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Abstract

Linear chain molecules play a central role in polymer physics with innumerable industrial applications.

They are also ubiquitous constituents of living cells. Here we highlight the similarities and differences

between two distinct ways of viewing a linear chain. We do this, on the one hand, through the lens of

simulations for a standard polymer chain of tethered spheres at low and high temperatures and, on the

other  hand,  through published experimental  data  on an important  class  of  biopolymers,  proteins.  We

present  detailed  analyses  of  their  local  and non-local  structures  as  well  as  the  maps  of  their  closest

contacts. We seek to reconcile the startlingly different behaviors of the two types of chains based on

symmetry considerations.
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1. Introduction

Polymer science [1-4], the study of chain molecules including linear polymers, is a flourishing

subject that has led to life-changing progress in several technologies including plastics, textiles, and the

design of novel materials. At the same time, linear chain molecules form the very basis of life including

both the DNA molecule, whose information is translated into the sequence of amino acids, and proteins,

which serve as amazing molecular machines in living cells. While conventional polymer models with

stiffness have proved to be adequate for describing the relevant physics of the DNA molecule [5-7], the

physical behavior of canonical polymers and proteins are strikingly different. In contrast to DNA, the

structural changes during protein folding occur on multiple length scales at once, making it difficult to

separate the relative contributions of the myriad interactions [8-13]. 

A linear chain is composed of many interacting monomers that are tethered together in a railway

train topology. If the only interaction is self-avoidance, a single chain is in a coil phase whose large-scale

behavior is in the same class as a self-avoiding walk. Upon adding an attractive interaction between pairs

of non-adjacent  monomers, the chain undergoes compaction into a highly degenerate compact phase at

low temperatures [14-44]. While the notion of phases and phase transitions for a polymeric chain strictly

refer to a chain with an infinite number of monomers, proteins are modest length chains, which yet exhibit

several common characteristics. Notably, the compact state of proteins is modular and made up of two

kinds  of  secondary  building  blocks,  topologically  one-dimensional  helices  [45],  and two-dimensional

sheets made up of zig-zag strands [46]. The helices and the strands are connected by turns or loops [47-

49]. The nature of the ground states of compact polymers is qualitatively distinct from that of proteins and

ordinarily do not exhibit any secondary motifs. The common characteristics of proteins are believed to

derive from the shared backbone of distinct amino acid sequences.

Here  we  present  an  analysis  of  these  two  distinct  classes  of  behaviors  to  understand  their

similarities and distinctions. We do this in two complementary ways. For conventional polymers, we study

the simplest model of tethered hard spheres of diameter σ and a bond length equal to the sphere diameter.

Following the standard nomenclature,  we call  this the tangent sphere model.  We impose an attractive

interaction between all pairs of non-adjacent monomers through a square well of range 1.6 σ and depth -1,

which sets the energy scale without loss of generality. 

A sphere is isotropic and looks the same when viewed from any direction. There is nevertheless a

preferred axis at the location of each main chain sphere corresponding to the tangent along the chain or the

direction along which the chain is oriented at that location. Replacing the spheres with objects such as

unidirectional coins, uniaxial discs, allowing neighboring spheres to overlap, or adding side chains to the
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spheres  along the  main chain  are  all  steps  that  break  the  spherical  symmetry  and yield  ground state

structures, which resemble protein structures to varying degrees [50-61]. To avoid clouding the issue by

studying an approximate model for proteins, we resort instead to a careful analysis of experimental data of

over 4,000 protein native state structures (see Materials and Methods). A side-by-side comparison of the

local structures and non-local contacts of proteins to those of the tangent sphere model at both low and

high temperatures provides a vivid picture of the different views of a chain molecule. Our goal here is to

assess how well the tangent sphere model describes the protein backbone. 

2. Materials and Methods

2.1. Our protein dataset

Our protein data set  consists  of  4,391 globular  protein structures from the Protein Data Bank

(PDB),  a  subset  of  Richardsons’ Top 8000 set  [62]  of  high-resolution,  quality-filtered  protein  chains

(resolution < 2Å, 70% PDB homology level),  that  we further distilled out to exclude structures  with

missing backbone atoms, as well as amyloid-like structures (for full list of the PDB identifiers of protein

structures in our database see Table S1 in the Supplementary Information of  Refs. [58,63]). The program

DSSP (CMBI version 2.0) [64] has been used to determine the backbone hydrogen bonding pattern and

thus place each protein residue in context within a protein chain: within an  α-helix, it is labeled an ‘α-

residue’; within a β-strand, it is labeled a ‘β-residue’, or elsewhere, it is tagged as a ‘loop-residue’. 

