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Abstract 

One organizing principle of the human brain is hemispheric specialization, or the 

dominance of a specific function or cognitive process in one hemisphere or the other. Previously, 

Wang et al. (2014) identified networks putatively associated with language and attention as being 

specialized to the left and right hemispheres, respectively; and a dual-specialization of the 

executive control network. However, it remains unknown which networks are specialized when 

specialization is examined within individuals using a higher resolution parcellation, as well as 

which connections are contributing the most to a given network’s specialization. In the present 

study, we estimated network specialization across three datasets using the autonomy index and a 

novel method of deconstructing network specialization. After examining the reliability of these 

methods as implemented on an individual level, we addressed two hypotheses. First, we 

hypothesized that the most specialized networks would include those associated with language, 

visuospatial attention, and executive control. Second, we hypothesized that within-network 

contributions to specialization would follow a within-between network gradient or a 

specialization gradient. We found that the majority of networks exhibited greater within-

hemisphere connectivity than between-hemisphere connectivity. Among the most specialized 

networks were networks associated with language, attention, and executive control. Additionally, 

we found that the greatest network contributions were within-network, followed by those from 

specialized networks.  

Significance Statement 

 Hemispheric specialization is a characteristic of brain organization that describes when a 

function draws on one hemisphere of the brain more than the other. We sought to identify the 

most specialized brain networks within individuals, as well as which connections contribute the 

most to a given network’s specialization. Among the most specialized networks were those 
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associated with language, attention, and executive control. Unexpectedly, we also identified 

networks associated with emotion/memory and theory of mind as highly specialized. 

Additionally, we found support for guiding principles of brain organization generally, such that 

within-network connections contributed most to a given network’s specialization followed by 

connections from other specialized networks. These results have implications for identifying 

potential variations of network contributions in individuals with neurodevelopmental conditions. 
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Introduction 

 Hemispheric specialization refers to a characteristic of brain organization in which 

specific functions draw on one hemisphere of the brain more than the other. These functional 

asymmetries give rise to reductions in redundancy (Levy, 1969), processing speed (Ringo et al., 

1994), and interhemispheric conflict in function initiation (Andrew et al., 1982; Corballis, 1991). 

Importantly, disruptions to hemispheric specialization can have significant clinical implications, 

particularly in the context of neurodevelopmental and psychiatric conditions (X.-Z. Kong et al., 

2022).  

 Measures of hemispheric specialization have previously ranged from the examination of 

split-brain patients (for review, see Gazzaniga, 2000) and brain lesions (Milner, 1971; 

Rasmussen & Milner, 1977) to the Wada test (Wada & Rasmussen, 1960) and intraoperative 

brain stimulation mapping (Penfield & Jasper, 1954). With the advent and development of 

functional neuroimaging, these methods now include many functional connectivity-based 

metrics. One such measure is the intrinsic laterality index (Liu et al., 2009), which quantifies 

within- versus between-hemisphere connectivity. Another includes the hemispheric contrast 

(Gotts et al., 2013), which examines node interactions between the two hemispheres through  

“segregation” (high within-hemisphere interactions) versus “integration” (high between-

hemisphere interactions). Similarly, the autonomy index (Wang et al., 2014) captures a 

normalized ratio of within- versus between-hemisphere connectivity on the vertex level. Of these 

measures, the autonomy index holds particular interest since each vertex is taken as a region-of-

interest, avoiding the influence of anatomical asymmetries.  

Using the autonomy index, Wang et al. (2014) quantified specialization across seven 

functional networks and found that specialization was not restricted to a single left- or right-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580153doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580153
http://creativecommons.org/licenses/by-nc-nd/4.0/


PARSING BRAIN NETWORK SPECIALIZATION 5 
 

specialized network (Wang et al., 2014). Rather, the right frontoparietal control network and 

right ventral and dorsal attention networks, as well as the left default and frontoparietal control 

networks exhibited high degrees of specialization (see Fig. 5; Wang et al., 2014). The dual 

specialization of the frontoparietal control network evidences a joint coupling of executive 

control functions with a distinct pattern of networks in either hemisphere (Wang et al., 2014). 

While this and other studies have made significant contributions, much of what is known 

regarding hemispheric specialization has been derived from group-level analyses, an approach 

which is increasingly being exchanged for a within-individual “precision functional mapping” 

approach (Braga & Buckner, 2017; Gordon et al., 2017; Laumann et al., 2015). 

