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Abstract 
High-throughput single-cell cytometry data are crucial for understanding immune system’s 
involvement in diseases and responses to treatment. Traditional methods for annotating 
cytometry data, specifically manual gating and clustering, face challenges in scalability, 
robustness, and accuracy. In this study, we propose a single-cell masked autoencoder 
(scMAE), which offers an automated solution for immunophenotyping tasks including cell 
type annotation. The scMAE model is designed to uphold user-defined cell type definitions, 
thereby facilitating easier interpretation and cross-study comparisons. The scMAE model 
operates on a pre-train and fine-tune approach. In the pre-training phase, scMAE employs 
Masked Single-cell Modelling (MScM) to learn relationships between protein markers in 
immune cells solely based on protein expression, without relying on prior information such 
as cell identity and cell type-specific marker proteins. Subsequently, the pre-trained scMAE 
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is fine-tuned on multiple specialized tasks via task-specific supervised learning. The pre-
trained scMAE addresses the shortcomings of manual gating and clustering methods by 
providing accurate and interpretable predictions. Through validation across multiple cohorts, 
we demonstrate that scMAE effectively identifies co-occurrence patterns of bound labeled 
antibodies, delivers accurate and interpretable cellular immunophenotyping, and improves 
the prediction of subject metadata status. Specifically, we evaluated scMAE for cell type 
annotation and imputation at the cellular-level and SARS-CoV-2 infection prediction, 
secondary immune response prediction against COVID-19, and prediction the infection 
stage in the COVID-19 progression at the subject-level. The introduction of scMAE marks a 
significant step forward in immunology research, particularly in large-scale and high-
throughput human immune profiling. It offers new possibilities for predicting and 
interpretating cellular-level and subject-level phenotypes in both health and disease. 
 
Introduction 
High-throughput single-cell protein expression data, acquired through flow and mass 
cytometry, are essential to understanding the role of the immune system in managing 
infectious diseases, autoimmunity, cancer, and the response of immune cells post-treatment. 
Cytometry assays are designed to profile millions of cells from a biological sample, precisely 
quantifying biomarkers specific to various cell types, including rare ones. For example, 
cytometry can pinpoint cell populations that are differentially abundant or proteins that are 
differentially expressed between subject groups. This process of immune profiling effectively 
delineates both similarities and diversities within the immune landscape of different subjects, 
contributing significantly to precision medicine by enabling predictions at an individual level. 
 
The most prevalent approach for analyzing cytometry data is manual gating, a process 
involving user-applied sequential filters to bivariate plots of protein markers, thereby isolating 
specific cell subsets for focused analysis1. These bivariate plots visually represent the 
distribution of protein markers, allowing a human analyst to manually identify and select cells 
based on their prior knowledge of these distributions. Despite its widespread use, manual 
gating faces several significant challenges. Firstly, it is a time-intensive process, particularly 
for panels with over a dozen markers2,3, as the number of biaxial plots to consider increases 
quadratically with the number of parameters measured. Secondly, manual gating is prone to 
subjectivity and bias2,3. Each analysis is influenced by pre-existing knowledge, which can 
lead to a bias towards anticipated results. Subjectivity also enters through the selection of 
the order of marker combinations and the definition of gate boundaries. Additionally, due to 
panel size limitation, cytometry panel design often restricts the search space for pre-defined 
markers and the corresponding cell types. Thirdly, results from manual gating can be 
challenging to replicate2,3. Different studies may employ varied gating strategies, including 
distinct gating sequences, shapes, and boundaries for gates, impacting the robustness and 
consistency of identified cell subsets. Moreover, the level of gating stringency also varies 
between individual analysts, contributing to inconsistent results. 
 
The ability to simultaneously measure multiple protein markers has significantly increased 
the complexity of cytometry data. This complexity has led to the development of automated 
analysis techniques, particularly unsupervised clustering methods like FlowSOM4, 
PhenoGraph5, Scaffold Maps6, and X-shift7. While these clustering approaches address 
some limitations of manual gating, they also introduce their own set of constraints. Notably, 
while unsupervised clustering methods can detect data variability, it struggles to differentiate  
between biological or technical sources of this variability. This makes these methods 
susceptible to batch effects, shifts in data distribution, and non-specific binding of 
antibodies8. Another challenge arises in cross-study comparisons, where minor variations in 
panel selection, sample collection, measurement noise, or random seeding can significantly 
lead to abrupt changes in cluster boundaries. For example, CD4 T cells might be clustered 
differently in studies based on memory or functional subtypes, complicating direct 
comparisons between even highly overlapping datasets. To strike a balance between labor-
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intensive manual analysis and unpredictable unsupervised analysis, we focus on combining 
unsupervised and supervised learning to develop an automated method that can 
immunophenotype future samples using consistent cell type ontologies, regardless of 
experimental variations. 

 
In the broader context of big data and advanced computational models, artificial intelligence 
(AI) has achieved great success in fields like computer vision and natural language 
processing. The effort needed to manually label data makes it extremely difficult to fully 
leverage the vast amounts of existing unlabeled data in the supervised learning paradigm. 
However, the revolution of self-supervised learning techniques, particularly in the pre-training 
phase, empowers models to more accurately learn data distributions and utilize unlabeled 
data effectively. The core concept behind self-supervised pre-training is randomly masking a 
portion of the input data and training the model to reconstruct masked information using 
context clues from the surrounding data. This approach allows the pre-trained model to be 
fine-tuned for specific downstream tasks or to function as generative AI. Coupling the 
transformer9 architecture, known for its high expressiveness and scalability, has led to 
significant synergistic effects. Notable examples include Masked Language Modeling (MLM) 
as seen in BERT10 and GPT11 and Masked Image Modeling (MIM) in models like ViT12, 
BeiT13, and MAE14 in computer vision. 
 
The success of the masking approach has reverberated within the biomedical field as well. 
For example, protein language models (pLMs) are a set of AI models trained on extensive 
sets of unlabeled protein sequences15-17. pLMs have steadily gained traction across diverse 
applications for protein design, including antibody engineering18 and drug discovery19,20. In 
addition, AI models trained on unlabeled single-cell RNA sequencing (scRNA-seq) data have 
been published and used for cell annotation purposes21-27. Thus, masking models have 
proven to significantly outperform previous conventional methods in effectiveness and show 
great potential in biomedical applications. Similarly, we apply these techniques for 
immunophenotyping, as cytometry data can be structured in a similar way. 
 
