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Abstract

Linear chain molecules play a central role in polymer physics with innumerable industrial applications.
They are also ubiquitous constituents of living cells. Here we highlight the similarities and differences
between two distinct ways of viewing a linear chain. We do this, on the one hand, through the lens of
simulations for a standard polymer chain of tethered spheres at low and high temperatures and, on the
other hand, through published experimental data on an important class of biopolymers, proteins. We
present detailed analyses of their local and non-local structures as well as the maps of their closest
contacts. We seek to reconcile the startlingly different behaviors of the two types of chains based on

symmetry considerations.
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1. Introduction

Polymer science [1-4], the study of chain molecules including linear polymers, is a flourishing
subject that has led to life-changing progress in several technologies including plastics, textiles, and the
design of novel materials. At the same time, linear chain molecules form the very basis of life including
both the DNA molecule, whose information is translated into the sequence of amino acids, and proteins,
which serve as amazing molecular machines in living cells. While conventional polymer models with
stiffness have proved to be adequate for describing the relevant physics of the DNA molecule [5-7], the
physical behavior of canonical polymers and proteins are strikingly different. In contrast to DNA, the
structural changes during protein folding occur on multiple length scales at once, making it difficult to
separate the relative contributions of the myriad interactions [8-13].

A linear chain is composed of many interacting monomers that are tethered together in a railway
train topology. If the only interaction is self-avoidance, a single chain is in a coil phase whose large-scale
behavior is in the same class as a self-avoiding walk. Upon adding an attractive interaction between pairs
of non-adjacent monomers, the chain undergoes compaction into a highly degenerate compact phase at
low temperatures [14-44]. While the notion of phases and phase transitions for a polymeric chain strictly
refer to a chain with an infinite number of monomers, proteins are modest length chains, which yet exhibit
several common characteristics. Notably, the compact state of proteins is modular and made up of two
kinds of secondary building blocks, topologically one-dimensional helices [45], and two-dimensional
sheets made up of zig-zag strands [46]. The helices and the strands are connected by turns or loops [47-
49]. The nature of the ground states of compact polymers is qualitatively distinct from that of proteins and
ordinarily do not exhibit any secondary motifs. The common characteristics of proteins are believed to
derive from the shared backbone of distinct amino acid sequences.

Here we present an analysis of these two distinct classes of behaviors to understand their
similarities and distinctions. We do this in two complementary ways. For conventional polymers, we study
the simplest model of tethered hard spheres of diameter o and a bond length equal to the sphere diameter.
Following the standard nomenclature, we call this the tangent sphere model. We impose an attractive
interaction between all pairs of non-adjacent monomers through a square well of range 1.6 ¢ and depth -1,
which sets the energy scale without loss of generality.

A sphere is isotropic and looks the same when viewed from any direction. There is nevertheless a
preferred axis at the location of each main chain sphere corresponding to the tangent along the chain or the
direction along which the chain is oriented at that location. Replacing the spheres with objects such as

unidirectional coins, uniaxial discs, allowing neighboring spheres to overlap, or adding side chains to the


https://doi.org/10.1101/2024.02.10.579771
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.10.579771; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

spheres along the main chain are all steps that break the spherical symmetry and yield ground state
structures, which resemble protein structures to varying degrees [50-61]. To avoid clouding the issue by
studying an approximate model for proteins, we resort instead to a careful analysis of experimental data of
over 4,000 protein native state structures (see Materials and Methods). A side-by-side comparison of the
local structures and non-local contacts of proteins to those of the tangent sphere model at both low and
high temperatures provides a vivid picture of the different views of a chain molecule. Our goal here is to

assess how well the tangent sphere model describes the protein backbone.

2. Materials and Methods

2.1. Our protein dataset

Our protein data set consists of 4,391 globular protein structures from the Protein Data Bank
(PDB), a subset of Richardsons’ Top 8000 set [62] of high-resolution, quality-filtered protein chains
(resolution < 2A, 70% PDB homology level), that we further distilled out to exclude structures with
missing backbone atoms, as well as amyloid-like structures (for full list of the PDB identifiers of protein
structures in our database see Table S1 in the Supplementary Information of Refs. [58,63]). The program
DSSP (CMBI version 2.0) [64] has been used to determine the backbone hydrogen bonding pattern and
thus place each protein residue in context within a protein chain: within an a-helix, it is labeled an ‘a-

residue’; within a (-strand, it is labeled a ‘B-residue’, or elsewhere, it is tagged as a ‘loop-residue’.

