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Abstract

High-throughput single-cell cytometry data are crucial for understanding immune system’s
involvement in diseases and responses to treatment. Traditional methods for annotating
cytometry data, specifically manual gating and clustering, face challenges in scalability,
robustness, and accuracy. In this study, we propose a single-cell masked autoencoder
(scMAE), which offers an automated solution for immunophenotyping tasks including cell
type annotation. The scMAE model is designed to uphold user-defined cell type definitions,
thereby facilitating easier interpretation and cross-study comparisons. The scMAE model
operates on a pre-train and fine-tune approach. In the pre-training phase, scMAE employs
Masked Single-cell Modelling (MScM) to learn relationships between protein markers in
immune cells solely based on protein expression, without relying on prior information such
as cell identity and cell type-specific marker proteins. Subsequently, the pre-trained scMAE
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is fine-tuned on multiple specialized tasks via task-specific supervised learning. The pre-
trained scMAE addresses the shortcomings of manual gating and clustering methods by
providing accurate and interpretable predictions. Through validation across multiple cohorts,
we demonstrate that sScMAE effectively identifies co-occurrence patterns of bound labeled
antibodies, delivers accurate and interpretable cellular immunophenotyping, and improves
the prediction of subject metadata status. Specifically, we evaluated scMAE for cell type
annotation and imputation at the cellular-level and SARS-CoV-2 infection prediction,
secondary immune response prediction against COVID-19, and prediction the infection
stage in the COVID-19 progression at the subject-level. The introduction of scMAE marks a
significant step forward in immunology research, particularly in large-scale and high-
throughput human immune profiling. It offers new possibilities for predicting and
interpretating cellular-level and subject-level phenotypes in both health and disease.

Introduction

High-throughput single-cell protein expression data, acquired through flow and mass
cytometry, are essential to understanding the role of the immune system in managing
infectious diseases, autoimmunity, cancer, and the response of immune cells post-treatment.
Cytometry assays are designed to profile millions of cells from a biological sample, precisely
quantifying biomarkers specific to various cell types, including rare ones. For example,
cytometry can pinpoint cell populations that are differentially abundant or proteins that are
differentially expressed between subject groups. This process of immune profiling effectively
delineates both similarities and diversities within the immune landscape of different subjects,
contributing significantly to precision medicine by enabling predictions at an individual level.

The most prevalent approach for analyzing cytometry data is manual gating, a process
involving user-applied sequential filters to bivariate plots of protein markers, thereby isolating
specific cell subsets for focused analysis'. These bivariate plots visually represent the
distribution of protein markers, allowing a human analyst to manually identify and select cells
based on their prior knowledge of these distributions. Despite its widespread use, manual
gating faces several significant challenges. Firstly, it is a time-intensive process, particularly
for panels with over a dozen markers??, as the number of biaxial plots to consider increases
quadratically with the number of parameters measured. Secondly, manual gating is prone to
subjectivity and bias?3. Each analysis is influenced by pre-existing knowledge, which can
lead to a bias towards anticipated results. Subjectivity also enters through the selection of
the order of marker combinations and the definition of gate boundaries. Additionally, due to
panel size limitation, cytometry panel design often restricts the search space for pre-defined
markers and the corresponding cell types. Thirdly, results from manual gating can be
challenging to replicate®3. Different studies may employ varied gating strategies, including
distinct gating sequences, shapes, and boundaries for gates, impacting the robustness and
consistency of identified cell subsets. Moreover, the level of gating stringency also varies
between individual analysts, contributing to inconsistent results.

The ability to simultaneously measure multiple protein markers has significantly increased
the complexity of cytometry data. This complexity has led to the development of automated
analysis techniques, particularly unsupervised clustering methods like FlowSOM*,
PhenoGraph?®, Scaffold Maps®, and X-shift”. While these clustering approaches address
some limitations of manual gating, they also introduce their own set of constraints. Notably,
while unsupervised clustering methods can detect data variability, it struggles to differentiate
between biological or technical sources of this variability. This makes these methods
susceptible to batch effects, shifts in data distribution, and non-specific binding of
antibodies®. Another challenge arises in cross-study comparisons, where minor variations in
panel selection, sample collection, measurement noise, or random seeding can significantly
lead to abrupt changes in cluster boundaries. For example, CD4 T cells might be clustered
differently in studies based on memory or functional subtypes, complicating direct
comparisons between even highly overlapping datasets. To strike a balance between labor-


https://doi.org/10.1101/2024.02.13.580114
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.13.580114; this version posted February 14, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

intensive manual analysis and unpredictable unsupervised analysis, we focus on combining
unsupervised and supervised learning to develop an automated method that can
immunophenotype future samples using consistent cell type ontologies, regardless of
experimental variations.

In the broader context of big data and advanced computational models, artificial intelligence
(Al) has achieved great success in fields like computer vision and natural language
processing. The effort needed to manually label data makes it extremely difficult to fully
leverage the vast amounts of existing unlabeled data in the supervised learning paradigm.
However, the revolution of self-supervised learning techniques, particularly in the pre-training
phase, empowers models to more accurately learn data distributions and utilize unlabeled
data effectively. The core concept behind self-supervised pre-training is randomly masking a
portion of the input data and training the model to reconstruct masked information using
context clues from the surrounding data. This approach allows the pre-trained model to be
fine-tuned for specific downstream tasks or to function as generative Al. Coupling the
transformer® architecture, known for its high expressiveness and scalability, has led to
significant synergistic effects. Notable examples include Masked Language Modeling (MLM)
as seen in BERT'® and GPT'' and Masked Image Modeling (MIM) in models like ViT2,
BeiT'3, and MAE'* in computer vision.

