bioRxiv preprint doi: https://doi.org/10.1101/2024.02.13.580153; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PARSING BRAIN NETWORK SPECIALIZATION 1

Title: Parsing Brain Network Specialization: A Replicatend Expansion of Wang et al. (2014)

Abbreviated Title Parsing Brain Network Specialization

fdjthor Names and Affiliationdvladeline Petersoh Dorothea L. Flori¢' 3 and Jared A. Nielsen

! Department of Psychology, Brigham Young Universityovo, UT, 84602, USA

2 Methods of Plasticity Research, Department of Rslggyy, University of Zurich,
Zurich, Switzerland

% Department of Cognitive Neuroscience, Donderstlristfor Brain, Cognition and
Behaviour, Radboud University Nijmegen Medical @enNijmegen, The Netherlands
* Neuroscience Center, Brigham Young UniversityvBraJT, 84604, USA

Corresponding Author Email Addregarednielsen@byu.edu

Number of Pages38

Figures: 5, Tables: 0
Abstract: 211 words, Introduction: 648 words, Dission: 1489 words

Conflict of Interest Statemerithe authors declare no competing financial irgtisce

AcknowledgementdData were provided in part by the Human ConnectBrogect, WU-Minn
Consortium (principal Investigators: David Van Bssad Kamil Ugurbil; 1TU54MH091657)
funded by the 16 NIH Institutes and Centers thppsu the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systemgdécience at Washington University.
HCPD data reported in this publication was supmbbiethe National Institute of Mental Health
of the National Institutes of Health under Awardmer U0O1MH109589 and by funds provided
by the McDonnell Center for Systems Neurosciend&ashington University in St. Louis. The
HCP-Development 2.0 Release data used in thistrepore from DOI: 10.15154/1520708.
Collection of the NSD dataset was supported by NSH.822683 and NSF 11S-1822929. DLF
is supported by funding from the European Uniondsibn 2020 research and innovation
programme under the Marie Sktodowska-Curie grargeagent No 101025785. Furthermore,
we acknowledge the support of the Office of Rese@omputing at Brigham Young University.

Author ContributionsM.P.: Conceptualization, Methodology, Softwaralidation, Formal
analysis, Investigation, Data curation, Writingrigmal draft, Writing — review & editing,
Visualization, and Project administration. D.L.¥#/riting — review & editing. J.A.N.:
Conceptualization, Methodology, Writing — reviewdaediting, Supervision, and Project
administration.



https://doi.org/10.1101/2024.02.13.580153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.13.580153; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
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Abstract

One organizing principle of the human brain is tsgheric specialization, or the
dominance of a specific function or cognitive psxa one hemisphere or the other. Previously,
Wang et al. (2014) identified networks putativedgaciated with language and attention as being
specialized to the left and right hemispheres,aetyely; and a dual-specialization of the
executive control network. However, it remains umkn which networks are specialized when
specialization is examined within individuals usenigher resolution parcellation, as well as
which connections are contributing the most tovaiginetwork’s specialization. In the present
study, we estimated network specialization acrosetdatasets using the autonomy index and a
novel method of deconstructing network specialoratiAfter examining the reliability of these
methods as implemented on an individual level, ddr@ssed two hypotheses. First, we
hypothesized that the most specialized networkddvoglude those associated with language,
visuospatial attention, and executive control. 8dcave hypothesized that within-network
contributions to specialization would follow a witkbetween network gradient or a
specialization gradient. We found that the majasityetworks exhibited greater within-
hemisphere connectivity than between-hemisphereeamdivity. Among the most specialized
networks were networks associated with languagentadn, and executive control. Additionally,
we found that the greatest network contributionsewathin-network, followed by those from
specialized networks.

Significance Statement

Hemispheric specialization is a characteristibrain organization that describes when a
function draws on one hemisphere of the brain rtieae the other. We sought to identify the
most specialized brain networks within individuals,well as which connections contribute the

most to a given network’s specialization. Among rthast specialized networks were those
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PARSING BRAIN NETWORK SPECIALIZATION 3
associated with language, attention, and execatwé&ol. Unexpectedly, we also identified
networks associated with emotion/memory and thebrgind as highly specialized.
Additionally, we found support for guiding princgd of brain organization generally, such that
within-network connections contributed most to egi network’s specialization followed by
connections from other specialized networks. Theselts have implications for identifying

potential variations of network contributions imividuals with neurodevelopmental conditions.
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Introduction

Hemispheric specialization refers to a charadierig brain organization in which
specific functions draw on one hemisphere of tlaenbmore than the other. These functional
asymmetries give rise to reductions in redundaheyy(, 1969), processing speed (Ringo et al.,
1994), and interhemispheric conflict in functioitiation (Andrew et al., 1982; Corballis, 1991).
Importantly, disruptions to hemispheric special@atan have significant clinical implications,
particularly in the context of neurodevelopmental @sychiatric conditions (X.-Z. Kong et al.,
2022).