2.2. Numerical simulations of a chain of tethered tangent spheres

To obtain a  set  of independent  equilibrium configurations  of  a  chain of  tethered tangent  spheres

comprised of N=80 spherical beads, subject to an attractive potential for a wide range of temperatures, we

have employed standard replica exchange (RE) (or parallel  tempering)  canonical  simulations  [65,66].

Most of our simulations were carried out with a chain of 80 hard spheres of diameter σ. The model is a

tangent sphere model because the bond length is also constrained to be equal to σ. At any temperature, the

spheres do not self-intersect and are hard. We introduce a generic attractive square-well attraction of range

Ratt = 1.6σ, between all pairs of spheres, and magnitude ɛ, which sets the characteristic energy scale. The

attractive interaction causes the chain to become compact at low temperatures.

The RE calculation [65,66] relies on a set of canonical simulations run in parallel at a set of M

carefully chosen different temperatures, Ti , i = 1, 2, · · · M . Each simulation represents a replica, or a

system copy in thermal equilibrium. The key advantage is the possibility of swapping replicas at different

temperatures  without  affecting  the  equilibrium  condition  at  each  temperature.  This  permits  rapid

equilibration even when there is a rugged free energy landscape. In each Monte Carlo (MC) simulation of
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one replica,  new moves  are  accepted  with  the  standard  Metropolis  acceptance  probabilities  [67].  We

ensure that the number of swaps that entail exchange of replicas is large enough to ensure the fidelity of

the statistics. The efficiency of the RE scheme depends on the number of replicas, the selected set of

temperatures, as well as of the swap moves frequency. For best performance, the acceptance rate of swaps

is tuned to be around 20% [68]. The RE simulations results are conveniently analyzed using the weighted

histogram analysis method [69]. We employed 30 replicas, with a finer temperature mesh at lower values

of  the  reduced  temperatures  (kBT/ɛ)  in  the  range  kBT/ɛ  =  0.3-0.5  with  a  separation  of  neighboring

temperatures of 0.02. In the kBT/ɛ = 0.5-1 interval, the separation of neighboring temperatures was 0.05,

and  for  kBT/ɛ  =  1-4,  the  separation  interval  was  0.2.  We  allowed  for  the  RE  swaps  only  between

neighboring temperatures.  The exchange moves were attempted every 100 MC steps per monomer. The

length of the simulations was 109 MC steps per monomer and per replica.

For sampling chain configurations at infinite temperature, we have used the standard Metropolis MC

algorithm [67] in which all proposed updates of the chain configuration that respect its self-avoidance are

accepted.  In  both  simulation  protocols, standard  local  moves,  including  crankshaft,  reptation  (or

slithering-snake) moves,  endpoint moves,  and the nonlocal  pivot move [70] are employed with equal

probabilities.

The, N=80 beads, tangent sphere polymer exhibits two continuous (second order) ‘transitions’ (see

inset of Figure 5(b)). At a temperature kBT/ɛ ~ 3 (ɛ denotes the energy scale of attraction), there is a coil-

to-globule  transition  (signaled  by  a  kink  in  the  specific  heat  per  bead  CV/NkB).  This  is  a  finite-size

counterpart of the θ-point for this system. At low temperatures kBT/ɛ ~ 0.4 there is a second ‘transition’

into a compact globule phase, signaled by the maxima of the specific heat per bead CV/NkB. The results we

will present for the tangent sphere model are at infinite temperature and kBT/ɛ = 0.3.

In the next section, we will present some definitions and general observations pertaining to the local

structure of a chain, especially in the continuum limit. We then go on to the Results Section, which is

divided  into  two  parts.  First,  we  depict  some  similarities  and  some  critical  differences  between  the

polymer model and protein structures in terms of power law behavior of certain geometrical measures of

local structure. In the second part, we will highlight some striking differences between the geometries of

the model polymer and protein native state structures. We then conclude with a brief discussion.  
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3. General considerations

Three-body interactions and the self-avoidance of a continuum tube 

We will begin our analysis with some definitions and general observations. For fixed bond length, a

local chain conformation is specified by two angles θ and μ. θ is a  measure of bond bending, a straight

conformation has θ=π. The angle between successive binormals, μ, is the second angular coordinate and is

the dihedral or torsional angle [63]. 

The standard model of a linear chain in polymer science, represented by tethered spheres, does not

lend itself, in a natural manner, to housing helices, which are recurrent motifs in biomolecules [71-74]. In

contrast, a tube, such as a garden hose, which can be thought of as a chain of discs, can be wound readily

into a helix. The protein α-helix has a geometry akin to that of a tube wound tightly into a space-filling

helix [75]. 