The success of the masking approach has reverberated within the biomedical field as well.
For example, protein language models (pLMs) are a set of Al models trained on extensive
sets of unlabeled protein sequences'®'”. pLMs have steadily gained traction across diverse
applications for protein design, including antibody engineering'® and drug discovery2°, In
addition, Al models trained on unlabeled single-cell RNA sequencing (scRNA-seq) data have
been published and used for cell annotation purposes?'?’. Thus, masking models have
proven to significantly outperform previous conventional methods in effectiveness and show
great potential in biomedical applications. Similarly, we apply these techniques for
immunophenotyping, as cytometry data can be structured in a similar way.

In this study, we develop an accurate and interpretable automated immunophenotyper for
single-cell cytometry data, using a technique we call Masked Single-cell Modelling (MScM).
This approach employs self-supervised pre-training on single-cell cytometry data. During
MScM, our model learns the relationships and dependencies among markers on immune
cells by analyzing expression patterns in the massive amount of data sets, without requiring
additional information about cellular identity. The resulting pre-trained model can then export
a useful representation that is advantageous for various downstream tasks, surpassing the
utility of the original data. We demonstrate that our model not only overcomes the challenges
of manual gating and clustering methods but also provides accurate results even on
independent datasets that were never seen during its training. This model can accurately
identify complex cell types and interprets which crucial protein markers predict targets.
Moreover, the model exhibits scalability, reproducibility, and enhanced precision in subject-
level phenotyping. In contrast to previous approaches, our model offers a novel approach
combining pre-training and fine-tuning for automated annotation of cell identity in single-cell
cytometry data. This novel approach in immunophenotyping promises to broaden the impact
of existing cytometry data and enhance immunological knowledge by more accurately
phenotypes at both cellular and subject levels.
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Figure 1 (a) Overview of Single-cell Masked Autoencoder (sScMAE). In the pre-training step, protein
expression data is randomly masked. The unmasked protein expressions are concatenated with
learnable protein embeddings and fed into the encoder. This encoder generates unmasked latent
representations, which are merged with learnable mask embeddings and fed to the decoder for
reconstruction of the masked values. In the fine-tuning step, the pre-trained encoder produces latent
representations for both cells and subjects, facilitating cell-level and subject-level downstream tasks,
respectively. (b) From left to right, masked, imputed (reconstructed), and original data. Each row
represents a marker protein, and each column represents a randomly sampled cell. Initially, 25% of
the original data is randomly masked, shown in white in the masked data visualization. scMAE
effectively reconstructs these masked regions, demonstrating the model’s accuracy.

Results

Single-cell Masked Autoencoder (scMAE) algorithm

To address the challenges of time-consuming and labor-intensive immunophenotyping in
cytometry data, we propose scMAE, a single-cell Masked Autoencoder model. This
innovative model constructs and employs latent embeddings of single-cell cytometry data to
obtain state-of-the-art performance on various cell-level and subject-level tasks. sScMAE is
built upon a Masked Autoencoder (MAE) ' architecture, featuring stacked transformer blocks
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in both the encoder and decoder. Inspired by successful methodologies in computer vision
and natural language processing, scMAE undergoes a two-phase training process: self-
supervised pre-training followed by supervised fine-tuning, as illustrated in Figure 1a. The
main advantage of this approach is its ability to utilize large-scale, easily obtainable
unlabeled data during the initial self-supervised pre-training phase, thus reducing the
reliance on scarce and labor-intensive labeled data in the subsequent fine-tuning phase.
During pre-training, a randomly selected subset of the protein expression data is masked
and fed to an encoder, which produces latent embeddings of the masked data. In turn, these
embeddings are processed by a decoder that attempts to reconstruct the unmasked, original
data (Figure 1b, Supplementary Figure 1). Through this process, the encoder-decoder
system learns to optimize the embeddings to minimize reconstruction error, effectively
enabling the model to obtain informative data embeddings without requiring explicit ground
truth labels. During the second fine-tuning stage, the model employs the full, unmasked
protein expression data to generate latent cell representations using the encoder that was
pre-trained in the first stage. These representations are applicable to a range of downstream
tasks, whether they involve labeled data or not. Cell representations generated by the pre-
trained encoder can be used for unsupervised tasks or plugged into another classifier to
solve tasks through supervised fine-tuning. Specifically, we evaluated the pre-trained
scMAE’s performance on two cell-level tasks: cell type annotation and imputation. Moreover,
for subject-level tasks, we tested SARS-CoV-2 infection prediction, secondary immune
response prediction against COVID-19, and prediction the infection stage in the COVID-19
progression.