In this study, we develop an accurate and interpretable automated immunophenotyper for 
single-cell cytometry data, using a technique we call Masked Single-cell Modelling (MScM). 
This approach employs self-supervised pre-training on single-cell cytometry data. During 
MScM, our model learns the relationships and dependencies among markers on immune 
cells by analyzing expression patterns in the massive amount of data sets, without requiring 
additional information about cellular identity. The resulting pre-trained model can then export 
a useful representation that is advantageous for various downstream tasks, surpassing the 
utility of the original data. We demonstrate that our model not only overcomes the challenges 
of manual gating and clustering methods but also provides accurate results even on 
independent datasets that were never seen during its training. This model can accurately 
identify complex cell types and interprets which crucial protein markers predict targets. 
Moreover, the model exhibits scalability, reproducibility, and enhanced precision in subject-
level phenotyping. In contrast to previous approaches, our model offers a novel approach 
combining pre-training and fine-tuning for automated annotation of cell identity in single-cell 
cytometry data. This novel approach in immunophenotyping promises to broaden the impact 
of existing cytometry data and enhance immunological knowledge by more accurately 
phenotypes at both cellular and subject levels. 
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Figure 1 (a) Overview of Single-cell Masked Autoencoder (scMAE). In the pre-training step, protein 
expression data is randomly masked. The unmasked protein expressions are concatenated with 
learnable protein embeddings and fed into the encoder. This encoder generates unmasked latent 
representations, which are merged with learnable mask embeddings and fed to the decoder for 
reconstruction of the masked values. In the fine-tuning step, the pre-trained encoder produces latent 
representations for both cells and subjects, facilitating cell-level and subject-level downstream tasks, 
respectively. (b) From left to right, masked, imputed (reconstructed), and original data. Each row 
represents a marker protein, and each column represents a randomly sampled cell. Initially, 25% of 
the original data is randomly masked, shown in white in the masked data visualization. scMAE 
effectively reconstructs these masked regions, demonstrating the model’s accuracy. 

 
Results 
Single-cell Masked Autoencoder (scMAE) algorithm 
To address the challenges of time-consuming and labor-intensive immunophenotyping in 
cytometry data, we propose scMAE, a single-cell Masked Autoencoder model. This 
innovative model constructs and employs latent embeddings of single-cell cytometry data to 
obtain state-of-the-art performance on various cell-level and subject-level tasks. scMAE is 
built upon a Masked Autoencoder (MAE)14 architecture, featuring stacked transformer blocks 
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in both the encoder and decoder. Inspired by successful methodologies in computer vision 
and natural language processing, scMAE undergoes a two-phase training process: self-
supervised pre-training followed by supervised fine-tuning, as illustrated in Figure 1a. The 
main advantage of this approach is its ability to utilize large-scale, easily obtainable 
unlabeled data during the initial self-supervised pre-training phase, thus reducing the 
reliance on scarce and labor-intensive labeled data in the subsequent fine-tuning phase. 
During pre-training, a randomly selected subset of the protein expression data is masked 
and fed to an encoder, which produces latent embeddings of the masked data. In turn, these 
embeddings are processed by a decoder that attempts to reconstruct the unmasked, original 
data (Figure 1b, Supplementary Figure 1). Through this process, the encoder-decoder 
system learns to optimize the embeddings to minimize reconstruction error, effectively 
enabling the model to obtain informative data embeddings without requiring explicit ground 
truth labels. During the second fine-tuning stage, the model employs the full, unmasked 
protein expression data to generate latent cell representations using the encoder that was 
pre-trained in the first stage. These representations are applicable to a range of downstream 
tasks, whether they involve labeled data or not. Cell representations generated by the pre-
trained encoder can be used for unsupervised tasks or plugged into another classifier to 
solve tasks through supervised fine-tuning. Specifically, we evaluated the pre-trained 
scMAE’s performance on two cell-level tasks: cell type annotation and imputation. Moreover, 
for subject-level tasks, we tested SARS-CoV-2 infection prediction, secondary immune 
response prediction against COVID-19, and prediction the infection stage in the COVID-19 
progression.  
 

We analyzed Cytometry by Time Of Flight (CyTOF) data from three distinct COVID-19 
studies conducted at the University of Pennsylvania, referred to as the Acute2020 dataset, 
Vaccine dataset, and Acute2021 dataset. For all datasets, whole blood was stained with a 
30-marker panel. Each of the datasets underwent a routine manual gating practice executed 
by domain experts to extract single, intact cells in preparation for downstream analysis. The 
Acute2020 dataset consists of single-time-point samples from 13 patients hospitalized with 
acute SARS-CoV-2 infection in 2020 and 13 healthy controls, comprising a total of 6.5M 
cells. The Vaccine dataset includes 37 healthy adults followed longitudinally before and after 
(7 days after second dose) SARS-CoV-2 mRNA vaccine, for a total of 150 FCS files. This 
dataset is composed of 36.7M cells. Lastly, the Acute2021 dataset contains longitudinal 
samples from 42 SARS-CoV-2 infected individuals who were enrolled in the I-SPY COVID-
19 Trial28 in 2021. Samples were collected at the time of hospital admission and 7 days later. 
This dataset includes 11.9M cells from 56 FCS files. Prior analysis of flow cytometry data 
from the Acute2020 dataset revealed heterogenous peripheral blood profiles among patients 
hospitalized with SARS-CoV-2, capturing both common and uncommon cells and cell 
phenotypes compared to healthy individuals29. Thus, the Acute2020 dataset was chosen for 
pre-training, while all three datasets were used in the downstream evaluations.  
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Figure 2 (a) PCA plot of the scMAE protein embeddings, demonstrating how the model, through 
unsupervised pre-training, effectively learns protein embeddings that represent the spatial closeness 
of antibody probes. (b) Model comparisons in the 46 cell type annotation with Balanced Accuracy 
(Bacc). The internal test set is Vaccine dataset after train-test split, the external set 1 is Acute2021, 
and the external set 2 is Acute2020. GBDT is a gradient boosting decision tree. Static gating is a 
method to aggregate into a single consensus gate for each gate in the hierarchy (see Methods). Deep 
neural network (DNN) denotes the fully-connected neural network proposed by Cheng, L. et al.30 and 

Li, H et al.31 for cytometry data analysis. Convolution neural network (CNN) denotes a model 
architecture that removes only pooling layer from the CNN proposed by Hu. Z et al.8 for 

