

1 **Deciphering the function of intrinsic and genomics-driven epigenetic**
2 **heterogeneity in head and neck cancer progression with single-nucleus**
3 **CUT&RUN**
4

5 **Running title**

6 Impact of the epigenome on HNSCC progression
7

8 **Authors**

9 Howard J. Womersley,^{1†}, Daniel Muliaditan,^{2,3†}, Ramanuj DasGupta,^{3*}, Lih Feng Cheow^{1,2*}
10

11 **Affiliations**
12 ¹Institute for Health Innovation and Technology, National University of Singapore, Singapore
13 117599.

14 ²Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore,
15 Singapore 117583.

16 ³Genome institute of Singapore, Agency for Science, Technology and Research, Singapore 138672.

17 [†] These authors contributed equally to this work.

18 • Correspondence and request for materials should be addressed to R.D.G. (dasguptar@gis.a-star.edu.sg) or L.F.C. (bieclf@nus.edu.sg).
19

20 **Email addresses**

21 Howard J. Womersley: howard@nus.edu.sg; Daniel Muliaditan: Daniel_Muliaditan@gis.a-star.edu.sg; Ramanuj DasGupta: dasguptar@gis.a-star.edu.sg; Lih Feng Cheow: bieclf@nus.edu.sg.
22

24

Abstract

25 Interrogating regulatory epigenetic alterations during tumor progression at the resolution of
26 single cells has remained an understudied area of research. Here we developed [the-a](#) highly sensitive
27 single-nucleus CUT&RUN (snCUT&RUN) assay to profile histone modifications in isogenic
28 primary, metastatic, and cisplatin-resistant head and neck squamous cell carcinoma (HNSCC)
29 patient-derived tumor cell lines. We find that the epigenome can be involved in diverse modes to
30 contribute towards HNSCC progression. First, we demonstrate that gene expression changes during
31 HNSCC progression can be co-modulated by alterations in both copy number and chromatin activity,
32 driving epigenetic rewiring of cell-states. Furthermore, intratumour epigenetic heterogeneity (ITeH)
33 may predispose sub-clonal populations within the primary tumour to adapt to selective pressures and
34 foster the acquisition of malignant characteristics. In conclusion, snCUT&RUN serves as a valuable
35 addition to the existing toolkit of single-cell epigenomic assays and can be used to dissect the
36 functionality of the epigenome during cancer progression.

37 38 Introduction

39 Tumour metastasis and acquired drug resistance are key steps in cancer progression that
40 ultimately lead to treatment failure and patient mortality. To identify novel modalities to prevent
41 cancer progression and improve patient survival, it is important to understand the underlying
42 mechanisms that drive these processes. To date, efforts to comprehend the basis of cancer progression
43 have largely focused on uncovering genetic alterations within a tumour population that exert selective
44 fitness, which allows cells to survive during drug treatment. However, cancers can exhibit marked
45 cell-to-cell variation ([intra-tumour](#) heterogeneity or ITH) in gene expression and their functional
46 phenotypes that cannot always be explained by mutations or structural variations in their DNA. Non-
47 genetic basis for ITH suggests a potential role for epigenetic mechanisms driving
48 transcriptomic/phenotypic heterogeneity (Brock et al. 2009). Epigenetic alterations offer a heritable
49 mechanism for generating ITH (Easwaran et al. 2014) and occur at greater frequencies in human
50 cancers than genetic mutations (Guo et al. 2019), thereby underscoring the importance of

51 interrogating them when mapping trajectories of cellular plasticity-driven tumour evolution to
52 metastatic or treatment-resistant disease. Cancer cells that survive sub-lethal challenges can often
53 activate stress response pathways which confer early developmental, stem-like features that enable
54 them to cope with further insults (Pisco and Huang 2015). These pro-survival alterations are often
55 manifested in the aberrant modification of histone proteins (Füllgrabe et al. 2011). Furthermore,
56 dysfunction in histone-modifying enzymes have been shown to have a causal relationship with cancer
57 initiation and progression (Wang et al. 2016). Thus, understanding the underlying epigenetic
58 mechanisms that underpin the evolution of cancer is crucial for the discovery of alternative
59 therapeutic interventions to halt or delay its progression and to improve the survival of cancer patients
60 in the clinic.

61 One such cancer type where epigenetic ITH remains an understudied area of research is
62 head and neck squamous cell carcinoma (HNSCC). Single cell studies on HNSCC mainly focused
63 on transcriptomic ITH, underscoring the need to investigate epigenetic control of ITH in HNSCC
64 (Puram et al. 2017; Quah et al. 2023; Choi et al. 2023; Qi et al. 2021). An area where epigenetic ITH
65 can have a role in HNSCC progression is in the alterations of histone modifications. Histone
66 modifications can occur rapidly as cells respond and adapt to the environment. Classically these
67 changes are identified by chromatin immunoprecipitation followed by sequencing (ChIP-seq).
68 However, classical ChIP-seq is only suitable for bulk cell assays, which have limited application for
69 discerning epigenetically distinct subpopulations within tumours. This makes it difficult to determine
70 whether plasticity or lineage transitions are a result of Darwinian selection of rare, pre-existing
71 clones; or adaptation, where dynamic epigenetic changes may activate distinct transcriptomic
72 programs that lead to the emergence of new phenotypes. Thus, there is a need for studies employing
73 methodologies that can detect histone modifications at the resolution of single cells in order to answer
74 questions related to how epigenetic heterogeneity and plasticity may drive cell-state transitions during
75 HNSCC progression. Importantly, given that many readers and writers of different histone marks are
76 amenable to pharmacological interventions (Helin and Dhanak 2013; Kakiuchi et al. 2021), a greater

77 understanding of their regulatory function during tumour [evolution-progression](#) could result in the
78 identification of new therapeutic intervention strategies for HNSCC patients.

79 Methods for profiling histone modifications or transcription factors in single cells generally
80 involve either immunoprecipitation, using an antibody immobilized nuclease or an antibody
81 immobilized transposase – as exemplified by scChIP-seq, uliCUT&RUN and scCUT&Tag,
82 respectively (Grosselin et al. 2019; Hainer et al. 2019; Kaya-Okur et al. 2019). Due to the paucity of
83 DNA within single cells and the implicit requirement for selection of only a tiny fraction of this
84 material, these methods and others tend to have low numbers of filtered reads and/or poor specificity.
85 Single cell ChIP-seq methods employ microfluidic devices to compartmentalize single cells, and
86 although thousands of cells can be analyzed simultaneously the number of unique reads per cell tends
87 to be low due to inefficient reactions within individual droplets. Additionally, the requirement for
88 special equipment limits the adoption of this approach by the wider scientific community. On the
89 other hand, the use of immobilized transposases has generated significantly more traction (Ai et al.
90 2019; Carter et al. 2019; Wang et al. 2019), largely because these methods do not require a library
91 preparation stage that normally leads to additional loss of already scarce material. However
92 considerable off-target transposase binding occurs without stringent salt washes, which can
93 inadvertently detach proteins of interest from DNA unless they are tightly bound (Kaya-Okur et al.
94 2020). CUT&RUN was developed as an alternative to ChIP-seq that exhibits significantly less
95 background noise (Skene and Henikoff 2017), which enables it to profile as few as a 100 cells (Skene
96 et al. 2018). A single cell version - uliCUT&RUN - was demonstrated to localize NANOG and SOX2
97 transcription factors (TF) in rare populations of mouse embryonic stem cells (Hainer et al. 2019).
98 However the extensive sequencing depth required for this method makes it impractical for analyzing
99 large numbers of single cells (Patty and Hainer 2021).

100 In this manuscript, we developed single nucleus CUT&RUN (snCUT&RUN) assay to
101 profile histone modifications in single nuclei of HNSCC tumour cells. Interrogating isogenic patient-
102 derived cell lines (PDC) representing primary, metastatic and cisplatin-resistant tumour cell lines
103 from HNSCC (Chia et al. 2017), we found that H3K4me3 expression remains relatively stable across

104 the distinct evolutionary states. In contrast, H3K27ac modifications were more pronounced and
105 exhibited more divergence corresponding with global changes in acetylation in progressed tumour
106 states. Overall, the same cell types from different patients displayed unique epigenetic profiles –
107 indicating distinct events may have led to the development of the primary tumour, and subsequently
108 their progression to metastatic and drug resistant states. Notably, snCUT&RUN inferred the presence
109 of copy number variations in regions with histone modifications. We found that specific differences
110 in histone modification can be accentuated by genetic copy number alterations (CNA) between cancer
111 cells, suggesting that modulation of the cellular epigenome by genetic aberrations could represent an
112 additional mechanism for cancer progression. Furthermore, we discovered that intratumour
113 epigenetic heterogeneity (ITeH) may give rise to subpopulations within primary cells that mimic the
114 metastatic and/or drug-resistant cell states. This subset of cells, undetected by bulk approaches, may
115 be epigenetically primed to transition to a progressed state. H3K27ac modification in single cells of
116 the progressed states displayed stress response signatures, suggesting that dynamic alterations of the
117 epigenome upon drug insults could underlie adaptational changes in their transcriptome and
118 phenotype. Altogether, we demonstrate that high resolution profiling of histone modifications in
119 single cells with snCUT&RUN can yield valuable insights into epigenetic heterogeneity in HNSCC,
120 complementing existing single cell transcriptomic studies.

121
122 **Results**

123 **Development and performance of single nucleus CUT&RUN**

124 Tagmentation-based methods for single cell histone modification profiling (e.g.,
125 scCUT&TAG) have limitations with efficiency for the following reasons: 1) two independent
126 transposition reactions are needed to create a sequenceable fragment, 2) productive reactions require
127 that the adapters introduced by transposition on each end of the fragment to be of different “types” –
128 which only happens with 50% probability. As such, the median unique read counts from methods
129 such as scCUT&Tag tend not to exceed 10,000 which limits the detection of subtle epigenetic
130 changes in many applications. Considering these challenges, we focused on the nuclease-based

131 protocol – CUT&RUN. Unlike transposon-based methods which get expended during the reaction, a
132 single pA-MN enzyme in CUT&RUN can catalyze fragmentation of DNA on both sides of a given
133 nucleosome. This means that after digestion, all fragments have the potential to yield sequenceable
134 product after the library preparation stage. Although the library preparation protocol is more complex
135 compared to scCUT&TAG, we believe that the increased sensitivity of snCUT&RUN would better
136 cater to the needs for applications that require higher-sensitivity histone profiling at single cell
137 resolution.

138 A schematic of snCUT&RUN is shown in Figure 1A, and the detailed protocol is provided
139 in the Materials and Methods section. The original CUT&RUN method has low background noise
140 and requires a fraction of the sequencing depth compared to ChIP-seq. We found that several
141 enhancements could transform this technique into a single cell method that could be performed in a
142 standard molecular biology laboratory with access to a FACS facility (or other means of single cell
143 isolation). First, we found that it was imperative to maintain nuclear integrity throughout the entire
144 workflow to minimize background reads and ensure high quality data. Damage to nuclei results in
145 release of ambient DNA, clumping of nuclei and loss of material. Hence, we formulated a lysis buffer
146 with minimal detergent concentration; and the addition of sucrose plus BSA resulted in lysis with
147 vastly reduced clumping when resuspending pellets during washing steps throughout the workflow.
148 Lysis, antibody, and pA-MN binding steps were all performed in bulk, which reduced the amount of
149 handling and the loss of individual cells after isolation. Second, directly after pA-MN incubation, the
150 nuclei were stained in buffer containing a nuclear dye plus a labelled anti-nuclear pore complex
151 antibody. This step greatly improved the efficiency in isolating single intact nuclei rather than
152 multiple nuclei or debris. Third, low salt conditions have been shown to prevent pA-MN from
153 diffusing after digestion, thereby reducing off-target cleavage of background DNA (Meers et al.
154 2019). We adopted this approach by directly sorting single nuclei into a low-salt calcium buffer to
155 initiate nuclease activity. Lastly, given that the library preparation stage is the major source of sample
156 loss, inactivation of pA-MN, end-repair, A-tailing, indexed adapter ligation and SPRI steps were all
157 performed with no tube transfers. The amount of paramagnetic SPRI beads used to remove unbound

158 adapters were doubled relative to PEG/NaCl to increase the surface area available for binding to the
159 DNA template. Furthermore, 50N neodymium magnets were used for separation to minimize dead
160 volumes. By avoiding proteinase K treatment, intact nuclei and high molecular weight debris could
161 be observed being retained by the SPRI beads after eluting the target DNA, thereby reducing
162 background. PCR was performed on pooled samples, the products concentrated via precipitation, and
163 adapter monomers and dimers removed with a second set of SPRI bead treatment. The template from
164 192 libraries were then sequenced on a single MiSeq chip (Methods).