We analyzed Cytometry by Time Of Flight (CyTOF) data from three distinct COVID-19
studies conducted at the University of Pennsylvania, referred to as the Acute2020 dataset,
Vaccine dataset, and Acute2021 dataset. For all datasets, whole blood was stained with a
30-marker panel. Each of the datasets underwent a routine manual gating practice executed
by domain experts to extract single, intact cells in preparation for downstream analysis. The
Acute2020 dataset consists of single-time-point samples from 13 patients hospitalized with
acute SARS-CoV-2 infection in 2020 and 13 healthy controls, comprising a total of 6.5M
cells. The Vaccine dataset includes 37 healthy adults followed longitudinally before and after
(7 days after second dose) SARS-CoV-2 mRNA vaccine, for a total of 150 FCS files. This
dataset is composed of 36.7M cells. Lastly, the Acute2021 dataset contains longitudinal
samples from 42 SARS-CoV-2 infected individuals who were enrolled in the [-SPY COVID-
19 Trial?® in 2021. Samples were collected at the time of hospital admission and 7 days later.
This dataset includes 11.9M cells from 56 FCS files. Prior analysis of flow cytometry data
from the Acute2020 dataset revealed heterogenous peripheral blood profiles among patients
hospitalized with SARS-CoV-2, capturing both common and uncommon cells and cell
phenotypes compared to healthy individuals?. Thus, the Acute2020 dataset was chosen for
pre-training, while all three datasets were used in the downstream evaluations.
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Figure 2 (a) PCA plot of the scMAE protein embeddings, demonstrating how the model, through
unsupervised pre-training, effectively learns protein embeddings that represent the spatial closeness
of antibody probes. (b) Model comparisons in the 46 cell type annotation with Balanced Accuracy
(Bacc). The internal test set is Vaccine dataset after train-test split, the external set 1 is Acute2021,
and the external set 2 is Acute2020. GBDT is a gradient boosting decision tree. Static gating is a
method to aggregate into a single consensus gate for each gate in the hierarchy (see Methods). Deep
neural network (DNN) denotes the fully-connected neural network proposed by Cheng, L. et al.*° and
Li, H et al.%' for cytometry data analysis. Convolution neural network (CNN) denotes a model
architecture that removes only pooling layer from the CNN proposed by Hu. Z et al.® for
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cytomegalovirus (CMV) classification. (c) Accuracy of cell type annotation for both 5 abundant and 15
rare cell types.

scMAE learns antibody co-occurrence patterns

The pre-trained scMAE effectively learns the patterns of co-occurrence among antibodies
targeting specific proteins, purely from data, without relying on any prior knowledge. This
capability is demonstrated by the way scMAE groups proteins based on their co-localization
on particular cell types, as seen in Figure 2a. For example, proteins that appear mostly on T
cells (CD3, CD4, CD8, CD28, CD183 etc.) cluster together, as do proteins that mostly
appear on B cells (CD19, CD20, CD185, CD196, IgD). Interestingly, TCRgd and CD197
cluster with neutrophil markers (CD16 and CD66b), despite not traditionally being associated
with neutrophils. An in-depth analysis showed that anti-TCRgd and anti-CD197 antibodies in
this panel were indeed measured in neutrophils, in lower amounts compared to T cells
(Supplementary Figure 2). In the case of TCRgd, this is likely non-specific binding,
whereas for CD197 the reasons could be technical or biological. Either way, because
neutrophils are the most abundant cell type, they are the dominant target for background
expression of TCRgd and CD197. This result illustrates that scMAE can effectively capture
the contextual relationships and dependencies between immune cell marker expression
levels. Thus, this model can be learnable for data patterns, enabling it to successfully
perform subsequent downstream tasks.

scMAE is an accurate cell immunophenotyper

Cell type annotation, traditionally achieved through manual gating and clustering methods, is
now efficiently automated by our scMAE model. By fine-tuning with cell type labels, scMAE
accurately annotates cell types in single-cell datasets. Ground truth labels for 46 cell types,
obtained from manual gating, were used (Supplementary Figure 3). We used 60% of the
Vaccine dataset for fine-tuning the model, 20% as validation and the remaining 20% as an
internal test set. We further evaluated scMAE using the Acute2021 dataset and the
Acute2020 dataset as external validation sets (External set 1 and 2, respectively). We
compared scMAE with a gradient boosting decision tree (GBDT)®, a fully connected deep
neural network (DNN), and a convolutional neural network (CNN) (see Methods) as well as
cytometry-specific analysis methods: static gating and unsupervised clustering with
FlowSOM.

As a baseline, we took the gating strategy developed on the training dataset and apply it
statically to the testing datasets, without adjustments for inter-sample variability
(Supplementary Figure 4). This approach is equivalent to manually constructing a decision
tree and then applying it on the testing data. The other supervised models used here can be
seen as refinements of this idea: they attempt to learn a more robust encoding of the gating
information by using multivariate rather than bivariate expression patterns. Alongside the
supervised classification methods, we included FlowSOM, a popular unsupervised clustering
method for cytometry. To match our supervised paradigm, we add an inference mode to
FlowSOM by mapping each unseen test datapoint to the nearest SOM node (see Methods).

Given the imbalanced distribution of cell type, with neutrophils comprising over 60% of cells,
we used Balanced accuracy (Bacc) to assess model performance fairly. The experimental
results showed consistently high Bacc on both internal test sets and two external sets, with
the internal test set achieving 93.1% Bacc and the external sets 82.5% and 81.0% Bacc,
respectively (Figure 2b). When we examined performance by cell type, our model was
found to be more accurate than others for most cell types (Supplementary Figure 5).

Notably, the model performed particularly well on rare cell types. Accurate prediction of rare
cell types is difficult because it is easy for a model to be trained with a bias toward more
frequent cell types. However, when comparing performance on cells with a frequency of less
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than 0.1% in Figure 2c, both internal test set and external sets show more accurate
predictions for rare cell types than the comparison models in most cases.

