

1 Maramycin, a cytotoxic isoquinolinequinone terpenoid
2 produced through heterologous expression of a bifunctional
3 indole prenyltransferase /tryptophan indole-lyase in *S.*
4 *albidoflavus*

5 Matiss Maleckis,^{1#} Mario Wibowo,^{2,3#} Sam E. Williams,^{1#} Charlotte H. Gotfredsen,⁴ Renata
6 Sigrist,¹ Luciano D.O. Souza^{5,6}, Michael S. Cowled,² Pep Charusanti,¹ Tetiana Gren,¹
7 Subhasish Saha,¹ José M. A. Moreira⁵, Tilmann Weber,^{1*} Ling Ding^{2*}

8 ¹ The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark.

10 ² Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark

12 ³ Current address: Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669, Singapore

14 ⁴ Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark

15 ⁵ Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark;

17 ⁶ Sino-Danish Center for Education and Research (SDC), Aarhus University, 8000 Aarhus C, Denmark.

18

19 *Correspondence can be addressed to Tilmann Weber (tiwe@biosustain.dtu.dk) and Ling Ding (lidi@dtu.dk)

20 [#]Contributed equally

21

22 **Abstract**

23 Isoquinolinequinones represent an important family of natural alkaloids with profound
24 biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase
25 /tryptophan indole-lyase enzyme from *Streptomyces mirabilis* P8-A2 in *S. albidoflavus* J1074
26 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production
27 of a novel isoquinolinequinone alkaloid, named maramycin (**1**). The structure of maramycin
28 was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data. The
29 prevalence of this bifunctional biosynthetic enzyme was explored and found to be a recent
30 evolutionary event with only a few representatives in Nature. Maramycin exhibited moderate
31 cytotoxicity against human prostate cancer cell lines, LNCaP and C4-2B. The discovery of
32 maramycin (**1**) enriched the chemical diversity of natural isoquinolinequinones and also
33 provided new insights into crosstalk between the host biosynthetic genes and the heterologous
34 biosynthetic genes in generating new chemical scaffolds.

35 **Introduction**

36 *Streptomyces* represent a prolific source for bioactive secondary metabolites, exemplified by
37 the antibiotics streptomycin, tetracycline and daptomycin, and the anticancer drugs
38 doxorubicin and bleomycin, all WHO essential medicines¹.

39 The advances of modern genome mining analyses have revealed that still a large fraction of
40 the biosynthetic potential is untapped: 70% of the secondary metabolites produced by
41 *Streptomyces* are cryptic compounds whose corresponding genes are normally silent in
42 standard laboratory culture conditions^{2–5}. Many approaches, especially synthetic biology and
43 ecology have been applied to access this genetic potential^{6,7} by using, for example, genetic
44 engineering⁸, heterologous expression of a BGC in another host⁹, chemical elicitors¹⁰ and co-
45 cultivation¹¹. These strategies are often employed to unravel the potential of metabolite
46 production of *Streptomyces* through cryptic gene activation, allowing for a vast number of
47 potentially valuable compounds to be discovered.

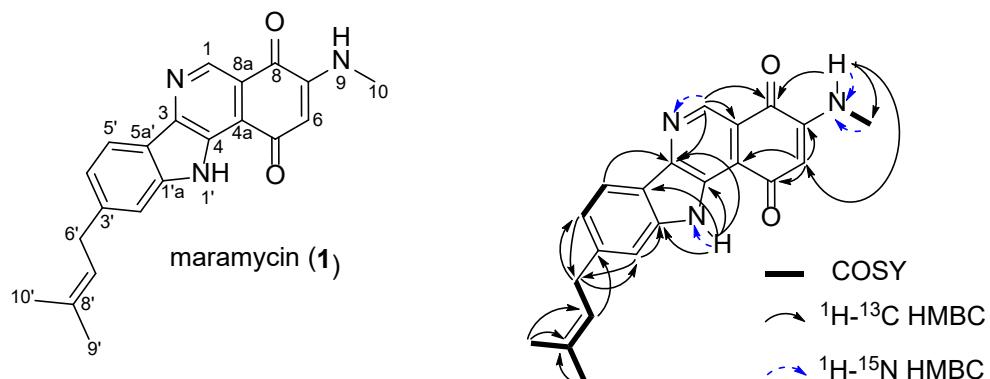
48 Isoquinolinequinones represent an important family of natural alkaloids with profound
49 biological activities. They are predominantly isolated from marine invertebrates, such as
50 cytotoxic caulibugulones and perfragilins from the bryozoan *Caulibugula inermis*¹² and
51 *Membranipora perfragilis*¹³, antineoplastic cibrostatins from the sponge *Cribrochalina* sp.¹⁴
52 and antimicrobial and anti-inflammatory renierones from the sponge *Renier* sp.¹⁵ and
53 *Haliclona* sp.¹⁶. Hence, it was believed that isoquinolinequinones are natural products from
54 marine invertebrates. However, the recent discovery of such compounds including the
55 mansouramycins^{17–20} and albumycin²¹ from *Streptomyces* showed that microbes are also
56 isoquinolinequinones producers. An isoquinolinequinone biosynthetic gene cluster in *S.*
57 *albidoflavus* J1074 (previously recognized under the name *S. albus* J1074) was proposed by
58 Chai et al.²² where they identified three bicyclic isoquinolinequinone products when expressing
59 a putative BGC in *S. coelicolor* M1146¹⁹. This BGC was further studied by Shuai et al.²³, who

60 confirmed mansouramycin production in *S. albidoflavus* Del14²⁴, a genome minimized strain
61 of *S. albidoflavus* J1074²⁵. Through feeding studies and NMR analysis, tryptophan was
62 identified to be a precursor in the biosynthesis of mansouramycin D and tryptophan derived
63 intermediates were detected in knockout strains²³.

64

65 *S. albidoflavus* J1074 has been routinely used as a heterologous expression host system in our
66 laboratory²⁶⁻²⁸. Although it harbors a putative mansouramycin BGC, we have not detected
67 production of any related alkaloids under the laboratory conditions we routinely use. In a recent
68 study, during expression of an azodyrecin BGC into *S. albidoflavus* J1074²⁹, we serendipitously
69 noticed the production of an unknown alkaloid (**1**). In this study, we link the production of this
70 novel alkaloid, which we named maramycin (**1**), belonging to the isoquinolinequinone family,
71 to the heterologous expression of a putative-bifunctional indole prenyltransferase /tryptophan
72 indole-lyase. Furthermore, we describe isolation, structure elucidation and biological activities
73 of maramycin (**1**).