CD45

CD196

CD123

CD19

CD4

CD8a

CD11c

CD16

CD45RO

CD45RA

CD161

CD194

CD25

CD27

CD57 CD183

CD185

CD28

CD38

CD56

TCRgd

CD294

CD197

CD14

CD3

CD20

CD66b

HLA−DR

IgD

CD127

−0.5

0.0

0.5

−0.5 0.0 0.5 1.0

PC1

P
C

2

Expressed in

B cells

Basophils; Eosinophils

Basophils; pDC

Myeloid

Neutrophils

NK cells; some T cells

T cells
T cells; non−specific
binding to Neutrophils

a b

Internal test set External set 1 External set 2c

… … …

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580114doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580114
http://creativecommons.org/licenses/by-nc-nd/4.0/


cytomegalovirus (CMV) classification. (c) Accuracy of cell type annotation for both 5 abundant and 15 
rare cell types.  
 

scMAE learns antibody co-occurrence patterns 
The pre-trained scMAE effectively learns the patterns of co-occurrence among antibodies 
targeting specific proteins, purely from data, without relying on any prior knowledge. This 
capability is demonstrated by the way scMAE groups proteins based on their co-localization 
on particular cell types, as seen in Figure 2a. For example, proteins that appear mostly on T 
cells (CD3, CD4, CD8, CD28, CD183 etc.) cluster together, as do proteins that mostly 
appear on B cells (CD19, CD20, CD185, CD196, IgD). Interestingly, TCRgd and CD197 
cluster with neutrophil markers (CD16 and CD66b), despite not traditionally being associated 
with neutrophils. An in-depth analysis showed that anti-TCRgd and anti-CD197 antibodies in 
this panel were indeed measured in neutrophils, in lower amounts compared to T cells 
(Supplementary Figure 2). In the case of TCRgd, this is likely non-specific binding, 
whereas for CD197 the reasons could be technical or biological. Either way, because 
neutrophils are the most abundant cell type, they are the dominant target for background 
expression of TCRgd and CD197. This result illustrates that scMAE can effectively capture 
the contextual relationships and dependencies between immune cell marker expression 
levels. Thus, this model can be learnable for data patterns, enabling it to successfully 
perform subsequent downstream tasks. 
 
scMAE is an accurate cell immunophenotyper  
Cell type annotation, traditionally achieved through manual gating and clustering methods, is 
now efficiently automated by our scMAE model. By fine-tuning with cell type labels, scMAE 
accurately annotates cell types in single-cell datasets. Ground truth labels for 46 cell types, 
obtained from manual gating, were used (Supplementary Figure 3). We used 60% of the 
Vaccine dataset for fine-tuning the model, 20% as validation and the remaining 20% as an 
internal test set. We further evaluated scMAE using the Acute2021 dataset and the 
Acute2020 dataset as external validation sets (External set 1 and 2, respectively). We 
compared scMAE with a gradient boosting decision tree (GBDT)32, a fully connected deep 
neural network (DNN), and a convolutional neural network (CNN) (see Methods) as well as 
cytometry-specific analysis methods: static gating and unsupervised clustering with 
FlowSOM. 
 
As a baseline, we took the gating strategy developed on the training dataset and apply it 
statically to the testing datasets, without adjustments for inter-sample variability 
(Supplementary Figure 4). This approach is equivalent to manually constructing a decision 
tree and then applying it on the testing data. The other supervised models used here can be 
seen as refinements of this idea: they attempt to learn a more robust encoding of the gating 
information by using multivariate rather than bivariate expression patterns. Alongside the 
supervised classification methods, we included FlowSOM, a popular unsupervised clustering 
method for cytometry. To match our supervised paradigm, we add an inference mode to 
FlowSOM by mapping each unseen test datapoint to the nearest SOM node (see Methods). 
 
Given the imbalanced distribution of cell type, with neutrophils comprising over 60% of cells, 
we used Balanced accuracy (Bacc) to assess model performance fairly. The experimental 
results showed consistently high Bacc on both internal test sets and two external sets, with 
the internal test set achieving 93.1% Bacc and the external sets 82.5% and 81.0% Bacc, 
respectively (Figure 2b). When we examined performance by cell type, our model was 
found to be more accurate than others for most cell types (Supplementary Figure 5).  
 
Notably, the model performed particularly well on rare cell types. Accurate prediction of rare 
cell types is difficult because it is easy for a model to be trained with a bias toward more 
frequent cell types. However, when comparing performance on cells with a frequency of less 
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than 0.1% in Figure 2c, both internal test set and external sets show more accurate 
predictions for rare cell types than the comparison models in most cases.  
 
In addition, scMAE’s performance benefits from pre-training, outperforming the scMAE 
model from scratch (non-pre-trained), demonstrating the value of leveraging large-scale 
unlabeled data for pre-training (Supplementary Table 1). While FlowSOM scored lower on 
our accuracy metrics, this outcome does not reflect the quality of the algorithm; instead, it 
underscores the limitations of unsupervised methods that do not utilize training labels. This 
illustrates one key pitfall of unsupervised analysis: this approach reveals true variability in 
the data, which may not be biologically important. For example, unsupervised analysis splits 
neutrophils, the dominant population, into 6 clusters based on non-specific binding of anti-
CD3 or anti-TCRgd, while more subtle, but biologically meaningful, populations like T cell 
effector memory subsets are missed. 
 
These results show that our scMAE model is robust to technical variation between datasets, 
showcasing superior performance across different collection and processing protocols. For 
example, despite being trained on the Vaccine dataset from cryopreserved samples of 
healthy subjects in 2021, scMAE outperformed all other methods on the Acute2020 dataset, 
which comprised fresh samples from subjects with acute COVID in 2020. These results 
underline scMAE’s potential as reliable tool for cell immunophenotyping across diverse 
datasets. 
 
scMAE enhances regression imputation for cytometry data 
Current technology for flow and mass cytometry only allows a few dozen markers, and 
sometimes cost considerations may reduce the number even further. This is unlike single-
cell RNA sequencing or other similar single-cell techniques, which can capture thousands of 
parameters. Despite these limitations, cytometry remains a powerful tool in single-cell 
biology due to its widespread use, ease of application, clinical implementation, and its 
capacity to analyze significantly more cells (typically millions versus thousands in single-cell 
genomics). Fully exploiting these advantages of cytometric approaches through advanced 
computational methods, for example, allowing measurements on small panel sizes to yield 
analytical results similar to those on larger panel sizes would be a major advance for the 
field. To investigate this feasibility, Becht, E. et al.33 proposed Infinity Flow, applying a 
Gradient Boosting tree model32 to impute the expression of over 300 markers from merely 
15. We assessed whether the scMAE’s cell latent representations could further enhance 
regression imputation. In our experiments, we masked 7 markers associated with memory 
subsets in T cells (CD27, CD28, CD45RA, CD45RO, CD127, CD197), using the remaining 
data to predict the masked marker expressions with both Infinity Flow and scMAE, the latter 
fine-tuned for imputation. We used the Acute2020 data for training, and the Vaccine dataset 
and Acute2021 dataset as external sets (External set 1 and 2, respectively). R-squared 
values were used for evaluation. 
 