Measures of hemispheric specialization have pusiyoranged from the examination of
split-brain patients (for review, see Gazzanig&®®@@&nd brain lesions (Milner, 1971;
Rasmussen & Milner, 1977) to the Wada test (Wad@a&mussen, 1960) and intraoperative
brain stimulation mapping (Penfield & Jasper, 19%ith the advent and development of
functional neuroimaging, these methods now inclmd@y functional connectivity-based
metrics. One such measure is the intrinsic latgraddex (Liu et al., 2009), which quantifies
within- versus between-hemisphere connectivity. tAeoincludes the hemispheric contrast
(Gotts et al., 2013), which examines node inteoastbetween the two hemispheres through
“segregation” (high within-hemisphere interactiomsjsus “integration” (high between-
hemisphere interactions). Similarly, the autonondex (Wang et al., 2014) captures a
normalized ratio of within- versus between-hemisplemnnectivity on the vertex level. Of these
measures, the autonomy index holds particularastesince each vertex is taken as a region-of-
interest, avoiding the influence of anatomical as\gtries.

Using the autonomy index, Wang et al. (2014) gfi@dtispecialization across seven

functional networks and found that specializatiaswot restricted to a single left- or right-


https://doi.org/10.1101/2024.02.13.580153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.13.580153; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PARSING BRAIN NETWORK SPECIALIZATION 5
specialized network (Wang et al., 2014). Rathex right frontoparietal control network and
right ventral and dorsal attention networks, ad agkhe left default and frontoparietal control
networks exhibited high degrees of specializats®e (Fig. 5; Wang et al., 2014). The dual
specialization of the frontoparietal control netlwewidences a joint coupling of executive
control functions with a distinct pattern of netk®in either hemisphere (Wang et al., 2014).
While this and other studies have made significantributions, much of what is known
regarding hemispheric specialization has been @eifiom group-level analyses, an approach
which is increasingly being exchanged for a witimdividual “precision functional mapping”
approach (Braga & Buckner, 2017; Gordon et al.,/2QAumann et al., 2015).

In line with the precision neuroimaging approact previous efforts to understand brain
network organization and specialization, the prestry examined two open questions. First,
we explored which networks exhibit the greatestispheric specialization. Previously, Wang et
al. (2014), identified networks associated withglaage, visuospatial attention, and executive
control as being the most specialized. Howevegntains unclear how these estimates might
change with a greater number of examined netwairks when implemented at an individual
level. In line with previous work, we hypothesizédt networks associated with language,
visuospatial attention, and executive control wahldw the greatest specializati@econd, we
investigated which connections support speciabraith a given network. Although a data-
driven approach was implemented to address cotitnitgito network specialization, we
anticipated that the pattern of network contribagievould follow a within-between network
gradient or a specialization gradient. The withe@tween gradient hypothesis proposes that the
connections contributing the most to a network'scsglization are those originating within the

same network, as opposed to those from differemtorks. For example, connections between
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different areas within the language network woulty@ greater role in the specialization of the
language network compared to connections betweelatiguage network and a different
network, such as a visual network. The second Imgsid or specialization gradient hypothesis
suggests that the connections contributing the toastinetwork’s specialization originate from
other specialized networks as opposed to non-d@etianetworks. Under this hypothesis, one
would expect that connections from a visuospattahéion or frontoparietal control network
(i.e., specialized networks) would have a greatgract on the specialization of the language
network than connections from a visual or somatoemetwork (i.e., non-specialized
networks).
Materialsand Methods

Datasets and Overview

Three independent datasets were used for thegsesialhe Human Connectome
Project (HCP; split into discovery and replicataatasets), the Human Connectome Project-
Development (HCPD; Somerville et al., 2018), arelXlatural Scenes Dataset (NSD; Allen et
al., 2022). Each dataset was selected for itsivelgthigh quantity of low-motion data per
participant. See Peterson et al. (2023) for datdesstriptions and accompanying MRI
acquisition parameters.
MRI Processing

Processing for BOLD NIFTI files was comprised loé¢ following steps: preprocessing,
generation of individual parcellations, implemeitatof the autonomy index and the
deconstructed autonomy index.

Preprocessing
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Preprocessing took place on raw NIFTI files for tesgting-state fMRI and task fMRI
runs using a pipeline developed by the ComputatiBrain Imaging Group (CBIG; Kong et al.,
2019; Li et al., 2019). The implementation of thigeline was described previously (see
Peterson et al., 2023) and is summarized brieflg.Heollowing FreeSurfer surface
reconstruction (FreeSurfer 6.0.1, RRID:SCR_001®®&de et al., 1999), the pipeline includes
the removal of the first four frames and motionreotion (using FSL, RRID:SCR_002823;
(Jenkinson et al., 2002; Smith et al., 2004), iumat| and structural image alignment (using
FreeSurfer's FsFast; Greve & Fischl, 2009), limegression using multiple nuisance regressors
(using a combination of CBIG in-house scripts agd MCFLIRT; Jenkinson et al., 2002),
bandpass filtering (using CBIG in-house scriptsjfece projection (using FreeSurfensi-
vol2surf function), and surface smoothing using a 6 mmviidith half-maximum kernel (using
FreeSurfer'smri_surf2surf function; Fischl et al., 1999).
Individual Network Parcellations