In addition, scMAE’s performance benefits from pre-training, outperforming the scMAE
model from scratch (non-pre-trained), demonstrating the value of leveraging large-scale
unlabeled data for pre-training (Supplementary Table 1). While FlowSOM scored lower on
our accuracy metrics, this outcome does not reflect the quality of the algorithm; instead, it
underscores the limitations of unsupervised methods that do not utilize training labels. This
illustrates one key pitfall of unsupervised analysis: this approach reveals true variability in
the data, which may not be biologically important. For example, unsupervised analysis splits
neutrophils, the dominant population, into 6 clusters based on non-specific binding of anti-
CD3 or anti-TCRgd, while more subtle, but biologically meaningful, populations like T cell
effector memory subsets are missed.

These results show that our scMAE model is robust to technical variation between datasets,
showcasing superior performance across different collection and processing protocols. For
example, despite being trained on the Vaccine dataset from cryopreserved samples of
healthy subjects in 2021, scMAE outperformed all other methods on the Acute2020 dataset,
which comprised fresh samples from subjects with acute COVID in 2020. These results
underline scMAE’s potential as reliable tool for cell immunophenotyping across diverse
datasets.

scMAE enhances regression imputation for cytometry data

Current technology for flow and mass cytometry only allows a few dozen markers, and
sometimes cost considerations may reduce the number even further. This is unlike single-
cell RNA sequencing or other similar single-cell techniques, which can capture thousands of
parameters. Despite these limitations, cytometry remains a powerful tool in single-cell
biology due to its widespread use, ease of application, clinical implementation, and its
capacity to analyze significantly more cells (typically millions versus thousands in single-cell
genomics). Fully exploiting these advantages of cytometric approaches through advanced
computational methods, for example, allowing measurements on small panel sizes to yield
analytical results similar to those on larger panel sizes would be a major advance for the
field. To investigate this feasibility, Becht, E. et al.®® proposed Infinity Flow, applying a
Gradient Boosting tree model®? to impute the expression of over 300 markers from merely
15. We assessed whether the scMAE'’s cell latent representations could further enhance
regression imputation. In our experiments, we masked 7 markers associated with memory
subsets in T cells (CD27, CD28, CD45RA, CD45R0O, CD127, CD197), using the remaining
data to predict the masked marker expressions with both Infinity Flow and scMAE, the latter
fine-tuned for imputation. We used the Acute2020 data for training, and the Vaccine dataset
and Acute2021 dataset as external sets (External set 1 and 2, respectively). R-squared
values were used for evaluation.

The scMAE model achieved imputation performances with R-squared values ranging from
0.2-0.6 (Figure 3a), despite being limited to 23 markers not directly indicative of T cell
memory states and their associated masked markers. Notably, sSCMAE outperformed Infinity
Flow for five of the seven markers. Beyond identifying patterns of universally expressed
proteins, such as CD45RA in NK cells and CD45R0O in neutrophils, scMAE also showed high
correlations between true and predicted values, specifically within T cells or for CD27
expression in B cells (Figure 3b, Supplementary Figure 6-8). These results suggest that
scMAE can infer information about the memory states of T and B cells, even in the absence
of the standard memory markers.


https://doi.org/10.1101/2024.02.13.580114
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.13.580114; this version posted February 14, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a Internal set External set 1 External set 2
3 0.95 3 T os0
corsro ¢ I - ommm B O omm N
& 085 « & 950
Infinity Flow scMAE Infinity Flow scMAE Infinity Flow scMAE
0.85
B Boas k3
CD45RA 2% 2 20
foo N B .. I
o 0.75 o o 0.20
Infinity Flow scMAE Infinity Flow sCMAE Infinity Flow SCMAE
B om0 g 070 2065
] 5 @
cbh27 =z 2065 S 060
4 [id [idhe
Infinity Flow scMAE Infinity Flow scMAE Infinity Flow scMAE
B 8 B o4
2 2055 2 0
S 075 g ]
Ccb28 =z = =
: 2 Pos
& 070 © 4 ]
Infinity Flow scMAE Infinity Flow scMAE Infinity Flow scMAE
K B 3
=080 03 T 02
= =) =]
'3 [id I ot [N
Infinity Flow scMAE Infinity Flow scMAE Infinity Flow scMAE
0.80
8 Boss B 050
Sors S 050 g
ccr i B
: c 04 oo TR
%70 o © p40
Infinity Flow scMAE Infinity Flow scMAE Infinity Flow scMAE
k] B k]
5 0.75 5 045 5 04
3 3 3
oz -l I G ———
@0 & & 03 I
Infinity Flow scMAE Infinity Flow scMAE Infinity Flow scMAE
b CD45RA CD28

6

a

201

Predicted expression

Predicted expression

Predicted expression

-

Predicted expression
H

Predicted expression
i

8 B

6 ’
7 b o
01

2
- - . - ° oy - — - . Mo . o [ . W, 3 - . = - . Mo | - S ~ LT
0 2 4 6 8 10 0 2 4 6 @ 10 ¢ 2 4 6 & 10 0 2 4 6 8 10 ¢ 2 4 & & 10

Predicted expression

n
=
.

