL. The plates were incubated at 37°C for four days, and the MIC
355 was determined by visual inspection. It was defined as the lowest concentration
356 inhibiting 90-100% of fungal growth in cells treated only with 1ug/mL of MFS or
357 ML. After MIC determination, 5uL of yeast from each well were grown in drug-
358 free solid YPD pH 7.8 at 37°C for four days. The MFC value was the lowest

359  concentration, which showed no fungal growth.

360 Checkerboard assays were performed to quantify the interaction (synergistic,
361 additive, or antagonistic) between MFS and ITZ, AMB, or TRB. Briefly, a stock
362  solution of 2x10% yeast/mL and each drug (8ug of MFS and 16ug/mL of ITZ, 16ug
363 of AMB, or 8ug of TRB) were prepared in RMPI-1640. In 96-well microtiter plates,
364 the first antibiotic (MFS) was diluted sequentially along the ordinate. In contrast,
365 the second drug (ITZ, AMB, or TRB) was diluted along the abscissa to obtain a
366 final volume of 100uL. The plates were incubated at 37°C for four days, and the
367 metabolic activity was determined through the XTT reduction assay (47). Briefly,
368 50uL of a solution of XTT 1mg/mL and menadione 1mM resuspended in water
369 were added to each well, mixed, and incubated in the dark at 37°C for three h.
370 The supernatant of each well was transferred to a new plate and read in a
371  spectrophotometer at 492nm. Results are expressed as means = SD of three

372 independent experiments.

373  To determine the type of drug interaction, the SynergyFinder software (53) was
374 used, with the following parameters: detect outliners: yes; curve fitting: LL4;
375 method: Bliss; correction: on. The summary synergy scores represent the
376  average excess response due to drug interaction, in which a value less than -10
377 suggest an antagonistic interaction between two drugs; values from -10 to 10
378 suggest an additive interaction; and values larger that 10 suggest a synergistic
379 interaction.

380

381
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382 Yeast cells death

383 The effect of ML on the cell membrane potential was assessed by staining with
384  propidium iodide (Pl). Yeast cells grown for 4 days in liquid YPD pH 7.8 were
385 treated with 0, 2, 4 and 8ug/mL of ML during 6 h, stained with PI 20mM for 30
386 minutes, and washed with PBS 1X three times. Fluorescence was analyzed at an
387 excitation wavelength of 572/25nm and emission of 629/62nm with the Observer
388 Z1 fluorescence microscope using a 100x oil immersion lens objective.
389 Differential interference contrast (DIC) and fluorescent images were capture with
390 an AxioCam camera (Carl Zeiss) and processed using AxioVision software
391 (version 4.8). The experiment was performed twice, and for each treatment at
392 least 100 cells were counted. The results were plotted using Graphpad Prism
393 (GraphPad software, Inc.). A p-value<0.001 was considered significant.

394
395 Miltefosine localization

396 S. brasiliensis yeast cells cultured for 4 days in YPD pH 7.8 were washed 3 times
397 with PBS 1X and then treated with the fluorescent MFS analogue MT-11 C-BDP
398 (excitation wavelength 450-490nm and emission wavelength 500-550nm) for 6
399  hours, also in liquid YPD pH 7.8. The cells were washed 3 times and stained with
400 250nM of MitoTracker Deep Red FM (Invitrogen) (wavelength
401 absorbance/emission 644/665nm) and washed again. The yeast cells were
402  visualized in slides with the Observer Z1 fluorescent microscope using a 100x oil
403 immersion lens objective. DIC and fluorescent images were capture with an
404  AxioCam camera (Carl Ziess) and processed using AxioVision software (version
405 4.8). Two independent experiments were performed, and 100 cells were counted
406  of each to calculate the merge %.

407
408 Cytotoxicity assay

409 The cytotoxicity of ML was determined in A549 human lung cancer cells using
410 the XTT reduction assay. 2x10° cells/well were seeded in 96-well tissue plates
411 and incubated in Dulbecco’s Modified Eagle Medium (DMEM, ThermoFischer).
412 After 24 h of incubation with CO2 5%, the cells were treated with different

14
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413  concentrations of ML (0, 2.5, 5, 10, 20, 40, 80 and 160ug/mL), and after 48 h of
414  incubation, cell viability was assessed using the XTT assay. Briefly, 80uL of a
415  solution of XTT 1mg/mL in DMEM, HEPES 1M, and menadione 8ug/mL were
416 added to each well, and after 30 min, formazan formation was quantified
417  spectrophotometrically at 450nm using a microplate reader. Each treatment was
418 performed by ftriplicate and the results were plotted using Graphpad Prism
419 (GraphPad Software, Inc.). A p-value<0.0001 was considered significant.