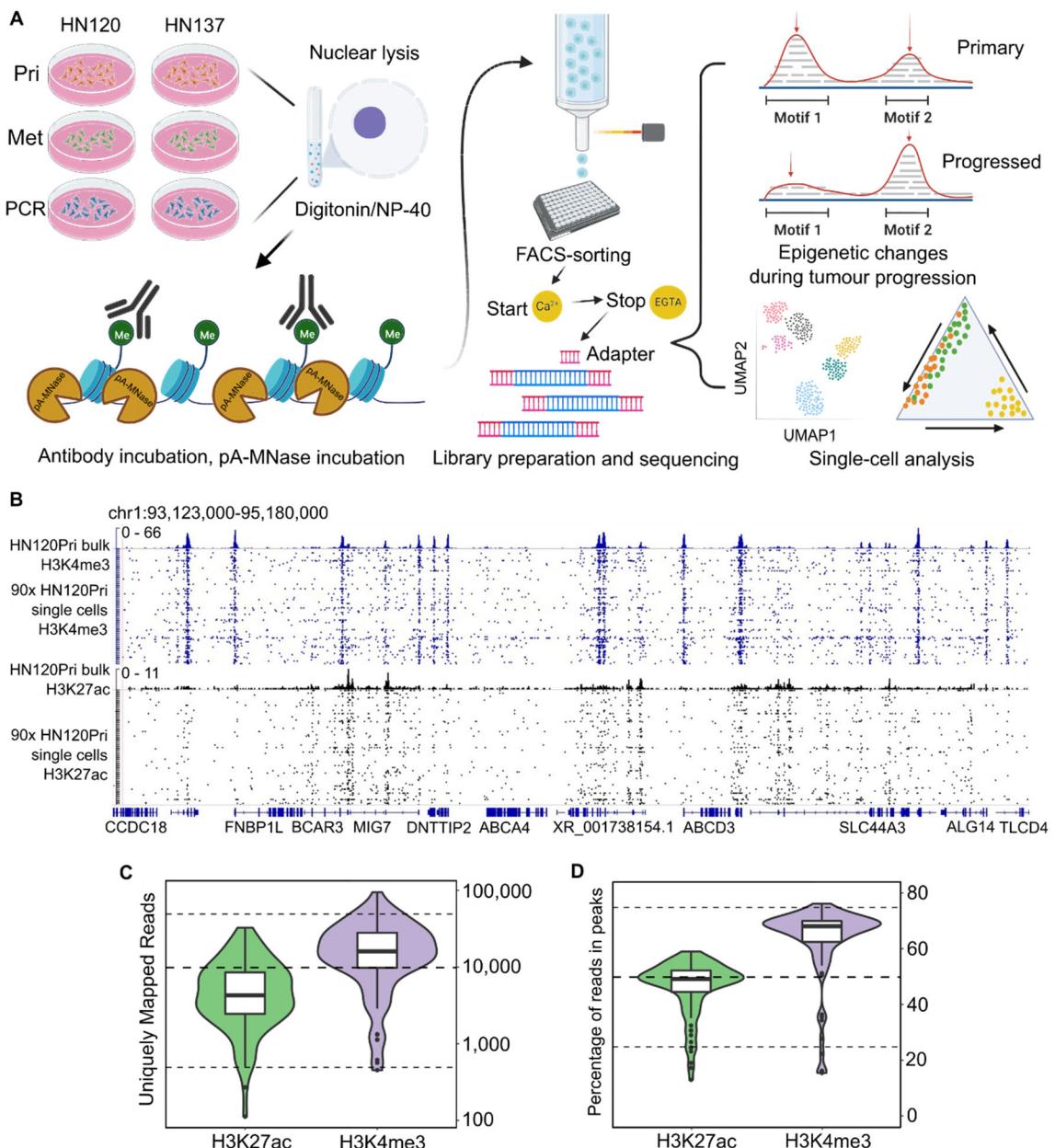


Fig. 1. Schematic representation of overall workflow and quality control of snCUT&RUN.

(A) Schematic overview of snCUT&RUN, applied on matched primary, metastatic, and primary cisplatin-resistant patient derived head and neck cancer cell lines from two patients (HN120 and HN137). **(B)** Representative IGV-track image showing H3K4me3 and H3K27ac single-cell profiles of 90 HN120Pri cells, with corresponding bulk cell data for each mark. **(C)** Violin- and boxplots showing the distribution of the number of unique mapped reads (UMRs) for each single-cell, for both H3K4me3 (median = 16,296) and H3K27ac (median = 4352). Dotted lines are at 50,000, 10,000 and 500 UMRs. **(D)** Violin- and boxplots illustrating the percentage of reads in peaks for each single cell. H3K4me3 median = 68%, H3K27ac median = 49%. Dotted lines are at 75, 50 and 25 percent.

165 We benchmarked the technical performance of snCUT&RUN on 90 sorted nuclei, probed
166 either with anti-H3K4me3 or anti-H3K27ac antibodies. The sequencing read distribution of single
167 cells exhibited a high degree of similarity with bulk cell populations probed with the respective
168 histone-specific antibodies (Fig. 1B), demonstrating excellent specificity of our protocol. H3K4me3
169 is a histone mark that is generally associated with active promoters. The read density profile from
170 H3K4me3 snCUT&RUN samples showed similar profiles around transcriptional start sites (TSS) to
171 that of the bulk cell set; with corresponding patterns of nucleosome depletion (Supplemental Fig.
172 S1A), indicating the high resolution of this assay. Most strikingly, the median number of unique reads
173 for the H3K4me3 was 16,296, whereas the corresponding number for H3K27ac was 4,352. As an
174 indication of signal-to-noise, the median Fraction of Reads in Peaks (FRiP) were 68% for H3K4me3
175 and 49% for H3K27ac (Fig. 1D), which to the best of our knowledge are on par with other single cell
176 histone assays.

177 Comparison of the histone profiles of pooled snCUT&RUN with bulk CUT&RUN yielded
178 a Pearson correlation 0.956 and 0.6089 for H3K4me3 and H3K27ac, respectively (Supplemental Fig.
179 S1B and 1C). Collectively, these data indicated that snCUT&RUN recapitulated bulk CUT&RUN
180 data to a high degree and that this method has the potential to resolve subtle epigenetic differences

181 that might be expected within cancer cell populations. Once over 1,000 cells had been screened for
182 H3K4me3 and H3K27ac, we compared the performance of snCUT&RUN with previously published
183 data on scCUT&Tag (Kaya-Okur et al. 2019) by ranking the cells by number of UMRs (Supplemental
184 Fig. S1D). Although different antibodies were used in the two methods, we reasoned that there should
185 be considerable overlap between the profiles of H3K4me2 and H3K4me3 modifications; being
186 present at transcribing, and poised plus transcribing genes, respectively (Hyun et al. 2017). Under
187 our experimental conditions, we could achieve almost an order of magnitude more uniquely mapped
188 reads than scCUT&Tag. As a second metric we compared snCUT&RUN with previously reported
189 single cell assay using CUT&RUN (uliCUT&RUN) by determining the percentage of reads which
190 map uniquely (Supplemental Fig. S1E). Notably, snCUT&RUN produced better mapping rates after
191 deduplication (12% for H3K27ac and 13% for H3K4me3) compared to 0.3-0.7% with uliCUT&RUN
192 (Patty and Hainer 2021). This could be attributed to loss of material with uliCUT&RUN, where low
193 template concentrations during PCR can cause an increase in artifacts (Ruiz-Villalba et al. 2017).

194

195 **Copy number amplifications may drive epigenetic reprogramming during metastatic**
196 **progression in HNSCC**

197 Having established the technical validity of snCUT&RUN, we utilized the R packages
198 Signac and Seurat (Stuart et al. 2019, 2021) for an integrated analysis of snCUT&RUN data on
199 previously established isogenic patient-derived HNSCC models that represent primary (Pri),
200 metastatic (Met) and cisplatin-resistant primary tumor (PCR) cell lines from two individual patients
201 (HN137 and HN120 (Chia et al. 2017; Sharma et al. 2018)) ([Supp. Table 1](#)). We used a set of filtering
202 parameters (described in detail in Methods) to eliminate low quality cells. After filtering, single-cell
203 profiles of 1,107 and 1,048 cells for H3K4me3 and H3K27ac-specific ChIP data respectively were
204 used for downstream analysis. UMAP embedding of H3K4me3 and H3K27ac showed slightly
205 different patterns and varying degrees of overlap between the cell types (Fig. 2A). From H3K4me3
206 profiles, HN120Pri and HN120Met cells were indistinguishable, and a similar observation was made
207 when comparing HN137Pri and HN137PCR cells (Fig. 2A, left).