2

I All cell types [l... | Tecells i ¥ Becells Al cell types oo ] Tcells 1 Beells

—_— A,
2 4 6 8 10

True expression True expression True expression True expression True expression True expression
10 10 we| 10 s Fios | 10 o | 10
All cell types || T cells B cells Il cell types T cells B cells
c c wr | € uon c c c
- =le 8 S 8 2 w O 8 ws S 8 "
] @ s | R @ ] @ 0
w | 8 2 ™ in 2 2
2 2 L L L .l e
a6 5 = E N & wn |8 6 wo 86 n
b i} w |8 [ [l LR
T | B B w0 3 w P4 4 —_ 3
z 3 k] w18 z z <
3, - g - |3 e T 22 32
- oy | & - | E 0 < =& =l& "
[ nenunni——— ol o ¢ o ol [ accmneii— H [} e SRR W (17— 5
0 2 4 6 B8 10 0 2 4 6 8 10 0 2 4 6 8 10 o 2 4 6 & 10 0 2 4 6 8 10 0 2 4 6 8 10
True expression True expression True expression True expression True expression True expression

Figure 3 (a) R-squared comparison between Infinity Flow and scMAE for the imputation task. A total
7 markers were masked and then predicted by the two models. (b) Plots of actual versus predicted
expression levels for each marker in the external set (Vaccine dataset). The dashed line represents
the ideal relationship, serving as a reference to assess the performance.

scMAE is an interpretable immunophenotyper
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A key challenge in deploying machine learning models for clinical or biological analyses is
their “black box” nature, which means that the rationale for cell type prediction decisions is
difficult to interpret. Unlike these models, scMAE incorporates a multi-head self-attention
mechanism within its transformer architecture, enabling interpretable predictions for
downstream tasks. The attention scores generated by this model indicate the importance of
specific marker information and their interrelations in the context of prediction tasks, with
higher attention score indicating greater reliance on a maker’s information relative to other
markers. In our analysis, we first measured the attention scores attributed to each feature
across different cell types during cell type annotation (Figure 4a). Notably, CD45
consistently emerged as the marker with the highest attention score across all cell types,
serving as a key discriminator between major immune cell lineages, such as granulocytes
and mononuclear cells. Aside from CD45, most markers were highly attended in cell types in
which they are highly expressed: for example, CD19 in B cells, CD123 in basophils and
pDCs, CD294 in basophils and eosinophils.

Similarly, we assessed the attention score of 23 markers relative to each cell type in the
context of predicting the expression of 7 masked markers in the Imputation task (Figure 4b).
For cell types with constitutive expression or non-expression of masked markers, the model
primarily focused on markers indicative of cell type identity (e.g., CD294, CD66b, CD45 for
eosinophils; CD16, CD45, and HLA-DR for neutrophils). In the case of T cells, where
knowing the cell type was insufficient for predicting expression of the masked proteins, the
model attended to the T cell marker protein CD3, but also to CD45 and HLA-DR, both of
which were negatively correlated with CD45RA (Supplementary Figure 12). The negative
correlation between CD45 and CD45RA in T cells was not expected by the authors, but
scMAE found and exploited it to improve imputation performance.

The attention scores not only demonstrated a consistent pattern across external datasets
(Supplementary Figure 9) but also showed minimal variance between samples
(Supplementary Figure 10,11), underscoring the model’s interpretability and reliability in
identifying critical biomarkers for cell type predictions.

scMAE improves subject status predictions

In a typical flow cytometry or CyTOF analysis, hundreds of thousands of single cells are
generally obtained from an individual sample, aiming to understand cellular-level
immunophenotypes, like cell type identification. However, extending these analyses to
achieve phenotypic precision at the individual level is also critical. While manual gating is a
sophisticated method for extracting subject-level features using expert knowledge, it may
overlook complex co-expression patterns indicative of cellular states like activation,
senescence, or exhaustion in T cells due to the high-dimensional nature of cell dynamics.
Ideally, our aim is to leverage the comprehensive global distribution of cell information to
gain deeper biological insights.

A key requirement for this goal is ensuring the method’s predictions remain consistent
regardless of the cells’ order in the dataset, known as permutation invariance. This ensures
that the method is robust and not reliant on the specific ordering of cells. Additionally, the
method should adaptively focus on marker cell types relevant to the study, such as leukemic
blast cells in an acute myeloid leukemia (AML) study3* or CTLA4+ or PD1+ cells in cancer
immunotherapy study®. To address these needs, we aggregated scMAE representations of
all cells from each subject into a subject-level representation, exploring several pooling
methods to find the most effective one for each task.
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Figure 4 (a) Interpretation in the cell type annotation by the attention scores for the Acute2021
dataset (external set 1). The heatmap shows protein markers with high attention score as bright red
for each cell type. (b) Interpretation in the imputation task by the attention score for the Vaccine
dataset (external set 1). From 23 markers to impute the other 7 markers, it measures which input
features have high attention from the other features during prediction. The heatmap shows the protein
markers with high attention score as bright white or red for each cell type. For the left figure in (a) and
(b), we used Bertvis®® for visualization of attention weights.

We compared the proposed approach with manual gating and FlowSOM on three prediction
tasks (Figure 5a). Using 5-fold cross-validation with 10 repetitions for each task, we first
assessed the ability to distinguish between COVID-19 patients and healthy subjects. Manual
gating and FlowSOM showed high accuracy of 0.975 and 0.936 AUROC, respectively, on
the test set. In scMAE, global min pooling performed the best, with an accuracy of 0.987
AUROC (Cohen’s d = 0.310 and d = 0.706, respectively) (Supplementary Table 2). The
second challenge was to predict whether a secondary or recall immune response was
triggered by SARS-CoV-2 infection or by SARS-CoV-2 vaccination. Manual gating and
FlowSOM showed performance of 0.641 and 0.579 AUROC, whereas scMAE has an
AUROC of 0.669 when using global min pooling (d = 0.183 and d = 0.594, respectively)
(Supplementary Table 3). Finally, we tested the ability to distinguish the pre- and post-
treatment status of COVID-19 patients. Manual gating and FlowSOM showed 0.796 and
0.869 AUROC, whereas scMAE showed an accuracy of 0.861 AUROC with global max
pooling (d = 0.568 and d = 0.019, respectively) (Supplementary Table 4). The results of
the three experiments suggest that scMAE captures critical information overlooked by
manual gating or FlowSOM, thereby enhancing the prediction of subject status across
various tasks.
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Figure 5 (a) From left to right, COVID-19 patient and healthy people classification using the
Acute2020 and Acute2021 dataset, secondary immune response against COVID-19 prediction using
the Vaccine dataset, and COVID-19 pre- and post-treatment classification using the Acute2021
dataset. The number in parentheses is the sample size. All the experiments are conducted by 5-fold
cross-validation repeating 10 times, and Cohen’s d was used to measure the differences between
two methods. Green dashed lines stand for performance of a random classifier. (b) The few-shot
learning for cell type annotation. Each green dashed line represents the performance of the full fine-
tuned scMAE when used all available training set, reported in the Figure 2b.