Consider a collection of uniform untethered hard spheres. The standard prescription for ensuring

that spheres do not overlap is to ensure that the distance between the centers of every pair of spheres is no

smaller than the sphere diameter. Pairwise interactions often capture the essence of interacting systems.

The simplest generalization to a chain topology is tethered hard spheres (with the same self-avoidance

constraint), which, as we have noted, is the simplest conventional model of polymer physics. In contrast,

the alternative description of a chain as a tube leads to an unusual condition of self-avoidance. It has been

shown that the correct way to determine whether a tube  in the continuum limit is self-avoiding or not

entails discarding pairwise interactions and invoking appropriate many-body interactions [75,76]. This is

illustrated by considering the self-avoidance of a tube of non-zero thickness (see Figure 1). Knowledge of

the distance between a pair of points on the tube axis (say A and B or B and D) does not discriminate

between the  two contexts  of  nearby points  along the  axis  or  in  different  parts  along a chain.  In  the

continuum limit, points A, B, and C, locally positioned along the axis, can become infinitesimally close to

each  other.  This  cannot  be  the  case,  however,  for  non-local  points,  where  self-avoidance is  a  prime

consideration, and one must ensure that the two points do not approach each other too closely. Knowledge

of the coordinates of a pair of points does not inform you about the context that the two points are in – are

they points locally along the axis (which can of course be arbitrarily close to each other) or are they non-

local points (that may have come too close to each other possibly signaling an intersection)? This inability

to discriminate between local and non-local pairs of points is at the root of the problem.

The standard method in polymer physics of ensuring self-avoidance in the continuum limit is to first

make the tube infinitesimally thin (a natural limiting case for a continuum chain of tethered spheres) and

then use a singular δ-function potential [77] interaction: there is no energy cost as long as two points on
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the axis do not overlap exactly but there is an infinite energy cost when there is in fact an overlap. There

are at least three problems with this [78]. First, the δ-function potential is singular (unlike say a familiar

Lennard-Jones potential) and one needs to use renormalization group theory to introduce an artificial cut-

off  length  scale  to  carry  out  the  calculations  and  then  demonstrate  that  this  length  scale  can  safely

approach zero and yet retain the validity of the results. Second, the δ-function pairwise potential does not

preserve the topology of a closed string – the number of knots is not necessarily conserved. Finally, in

standard polymer physics, there is no description of the self-avoidance of a continuum self-avoiding tube

(or surface) of non-zero thickness.

These problems are deftly averted by discarding pairwise interactions and working with a suitable

many-body potential. In the continuum limit, there is a simple geometrical condition [75] to ascertain both

whether a tube (and by extension a surface) is self-avoiding non-locally and is not too tightly wound

locally. One can draw a circle through any triplet of points along the tube axis and measure the radius. The

prescription for self-avoidance of a continuum tube is to consider all possible triplets, local or otherwise,

and ensure that every one of the three body radii is greater than or equal to the tube radius. The radius of

the circle passing through the triplet of points (A,B,C) in Figure 1 is the local radius of curvature as the

points approach each other and results in a kink in the tube when the radius of curvature becomes smaller

than the tube radius. On the other hand, the radius of the circle drawn through (A,B,D) is a measure of the

distance of approach of two parts of the tube and must not be smaller than the tube thickness in order to

respect self-avoidance. Likewise, the self-avoidance of a surface or layer (or a sheet of paper) of non-zero

thickness necessarily entails  discarding both pairwise and three-body interactions and working with a

suitable four-body potential. One considers all quartets of points on the symmetry plane of a surface and

draws spheres through each quartet. A surface is self-avoiding if the sphere radius of each quartet (local or

non-local) is larger than the thickness of the surface. We note that this many-body prescription is strictly

needed only in the continuum limit [76]. 

For a discrete chain, such as the ones we focus on in this paper, the pair-wise distance between a local

pair of points is the bond length and there is no singular behavior at the local level because of a natural

cut-off  length  scale.  Also,  a  minimum  threshold  of  the  non-local  three  body  radius  can  readily  be

measured by directly accessing the non-local pair-wise distance. We will make use of these simplifications

for a discrete chain in our analysis below. It is important to note that there are myriad local interactions,

including hydrogen bonds, as well as entropic effects that will play a key role in governing the local

behavior of a real chain. Despite the absence of an imperative need to invoke many body interactions for a

discrete chain, the three-body and four-body radii do yield interesting information. An infinitely large
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three-body radius signals co-linearity of the three points (bond bending angle θ equal to 180°; θ=0° is

excluded because of steric overlap), whereas an infinite four-body radius is associated with planarity of

the quartet of points (μ equal to 0°, 180°, or -180°). 