In line with the precision neuroimaging approach and previous efforts to understand brain 

network organization and specialization, the present study examined two open questions. First, 

we explored which networks exhibit the greatest hemispheric specialization. Previously, Wang et 

al. (2014), identified networks associated with language, visuospatial attention, and executive 

control as being the most specialized. However, it remains unclear how these estimates might 

change with a greater number of examined networks, and when implemented at an individual 

level. In line with previous work, we hypothesized that networks associated with language, 

visuospatial attention, and executive control would show the greatest specialization. Second, we 

investigated which connections support specialization in a given network. Although a data-

driven approach was implemented to address contributions to network specialization, we 

anticipated that the pattern of network contributions would follow a within-between network 

gradient or a specialization gradient.  The within-between gradient hypothesis proposes that the 

connections contributing the most to a network’s specialization are those originating within the 

same network, as opposed to those from different networks. For example, connections between 
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different areas within the language network would play a greater role in the specialization of the 

language network compared to connections between the language network and a different 

network, such as a visual network. The second hypothesis or specialization gradient hypothesis 

suggests that the connections contributing the most to a network’s specialization originate from 

other specialized networks as opposed to non-specialized networks. Under this hypothesis, one 

would expect that connections from a visuospatial attention or frontoparietal control network 

(i.e., specialized networks) would have a greater impact on the specialization of the language 

network than connections from a visual or somatomotor network (i.e., non-specialized 

networks). 

Materials and Methods 

Datasets and Overview 

 Three independent datasets were used for these analyses: The Human Connectome 

Project (HCP; split into discovery and replication datasets), the Human Connectome Project-

Development (HCPD; Somerville et al., 2018), and the Natural Scenes Dataset (NSD; Allen et 

al., 2022). Each dataset was selected for its relatively high quantity of low-motion data per 

participant. See Peterson et al. (2023) for dataset descriptions and accompanying MRI 

acquisition parameters. 

MRI Processing 

 Processing for BOLD NIFTI files was comprised of the following steps: preprocessing, 

generation of individual parcellations, implementation of the autonomy index and the 

deconstructed autonomy index. 

Preprocessing 
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Preprocessing took place on raw NIFTI files for the resting-state fMRI and task fMRI 

runs using a pipeline developed by the Computational Brain Imaging Group (CBIG; Kong et al., 

2019; Li et al., 2019). The implementation of this pipeline was described previously (see 

Peterson et al., 2023) and is summarized briefly here. Following FreeSurfer surface 

reconstruction (FreeSurfer 6.0.1, RRID:SCR_001847; Dale et al., 1999), the pipeline includes 

the removal of the first four frames and motion correction (using FSL, RRID:SCR_002823; 

(Jenkinson et al., 2002; Smith et al., 2004), functional and structural image alignment (using 

FreeSurfer’s FsFast; Greve & Fischl, 2009), linear regression using multiple nuisance regressors 

(using a combination of CBIG in-house scripts and FSL MCFLIRT; Jenkinson et al., 2002), 

bandpass filtering (using CBIG in-house scripts), surface projection (using FreeSurfer’s mri-

vol2surf function), and surface smoothing using a 6 mm full-width half-maximum kernel (using 

FreeSurfer’s mri_surf2surf function; Fischl et al., 1999).  

Individual Network Parcellations 

Following preprocessing, network parcellations were computed using a multi-session 

hierarchical Bayesian modeling (MS-HBM) pipeline (Kong et al., 2019) in MATLAB R2018b 

(RRID:SCR_001622; MATLAB, 2018). This pipeline generates parcellations for individuals 

with multiple sessions of fMRI data by using a variational Bayes expectation-maximization 

algorithm to learn group-level priors from a training dataset and apply those to estimate 

individual-specific parcellations. The model estimates various parameters, including group-level 

network connectivity profiles, inter-subject functional connectivity variability, intra-subject 

functional connectivity variability, a spatial smoothness prior, and an inter-subject spatial 

variability prior. The number of clusters (k) for all participants was set at 17 (Yeo et al., 2011). 
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Following the generation of individual parcellations, a Hungarian matching algorithm was used 

to match the clusters with the Yeo et al. (2011) 17-network group parcellation.  