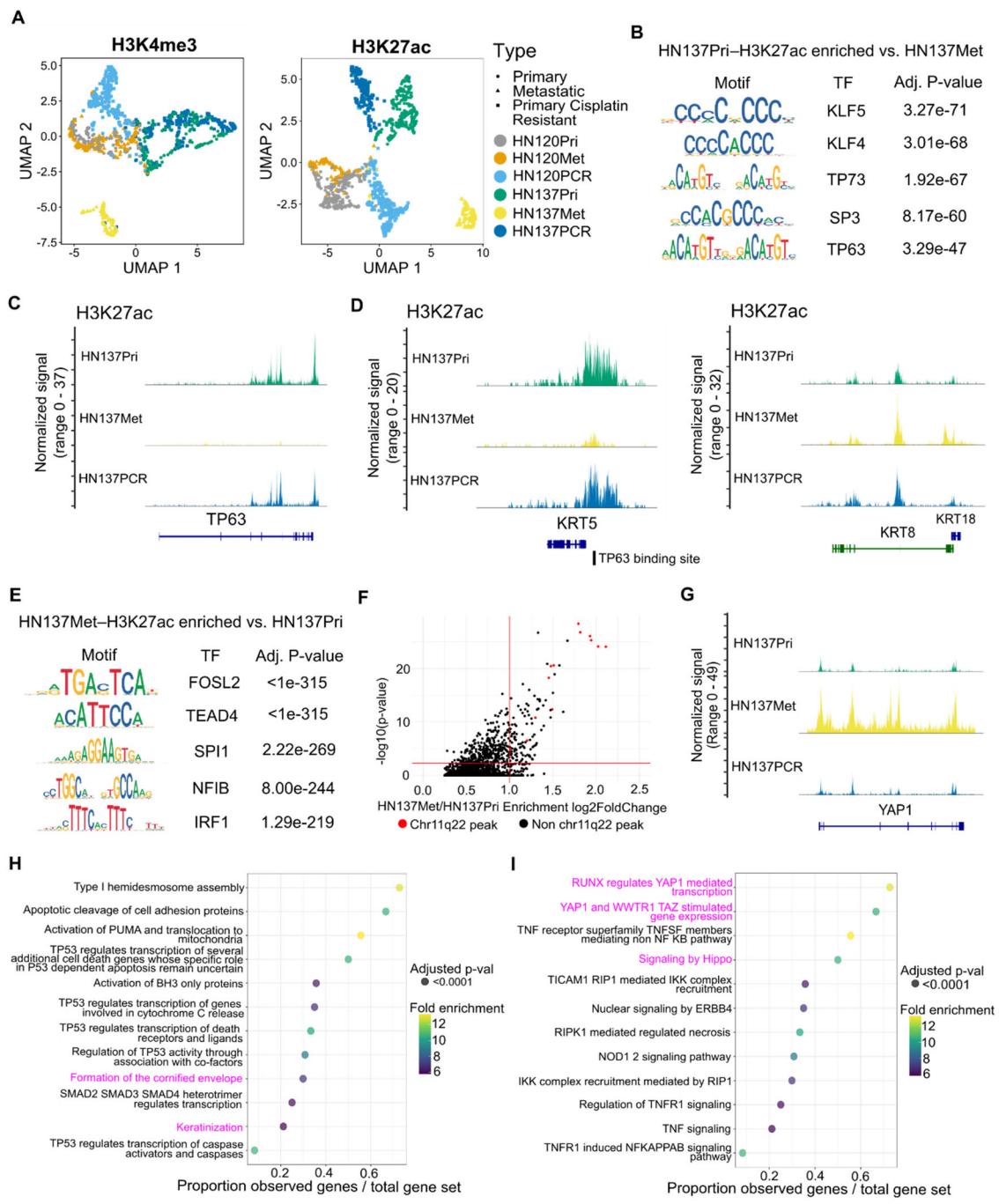


Fig. 2. Epigenomic changes during HNSCC progression suggest distinct, patient-specific epigenetic drivers of tumour evolution. **(A)** UMAP embedding for H3K4me3 (left) and H3K27ac (right) for HN120 and HN137 single-cells. **(B)** Enriched transcription factor motifs for HN137Pri derived from H3K27ac peaks. **(C)** Coverage plot of H3K27ac signal at the TP63 locus, showing loss of H3K27ac in HN137Met. **(D)** Coverage plots of H3K27ac signal at the KRT5 (left) and KRT8/18 (right) loci. TP63 binding site near the KRT5 promoter is indicated. **(E)** Enriched transcription factor motifs for HN137Met. **(F)** Top enriched H3K27ac peaks in HN137Met, with peaks at the chr11q22 locus containing YAP1 highlighted in red. **(G)** Coverage plot of H3K27ac signal at the YAP1 locus. **(H, I)** Dot plot indicating the Reactome pathways enriched in HN137Pri (H) and HN137Met (I). Highlighted in magenta are terms indicating YAP1-mediated loss of differentiation in HN137Met.

208 In contrast, the PDCs were organized into more distinct clusters when H3K27ac profiles
209 were used for clustering (Fig. 2A, right), suggesting that H3K27ac expression (active promoters and
210 enhancers) is more divergent between primary and progressed cell states compared to promoter
211 activity alone. Notably, HN120PCR and HN137Met seemed to have distinct profiles for both
212 H3K4me3 and H3K27ac, indicating significant differences in their chromatin states when compared
213 to other PDCs. We confirmed our clustering results by calculating Pearson-correlations between the
214 H3K27ac/H3K4me3 profiles of the different cell types (Supplemental Fig. S2A,B). Furthermore, we
215 did not detect significant batch effects in our clustering (Supplemental Fig. S2C,D).

216 Next, we sought to infer how changes in epigenetic landscape could drive HNSCC
217 progression using the snCUT&RUN data. After Signac-integrated peak calling, we obtained a set of
218 606,594 H3K27ac and 391,115 H3K4me3 peaks present in at least one cell line (Supplemental Fig.
219 S3A,B). Out of these peaks, most are either cell-line specific or shared between all cell lines.
220 However, snCUT&RUN was able to capture peaks that were shared by primary tumour and matched
221 progressed cell lines (Supplemental Fig. S3C,D). Amongst the primary tumour/progressed paired cell
222 lines with the starker H3K27ac/H3K4me3 profile differences are HN137Pri and HN137Met (Fig.

223 2A). Transcription factor (TF) motif binding analysis in HN137Pri revealed an enrichment of TP63,
224 a key lineage-determining regulator of epidermal keratinocyte identity (Qu et al. 2018), and KLF4,
225 which was previously shown to regulate differentiation in the basal layer of the oral epithelia (Segre
226 et al. 1999) (Fig. 2B). Upon plotting the H3K27ac coverage signal, we observed near loss of H3K27ac
227 at the TP63 locus indicating downregulation of TP63, and thereby loss of lineage fidelity, in
228 HN137Met (Fig. 2C). Since TP63 is known as a key regulator of basal keratinocyte identity, we also
229 focused on the keratin (KRT) loci and found a near loss and gain of H3K27ac at the KRT5 and
230 KRT8/18 loci, respectively, in HN137Met (Fig. 2D). KRT5/KRT18 immunofluorescence (IF)
231 corroborated our findings from snCUT&RUN data (Supplemental Fig. S4A). Furthermore, we
232 confirmed the downregulation of TP63 and KRT5 and upregulation of TEAD4 and KRT8/18 during
233 HNSCC metastasis, with the analysis of two previously published scRNA-seq datasets from primary
234 and metastatic HNSCC (Puram et al. 2017; Sharma et al. 2018) (Supplemental Fig. S4B-J). We found
235 an annotated TP63 binding site near the KRT5 promoter, supporting the notion of KRT5 expression
236 being driven by TP63. Additionally, H3K27ac profiles of the KRT5 and KRT8/18 loci in HN120
237 PDCs corroborated the immunofluorescence-based protein expression (Supplemental Fig. S5A).
238 Moreover, we observed concordant H3K4me3 activity at the KRT5/8/18 loci of HN120 and HN137
239 PDCs (Supplemental Fig. S5B). Hence, the simultaneous presence (or absence) of H3K4me3 and
240 H3K27ac is a strong indicator of epithelial cell identity. The findings of activating epigenetic marks
241 in the KRT8/18 locus in HN137Met is significant, since high KRT8 expression has been associated
242 with detachment of cells from tumours and seeding of lymph node metastasis in HNSCC (Matthias
243 et al. 2008).

244 The TFs enriched in HN137Met include members of the TEAD family such as TEAD4, a
245 downstream activator in the Hippo pathway, and FOSL2, a regulator in cellular differentiation (Fig.
246 2E). Visualization of transcription factor activities at single cell level showed that loss of TP63 and
247 TEAD4 in HN137Met and HN137Pri respectively (Supplemental Fig. S5C). Previously, it was
248 shown that TEAD can repress TP63 promoter activity and protein expression (Valencia-Sama et al.
249 2015). We further assessed the differential peaks between HN137Met and HN137Pri. Strikingly, the

250 top enriched peaks in HN137Met were predominantly located at the chr11q.22 locus containing
251 YAP1 (Supplemental Fig. S3F). Increased activity of YAP1, in conjunction with its binding partner
252 TEAD, was previously shown to promote proliferation and metastasis in multiple cancers, including
253 HNSCC (Lamar et al. 2012; Chia et al. 2017; Omori et al. 2020). We also found a significant increase
254 in H3K27ac activity of YAP1 (Fig. 3G). YAP1 is frequently amplified in HNSCC and indeed, we
255 have previously reported YAP1 to be amplified in HN137Met, compared to the patient-matched
256 HN137Pri (Chia et al. 2017; Shin and Kim 2020).

257 Finally, we assessed top differential enriched peaks ($p < 0.005$) in HN137Pri and
258 HN137Met and used the R package rGREAT (McLean et al. 2010; Gu 2022) to look for enriched
259 biological pathways. Top enriched Reactome pathways in HN137Pri related to TP53 activity (a
260 member of the same family as TP63) and keratinocyte differentiation, while top pathways in
261 HN137Met include activation of the Hippo pathway, which includes YAP1 and TEAD, and TNF-
262 mediated activation of NF κ B (Fig. 2H,I). Altogether, these results suggest that H3K4me3/H3K27ac
263 profiles derived from snCUT&RUN could be used to confirm phenotypical changes occurring
264 between primary and progressed HNSCC. Furthermore, the results indicate that considerable changes
265 in epigenetic modifications could be associated with copy number amplifications, and that a singular
266 focal amplification, such as what was observed with YAP1, could lead to epigenetic reprogramming
267 of HNSCC cells to acquire metastatic capabilities.

268

269 **Genetic-epigenetic alterations correlate with changes in gene expression**

270 Since our data suggested that genetic drivers such as YAP1 amplification could lead to
271 changes in the epigenome, we further explored how changes in gene copy number and the
272 combination of active histone marks, such as H3K4me3/H3K27ac, could correlate with alterations
273 in gene expression. We first visualized H3K27ac signal of single cells at the YAP1 locus for
274 HN137Pri and HN137Met and confirmed our previous findings from Signac in which we observed
275 a marked increase in H3K27ac activity in the YAP1 signal in HN137Met (Fig. 3A). In contrast,
276 regions without copy number differences do not exhibit significant differences in H3K27ac signal

277 (Fig. 3B). These observations reflect the copy number amplification at the YAP1 locus in HN137Met.
 278 Thus, snCUT&RUN can reveal not only the epigenetic changes, but also points towards regions
 279 potentially affected by copy number alterations. Several other loci with potential differences in copy
 280 number were also detected (Supplemental Fig. S6).