Figure 1. Sketch of the axis of a self-avoiding continuum tube (depicted in blue). The points A,

B, and C lie alongside each other on the tube axis whereas point D is a nearby point from

another part of the tube. The three-body prescription is to draw circles through all  triplets of

points on the tube axis and ensure that none of the radii is smaller than the tube radius. For a

local triplet of points, one obtains the local radius of curvature whereas the non-local radius is a

measure of the distance of closest approach of two parts of the tube.

4. Results

4.1. Power law scaling

Power laws often signify scale invariance and are a signature of an absence of a characteristic scale

[79]. A liquid-vapor system at its critical point exhibits critical opalescence. The system appears milky

white because light of all wavelengths scatter from the droplets and bubbles of liquid and vapor of all

sizes thoroughly interspersed among each other. Another example of a non-trivial power law is the fractal

dimension of a self-avoiding walk in three dimensions of around 5/3 [2]. Here we discuss a somewhat

trivial but surprising realization of ‘universal’ power law behavior arising in the statistics of the local

conformation of a discrete chain molecule. We alert the reader that, unlike in critical phenomena, here

there is neither any many-body emergent behavior nor the need to invoke a system in the thermodynamic

limit. 
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The procedure that we follow is simple. For a set of three (four) points, one can readily draw a circle

(sphere) passing through them. The center of a circle (sphere) is the point equally distant from all three

(four) points and can be determined as a solution of a suitable system of linear equations. In the case of

three points, the solution is simple, and the radius of the circle R is related to the area A of the triangle

passing through the three points and its sides a, b, and c: R=abc/4A. For four points, we merely solve the

equations on a computer to obtain the radius R of the sphere.

Our goal here is to measure the radii R associated with many realizations of these points and obtain

cumulative probability distribution functions of the inverse radius X=1/R. Figure 2 shows plots of the

cumulative distribution function (CDF) of the inverse radii (X=1/R) (the probability P (1/r < 1/R) as a

function of R that a given radius r is larger than R). The circles (spheres) in question are drawn through

three  (four)  points  (chosen  consecutively  along  a  chain  and  randomly  in  some  instances)  in  three

dimensions. 

We have studied:  (a) consecutive triplets  (quartets)  of Cα  atoms along the backbones of globular

proteins when the Ramachandran ω angles characterizing a consecutive triplet have canonical values of |ω|

~ 180°. Case (a) occurs in around 99.7% of the cases in globular proteins yielding the  trans isomeric

conformation of a peptide backbone, where the two neighboring Cα atoms are on opposite sides of the

peptide bond, with a bond length approximately equal to 3.81Å [63]; (b) consecutive triplets (quartets) of

Cα atoms in globular proteins in which at least one of the two Ramachandran ω angles has a rare non-

canonical value of |ω|≈ 0° that occurs in ~0.3% of cases. This happens when two neighboring Cα atoms are

on the same side of the peptide bond, resulting in a shorter bond length of around ~2.95Å. [63]. This

corresponds to the so-called cis-conformation of a protein backbone [80]. Cases (a) and (b) are combined

for the quartets because they show very similar behavior; (c) three (four) points selected from a two-step

(three-step) self-avoiding random walk of a tangent sphere model (hard spheres of diameter 3.81Å and

bond length 3.81Å with no other interaction besides the non-overlapping of hard spheres (polymer at

infinite temperature); (d) three (four) points selected from a two-step (three-step) self-avoiding random

walk of a tangent sphere model (spheres of diameter 3.81Å and bond length 3.81Å) subject to an attractive

square-well interaction of range Ratt = 1.6σ  ≈  6Å (polymer at low temperature); (e) three (four) points

chosen randomly within a three-dimensional sphere of unit radius; and (f) three (four) points selected as

points on a two-step (three-step) random walk (no self-avoidance or steric constraints) in three dimensions

with  a  fixed  bond length  of  3.81Å (corresponding  to  the  distance  between  consecutive  Cα atoms in

proteins [63]). 
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In the case of triplets (‘3-body’ case) shown in Figure 2(a), we see that the last five systems (b)-(f)

exhibit power law behavior with approximately the same exponent of 2, but the canonical protein triplet

does not (case (a) in Figure 2(a)).