420
421  A549 and bone marrow derived macrophages (BMDMs) killing assays

422  The cell line A549 and BMDMs were cultured using DMEM supplemented with
423  fetal bovine serum (FBS) 10% and penicillin-streptomycin 1% (Sigma-Aldrich),
424  and seeded at a concentration of 1x108 cells/mL in 24-well plates (Corning). The
425 cells were challenged with S. brasiliensis yeasts at a multiplicity of infection of
426 1:10 and were then treated with ML 20 and 40uM. As control, we included
427  untreated cells and cells treated with TRB 5ug/mL. For the BMDMs, cells treated
428  with LPS were also included as control. The A549 were incubated during 24 h at
429  37°C with CO2 5%, while the BMDM were incubated for 24 and 48h under the
430 same conditions. After incubation, the culture media was removed, each well was
431  washed 3 times with PBS 1X, and 1mL of sterile cold water was added to recover
432  and collect the cell monolayer. To assess the number of CFUs, 100uL of the cell
433  suspensions were plated on YDP pH 4.5 and incubated at 28°C for 4 days. When
434  necessary, the cell suspensions were diluted at 1:100 or 1:1000 and 100uL were
435  plated. 50uL of the inoculum adjusted to 1x103 cells/mL was also plated to correct
436 the CFU count. Each treatment was performed by triplicate to calculate the CFU
437 %, and the results were plotted using Graphpad Prism (GraphPad Software, Inc.).
438 A p-value<0.0001 was considered significant.

439
440 Cytokines quantification

441  The Elisa-assay kits (R&D Systems) were used to evaluate the concentration of
442  the proinflammatory cytokines TNFa and IL-6, and the anti-inflammatory cytokine

443  1L-10 in the supernatants of the S. brasiliensis and BMDMs interaction for 24 and
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444 48 h, according to the manufacturers instruction. The plates absorbance was read
445  at 450nm and the cytokine concentration (pg/mL) was calculated according to the
446  values obtained in the standard curve of each cytokine. The results were plotted

447  using Graphpad Prism (GraphPad software, Inc.).
448
449  Statistical analyses

450 The GraphPad Prism 10 (GraphPad Software, Inc.) was used for the statistical
451 analyses. The results are reported as the media + SD from two or three
452  independent experiments performed by duplicate and were analyzed using the
453  Ordinary one-way ANOVA or the Unpaired T test. The statistical significance was
454  considered with a p-value<0.05 or lower.

455
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474 Figure legends

475

476  Figure 1. In vitro fungicidal activity of miltefosine and milteforan against the
477  yeast morphology of S. schenckii and S. brasiliensis. a) S. schenckii (strains
478 4820, 4821, and 4822) yeast were grown in liquid YDP pH 7.8 at 37°C in the
479  presence of several concentrations of MFS or ML (16, 8, 4, 2, 1, 0.5, and
480 0.25ug/mL). After 4 days of incubation, the cells were plated in solid YPD pH 7.8
481 andincubated for 4 days at 37°C. b) S. brasiliensis (strains 4823, 4824, and 4858)
482  yeast were grown in liquid YDP pH 7.8 at 37°C in the presence of several
483  concentrations of MFS or ML (16, 8, 4, 2, 1, 0.5, and 0.25ug/mL). After 4 days of
484  incubation, the cells were plated in solid YPD pH 7.8 and incubated for 4 days at
485  37°C. As control, yeast cells of each strain were grown without the drugs. Results
486  represent the average of three independent experiments performed by duplicate.
487

488 Figure 2. MFS has an additive interaction with ITZ, TRB, and AMB against
489  S. brasiliensis and S. schenckii yeast cells. The synergy score for MFS x TRB,
490 MFS xITZ, and MFS x AMB against Sporothrix was determined by analyzing the
491  SynergyFinder software's checkerboard data. a) S. schenckii and b) S.
492  brasiliensis yeast were grown in liquid YDP pH 7.8 at 37°C in different
493  concentrations of the selected drugs. After 4 days of incubation, the metabolic
494  activity of the cells was assessed by the XTT reduction assay. Results are
495 expressed as the % of metabolic activity and represent the average of three
496 independent experiments.

497

498 Figure 3. MFS is localized in the mitochondria and cell surface of S.
499  brasiliensis yeast. S. brasiliensis yeast cells were exposed to fluorescent MFS
500 (2ug/mL) for 1 h and then stained with MitoTracker Deep Red FM. The MFS and
501 MitoTracker signals merge on the mitochondria, while the MFS signal is observed
502 on the cell surface. Three independent experiments were performed, and 100
503 cells were counted for each to calculate a 47.06 £ 1.01 % of MFS and MitoTracker
504  colocalization (merge).