74

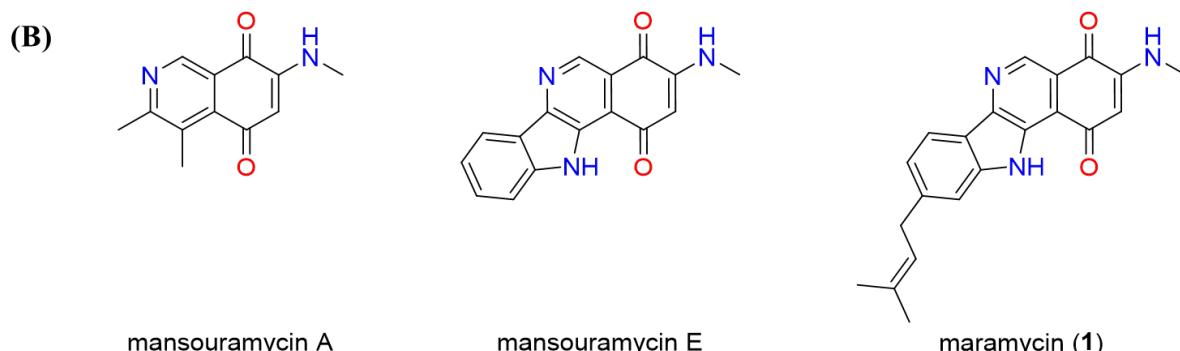
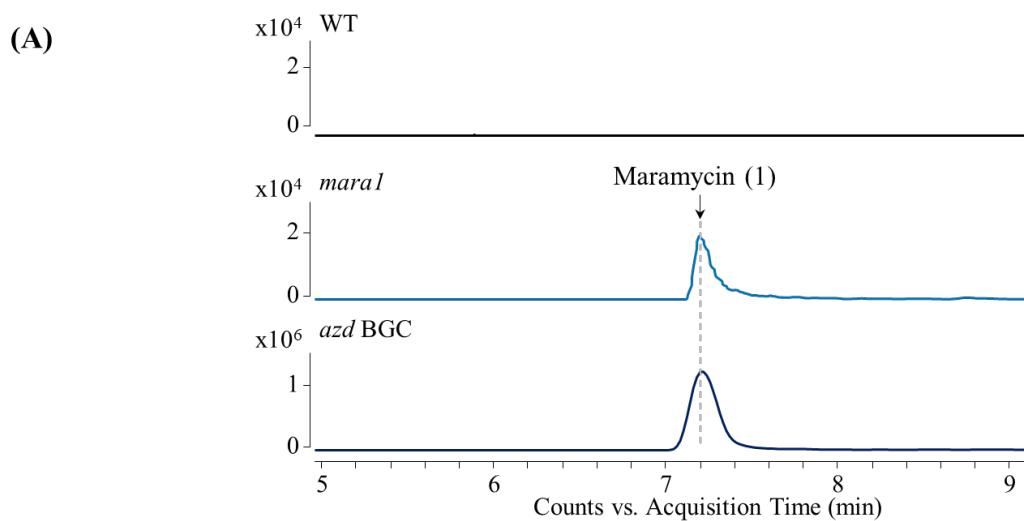

75 **Results and Discussion**

76 **Production of maramycin, a novel isoquinolinequinone terpenoid through heterologous 77 expression of *mara1***

78 In our recent study on the biosynthesis of azodyrecins²⁹, we heterologously expressed a
79 putative *azd* BGC for cluster validation. Untargeted metabolomic analysis of LC-MS data
80 revealed the production of a novel metabolite (**1**) that was not detected in the control strain not
81 carrying the BGC (**Figure S1**). Detailed analysis of HRESIMS data revealed a molecular
82 formula C₂₁H₁₉N₃O₂ for **1**, with a double bond equivalent (DBE) of 14. Analysis of its UV
83 spectrum and MS/MS fragmentation pattern (**Figure S2**) suggested that **1** was unrelated to the

84 biosynthesis of the azodyrecins (DBE = 3). It was unclear if an induced production of
85 azodyrecin in the heterologous host has activated cryptic BGC in *S. albidoflavus* J1074²² or
86 there was interplay between native and heterologous enzymes resulting in the production of **1**.
87 To elucidate the structure of the novel alkaloid **1**, *S. albidoflavus* J1074 bearing the *azd* BGC
88 was cultivated on 5 L of solid agar and extracted using ethyl acetate. Following various
89 isolation and purification steps, **1** was obtained and characterized by detailed NMR (**Table S1**)
90 and MS analysis. Compound **1** was isolated as a red amorphous powder. The 1D ¹³C (**Figure S3**),
91 2D ¹H-¹³C edited-HSQC and HMBC (**Figure S4**) spectra identified 21 carbon signals,
92 including three methyl groups, a methylene, six methine groups, and eleven quartenary carbons.
93 The ¹H NMR spectrum (**Figure S5**) of **1** showed signals from three methyl groups [δ_{H} 1.75
94 (6H) and 2.84], one methylene appearing as a doublet, six sp^2 methines, and two exchangeable
95 protons belonging to NH groups (δ_{H} 7.86 and 11.91); the latter two signals were confirmed by
96 HSQC and ¹H-¹⁵N HMBC (**Figure S6**) experiments. These data indicated that compound **1**
97 belonged to the isoquinolinonequinone class of compounds. Furthermore, the methine proton
98 resonances appearing as singlets at δ_{H} 8.97 and 5.69, together with the signals of NH at δ_{H} 7.86
99 and the methyl doublet at δ_{H} 2.84 were characteristics of mansouramycins¹⁸, a group of
100 isoquinolinonequinones previously isolated from a marine *Streptomyces*¹⁸. Following literature
101 reviews and spectroscopic data comparison, the NMR data of **1** were found to be similar to
102 those of mansouramycin E¹⁸, except for the presence of an additional prenyl unit in **1**, and that
103 an aromatic methine in mansouramycin E was present as a quartenary carbon (C-3') in **1**. The
104 presence and position of an additional prenyl group was established following 2D NMR data
105 analysis (**Figure 1**); for instance, COSY (**Figure S7**) correlations between CH₂-6' and CH-7'
106 together with HMBC correlations from both H-9' and H-10' to C-8' and C-7'. Further HMBC
107 correlation from H-7' to C-3' positioned the prenyl moiety on C-3'. The remaining structure of

108 **1** was further confirmed by detailed HMBC data (**Figure S8**) analysis. Hence, the structure of
109 **1** was established as a new isoquinolinequinone terpenoid and named maramycin (**1**).



110

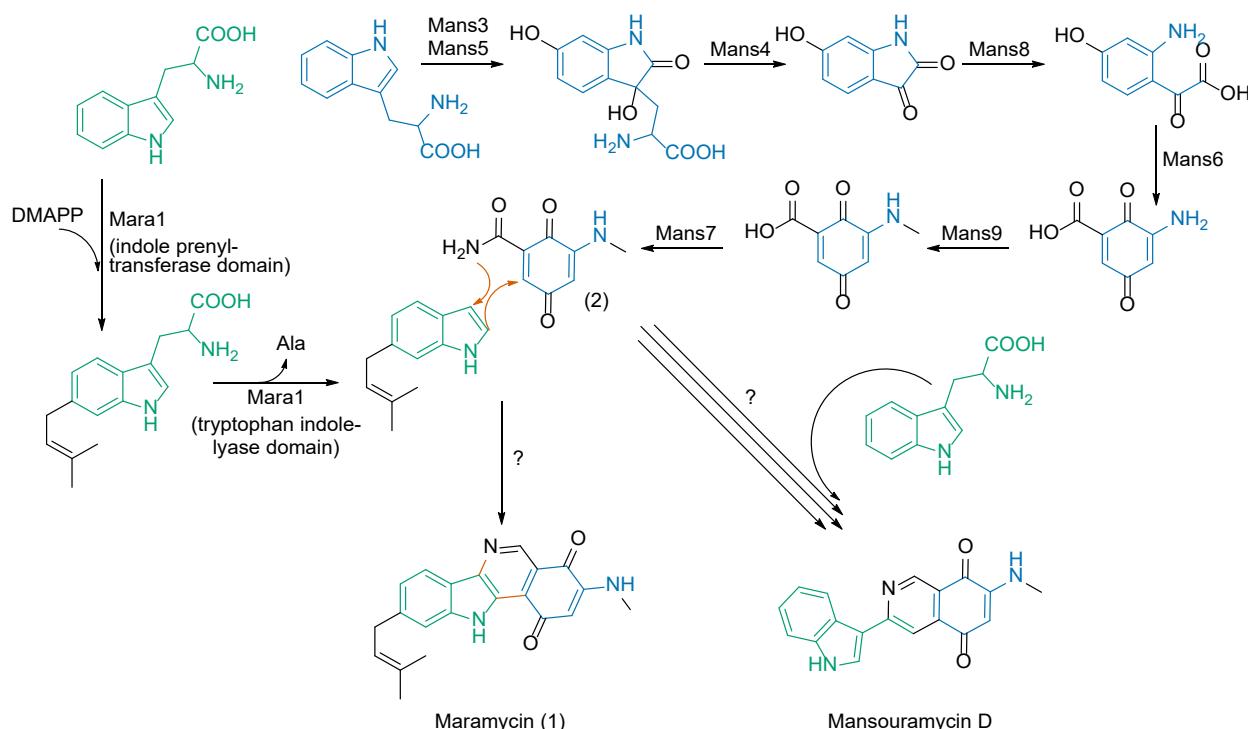
111 **Figure 1.** Chemical structure of isoquinolinequinone terpenoid maramycin (**1**) and selected 2D
112 NMR correlations important for the structure elucidation.