2.2. Numerical simulations of a chain of tethered tangent spheres

To obtain a set of independent equilibrium configurations of a chain of tethered tangent spheres
comprised of N=80 spherical beads, subject to an attractive potential for a wide range of temperatures, we
have employed standard replica exchange (RE) (or parallel tempering) canonical simulations [65,66].
Most of our simulations were carried out with a chain of 80 hard spheres of diameter o. The model is a
tangent sphere model because the bond length is also constrained to be equal to 0. At any temperature, the
spheres do not self-intersect and are hard. We introduce a generic attractive square-well attraction of range
R.« = 1.60, between all pairs of spheres, and magnitude €, which sets the characteristic energy scale. The
attractive interaction causes the chain to become compact at low temperatures.

The RE calculation [65,66] relies on a set of canonical simulations run in parallel at a set of M
carefully chosen different temperatures, T;, i = 1, 2, - - - M . Each simulation represents a replica, or a
system copy in thermal equilibrium. The key advantage is the possibility of swapping replicas at different
temperatures without affecting the equilibrium condition at each temperature. This permits rapid

equilibration even when there is a rugged free energy landscape. In each Monte Carlo (MC) simulation of
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one replica, new moves are accepted with the standard Metropolis acceptance probabilities [67]. We
ensure that the number of swaps that entail exchange of replicas is large enough to ensure the fidelity of
the statistics. The efficiency of the RE scheme depends on the number of replicas, the selected set of
temperatures, as well as of the swap moves frequency. For best performance, the acceptance rate of swaps
is tuned to be around 20% [68]. The RE simulations results are conveniently analyzed using the weighted
histogram analysis method [69]. We employed 30 replicas, with a finer temperature mesh at lower values
of the reduced temperatures (kgT/e) in the range kgT/e = 0.3-0.5 with a separation of neighboring
temperatures of 0.02. In the kgT/e = 0.5-1 interval, the separation of neighboring temperatures was 0.05,
and for kgT/e = 1-4, the separation interval was 0.2. We allowed for the RE swaps only between
neighboring temperatures. The exchange moves were attempted every 100 MC steps per monomer. The
length of the simulations was 10° MC steps per monomer and per replica.

For sampling chain configurations at infinite temperature, we have used the standard Metropolis MC
algorithm [67] in which all proposed updates of the chain configuration that respect its self-avoidance are
accepted. In both simulation protocols, standard local moves, including crankshaft, reptation (or
slithering-snake) moves, endpoint moves, and the nonlocal pivot move [70] are employed with equal
probabilities.

The, N=80 beads, tangent sphere polymer exhibits two continuous (second order) ‘transitions’ (see
inset of Figure 5(b)). At a temperature kgT/e ~ 3 (¢ denotes the energy scale of attraction), there is a coil-
to-globule transition (signaled by a kink in the specific heat per bead Cv/Nkg). This is a finite-size
counterpart of the 0-point for this system. At low temperatures kgT/e ~ 0.4 there is a second ‘transition’
into a compact globule phase, signaled by the maxima of the specific heat per bead Cv/Nkg. The results we
will present for the tangent sphere model are at infinite temperature and ksT/e = 0.3.

In the next section, we will present some definitions and general observations pertaining to the local
structure of a chain, especially in the continuum limit. We then go on to the Results Section, which is
divided into two parts. First, we depict some similarities and some critical differences between the
polymer model and protein structures in terms of power law behavior of certain geometrical measures of
local structure. In the second part, we will highlight some striking differences between the geometries of

the model polymer and protein native state structures. We then conclude with a brief discussion.
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3. General considerations

Three-body interactions and the self-avoidance of a continuum tube

We will begin our analysis with some definitions and general observations. For fixed bond length, a
local chain conformation is specified by two angles 6 and p. 8 is a measure of bond bending, a straight
conformation has 8=n. The angle between successive binormals, p, is the second angular coordinate and is
the dihedral or torsional angle [63].

The standard model of a linear chain in polymer science, represented by tethered spheres, does not
lend itself, in a natural manner, to housing helices, which are recurrent motifs in biomolecules [71-74]. In
contrast, a tube, such as a garden hose, which can be thought of as a chain of discs, can be wound readily
into a helix. The protein a-helix has a geometry akin to that of a tube wound tightly into a space-filling
helix [75].