Autonomy Index 

The autonomy index approaches specialization from a functional connectivity perspective 

and is known to reliably estimate specialization across neurotypical and clinical samples 

(Mueller et al., 2015; Sun et al., 2022; Wang et al., 2014). First, individual functional 

connectivity matrices were calculated for each BOLD run and then averaged across runs within 

an individual at the fsaverage6 resolution (40,962 vertices per hemisphere) in MATLAB R2018b 

(RRID:SCR_001622; MATLAB, 2018). From here, the autonomy index was computed. In 

summary, for each seed vertex obtained from a functional connectivity matrix, the degree of 

within-hemisphere connectivity and cross-hemisphere connectivity were computed by summing 

the number of vertices correlated to the seed in the ipsilateral hemisphere and in the contralateral 

hemisphere. This is then normalized by the total number of vertices in the corresponding 

hemisphere, thus the accounting for a potential brain size asymmetry between the two 

hemispheres. Finally, AI is calculated as the difference between normalized within- and cross-

hemisphere connectivity as follows: 

AI = Ni/Hi – Nc/Hc 

where Ni and Nc are the number of vertices correlated to the seed ROI (using a threshold of 

|0.25|) in the ipsilateral hemisphere and contralateral hemisphere, respectively. Hi and Hc are the 

total number of vertices in the ipsilateral and contralateral hemisphere, respectively. To compute 

the specialization of each functional network, the AI was averaged within the boundary of each 

network separately within each hemisphere on an individual basis, and then multiplied by 100. 
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Greater positive AI values indicate a higher ratio of within-hemisphere connections to between-

hemisphere connections and are interpreted as greater network specialization. 

Deconstructed Autonomy Index 

 The autonomy index serves as a general measure of specialization, and as such, it does 

not consider the specific networks responsible for contributing to the specialization of an 

individual network. In order to parse network specialization and address the aim of identifying 

contributions to network specialization, we formulated a deconstructed version of the autonomy 

index. This was accomplished by first calculating an average functional connectivity matrix for 

each individual as previously described. Then, for each target network (1-17) and each seed 

vertex derived from the average functional connectivity matrix, the degree of within- and cross-

hemisphere connectivity was computed by summing the number of highly correlated vertices 

belonging to that target network in each hemisphere. This is normalized by the total number of 

vertices with a given target network label in each hemisphere (see Figure 1). This deconstructed 

AI (dAI) is calculated as follows: 

dAI �
���

����

� 

���

����

 

where TNi represents the number of vertices correlated with the seed vertex (using a threshold of 

|0.25|) that fall within the target network in the ipsilateral hemisphere, TNHi represents the 

number vertices with the target network label in the ipsilateral hemisphere, TNc represents the 

number of vertices correlated with the seed vertex that fall within the target network in the 

contralateral hemisphere, and TNHc represents the number of vertices with a given target 

network label in the contralateral hemisphere. This results in a matrix of dAI values for each 

target network for each subject. Then, for each target network matrix, the deconstructed AI is 

averaged within the boundaries of each network (1-17) and then multiplied by 100.  
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Figure 1. The deconstructed autonomy index. The first step consists of calculating the dAI for each 

vertex. Panel A depicts a seed vertex (white circle) and a target network (highlighted in blue). In Panel B, 

vertices correlated with the seed vertex (white circle) in the ipsilateral (brown circles) and contralateral 

(yellow circles) hemispheres are identified. In Panel C, the correlated vertices (brown and yellow circles) 

are filtered to those that fall within the boundaries of the target network. In Panel D, the dAI is calculated 

for the seed vertex (white circle), following the presented formula (see the main text for a description of 

the formula). In this example, the denominators of 100 and 66 are toy numbers and not representative of 

actual totals for network vertices. This process (Panels A-D) is repeated for each vertex, after which dAI is

calculated for each target network. Panel E depicts the dAI values when language is the target network. 

Next, in Panel F, dAI values are averaged within each network and then multiplied by 100. This process is

repeated for each target network (1-17; Panel G). 

 

Experimental Design and Statistical Analyses 
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 The design of this study is largely within-individual, as will be detailed in the following 

sections. Analyses comprised a replication of Wang et al. (2014), reliability analyses (including 

test-retest reliability and a task effects analysis), the identification of specialized networks, and 

an analysis of within-network contributions. Statistical analyses took place in R 4.2.0 

(RRID:SCR_001905; R Core Team, 2022). 

Replications of Wang et al. (2014) 

 Before expanding on the work of Wang et al. (2014), which was originally performed in 

Brain Genomics Superstruct Project subjects (Holmes et al., 2015), we first performed a 

replication in the HCP-Discovery and HCP-Replication datasets. This was accomplished by 

averaging left hemisphere and right hemisphere autonomy index values within the network 

boundaries of a seven-network group parcellation produced from 1000 subjects (the parcellation 

is freely available online: 

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011; Yeo et al., 2011). 

Then, to proceed in a step-wise fashion, the same procedure was undertaken with a 17-network 

group parcellation (Yeo et al., 2011).  