113

114 **Biosynthesis of maramycin**

115 Mansouramycins are encoded by *man* BGC²³ in *S. albidoflavus* J1074, which has been
116 characterized through gene inactivation and heterologous expression experiments, showing
117 that *mans3-9* are essential genes for mansouramycin biosynthesis²³. There have been no
118 previous reports on natural prenylated mansouramycins and there are no adjacent
119 prenyltransferase enzymes in *S. albidoflavus* J1074 associated with the *man* BGC. Given the
120 distinctive prenyl group present in **1**, we reexamined the cloned *azd* BGC region and identified
121 a candidate gene (*maral*). The putative Maral1 enzyme contained an indole prenyltransferase
122 domain³⁰ and a tryptophan indole-lyase domain³¹. To confirm its function, expression of just
123 *maral* in *S. albidoflavus* J1074 indeed resulted in the production of maramycin (**1**) (**Figure**
124 **2.A**).

125


126 **Figure 2.** (A) Extracted ion chromatogram ($[\text{M}+\text{H}]^+ = 346.1550 \pm 10 \text{ ppm}$) of maramycin (1)
127 from LC-MS samples of *Streptomyces albidoflavus* J1074 (WT) and two mutant strain samples
128 expressing *maral* and *azd* BGC, respectively. (B) Structures of mansouramycins A³² and E²²,
129 and maramycin (1).

130

131 Due to the high structural similarity to the mansouramycins, we hypothesize that maramycin
132 was synthesized in combination of the native *man* BGC and the foreign *maral* gene. The *man*
133 BGC produces 2, an intermediate for mansouramycin which we believe reacts with the
134 prenylated indole product of Mara1 (**Figure 3**). Mara1 is a bifunctional enzyme which could
135 catalyze the conversion of tryptophan into a prenylated indole. Firstly, a tryptophan is
136 prenylated at the C-3' position by the indole prenyltransferase, subsequently the tryptophan
137 indole-lyase domain facilitates a β -elimination reaction producing the prenylated indole

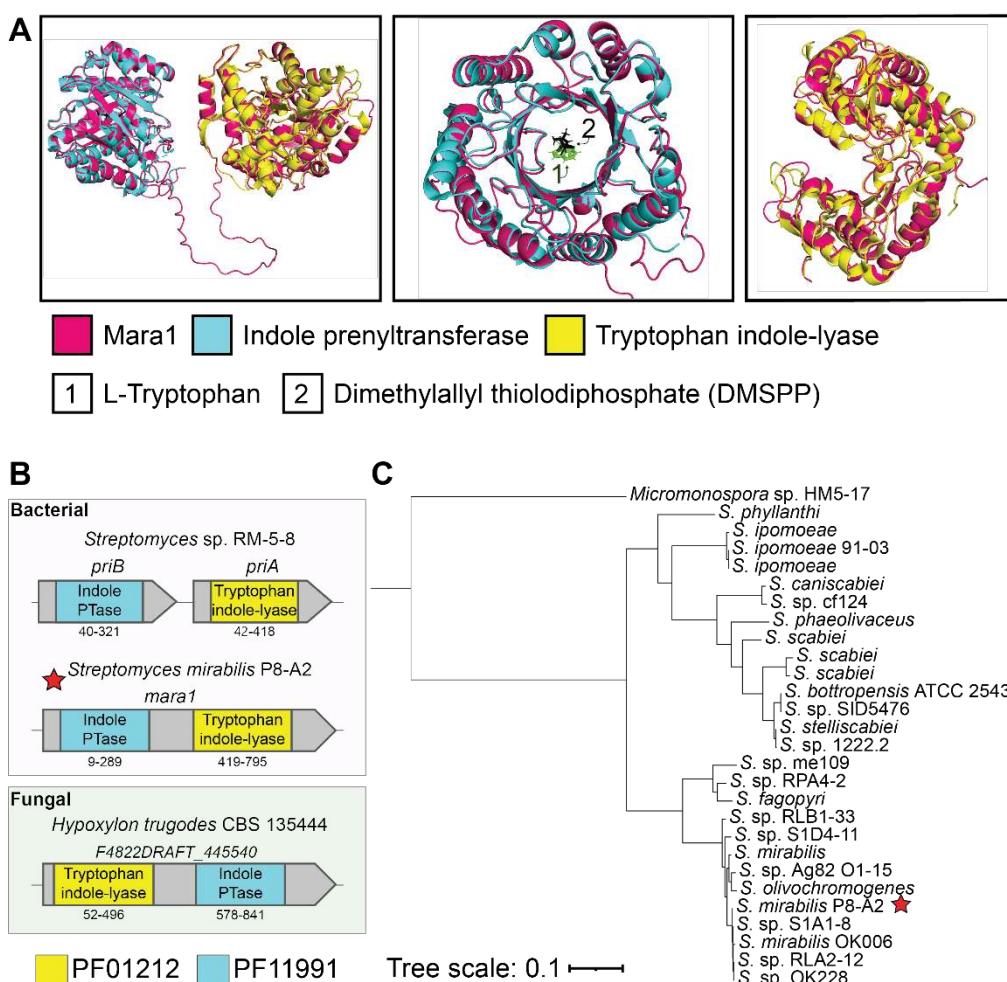
138 precursor 6-(3-methyl-2-butenyl)-indole. This prenylated indole is then incorporated into the
139 quinone intermediate to form maramycin (1).

140

141
142 **Figure 3.** Proposed biosynthesis pathway of maramycin (1), where Mara1 is responsible for
143 formation of 6-(3-methyl-2-butenyl)-indole which reacts with mansouramycin biosynthesis
144 intermediate, 5-(methylamino)-3,6-dioxocyclohexa-1,4-diene-1-carboxamide (2), formed by
145 Mans7 to form maramycin (1).

146

147 **Mara1: A rare bifunctional enzyme**


148 The Mara1 enzymatic structure was assessed by comparing an AlphaFold protein model^{33,34} to
149 crystal structures available in the Protein Data Bank (PDB) using FoldSeek³⁵. This analysis
150 confirmed the similarity of the Mara1 N-terminus to the prenyltransferase, PriB, (PDB: 5INJ,
151 898 MatchAlign score, 0.923 Root Mean Square Deviation “RMSD”)³⁶ and the C-terminus to
152 Tryptophan indole-lyase (PDB: 5W1B, 1672 MatchAlign score, 0.745 RMSD)³⁷. These

153 alignment scores demonstrate high structural congruence between the two distinct domains and
154 the fused Mara1 enzyme (**Figure 4.A**).