The scMAE model achieved imputation performances with R-squared values ranging from 
0.2-0.6 (Figure 3a), despite being limited to 23 markers not directly indicative of T cell 
memory states and their associated masked markers. Notably, scMAE outperformed Infinity 
Flow for five of the seven markers. Beyond identifying patterns of universally expressed 
proteins, such as CD45RA in NK cells and CD45RO in neutrophils, scMAE also showed high 
correlations between true and predicted values, specifically within T cells or for CD27 
expression in B cells (Figure 3b, Supplementary Figure 6-8). These results suggest that 
scMAE can infer information about the memory states of T and B cells, even in the absence 
of the standard memory markers.   
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580114doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580114
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 3 (a) R-squared comparison between Infinity Flow and scMAE for the imputation task. A total 
7 markers were masked and then predicted by the two models. (b) Plots of actual versus predicted 
expression levels for each marker in the external set (Vaccine dataset). The dashed line represents 
the ideal relationship, serving as a reference to assess the performance. 
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A key challenge in deploying machine learning models for clinical or biological analyses is 
their <black box= nature, which means that the rationale for cell type prediction decisions is 
difficult to interpret. Unlike these models, scMAE incorporates a multi-head self-attention 
mechanism within its transformer architecture, enabling interpretable predictions for 
downstream tasks. The attention scores generated by this model indicate the importance of 
specific marker information and their interrelations in the context of prediction tasks, with 
higher attention score indicating greater reliance on a maker’s information relative to other 
markers. In our analysis, we first measured the attention scores attributed to each feature 
across different cell types during cell type annotation (Figure 4a). Notably, CD45 
consistently emerged as the marker with the highest attention score across all cell types, 
serving as a key discriminator between major immune cell lineages, such as granulocytes 
and mononuclear cells. Aside from CD45, most markers were highly attended in cell types in 
which they are highly expressed: for example, CD19 in B cells, CD123 in basophils and 
pDCs, CD294 in basophils and eosinophils. 
 
Similarly, we assessed the attention score of 23 markers relative to each cell type in the 
context of predicting the expression of 7 masked markers in the Imputation task (Figure 4b). 
For cell types with constitutive expression or non-expression of masked markers, the model 
primarily focused on markers indicative of cell type identity (e.g., CD294, CD66b, CD45 for 
eosinophils; CD16, CD45, and HLA-DR for neutrophils). In the case of T cells, where 
knowing the cell type was insufficient for predicting expression of the masked proteins, the 
model attended to the T cell marker protein CD3, but also to CD45 and HLA-DR, both of 
which were negatively correlated with CD45RA (Supplementary Figure 12). The negative 
correlation between CD45 and CD45RA in T cells was not expected by the authors, but 
scMAE found and exploited it to improve imputation performance. 
 
The attention scores not only demonstrated a consistent pattern across external datasets 
(Supplementary Figure 9) but also showed minimal variance between samples 
(Supplementary Figure 10,11), underscoring the model’s interpretability and reliability in 
identifying critical biomarkers for cell type predictions. 
 
scMAE improves subject status predictions 
In a typical flow cytometry or CyTOF analysis, hundreds of thousands of single cells are 
generally obtained from an individual sample, aiming to understand cellular-level 
immunophenotypes, like cell type identification. However, extending these analyses to 
achieve phenotypic precision at the individual level is also critical. While manual gating is a 
sophisticated method for extracting subject-level features using expert knowledge, it may 
overlook complex co-expression patterns indicative of cellular states like activation, 
senescence, or exhaustion in T cells due to the high-dimensional nature of cell dynamics. 
Ideally, our aim is to leverage the comprehensive global distribution of cell information to 
gain deeper biological insights.  
 
A key requirement for this goal is ensuring the method’s predictions remain consistent 
regardless of the cells’ order in the dataset, known as permutation invariance. This ensures 
that the method is robust and not reliant on the specific ordering of cells. Additionally, the 
method should adaptively focus on marker cell types relevant to the study, such as leukemic 
blast cells in an acute myeloid leukemia (AML) study34 or CTLA4+ or PD1+ cells in cancer 
immunotherapy study35. To address these needs, we aggregated scMAE representations of 
all cells from each subject into a subject-level representation, exploring several pooling 
methods to find the most effective one for each task. 
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Figure 4 (a) Interpretation in the cell type annotation by the attention scores for the Acute2021 
dataset (external set 1). The heatmap shows protein markers with high attention score as bright red 
for each cell type. (b) Interpretation in the imputation task by the attention score for the Vaccine 
dataset (external set 1). From 23 markers to impute the other 7 markers, it measures which input 
features have high attention from the other features during prediction. The heatmap shows the protein 
markers with high attention score as bright white or red for each cell type. For the left figure in (a) and 
(b), we used Bertvis36 for visualization of attention weights. 
 
We compared the proposed approach with manual gating and FlowSOM on three prediction 
tasks (Figure 5a). Using 5-fold cross-validation with 10 repetitions for each task, we first 
assessed the ability to distinguish between COVID-19 patients and healthy subjects. Manual 
gating and FlowSOM showed high accuracy of 0.975 and 0.936 AUROC, respectively, on 
the test set. In scMAE, global min pooling performed the best, with an accuracy of 0.987 
AUROC (Cohen’s þ = 0.310 and þ = 0.706, respectively) (Supplementary Table 2). The 
second challenge was to predict whether a secondary or recall immune response was 
triggered by SARS-CoV-2 infection or by SARS-CoV-2 vaccination. Manual gating and 
FlowSOM showed performance of 0.641 and 0.579 AUROC, whereas scMAE has an 
AUROC of 0.669 when using global min pooling (þ = 0.183 and þ = 0.594, respectively) 
(Supplementary Table 3). Finally, we tested the ability to distinguish the pre- and post-
treatment status of COVID-19 patients. Manual gating and FlowSOM showed 0.796 and 
0.869 AUROC, whereas scMAE showed an accuracy of 0.861 AUROC with global max 
pooling (þ = 0.568 and þ = 0.019, respectively) (Supplementary Table 4). The results of 
the three experiments suggest that scMAE captures critical information overlooked by 
manual gating or FlowSOM, thereby enhancing the prediction of subject status across 
various tasks. 
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Figure 5 (a) From left to right, COVID-19 patient and healthy people classification using the 
Acute2020 and Acute2021 dataset, secondary immune response against COVID-19 prediction using 
the Vaccine dataset, and COVID-19 pre- and post-treatment classification using the Acute2021 
dataset. The number in parentheses is the sample size. All the experiments are conducted by 5-fold 
cross-validation repeating 10 times, and Cohen’s þ was used to measure the differences between 
two methods. Green dashed lines stand for performance of a random classifier. (b) The few-shot 
learning for cell type annotation. Each green dashed line represents the performance of the full fine-
tuned scMAE when used all available training set, reported in the Figure 2b. 