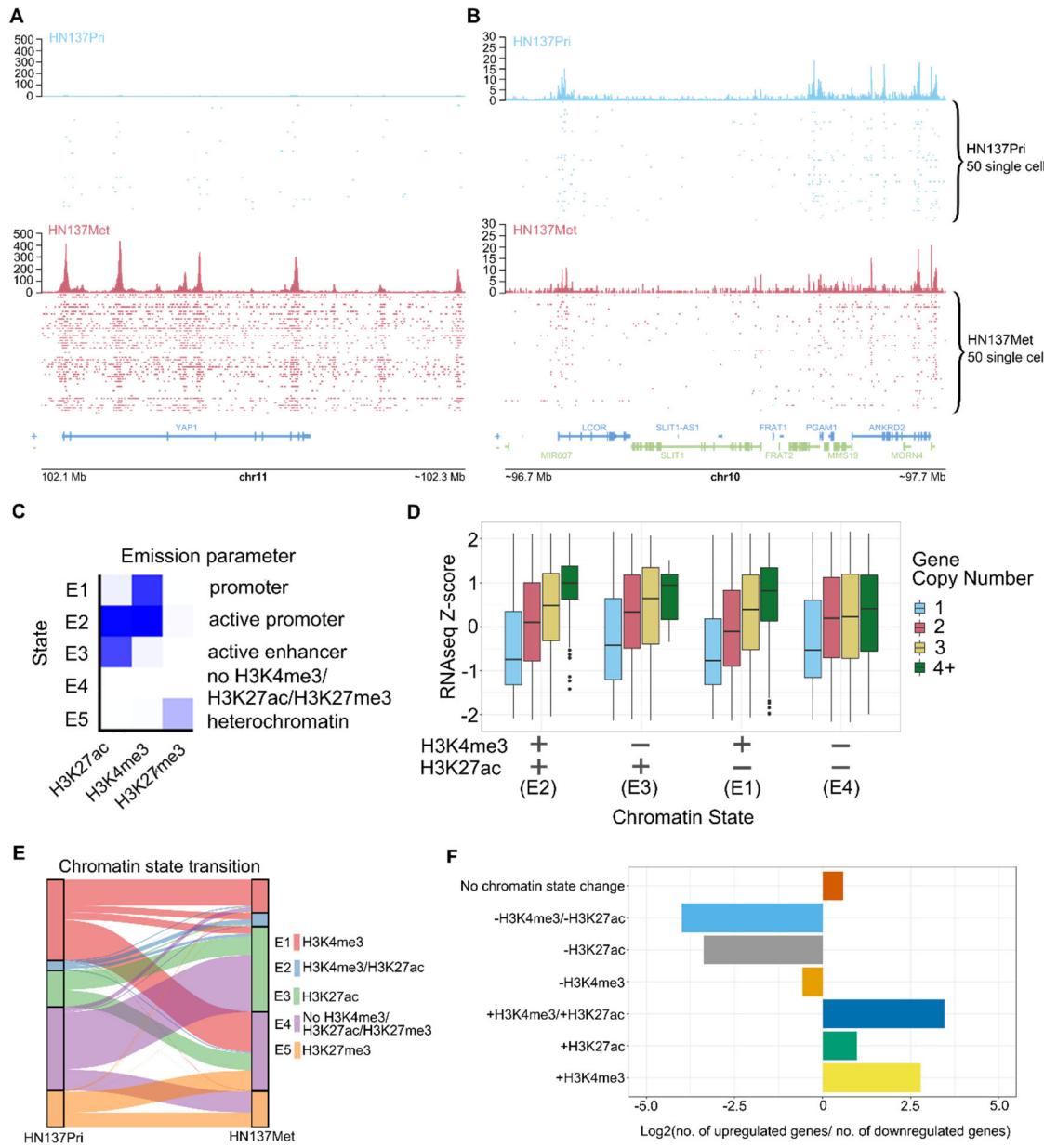


Fig. 3. Regulation of gene expression through the interaction between copy number variations and chromatin state. **(A)** Distribution of unique H3K27ac reads in single cells at the YAP1 locus in HN137Pri (blue) and HN137Met (red). Bulk H3K27ac signal and H3K27ac signal in single cells are shown. **(B)** Distribution of unique H3K27ac reads in a random, non-copy number different locus. **(C)** ChromHMM results identifying 5 chromatin states consisting of combinations of H3K4me3, H3K27ac, and H3K27me3 modifications in HN120 and HN137 PDCs. **(D)** Boxplots representing RNA-seq Z-scores of HN137Met genes, stratified by both gene CN as well as chromatin state annotation. **(E)** Alluvial plot showing chromatin state transition between HN137Pri and HN137Met. Unmodified chromatin (E4, purple) which remained unmodified during metastatic progression was excluded from the plot for visibility purposes. **(F)** Log2 ratio of the number of upregulated (Log2 FC > 1, p < 0.001) genes to the number of downregulated (Log2 FC < -0.5, p < 0.001) genes per chromatin state change during metastatic progression of patient HN137 (HN137Pri > HN137Met).

281

282

Next, to correlate chromatin profiles with gene expression and copy number variations, we performed bulk RNAseq and whole exome sequencing (WES) on all PDCs. DNA copy number variation has been reported to correlate with gene expression changes. Indeed, we observed a clear positive correlation between PDC gene expression Z-score and the copy numbers for the same genes (Supplemental Fig. S7A). These results corroborate the notion that changes of gene expression in key cancer genes may arise from copy number variations (CNV). Nevertheless, we hypothesized that epigenetic modifications in such genetically altered loci may further modulate the expression of genes that reside within the same loci. This effect could be compensatory (epigenetic silencing of an amplified gene or epigenetic activation of a deleted gene) or conversely it could accentuate the effect of CNV (epigenetic activation of the amplified gene or silencing of the remaining copy of a deleted gene). To investigate these hypotheses, we first used ChromHMM (Ernst and Kellis 2012) to perform joint analysis based on pseudobulk H3K4me3, pseudobulk H3K27ac from snCUT&RUN as well as bulk H3K27me3 CUT&RUN data. ChromHMM results revealed five chromatin states, reflecting

295 distinct chromatin state annotations: weak promoter (E1, H3K4me3 only), active promoter (E2,
296 H3K4me3+/H3K27ac+), active enhancer (E3, H3K27ac only), heterochromatin (E5, H3K27me3
297 only) and unmodified regions with none of the probed chromatin marks present (E4) (Fig. 3C). We
298 then combined gene copy number (CN), chromatin state annotation, and gene expression data to
299 investigate how chromatin state and gene CN may synergistically influence gene expression. The
300 results showed that in the presence of activating epigenetic marks, gene expression Z-scores increase
301 with copy number, and gene expression levels are higher (Fig. 3D, Supplemental Fig. S7B). Genes
302 that have simultaneous H3K4me3 and H3K27ac marks meanwhile have higher gene expression Z-
303 scores compared to singly-marked genes. Meanwhile, genes that do not have an activating epigenetic
304 mark surprisingly show little to no correlation with gene expression Z-score despite their CN status.
305 Our results therefore underscore the importance of epigenetic modifications to modulate the effects
306 of CNVs on gene expression during HNSCC progression. Without the appropriate epigenetic
307 modifications, the effects of CNV are masked and would not manifest in gene expression. These
308 results further highlight the need to consider both CNVs as well as epigenetic modifications on gene
309 regulatory elements to understand factors influencing the progression of HNSCC more
310 comprehensively and accurately.

311 Next, we decided to interrogate how epigenetic profiles at single cell resolution could assess
312 the function of chromatin state dynamics in driving HNSCC progression from primary cancers to a
313 progressed state (metastatic or treatment resistant). We therefore analyzed genome-wide chromatin
314 state transitions between paired, patient-matched primary and progressed PDCs (HN120Pri to
315 HN120Met, HN120Pri to HN120PCR (drug resistant), HN137Pri to HN137Met, and HN137Pri to
316 HN137PCR). We found that most of the epigenome (~95%) remained devoid of H3K27ac, H3K4me3
317 and H3K27me3 (E4). Furthermore, we observed diversity in histone mark changes across the various
318 transitions (Fig. 3E, Supplemental Fig. S8A). The general trend, however, was that comparing
319 primary tumour PDCs with their matched progressed PDCs, there appeared to be a greater proportion
320 of genomic regions that acquire the active H3K27ac mark in the progressed state. Meanwhile, the
321 proportion of H3K4me3-marked regions either decreased or remained unchanged. Previous reports

322 have suggested that alterations in cellular metabolism during cancer progression can modulate the
323 levels of co-factors that are substrates of chromatin-modifying enzymes (e.g., acetyl-CoA for histone
324 acetyltransferase) consistent with our observation of increased H3K27ac marks in progressed state.
325 Metabolic reprogramming in cancer cells have been shown to promote EMT by epigenetic activation
326 of EMT-associated genes (Wang et al. 2020). Indeed we found increased H3K27ac signal at the
327 SERPINE1 and SERPINA1 genes, which were previously associated with metastasis, apoptosis
328 resistance, and poorer prognosis in HNSCC (Supplemental Fig. S8B) (Pavón et al. 2015), supporting
329 the epigenetic basis of metastasis in HNSCC.

330 Finally, we investigated whether significant changes in gene expression during HNSCC
331 progression correlated with changes in chromatin state. We filtered the top downregulated (log2 fold
332 change < -0.5 , $p < 0.001$) and upregulated genes (log2 fold change > 1 , $p < 0.001$) during the
333 HN137Pri $>$ HN137Met transition and calculated the enrichment of gene expression change per
334 chromatin state transition. We found that downregulation of gene expression was indeed associated
335 with the loss of H3K4me3/H3K27ac active marks, whereas genes displaying upregulated expression
336 were associated with a gain of either or both H3K4me3/H3K27ac marks (Fig. 3F). Altogether, the
337 data suggests that during HNSCC progression, the gain of H3K27ac in key enhancers as a
338 consequence of a global increase in acetylation may serve as the primary drivers of changes in gene
339 expression that promote cell-state transitions. Furthermore, our data also suggests that alterations in
340 chromatin states occurring between primary and progressed HNSCC are dynamic and heterogeneous,
341 reflecting the diversity of epigenetic changes during tumour progression. These results further
342 corroborated our previous findings that global changes in the epigenome could lead to change in gene
343 expression, highlighting the need for considering chromatin state changes when exploring
344 mechanisms of HNSCC progression. Finally, these results collectively suggest that changes in gene
345 CN and chromatin states may be interconnected in HNSCC, and that multimodal integration of
346 genomic and epigenomic data would be essential to generate a more comprehensive understanding
347 of HNSCC progression.

348 **Epigenome profiling at single nuclear resolution identifies subpopulations of primary HNSCC**
349 **tumour cells with higher propensity for metastatic progression**

350 Our results above reveal that both genetic changes, exemplified by CNV, and epigenetic
351 flux work in tandem to rewire the gene expression network that drives cancer progression.
352 Amplifications on key oncogenes (e.g., YAP1) that associate with crucial transcription factors could
353 have a disproportionate effect on changing the global epigenetic landscape through interactions with
354 histone writers. We speculate that such structural alterations could account for why the epigenetic
355 profiles of HN137Met or HN120PCR were found to be far removed from their primary counterparts.
356 On the other hand, the transitions between HN137Pri → HN137PCR and HN120Pri → HN120Met
357 did not reveal clear genetic drivers of progression identified through whole exome sequencing
358 analysis. In the context of HNSCC progression, some cell subpopulations, especially those at the
359 invasive borders of primary tumors, have been shown to express a partial epithelial-to-mesenchymal
360 (pEMT) transcription program (Puram et al. 2017). Compared to irreversible genetic changes, non-
361 genetic changes could be much more plastic and heterogeneous among cancer cells.
362 Microenvironmental pressures may lead to primary tumour cancer cells to adapt by acquiring a range
363 of epigenetic states and this cellular plasticity could confer survival and growth advantage under the
364 selective pressure of metastasis or drug treatment. We therefore sought to utilize the snCUT&RUN
365 data to explore ITeH as a factor driving HNSCC progression in absence of a clear genetic driver. We
366 first analyzed the transition between HN137Pri and HN137Met, since these PDCs were found to have
367 higher similarity in H3K4me3/H3K27ac profiles as well as phenotype (Fig. Supplemental Fig. S2A,
368 Supplemental Fig. S4A).

369 Analyzing H3K27ac profiles, we found a lower number of differentially enriched peaks (p-
370 value < 0.005) in HN137PCR versus HN137Pri (2,245), compared to HN137Met versus HN137Pri
371 (4,797). Hence, changes in H3K27ac expression during the cisplatin resistance of HN137Pri appeared
372 to be less widespread compared to the metastatic progression of patient HN137. These results point
373 to a gradual change in the epigenome caused by ITeH, rather than a genetically driven change during
374 progression to a drug-resistant state. To further investigate ITeH in the cisplatin resistance

375 progression of HN137Pri, we defined PDC-specific “modules”, which are features consisting of the
376 top fifty differential peaks defining a specific PDC-state. This analysis was inspired by scRNA-seq
377 analysis, where modules are defined as groups of genes that are part of the same module/program -
378 typically referring to cell-type specific gene expression signatures. After defining H3K27ac modules
379 for each PDC, we then computed ChromVAR deviation Z-scores of each module for each individual
380 cell. In our case, the Z-score represents how far the H3K27ac profile of that cell deviates from the
381 average H3K27ac profile of every cell within the peaks as defined by the PDC-specific modules.
382 Analyzing the ChromVAR deviation Z-scores of the HN137 isogenic cell lines, we found
383 unsurprisingly that each PDC has the highest module score of their individual module (e.g.,
384 HN137Met has highest Z-score for the HN137Met module) (Fig. 4A). The deviation Z-score profiles
385 confirmed that each module is capable of distinguishing identities of individual PDCs. However, we
386 also observed a degree of variability in Z-scores within a given cell type, prompting the question
387 whether this represents the possibility of epigenetically heterogeneous state within the PDCs. We
388 therefore normalized the primary tumour, metastatic, and primary tumour cisplatin resistant module
389 scores of each single cell and plotted the normalized scores using ternary plots, making use of the
390 three-variable nature of our data to visualize the ratio of Pri/Met/PCR module score per single cell
391 (Fig. 4B). Ternary plot visualization confirmed our previous findings, showing that HN137Pri and
392 HN137PCR cells are in a continual axis based on their module scores. Such continuity was not
393 observed between HN137Pri and HN137Met, suggesting that the HN137Pri → HN137PCR
394 transition is characterized by intrinsic epigenetic intratumoural heterogeneity and not defined by
395 strong genetic/epigenetic drivers, as is the case with HN137Pri → HN137Met progression (Fig. 4B).