155

156 To investigate the prevalence of other proteins with similar fused domain architecture we
157 queried the Interpro database (v 96.0) for proteins containing the Pfam domains 11991 (indole-
158 prenyltransferase) and Pfam 01212 (tryptophan indole-lyase). Our query produced two distinct
159 families of proteins: one bacterial (29 hits) and one fungal (30 hits). The bacterial family was
160 almost exclusively found in *Streptomyces*, apart from a single homologue found in the
161 taxonomically distinct but related genus *Micromonospora*. These proteins featured a N-
162 terminal indole prenyltransferase domain followed by C-terminal tryptophan indole-lyase
163 domain. Interestingly, the fungal enzymes displayed a reversed domain order, with the
164 tryptophan indole-lyase at the N-terminus (**Figure 4.B**). Analysis using the antiSMASH
165 database (v4)³⁸ identified the bacterial bifunctional enzyme in 28 biosynthetic regions
166 (*Micromonospora* sp. HM5-17 not present antiSMASH database v4). Further 156 regions
167 contained the two domains as separate, adjacent enzymes, all of which maintained the
168 sequential domain order seen in the Mara1 bifunctional enzyme. This separate gene
169 architecture is also observed in the PriB containing BGC responsible for 5-isoprenylindole-3-
170 carboxylate β -D-glycosyl ester production³⁹ (MiBIG: BGC0001483) and the isatin-type
171 antibiotic 7-prenylisatin⁴⁰ (MiBIG: BGC0001294) (**Figure 4.B**). In both BGCs these domains
172 act together to produce a prenylated indole structure from a tryptophan precursor. *Streptomyces*
173 strains containing this enzyme are closely related, suggesting a potential recent gene fusion
174 event producing this novel Mara1 enzyme (**Figure 4.C**).

175

186 **Cytotoxicity of maramycin**

187 Isoquinolinequinones have been reported to be potential anticancer drug candidates⁴¹. The
188 effects of maramycin (**1**) on cell viability and proliferation were assessed using various prostate
189 cancer cell lines. Exposure to maramycin (10 μ M) for 72 h, inhibited cell growth of LNCaP
190 and C4-2B cells, by 77.9% and 64.1%, respectively (**Figure S9.A and S9.B, respectively**).
191 This was caused by moderate cytotoxicity elicited by exposure to **1** which showed IC₅₀ values
192 of 11.8 μ M and 18.4 μ M, against LNCaP and C4-2B cells, respectively (**Figure S9.E**). Drug
193 resistance remains the main limiting factor for drug efficacy in cancer treatment. Like for
194 antimicrobial resistance, reduction of the intracellular concentration of a drug by enhancement
195 of drug efflux from cells, is a key mechanism of resistance. Therefore, we evaluated the effect
196 of maramycin on the multi-drug resistant sublines LNCaP^R and C4-2B^R, which overexpress
197 the ABCB1/P-glycoprotein (P-gp) efflux pump and found it to exert comparable levels of cell
198 growth inhibition in these cells (**Figures S8.C and S8.D**), suggesting it can evade Pgp-
199 mediated multidrug resistance. Maramycin does not appear to have antibacterial properties
200 against drug resistant Gram-negative pathogens. When *S. albidoflavus* J1074 WT and *S.*
201 *albidoflavus* J1074 bearing the *azd* BGC were co-cultured against multidrug-resistant strains
202 of *Actinetobacter baumannii* and *Escherichia coli*, no inhibition zone was observed.

203

204 **Conclusion**

205 In this study we discovered and characterized maramycin, a novel alkaloid with promising
206 anticancer activity. The production of this compound arose from cross-talk of a rare
207 bifunctional prenyltransferase/tryptophan indole lyase, capable of generating prenylated
208 indoles from a tryptophan, and native mansouramycin biosynthesis. We believe this enzyme
209 has wide applicability to rationally engineer tryptophan derived natural products and to create
210 promising novel analogues.

211 **Methods**

212 **General Experimental Procedures.** Optical rotations were recorded on an AUTOPOL III -
213 S2 Dual Wavelength (589/546 nm) Automatic Polarimeter (Rudolph Research Analytical). IR
214 data were acquired on Bruker Alpha FTIR spectrometer using OPUS version 7.2. The NMR
215 spectra were recorded on a Bruker AVANCE III 800 MHz spectrometer equipped with a 5 mm
216 TCI CryoProbe using standard pulse sequences. The ^1H and ^{13}C NMR chemical shifts were
217 referenced to the residual solvent signals at δ_{H} 2.50, δ_{C} 39.52 ppm for for DMSO-*d*6. UHPLC-
218 HRMS was performed on an Agilent Infinity 1290 UHPLC system equipped with a diode array
219 detector. UV-vis spectra were recorded from 190 to 640 nm. All solvents and chemicals used
220 for HRMS, and chromatography were LC-MS grade, while the solvents for metabolite
221 extraction were of HPLC grade. Water was purified using a Milli-Q system.

222

223 **LC-ESI-HRMS/MS Analysis.** Ultra-high-performance liquid chromatography-diode array
224 detection-quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QTOFMS) was
225 performed on an Agilent Infinity 1290 UHPLC system (Agilent Technologies, Santa Clara, CA,
226 USA) equipped with a diode array detector. Separation was achieved on a 150×2.1 mm i.d.,
227 1.9 μm , Poroshell 120 Phenyl Hexyl column (Agilent Technologies, Santa Clara, CA) held at
228 40°C. The sample (1 μL) was eluted at a flow rate of 0.35 mL min^{-1} using a linear gradient
229 from 10% acetonitrile (LC-MS grade) in Milli-Q water buffered with 20 mM formic acid
230 increasing to 100% in 10 min, staying there for 2 min before returning to 10% in 0.1 min.
231 Starting conditions were held for 3 min before the following run.

232 Mass spectrometry (MS) detection was performed on an Agilent 6545 QTOF MS equipped
233 with Agilent Dual Jet Stream electrospray ion source (ESI) with a drying gas temperature of
234 250°C, a gas flow of 8 L min^{-1} , sheath gas temperature of 300°C and flow of 12 L min^{-1}

235 Capillary voltage was set to 4000 V and nozzle voltage to 500 V in positive mode. Mass spectra
236 were recorded as centroid data, at an m/z of 100–1700, and auto MS/HRMS fragmentation was
237 performed at three collision energies (10, 20, and 40 eV), on the three most intense precursor
238 peaks per cycle. The acquisition rate was 10 spectra s^{-1} . Data were handled using Agilent
239 MassHunter Qualitative Analysis software (Agilent Technologies, Santa Clara, CA). Lock
240 mass solution in 70 % MeOH in water was infused in the second sprayer using an extra LC
241 pump at a flow of 15 $\mu L\ min^{-1}$ using a 1:100 splitter. The solution contained 1 μM tributylamine
242 (Sigma-Aldrich) and 10 μM Hexakis (2, 2, 3, 3-tetrafluoropropoxy) phosphazene (Apollo
243 Scientific Ltd., Cheshire, UK) as lock masses. The $[M + H]^+$ ions (m/z 186.2216 and 922.0098,
244 respectively) of both compounds were used.

245

246 **Microbial strains and culture conditions.** *Escherichia coli* ET12567/pUZ8002^{42,43},
247 *Escherichia coli* Mach1 (Thermo Fisher Scientific), *Streptomyces albidoflavus* J1074²⁵ and
248 *Streptomyces albidoflavus* J1074 Φ C31::pAzd²⁹. All *Escherichia coli* strains were grown in
249 liquid/solid LB medium (5.0 g/L yeast extract, 10.0 g/L peptone, 10.0 g/L NaCl) at 37 °C.
250 *Streptomyces albidoflavus* was grown on SFM (20.0 g/L fat reduced soy flour (fettreduziert
251 Bio Sojamehl; Hensel, Germany)), 20.0 g/L D-mannitol (Sigma-Aldrich), and 1.0 L tap water
252 (Kgs. Lyngby, Denmark)) or ISP2 (yeast extract 4g/L (Thermo Fisher Scientific), malt extract
253 10g/L (Sigma-Aldrich), glucose 4g/L (Sigma-Aldrich), 1.0 L deionized water) at 30 °C. For
254 conjugations, SFM media was supplemented to contain final concentration of 10 mM MgCl₂.
255 Appropriate antibiotics were supplemented with the following working concentrations: 100
256 μ g/mL apramycin sulfate (Sigma-Aldrich), 25 μ g/mL chloramphenicol (Sigma-Aldrich), 50
257 μ g/mL kanamycin sulphate (Sigma-Aldrich) and 25 μ g/mL nalidixic acid (Sigma-Aldrich).