Consider a collection of uniform untethered hard spheres. The standard prescription for ensuring
that spheres do not overlap is to ensure that the distance between the centers of every pair of spheres is no
smaller than the sphere diameter. Pairwise interactions often capture the essence of interacting systems.
The simplest generalization to a chain topology is tethered hard spheres (with the same self-avoidance
constraint), which, as we have noted, is the simplest conventional model of polymer physics. In contrast,
the alternative description of a chain as a tube leads to an unusual condition of self-avoidance. It has been
shown that the correct way to determine whether a tube in the continuum limit is self-avoiding or not
entails discarding pairwise interactions and invoking appropriate many-body interactions [75,76]. This is
illustrated by considering the self-avoidance of a tube of non-zero thickness (see Figure 1). Knowledge of
the distance between a pair of points on the tube axis (say A and B or B and D) does not discriminate
between the two contexts of nearby points along the axis or in different parts along a chain. In the
continuum limit, points A, B, and C, locally positioned along the axis, can become infinitesimally close to
each other. This cannot be the case, however, for non-local points, where self-avoidance is a prime
consideration, and one must ensure that the two points do not approach each other too closely. Knowledge
of the coordinates of a pair of points does not inform you about the context that the two points are in — are
they points locally along the axis (which can of course be arbitrarily close to each other) or are they non-
local points (that may have come too close to each other possibly signaling an intersection)? This inability
to discriminate between local and non-local pairs of points is at the root of the problem.

The standard method in polymer physics of ensuring self-avoidance in the continuum limit is to first
make the tube infinitesimally thin (a natural limiting case for a continuum chain of tethered spheres) and

then use a singular §-function potential [77] interaction: there is no energy cost as long as two points on
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the axis do not overlap exactly but there is an infinite energy cost when there is in fact an overlap. There
are at least three problems with this [78]. First, the 6-function potential is singular (unlike say a familiar
Lennard-Jones potential) and one needs to use renormalization group theory to introduce an artificial cut-
off length scale to carry out the calculations and then demonstrate that this length scale can safely
approach zero and yet retain the validity of the results. Second, the §-function pairwise potential does not
preserve the topology of a closed string — the number of knots is not necessarily conserved. Finally, in
standard polymer physics, there is no description of the self-avoidance of a continuum self-avoiding tube
(or surface) of non-zero thickness.

These problems are deftly averted by discarding pairwise interactions and working with a suitable
many-body potential. In the continuum limit, there is a simple geometrical condition [75] to ascertain both
whether a tube (and by extension a surface) is self-avoiding non-locally and is not too tightly wound
locally. One can draw a circle through any triplet of points along the tube axis and measure the radius. The
prescription for self-avoidance of a continuum tube is to consider all possible triplets, local or otherwise,
and ensure that every one of the three body radii is greater than or equal to the tube radius. The radius of
the circle passing through the triplet of points (A,B,C) in Figure 1 is the local radius of curvature as the
points approach each other and results in a kink in the tube when the radius of curvature becomes smaller
than the tube radius. On the other hand, the radius of the circle drawn through (A,B,D) is a measure of the
distance of approach of two parts of the tube and must not be smaller than the tube thickness in order to
respect self-avoidance. Likewise, the self-avoidance of a surface or layer (or a sheet of paper) of non-zero
thickness necessarily entails discarding both pairwise and three-body interactions and working with a
suitable four-body potential. One considers all quartets of points on the symmetry plane of a surface and
draws spheres through each quartet. A surface is self-avoiding if the sphere radius of each quartet (local or
non-local) is larger than the thickness of the surface. We note that this many-body prescription is strictly
needed only in the continuum limit [76].

For a discrete chain, such as the ones we focus on in this paper, the pair-wise distance between a local
pair of points is the bond length and there is no singular behavior at the local level because of a natural
cut-off length scale. Also, a minimum threshold of the non-local three body radius can readily be
measured by directly accessing the non-local pair-wise distance. We will make use of these simplifications
for a discrete chain in our analysis below. It is important to note that there are myriad local interactions,
including hydrogen bonds, as well as entropic effects that will play a key role in governing the local
behavior of a real chain. Despite the absence of an imperative need to invoke many body interactions for a

discrete chain, the three-body and four-body radii do yield interesting information. An infinitely large
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three-body radius signals co-linearity of the three points (bond bending angle 6 equal to 180°; 8=0° is
excluded because of steric overlap), whereas an infinite four-body radius is associated with planarity of

the quartet of points (p equal to 0°, 180°, or -180°).