Reliability Analyses 

Reliability analyses sought to address the following questions: 1) What is the test-retest 

reliability of the autonomy index using individual parcellations, and 2) Is there a task effect on 

autonomy index estimation? 

Test-Retest Reliability. In order to determine the test-retest reliability of the autonomy 

index, HCP subjects with all four resting-state runs available after preprocessing were utilized (N 

= 232). Individual parcellations were generated separately for the first two runs (the first 

scanning session) and the second two runs (the second scanning session). Functional 
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connectivity matrices were also generated separately for the first session and the second session, 

and the autonomy index was calculated on both. Next, the autonomy index was averaged within 

network boundaries for the left and right hemispheres for each session. Outliers were fenced on a 

network basis to an upper limit of the third quartile plus 1.5 multiplied by the interquartile range, 

and a lower limit of the first quartile minus 1.5 multiplied by the interquartile range. Finally, an 

intraclass correlation was calculated for the averaged autonomy index values for the top five 

most left-specialized(language, dorsal attention-A, default-A, default-C, and limbic-B) and the 

top five most right-specialized networks (salience/ventral attention-A, control-B, control-C, 

default-C, and limbic-B). Intraclass correlations were then evaluated using the standard 

guidelines from Koo & Li (2016), with values less than 0.5 indicating poor reliability, values 

between 0.5 and 0.75 indicating moderate reliability, values between 0.75 and 0.9 indicating 

good reliability, and values greater than 0.9 indicating excellent reliability (based on a 95% 

confidence interval). Spearman rank correlations were then used to examine potential 

relationships between network test-retest reliability and a network-averaged signal-to-noise ratio.  

Task Effects on the Autonomy Index. Following the procedure outlined in Peterson et 

al. (2023), task effects were also examined for the estimation of the autonomy index within 

individuals. Briefly, individual parcellations were generated using both task and resting-state 

fMRI data from the NSD dataset using various combinations of runs within task type: even-

numbered runs, odd-numbered runs, the first half of runs, the second half of runs, and two 

random selections of runs (without replacement). Intraclass correlation coefficients were then 

used to compare autonomy index overlap within task and between tasks for each hemisphere. 

Wilcoxon Signed Rank tests were then used to compare the intraclass correlations (R Core 

Team, 2011; Wilcoxon, 1945).  
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Identifying Specialized Networks with Individual Parcellations 

After establishing the reliability of approaching specialization from an individual-level 

perspective using the autonomy index, we addressed the first hypothesis of determining whether 

any of the 17 networks exhibited specialization, and if so, which exhibited the greatest 

specialization. The following analyses were first implemented in the HCP-Discovery dataset and 

then replicated in the HCP-Replication and HCPD datasets using all data available from each 

participant. First, to determine whether any networks exhibited specialization, multiple 

regressions were implemented for each of the 17 networks, separately for the left and right 

hemispheres. Models consisted of a given network’s mean autonomy index value and the 

covariates of mean-centered age, sex, mean-centered mean framewise displacement, and 

handedness (measured via the Edinburgh Handedness Inventory; Oldfield, 1971). A network was 

considered specialized if the model intercept was significant at the Bonferroni-corrected alpha 

level of 0.001. The top five left- and right-lateralized networks were determined using the HCP-

Discovery dataset. 

Within-Network Contributions 

 To address our second hypothesis regarding contributions to specialized networks, we 

implemented the deconstructed autonomy index in the top five left- and right-specialized 

networks as determined via the HCP-Discovery dataset. These values were adjusted for mean-

centered age, mean-centered mean framewise displacement, sex, and handedness. Following 

model-adjustment, potential patterns were visually identified and then assessed quantitatively via 

matrices of mean dAI values first within the HCP-Discovery dataset and then within the HCP-

Replication and HCPD datasets. 

Code Accessibility Statement 
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With the exception of the HCPD dataset, the data reported on in the present study can be 

accessed publicly online (HCP: https://db.humanconnectome.org/; NSD: 

http://naturalscenesdataset.org/). The HCPD dataset is hosted through the NIMH Data Archive 

(NDA) through which access may be requested. Preprocessing and individual parcellation 

pipeline code are available through the CBIG repository on GitHub at 

https://github.com/ThomasYeoLab/CBIG. Scripts used to implement the processing pipelines 

and perform statistical analyses are also available on GitHub at https://github.com/Nielsen-

Brain-and-Behavior-Lab/AutonomyIndex2023. 