258

259 **Heterologous expression of *mara1* in *S. albidoflavus* J1074.** All polymerase chain reactions
260 were performed using Q5 High-Fidelity 2X Master Mix (New England Biolabs) and all primers
261 were synthesized by IDT (Integrated DNA Technologies). PCR amplification of pRM4e⁴⁴ was
262 performed using matmal0292: “GCGAGTGTCCGTTGAG” and matmal0293:
263 “ATGGACGTCCCCTTCCT”, while *mara1* was amplified by primer extension PCR using
264 matmal0294: “actcgaacggacactcgccTAGACGGTCACCGGCTG” and matmal0296:
265 “caggaagggacgtccatATGATCACCTCCGTCCAGG”. The PCR products of expected 5.4
266 kbp and 2.6 kbp size, respectively, were gel purified using NucleoSpin Gel and PCR Clean-up
267 (Macherey-Nagel) kit according to suppliers' instructions. The *mara1* fragment was cloned into
268 pRM4e vector using NEBuilder HiFi DNA Assembly (New England Biolabs) master mix and
269 introduced into *E. coli* Mach1 by heat shock method^{45,46}. The obtained plasmid, pRM4e-*mara1*
270 (**Figure S10**), was verified via colony PCR, expected fragment size 3.1 kbp, and subsequent
271 Sanger sequencing (Eurofins Genomics) using matmal0208:
272 “GTCTGTCGAGAAGTTCTGATC” and matmal0209:
273 “ACATGTTCTTCCTGCCTTATC”. The acquired plasmid was purified using NucleoSpin
274 Plasmid EasyPure (Macherey-Nagel) kit according to suppliers instructions, cloned into *E. coli*
275 ET12567/pUZ8002 and introduced into *S. albidoflavus* J1074 via conjugation. The resulting
276 apramycin resistant clones were selected for LC-MS analysis.

277
278 **Bacterial cultivation** A seed culture was prepared by inoculating spores of strain *S.*
279 *albidoflavus* J1074 Φ C31::pAzd into a baffled conical flask containing 50 mL of liquid ISP2
280 medium and incubated at 30 °C overnight with constant shaking at 180 rpm. The seed culture
281 was inoculated on ISP2 agar plates and incubated at 30 °C for 7 days in the dark. A total of 5
282 L (200 plates) of ISP2 agar were prepared for extraction and isolation of maramycin.

283

284 **Extraction and isolation of maramycin.** The agar cultures were sliced into small pieces and
285 extracted under sonication for 30 min with EtOAc (2 x 5 L). The EtOAc was filtered and
286 removed under reduced pressure using rotary evaporator to yield 599 mg of crude extract. The
287 extract was subjected to flash chromatography using a C₁₈-bonded Si-gel cartridge (Biotage
288 SNAP 50 g) on Biotage Isolera Flash Chromatography system, eluted with step-gradient
289 solvent systems (10% MeOH/H₂O to 100% MeOH; 10% increment; 132 mL each) at a flow
290 rate of 30 mL/min to give 20 fractions (66 mL each). Fractions 14–20 were combined following
291 HRMS analysis that suggested the presence of the isoquinolinquinone terpenoid. The combined
292 fraction was further purified using RP-HPLC column (Luna 5 μ m C₁₈-Phenomenex, 100 \AA ,
293 250 x 10 mm) with a linear gradient of 45%–85% ACN/H₂O in 20 min to afford maramycin
294 (**1**, 1.1 mg).

295

296 **Bioinformatic analysis of bifunctional enzyme**

297 The *mara1* sequence is identical to already existing model AF-A0A856NK67-F1-model_v4 in
298 the AlphaFold database^{33,34}. Structurally similar models were identified in the PDB using
299 FoldSeek³⁵. The similarity of identified matches to Mara1 were assessed by performing
300 PyMOL “super” structure alignment. The BGC annotation tool antiSMASH 7.0.0⁴⁷ was used
301 to annotate the *mara1* gene and identify relevant Pfam domains. To identify further proteins
302 containing both Pfam 01212 (β -eliminating lyase) and Pfam 11991 (tryptophan
303 dimethylallyltransferase) domains, the InterPro database (v 96.0) was queried via the domain
304 search. The 29 amino sequences of identified bacterial proteins were downloaded and aligned
305 with MAFFT (v 7.490) using the --auto flag and model L-INS-I⁴⁸. Phylogenetic trees were then
306 constructed using FastTree2 (v 2.1.11)⁴⁹ and visualized and annotated in iTol (v 6)⁵⁰. To
307 identify enzymes in other biosynthetic gene clusters the amino acid sequence was queried
308 against the antiSMASHdb (v4)⁵¹.

309

310 **Cell growth and cytotoxicity assay**

311 Two prostate cancer cell lines, LNCaP and C4-2B, as well as the drug-resistant derivative
312 sublines, LNCaP^R and C4-2B^R, respectively⁵², were used to evaluate the effect of maramycin
313 on cell viability and proliferation. All cell lines were cultured and maintained in RPMI-1640
314 medium + glutaMAX™-I (Gibco, Invitrogen, Carlsbad, CA, United States) supplemented with
315 10% fetal bovine serum (FBS). One day prior to drug exposure measurements, cells were
316 seeded into 6-well plates at a density of 0.3×10^6 cells/well. On the next day, the medium in
317 each well was replaced with 2mL of fresh warm medium containing either 10 μ M of
318 maramycin or vehicle. Cell proliferation dynamics were monitored in real-time using a lens-
319 free Cellwatcher microscopy device (PHIO, Germany). The cell growth curves were generated
320 with the analysis module available from PHIO to determine the total area covered by cells.
321 Cytotoxicity was evaluated using the CellTox Green Cytotoxicity Assay kit (Promega,
322 Madison, WI, USA) after 48h of exposure to various concentrations of maramycin (10^{-7} M to
323 2×10^{-5} M), according to manufacturer's instructions. Briefly, CellTox green cytotoxicity
324 reagent was added to the media at a final concentration of 1X, and the relative cytotoxicity was
325 calculated relative to the control well treated with vehicle. The drug concentrations that caused
326 inhibition of 50% cell viability (IC₅₀) were determined from the dose-response curves. Curve
327 fitting and analyses using non-linear regression models were performed using GraphPad Prism
328 version 10.0.0 for Windows (GraphPad Software, Boston, MA, USA).

329

330 ***Maramycin (1)***

331 Red amorphous powder; UV (CH₃CN/H₂O) λ_{max} 236 (100%), 270 (50%), 390 (25%) nm; IR
332 (ATR) ν_{max} 3306, 2943, 2801, 2023, 1449, 1409, 1120, 1020, 623 cm⁻¹; ¹H and ¹³C NMR see

333 Supporting Information (Table S1); (+)-HRESIMS m/z 346.1564 [M+H]⁺ (calcd for
334 C₂₁H₂₀N₃O₂, 346.1550).

335

336 **Data availability**

337 MassIVE MSV000093927, Genome sequence data for *Streptomyces mirabilis* P8-A2 is
338 available under the NCBI RefSeq accession NZ_JARAKF000000000.1.

339

340 **Supporting Information**

341 Additional details on the HPLC traces of heterologous expression strain, NMR data of
342 maramycin, bioactivity data and plasmid map for heterologous expression of Mara1.

343

344 **Acknowledgements**

345 This study was supported by the Danish National Research Foundation (DNRF137) as part of
346 the Center for Microbial Secondary Metabolites (CeMiSt). S.E.W. would furthermore
347 acknowledge funding by the Novo Nordisk Foundation Postdoctoral Fellowship
348 (NNF22OC0079021). T.W. would furthermore acknowledge funding by the Novo Nordisk
349 Foundation (NNF20CC0035580, NNF16OC0021746). The NMR Center DTU and the Villum
350 Foundation are acknowledged for access to the 800 MHz spectrometer.