Figure 1. Sketch of the axis of a self-avoiding continuum tube (depicted in blue). The points A,
B, and C lie alongside each other on the tube axis whereas point D is a nearby point from
another part of the tube. The three-body prescription is to draw circles through all triplets of
points on the tube axis and ensure that none of the radii is smaller than the tube radius. For a
local triplet of points, one obtains the local radius of curvature whereas the non-local radius is a

measure of the distance of closest approach of two parts of the tube.

4. Results

4.1. Power law scaling

Power laws often signify scale invariance and are a signature of an absence of a characteristic scale
[79]. A liquid-vapor system at its critical point exhibits critical opalescence. The system appears milky
white because light of all wavelengths scatter from the droplets and bubbles of liquid and vapor of all
sizes thoroughly interspersed among each other. Another example of a non-trivial power law is the fractal
dimension of a self-avoiding walk in three dimensions of around 5/3 [2]. Here we discuss a somewhat
trivial but surprising realization of ‘universal’ power law behavior arising in the statistics of the local
conformation of a discrete chain molecule. We alert the reader that, unlike in critical phenomena, here
there is neither any many-body emergent behavior nor the need to invoke a system in the thermodynamic

limit.
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The procedure that we follow is simple. For a set of three (four) points, one can readily draw a circle
(sphere) passing through them. The center of a circle (sphere) is the point equally distant from all three
(four) points and can be determined as a solution of a suitable system of linear equations. In the case of
three points, the solution is simple, and the radius of the circle R is related to the area A of the triangle
passing through the three points and its sides a, b, and c: R=abc/4A. For four points, we merely solve the
equations on a computer to obtain the radius R of the sphere.

Our goal here is to measure the radii R associated with many realizations of these points and obtain
cumulative probability distribution functions of the inverse radius X=1/R. Figure 2 shows plots of the
cumulative distribution function (CDF) of the inverse radii (X=1/R) (the probability P (1/r < 1/R) as a
function of R that a given radius r is larger than R). The circles (spheres) in question are drawn through
three (four) points (chosen consecutively along a chain and randomly in some instances) in three
dimensions.

We have studied: (a) consecutive triplets (quartets) of C, atoms along the backbones of globular
proteins when the Ramachandran w angles characterizing a consecutive triplet have canonical values of |w|
~ 180°. Case (a) occurs in around 99.7% of the cases in globular proteins yielding the trans isomeric
conformation of a peptide backbone, where the two neighboring C, atoms are on opposite sides of the
peptide bond, with a bond length approximately equal to 3.81A [63]; (b) consecutive triplets (quartets) of
Cq atoms in globular proteins in which at least one of the two Ramachandran  angles has a rare non-
canonical value of ||~ 0° that occurs in ~0.3% of cases. This happens when two neighboring C, atoms are
on the same side of the peptide bond, resulting in a shorter bond length of around ~2.95A. [63]. This
corresponds to the so-called cis-conformation of a protein backbone [80]. Cases (a) and (b) are combined
for the quartets because they show very similar behavior; (c) three (four) points selected from a two-step
(three-step) self-avoiding random walk of a tangent sphere model (hard spheres of diameter 3.81A and
bond length 3.81A with no other interaction besides the non-overlapping of hard spheres (polymer at
infinite temperature); (d) three (four) points selected from a two-step (three-step) self-avoiding random
walk of a tangent sphere model (spheres of diameter 3.81A and bond length 3.81A) subject to an attractive
square-well interaction of range R.. = 1.60 ~ 6A (polymer at low temperature); (e) three (four) points
chosen randomly within a three-dimensional sphere of unit radius; and (f) three (four) points selected as
points on a two-step (three-step) random walk (no self-avoidance or steric constraints) in three dimensions
with a fixed bond length of 3.81A (corresponding to the distance between consecutive C, atoms in

proteins [63]).
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In the case of triplets (‘3-body’ case) shown in Figure 2(a), we see that the last five systems (b)-(f)
exhibit power law behavior with approximately the same exponent of 2, but the canonical protein triplet