Figure 2.  (a) Cumulative probability distributions of the inverse radii  X=1/R of circles drawn

through three consecutive points along different classes chains: (blue) 965,122 triplets of the

backbones  of  globular  proteins  in  our  data  set  (defined  by  Cα atoms)  when  both  the

Ramachandran ω angles characterizing a consecutive triplet have canonical values of |ω| ≈

180°; (red) 5,774 consecutive triplets of Cα atoms in globular proteins in which at least one of the

two Ramachandran ω angles is|ω|≈0°;  (green)  16,391,622 triplets  taken from ≈200,000 low

temperature (kBT/ε = 0.3) configurations, obtained using replica-exchange (RE) simulations, of a

chain of 80 tangent spheres of diameter σ with an attractive square well potential of range Ratt =

1.6σ  ≈  6Å;  (orange)  25,598,976  triplets  obtained  from  MC  simulations  at  T  =  ∞;  (purple)

143,557,206 triplets of points chosen uniformly from within a unit sphere in three dimensions;

and (black) 100,000,000 two-step random walks in three dimensions with fixed bond length of

3.81Å.  The  gray  dashed  line  has  a  slope  of  2  and  is  a  guide  to  the  eye.  (b)  Cumulative

probability distributions of the inverse radii X=1/R of spheres, whose surface passes through

four consecutive points in different classes of chains: (blue) 957,723 local quartets along the

backbones  of  globular  proteins  (employing  Cα atoms);  (green)  16,181,473  local  quartets

selected from ≈200,000 chain configurations, obtained from replica-exchange (RE) simulations,

of a chain of 80 tangent spheres of diameter σ subject to an attractive square-well potential of

range Ratt = 1.6σ ≈ 6Å in the low temperature phase (kBT/ε = 0.3); (orange) 25,270,784 local

quartets obtained from MC simulations at T = ∞; (purple) 112,754,340 quartets of points chosen
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uniformly within a unit sphere in three dimensions; and (black) 100,000,000 three-step random

walks in three dimensions with a fixed bond length of 3.81Å. The gray dashed line is a guide to

the eye and has a slope of 1. In all simulations, the bond lengths have been chosen to be 3.81Å

equal to the mean value of the distance between the two consecutive Cα atoms along the protein

chain. The distinctive behaviors of the purple curves (corresponding to the random points cases)

occur because one can obtain circles of arbitrarily small radii, a situation precluded in the other

cases due to steric considerations. The behaviors of the tangent polymer model at high and low

temperatures  are  essentially  the  same.  The  local  behavior  is  governed  by  the  same steric

constraints in both cases and the CDF does not change. In contrast, for real polymers, recent

experimental  studies  [81,82]  have  shown  the  importance  of  the  mechanical  properties  in

determining the local curvature in the context of super-lubricity at the single molecule level.

For a canonical protein backbone in its  trans  conformation, quantum chemistry does not allow the

bond bending angle θ to be greater than ≈150°, thereby preventing too large a value of R. In contrast, for a

non-canonical protein backbone in its cis conformation [80], two consecutive Cα  atoms along the protein

chain are much closer to one another and the backbone in many of these cases has PRO residues. This

stiffens up the protein backbone with respect to the canonical case permitting large bond bending angles,

θ, that can almost reach ≈180°. 

The second panel in Figure 2, Figure 2(b), shows similar ‘universal’ power law behavior for the CDF

in the case of quartets (‘4-body’ case) of the inverse radius (X=1/R) of a sphere for various cases, detailed

in the caption, this time with an exponent 1. We provide a simple rationalization of these findings in the

next section for a triplet of points.

Rationalization of the power-law exponent

To illustrate the origin of the power law behavior,  we present here a simple derivation of the

probability distribution P(X=1/R) of the inverse radii of circles drawn through three points of a two-step

d-dimensional random walk with a fixed bond length b, which provides a natural length scale. We do not

present  a  similar  derivation  for  the  radius  of  sphere  passing  through  four  points  because  it  is  more

complex  and  is  best  handled  numerically  (which  is  what  we  have  done).  The  quantity  Xb  is  a

dimensionless quantity, which enters in the derivation below. The input is p(θ), the probability distribution
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of the bond bending angle θ. For a d-dimensional random walk, the probability distribution p(θ) scales as

[83],

p(θ) ~ (sin(θ))d-2                                                                                                                                                                                                                           (1)

R and θ are related by

R = b/(2 cos (θ /2))                                                                                                                           (2)

or equivalently:

X = 1/R = (2 cos (θ /2))/b                                                                                                                 (3)

Noting that:

P(X)dX= p(θ)dθ                                                                                                                                (4)

one obtains:

P(X) ~ (Xb)d-2 [1 – (Xb/2)2] (d-3)/2                                                                                                       (5)

One thus obtains asymptotically (when Xb<<1 or in the large radius R limit) a power law behavior of

the probability  distribution P(1/R) with an exponent  (d-2) for d>2 with a power law correction.  This

means that the cumulative probability distribution P(1/r < 1/R), being an integral of the probability P(1/R),

displays  a  power  law behavior  with  an  exponent  (d-1)  (=2  in  three  dimensions)  with  a  power  law

correction. This correction is relatively small when (Xb)2 is much smaller than 1 and yields good power

law  behavior  as  observed  in  Figure  2(a)  and  Figure  3(a).  The  pivotal  quantity  that  determines  the

asymptotic exponent is the behavior of p(θ) when θ approaches  180° and the three points become co-

linear.  The  difference  in  behavior  in  2  and  3  dimensions  is  shown  in  Figure  3(b).  The  numerical

simulations are in good accord with the prediction of Eq. (1). 

The ‘4-body’ case works in a similar manner to the ’3-body’ case, except that the radius now depends

on two independent variables. An unexpected sensitivity of the power law exponent to the choice of the 4

points  is  demonstrated  in  Figure  3(c).  Quartets  derived  from  a  plain  3-step  random  walk  in  three

dimensions (3d) exhibit power law behavior with an exponent of 1 (in accord with the results shown in

Figure 2(b)). We have also considered a simple variant of the plain random walk that we call a constrained

random walk. Here we define the first two points to lie along the x-axis. We then place the third point
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randomly on a pre-determined x-y plane. Superficially, this may not seem to be an onerous constraint,

because any three points will necessarily lie in a plane. Nevertheless, a constrained random walk still

shows power law behavior but with a distinct exponent, behaving as though it is in a fractal dimension

regime. This is because the sampling of phase space is now altered in a relevant manner. We note that this

regime may occur when a polymer system happens to be in the vicinity of a surface or a solid wall. 

Figure 3. (a) Cumulative probability distributions of the inverse radii X=1/R of the circles drawn

through three points of a two-step random walk with fixed bond length of 3.81Å, when the walk is

performed in two dimensions (red) and in three dimensions (blue). (b) The distribution of the

bond bending angle θ  in the two-step random walk in two dimensions is uniform p(θ) = const.

(red histogram), while, in three dimensions, p(θ) = sin θ (blue histogram and the green line). (c)

Cumulative probability distributions of the inverse radii X= 1/R of the spheres drawn through four

points of a three-step random walk with fixed bond length of 3.81Å, when the walk is performed

in three dimensions (red) and for a constrained random walk. The constraint arises because the
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first three points (first two steps of the random walk) are sampled from a plane (sampling in two

dimensions – after all, any three points do lie in a plane), while the final step (fourth point) is

sampled in full three-dimensional space (blue). The constrained random walk corresponds to a

fractal dimension 2 < d < 3 for the effective sampling of the variables controlling 1/R and reduces

the steepness of the power law.

4.2 Chain geometries

We begin with an analysis of distinct local chain geometries. We compare the behaviors of the tangent

sphere model at low and high temperatures, on one hand, and that of the native states of globular proteins,

on the other. The local structures of these cases are shown in Figure 4 through their characteristic  (θ,μ)

plots [63]. These plots are drawn by measuring local pairs of bond-bending and dihedral angles for nearly

a million monomers (for the polymer models) and residues (for protein native state structures).  In contrast

to the plots of model polymers (Figures 4(a) and (b)), the  (θ,μ) plot for globular protein native state

structures  (Figure  4(c))  exhibits  significant  structure  (distinct  from  the  features  present  in  the  low

temperature tangent sphere model) and signal the presence of the building blocks of helices and sheets. 

Figure 4.  (θ,μ) cross plots of the bond bending angle  θ versus dihedral angle μ for 966,505

randomly  chosen  monomers  belonging  to  two  different  polymer  classes  and  for  the  same

number of residues in protein native state structures. (a) (light green) Polymer chain consisting

of 80 tangent spheres of diameter σ subject to an attractive square well potential of range R att =

1.6σ ≈ 6Å at low temperature (kBT/ε = 0.3) studied using RE simulations. (b) (orange) Polymer

chain consisting of 80 tangent spheres of diameter σ at infinite temperature accessed by means
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of MC simulations with the only interaction being steric avoidance of all pairs of spheres. (c)

(blue) For 966,505 residues of the 4,391 globular proteins in our data set.