 
scMAE is a few-shot learner 
Unlike full fine-tuning, few-shot learning trains a model with a limited amount of training data. 
N-shot uses only N samples for each class in the classification problem. A pre-trained large 
language model, developed through self-supervised learning, is recognized for its 
effectiveness as a few-shot learner11. Similarly, we evaluated our model, scMAE, in a few-
shot learning context for cell type annotation, conducting experiments with 5-shot, 10-shot, 
15-shot and 20-shot settings. Training, validation, testing, and external testing sets are the 
same as in the previous cell type annotation tasks. 
 
As expected, the performance of scMAE, when pre-trained, approached that of training with 
the full training set as the number of N-shots increased (Figure 5b). On the other hand, 
since the scMAE from scratch (non-pre-trained) has many parameters and no pre-trained 
information, this method does not learn with small sample size. It is worth noting that GBDT 
also performed reasonably well, but scMAE outperformed GBDT based on the pre-trained 
knowledge. This analysis shows that scMAE, once pre-trained, can effectively adapt to new 
tasks even with sparse labeled data, guiding learning in the appropriate direction. 

 
Discussion 
Due to the popularity, ease, and relative affordability of cytometry experiments, there is an 
abundance of high-dimensional cytometry data compared to other single cell modalities. 
Although manual gating remains the preferred classification approach, it becomes 
impractical for the expansive datasets of multi-cohort and/or multi-institutional studies due to 
its time-consuming and labor-intensive nature. Additionally, some clustering methods, which 

a

b

COVID-19
(47)

Healthy

(14)

Acute2020, Acute2021 dataset

Secondary
response (39)

No response

(25)

Vaccine dataset

Before treatment 
(34)

After treatment
(22)

Acute2021 dataset

� = 0.310

5-shot

10-shot

15-shot

20-shot

Internal test set External set 1 External set 2

� = 0.706

� = 0.183

� = 0.594

� = 0.568

� = 0.019

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580114doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580114
http://creativecommons.org/licenses/by-nc-nd/4.0/


require loading all the data simultaneously, are not suitable for large-scale datasets due to 
memory constraints. On the other hand, the scMAE method utilizes a mini-batch approach 
for processing large-scale datasets, where it breaks down the data into small, manageable 
segment. This reduces memory demands and improves training efficiency on large-scale 
data. The learning time in the training phase scales linearly with the number of samples. 
Also, scMAE can quickly and accurately make inferences on new datasets once the model 
has been trained. In summary, we demonstrate that scMAE presents a scalable solution 
superior to existing methods for analyzing large-scale data. 

 
To enable a direct comparison of methods, we adopted a paradigm of training models and 
then using them to make inferences on a new dataset. In contrast, manual gating usually 
imports historical gates, which are then manually adjusted when necessary for each sample, 
a time consuming and often error-prone approach. The alternative of simply using clustering 
approaches to discover sources of variability in each dataset independently can be difficult to 
scale and does not use a priori information on cell types. The main advantages of the train-
inference paradigm are scalability and reproducibility: any investigator can apply the exact 
same model to any dataset, obtaining results that are easily interpretable within the 
biologically established framework of immunology. These results show that scMAE 
outperforms alternative models within this paradigm. 

 
Directly comparing learning without pre-training (from scratch) and with pre-training, 
performance improved not only in cell type annotation but also in the few-shot setting 
(Supplementary Table S1, Figure 5b). This model was able to learn stably, while the from-
scratch model was unable to learn effectively with little training data. While not a dramatic 
performance improvement, in the other experiments using the pre-trained cell embeddings, it 
was encouraging to see that the pre-trained embedding was good at learning antibody co-
localization patterns, imputing unavailable protein expressions, and contributes meaningful 
performance gains for the subject-level predictions. 
 
In this study, we pre-trained our model using only one of the three available cohorts to 
evaluate the performance on several downstream tasks using all three cohorts. Future 
research will expand this approach by pre-training on a broader array of data from multiple 
studies, including more diverse subject phenotypes. This expansion is expected to enhance 
the model’s power and robustness, enabling it to more effectively distinguish between 
biological variations and gain a deeper understanding of protein functions and protein 
expression patterns. This, in turn, will lead to more accurate predictions in various 
downstream tasks. 

 
This study has several limitations. First, while these models are trained on only CyTOF data, 
its application to flow cytometry data might not be recommended due to inherent technical 
differences. Specifically, the methodologies used in flow and mass cytometry yield disparate 
patterns of protein expression. Yet, a model like scMAE, if pre-trained on flow cytometry data 
from scratch, could indeed become a viable approach for flow cytometry datasets. Second, 
we assume that cell type information from manual gating is the ground truth. However, this 
may not be the case in practice. Even the most skilled experts are prone to subjectivity and 
bias, which might lead to a bias toward <expected" results. This claim can be reinforced by 
our experimental results of the subject status prediction, where the pre-trained scMAE 
showed higher predictive power than the manual gated features in some tasks (Figure 5a). 
This raises the possibility that there may be information that manual gating misses. Finally, 
the size and type of cytometry panels used in practice vary widely depending on the 
research purpose. However, our model was only trained to work on data with fixed markers. 
For more meaningful research, it should work robustly for different panels in future studies, 
for examples, to accommodate data where only a subset of the markers has been 
measured. Despite these limitations, this study demonstrates the high potential of pre-

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580114doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580114
http://creativecommons.org/licenses/by-nc-nd/4.0/


training in single-cell cytometry, both because an approach like ours has not been applied to 
cytometry data analysis before and because it shows advantages over previous methods. 

 
Here, we introduced scMAE, a masked autoencoder model which builds latent embeddings 
of single-cell cytometry data and uses them to achieve good performance across a range of 
cell-level and subject-level tasks. Especially, the fine-tuned scMAE is as accurate as manual 
gating, with the labor-free advantages of automated analysis. To the best of our knowledge, 
scMAE is the first such model which specializes on cytometry data. Our results are a proof of 
concept for applying a combination of unsupervised and supervised analysis in the training-
inference paradigm to multiple cytometry datasets that use the same panel. This approach 
promises scalability across thousands of samples from multiple studies, providing robust and 
interpretable results while minimizing manual analysis. 
 