505
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506 Figure 4. MFS causes dose-dependent death in S. brasiliensis yeast. a) S.
507 brasiliensis yeast were exposed to 0, 2, 4, and 8ug/mL of MFS for 6 hours,
508 stained with PI, and analyzed by fluorescence microscopy. b) Quantification of
509 PI* yeast exposed to MFS, in which 100 yeast-like cells were counted for each
510 condition. Results represent the average of two independent experiments. **p-
511 value<0.001 when compared to untreated cells. ns: not significant.

512

513 Figure 5. Concentrations up to 40ug/mL of ML are not toxic to human cells
514 and can significantly decrease S. brasiliensis survival in A549 epithelial
515 cells. a) A459 epithelial cells were treated with different ML concentrations, with
516 adecrease of cell viability only at 80ug/mL or higher concentrations. b) A459 cells
517 were challenged with S. brasiliensis yeast at a proportion of 1:10 and 1:20 and
518 then treated with 20 and 40ug/mL of ML. The fungicidal drug TRB was included
519 as a control. **p-value<0.01 when compared to untreated cells. ****p-
520 value<0.0001 when compared to untreated cells. #p-value<0.0001 when
521 compared to cells treated with TRB.

522

523  Figure 6. Killing of S. brasiliensis yeast by BMDM is significantly increased
524 in the presence of ML. a) BMDM cells were infected with S. brasiliensis yeast
525 and then treated with 20 and 40ug/mL for 24h, which decreased the fungal
526  survival by almost 100% compared to untreated cells. b) BMDM cells were
527 infected with S. brasiliensis yeast and were then treated with 20 and 40ug/mL for
528 48h, which decreased the fungal survival to 100% when compared to untreated
529 cells. The fungicidal drug TRB was included as a control. *p-value<0.05 when

* k%

530 compared to untreated cells. ***p-value<0.0005 when compared to untreated
531 cells. ****p-value<0.0001 when compared to untreated cells. #p-value<0.01 when
532 compared to cells treated with TRB. ##p-value<0.01.

533

534  Figure 7. Cytokine secretion by BMDM infected with S. brasiliensis and
535 treated with ML. a) BMDM cells were infected with S. brasiliensis yeast and
536 treated with ML 20 and 40ug/mL for 24h. The interaction supernatant was
537 collected and the cytokines TNF-a (ns: not significant; **p-value<0.005 when

538 compared to untreated cells; ***p-value<0.0005 when compared to untreated
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539 cells; ****p-value<0.0001 when compared to untreated cells; #p-value<0.01 when
540 compared to TRB treatment), IL-6 (ns: not significant; ***p-value<0.0005 when

* k%%

541 compared to untreated cells; p-value<0.0001 when compared to untreated
542 cells), and IL-10 (ns: not significant; **p-value<0.005 when compared to
543  untreated cells; ****p-value<0.0001 when compared to untreated cells; #p-
544  value<0.0005 when compared to TRB treatment; ##p-value<0.0001 when
545 compared to TRB treatment) were measured. b) BMDM cells were infected with
546  S. brasiliensis yeast and treated with 20 and 40ug/mL for 48h. The interaction
547  supernatant was collected and the cytokines TNF-a (ns: not significant; ****p-
548 value<0.0001 when compared to untreated cells; #p-value<0.0005 when
549 compared to TRB treatment; ##p-value<0.0001 when compared to TRB
550 treatment), IL-6 (***p-value<0.001 when compared to untreated cells; (****p-
551 value<0.0001 when compared to untreated cells; #p-value<0.005 when
552 compared to TRB treatment; ##p-value<0.0001 when compared to TRB
553 treatment), and IL-10 (ns: not significant; *p-value<0.05 when compared to
554  untreated cells; **p-value<0.01 when compared to untreated cells; #p-value<0.05
555 when compared to TRB treatment; ##p-value<0.01 when compared to TRB
556 treatment) were measured.

557

558
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856 Table 1. MIC and MFC values of several antifungals against S. schenckii and S.

857  brasiliensis yeast and mycelial phases.