The trends in Figure 4 are analyzed in Figure 5, which depicts a histogram of how far the nearest non-

local monomer or residue is along the chain sequence. A non-local contact is defined to be one that is

separated by at least three positions along the chain with the two beads nearest to each other (i,j) satisfying

|i-j| ≥ 3. For both helices and turns, there are sharp maxima of close-by neighbors at a sequence separation

of 3.

Figure 5. Frequency distribution of the sequence separation |i-j| along the chain, of the nearest

non-local contact of bead i found at location j.  In Panel (a), the blue points indicate 313,574 α-

residues out of a total of 975,287 residues in our data set from 4,391 globular proteins; the red

points are 214,501 β-beads; and the purple points denote an analysis of 442,821 loop-residues.

(b) the green and yellow points show the distinct smooth behaviors of a tangent polymer model

at low (kBT/ɛ = 0.3) and infinite temperatures. The behavior is monotonic with the closest non-

local contacts always being close along the sequence. The inset shows the specific heat per

bead  CV/NkB for  a  80  beads  long  tangent  sphere  polymer  as  a  function  of  the  reduced

temperature kBT/ɛ. There are two continuous (second order) ‘transitions’: at a high temperature

~3, there is a coil-to-globule transition and, at ~0.4, there is a transition into a compact globule.

There are at least two characteristic length scales associated with the conformation of a chain. One is

the local behavior as measured by the local radius of curvature of a triplet  of contiguous points. The
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second is the distance to the nearest non-local contact. For the space-filling conformation of a continuum

tube of non-zero thickness, these two length scales become equal [75]. Figure 6 shows a histogram of the

two scales, local and non-local, for several situations. The local radius is R = b/(2 cos(θ/2)), where θ is the

bond bending angle associated with a local triplet.  Structures in the histogram of local radii denote a

preference for certain angles of θ. The α-residues exhibit a sharp peak corresponding to θα≈92°, the β

residues for θβ≈120°, and the loop residues have a pronounced maximum close to the helical value and a

less prominent maximum around 111°, see Figure 6(a). These peaks are also reflected in the high-density

regions in the (θ,μ) cross plot of protein native state structures, shown in Figure 4c. Figure 6b shows the

histograms of the relevant non-local length scales for all five cases. All five curves exhibit a single peak

denoting a relevant non-local length scale. Table 1 is a compilation of these characteristic local and non-

local length scales. 

Table  1. Characteristic  local  and  non-local  length  scales  for  three  residue  types  in

proteins and for monomers of a tangent polymer chain in the low and high temperature phases.

Monomers Most frequent value
of ocal radius [Å]

Relevant non-local
length scale [Å]

α – residues in proteins 2.73 5.06

β – residues in proteins 3.6 4.67

loop – residues in proteins 2.75 5.26

Spheres in tangent polymers at low T 2.21 3.81

Spheres in tangent polymers at T = ∞ 2.47 7.72
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Figure 6. (a) Frequency distribution of the local radius of curvature R for five different classes of

consecutive triplets. We consider only pure protein triplets in which all three residues are in the

same structural class.  There are 256,154 α triplets (blue) comprising ~ 26% of all  970,896

triplets.   There  are  134,643  β  triplets  (red)  and  313,923  loop  triplets  (purple).  There  are

16,391,622 low temperature polymer triplets (green) and 25,270,784 infinite temperature triplets

(orange).  (b) Frequency distributions of the distances to the closest non-local contact, defined

as |j-i| ≥ 3, of monomers belonging to different classes, with the same color code as in panel (a).
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Figure 7 shows five representative chain conformations (denoted A-E), each having 80 monomers. We

will  present  the  key  characteristics  of  these  conformations  to  highlight  similarities  and  especially  the

differences. Figure 7 also presents the contact maps for each of these five conformations to show for each

monomer (labeled 1-80) the nearest, in distance, monomer (separated at least 3 positions along the chain)

indicating in red, when the pairwise distance is greater than 6Å. Such distant contacts are rare in the polymer

models unlike for the three protein chains. There is little structure in the globular polymer structure A. The

infinite  temperature  polymer  B  is  characterized  by  the  nearest  contacts  being  nearby  in  sequence,  as

evidenced by the points in its contact map being close to the diagonal. 