Following preprocessing, network parcellations wasmputed using a multi-session
hierarchical Bayesian modeling (MS-HBM) pipelineofi§ et al., 2019) in MATLAB R2018b
(RRID:SCR_001622; MATLAB, 2018). This pipeline geates parcellations for individuals
with multiple sessions of fMRI data by using a afional Bayes expectation-maximization
algorithm to learn group-level priors from a traigidataset and apply those to estimate
individual-specific parcellations. The model estiesavarious parameters, including group-level
network connectivity profiles, inter-subject furatal connectivity variability, intra-subject
functional connectivity variability, a spatial snmbpess prior, and an inter-subject spatial

variability prior. The number of clusterk) (for all participants was set at 17 (Yeo et &01D).
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Following the generation of individual parcellatspm Hungarian matching algorithm was used
to match the clusters with the Yeo et al. (201tph&f#&vork group parcellation.
Autonomy | ndex

The autonomy index approaches specialization frdametional connectivity perspective
and is known to reliably estimate specializatioroas neurotypical and clinical samples
(Mueller et al., 2015; Sun et al., 2022; Wang et28)14). First, individual functional
connectivity matrices were calculated for each BAQUD and then averaged across runs within
an individual at the fsaverage6 resolution (40,@&2ices per hemisphere) in MATLAB R2018b
(RRID:SCR_001622; MATLAB, 2018). From here, theangmy index was computed. In
summary, for each seed vertex obtained from a iomalt connectivity matrix, the degree of
within-hemisphere connectivity and cross-hemispleeraectivity were computed by summing
the number of vertices correlated to the seedangkilateral hemisphere and in the contralateral
hemisphere. This is then normalized by the totatlmer of vertices in the corresponding
hemisphere, thus the accounting for a potentiahtsiae asymmetry between the two
hemispheres. Finally, Al is calculated as the diffee between normalized within- and cross-
hemisphere connectivity as follows:

Al = Ni/H; — NJ/Hc

whereN; andN; are the number of vertices correlated to the &@b(using a threshold of
[0.25]) in the ipsilateral hemisphere and coneeddhemisphere, respectively. andH. are the
total number of vertices in the ipsilateral andtcalateral hemisphere, respectively. To compute
the specialization of each functional network, Ai@vas averaged within the boundary of each

network separately within each hemisphere on awighehl basis, and then multiplied by 100.
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Greater positive Al values indicate a higher rafiovithin-hemisphere connections to between-
hemisphere connections and are interpreted asegmetivork specialization.
Deconstructed Autonomy I ndex

The autonomy index serves as a general meassgpeoialization, and as such, it does
not consider the specific networks responsiblecéortributing to the specialization of an
individual network. In order to parse network spézation and address the aim of identifying
contributions to network specialization, we formatha deconstructed version of the autonomy
index. This was accomplished by first calculatingaaerage functional connectivity matrix for
each individual as previously described. Thenghrh target network (1-17) and each seed
vertex derived from the average functional connvégtmatrix, the degree of within- and cross-
hemisphere connectivity was computed by summingptimeber of highly correlated vertices
belonging to that target network in each hemisphEnes is normalized by the total number of
vertices with a given target network label in eaemisphere (see Figure 1). This deconstructed
Al (dAl) is calculated as follows:

TN; TN
dAl = —L . e
TNH;  TNH,

whereTN; represents the number of vertices correlated thighseed vertex (using a threshold of
|0.25]) that fall within the target network in tipsilateral hemispher@NH; represents the
number vertices with the target network label ia iipsilateral hemispher&N. represents the
number of vertices correlated with the seed vetiakfall within the target network in the
contralateral hemisphere, alH. represents the number of vertices with a givegetar

network label in the contralateral hemisphere. Téssilts in a matrix of dAl values for each
target network for each subject. Then, for eacfpetanetwork matrix, the deconstructed Al is

averaged within the boundaries of each network7(lahd then multiplied by 100.
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vertex. Panel A depicts a seed vertex (white circle) and a target network (highlighted in blue). In Panel B,

vertices correlated with the seed vertex (white circle) in the ipsilateral (brown circles) and contralateral
(yellow circles) hemispheres are identified. In Panel C, the correlated vertices (brown and yellow circles)
are filtered to those that fall within the boundaries of the target network. In Panel D, the dAl is calculated
for the seed vertex (white circle), following the presented formula (see the main text for a description of
the formula). In this example, the denominators of 100 and 66 are toy humbers and not representative of
actual totals for network vertices. This process (Panels A-D) is repeated for each vertex, after which dAl is
calculated for each target network. Panel E depicts the dAl values when language is the target network.
Next, in Panel F, dAl values are averaged within each network and then multiplied by 100. This process is

repeated for each target network (1-17; Panel G).