scMAE is a few-shot learner

Unlike full fine-tuning, few-shot learning trains a model with a limited amount of training data.
N-shot uses only N samples for each class in the classification problem. A pre-trained large
language model, developed through self-supervised learning, is recognized for its
effectiveness as a few-shot learner''. Similarly, we evaluated our model, scMAE, in a few-
shot learning context for cell type annotation, conducting experiments with 5-shot, 10-shot,
15-shot and 20-shot settings. Training, validation, testing, and external testing sets are the
same as in the previous cell type annotation tasks.

As expected, the performance of scMAE, when pre-trained, approached that of training with
the full training set as the number of N-shots increased (Figure 5b). On the other hand,
since the scMAE from scratch (non-pre-trained) has many parameters and no pre-trained
information, this method does not learn with small sample size. It is worth noting that GBDT
also performed reasonably well, but scMAE outperformed GBDT based on the pre-trained
knowledge. This analysis shows that scMAE, once pre-trained, can effectively adapt to new
tasks even with sparse labeled data, guiding learning in the appropriate direction.

Discussion

Due to the popularity, ease, and relative affordability of cytometry experiments, there is an
abundance of high-dimensional cytometry data compared to other single cell modalities.
Although manual gating remains the preferred classification approach, it becomes
impractical for the expansive datasets of multi-cohort and/or multi-institutional studies due to
its time-consuming and labor-intensive nature. Additionally, some clustering methods, which
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require loading all the data simultaneously, are not suitable for large-scale datasets due to
memory constraints. On the other hand, the scMAE method utilizes a mini-batch approach
for processing large-scale datasets, where it breaks down the data into small, manageable
segment. This reduces memory demands and improves training efficiency on large-scale
data. The learning time in the training phase scales linearly with the number of samples.
Also, scMAE can quickly and accurately make inferences on new datasets once the model
has been trained. In summary, we demonstrate that scMAE presents a scalable solution
superior to existing methods for analyzing large-scale data.

To enable a direct comparison of methods, we adopted a paradigm of training models and
then using them to make inferences on a new dataset. In contrast, manual gating usually
imports historical gates, which are then manually adjusted when necessary for each sample,
a time consuming and often error-prone approach. The alternative of simply using clustering
approaches to discover sources of variability in each dataset independently can be difficult to
scale and does not use a priori information on cell types. The main advantages of the train-
inference paradigm are scalability and reproducibility: any investigator can apply the exact
same model to any dataset, obtaining results that are easily interpretable within the
biologically established framework of immunology. These results show that scMAE
outperforms alternative models within this paradigm.

Directly comparing learning without pre-training (from scratch) and with pre-training,
performance improved not only in cell type annotation but also in the few-shot setting
(Supplementary Table S1, Figure 5b). This model was able to learn stably, while the from-
scratch model was unable to learn effectively with little training data. While not a dramatic
performance improvement, in the other experiments using the pre-trained cell embeddings, it
was encouraging to see that the pre-trained embedding was good at learning antibody co-
localization patterns, imputing unavailable protein expressions, and contributes meaningful
performance gains for the subject-level predictions.

In this study, we pre-trained our model using only one of the three available cohorts to
evaluate the performance on several downstream tasks using all three cohorts. Future
research will expand this approach by pre-training on a broader array of data from multiple
studies, including more diverse subject phenotypes. This expansion is expected to enhance
the model’s power and robustness, enabling it to more effectively distinguish between
biological variations and gain a deeper understanding of protein functions and protein
expression patterns. This, in turn, will lead to more accurate predictions in various
downstream tasks.

This study has several limitations. First, while these models are trained on only CyTOF data,
its application to flow cytometry data might not be recommended due to inherent technical
differences. Specifically, the methodologies used in flow and mass cytometry yield disparate
patterns of protein expression. Yet, a model like sScMAE, if pre-trained on flow cytometry data
from scratch, could indeed become a viable approach for flow cytometry datasets. Second,
we assume that cell type information from manual gating is the ground truth. However, this
may not be the case in practice. Even the most skilled experts are prone to subjectivity and
bias, which might lead to a bias toward “expected” results. This claim can be reinforced by
our experimental results of the subject status prediction, where the pre-trained scMAE
showed higher predictive power than the manual gated features in some tasks (Figure 5a).
This raises the possibility that there may be information that manual gating misses. Finally,
the size and type of cytometry panels used in practice vary widely depending on the
research purpose. However, our model was only trained to work on data with fixed markers.
For more meaningful research, it should work robustly for different panels in future studies,
for examples, to accommodate data where only a subset of the markers has been
measured. Despite these limitations, this study demonstrates the high potential of pre-
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training in single-cell cytometry, both because an approach like ours has not been applied to
cytometry data analysis before and because it shows advantages over previous methods.