396

397

398

399

400

401

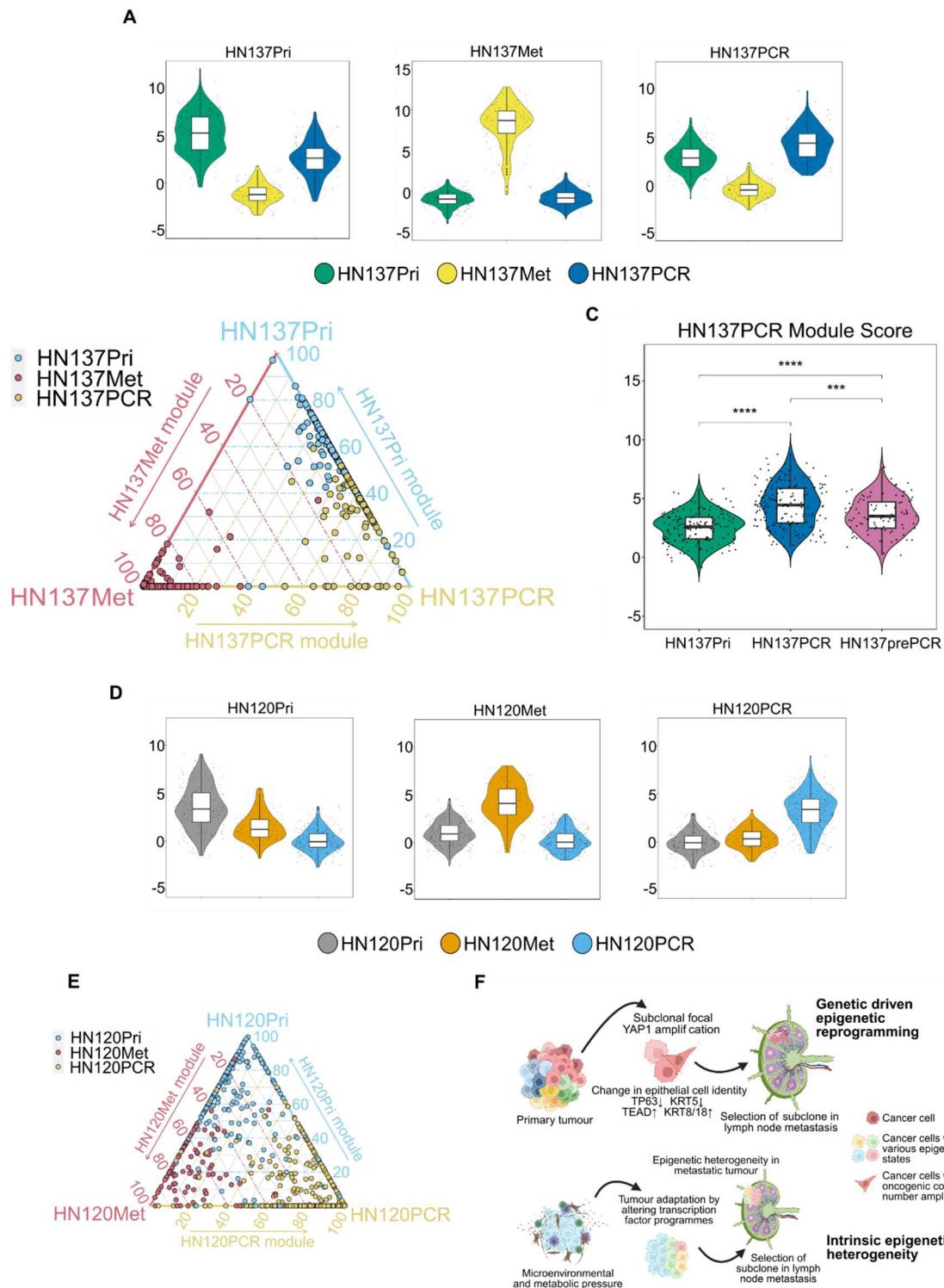


Fig. 4. Epigenetic heterogeneity-driven HNSCC progression. **(A)** PDC-specific HN137 H3K27ac module score. Each module consists of the top 50 peaks for a particular PDC, and each module score was back calculated for each single-cell using Signac's AddChromatinModule function. **(B)** Ternary plot showing the ratios of Pri/Met/PCR module scores for patient HN137 **(C)** Violin plot depicting the recalculated HN137PCR module score after identification of the HN137prePCR subpopulation (** p-value <= 0.001, **** p-value <= 0.0001). **(D)** PDC-specific HN120 H3K27ac module score. **(E)** Ternary plot showing the ratios of Pri/Met/PCR module scores for patient HN120. **(F)** Model of diverse ways in which epigenetic changes can lead to adaptation of cellular phenotype to acquire a more aggressive state.

402

403 To further investigate epigenetic heterogeneity, we set apart HN137Pri cells with
404 Pri/Met/PCR module score ratio of >0.4 Pri and >0.4 PCR and annotated these cells "HN137prePCR"
405 cells. We obtained 93 HN137Pri cells (representing 37% of the primary population) fulfilling this
406 criterion. HN137prePCR cells were found to have a higher average score of the HN137PCR module
407 compared to the remaining HN137Pri cells, yet still below the average of HN137PCR cells (Fig. 4C).
408 This could potentially indicate that HN137prePCR cells represent a primary tumour cell
409 subpopulation which is predisposed towards becoming cisplatin resistant because of their "cisplatin
410 resistant-primed" epigenetic state. To exclude UMR count and FRiP as confounding factors of the
411 module scores, we compared the UMR count and FRiP of HN137prePCR cells against the remaining
412 HN137Pri cells, as well as HN137PCR cells. HN137prePCR cells did not have higher UMR count
413 on average as compared to the remaining HN137Pri as well as HN137PCR cells (Supplemental Fig.
414 S9A). Furthermore, HN137prePCR cells did not have higher FRiP values as compared to HN137PCR
415 and HN137Pri cells (Supplemental Fig. S9B). Hence, UMR count and FRiP were not deemed to be
416 significant factors in determining module scores.

417 Finally, we investigated whether ITeH could drive the lymph node metastatic progression
418 of patient HN120 (Fig. 4D). In a similar approach to investigate whether ITeH drives the progression
419 of cisplatin resistance in patient HN137, we isolated HN120Pri cells with >0.4 HN120Pri H3K27ac

420 module ratio and >0.4 HN120Met module ratio. We observed 26 cells that met this criterion (~9% of
421 the total HN120Pri population) and relabeled these HN120Pri cells as the “HN120preMET”
422 subpopulation (Fig. 4D, E). Similar to HN137prePCR, recalculation of the HN120Met module score
423 showed that the HN120preMET cells have higher average deviation Z-score for the HN120Met
424 module as compared to the remaining HN120Pri cells, but still lower than HN120Met cells
425 (Supplementary Fig. 9C). Overall, the HN120preMET and HN137prePCR analyses support the
426 existence of H3K27ac landscape heterogeneity in HNSCC tumours and suggests that in the absence
427 of strong genetic drivers, tumour adaptation could drive ITeH in primary HNSCC tumours, leading
428 to certain selected, epigenetically primed, subpopulations acquiring a phenotype with higher
429 propensity to progress into a more malignant state.

430

431 **Discussion**

432 Intratumour heterogeneity of chromatin states can serve as an epigenetic driver of HNSCC
433 progression. However, studies using single-cell methods to profile epigenetic heterogeneity in
434 HNSCC models of cancer progression remain lacking. Here we developed snCUT&RUN, a robust
435 method to profile histone modifications at the single-cell level. We showed that snCUT&RUN could
436 provide insights in chromatin state transitions between isogenic primary and progressed HNSCC
437 PDCs at the level of both global and single-cell resolution. At the global level, we found that generally
438 H3K27ac signal is better capable of distinguishing different PDC cell-states, suggesting that active
439 enhancer and promoter landscapes are more unique to each individual cell state when compared to
440 just promoter activity alone. Furthermore, our results indicate that gain of H3K27ac at promoters
441 and/or poised enhancers may serve as critical factors driving tumour progression. We validated that
442 H3K27ac/H3K4me3 activity at the KRT5 and KRT8/18 loci served as an accurate indicator of
443 epithelial identity, and that snCUT&RUN can be used to comprehensively analyze a mixture of
444 samples to infer epithelial changes and the accompanying TF motif changes during tumour
445 progression. Importantly, we showed that these changes are possibly associated with a focal copy
446 number amplification of YAP1, which in turn could lead to altered TEAD activity and subsequent

447 epigenetic rewiring. Indeed, an increasing body of evidence show that genetic and epigenetic factors
448 are closely associated with driving tumour heterogeneity and progression. An example of this
449 interplay between the genome and the epigenome was highlighted in recent studies on
450 extrachromosomal circular DNA (ecDNA) amplifications that not only amplify oncogenes, but also
451 functional elements such as enhancers, thereby increasing chromatin accessibility and downstream
452 expression of key oncogenes (Wu et al. 2019; Morton et al. 2019). We further showed that gene
453 expression is affected by both gene copy number as well as gene chromatin state, where the highest
454 gene expression was observed in genes that have higher copy number *and* have active chromatin
455 marks. These results emphasize the complexities of factors that promote tumour progression and
456 highlight the importance of considering both genetic and epigenetic factors that drive cell-state
457 plasticity.

458 However, we noted that some epigenetic changes were more subtle and did not involve
459 wide-scale epigenetic rewiring driven by alterations in the genome. Comparing both HN120Pri and
460 HN120Met as well as HN137Pri and HN137PCR, we did not observe clear lineage infidelity from
461 both H3K4me3 and H3K27ac profiles. This led to the hypothesis that in some tumours,
462 microenvironmental pressures such as metabolic dysregulation or challenges from the immune
463 system may lead to primary tumour subpopulations to activate certain transcription factor
464 programmes to adapt to these selective pressures. This adaptation process inherently leads to
465 heterogeneous chromatin states in the primary tumour, which may confer selective fitness to the
466 subpopulations with an intermediate malignant chromatin state. Indeed, a previous study described a
467 subpopulation of malignant HNSCC cells being in a state of pseudo-epithelial to mesenchymal
468 transition (pseudo-EMT), which correlated with cancer progression (Puram et al. 2017). We used the
469 module score analysis and showed that H3K27ac profiles could be used to find such subpopulations
470 that may have a higher propensity to progress to malignant cell states.

471 We note that the samples we have used for this study are long-term cell cultures which may
472 have acquired a degree of homogeneity through the course of several passages. However, some
473 evidence suggests that heterogeneity is maintained even in long-term cultured cell lines. For example,

474 our cell line models exhibit chromosomal instability (CIN). CIN is known to lead to heterogeneity in
475 gene expression, while at the same time being maintained in long term cell cultures. In a study by
476 Minussi et al. (Minussi et al. 2021), the authors performed single-cell clonal outgrowth of the CIN-
477 affected MDA-MB-231 breast cancer cell line and found that karyotype diversity was regained after
478 only 19 passages, suggesting that *in vitro* cancer cell cultures re-diversify their genomes and maintain
479 genetic heterogeneity throughout passaging. Epigenomic heterogeneity was also shown to be
480 maintained in cell lines. Litzenburger et al. observed through scATAC-seq experiments that the
481 leukemic cell line K562 exhibited epigenomic heterogeneity which has functional consequences such
482 as drug response (Litzenburger et al. 2017). Hence, it is likely that our cell line models exhibit
483 sufficient intratumour heterogeneity to make single-cell assessments useful.

484 Altogether, based on the observations from snCUT&RUN analysis on isogenic primary and
485 progressed cell states in HNSCC, we propose the following working model for epigenetic control of
486 HNSCC progression (Fig. 4F). First, in the presence of a strong genetic driver, e.g., a copy number
487 amplification, epigenetic reprogramming can occur, which may result in the selection of cells with
488 favorable gene expression signatures to progress. Second, in the absence of strong genetic drivers,
489 microenvironmental pressures may drive a primary tumour adaptation response, leading to
490 intratumour epigenetic heterogeneity. ITeH results in the emergence of transitional subpopulations
491 that are more prone to progress into a more malignant or resistant cell-state. Future characterization
492 of such sub-populations can result in the identification of prognostic biomarkers and therapeutic
493 targets that can be used for better patient stratification and the development of novel intervention
494 strategies to block progression to malignant states.