Experimental Design and Statistical Analyses
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The design of this study is largely within-indivil, as will be detailed in the following
sections. Analyses comprised a replication of Wetreg. (2014), reliability analyses (including
test-retest reliability and a task effects ana)ysiee identification of specialized networks, and
an analysis of within-network contributions. Statigl analyses took place in R 4.2.0
(RRID:SCR_001905; R Core Team, 2022).
Replications of Wang et al. (2014)

Before expanding on the work of Wang et al. (20%4ich was originally performed in
Brain Genomics Superstruct Project subjects (Holketed., 2015), we first performed a
replication in the HCP-Discovery and HCP-Replicattatasets. This was accomplished by
averaging left hemisphere and right hemispherenauy index values within the network
boundaries of a seven-network group parcellatiadpced from 1000 subjects (the parcellation
is freely available online:
https://surfer.nmr.mgh.harvard.edu/fswiki/Coafiearcellation_Yeo02011; Yeo et al., 2011).
Then, to proceed in a step-wise fashion, the saeegdure was undertaken with a 17-network
group parcellation (Yeo et al., 2011).
Reliability Analyses

Reliability analyses sought to address the follgnguestions: 1) What is the test-retest
reliability of the autonomy index using individyadrcellations, and 2) Is there a task effect on
autonomy index estimation?

Test-Retest Reliability. In order to determine the test-retest reliabilityhee autonomy
index, HCP subjects with all four resting-statesranailable after preprocessing were utilizsd (
= 232). Individual parcellations were generatecasaiely for the first two runs (the first

scanning session) and the second two runs (th@desoanning session). Functional
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connectivity matrices were also generated sepgritethe first session and the second session,
and the autonomy index was calculated on both. ,Nlegtautonomy index was averaged within
network boundaries for the left and right hemispbdor each session. Outliers were fenced on a
network basis to an upper limit of the third quarplus 1.5 multiplied by the interquartile range,
and a lower limit of the first quartile minus 1.%uliplied by the interquartile range. Finally, an
intraclass correlation was calculated for the ayedeautonomy index values for the top five
most left-specialized(language, dorsal attentiomi&ault-A, default-C, and limbic-B) and the
top five most right-specialized networks (saliemeetral attention-A, control-B, control-C,
default-C, and limbic-B). Intraclass correlationsrevthen evaluated using the standard
guidelines from Koo & Li (2016), with values le$gh 0.5 indicating poor reliability, values
between 0.5 and 0.75 indicating moderate religbNialues between 0.75 and 0.9 indicating
good reliability, and values greater than 0.9 iatingy excellent reliability (based on a 95%
confidence interval). Spearman rank correlationsevileen used to examine potential
relationships between network test-retest religbdnd a network-averaged signal-to-noise ratio.
Task Effectson the Autonomy Index. Following the procedure outlined in Peterson et
al. (2023), task effects were also examined foredtenation of the autonomy index within
individuals. Briefly, individual parcellations wegenerated using both task and resting-state
fMRI data from the NSD dataset using various comtiams of runs within task type: even-
numbered runs, odd-numbered runs, the first haifia$, the second half of runs, and two
random selections of runs (without replacementjatiiass correlation coefficients were then
used to compare autonomy index overlap within tagk between tasks for each hemisphere.
Wilcoxon Signed Rank tests were then used to coenibar intraclass correlations (R Core

Team, 2011; Wilcoxon, 1945).
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| dentifying Specialized Networks with I ndividual Parcellations

After establishing the reliability of approachingesialization from an individual-level
perspective using the autonomy index, we addrebsefirst hypothesis of determining whether
any of the 17 networks exhibited specializatiord drso, which exhibited the greatest
specialization. The following analyses were firaplemented in the HCP-Discovery dataset and
then replicated in the HCP-Replication and HCPRskils using all data available from each
participant. First, to determine whether any neksa@xhibited specialization, multiple
regressions were implemented for each of the Wwarks, separately for the left and right
hemispheres. Models consisted of a given netwariéan autonomy index value and the
covariates of mean-centered age, sex, mean-cemeyaad framewise displacement, and
handedness (measured via the Edinburgh Handednasgadry; Oldfield, 1971). A network was
considered specialized if the model intercept wgisificant at the Bonferroni-corrected alpha
level of 0.001. The top five left- and right-latkzad networks were determined using the HCP-
Discovery dataset.
Within-Network Contributions

To address our second hypothesis regarding catibiis to specialized networks, we
implemented the deconstructed autonomy index inapdive left- and right-specialized
networks as determined via the HCP-Discovery datagese values were adjusted for mean-
centered age, mean-centered mean framewise dispatesex, and handedness. Following
model-adjustment, potential patterns were visuditified and then assessed quantitatively via
matrices of mean dAl values first within the HCPs@avery dataset and then within the HCP-
Replication and HCPD datasets.