Here, we introduced scMAE, a masked autoencoder model which builds latent embeddings
of single-cell cytometry data and uses them to achieve good performance across a range of
cell-level and subject-level tasks. Especially, the fine-tuned scMAE is as accurate as manual
gating, with the labor-free advantages of automated analysis. To the best of our knowledge,
scMAE is the first such model which specializes on cytometry data. Our results are a proof of
concept for applying a combination of unsupervised and supervised analysis in the training-
inference paradigm to multiple cytometry datasets that use the same panel. This approach
promises scalability across thousands of samples from multiple studies, providing robust and
interpretable results while minimizing manual analysis.

Methods

Human Subjects

All subjects consented and enrolled with approval of the University of Pennsylvania
Institutional Review Board (Vaccine IRB no. 844642; Acute2020 IRB no. 808542;
Acute2021 IRB no. 843758). All participants or their surrogates provided informed consent
in accordance with protocols approved by the regional ethical research boards and the
Declaration of Helsinki.

For the Vaccine dataset, 43 individuals were enrolled for longitudinal monitoring of response
to SARS-CoV-2 mRNA vaccine beginning in December 2020 through March 2021. All
subjects received either Pfizer (BNT162b2) or Moderna (mRNA-1273) mRNA vaccines.
Samples were collected at six time points: baseline, ~2 weeks after primary immunization,
day of secondary immunization, ~1 week after secondary immunization, ~3 months after
primary immunization, and ~6 months after primary immunization. Participants were self-
reported healthy without ongoing chronic health conditions. In the Vaccine dataset, the
definition of secondary immune response was defined as follows. We labeled a secondary
immune response as “Yes” if it occurred after a healthy person received two vaccines, or
after a person with COVID-19 received one vaccine, or after a person with COVID-19
received two vaccines. If a healthy person received a single vaccine, we labeled it “No”.

For the Acute2020 dataset, patients were consented and enrolled within 3 days of admission
to the Hospital of the University of Pennsylvania with a positive SARS-CoV-2 PCR test,
regardless of the oxygen support needed. Clinical data were abstracted from the electronic
medical record into standardized case report forms. All subjects in this dataset were
consented and enrolled between March and December 2020 at the University of
Pennsylvania. Subjects in the Acute2021 dataset were enrolled in the I-SPY Covid-19
Trial?®. Hospitalized participants at 5 trial sites (Penn, University of Alabama Birmingham,
University of California San Francisco, University of Colorado, and Wake Forest University
Atrium Health) with confirmed SARS-CoV-2 PCR or antigen testing and requiring greater
than 6 liter per minute oxygen flow (including high flow nasal oxygen, high flow face mask
oxygen, non-invasive ventilation, or invasive mechanical ventilation consistent with World
Health Organization ordinal scale = 5) for fewer than 72 hours were enrolled in this trial.
Patients or their legally authorized representatives consented to be randomized to receive a
backbone treatment (remdesivir and dexamethasone) alone versus backbone with one of 12
investigational treatments. Details of the trial inclusion and exclusion criteria, and the non-
backbone treatment arms have been published at
https://clinicaltrials.gov/study/NCT04488081. Whole blood was collected at time of admission
and 7 days later. Samples from subjects enrolled at the University of Pennsylvania were
processed on the day of collection. Samples from subjects enrolled at the University of
Alabama at Birmingham, University of Colorado, University of California at San Francisco,
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and Wake Forest University were shipped to the University of Pennsylvania and processed
the day of arrival.

Mass Cytometry

For all samples, 270uL of whole blood were stained using the MaxPar Direct Immune
Profiling Assay (Standard BioTools, Inc, South San Francisco, CA)¥. For the Acute2020
dataset, samples were stained in accordance with manufacturer protocols. Briefly, whole
blood was added to a 5mL tube containing a pellet of lyophilized antibodies. Blood was
incubated at room temperature for 30 minutes and then lysed with Cal-Lyse lysing solution
Standard BioTools, Inc, South San Francisco, CA). Cells were washed, followed by fixation
with 1.6% PFA. Cells sat at 4°C over night prior to staining with Cell-ID Intercalator-Ir. These
samples are referred to as “fresh” because they did not undergo cryopreservation and
thawing. Vaccine and Acute2021 data sets underwent a similar workflow as described
above. However, after incubating for 30 minutes in the tube of lyophilized antibodies, stained
whole blood was fixed with PROT1 buffer (Smart Tube Inc, Las Vegas, NV) and
cryopreserved. Lyse, wash, and intercalator staining were performed as above after thaw.
Stained samples were collected on a CyTOF 2 instrument with EQ4 beads (four element
calibration beads, Standard BioTools, Inc).

After data acquisition, .fcs files were gated to remove beads, debris, doublets, and dead
cells using the OMIQ platform (Boston, MA); representative gates are shown in
Supplementary Figure 13. After gating, DNA intercalator, viability, Gaussian and bead
channels were dropped, and the remaining protein expression channels were transformed
using inverse hyperbolic sine with a cofactor of 5.

Model details

Transformer block

The transformer block consists of alternating layers of multihead self-attention (MSA) and
multilayer perceptron (MLP) blocks (Equation 1,2). Layer norm (LN)® is applied before every
block, and Drop path (DP)*° is applied after every block. The MLP contains two linear layers
with GELU activation function.