495 At present, snCUT&RUN is positioned as a medium-throughput assay. Slightly more than
496 2000 FACS sorted single cells were profiled in this work. Although it may not achieve the throughput
497 of scCUT&TAG assays, its high sensitivity is a major advantage for uncovering subtle cell-to-cell
498 epigenetic heterogeneity, such as those found within a tumour. We envisage that future improvements
499 such as automation of single cell library preparation with an automated liquid handler would further
500 enable snCUT&RUN assay to be adopted by the wider scientific community.

501

502 Methods

503 Cell materials and tissue culture

504 HN120Pri, HN120Met, HN137Pri and HN137Met patient derived cells (PDCs) used for
505 this study were retrieved from a biobank previously generated using described methods (Chia et al.
506 2017). Likewise, HN120PCR and HN137PCR cells were generated as part of an earlier study
507 (Sharma et al. 2018). The identities of the primary cell lines and their derivative were confirmed
508 using short-tandem repeat (STR) profiling (Supp. Table 1). Normal tissue samples for these patients
509 were not available for experiments. Cells were cultured with RPMI medium supplied by 10% Fetal
510 Bovine Serum (FBS) and 1% penicillin/streptomycin. Medium was replaced every 2-3 days. Cells
511 were cultured in 37°C and 5% CO₂ and passaged when cultures reached ~90% confluency. Cells
512 were tested for mycoplasma and were only used for experiments after being confirmed to be
513 mycoplasma negative.

514

515 Immunofluorescence

516 Cells were cultured in 96-well plates with 10,000 – 20,000 seeding density for 48 hours.
517 Fixation was done in acetomethanol 1:1 ratio for 10 minutes at -20°C degrees. After washing 3X with
518 1X PBS, blocking was done with 2% BSA/0.1% Triton X-100/PBS for 1hr+. The following primary
519 antibodies were used: ab17130 (KRT5, 1:100 dilution) and ab32118 (KRT18, 1:100 dilution), and
520 cells were incubated at 4°C overnight. Alexa Fluor488/594 and Hoechst33342 were used during
521 secondary antibody incubation for 30 minutes at 37°C. Cells were imaged with the Nikon EclipseTi
522 inverted microscope using widefield setting and 20X magnification.

523

524 Single nuclei CUT&RUN

525 Cells cultured to ~80% confluence in T75 flasks were harvested and washed 2X in Sucrose
526 Buffer (5% sucrose, 1% BSA, 20mM HEPES pH7.5, 150mM sodium chloride 0.5mM spermidine,
527 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail (Roche, Cat# 04693159001) at 200 x

528 g for 3 min. For each antibody tested, 1.5×10^6 cells were dispensed into Protein LoBind® Tubes
529 (Eppendorf, Cat# 0030108442), pelleted and suspended in 1X ice cold lysis buffer (Sucrose Buffer
530 containing 0.005% NP-40, 0.005% digitonin, 2mM EDTA and 10mM sodium butyrate). The amount
531 of cell lysis was detected using the trypan blue exclusion assay, and remaining intact cells were lysed
532 by titrating-in 2X cold lysis buffer (Sucrose Buffer containing 0.01% NP-40, 0.01% digitonin, 2mM
533 EDTA and 10mM sodium butyrate). Nuclei were pelleted then suspended in Sucrose Buffer
534 containing 1:100 anti-Histone H3 (tri methyl K4) antibody (abcam, Cat# ab213224) or anti-acetyl-
535 Histone H3 (Lys27) (Merck, Cat# MABE647) and incubated ≥ 1.5 h at 4°C with intermittent agitation.
536 Nuclei were washed 2X with Sucrose Buffer then suspended in 700 ng/ml pA-MN (a kind gift from
537 Steven Henikoff) in Sucrose Buffer and incubated for 60 min at 4°C. Pelleted nuclei were suspended
538 in Nuclear Stain Buffer (Sucrose Buffer containing 1:4,000 Alexa Fluor® 647 anti-Nuclear Pore
539 Complex Proteins Antibody (BioLegend, Cat# 682204) plus 4 μ M ethidium homodimer (Invitrogen,
540 Cat# E1169) and incubated at room temperature (RT) for 10 min. After 2X washes with Sucrose
541 Buffer the nuclei were suspended in Low Salt Buffer (20 mM HEPES pH 7.5, 0.5 mM spermidine).
542 FACS was performed with an MoFlo Astrios Cell Sorter (Beckman Coulter) operated using Summit
543 software. Single nuclei were gated first using forward and side scatter pulse area parameters (FSC-A
544 and SSC-A), aggregates excluded using pulse width (FSC-W and SSC-W), then isolated nuclei were
545 gated based on AF647 and ethidium homodimer fluorescence. Nuclei were sorted directly into 3 μ l
546 of calcium buffer (10 mM calcium chloride, 3.5 mM HEPES pH 7.5) in PCR strip tubes for DNA
547 digestion. As a quality control measure, nuclei were also sorted into buffer on flat-well optical plates
548 (4titude, Cat# 4ti-0970/RA) to check for wells with more than one isolated nuclei via fluorescence
549 microscopy. For each array of 96 PCR tubes, positive and negative control tubes were included which
550 comprised of 1,000 dispensed nuclei or buffer-only wells, respectively. To stop digestion, 1 μ l of 4X
551 STOP Buffer (600 mM sodium chloride, 80 mM EGTA and 0.05% digitonin) was added to the sides
552 of the strip tubes, the tubes pulse centrifuged, mixed by touching the sides of the tubes against a
553 rotating vortex, then pulse centrifuged a second time. Tubes were then incubated at 37°C for 30 min.

Library prep on single nuclei was performed as follows: 0.8 μ l 1X End Repair and A-Tailing Buffer/Enzyme Mix (KAPA Hyper Prep Kit, Cat# 07962363001) was added to the sides of the tubes, mixed as before, then incubating at 12°C for 15 min, 37°C for 15 min, 58°C for 90 min, then 8°C on hold. Adapter ligation was performed by adding 0.5 μ l 300 nM Unique Dual Indexed adapter (NEXTFLEX, Cat# NOVA-514150 or NOVA-514151) and 3.6 μ l 1X Ligation Buffer/Enzyme mix (KAPA Hyper Prep Kit, Cat# 07962363001) to the sides of the tubes, mixed as before, then incubating for 16 hours at 4°C.

To remove excess adapters, the volumes were adjusted to 20 μ l with 10 mM Tris pH 8.0, 20 μ l 2X SPRI beads (MagBio Genomics, Cat# AC-60050) [2X SPRI beads: 1 volume SPRI beads magnetically separated, $\frac{1}{2}$ volume PEG/NaCl solution removed (and stored), then beads resuspended. This increases the surface area of beads for DNA to adsorb to.] added to inverted fresh strip tube caps, the caps were then affixed, the tubes mixed as before then incubated at RT for 2 hours. SPRI beads were separated by tethering the strip tubes to N50 grade neodymium magnets affixed to a ferrous metal rig for stability. The supernatant was removed, the beads washed twice with 80% ethanol then allowed to dry for 3 min at RT. The tubes were removed from the magnets and beads suspended in 20 μ l 10 mM Tris pH 8.0. 22 μ l PEG/NaCl was added and mixed into the beads with pipetting, then incubated for 2 hours at RT (or tubes left overnight at 4°C, brought back to RT, then incubated for 2 hours at RT). Beads were washed twice with 80% ethanol, air dried for 3 min then suspended in 7.5 μ l 10 mM Tris pH 8.0 and DNA allowed to elute for \geq 10 min at RT. Hereafter the positive control tubes were treated separately and not pooled with single nuclei libraries and no template controls. The beads were magnetically separated as above and pooled eluate added to PCR strip tubes containing 2X KAPA HiFi HotStart ReadyMix (Roche, Cat# 07958935001) and 2 mM each of P5 (AATGATACGGCGACCACCGAGATCTACA*) and P7 (CAAGCAGAAGACGGCATACGAGA*T) primers with phosphorothioate bond as indicated with asterisk. PCR was performed with a thermocycler using a heated lid under the following cycling conditions: 98°C for 45s; 19 cycles of 98°C for 15 s, 60°C for 10 s; 72°C 1 min, 8°C on hold.

580 Pooled library DNA was concentrated as follows: amplified DNA was pooled together, 400
581 μ l aliquots dispensed into 1.5 ml tubes, 400 μ l Phenol:Chloroform:Isoamyl Alcohol 25:24:1 added
582 and the samples vortexed. The mixture was then transferred to MaXtract High Density tubes
583 (QIAGEN, Cat# 129056) and centrifuged at RT for 5 min at 16,000 x g. 400 μ l chloroform was then
584 added to the MaXtract tubes, mixed by inverting several times, then centrifuged at RT for 5 min at
585 16,000 x g. The aqueous phase from each MaXtract tube (~400 μ l) was then transferred to 1.5 ml
586 tubes containing 2 μ l of 2 μ g/ μ l glycogen (Roche, Cat# 10901393001), 1 ml ethanol was added, the
587 tubes vortexed, then incubated at -20°C overnight. DNA was pelleted by centrifuging at 20,000 x g,
588 10 min at 4°C, washed with 1 ml 100% ethanol, then air dried for at least 15 min at room temperature.
589 Pellets were suspended and combined in a total volume of 100 μ l 10 mM Tris pH 8.0. Adapter dimers
590 and excess primers were removed by adding 90 μ l SPRI beads and incubating for 15 min at RT,
591 magnetically separating the beads, washing twice with 80% ethanol and eluting with 50 μ l 10 mM
592 Tris pH 8.0. DNA was allowed to rebind to the beads by adding 45 μ l PEG/NaCl, the beads were
593 incubated for 15min at RT, magnetically separated, washed twice with 80% ethanol, then eluted in
594 50 μ l 10 mM Tris pH 8.0. A third SPRI bead purification with a ratio of 1:1 was found to be necessary
595 to remove residual adapter dimers prior to sequencing (i.e. 50 μ l PEG/NaCl added to the DNA/bean
596 mixture, and two ethanol washes performed). Finally, the DNA was eluted in 20 μ l 10 mM Tris pH
597 8.0. All libraries were sequenced using paired-end sequencing on an Illumina MiSeqTM, with samples
598 processed using MiSeq Reagent Kit V3 (150 cycles) (Illumina, Cat#MS-102-3001).
599

600 Bulk cell CUT&RUN

601 Bulk cell CUT&RUN was performed in the same manner as snCUT&RUN with the
602 following alterations. After incubating with pA-MN, cells were washed twice in BSB followed by
603 one wash in Low Salt buffer. After pelleting, most of the supernatant was removed leaving a small
604 volume and the pellet suspended to a slurry by gentle agitation. 37 μ l calcium buffer was added to
605 activate pA-MN and the samples incubated in a pre-chilled heat-block in ice-water for 30 min. The
606 reaction was stopped by adding 12.5 μ l 4X STOP Buffer and nucleosomes allowed to diffuse for 30

607 min at 37°C. 50 μ l was removed to a PCR tube containing 10 μ l 1X End Repair and A-Tailing
608 Buffer/Enzyme Mix (KAPA Hyper Prep Kit, Cat# 07962363001), then incubated at 12°C for 15 min,
609 37°C for 15 min, 58°C for 90 min, followed by 8°C on hold. 5 μ l 15 mM TruSeq DNA Single Indexes
610 (SKU 20015960) and 45 μ l 1X KAPA Hyper Prep Enzyme/Buffer mix were added to each sample
611 and incubated for 16 hours at 4°C. 2 μ l 10% SDS plus 2 μ l proteinase K (Thermo Fisher Scientific,
612 Cat# EO0492) were added and incubated for 60 min 37°C. Excess adapters and adapter dimers were
613 removed via two successive washes with SPRI beads. 110 μ l SPRI beads (MagBio Genomics, Cat#
614 AC-60050) were added to each sample and incubated for 15 min at room temperature. Beads were
615 magnetically separated and washed twice with 80% ethanol. After air drying for 5 min, DNA was
616 eluted from the beads by suspended in 50 μ l 10 mM Tris pH 8.0. DNA was re-bound to the beads by
617 adding 60 μ l 20% PEG 8000, 2.5 M NaCl and incubating for 15 min. Beads were separated and
618 washed as before, then suspended in 20 μ l 10 mM Tris pH 8.0. To each purified library, 25 μ l 2X
619 KAPA HiFi HotStart ReadyMix added plus 5 μ l TruSeq single index PCR Primer Cocktail. PCR was
620 performed using the following cycling conditions: 98°C for 45s; 12 cycles of 98°C for 15 s, 60°C for
621 10 s; 72°C 1 min, 8°C on hold. Bulk cell libraries were purified using two successive rounds of SPRI
622 bead purification as above, using 1:1.1 then 1:1.2 ratios of sample to beads, and eluting with 20 μ l
623 10 mM Tris pH 8.0.