Results 

Replication of Wang et al. (2014) 

 Using the Yeo et al. (2011) seven-network group parcellation, we identified the default 

and frontoparietal control networks as the most left-specialized networks, and the frontoparietal 

control, dorsal attention and ventral attention networks as the most right-specialized networks for 

both the HCP-Discovery and HCP-Replication datasets (see Supplementary Figure S1). This 

pattern of specialized networks replicates that found by Wang et al. (2014). Next, we expanded 

on the Wang et al. (2014) analysis to examine network specialization using the Yeo et al. (2011) 

17-network group parcellation. We identified the dorsal attention-A, language, default-A, 

default-C, and limbic-B networks as the most left-specialized across both datasets (see 

Supplementary Figure S2). The control-B, default-C, and limbic-B networks showed the greatest 

right-hemisphere specialization.  

Reliability Analyses 

Following the group-based parcellation analyses, the autonomy index was adapted to the 

individual through individual network parcellations. However, prior to examining specialization, 
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the reliability of this individualized approach was examined through the following test-retest 

reliability and task effects analyses. 

Test-Retest Reliability 

 Using HCP subjects with all four resting-state runs available after preprocessing (N = 

232), test-retest reliability was assessed for the top five left- and right-specialized networks. For 

the left-specialized networks, intraclass correlations were within a moderate range, between 0.55 

to 0.77, with the lowest being the limbic-B network (ICC = 0.55, F(231, 231) = 3.5, p < .001, 

95% CI [0.46, 0.63]; see Figure 2). For the right-specialized networks, the intraclass correlations 

were also in the moderate range, from 0.55 to 0.72, with the control-C network exhibiting the 

lowest reliability (ICC = 0.55, F(231, 231) = 3.5, p < .001, 95% CI [0.45, 0.63]). Spearman rank 

correlations identified no relationship between test-retest reliability (intraclass correlation 

coefficients) and network-averaged temporal signal-to-noise ratios (left hemisphere: r(15) = 

0.11, p = .68; right hemisphere: r(15) = .27, p = .29; see Supplementary Figure S3). 
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 Figure 2. Test-retest reliability of autonomy index values for five left- and right-specialized networks in 
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232 HCP subjects. Left-specialized networks (left column) included language (LANG), dorsal attention-A 

(DAN-A), default-A (DEF-A), default-C (DEF-C), and limbic-B (LIM-B). Right-specialized networks (right 

column) included salience/ventral attention-A (SAL-A), control-B (CTRL-B), control-C (CTRL-C), default-C 

(DEF-C), and limbic-B (LIM-B). In each plot, a circle represents a subject, and the dashed identity line in 

black represents the theoretical perfect correspondence between the two sessions.  

 

Task Effects on the Autonomy Index 

Using the NSD dataset (N = 8) to compare potential differences between resting-state and 

task fMRI on autonomy index estimates for the left and right hemispheres, we found differences 

between the within-task comparisons and between task comparisons for autonomy index 

intraclass correlation coefficients (see Figure 3). Wilcoxon signed rank comparisons revealed a 

difference in within-task (Task-Task and Rest-Rest) intraclass correlation coefficients for even 

versus odd numbered runs (LH: V = 33, p = .04; RH: V = 34, p = .02) as well as for the first half 

versus the second half of runs (LH: V = 34, p = .02; RH: V = 32, p = .05), but not for the random 

selection of runs (LH: V = 26, p = .31; RH: V = 24, p = .46). Regardless of how the data were 

split, a task effect in intraclass correlation coefficients was found between within-task (Task-

Task) and between-task (Task-Rest) intraclass correlation coefficients for even versus odd 

numbered runs (LH: V = 36, p = .008; RH: V = 35, p = .02), the first half versus the second half 

of runs (LH: V = 36, p = .008; RH: V = 36, p = .008), and the random selection of runs (LH: V = 

34, p = .02; RH: V = 36, p = .008). 
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Figure 3. Task effects on the autonomy index in the NSD dataset. In the figure, intraclass correlation 

coefficients for the left and right hemisphere autonomy indices are shown for each participant, comparing 

even- versus odd-numbered runs (with the left hemisphere values shown on the left and right hemisphere

values shown on the right). Regardless of how the data were split (even- versus odd-numbered runs, the 

first half versus the second half, or a random selection without replacement), a task effect was found.  