does not (case (a) in Figure 2(a)).
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Figure 2. (a) Cumulative probability distributions of the inverse radii X=1/R of circles drawn
through three consecutive points along different classes chains: (blue) 965,122 triplets of the
backbones of globular proteins in our data set (defined by C, atoms) when both the
Ramachandran w angles characterizing a consecutive triplet have canonical values of |w| =
180°; (red) 5,774 consecutive triplets of C, atoms in globular proteins in which at least one of the
two Ramachandran w angles is|w|=0°; (green) 16,391,622 triplets taken from =200,000 low
temperature (ksT/e = 0.3) configurations, obtained using replica-exchange (RE) simulations, of a
chain of 80 tangent spheres of diameter o with an attractive square well potential of range Rax =
1.60 = 6A; (orange) 25,598,976 triplets obtained from MC simulations at T = o; (purple)
143,557,206 triplets of points chosen uniformly from within a unit sphere in three dimensions;
and (black) 100,000,000 two-step random walks in three dimensions with fixed bond length of
3.81A. The gray dashed line has a slope of 2 and is a guide to the eye. (b) Cumulative
probability distributions of the inverse radii X=1/R of spheres, whose surface passes through
four consecutive points in different classes of chains: (blue) 957,723 local quartets along the
backbones of globular proteins (employing C. atoms); (green) 16,181,473 local quartets
selected from =200,000 chain configurations, obtained from replica-exchange (RE) simulations,
of a chain of 80 tangent spheres of diameter o subject to an attractive square-well potential of
range Ra: = 1.60 = 6A in the low temperature phase (keT/e = 0.3); (orange) 25,270,784 local
quartets obtained from MC simulations at T = oo; (purple) 112,754,340 quartets of points chosen
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uniformly within a unit sphere in three dimensions; and (black) 100,000,000 three-step random
walks in three dimensions with a fixed bond length of 3.81A. The gray dashed line is a guide to
the eye and has a slope of 1. In all simulations, the bond lengths have been chosen to be 3.81A
equal to the mean value of the distance between the two consecutive C,atoms along the protein
chain. The distinctive behaviors of the purple curves (corresponding to the random points cases)
occur because one can obtain circles of arbitrarily small radii, a situation precluded in the other
cases due to steric considerations. The behaviors of the tangent polymer model at high and low
temperatures are essentially the same. The local behavior is governed by the same steric
constraints in both cases and the CDF does not change. In contrast, for real polymers, recent
experimental studies [81,82] have shown the importance of the mechanical properties in
determining the local curvature in the context of super-lubricity at the single molecule level.

For a canonical protein backbone in its trans conformation, quantum chemistry does not allow the
bond bending angle 8 to be greater than #150°, thereby preventing too large a value of R. In contrast, for a
non-canonical protein backbone in its cis conformation [80], two consecutive C, atoms along the protein
chain are much closer to one another and the backbone in many of these cases has PRO residues. This
stiffens up the protein backbone with respect to the canonical case permitting large bond bending angles,
0, that can almost reach ~180°.

The second panel in Figure 2, Figure 2(b), shows similar ‘universal’ power law behavior for the CDF
in the case of quartets (‘4-body’ case) of the inverse radius (X=1/R) of a sphere for various cases, detailed
in the caption, this time with an exponent 1. We provide a simple rationalization of these findings in the

next section for a triplet of points.

Rationalization of the power-law exponent

To illustrate the origin of the power law behavior, we present here a simple derivation of the
probability distribution P(X=1/R) of the inverse radii of circles drawn through three points of a two-step
d-dimensional random walk with a fixed bond length b, which provides a natural length scale. We do not
present a similar derivation for the radius of sphere passing through four points because it is more
complex and is best handled numerically (which is what we have done). The quantity Xb is a

dimensionless quantity, which enters in the derivation below. The input is p(68), the probability distribution

10
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of the bond bending angle 0. For a d-dimensional random walk, the probability distribution p(8) scales as
[83],

p(B) ~ (sin(6))** (1
R and 6 are related by
R =b/(2 cos (0 /2)) 2)

or equivalently:

X =1/R = (2 cos (0 /2))/b (3)
Noting that:

P(X)dX= p(6)dd (4)
one obtains:

P(X) ~ (Xb)*? [1 — (Xb/2)?] @32 (5)

One thus obtains asymptotically (when Xb<<1 or in the large radius R limit) a power law behavior of
the probability distribution P(1/R) with an exponent (d-2) for d>2 with a power law correction. This
means that the cumulative probability distribution P(1/r < 1/R), being an integral of the probability P(1/R),
displays a power law behavior with an exponent (d-1) (=2 in three dimensions) with a power law
correction. This correction is relatively small when (Xb)? is much smaller than 1 and yields good power
law behavior as observed in Figure 2(a) and Figure 3(a). The pivotal quantity that determines the
asymptotic exponent is the behavior of p(8) when 6 approaches 180° and the three points become co-
linear. The difference in behavior in 2 and 3 dimensions is shown in Figure 3(b). The numerical
simulations are in good accord with the prediction of Eq. (1).

The ‘4-body’ case works in a similar manner to the ’3-body’ case, except that the radius now depends
on two independent variables. An unexpected sensitivity of the power law exponent to the choice of the 4
points is demonstrated in Figure 3(c). Quartets derived from a plain 3-step random walk in three
dimensions (3d) exhibit power law behavior with an exponent of 1 (in accord with the results shown in
Figure 2(b)). We have also considered a simple variant of the plain random walk that we call a constrained

random walk. Here we define the first two points to lie along the x-axis. We then place the third point
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randomly on a pre-determined x-y plane. Superficially, this may not seem to be an onerous constraint,
because any three points will necessarily lie in a plane. Nevertheless, a constrained random walk still
shows power law behavior but with a distinct exponent, behaving as though it is in a fractal dimension
regime. This is because the sampling of phase space is now altered in a relevant manner. We note that this

regime may occur when a polymer system happens to be in the vicinity of a surface or a solid wall.
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Figure 3. (a) Cumulative probability distributions of the inverse radii X=1/R of the circles drawn
through three points of a two-step random walk with fixed bond length of 3.81A, when the walk is
performed in two dimensions (red) and in three dimensions (blue). (b) The distribution of the
bond bending angle 6 in the two-step random walk in two dimensions is uniform p(8) = const.
(red histogram), while, in three dimensions, p(8) = sin 0 (blue histogram and the green line). (c)
Cumulative probability distributions of the inverse radii X= 1/R of the spheres drawn through four
points of a three-step random walk with fixed bond length of 3.81A, when the walk is performed

in three dimensions (red) and for a constrained random walk. The constraint arises because the

12
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first three points (first two steps of the random walk) are sampled from a plane (sampling in two
dimensions — after all, any three points do lie in a plane), while the final step (fourth point) is
sampled in full three-dimensional space (blue). The constrained random walk corresponds to a
fractal dimension 2 < d < 3 for the effective sampling of the variables controlling 1/R and reduces

the steepness of the power law.

4.2 Chain geometries

We begin with an analysis of distinct local chain geometries. We compare the behaviors of the tangent
sphere model at low and high temperatures, on one hand, and that of the native states of globular proteins,
on the other. The local structures of these cases are shown in Figure 4 through their characteristic (8,u)
plots [63]. These plots are drawn by measuring local pairs of bond-bending and dihedral angles for nearly
a million monomers (for the polymer models) and residues (for protein native state structures). In contrast
to the plots of model polymers (Figures 4(a) and (b)), the (8,u) plot for globular protein native state
structures (Figure 4(c)) exhibits significant structure (distinct from the features present in the low

temperature tangent sphere model) and signal the presence of the building blocks of helices and sheets.
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Figure 4. (0,u) cross plots of the bond bending angle 6 versus dihedral angle p for 966,505
randomly chosen monomers belonging to two different polymer classes and for the same
number of residues in protein native state structures. (a) (light green) Polymer chain consisting
of 80 tangent spheres of diameter o subject to an attractive square well potential of range Ra:=
1.60 = 6A at low temperature (ksT/e = 0.3) studied using RE simulations. (b) (orange) Polymer
chain consisting of 80 tangent spheres of diameter ¢ at infinite temperature accessed by means
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of MC simulations with the only interaction being steric avoidance of all pairs of spheres. (c)
(blue) For 966,505 residues of the 4,391 globular proteins in our data set.