This feature of locality of the closest contacts is also seen in protein α-helices C where coordinated

closest contacts are of the (i,i+3) type. Furthermore, a distinctive pattern is seen for β sheets D, that display

coordinated (i,j) contacts in which bead index j ≥ i+4 and takes on a coordinated pattern that is consistent

with the situation of two strands coming together and forming parallel β sheets (when points in the contact

map are parallel to the principal diagonal but shifted away from it) or anti-parallel β-sheets (when points in

the contact map are placed along the directions that  are perpendicular  to the diagonal).  The mixed α/β

protein E has the features present in both α-helices and two types of β-sheets (parallel and anti-parallel). The

similarity  of  the  α  helix  contact  map  and  that  of  the  infinite  temperature  polymer  is  in  accord  with

expectations  that  helices  are  more  prone to  nucleate  from the  coil  phase  than  β sheets  because  of  the

prevalence of short-range contacts. 

Figure 8 shows the relative importance of  the local  radius of  curvature and the relevant  non-local

distance in determining the nature of compact conformations in the five cases. In all the five panels, we have

scaled the quantities with the appropriate characteristic length scale defined in Table 1. Even though the

scaling factors are clearly different, the behavior of the polymer chain is superficially similar at high and low

temperatures. The scaled value of the closest non-local distance is substantially flat around a value of 1 with

the fluctuations being a bit larger at infinite temperatures. In contrast, the local radius exhibits bigger swings

in the low temperature conformation compared to that at infinite temperature. The α helix is special in that

both the local and closest non-local scaled distances are close to each other and to the value 1. In the

continuum limit, this equality would result in a space-filling helix [75]. The β regions and the loops do not

exhibit this kind of behavior with the non-local scaled distance often being smaller than the scaled local

radius of curvature. 
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Figure 7. Representative conformations of chains of length 80: A) a low temperature globule

and B) an infinite-temperature coil of a generic tangent polymer chain; C) all-α protein [PDB

code: 3bqp, chain B]; D) all-β protein [PDB code: 1bdo, chain A]; and E) α/β protein [PDB code:

3l9, chain X].  The color coding of the conformation does not represent secondary motifs but

rather depicts how far a monomer is along the sequence. The chain beginning is depicted in red

color that morphs towards blue at the chain end. The contact maps shown in the other panels

are those indicating the closest non-local contact j of a given monomer. The black points indicate

those that are found within 6Å and the red points those that are found further away than 6Å, of

these configurations. The choice of 6Å is dictated by the fact that the radial distribution function

of proteins exhibits a pronounced minimum at this value [60].
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Figure  8.  Scaled  values  of  the  local  radius  and  minimal  non-local  distance  for  the  five

conformations shown in Figure 7. For each residue of the three proteins, depending on its type

(‘α’, ‘β’, or ‘loop’) these quantities are appropriately scaled with the value of the corresponding

characteristic length scale presented in Table 1. (a) all-α protein 80 residues long [PDB code:

3bqp, chain B]. (b) all-β protein 80 residues long [PDB code: 1bdo, chain A]. (c)  α/β protein 80

residues long [PDB code: 3l9, chain X]. In the top three panels, the blue ribbons indicate α-

helical parts of the sequence, the red ribbons indicate β-sheets, and the purple ribbons indicate
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loop  regions;  (d)  a  tangent  polymer  conformation  at  kBT/ɛ  =  0.3;  (e)  a  tangent  polymer

conformation at T = ∞.

5. Discussion

Our principal  focus in this  paper was to study the similarities and differences between chains

viewed in two separate ways.  The first,  a baby model in polymer science,  is a tangent sphere model

subject to a square-well attraction. We have carried out extensive simulations of the model in the high and

low  temperature  phases.  We  compare  the  behaviors  with  those  of  experimentally  determined  (and

presented in the Protein Data Bank) structures of more than 4,000 proteins. The relevant local behavior

can be measured by determining the radius of a sphere passing through a local triplet or the radius of a

sphere, whose surface passes through a set of four consecutive monomers. Surprisingly, we found power

law behavior of the probability distribution functions of the radii (with the notable exception of amino

acid triplets in proteins). We presented a simple rationalization of this behavior. 

We then went on to underscore the numerous distinctions between the model results and protein data.

Proteins  are complex molecules,  which follow the rules  of  quantum chemistry  [45,46,84,85]  and are

influenced by the interactions with the surrounding solvent  molecules [86-97].  A protein is  a  distinct

sequence of amino acids.  Yet,  proteins show remarkable common characteristics.  They generally fold

reproducibly  and rapidly  into  their  native  state  structures.  These  structures  are  directly  implicated  in

protein function. The native state conformations are modular and made up of building blocks, notably

helices and sheets comprised of zig-zag strands.  These common characteristics  arise because proteins

share  the  same  backbone  despite  having  distinct  sequences.  An  important  open  challenge  is  the

determination  of  the  simplest  chain  model  that  would  suitably  describe  the  striking  features  of  the

common backbones of protein native state structures.  
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