 

Identifying Specialized Networks with Individual Parcellations 

 Following the investigations into the reliability of the autonomy index as implemented in 

individuals, we addressed the major hypotheses regarding which networks were specialized and 

which connections contributed to this specialization. A series of multiple regressions were used 

to identify if any of the 17 networks were specialized, first in the HCP-Discovery dataset and 

then in the HCP-Replication and HCPD datasets. Networks with significant left-hemisphere 

specialization (p < .001) across all three datasets included each network except visual-A and 

default-B (see Supplementary Table 1). All 17 networks were found to have significant right-
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hemisphere specialization (p < .001) across all three datasets (see Supplementary Table 2). Of 

the covariates, only handedness was reliably significant across all three datasets for the left-

hemisphere averaged salience/ventral attention-A autonomy index (see Supplementary Figure 

S4). See Figure 4 for model-adjusted mean autonomy index values for each of the 17 networks 

for the left hemisphere (Panel A) and the right hemisphere (Panel B). Notably, the limbic-B and 

default-C networks appear to be strongly specialized to both hemispheres, similar to what has 

previously been observed with the frontoparietal control network by Wang and colleagues 

(Wang et al., 2014). The most specialized networks were identified as the top five left- and right-

lateralized networks from the HCP-Discovery dataset. 
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Figure 4. Specialization for 17 networks across the HCP-Discovery, HCP-Replication, and HCPD 

datasets. For each panel, the y-axis displays the 17 networks and the x-axis displays the adjusted 

average autonomy index values, with greater values representing greater hemispheric specialization (left 

hemisphere on Panel A and right hemisphere on Panel B). Autonomy index values were adjusted by 

regressing out the effects of mean-centered age, mean-centered mean framewise displacement, sex, and 

handedness using the following formula: AIadj = AInat — [β1(mean-centered agenat – mean of mean-

centered agenat) + β2(mean-centered FDnat – mean of mean-centered FDnat) + β3(sexnat – mean sexnat) + 

β4(handednessnat – mean handednessnat)]. Autonomy index adjustment occurred separately for each 

network within each dataset for each hemisphere. Bars represent the 2.5 and 97.5 percentiles, and black 

boxes have been placed around the top five left- and right-specialized networks (determined using the 

HCP-Discovery dataset).  
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Comparison of Group and Individualized Approaches 

 A key assumption of the present study has been that an individualized approach to 

network specialization would elicit a more precise estimate of the autonomy index than group-

based approaches, an assumption backed by evidence demonstrating advances arising from a 

precision approach to neuroimaging (Braga et al., 2020; Braga & Buckner, 2017; DiNicola et al., 

2020; Gordon et al., 2017; Gratton et al., 2018; Laumann et al., 2015).Visual comparison of the 

networks with the greatest left- and right-hemisphere specialization using a group 17-network 

parcellation (Supplementary Figure S2) and 17-network individual parcellations (Figure 4) 

reveals nearly identical results. This challenges our initial assumption and implies that, in the 

context of the present study, the choice of network parcellation method may have a limited 

impact on the estimation of the autonomy index. 

Within-Network Contributions to Specialization 

 Next, to address the second hypothesis and decompose network specialization to identify 

the greatest contributions to each network’s specialization, deconstructed autonomy index values 

were averaged within the 17 networks for each target network. As described in the Methods 

section, the dAI is calculated as a ratio of within- and between-hemisphere connectedness for 

each vertex and target network. Visual examination of the top left- and right-specialized 

networks (determined using the HCP-Discovery dataset) initially indicated that within-network 

connections appear to be the greatest contributors. For example, language network connections 

contribute the most to language network specialization (see Supplementary Figures S5-S10). 

Following within-network connections, other specialized networks appear to be the second 

largest contributor to specialization (see Figure 5 and Supplementary Figure S11). As an 

example of this second pattern, it is more likely that the specialized default-C network is 
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contributing to the specialization of the language network than a network that isn’t specialized, 

such as visual-A. Matrices of mean dAI scores for all potential 17 target networks confirmed 

these two principles (see Supplementary Figures S12-S14).   

 

Figure 5. Deconstructed autonomy index (dAI) values within and between specialized networks for the 

HCP-Discovery dataset. dAI scores were grouped as being within-network (e.g., target network language 

and averaged network language), between specialized networks (e.g., target network language and 

averaged network dorsal attention-A), and between not specialized (e.g., target network language and 

averaged network visual-A). Specialized networks are the top five left- and right-specialized networks 

(indicated with black boxes in Figure 4). Next, dAI scores were further binned depending on the target 

network as being specialized or not specialized (specialized networks included the top five left- and right-

specialized networks). Finally, dAI scores were organized by hemisphere, left or right. Each point 

represents a single target and averaged network combination mean dAI score. Across each dataset, 

within-network contributions appear to be greatest followed by between-specialized network contributions 

and then between not-specialized network contributions (see Supplementary Figure S11 for the HCP-

Replication and HCPD datasets). 