Code Accessbility Statement
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With the exception of the HCPD dataset, the dgtarted on in the present study can be
accessed publicly online (HCP: https://db.humaneotome.org/; NSD:
http://naturalscenesdataset.org/). The HCPD daisbeisted through the NIMH Data Archive
(NDA) through which access may be requested. Pcegsing and individual parcellation
pipeline code are available through the CBIG repogion GitHub at
https://github.com/ThomasYeolLab/CBIG. Scripts ugennplement the processing pipelines
and perform statistical analyses are also availabl&itHub at https://github.com/Nielsen-
Brain-and-Behavior-Lab/Autonomylndex2023.

Results
Replication of Wang et al. (2014)

Using the Yeo et al. (2011) seven-network grouggliation, we identified the default
and frontoparietal control networks as the mostdpécialized networks, and the frontoparietal
control, dorsal attention and ventral attentiorwoeks as the most right-specialized networks for
both the HCP-Discovery and HCP-Replication data@ets Supplementary Figure S1). This
pattern of specialized networks replicates thahdoly Wang et al. (2014). Next, we expanded
on the Wang et al. (2014) analysis to examine nétwpecialization using the Yeo et al. (2011)
17-network group parcellation. We identified thegi#b attention-A, language, default-A,
default-C, and limbic-B networks as the most I@iédalized across both datasets (see
Supplementary Figure S2). The control-B, defaula@j limbic-B networks showed the greatest
right-hemisphere specialization.

Reliability Analyses
Following the group-based parcellation analyses atitonomy index was adapted to the

individual through individual network parcellatiortdowever, prior to examining specialization,
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the reliability of this individualized approach wasamined through the following test-retest
reliability and task effects analyses.
Test-Retest Reliability

Using HCP subjects with all four resting-statesranailable after preprocessind £
232), test-retest reliability was assessed fotdpdive left- and right-specialized networks. For
the left-specialized networks, intraclass correladiwere within a moderate range, between 0.55
to 0.77, with the lowest being the limbic-B netwdl&C = 0.55F (231, 231) = 3.5p < .001,
95% CI[0.46, 0.63]; see Figure 2). For the rightalized networks, the intraclass correlations
were also in the moderate range, from 0.55 to With,the control-C network exhibiting the
lowest reliability (ICC = 0.55F(231, 231) = 3.5p < .001, 95% CI [0.45, 0.63]). Spearman rank
correlations identified no relationship betweern-tegest reliability (intraclass correlation
coefficients) and network-averaged temporal sigoateise ratios (left hemisphergi15) =

0.11,p = .68; right hemisphere(15) = .27 p = .29; see Supplementary Figure S3).
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Figure 2. Test-retest reliability of autonomy index values for five left- and right-specialized networks in

LANG ICC: 0.59

0 2 46 8

0 5 8
LH Al % Session 2
DAN-A ICC: 0.69

2 5 8 10

2 5 8 10
LH Al % Session 2

DEF-A ICC: 0.77

0 2 4 6 8

0 2 4 6 8
LH Al % Session 2
DEF-C ICC: 0.59

0 2 4 6

0 2 4 6 8
LH Al % Session 2
LIM-B ICC: 0.55

0 2 4 6 8

2 4 6 8
LH Al % Session 2

RH Al % Session 1 RH Al % Session 1 RH Al % Session 1 RH Al % Session 1

RH Al % Session 1

02 46 8

0 2 4 6 8
RH Al % Session 2

CTRL-B ICC: 0.70

0 2 5 8

0 2 4 6 8
RH Al % Session 2
CTRL-C ICC: 0.55

0 2 4 6

0 2 4 6
RH Al % Session 2

DEF-C ICC: 0.68

@ @
® o

2 4 6 8
RH Al % Session 2

LIM-B ICC: 0.72

10

2 5 8

2 5 8 10
RH Al % Session 2

16


https://doi.org/10.1101/2024.02.13.580153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.13.580153; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PARSING BRAIN NETWORK SPECIALIZATION 17

232 HCP subjects. Left-specialized networks (left column) included language (LANG), dorsal attention-A
(DAN-A), default-A (DEF-A), default-C (DEF-C), and limbic-B (LIM-B). Right-specialized networks (right
column) included salience/ventral attention-A (SAL-A), control-B (CTRL-B), control-C (CTRL-C), default-C
(DEF-C), and limbic-B (LIM-B). In each plot, a circle represents a subject, and the dashed identity line in

black represents the theoretical perfect correspondence between the two sessions.

Task Effects on the Autonomy | ndex

Using the NSD datasell (= 8) to compare potential differences betweenmgsitate and
task fMRI on autonomy index estimates for the deftl right hemispheres, we found differences
between the within-task comparisons and betwednc@®parisons for autonomy index
intraclass correlation coefficients (see Figure/8jcoxon signed rank comparisons revealed a
difference in within-task (Task-Task and Rest-Regtpaclass correlation coefficients for even
versus odd numbered runs (L= 33,p = .04; RH:V = 34,p = .02) as well as for the first half
versus the second half of runs (L= 34,p = .02; RH:V = 32,p = .05), but not for the random
selection of runs (LHY = 26,p = .31; RH:V = 24,p = .46). Regardless of how the data were
split, a task effect in intraclass correlation ¢oefnts was found between within-task (Task-
Task) and between-task (Task-Rest) intraclasslatioe coefficients for even versus odd
numbered runs (LHY = 36,p = .008; RH:V = 35,p = .02), the first half versus the second half
of runs (LH:V = 36,p = .008; RH.V = 36,p = .008), and the random selection of runs (MH:

34,p=.02; RH:V = 36,p = .008).
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Task Effects on the Autonomy Index
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Figure 3. Task effects on the autonomy index in the NSD dataset. In the figure, intraclass correlation

coefficients for the left and right hemisphere autonomy indices are shown for each participant, comparing
even- versus odd-numbered runs (with the left hemisphere values shown on the left and right hemisphere
values shown on the right). Regardless of how the data were split (even- versus odd-numbered runs, the

first half versus the second half, or a random selection without replacement), a task effect was found.

I dentifying Specialized Networ ks with Individual Par cellations

Following the investigations into the reliability the autonomy index as implemente
individuals, we addressed the major hypothesesdagpwhich networks were specialized and
which connections contributed to this specializati& series of multiple regressions were used
to identify if any of the 17 networks were spe@edi, first in the HCP-Discovery dataset and
then in the HCP-Replication and HCPD datasets. bidiswvith significant left-hemisphere
specializationf < .001) across all three datasets included eastoneexcept visual-A and

default-B (see Supplementary Table 1). All 17 neksavere found to have significant right-


https://doi.org/10.1101/2024.02.13.580153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.13.580153; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PARSING BRAIN NETWORK SPECIALIZATION 19
hemisphere specializatiop € .001) across all three datasets (see Supplengérdhle 2). Of

the covariates, only handedness was reliably sggmif across all three datasets for the left-
hemisphere averaged salience/ventral attentiontdnamy index (see Supplementary Figure
S4). See Figure 4 for model-adjusted mean autonodex values for each of the 17 networks
for the left hemisphere (Panel A) and the right ispimere (Panel B). Notably, the limbic-B and
default-C networks appear to be strongly specidlipeboth hemispheres, similar to what has
previously been observed with the frontoparietaitam network by Wang and colleagues
(Wang et al., 2014). The most specialized netwarks identified as the top five left- and right-

lateralized networks from the HCP-Discovery dataset
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Figure 4. Specialization for 17 networks across the HCP-Discovery, HCP-Replication, and HCPD
datasets. For each panel, the y-axis displays the 17 networks and the x-axis displays the adjusted
average autonomy index values, with greater values representing greater hemispheric specialization (left
hemisphere on Panel A and right hemisphere on Panel B). Autonomy index values were adjusted by
regressing out the effects of mean-centered age, mean-centered mean framewise displacement, sex, and
handedness using the following formula: Alag = Alna: — [Br(Mean-centered agen. — mean of mean-
centered agens) + B2(mean-centered FDpy — mean of mean-centered FDyy) + Ba(S€Xnat— Mean SeXpar) +
Bs(handednessn,:— mean handedness,,)]. Autonomy index adjustment occurred separately for each
network within each dataset for each hemisphere. Bars represent the 2.5 and 97.5 percentiles, and black
boxes have been placed around the top five left- and right-specialized networks (determined using the

HCP-Discovery dataset).
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Comparison of Group and Individualized Approaches

A key assumption of the present study has beerathatdividualized approach to
network specialization would elicit a more preaséimate of the autonomy index than group-
based approaches, an assumption backed by evidemmnstrating advances arising from a
precision approach to neuroimaging (Braga et @R02Braga & Buckner, 2017; DiNicola et al.,
2020; Gordon et al., 2017; Gratton et al., 201&rhann et al., 2015).Visual comparison of the
networks with the greatest left- and right-hemisplepecialization using a group 17-network
parcellation (Supplementary Figure S2) and 17-nétwalividual parcellations (Figure 4)
reveals nearly identical results. This challengesimitial assumption and implies that, in the
context of the present study, the choice of netvparcellation method may have a limited
impact on the estimation of the autonomy index.
Within-Networ k Contributionsto Specialization

Next, to address the second hypothesis and decenmebsork specialization to identify
the greatest contributions to each network’s sfizatzgon, deconstructed autonomy index values
were averaged within the 17 networks for each targiwvork. As described in the Methods
section, the dAl is calculated as a ratio of witland between-hemisphere connectedness for
each vertex and target network. Visual examinaiothe top left- and right-specialized
networks (determined using the HCP-Discovery datasiéally indicated that within-network
connections appear to be the greatest contribukorsexample, language network connections
contribute the most to language network speciatingsee Supplementary Figures S5-S10).
Following within-network connections, other speiziedl networks appear to be the second
largest contributor to specialization (see Figuen8 Supplementary Figure S11). As an

example of this second pattern, it is more likbigttthe specialized default-C network is
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contributing to the specialization of the languagéwvork than a network that isn’t specialized,
such as visual-A. Matrices of mean dAl scores figpatential 17 target networks confirmed

these two principles (see Supplementary FiguresSS1).