Methods 
Human Subjects 
All subjects consented and enrolled with approval of the University of Pennsylvania 
Institutional Review Board (Vaccine IRB no. 844642; Acute2020 IRB no. 808542; 
Acute2021 IRB no. 843758). All participants or their surrogates provided informed consent 
in accordance with protocols approved by the regional ethical research boards and the 
Declaration of Helsinki. 
 
For the Vaccine dataset, 43 individuals were enrolled for longitudinal monitoring of response 
to SARS-CoV-2 mRNA vaccine beginning in December 2020 through March 2021. All 
subjects received either Pfizer (BNT162b2) or Moderna (mRNA-1273) mRNA vaccines. 
Samples were collected at six time points: baseline, ~2 weeks after primary immunization, 
day of secondary immunization, ~1 week after secondary immunization, ~3 months after 
primary immunization, and ~6 months after primary immunization. Participants were self-
reported healthy without ongoing chronic health conditions. In the Vaccine dataset, the 
definition of secondary immune response was defined as follows. We labeled a secondary 
immune response as <Yes= if it occurred after a healthy person received two vaccines, or 
after a person with COVID-19 received one vaccine, or after a person with COVID-19 
received two vaccines. If a healthy person received a single vaccine, we labeled it <No=.  
 
For the Acute2020 dataset, patients were consented and enrolled within 3 days of admission 
to the Hospital of the University of Pennsylvania with a positive SARS-CoV-2 PCR test, 
regardless of the oxygen support needed. Clinical data were abstracted from the electronic 
medical record into standardized case report forms. All subjects in this dataset were 
consented and enrolled between March and December 2020 at the University of 
Pennsylvania. Subjects in the Acute2021 dataset were enrolled in the I-SPY Covid-19 
Trial28. Hospitalized participants at 5 trial sites (Penn, University of Alabama Birmingham, 
University of California San Francisco, University of Colorado, and Wake Forest University 
Atrium Health) with confirmed SARS-CoV-2 PCR or antigen testing and requiring greater 
than 6 liter per minute oxygen flow (including high flow nasal oxygen, high flow face mask 
oxygen, non-invasive ventilation, or invasive mechanical ventilation consistent with World 
Health Organization ordinal scale ≥ 5) for fewer than 72 hours were enrolled in this trial. 
Patients or their legally authorized representatives consented to be randomized to receive a 
backbone treatment (remdesivir and dexamethasone) alone versus backbone with one of 12 
investigational treatments. Details of the trial inclusion and exclusion criteria, and the non-
backbone treatment arms have been published at 
https://clinicaltrials.gov/study/NCT04488081. Whole blood was collected at time of admission 
and 7 days later. Samples from subjects enrolled at the University of Pennsylvania were 
processed on the day of collection. Samples from subjects enrolled at the University of 
Alabama at Birmingham, University of Colorado, University of California at San Francisco, 
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and Wake Forest University were shipped to the University of Pennsylvania and processed 
the day of arrival. 
 
Mass Cytometry 

For all samples, 270L of whole blood were stained using the MaxPar Direct Immune 
Profiling Assay (Standard BioTools, Inc, South San Francisco, CA)37. For the Acute2020 
dataset, samples were stained in accordance with manufacturer protocols. Briefly, whole 
blood was added to a 5mL tube containing a pellet of lyophilized antibodies. Blood was 
incubated at room temperature for 30 minutes and then lysed with Cal-Lyse lysing solution 
Standard BioTools, Inc, South San Francisco, CA). Cells were washed, followed by fixation 

with 1.6% PFA. Cells sat at 4C over night prior to staining with Cell-ID Intercalator-Ir. These 
samples are referred to as <fresh= because they did not undergo cryopreservation and 
thawing. Vaccine and Acute2021 data sets underwent a similar workflow as described 
above. However, after incubating for 30 minutes in the tube of lyophilized antibodies, stained 
whole blood was fixed with PROT1 buffer (Smart Tube Inc, Las Vegas, NV) and 
cryopreserved. Lyse, wash, and intercalator staining were performed as above after thaw. 
Stained samples were collected on a CyTOF 2 instrument with EQ4 beads (four element 
calibration beads, Standard BioTools, Inc). 
 
After data acquisition, .fcs files were gated to remove beads, debris, doublets, and dead 
cells using the OMIQ platform (Boston, MA); representative gates are shown in 
Supplementary Figure 13. After gating, DNA intercalator, viability, Gaussian and bead 
channels were dropped, and the remaining protein expression channels were transformed 
using inverse hyperbolic sine with a cofactor of 5. 
 
Model details 
Transformer block 
The transformer block consists of alternating layers of multihead self-attention (MSA) and 
multilayer perceptron (MLP) blocks (Equation 1,2). Layer norm (LN)38 is applied before every 
block, and Drop path (DP)39 is applied after every block. The MLP contains two linear layers 
with GELU activation function.  �Ă = �Ă21 + Āÿ (āĂ�(ĀĂ(�Ă21))) (Ă = 1, & , Ā) (1) �Ă = �Ă + Āÿ (āĀÿ(ĀĂ(�Ă)))         (Ă = 1, & , Ā) (2) 

where �Ă21 denotes output embeddings of the (Ă 2 1)-th layer and input embeddings of the Ă-th layer at the same time. 
 
Multi-head self-attention 
In the multi-head self-attention (MSA) layer, we compute query, key, and value matrix 
(ā, �, ý) from the input embeddings (�) for each head (Equation 3) and compute / heads by 
weighted sum of all values by attention weight for each head, where attention weight is 
calculated by the pairwise similarity between two elements of the input and their respective 
query and key representations (Equation 4). Finally, / heads are concatenated, and the 
output is linearly projected (Equation 5) [ā, �, ý] = �þþāĀ  (ā, �, ý ∈ ℝý×ýℎ) (3) 

where � ∈ ℝý×ý is input embeddings  þþāĀ ∈ ℝý×3ýℎ is learnable weight matrix, and þ/ 

is set to þ//. �āāÿĄāÿąĄ(ā, �, ý) = ĀąĀāă�ý(ā�Ā√þ/ )ý (4) āĂ�(ā, �, ý) = ÿąĄý�ā(/ÿ�þ1, & , /ÿ�þ/)þÿ (5) 

where /ÿ�þÿ = �āāÿĄāÿąĄ(Āÿ , ÿÿ , ýÿ)(ÿ = 1, & , /), and þÿ ∈ ℝý×ý is linear weight matrix. 
 