351

352 The metabolomic data was generated at DTU Metabolomics Core facilities with help of A.
353 Andersen.

354

355 **Author contributions**

356 M.M., M.W., S.E.W set out the methodology of the study, performed data collection,
357 conducted bioinformatic data curation, conducted data analysis and produced visualizations for

358 the manuscript. M.M, M.W., S.E.W. wrote the original draft of the manuscript with help from
359 C.H.G., R.S., L.D.O.S., M.S.C., P.C., J.M.A.M., T.W., L.D. All authors reviewed and edited
360 the manuscript. T.W. and L.D. conceived the project, provided supervision and acquired
361 funding. All authors have read and agreed to the published version of the manuscript.

362

363 **Reference**

364 (1) WHO. *Model List of Essential Medicines – 23rd List, 2023. In: The Selection and Use of*
365 *Essential Medicines 2023: Executive Summary of the Report of the 24th WHO Expert*
366 *Committee on the Selection and Use of Essential Medicines, 24 – 28 April 2023. Geneva:*
367 *World Health Organization; 2023 (WHO/MHP/HPS/EML/2023.02). Licence: CC BYNC-SA 3.0*
368 *IGO.; 2023.*

369 (2) Van Keulen, G.; Dyson, P. J. Production of Specialized Metabolites by Streptomyces Coelicolor
370 A3(2). *Adv Appl Microbiol* **2014**, *89*, 217–266. <https://doi.org/10.1016/B978-0-12-800259-9.00006-8>.

372 (3) Ohnishi, Y.; Ishikawa, J.; Hara, H.; Suzuki, H.; Ikenoya, M.; Ikeda, H.; Yamashita, A.; Hattori,
373 M.; Horinouchi, S. Genome Sequence of the Streptomycin-Producing Microorganism
374 *Streptomyces Griseus IFO 13350. J Bacteriol* **2008**, *190* (11), 4050–4060.
375 https://doi.org/10.1128/JB.00204-08/SUPPL_FILE/JB204-08SUPPLEMENT.PDF.

376 (4) Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Shinose, M.; Kikuchi, H.; Shiba, T.; Sakaki, Y.; Hattori,
377 M.; Omura, S. Complete Genome Sequence and Comparative Analysis of the Industrial
378 Microorganism *Streptomyces avermitilis*. *Nature Biotechnology* **2003** *21*:5 **2003**, *21* (5), 526–
379 531. <https://doi.org/10.1038/nbt820>.

380 (5) Bentley, S. D.; Chater, K. F.; Cerdeño-Tárraga, A. M.; Challis, G. L.; Thomson, N. R.; James, K.
381 D.; Harris, D. E.; Quail, M. A.; Kieser, H.; Harper, D.; Bateman, A.; Brown, S.; Chandra, G.;
382 Chen, C. W.; Collins, M.; Cronin, A.; Fraser, A.; Goble, A.; Hidalgo, J.; Hornsby, T.; Howarth, S.;
383 Huang, C. H.; Kieser, T.; Larke, L.; Murphy, L.; Oliver, K.; O’Neil, S.; Rabbinowitsch, E.;
384 Rajandream, M. A.; Rutherford, K.; Rutter, S.; Seeger, K.; Saunders, D.; Sharp, S.; Squares, R.;
385 Squares, S.; Taylor, K.; Warren, T.; Wietzorrekk, A.; Woodward, J.; Barrell, B. G.; Parkhill, J.;
386 Hopwood, D. A. Complete Genome Sequence of the Model Actinomycete *Streptomyces*
387 *Coelicolor A3(2)*. *Nature* **2002** *417*:6885 **2002**, *417* (6885), 141–147.
388 <https://doi.org/10.1038/417141a>.

389 (6) Lee, N.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B. K. Synthetic Biology Tools for Novel
390 Secondary Metabolite Discovery in *Streptomyces*. *J. Microbiol. Biotechnol.* **2019**, *29* (5), 667–
391 686. <https://doi.org/10.4014/JMB.1904.04015>.

392 (7) Baral, B.; Akhgari, A.; Metsä-Ketelä, M. Activation of Microbial Secondary Metabolic
393 Pathways: Avenues and Challenges. *Synth Syst Biotechnol* **2018**, *3* (3), 163–178.
394 <https://doi.org/10.1016/J.SYNBIO.2018.09.001>.

395 (8) Luo, Y.; Huang, H.; Liang, J.; Wang, M.; Lu, L.; Shao, Z.; Cobb, R. E.; Zhao, H. Activation and
396 Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster.
397 *Nature Communications* 2013 4:1 **2013**, 4 (1), 1–8. <https://doi.org/10.1038/ncomms3894>.

398 (9) Young, T. S.; Walsh, C. T. Identification of the Thiazolyl Peptide GE37468 Gene Cluster from
399 Streptomyces ATCC 55365 and Heterologous Expression in Streptomyces Lividans. *Proc Natl
400 Acad Sci U S A* **2011**, 108 (32), 13053–13058.
401 https://doi.org/10.1073/PNAS.1110435108/SUPPL_FILE/APPENDIX.PDF.

402 (10) Covington, B. C.; Seyedsayamdost, M. R. MetEx, a Metabolomics Explorer Application for
403 Natural Product Discovery. *ACS Chem Biol* **2021**, 16 (12), 2825–2833.
404 https://doi.org/10.1021/ACSCHEMbio.1C00737/SUPPL_FILE/CB1C00737_SI_001.PDF.

405 (11) Wakefield, J.; Hassan, H. M.; Jaspars, M.; Ebel, R.; Rateb, M. E. Dual Induction of New
406 Microbial Secondary Metabolites by Fungal Bacterial Co-Cultivation. *Front Microbiol* **2017**, 8
407 (JUL). <https://doi.org/10.3389/FMICB.2017.01284>.

408 (12) Milanowski, D. J.; Gustafson, K. R.; Kelley, J. A.; McMahon, J. B. Caulibugulones A-F, Novel
409 Cytotoxic Isoquinoline Quinones and Iminoquinones from the Marine Bryozoan Caulibugula
410 Intermis. *J Nat Prod* **2004**, 67 (1), 70–73.
411 <https://doi.org/10.1021/NP030378L/ASSET/IMAGES/LARGE/NP030378LF1.jpeg>.

412 (13) Choi, Y. H.; Park, A.; Schmitz, F. J.; van Altena, I. Perfragilins A and B, Cytotoxic
413 Isoquinolinequinones from the Bryozoan Membranipora Perfragilis. *J Nat Prod* **1993**, 56 (8),
414 1431–1433. <https://doi.org/10.1021/NP50098A032>.

415 (14) Pettit, G. R.; Knight, J. C.; Collins, J. C.; Herald, D. L.; Pettit, R. K.; Boyd, M. R.; Young, V. G.
416 Antineoplastic Agents 430. Isolation and Structure of Cribrostatins 3, 4, and 5 from the
417 Republic of Maldives Cribrochalina Species. *J Nat Prod* **2000**, 63 (6), 793–798.
418 https://doi.org/10.1021/NP990618Q/SUPPL_FILE/NP990618Q_S.PDF.

419 (15) Frincke, J. M.; Faulkner, D. J. Antimicrobial Metabolites of the Sponge Reniera Sp. *J Am Chem
420 Soc* **1982**, 104 (1), 265–269.
421 https://doi.org/10.1021/JA00365A048/ASSET/JA00365A048.FP.PNG_V03.

422 (16) Kim, Y. N.; Ji, Y. K.; Kim, N. H.; Tu, N. Van; Rho, J. R.; Jeong, E. J. Isoquinolinequinone
423 Derivatives from a Marine Sponge (Haliclona Sp.) Regulate Inflammation in In Vitro System of
424 Intestine. *Mar Drugs* **2021**, 19 (2). <https://doi.org/10.3390/MD19020090>.