HCP-DISC
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™ | O RH, Spec.
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Wifhin Between é-per:.ia!ized Between Nof Specialized

Figure 5. Deconstructed autonomy index (dAl) values within and between specialized networks for the
HCP-Discovery dataset. dAl scores were grouped as being within-network (e.g., target network language
and averaged network language), between specialized networks (e.g., target network language and
averaged network dorsal attention-A), and between not specialized (e.g., target network language and
averaged network visual-A). Specialized networks are the top five left- and right-specialized networks
(indicated with black boxes in Figure 4). Next, dAl scores were further binned depending on the target
network as being specialized or not specialized (specialized networks included the top five left- and right-
specialized networks). Finally, dAl scores were organized by hemisphere, left or right. Each point
represents a single target and averaged network combination mean dAl score. Across each dataset,
within-network contributions appear to be greatest followed by between-specialized network contributions
and then between not-specialized network contributions (see Supplementary Figure S11 for the HCP-

Replication and HCPD datasets).

Discussion
In the present study, we examined brain netwoecigfization using a functional

connectivity-based measure, replicating and expanoin the work of Wang et al. (2014). After
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directly replicating Wang et al. (2014) and addregs$he reliability of a within-individual
implementation, we identified specialized netwasks 17-network resolution and determined
the greatest contributions to specialization. me With prior work, we identified a highly left-
specialized network supporting language functiath sgveral highly right-specialized networks
supporting visuospatial attention and executivarobfunctions (Wang et al., 2014). However,
we identified networks other than those directlyogsated with language, visuospatial attention,
and executive control as being the most speciali&dditionally, across three datasets, we found
that within-network connections contributed mosatgiven network’s specialization followed
by connections from other specialized networks.efiaks a whole, these results provide
evidence for guiding principles of brain organiaatgenerally and the specialization of
macroscale brain networks specifically.
Evidencefor the Reliability of the Autonomy Index

In the present study, we examined specializatsamguthe autonomy index. However, the
implementation of this measure differed from thigioal in two key ways: the use of a 17-
network parcellation scheme as opposed to sevevoriet, and the adoption of individual
parcellations to delineate network boundaries @a®®@d to a single group-level network
parcellation. While we contend that these diffeemnfacilitated the acquisition of novel insights
into network specialization, it was uncertain agvtether they compromised the integrity of the
autonomy index. However, visual comparison betwibermost specialized networks resulting
from the 17-network individual and group parcetias reveals nearly identical results. This
finding contradicts our assumption regarding thinoglity of individual parcellations and
suggests that within the scope of this study, seeaf individual network parcellations exerted

minimal influence on the calculation of the autoryandex. Additionally, when using the
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individual parcellations, the top five left- andhit-specialized networks fell within moderate
test-retest reliability. This also indicates thea tise of individual parcellations did not adversel
affect the detection of signal and thus speciabratin other words, if we were measuring noise,
we would expect very low test-retest reliability.

While the individual-level implementation of thetamomy index was found to be
reliable, task effects were found. This findingliegtes previously observed task effects on a
different measure of functional connectivity-dedvwsetwork specialization (see Peterson et al.,
2023). This is likely due to the idea that thea@fcresting” introduces greater variability in
functional connectivity compared to that observadmd) task-based fMRI, potentially as a result
of mind wandering (Elton & Gao, 2015; Finn & Bartdet 2021). Furthermore, when it comes
to predicting individual traits, task-based modwrigperform rest-based models, and this has
been attributed to the "unconstrained nature" efrésting state (Greene et al., 2018).

I dentification of Highly Specialized Networks

Notably, the top five greatest left-specializedwwrks included the language, dorsal
attention-A, default-A, default-C, and limbic-B meirks, while the right-specialized
counterparts included the salience/ventral atterdipcontrol-B, control-C, default-C, and
limbic-B networks. Similar to previous work, a higheft-specialized network supports
language function (such as the language networksaweral highly right-specialized networks
support visuospatial attention and executive cofirections (such as the salience/ventral
attention-A, control-B, and control-C networks; Viaat al., 2014). While networks associated
with language, attention, and executive controleNgghly specialized, they were not the most
specialized left- and right-specialized networkstéad, the dorsal attention-A and limbic-B

networks were the most left- and right-specialiaetivorks, respectively. Corroborating this


https://doi.org/10.1101/2024.02.13.580153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.13.580153; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PARSING BRAIN NETWORK SPECIALIZATION 25
finding, a network surface area-based approachdoialization also using the Kong et al.
(2019) 17-network individual parcellation identdi¢hese two networks as the most specialized
or lateralized (see Peterson et al., 2023). Whikunclear why the language and visuospatial
attention networks were not identified as the nspsgicialized networks, this finding may be due
to the larger number of networks examined here pawed with the seven networks examined
by Wang et al. (2014). Regardless, this resultnabsst across the 17-network group-averaged
parcellation and the individual parcellations, agaling that the method of parcellation (group or
individual) had little influence on this result.