Single-cell Masked Autoencoder 
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The whole structure consists of an encoder and a decoder, which are used in the pre-
training step. The encoder is only then used with a single linear layer in the downstream 
supervised fine-tuning. The encoder (Āþ) consists of 12 layers of transformer blocks, each 
with 12 heads and 768 hidden dimensions, totaling 85 million parameters. In contrast, the 
decoder (Āý) is smaller than the encoder. It consists of 4 layers of transformer blocks with 6 
heads and 384 hidden dimensions for a total of 7 million parameters. The dimension size of 
latent cell or subject representations for the downstream tasks is 768. This setting was 
proposed in the Masked autoencoder. 
 
Training details 
Masked Single-cell Modeling (MScM) 
scMAE learns to maximize ÿ(ýÿ,ă�Āāþý|ýÿ,ÿĄă�Āāþý , �ÿĄă�Āāþý) (6) 

for cell ÿ, where ýÿ,ă�Āāþý  ∈  ℝ(ÿ∙ý)×1 denotes masked protein expressions of cell ÿ, and �ă�Āāþý ∈  ℝ(ÿ∙ý)×(ý21) denotes masked protein embeddings after masking. ÿ is a masking 
ratio, Ć is the number of proteins in the data, and þ is a hidden dimension size. Likewise, ýÿ,ÿĄă�Āāþý  ∈  ℝ(12ÿ)∙ý×1 denotes unmasked protein expressions of cell ÿ, and �ÿĄă�Āāþý ∈ ℝ(12ÿ)∙ý×(ý21) denotes unmasked protein embeddings. 

 
The encoder (Āþ) generates a latent representation of the cell. The unmasked latent 

representation of cell ÿ is defined as �ÿ,ÿĄă�Āāþý  ∈  ℝ(12ÿ)∙ý×ý as the following, �ÿ,ÿĄă�Āāþý = Āþ((�ÿĄă�Āāþý  ∥ ýÿ,ÿĄă�Āāþý)  + ĀÿĄă�Āāþý) (7) 

where ĀÿĄă�Āāþý  ∈  ℝ(12ÿ)∙ý×ý is sine-cosine positional embeddings for masked proteins. 
The idea of the concatenation (∥) of protein embeddings with expression values was inspired 
from MET40. 

 
The decoder (Āý) reconstructs the masked values as followings, ý�ÿ,ă�Āāþý = Āý((�ÿ,ÿĄă�Āāþý  ∥ �) + Ā) (8) 

 

Let ā denote a learnable mask token embedding represented as a row vector ā ∈  ℝ1×ý. 
We construct a matrix � by stacking this vector ÿ ∙ Ć times, such that the resulting matrix � 

has dimensions (ÿ ∙ Ć × þ). Ā ∈  ℝý×ý is sine-cosine positional embeddings. To calculate 
the reconstruction loss, we use mean square error (MSE) loss for all cells, ĀąĀĀ = ∑ āĂā(ý�ÿ,ă�Āāÿþ, ýÿ,ă�Āāÿþ)ÿ (9) 
 
Why positional embedding is necessary 
It might seem that positional embedding is not necessary because the input is a tabular data. 
However, the position serves as an index to indicate which protein's expression value should 
be reconstructed by the decoder during MScM. For example, 2nd, 3rd, and 7th proteins of 10 
proteins are masked, positional embedding provides information to reconstruct the 
expression of the 2nd, 3rd, and 7th proteins. Therefore, when using scMAE, users make sure 
to match the order of the proteins. 

 
Cell representation 
After pre-training, the cell representation (�ÿ) of cell ÿ is obtained as follows. �ÿ = Āþ((� ∥ ý) + Ā) (10) �ÿ = ∑ �ÿ[ā, : ]ā (11) 

Then, this cell representation is used as input of a linear layer for cell-level downstream 
tasks. 
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Subject representation 
The subject representation is obtained by multiple global pooling methods. 

⚫ Global mean pooling ÿ = meanÿ �ÿ (12) 

⚫ Global sum pooling ÿ = ĀĂăÿ �ÿ (13) 

⚫ Global max pooling ÿ = maxÿ �ÿ (14) 

⚫ Global min pooling ÿ = minÿ �ÿ (15) 

Then, this subject representation is used as input of a linear layer for subject-level 
supervised downstream tasks. þ̂ = ĀÿĄÿ�ÿ(ÿ) (16) 
 
Supervised learning in downstream tasks 
Cross entropy loss is employed for classification tasks and Mean squared error (MSE) loss 
is employed for regression tasks. 
 
In the cell type annotation task,  þ̂ÿ = ĀÿĄÿ�ÿ(�ÿ) (17) ĀąĀĀ�� = 2 ∑ þÿ Ăąāþ̂ÿÿ (18) 

where þÿ and þ̂ÿ indicate the ground truth cell type and the predicted probability for cell type 
of cell ÿ, respectively. 

 
In the imputation task,  þ̂Ā = ĀÿĄÿ�ÿ(�Ā,ÿĄă�Āāþý) (19) ĀąĀĀ�ÿ� = ∑(þ̂Ā 2 þĀ)2Ā (20) 

where þĀ and þ̂Ā denote the ground truth expression value and the predicted value of 

masked protein Ā, respectively. 
 
In the subject-level prediction tasks, þ̂ā = ĀÿĄÿ�ÿ(ÿā) (21) ĀąĀĀ�� = 2 ∑ þā Ăąāþ̂āā (22) 

where þā and þ̂ā are the ground truth label and predicted probability for label of subject ā, 
respectively. 

 
Impact of Masking ratio during pre-training 
To test if masking ratio affects scMAE training, we trained three different versions of the 
model with masking ratios of 0.25, 0.5, and 0.75. The result was there was no significant 
difference in performance on the cell type annotation tasks (Supplementary Table 5). 
Therefore, all the scMAE experiments were performed with a 0.25 masking ratio. 
 
Training setting 
The configuration includes a batch size of 768, drop path regularization of 0.1, AdamW 
optimizer with momentum of 0.9 and weight decay of 0.05, learning rate of 0.0005 with a 
cosine scheduler, and label smoothing during fine-tuning. 
 
Computational cost in training and inference 
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The pre-training required 10 days with four of GeForce RTX 2080 Ti Rev. A to process 6.5M 
cells through 200 epochs. Fine-tuning the model for cell type annotation took 13 days on a 
single GeForce RTX 2080 Ti Rev. A GPUs to process 29.4 million cells through 100 epochs, 
with early stopping implemented. For inference, the runtime was 1.2 hours for 7.3M cells 
under the Vaccine dataset and 2.1 hours for 18.4M cells under the Acute2020 dataset and 
Acute2021 dataset, both on a single GPU. 
 