858
CSP vCcz BRI ITZ MFS ML TRB AMB
(4-0.06 (4-0.06 (80-1.25 | (8-0.125 | (16-0.25 | (16-0.25 (4-0.06 (8-0.125
pg/mL) | pg/mL) pM) pg/mL) | pg/mL) | pg/mL) | pg/mL) | pg/mlL)

Y MIC >4 >4 5 0.25 2 2 1 2

Ss MFC >4 >4 5 0.5 2 2 1 2
4820 M MIC >4 >4 >80 2 2 2 1 ND
MFC >4 >4 >80 >8 2 2 1 ND

Y MIC >4 >4 5 0.5 2 2 1 2

Ss MFC >4 >4 5 2 2 2 1 2
4821 M MIC >4 >4 >80 1 2 2 1 ND
MFC >4 >4 >80 >8 2 2 1 ND

Y MIC >4 >4 2.5 0.125 2 2 0.5 2

Ss MFC >4 >4 2.5 0.25 2 2 0.5 2
4822 M MIC >4 >4 >80 2 2 2 1 ND
MFC >4 >4 >80 >8 2 2 1 ND

Y MIC >4 >4 2.5 2 2 2 0.5 2

Sb MFC >4 >4 2.5 >8 2 2 0.5 2
4823 M MIC >4 >4 >80 1 2 2 1 ND
MFC >4 >4 >80 >8 2 2 1 ND
Y MIC >4 >4 2.5 0.5 2 2 0.5 >8
Sb MFC >4 >4 2.5 1 2 2 0.5 >8
4824 M MIC >4 >4 >80 2 2 2 1 ND
MFC >4 >4 >80 >8 2 2 1 ND

Y MIC >4 >4 2.5 0.125 2 2 0.125 2

Sb MFC >4 >4 2.5 2 2 2 0.125 2
4858 M MIC >4 >4 >80 1 2 2 1 ND
MFC >4 >4 >80 >8 2 2 1 ND

859 Ss: S. schenckii, Sb: S. brasiliensis, Y: yeast phase, M: mycelial phase; CSP: caspofungin, VCZ: voriconazole, BRI:
860 brilacidin, ITZ: itraconazole, MFS: miltefosine, ML: milteforan, TRB: terbinafine, AMB: amphotericin B; ND: not determined.

861
862
863
864
865
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866 Table 2. MIC and MFC values of MFS and ML combination with several
867 antifungals against S. schenckii and S. brasiliensis yeast phase.
868
CSP vcz ITZ TRB BRI AMB
(16-0.25ug/mL) | (16-0.25ug/mL) | (8-0.125ug/mL) | (4-0.06ug/mL) (20-0.03uM) (8ug-0.125ug/mL)
Y MIC >16 >16 0.25 1 5 2
MFC >16 >16 0.5 1 5 2
Ss ML MIC >16 >16 <0.125 <0.06 5 1
4820 MFC >16 >16 0.5 <0.06 5 1
MFS MIC >16 >16 <0.125 <0.06 5 1
MFC >16 >16 0.5 <0.06 5 1
Y MIC >16 >16 0.5 0.5 5 2
MFC >16 >16 2 0.5 5 2
Ss ML MiC >16 >16 <0.125 0.25 5 0.5
4821 MFC >16 >16 0.5 0.25 5 0.5
MFS MiC >16 >16 <0.125 0.25 5 0.5
MFC >16 >16 0.5 0.25 5 0.5
Y MIC >16 >16 0.125 0.5 5 2
MFC >16 >16 0.25 0.5 5 2
Ss ML MIC >16 >16 ND ND 5 1
4822 MFC >16 >16 ND ND 5 1
MFS MIC >16 >16 ND ND 5 1
MFC >16 >16 ND ND 5 1
v MIC >16 >16 2 0.5 25 2
MFC >16 >16 >8 0.5 2.5 2
Sb ML MiC >16 >16 0.5 0.125 25 0.5
4823 MFC >16 >16 >8 0.125 25 0.5
MFS MIC >16 >16 0.5 0.125 25 0.5
MFC >16 >16 >8 0.125 25 0.5
v MIC >16 >16 0.5 0.5 25 >8
MFC >16 >16 1 0.5 25 >8
Sb ML MiC >16 >16 0.25 0.25 25 8
4824 MFC >16 >16 0.25 0.25 2.5 8
MFS MIC >16 >16 0.25 0.25 25 8
MFC >16 >16 0.25 0.25 25 8
Y MIC >16 >16 0.125 0.125 5 2
MFC >16 >16 2 0.125 5 2
Sb ML MIC >16 >16 ND ND 5 0.25
4858 MFC >16 >16 ND ND 5 0.25
MFS MIC >16 >16 ND ND 5 0.25
MFC >16 >16 ND ND 5 0.25
869 Ss: S. schenckii, Sb: S. brasiliensis; Y: untreated yeasts, ML: yeast treated with milteforan (1ug/mL), MFS: yeast treated
870 with miltefosine (1pg/mL); CSP: caspofungin, VCZ: voriconazole, ITZ: itraconazole, TRB: terbinafine, BRI: brilacidin, AMB:
871  amphotericin B; ND: Not determined.
872
873
874
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