An alternative explanation for the identificatiohtlee dorsal attention-A and limbic-B
networks as being most specialized comes from etfiem-individual investigations. Work on
the default network found that the group-definethdk network is split into two parallel yet
interdigitated networks which subserve differemtdtions on the individual level (Braga &
Buckner, 2017; DiNicola et al., 2020). Thus, it nteeythat, by taking a fine-grained approach to
network parcellations, networks which have preMpbgen described as bilateral may be split
into subnetworks, of which one may be left- or tighecialized. In the case of dorsal attention,
previously described as belonging to a bilaterélvogk (Fox et al., 2006; Mengotti et al., 2020),
this may have been split into a highly left-spezed network (dorsal attention-A) and a less
specialized network (dorsal attention-B).

The present study did not replicate dually-spexgalifrontoparietal control networks
(Wang et al., 2014) within the 17-network parcébat Instead, we identified the control-B and
control-C networks as being highly right-speciadizevith minimal specialization of the control-

A network. Additionally, we found that the defadtand limbic-B networks were highly
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specialized to both hemispheres. Further investigas needed to show why these specific
networks show this dual or coupling pattern of sgexation.
Contributionsto Specialization

In order to better understand which functionalre@mtions contribute the most to a given
network’s specialization, we implemented a novesi of the autonomy index: the
deconstructed autonomy index. Resulting pattermRbdi/alues indicated that the greatest
contributions to network specialization were frdme same network (following a within-between
network gradient) followed by other specializedwaks (following a specialization gradient).
This first principle of specialization contributi®nthat within-network contributions are
greatest--is supported by the idea that hemisplassimmetries increase the modularization of
functions, thereby decreasing redundancy (Levy9},96rocessing speed (Ringo et al., 1994),
and interhemispheric conflict (Andrew et al., 1982yrballis, 1991; Gerrits et al., 2020;
Vallortigara, 2006). A larger number of within-netk connections would contribute to that
network’s specialization of function and likely nease the efficiency of that network. Support
for the second principle of network contributiongiaitconnections from other specialized
networks make up the second largest contributiom-beafound from graph theoretical analysis
and so-called “rich clubs”. These hubs are compo$éigh degree and high strength nodes, and
are highly interconnected to one another (Colizza.e2006; Opsahl et al., 2008). Notably, rich
club nodes have been identified in highly integidieain regions, such as cingulate and
pericingulate regions, as well as highly specialikeain regions including the orbitofrontal
cortex, caudate, fusiform gyrus, and hippocampwuxfi€r et al., 2015). Relevant to the present
study, this work with rich club hubs evidencesfibilowing idea: specialized brain regions can

be highly interconnected with one another. Whikedpecialized brain networks discussed in the
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present study are not necessarily the same apéloeabzed brain regions referenced in Kocher
et al. (2015), our work suggests that the strenftietween-network contributions is less than
within-network contributions.

Limitations and Future Directions

In order to obtain individual parcellations theg aeliable within individuals and
comparable with previous work, the MS-HBM pipelinas selected. As a part of this pipeline,
inter-subject variability is accounted for by waygooup priors (derived from 37 Brain
Genomics Superstruct Project subjects). One rik wcorporating group priors is that they
may constrain network boundaries in ways that daoeoessarily reflect an individual's
functional neurobiology. As noted in Kong et al01®), functional connectivity profiles derived
from individuals are fairly noisy compared with sgofrom a group-averaged profile. Thus,
while the incorporation of group priors may redtiue noise, some signal may be lost as well.

An additional limitation with the selected methamhcerns the failure to capture the
moment-to-moment dynamics of brain function. Byatirey static parcellations, we have
oversimplified the temporal dimension of these dasgale networks.

Further applications of the deconstructed autonimagx could involve studying
populations other than neurotypical children, asicdats, and adults. For example, it would be
interesting to know how contributions to networlesialization may be different in autism, for
which atypical functional lateralization patterres/a been reliably observed (Anderson et al.,
2010; Cardinale et al., 2013; Eyler et al., 201arris et al., 2006; Jouravlev et al., 2020;
Kleinhans et al., 2008; X.-Z. Kong et al., 2022ndll & Hudry, 2013; Mdller et al., 2003;
Nielsen et al., 2014; Persichetti et al., 2022;dagd Courchesne, 2008) as well as

schizophrenia (Agcaoglu et al., 2018; Ocklenburglet2013; Sommer et al., 2001).
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Additionally, it is unknown when the patterns otwerk contributions are established or how
they potentially change in older adulthood. Futesearch could provide valuable insights into
potential variations of network contributions imlimiduals with neurodevelopmental conditions
and shed light on the developmental trajectory@otdntial changes in network specialization
throughout adulthood.
Conclusions

In the present study, we examined brain netwogkimzation on an individual level
through the lens of specialization. We identifiedstnetworks as exhibiting greater within-
hemisphere connectivity than between-hemisphereezdivity. Additionally, we found that the
greatest contributors to network specializationeafest within-network connections followed

by connections with other specialized networks.
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