425 (17) Hawas, U. W.; Shaaban, M.; Shaaban, K. A.; Speitling, M.; Maier, A.; Kelter, G.; Fiebig, H. H.;
426 Meiners, M.; Helmke, E.; Laatsch, H. Mansouramycins A-D, Cytotoxic Isoquinolinequinones
427 from a Marine Streptomycete. *J Nat Prod* **2009**, 72 (12), 2120–2124.
428 https://doi.org/10.1021/NP900160G/SUPPL_FILE/NP900160G_SI_001.PDF.

429 (18) Shaaban, M.; Shaaban, K. A.; Kelter, G.; Fiebig, H. H.; Laatsch, H. Mansouramycins E-G,
430 Cytotoxic Isoquinolinequinones from Marine Streptomycetes. *Mar Drugs* **2021**, 19 (12).
431 <https://doi.org/10.3390/MD19120715>.

432 (19) Chai, S.; Cao, M.; Feng, Z. Identification and Heterologous Expression of an
433 Isoquinolinequinone Biosynthetic Gene Cluster from Streptomyces Albus J1074. *Biochem
434 Biophys Res Commun* **2021**, 540, 51–55. <https://doi.org/10.1016/J.BBRC.2020.12.093>.

435 (20) Xu, F.; Nazari, B.; Moon, K.; Bushin, L. B.; Seyedsayamdst, M. R. Discovery of a Cryptic
436 Antifungal Compound from *Streptomyces Albus* J1074 Using High-Throughput Elicitor
437 Screens. *J Am Chem Soc* **2017**, 139 (27), 9203–9212.
438 https://doi.org/10.1021/JACS.7B02716/ASSET/IMAGES/LARGE/JA-2017-027165_0007.jpeg.

439 (21) Huang, C.; Yang, C.; Zhang, W.; Zhu, Y.; Ma, L.; Fang, Z.; Zhang, C. Albumycin, a New
440 Isoindolequinone from *Streptomyces Albus* J1074 Harboring the Fluostatin Biosynthetic Gene
441 Cluster. *The Journal of Antibiotics* 2019 72:5 **2019**, 72 (5), 311–315.
442 <https://doi.org/10.1038/s41429-019-0161-4>.

443 (22) Chai, S.; Cao, M.; Feng, Z. Identification and Heterologous Expression of an
444 Isoquinolinequinone Biosynthetic Gene Cluster from *Streptomyces Albus* J1074. *Biochem*
445 *Biophys Res Commun* **2021**, 540, 51–55. <https://doi.org/10.1016/J.BBRC.2020.12.093>.

446 (23) Shuai, H.; Myronovskyi, M.; Rosenkränzer, B.; Paulus, C.; Nadmid, S.; Stierhof, M.; Kolling, D.;
447 Luzhetsky, A. Novel Biosynthetic Route to the Isoquinoline Scaffold. *ACS Chem Biol* **2022**, 17
448 (3), 598–608.
449 https://doi.org/10.1021/ACSCHEMBIO.1C00869/ASSET/IMAGES/LARGE/CB1C00869_0011.JPEG.

450 (24) Myronovskyi, M.; Rosenkränzer, B.; Nadmid, S.; Pujic, P.; Normand, P.; Luzhetsky, A.
451 Generation of a Cluster-Free *Streptomyces Albus* Chassis Strains for Improved Heterologous
452 Expression of Secondary Metabolite Clusters. *Metab Eng* **2018**, 49, 316–324.
453 <https://doi.org/10.1016/J.YMBEN.2018.09.004>.

455 (25) Chater, K. F.; Wilde, L. C. Restriction of a Bacteriophage of *Streptomyces Albus* G Involving
456 Endonuclease Sall. *J Bacteriol* **1976**, 128 (2), 644–650. <https://doi.org/10.1128/JB.128.2.644-650.1976>.

458 (26) Beck, C.; Gren, T.; Ortiz-López, F. J.; Jørgensen, T. S.; Carretero-Molina, D.; Serrano, J. M.;
459 Tormo, J. R.; Oves-Costales, D.; Kontou, E. E.; Mohite, O. S.; Mingyar, E.; Stegmann, E.;
460 Genilloud, O.; Weber, T. Activation and Identification of a Griseusin Cluster in *Streptomyces*
461 Sp. CA-256286 by Employing Transcriptional Regulators and Multi-Omics Methods. *Molecules*
462 **2021**, Vol. 26, Page 6580 **2021**, 26 (21), 6580. <https://doi.org/10.3390/MOLECULES26216580>.

463 (27) Kontou, E. E.; Gren, T.; Ortiz-López, F. J.; Thomsen, E.; Oves-Costales, D.; Díaz, C.; De La Cruz,
464 M.; Jiang, X.; Jørgensen, T. S.; Blin, K.; Charusanti, P.; Reyes, F.; Genilloud, O.; Weber, T.
465 Discovery and Characterization of Epemicins A and B, New 30-Membered Macrolides from
466 *Kutzneria* Sp. CA-103260. *ACS Chem Biol* **2021**, 16 (8), 1456–1468.
467 https://doi.org/10.1021/ACSCHEMBIO.1C00318/ASSET/IMAGES/LARGE/CB1C00318_0004.JPEG.

469 (28) Oves-Costales, D.; Gren, T.; Sterndorff, E. B.; Martín, J.; Ortiz-López, F. J.; Jørgensen, T. S.;
470 Jiang, X.; Román-Hurtado, F.; Reyes, F.; Genilloud, O.; Weber, T. Identification and
471 Heterologous Expression of the Globomycin Biosynthetic Gene Cluster. *Synth Syst Biotechnol*
472 **2023**, 8 (2), 206–212. <https://doi.org/10.1016/J.SYNBIO.2023.02.001>.

473 (29) Maleckis, M.; Wibowo, M.; Gren, T.; Jarmusch, S. A.; Sterndorff, E. B.; Booth, T.; Henriksen, N.
474 N. S. E.; Whitford, C. M.; Jiang, X.; Jørgensen, T. S.; Ding, L.; Weber, T. Biosynthesis of the
475 Azoxy Compound Azodyrecin from *Streptomyces Mirabilis* P8-A2. *ACS Chem Biol* **2024**.
476 <https://doi.org/10.1021/ACSCHEMBIO.3C00632>.

477 (30) Elshahawi, S. I.; Cao, H.; Shaaban, K. A.; Ponomareva, L. V; Subramanian, T.; Farman, M. L.;
478 Spielmann, H. P.; Phillips, G. N.; Thorson, J. S.; Singh, S. Structure and Specificity of a
479 Permissive Bacterial C-Prenyltransferase. *Nat Chem Biol* **2017**, *13* (4), 366–368.
480 <https://doi.org/10.1038/nchembio.2285>.

481 (31) Mindt, M.; Ferrer, L.; Bosch, D.; Cankar, K.; Wendisch, V. F. De Novo Tryptophanase-Based
482 Indole Production by Metabolically Engineered *Corynebacterium Glutamicum*. *Appl Microbiol*
483 *Biotechnol* **2023**, *107* (5), 1621–1634. <https://doi.org/10.1007/s00253-023-12397-4>.

484 (32) Hawas, U. W.; Shaaban, M.; Shaaban, K. A.; Speitling, M.; Maier, A.; Kelter, G.; Fiebig, H. H.;
485 Meiners, M.; Helmke, E.; Laatsch, H. Mansouramycins A-D, Cytotoxic Isoquinolinequinones
486 from a Marine Streptomycete. *J Nat Prod* **2009**, *72* (12), 2120–2124.
487 https://doi.org/10.1021/NP900160G/SUPPL_FILE/NP900160G_SI_001.PDF.