The trends in Figure 4 are analyzed in Figure 5, which depicts a histogram of how far the nearest non-
local monomer or residue is along the chain sequence. A non-local contact is defined to be one that is
separated by at least three positions along the chain with the two beads nearest to each other (i,j) satisfying

li-j| = 3. For both helices and turns, there are sharp maxima of close-by neighbors at a sequence separation

of 3.
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Figure 5. Frequency distribution of the sequence separation |i-j| along the chain, of the nearest
non-local contact of bead i found at location j. In Panel (a), the blue points indicate 313,574 a-
residues out of a total of 975,287 residues in our data set from 4,391 globular proteins; the red
points are 214,501 [3-beads; and the purple points denote an analysis of 442,821 loop-residues.
(b) the green and yellow points show the distinct smooth behaviors of a tangent polymer model
at low (ksT/e = 0.3) and infinite temperatures. The behavior is monotonic with the closest non-
local contacts always being close along the sequence. The inset shows the specific heat per
bead Cv/Nks for a 80 beads long tangent sphere polymer as a function of the reduced
temperature kgT/e. There are two continuous (second order) ‘transitions’: at a high temperature
~3, there is a coil-to-globule transition and, at ~0.4, there is a transition into a compact globule.

There are at least two characteristic length scales associated with the conformation of a chain. One is

the local behavior as measured by the local radius of curvature of a triplet of contiguous points. The
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second is the distance to the nearest non-local contact. For the space-filling conformation of a continuum
tube of non-zero thickness, these two length scales become equal [75]. Figure 6 shows a histogram of the
two scales, local and non-local, for several situations. The local radius is R = b/(2 cos(6/2)), where 8 is the
bond bending angle associated with a local triplet. Structures in the histogram of local radii denote a
preference for certain angles of 8. The a-residues exhibit a sharp peak corresponding to 6,~92°, the 3
residues for 6g~120°, and the loop residues have a pronounced maximum close to the helical value and a
less prominent maximum around 111°, see Figure 6(a). These peaks are also reflected in the high-density
regions in the (8,p) cross plot of protein native state structures, shown in Figure 4c. Figure 6b shows the
histograms of the relevant non-local length scales for all five cases. All five curves exhibit a single peak
denoting a relevant non-local length scale. Table 1 is a compilation of these characteristic local and non-

local length scales.

Table 1. Characteristic local and non-local length scales for three residue types in
proteins and for monomers of a tangent polymer chain in the low and high temperature phases.

Monomers Most frequent value Relevant non-local
of ocal radius [A] length scale [A]
o — residues in proteins 2.73 5.06
B — residues in proteins 3.6 4.67
loop — residues in proteins 2.75 5.26
Spheres in tangent polymers at low T 2.21 3.81
Spheres in tangent polymers at T = o 2.47 7.72
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Figure 6. (a) Frequency distribution of the local radius of curvature R for five different classes of
consecutive triplets. We consider only pure protein triplets in which all three residues are in the
same structural class. There are 256,154 a triplets (blue) comprising ~ 26% of all 970,896
triplets. There are 134,643 [3 triplets (red) and 313,923 loop triplets (purple). There are
16,391,622 low temperature polymer triplets (green) and 25,270,784 infinite temperature triplets
(orange). (b) Frequency distributions of the distances to the closest non-local contact, defined
as |j-i| = 3, of monomers belonging to different classes, with the same color code as in panel (a).
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Flgure 7 shows five representative chain contormations (1 enote -ﬁ’), each havmg 80 monomers. We

will present the key characteristics of these conformations to highlight similarities and especially the
differences. Figure 7 also presents the contact maps for each of these five conformations to show for each
monomer (labeled 1-80) the nearest, in distance, monomer (separated at least 3 positions along the chain)
indicating in red, when the pairwise distance is greater than 6A. Such distant contacts are rare in the polymer
models unlike for the three protein chains. There is little structure in the globular polymer structure A. The
infinite temperature polymer B is characterized by the nearest contacts being nearby in sequence, as
evidenced by the points in its contact map being close to the diagonal.