 

Discussion 

 In the present study, we examined brain network specialization using a functional 

connectivity-based measure, replicating and expanding on the work of Wang et al. (2014). After 
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directly replicating Wang et al. (2014) and addressing the reliability of a within-individual 

implementation, we identified specialized networks at a 17-network resolution and determined 

the greatest contributions to specialization. In line with prior work, we identified a highly left-

specialized network supporting language function and several highly right-specialized networks 

supporting visuospatial attention and executive control functions (Wang et al., 2014). However,  

we identified networks other than those directly associated with language, visuospatial attention, 

and executive control as being the most specialized. Additionally, across three datasets, we found 

that within-network connections contributed most to a given network’s specialization followed 

by connections from other specialized networks. Taken as a whole, these results provide 

evidence for guiding principles of brain organization generally and the specialization of 

macroscale brain networks specifically.   

Evidence for the Reliability of the Autonomy Index 

 In the present study, we examined specialization using the autonomy index. However, the 

implementation of this measure differed from the original in two key ways: the use of a 17-

network parcellation scheme as opposed to seven networks, and the adoption of individual 

parcellations to delineate network boundaries as opposed to a single group-level network 

parcellation. While we contend that these differences facilitated the acquisition of novel insights 

into network specialization, it was uncertain as to whether they compromised the integrity of the 

autonomy index. However, visual comparison between the most specialized networks resulting 

from the 17-network individual and group parcellations reveals nearly identical results. This 

finding contradicts our assumption regarding the optimality of individual parcellations and 

suggests that within the scope of this study, the use of individual network parcellations exerted 

minimal influence on the calculation of the autonomy index. Additionally, when using the 
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individual parcellations, the top five left- and right-specialized networks fell within moderate 

test-retest reliability. This also indicates that the use of individual parcellations did not adversely 

affect the detection of signal and thus specialization. In other words, if we were measuring noise, 

we would expect very low test-retest reliability.   

While the individual-level implementation of the autonomy index was found to be 

reliable, task effects were found. This finding replicates previously observed task effects on a 

different measure of functional connectivity-derived network specialization (see Peterson et al., 

2023). This is likely due to the idea that the act of "resting" introduces greater variability in 

functional connectivity compared to that observed during task-based fMRI, potentially as a result 

of mind wandering (Elton & Gao, 2015; Finn & Bandettini, 2021). Furthermore, when it comes 

to predicting individual traits, task-based models outperform rest-based models, and this has 

been attributed to the "unconstrained nature" of the resting state (Greene et al., 2018). 

Identification of Highly Specialized Networks 

Notably, the top five greatest left-specialized networks included the language, dorsal 

attention-A, default-A, default-C, and limbic-B networks, while the right-specialized 

counterparts included the salience/ventral attention-A, control-B, control-C, default-C, and 

limbic-B networks. Similar to previous work, a highly left-specialized network supports 

language function (such as the language network) and several highly right-specialized networks 

support visuospatial attention and executive control functions (such as the salience/ventral 

attention-A, control-B, and control-C networks; Wang et al., 2014).  While networks associated 

with language, attention, and executive control were highly specialized, they were not the most 

specialized left- and right-specialized networks. Instead, the dorsal attention-A and limbic-B 

networks were the most left- and right-specialized networks, respectively. Corroborating this 
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finding, a network surface area-based approach to specialization also using the Kong et al. 

(2019) 17-network individual parcellation identified these two networks as the most specialized 

or lateralized (see Peterson et al., 2023). While it is unclear why the language and visuospatial 

attention networks were not identified as the most specialized networks, this finding may be due 

to the larger number of networks examined here, compared with the seven networks examined 

by Wang et al. (2014). Regardless, this result was robust across the 17-network group-averaged 

parcellation and the individual parcellations, indicating that the method of parcellation (group or 

individual) had little influence on this result. 

An alternative explanation for the identification of the dorsal attention-A and limbic-B 

networks as being most specialized comes from other within-individual investigations. Work on 

the default network found that the group-defined default network is split into two parallel yet 

interdigitated networks which subserve different functions on the individual level (Braga & 

Buckner, 2017; DiNicola et al., 2020). Thus, it may be that, by taking a fine-grained approach to 

network parcellations, networks which have previously been described as bilateral may be split 

into subnetworks, of which one may be left- or right-specialized. In the case of dorsal attention, 

previously described as belonging to a bilateral network (Fox et al., 2006; Mengotti et al., 2020), 

this may have been split into a highly left-specialized network (dorsal attention-A) and a less 

specialized network (dorsal attention-B).  