488 (33) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool,
489 K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.;
490 Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman,
491 D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.;
492 Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate
493 Protein Structure Prediction with AlphaFold. *Nature* **2021** *596*:7873 **2021**, *596* (7873), 583–
494 589. <https://doi.org/10.1038/s41586-021-03819-2>.

495 (34) Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe,
496 O.; Wood, G.; Laydon, A.; Žídek, A.; Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.;
497 Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; Kohli, P.;
498 Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. AlphaFold Protein Structure Database:
499 Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy
500 Models. *Nucleic Acids Res* **2022**, *50* (D1), D439–D444.
501 <https://doi.org/10.1093/NAR/GKAB1061>.

502 (35) van Kempen, M.; Kim, S. S.; Tumescheit, C.; Mirdita, M.; Lee, J.; Gilchrist, C. L. M.; Söding, J.;
503 Steinegger, M. Fast and Accurate Protein Structure Search with Foldseek. *Nature*
504 *Biotechnology* **2023** **2023**, 1–4. <https://doi.org/10.1038/s41587-023-01773-0>.

505 (36) Elshahawi, S. I.; Cao, H.; Shaaban, K. A.; Ponomareva, L. V.; Subramanian, T.; Farman, M. L.;
506 Spielmann, H. P.; Phillips, G. N.; Thorson, J. S.; Singh, S. Structure and Specificity of a
507 Permissive Bacterial C-Prenyltransferase. *Nature Chemical Biology* **2017** *13*:4 **2017**, *13* (4),
508 366–368. <https://doi.org/10.1038/nchembio.2285>.

509 (37) Phillips, R. S.; Buisman, A. A.; Choi, S.; Hussaini, A.; Wood, Z. A. The Crystal Structure of
510 *Proteus Vulgaris* Tryptophan Indole-Lyase Complexed with Oxindolyl-L-Alanine: Implications
511 for the Reaction Mechanism. *Acta Crystallogr D Struct Biol* **2018**, *74* (8), 748–759.
512 <https://doi.org/10.1107/S2059798318003352/LP5034SUP1.PDF>.

513 (38) Blin, K.; Shaw, S.; Medema, M. H.; Weber, T. The AntiSMASH Database Version 4: Additional
514 Genomes and BGCs, New Sequence-Based Searches and More. *Nucleic Acids Res* **2013**, *1*
515 (1256879), 13–14. <https://doi.org/10.1093/NAR/GKAD984>.

516 (39) Wang, X.; Reynolds, A. R.; Elshahawi, S. I.; Shaaban, K. A.; Ponomareva, L. V; Saunders, M. A.;
517 Elgumati, I. S.; Zhang, Y.; Copley, G. C.; Hower, J. C.; Sunkara, M.; Morris, A. J.; Kharel, M. K.;
518 Van Lanen, S. G.; Prendergast, M. A.; Thorson, J. S. Terfestatins B and C, New p-Terphenyl

519 Glycosides Produced by Streptomyces Sp. RM-5–8. *Org Lett* **2015**, *17* (11), 2796–2799.
520 <https://doi.org/10.1021/acs.orglett.5b01203>.

521 (40) Wu, C.; Du, C.; Gubbens, J.; Choi, Y. H.; Van Wezel, G. P. Metabolomics-Driven Discovery of a
522 Prenylated Isatin Antibiotic Produced by Streptomyces Species MBT28. *J Nat Prod* **2015**, *78*
523 (10). <https://doi.org/10.1021/acs.jnatprod.5b00276>.

524 (41) Shaaban, M.; Shaaban, K. A.; Kelter, G.; Fiebig, H. H.; Laatsch, H. Mansouramycins E–G,
525 Cytotoxic Isoquinolinequinones from Marine Streptomycetes. *Mar Drugs* **2021**, *19* (12), 715.
526 [https://doi.org/10.3390/MD19120715/S1](https://doi.org/10.3390/MD19120715).

527 (42) MacNeil, D. J.; Gewain, K. M.; Ruby, C. L.; Dezeny, G.; Gibbons, P. H.; MacNeil, T. Analysis of
528 Streptomyces Avermitilis Genes Required for Avermectin Biosynthesis Utilizing a Novel
529 Integration Vector. *Gene* **1992**, *111* (1), 61–68. [https://doi.org/10.1016/0378-1119\(92\)90603-M](https://doi.org/10.1016/0378-1119(92)90603-M).

531 (43) Paget, M. S. B.; Chamberlin, L.; Atrih, A.; Foster, S. J.; Buttner, M. J. Evidence That the
532 Extracytoplasmic Function Sigma Factor $\sigma(E)$ Is Required for Normal Cell Wall Structure in
533 Streptomyces Coelicolor A3(2). *J Bacteriol* **1999**, *181* (1), 204–211.
534 <https://doi.org/10.1128/jb.181.1.204-211.1999>.

535 (44) Jiang, X.; Radko, Y.; Gren, T.; Palazzotto, E.; Jørgensen, T. S.; Cheng, T.; Xian, M.; Weber, T.;
536 Lee, S. Y. Distribution of ϵ -Poly-L-Lysine Synthetases in Coryneform Bacteria Isolated from
537 Cheese and Human Skin. *Appl Environ Microbiol* **2021**, *87* (10), 1–8.
538 https://doi.org/10.1128/AEM.01841-20/SUPPL_FILE/AEM.01841-20-S0003.XLSX.

539 (45) Mandel, M.; Higa, A. Calcium-Dependent Bacteriophage DNA Infection. *J Mol Biol* **1970**, *53*
540 (1), 159–162. [https://doi.org/10.1016/0022-2836\(70\)90051-3](https://doi.org/10.1016/0022-2836(70)90051-3).

541 (46) Hanahan, D. Studies on Transformation of Escherichia Coli with Plasmids. *J Mol Biol* **1983**, *166*
542 (4), 557–580. [https://doi.org/10.1016/S0022-2836\(83\)80284-8](https://doi.org/10.1016/S0022-2836(83)80284-8).

543 (47) Blin, K.; Shaw, S.; Augustijn, H. E.; Reitz, Z. L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw,
544 B. R.; Metcalf, W. W.; Helfrich, E. J. N.; van Wezel, G. P.; Medema, M. H.; Weber, T.
545 AntiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical
546 Structures and Visualisation. *Nucleic Acids Res* **2023**, *51* (W1), W46–W50.
547 <https://doi.org/10.1093/nar/gkad344>.

548 (48) Katoh, K.; Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7:
549 Improvements in Performance and Usability. *Mol Biol Evol* **2013**, *30* (4), 772–780.
550 <https://doi.org/10.1093/molbev/mst010>.

551 (49) Price, M. N.; Dehal, P. S.; Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees
552 for Large Alignments. *PLoS One* **2010**, *5* (3), e9490-.

553 (50) Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An Online Tool for Phylogenetic Tree
554 Display and Annotation. *Nucleic Acids Res* **2021**, *49* (W1), W293–W296.
555 <https://doi.org/10.1093/nar/gkab301>.

556 (51) Blin, K.; Shaw, S.; Medema, M. H.; Weber, T. The AntiSMASH Database Version 4: Additional
557 Genomes and BGCs, New Sequence-Based Searches and More. *Nucleic Acids Res* **2023**,
558 gkad984. <https://doi.org/10.1093/nar/gkad984>.

559 (52) Lima, T. S.; Iglesias-Gato, D.; Souza, L. D. O.; Stenvang, J.; Lima, D. S.; Røder, M. A.; Brasso, K.;
560 Moreira, J. M. A. Molecular Profiling of Docetaxel-Resistant Prostate Cancer Cells Identifies
561 Multiple Mechanisms of Therapeutic Resistance. *Cancers* 2021, Vol. 13, Page 1290 **2021**, 13
562 (6), 1290. <https://doi.org/10.3390/CANCERS13061290>.

563