Benchmarking models 
Manual gating 
Each sample from all datasets was manually gated using the OMIQ platform to obtain the 46 
terminal populations used as ground truth labels. Representative gates from our strategy are 
shown in Supplementary Figure 3. 
 
Static gating 
For each gate in our hierarchy, we aggregated the candidate gate positions from all training 
samples in the Vaccine dataset into one consensus gate. By definition, a point is in the 
consensus gate if it falls into at least 30% of all the candidate gates (Supplementary Figure 
4). We then created a consensus hierarchy out of all consensus gates and applied it 
statically to all test samples. 
 
FlowSOM clustering 
The same 60% of the Vaccine data samples were used to train an unsupervised FlowSOM 
clustering model. Version 2.6.0 of the FlowSOM R package was used with default 
parameters, except for the total number of metaclusters, which we set to 46 to match the 
number of ground truth labels. As an unsupervised clustering algorithm, FlowSOM does not 
have an inference mode. We performed inference on testing datasets (20% of the Vaccine 
dataset as an internal test set, and the two external test sets) by assigning each datapoint to 
the nearest SOM node from the trained model, and preserving the assignment of nodes to 
metaclusters from the training phase. Evaluation of accuracy and balanced accuracy 
required the extra information of a bipartite matching between the 46 FlowSOM clusters and 
the 46 ground truth labels. Following Weber, L. M. et al.41, we obtained the matching using 
the Hungarian algorithm, implemented in the function solve_LSAP of the R package clue.  
 
Gradient Boosting Decision Tree (GBDT) 
We used XGBoost32 python package for GBDT. We ran XGBoost regressor or classifier with 
100 estimators and 0.03 learning rate and set early stopping based on the performance 
change for the validation set. 

 
Fully connected Deep Neural Network (DNN) 
DGCyTOF (Cheng, L. et al.30) and DeepCyTOF (Li, H et al.31) proposed a fully-connected 
neural network for cytometry data. Both were designed for a cell representation and cell-
level prediction tasks, so we use this architecture as a comparison model. 

 
Convolutional Neural Network (CNN) 
Hu. Z et al.8 proposed a model using convolutional neural network for cytomegalovirus 
(CMV) classification. The original model was designed for subject-level tasks, but since it 
uses a CNN structure to draw cell representations and pool them, we modified to the same 
architecture without the pooling layer as a comparison model. 
 
Metrics 
Balanced accuracy (Bacc) 
For a multi-class imbalanced dataset, we used Balanced accuracy (Bacc) instead of 
Accuracy. Balanced accuracy is defined as a macro-average of recall scores per class in a 
multi-class classification. 
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A Recall score is defined as: āÿý�ĂĂ =  ăÿăÿ + ĂĂ , (23) 

 
where TP is true positive, and FN is false negative. 
 
R-squared 
In a regression task, if þ̂ÿ is the predicted value of the ÿ-th sample and þÿ is the 
corresponding true value for total Ą samples, the R-squared is defined as: ā2 = 1 2 ∑ (þÿ 2 þ̂ÿ)2Ąÿ=1∑ (þÿ 2 þ̅)2Ąÿ=1 , (24) 

where þ̅ = 1Ą ∑ þÿĄÿ=1 . 

 
AUROC 
A receiver operating characteristic (ROC) curve is widely used for evaluating prediction 
models. It plots True Positive Rate (TPR) against False Positive Rate (FPR). ăÿā =  ăÿăÿ + ĂĂ , (25) Ăÿā =  ăÿĂÿ + ăĂ , (26) 

Where TP, FP, TN, and FN are the number of true positives, false positives, true negatives, 
and false negatives respectively. AUROC stands for the area under the ROC curve. 
 
Cohen’s þ 
Cohen’s þ is defined as the difference between two means divided by a standard deviation 
for the data, þ = ă1 2 ă2√Ā12 + Ā222 , (27)

 

where ă1 and Ā1 are mean and standard deviation of method 1 and, ă2 and Ā2 are mean 
and standard deviation of method 2. 
 
Protein embeddings 

After pre-training through MScM, the trained � ∈  ℝý×(ý21) in scMAE represents protein 
embeddings for Ć proteins. It is expected that they have protein information about the 
heterogenous, complex, and dynamic immune cells without any prior information, only 
through learning on the data itself. This was confirmed by the PCA 2-dimensional plot in 
Figure 2a. 
 
Imputation 
We masked CD45RO, CD45RA, CD27, CD28, TCRgd, CD197, and CD127 expressions and 
used the remaining markers to predict the expression of these seven marker expressions. 
Infinity Flow used GBDT as the imputer. Similarly, the unmasked cell representations were 
first extracted from the pre-trained scMAE and used as input to GBDT to train and then 
evaluated on the external test sets (not end-to-end). 
 
Attention score 
From Equation 4, we first obtain the output of ĀąĀāă�ý function for the interpretation for cell ÿ (Equation 28) and calculate the attention score þÿ by averaging over the query axis 
(Equation 29). �� = ĀąĀāă�ý (ā���Ā√þ/ ) (28) 
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þÿ = 1Ć ∑ �ÿ[ā, : ]ý
ā=1 (29) 

 
In our experiments, we sampled 2% of all cells for each dataset. To calculate the attention 
score, we only used the information from the first layer, because the first layer is the most 
influential in determining which inputs to give attention to, and there was no significant 
difference in attention between inputs after the second layer. 
 
Few-shot learning setting in the cell type annotation 
For N-shots, we trained using only the first s samples per class in the training and validation 
sets and then evaluated on the entire test set. We compared performance for 5, 10, 15, and 
20 shots. 
 
Software 
This project would not have been possible without numerous open-source Python packages 
including torch, torchvision, timm, deepspeed, einops, jupyter, matplotlib, numpy, pandas, 
scikit-learn, seaborn, FlowCytometryTools, scipy, etc. Specific versions for each package 
can be found at https://github.com/JaesikKim/scMAE/blob/master/requirements.txt.  
 
Data availability 
The data presented within this study is available upon formal request to the corresponding 
author. 

 
Code availability 
All software for dataset construction, model training, deployment, and analysis is available 
on our Github page: https://github.com/JaesikKim/scMAE.   
 
Figure Preparation 
All plots were generated via Python scripts using the following open-source visualization 
packages: seaborn 0.12.1. Microsoft PowerPoint was used for the final annotation and 
assembly of panels. BioRender was used for generating Figure S2. Mathematical equations 
were prepared with LaTeX. 
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