624

625 **snCUT&RUN data preprocessing and QC measurements**

626 Raw .fastqs of single-cells were mapped to the human hg38 reference genome with bowtie2
627 (Langmead and Salzberg 2012, 2) v2.3.5.1 and the following settings: --end-to-end --very-sensitive
628 --no-mixed --no-discordant -q --phred33 -I 10 -X 700. The MarkDuplicates tool from GATK v4.1.4.1
629 (McKenna et al. 2010) was used to mark and remove duplicate reads while samtools v1.10 (Li et al.
630 2009) was used to index the bam files. Bedtools v2.27.1 (Quinlan and Hall 2010) was used to convert
631 .bam files to .beds and .bedgraphs. The unique number of UMRs was calculated by first converting
632 the deduplicated single cell .bam file to a .bed file, which in turn was used to create a TagAlign file.
633 The number of paired-end reads in the TagAlign file was then counted as the number of UMRs. To

634 calculate the fraction reads in peaks, we first merged the single-cell data into pseudobulk, and then
635 normalized based on the sample with the lowest read number. We then called peaks using MACS2
636 with the following settings: BAMPE --nomodel -B -p 5e-2 --min-length 500 --max-gap 400 --SPMR
637 --call-summits. The fraction of reads that overlap the called peaks was then divided by the total
638 number of reads to calculate the FRiP. Equally, we calculated the fraction of peaks in blacklisted
639 genomic regions (Amemiya et al. 2019).

640

641 **Signac/Seurat analysis**

642 To create Signac fragment files, individual single-cell .bam files were first processed into
643 .bed files with the following columns: chr, start, end, cell barcode, and a fifth column with the number
644 1, representing that each row combination only occurred once. Individual bed files were concatenated
645 and sorted with bedtools and indexed with tabix. Data from H3K4me3 and H3K27ac were processed
646 separately. The fragment file was then converted to a sparse bin matrix with Signac's
647 GenomeBinMatrix() function in R4.0, specifying binsize of 10kb. Subsequently, the bin matrix was
648 used to create a chromatin assay in Signac. Cells were excluded from analysis with the following
649 criteria: UMRs < 1,000; UMRs > 100,000; FRiP < 0.25; fraction reads in blacklist > 0. 01;
650 nucleosome signal > 5 and TSS enrichment score < 0.5. Signac standard analysis was performed
651 downstream. Briefly, the matrix was normalized with term frequency inverse document frequency
652 (TF-IDF), and singular value decomposition (SVD) was applied. UMAP embedding was done with
653 the following settings: umap.method = "uwot", n.neighbors = 10, metric = "manhattan", n.epochs =
654 500, min.dist = 0.1, spread = 1, set.op.mix.ratio = 1, reduction = 'lsi', dims = 2:30. MACS2 peaks
655 were called with the CallPeaks() function, specifying the broad and combine.peaks options set to
656 TRUE, BAMPE --nomodel -B -p 5e-2 --min-length 500 --max-gap 400 --SPMR --call-summits. Peak
657 calls were visualized with the CoveragePlot() function. To perform motif analysis, first a PFMMatrix
658 object was retrieved from the JASPAR2020 package (Fornes et al. 2020). A peak matrix was then
659 created using the fragment files and peak calls. Subsequently the AddMotifs() function was used to
660 construct a motif object containing motif information. ChromVAR deviation Z-scores were

661 calculated with the RunChromVAR function. Reactome pathway analysis of peaks was done with
662 the rGREAT package v1.24.0 (McLean et al. 2010; Gu 2022). For this analysis, only peaks with
663 differential p-value of <0.005 were included.

664

665 **Bulk RNA-seq**

666 Total RNA was extracted with the Qiagen RNAeasy Plus Mini Kit (Cat. No. 74136) and
667 quantified with NanoDrop. Triplicates for each cell line (using different passage number) were used.
668 RNA-seq library preparation and directional mRNA-sequencing was carried out by NovogeneAIT.
669 And adapted analytical workflow from (Love et al. 2019) was used for the analysis. Briefly,
670 transcripts were quantified using Salmon (Patro et al. 2017) with hg38 genome and GENCODE
671 version 38 as reference and default parameters. Quantified transcripts were imported to R with
672 tximeta (Love et al. 2020) and differential analysis was performed with DESeq2 (Love et al. 2014),
673 filtering out genes with less than 10 supporting reads. Z-scores were calculated with the scale()
674 function after variance normalization with variance stabilizing transformation (VST) to account for
675 count variations caused by highly expressed or lowly expressed genes. The resulting output is a
676 matrix where rows represent genes, columns represent samples, and values represent Z-score. The
677 mean Z-score of the three replicates was calculated as the representative Z-score for each individual
678 PDC.

679

680 **Whole exome sequencing**

681 WES data for HN120Pri, HN120Met, HN137Pri and HN137Met were done through
682 Macrogen as part of an earlier study (in press), while WES for HN120PCR and HN137PCR was done
683 through NovogeneAIT. In this case, the Agilent SureSelect V6 58 Mb kit was used for library
684 preparation and samples were sequenced on an Illumina NovaSeq PE150 platform at 12Gb data/100X
685 exome coverage. Raw WES data were processed through GATK best practices pipeline, and copy
686 number segmentation and calling were done with CNVKit after normalizing read number to the
687 lowest sample (HN137Met) (Talevich et al. 2016).

688

689 Correlating gene copy number, gene chromatin state, and gene expression

690 Single cell .bams were first aggregated into pseudobulk with samtools merge and processed
691 with sorting and indexing. Next, to account for differences in signal arising due to differences in read
692 number, we normalized the .bam files by downsampling reads to match the read number of the sample
693 with the smallest read number. Normalized bams of pseudobulk aggregate H3K4me3 and H3K27ac,
694 as well as bulk H3K27me3 data were used as input for ChromHMM v1.23 (Ernst and Kellis 2012),
695 using hg38. ChromHMM is a multivariate Hidden Markov Model-based technique that can model
696 the presence of multiple chromatin marks in the same region of the genome. It first uses the Baum-
697 Welch algorithm to find ‘hidden chromatin states’, each state reflecting presence or absence of single
698 or multiple histone marks. It then uses the forward-backward algorithm to calculate the posterior
699 probability of a certain genomic region being in a particular chromatin state. Five states were deemed
700 to be the optimal number of states after repeated analysis with multiple number of states. Output
701 segment files were binned to 200bp windows with bedtools makewindows to allow for comparable
702 analysis across multiple cell lines. To correlate ChromHMM state transitions and gene expression,
703 ChromHMM 200bp genomic bin outputs were filtered to include only promoter regions (region of
704 2000bp upstream of TSS to 3000bp downstream of TSS) and correlated to the nearest gene with
705 bedtools closest. The resulting output is a bed like file with the columns: chromosome, bin start, bin
706 end, chromatin state, and gene. Gene symbols were used as identifier to connect gene chromatin state,
707 gene copy number, gene expression. The Z-score matrix and CNVKit .call.cns output was used for
708 the gene expression and gene CN data respectively. Genes with missing data (e.g. no gene expression
709 or CNV data) were removed from analysis. To assign chromatin state from the 200bp ChromHMM
710 output, we considered a gene to have an activating mark if more than 2 bins (400bp) have H3K4me3
711 signal, H3K27ac signal, or both. Genes were categorized as having activity of both marks if the modal
712 chromatin state across all bins are H3K4me3+/H3K27ac+ or when there are similar proportion of
713 H3K4me3+/H3K27ac- and H3K4me3-/H3K27ac+ bins (e.g. 40% H3K4me3+/H3K27ac- and 60%
714 H3K4me3-/H3K27ac+ or vice versa). A gene is categorized as having single mark if more than 60%

715 of the bins were annotated as such by ChromHMM. For chromatin state transition analysis, bins that
716 were unmodified in the primary state and which remained unmodified during progression were
717 excluded from analysis. Alluvial plots were plotted with the R package ggalluvial (Brunson 2020).
718 Barplots and boxplots were visualized with the R package ggplot2.

719

720 **HN120preMet and HN137prePCR analysis**

721 Differential marker peaks for each individual PDC were found through the
722 FindAllMarkers() function of Seurat. The top-50 peaks were included as features for the “module”
723 unique for each PDC. Subsequently, module scores were back calculated for each single cell with the
724 AddChromatinModule() function. To plot the ternary plots, first individual module profiles of HN120
725 and HN137 PDCs were separated. Next, normalized module score profiles of each individual cell
726 were added up to 1 with the following formula:

727
$$S_{x_norm} = \frac{S_x}{S_{PRI_x} + S_{MET_x} + S_{PCR_x}}$$
, whereby S_x is the raw PRI or MET or PCR module score of that
728 cell, and $S_{(x_norm)}$ is the normalized PRI or MET or PCR score for that cell. If there were negative
729 values, the absolute value of the lowest negative value was added to the PRI/MET/PCR scores. The
730 package ggtern (Hamilton and Ferry 2018) was then used to visualize the normalized module scores.
731 For HN120Pri, cells were categorized as preMet if cells have a PRI/MET/PCR normalized module
732 score ratio of >0.4 Pri and >0.4 Met. For HN137Pri, cells were relabeled as HN137prePCR if cells
733 have a PRI/MET/PCR normalized module score ratio of >0.4 Pri / <0.4 PCR. The ggplot package
734 and the geom_smooth() function was used to calculate the linear regression between HN120Pri and
735 HN120Met module scores with UMR and FRiP.

736

737 **Statistical analysis**

738 All statistical analysis was done with R4.0. The two-sided Wilcoxon test from the
739 stat_compare_means function of the ggpibr package was used to calculate statistical significance of
740 either module scores, UMRs, or FRiP between different PDCCs. A linear regression model was used

741 to analyze the statistical relationship between HN120Met module score and FRiP and UMR. P-values
742 as indicated: *, p <= 0.05; **, p <= 0.01; ***, p <= 0.001; ****, p <= 0.0001.

743

744

745

746 **Data access**

747 The datasets supporting the conclusions of this article are available in the NCBI GEO
748 repository, under the accession number [GSE212250](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE212250)
749 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE212250>). The code used in this study
750 are available on Github: <https://github.com/dmuliaditan/sncutnrun>. Figures 1A and 4F were created
751 with Biorender (www.biorender.com) under publication license HI248I94WF and GS26ET99NE
752 respectively.

753

754 **Competing interest statement**

755 The authors declare no competing interests.

756

757 **Acknowledgments**

758 We thank the members of the DasGupta and Cheow labs for helpful discussion. We also
759 thank Xiaoning Wang from the NUS Medicine Flow Cytometry Laboratory for assistance and
760 advice on cell sorting and analysis. This work is supported by a grant from the National Medical
761 Research Council (Singapore) (MOH-000219).

762 Author's contributions: Conceptualization: HJW, RD, LFC. Methodology: HJW, DM.
763 Supervision: RD, LFC. Writing: HJW, RD, RD, LFC.