The present study did not replicate dually-specialized frontoparietal control networks 

(Wang et al., 2014) within the 17-network parcellation. Instead, we identified the control-B and 

control-C networks as being highly right-specialized, with minimal specialization of the control-

A network. Additionally, we found that the default-C and limbic-B networks were highly 
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specialized to both hemispheres. Further investigation is needed to show why these specific 

networks show this dual or coupling pattern of specialization. 

Contributions to Specialization 

 In order to better understand which functional connections contribute the most to a given 

network’s specialization, we implemented a novel version of the autonomy index: the 

deconstructed autonomy index. Resulting patterns of dAI values indicated that the greatest 

contributions to network specialization were from the same network (following a within-between 

network gradient) followed by other specialized networks (following a specialization gradient). 

This first principle of specialization contributions--that within-network contributions are 

greatest--is supported by the idea that hemispheric asymmetries increase the modularization of 

functions, thereby decreasing redundancy (Levy, 1969),  processing speed (Ringo et al., 1994), 

and interhemispheric conflict (Andrew et al., 1982; Corballis, 1991; Gerrits et al., 2020; 

Vallortigara, 2006). A larger number of within-network connections would contribute to that 

network’s specialization of function and likely increase the efficiency of that network. Support 

for the second principle of network contributions—that connections from other specialized 

networks make up the second largest contribution—can be found from graph theoretical analysis 

and so-called “rich clubs”. These hubs are composed of high degree and high strength nodes, and 

are highly interconnected to one another (Colizza et al., 2006; Opsahl et al., 2008). Notably, rich 

club nodes have been identified in highly integrated brain regions, such as cingulate and 

pericingulate regions, as well as highly specialized brain regions including the orbitofrontal 

cortex, caudate, fusiform gyrus, and hippocampus (Kocher et al., 2015). Relevant to the present 

study, this work with rich club hubs evidences the following idea: specialized brain regions can 

be highly interconnected with one another. While the specialized brain networks discussed in the 
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present study are not necessarily the same as the specialized brain regions referenced in Kocher 

et al. (2015), our work suggests that the strength of between-network contributions is less than 

within-network contributions. 

Limitations and Future Directions 

 In order to obtain individual parcellations that are reliable within individuals and 

comparable with previous work, the MS-HBM pipeline was selected. As a part of this pipeline, 

inter-subject variability is accounted for by way of group priors (derived from 37 Brain 

Genomics Superstruct Project subjects). One risk with incorporating group priors is that they 

may constrain network boundaries in ways that do not necessarily reflect an individual’s 

functional neurobiology. As noted in Kong et al. (2019), functional connectivity profiles derived 

from individuals are fairly noisy compared with those from a group-averaged profile. Thus, 

while the incorporation of group priors may reduce this noise, some signal may be lost as well.  

 An additional limitation with the selected method concerns the failure to capture the 

moment-to-moment dynamics of brain function. By creating static parcellations, we have 

oversimplified the temporal dimension of these large-scale networks.  

 Further applications of the deconstructed autonomy index could involve studying 

populations other than neurotypical children, adolescents, and adults. For example, it would be 

interesting to know how contributions to network specialization may be different in autism, for 

which atypical functional lateralization patterns have been reliably observed (Anderson et al., 

2010; Cardinale et al., 2013; Eyler et al., 2012; Harris et al., 2006; Jouravlev et al., 2020; 

Kleinhans et al., 2008; X.-Z. Kong et al., 2022; Lindell & Hudry, 2013; Müller et al., 2003; 

Nielsen et al., 2014; Persichetti et al., 2022; Redcay & Courchesne, 2008) as well as 

schizophrenia (Agcaoglu et al., 2018; Ocklenburg et al., 2013; Sommer et al., 2001). 
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Additionally, it is unknown when the patterns of network contributions are established or how 

they potentially change in older adulthood. Future research could provide valuable insights into 

potential variations of network contributions in individuals with neurodevelopmental conditions 

and shed light on the developmental trajectory and potential changes in network specialization 

throughout adulthood. 

Conclusions 

 In the present study, we examined brain network organization on an individual level 

through the lens of specialization. We identified most networks as exhibiting greater within-

hemisphere connectivity than between-hemisphere connectivity. Additionally, we found that the 

greatest contributors to network specialization were first within-network connections followed 

by connections with other specialized networks. 
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