This feature of locality of the closest contacts is also seen in protein a-helices C where coordinated
closest contacts are of the (i,i+3) type. Furthermore, a distinctive pattern is seen for (8 sheets D, that display
coordinated (i,j) contacts in which bead index j > i+4 and takes on a coordinated pattern that is consistent
with the situation of two strands coming together and forming parallel 8 sheets (when points in the contact
map are parallel to the principal diagonal but shifted away from it) or anti-parallel 3-sheets (when points in
the contact map are placed along the directions that are perpendicular to the diagonal). The mixed o/
protein E has the features present in both a-helices and two types of [-sheets (parallel and anti-parallel). The
similarity of the o helix contact map and that of the infinite temperature polymer is in accord with
expectations that helices are more prone to nucleate from the coil phase than [ sheets because of the
prevalence of short-range contacts.

Figure 8 shows the relative importance of the local radius of curvature and the relevant non-local
distance in determining the nature of compact conformations in the five cases. In all the five panels, we have
scaled the quantities with the appropriate characteristic length scale defined in Table 1. Even though the
scaling factors are clearly different, the behavior of the polymer chain is superficially similar at high and low
temperatures. The scaled value of the closest non-local distance is substantially flat around a value of 1 with
the fluctuations being a bit larger at infinite temperatures. In contrast, the local radius exhibits bigger swings
in the low temperature conformation compared to that at infinite temperature. The « helix is special in that
both the local and closest non-local scaled distances are close to each other and to the value 1. In the
continuum limit, this equality would result in a space-filling helix [75]. The 3 regions and the loops do not
exhibit this kind of behavior with the non-local scaled distance often being smaller than the scaled local

radius of curvature.
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Figure 7. Representative conformations of chains of length 80: A) a low temperature globule
and B) an infinite-temperature coil of a generic tangent polymer chain; C) all-a protein [PDB
code: 3bgp, chain B]; D) all-B protein [PDB code: 1bdo, chain A]; and E) o/p protein [PDB code:
319, chain X]. The color coding of the conformation does not represent secondary motifs but
rather depicts how far a monomer is along the sequence. The chain beginning is depicted in red
color that morphs towards blue at the chain end. The contact maps shown in the other panels
are those indicating the closest non-local contact j of a given monomer. The black points indicate
those that are found within 6A and the red points those that are found further away than 6A, of
these configurations. The choice of 6A is dictated by the fact that the radial distribution function
of proteins exhibits a pronounced minimum at this value [60].
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Figure 8. Scaled values of the local radius and minimal non-local distance for the five
conformations shown in Figure 7. For each residue of the three proteins, depending on its type
(o', ‘B, or ‘loop’) these quantities are appropriately scaled with the value of the corresponding
characteristic length scale presented in Table 1. (a) all-a protein 80 residues long [PDB code:
3bgp, chain B]. (b) all-B protein 80 residues long [PDB code: 1bdo, chain A]. (c) a/f3 protein 80
residues long [PDB code: 319, chain X]. In the top three panels, the blue ribbons indicate a-

helical parts of the sequence, the red ribbons indicate (3-sheets, and the purple ribbons indicate
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loop regions; (d) a tangent polymer conformation at ksT/e = 0.3; (e) a tangent polymer
conformation at T = co.

5. Discussion

Our principal focus in this paper was to study the similarities and differences between chains
viewed in two separate ways. The first, a baby model in polymer science, is a tangent sphere model
subject to a square-well attraction. We have carried out extensive simulations of the model in the high and
low temperature phases. We compare the behaviors with those of experimentally determined (and
presented in the Protein Data Bank) structures of more than 4,000 proteins. The relevant local behavior
can be measured by determining the radius of a sphere passing through a local triplet or the radius of a
sphere, whose surface passes through a set of four consecutive monomers. Surprisingly, we found power
law behavior of the probability distribution functions of the radii (with the notable exception of amino
acid triplets in proteins). We presented a simple rationalization of this behavior.

We then went on to underscore the numerous distinctions between the model results and protein data.
Proteins are complex molecules, which follow the rules of quantum chemistry [45,46,84,85] and are
influenced by the interactions with the surrounding solvent molecules [86-97]. A protein is a distinct
sequence of amino acids. Yet, proteins show remarkable common characteristics. They generally fold
reproducibly and rapidly into their native state structures. These structures are directly implicated in
protein function. The native state conformations are modular and made up of building blocks, notably
helices and sheets comprised of zig-zag strands. These common characteristics arise because proteins
share the same backbone despite having distinct sequences. An important open challenge is the
determination of the simplest chain model that would suitably describe the striking features of the

common backbones of protein native state structures.
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