764 Author Information: Howard J. Womersley and Daniel Muliaditan are co-first authors of this
765 study.

768

769

770

771

772

References

773 Ai S, Xiong H, Li CC, Luo Y, Shi Q, Liu Y, Yu X, Li C, He A. 2019. Profiling chromatin states using single-
774 cell itChIP-seq. *Nat Cell Biol* **21**: 1164–1172.

775 Amemiya HM, Kundaje A, Boyle AP. 2019. The ENCODE Blacklist: Identification of Problematic Regions
776 of the Genome. *Sci Rep* **9**: 9354.

777 Brock A, Chang H, Huang S. 2009. Non-genetic heterogeneity — a mutation-independent driving force for
778 the somatic evolution of tumours. *Nat Rev Genet* **10**: 336–342.

779 Brunson JC. 2020. ggalluvial: Layered Grammar for Alluvial Plots. *Journal of Open Source Software* **5**: 2017.

780 Carter B, Ku WL, Kang JY, Hu G, Perrie J, Tang Q, Zhao K. 2019. Mapping histone modifications in low cell
781 number and single cells using antibody-guided chromatin fragmentation (ACT-seq). *Nat Commun* **10**: 3747.

782 Chia S, Low J-L, Zhang X, Kwang X-L, Chong F-T, Sharma A, Bertrand D, Toh SY, Leong H-S, Thangavelu
783 MT, et al. 2017. ZPhenotype-driven precision oncology as a guide for clinical decisions one patient at a time.
784 *Nat Commun* **8**: 1–12.

785 Choi J-H, Lee B-S, Jang JY, Lee YS, Kim HJ, Roh J, Shin YS, Woo HG, Kim C-H. 2023. Single-cell
786 transcriptome profiling of the stepwise progression of head and neck cancer. *Nat Commun* **14**: 1055.

787 Easwaran H, Tsai H-C, Baylin SB. 2014. Cancer Epigenetics: Tumor Heterogeneity, Plasticity of Stem-like
788 States, and Drug Resistance. *Molecular Cell* **54**: 716–727.

789 Ernst J, Kellis M. 2012. ChromHMM: automating chromatin state discovery and characterization. *Nat Methods*
790 **9**: 215–216.

791 Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S,
792 Gheorghe M, Baranašić D, et al. 2020. JASPAR 2020: update of the open-access database of transcription
793 factor binding profiles. *Nucleic Acids Research* **48**: D87–D92.

794 Füllgrabe J, Kavanagh E, Joseph B. 2011. Histone onco-modifications. *Oncogene* **30**: 3391–3403.

795 Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E, Nemati F, Dahmani A, Lameiras S, Reyal F,
796 Frenoy O, et al. 2019. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in
797 breast cancer. *Nat Genet* **51**: 1060–1066.

798 Gu Z. 2022. rGREAT: Client for GREAT Analysis. <https://github.com/jokergoo/rGREAT>,
799 <http://great.stanford.edu/public/html/>.

800 Guo M, Peng Y, Gao A, Du C, Herman JG. 2019. Epigenetic heterogeneity in cancer. *Biomark Res* **7**: 23.

801 Hainer SJ, Bošković A, McCannell KN, Rando OJ, Fazzio TG. 2019. Profiling of Pluripotency Factors in
802 Single Cells and Early Embryos. *Cell* **177**: 1319–1329.e11.

803 Hamilton NE, Ferry M. 2018. ggtern: Ternary Diagrams Using ggplot2. *Journal of Statistical Software* **87**: 1–
804 17.

805 Helin K, Dhanak D. 2013. Chromatin proteins and modifications as drug targets. *Nature* **502**: 480–488.

806 Hyun K, Jeon J, Park K, Kim J. 2017. Writing, erasing and reading histone lysine methylations. *Exp Mol Med*
807 **49**: e324–e324.

808 Kakiuchi A, Kakuki T, Ohwada K, Kurose M, Kondoh A, Obata K, Nomura K, Miyata R, Kaneko Y, Konno
809 T, et al. 2021. HDAC inhibitors suppress the proliferation, migration and invasiveness of human head and neck
810 squamous cell carcinoma cells via p63-mediated tight junction molecules and p21-mediated growth arrest.
811 *Oncol Rep* **45**: 46.

812 Kaya-Okur HS, Janssens DH, Henikoff JG, Ahmad K, Henikoff S. 2020. Efficient low-cost chromatin
813 profiling with CUT&Tag. *Nature Protocols* **15**: 3264–3283.

814 Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S. 2019.
815 CUT&Tag for efficient epigenomic profiling of small samples and single cells. *Nature Communications* **10**.

816 Lamar JM, Stern P, Liu H, Schindler JW, Jiang Z-G, Hynes RO. 2012. The Hippo pathway target, YAP,
817 promotes metastasis through its TEAD-interaction domain. *Proc Natl Acad Sci U S A* **109**: E2441-2450.

818 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**: 357–359.

819 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome
820 Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*
821 **25**: 2078–2079.

822 Litzenburger UM, Buenrostro JD, Wu B, Shen Y, Sheffield NC, Kathiria A, Greenleaf WJ, Chang HY. 2017.
823 Single-cell epigenomic variability reveals functional cancer heterogeneity. *Genome Biol* **18**: 15.

824 Love MI, Anders S, Kim V, Huber W. 2019. RNA-seq workflow: gene-level exploratory analysis and
825 differential
826 expression.
<https://master.bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html>.

827 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data
828 with DESeq2. *Genome Biology* **15**: 550.

829 Love MI, Soneson C, Hickey PF, Johnson LK, Pierce NT, Shepherd L, Morgan M, Patro R. 2020. Tximeta:
830 Reference sequence checksums for provenance identification in RNA-seq. *PLOS Computational Biology* **16**:
831 e1007664.

832 Matthias C, Mack B, Berghaus A, Gires O. 2008. Keratin 8 expression in head and neck epithelia. *BMC Cancer*
833 **8**: 267.

834 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel
835 S, Daly M, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation
836 DNA sequencing data. *Genome Res* **20**: 1297–1303.

837 McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. 2010. GREAT
838 improves functional interpretation of cis-regulatory regions. *Nat Biotechnol* **28**: 495–501.

839 Meers MP, Bryson TD, Henikoff JG, Henikoff S. 2019. Improved CUT&RUN chromatin profiling tools. *eLife*
840 **8**: e46314.

841 Minussi DC, Nicholson MD, Ye H, Davis A, Wang K, Baker T. 2021. Breast tumours maintain a reservoir of
842 subclonal diversity during expansion. *Nature* **Apr;592(7853):302–8**.

843 Morton AR, Dogan-Artun N, Faber ZJ, MacLeod G, Bartels CF, Piazza MS, Allan KC, Mack SC, Wang X,
844 Gimple RC, et al. 2019. Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. *Cell* **179**:
845 1330-1341.e13.

846 Omori H, Nishio M, Masuda M, Miyachi Y, Ueda F, Nakano T, Sato K, Mimori K, Taguchi K, Hikasa H, et
847 al. 2020. YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma. *Science
848 Advances* **6**: eaay3324.

849 Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon: fast and bias-aware quantification of
850 transcript expression using dual-phase inference. *Nat Methods* **14**: 417–419.

851 Patty BJ, Hainer SJ. 2021. Transcription factor chromatin profiling genome-wide using uliCUT&RUN in
852 single cells and individual blastocysts. *Nat Protoc* **16**: 2633–2666.

853 Pavón MA, Arroyo-Solera I, Téllez-Gabriel M, León X, Virós D, López M, Gallardo A, Céspedes MV,
854 Casanova I, López-Pousa A, et al. 2015. Enhanced cell migration and apoptosis resistance may underlie the
855 association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients.
856 *Oncotarget* **6**: 29016–29033.

857 Pisco AO, Huang S. 2015. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse:
858 ‘What does not kill me strengthens me.’ *Br J Cancer* **112**: 1725–1732.

859 Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS,
860 et al. 2017. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck
861 cancer. *Cell* **171**: 1611-1624.e24.

862 Qi Z, Liu Y, Mints M, Mullins R, Sample R, Law T, Barrett T, Mazul AL, Jackson RS, Kang SY, et al. 2021.
863 Single-Cell Deconvolution of Head and Neck Squamous Cell Carcinoma. *Cancers* **13**: 1230.

864 Qu J, Tanis SEJ, Smits JPH, Kouwenhoven EN, Oti M, van den Bogaard EH, Logie C, Stunnenberg HG, van
865 Bokhoven H, Mulder KW, et al. 2018. Mutant p63 Affects Epidermal Cell Identity through Rewiring the
866 Enhancer Landscape. *Cell Rep* **25**: 3490-3503.e4.

867 Quah HS, Cao EY, Suteja L, Li CH, Leong HS, Chong FT, Gupta S, Arcinas C, Ouyang JF, Ang V, et al.
868 2023. Single cell analysis in head and neck cancer reveals potential immune evasion mechanisms during early
869 metastasis. *Nat Commun* **14**: 1680.

870 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features.
871 *Bioinformatics* **26**: 841–842.

872 Ruiz-Villalba A, van Pelt-Verkuil E, Gunst QD, Ruijter JM, van den Hoff MJ. 2017. Amplification of
873 nonspecific products in quantitative polymerase chain reactions (qPCR). *Biomolecular Detection and
874 Quantification* **14**: 7–18.

875 Segre JA, Bauer C, Fuchs E. 1999. Klf4 is a transcription factor required for establishing the barrier function
876 of the skin. *Nat Genet* **22**: 356–360.

877 Sharma A, Cao EY, Kumar V, Zhang X, Leong HS, Wong AML, Ramakrishnan N, Hakimullah M, Teo HMV,
878 Chong FT, et al. 2018. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-
879 induced infidelity in stem cell hierarchy. *Nat Commun* **9**: 4931.

880 Shin E, Kim J. 2020. The potential role of YAP in head and neck squamous cell carcinoma. *Exp Mol Med* **52**:
881 1264–1274.

882 Skene PJ, Henikoff JG, Henikoff S. 2018. Targeted in situ genome-wide profiling with high efficiency for low
883 cell numbers. *Nature Protocols* **13**: 1006–1019.

884 Skene PJ, Henikoff S. 2017. An efficient targeted nuclease strategy for high-resolution mapping of DNA
885 binding sites. *eLife* **16**: e21856-undefined.

886 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija
887 R. 2019. Comprehensive integration of single-cell data. *Cell* **177**: 1888-1902.e21.

888 Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. 2021. Single-cell chromatin state analysis with Signac.
889 *Nat Methods* **18**: 1333–1341.

890 Talevich E, Shain AH, Botton T, Bastian BC. 2016. CNVkit: Genome-Wide Copy Number Detection and
891 Visualization from Targeted DNA Sequencing. *PLOS Computational Biology* **12**: e1004873.

892 Valencia-Sama I, Zhao Y, Lai D, Janse van Rensburg HJ, Hao Y, Yang X. 2015. Hippo Component TAZ
893 Functions as a Co-repressor and Negatively Regulates Δ Np63 Transcription through TEA Domain (TEAD)
894 Transcription Factor. *J Biol Chem* **290**: 16906–16917.

895 Wang Q, Xiong H, Ai S, Yu X, Liu Y, Zhang J, He A. 2019. CoBATCH for High-Throughput Single-Cell
896 Epigenomic Profiling. *Molecular Cell* **76**: 206-216.e7.

897 Wang R, Xin M, Li Y, Zhang P, Zhang M. 2016. The Functions of Histone Modification Enzymes in Cancer.
898 *CPPS* **17**: 438–445.

899 Wang Y, Dong C, Zhou BP. 2020. Metabolic reprogram associated with epithelial-mesenchymal transition in
900 tumor progression and metastasis. *Genes Dis* **7**: 172–184.

901 Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao Y, Li B, et al. 2019.
902 Circular ecDNA promotes accessible chromatin and high oncogene expression. *Nature* **575**: 699–703.

903