E, = Ei_ + DP (MSA(LN(E_))) (L =1,..., L) (1)
E,=E, +DP (MLP(LN(EZ))) (l=1,..,L) 2)

where E;_; denotes output embeddings of the (I — 1)-th layer and input embeddings of the
[-th layer at the same time.

Multi-head self-attention
In the multi-head self-attention (MSA) layer, we compute query, key, and value matrix
(@, K, V) from the input embeddings (E) for each head (Equation 3) and compute h heads by
weighted sum of all values by attention weight for each head, where attention weight is
calculated by the pairwise similarity between two elements of the input and their respective
query and key representations (Equation 4). Finally, h heads are concatenated, and the
output is linearly projected (Equation 5)

[Q.K,V] = EW g, (Q. K,V € RPXdn) (3)
where E € RP*¢ is input embeddings W, € R¥*3% is learnable weight matrix, and dj,
is setto d/h.

T

w (4)
Vdn
MSA(Q,K,V) = Concat(head,, ..., head,)W?° (5)
where head; = Attention(Q;,K;,V;)(i = 1,...,h), and W9 € R?*4 is linear weight matrix.

Attention(Q, K, V) = softmax(

Single-cell Masked Autoencoder
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The whole structure consists of an encoder and a decoder, which are used in the pre-
training step. The encoder is only then used with a single linear layer in the downstream
supervised fine-tuning. The encoder (f,) consists of 12 layers of transformer blocks, each
with 12 heads and 768 hidden dimensions, totaling 85 million parameters. In contrast, the
decoder (f;) is smaller than the encoder. It consists of 4 layers of transformer blocks with 6
heads and 384 hidden dimensions for a total of 7 million parameters. The dimension size of
latent cell or subject representations for the downstream tasks is 768. This setting was
proposed in the Masked autoencoder.

Training details
Masked Single-cell Modeling (MScM)
scMAE learns to maximize

P(Vi,masked |Vi,unmasked: Eunmasked) (6)
for cell i, where V; maskea € RTP)*1 denotes masked protein expressions of cell i, and
E.askea € RTPIX(@-1) denotes masked protein embeddings after masking. r is a masking
ratio, p is the number of proteins in the data, and d is a hidden dimension size. Likewise,

Vi unmaskea € RAPXL denotes unmasked protein expressions of cell i, and E,umaskea €
R(I-NPx(@-1) denotes unmasked protein embeddings.

The encoder (f,) generates a latent representation of the cell. The unmasked latent
representation of cell i is defined as H;ynmaskea € RE"P*¢ as the following,

Hi,unmasked = fe((Eunmasked Il Vi,unmasked) + Punmasked) (7)
where P maskea € RE"P*4 s sine-cosine positional embeddings for masked proteins.
The idea of the concatenation (|l) of protein embeddings with expression values was inspired
from MET,

The decoder (f,;) reconstructs the masked values as followings,
Vi,masked = fd((Hi,unmasked Il M) + P) (8)

Let M denote a learnable mask token embedding represented as a row vector M € R*<,
We construct a matrix M by stacking this vector r - p times, such that the resulting matrix M
has dimensions (r-p xd). P € RP*4 is sine-cosine positional embeddings. To calculate
the reconstruction loss, we use mean square error (MSE) loss for all cells,

Loss = Z MSE(?i,maskedl Vi,masked) (9)

L

Why positional embedding is necessary

It might seem that positional embedding is not necessary because the input is a tabular data.
However, the position serves as an index to indicate which protein's expression value should
be reconstructed by the decoder during MScM. For example, 2nd, 3rd, and 7th proteins of 10
proteins are masked, positional embedding provides information to reconstruct the
expression of the 2nd, 3rd, and 7th proteins. Therefore, when using scMAE, users make sure
to match the order of the proteins.

Cell representation
After pre-training, the cell representation (C;) of cell i is obtained as follows.
H;=f,((EI1V)+P) (10)

Ci = Hi[k':] (11)
2

Then, this cell representation is used as input of a linear layer for cell-level downstream
tasks.
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Subiject representation
The subject representation is obtained by multiple global pooling methods.
® Global mean pooling

S = mean C; (12)
L

® Global sum pooling

S = sum(; (13)
® Global max pooling

S = max(C; (14)
® Global min pooling

S = min C; (15)

l
Then, this subject representation is used as input of a linear layer for subject-level
supervised downstream tasks.
y = Linear(S) (16)

Supervised learning in downstream tasks
Cross entropy loss is employed for classification tasks and Mean squared error (MSE) loss
is employed for regression tasks.

In the cell type annotation task,
y; = Linear(C;) 17)

Losscs = = ) yilog; (18)

l
where y; and y; indicate the ground truth cell type and the predicted probability for cell type
of cell i, respectively.

In the imputation task,

Yj = Linear(cj,unmasked) (19)
~ 2
Lossysg = z(yj — yj) (20)
j

where y; and J; denote the ground truth expression value and the predicted value of
masked protein j, respectively.

In the subject-level prediction tasks,
Vx = Linear(Sy) (21)

Lossce == ) yi logd (22)

k
where y, and ¥, are the ground truth label and predicted probability for label of subject k,
respectively.

Impact of Masking ratio during pre-training

To test if masking ratio affects scMAE training, we trained three different versions of the
model with masking ratios of 0.25, 0.5, and 0.75. The result was there was no significant
difference in performance on the cell type annotation tasks (Supplementary Table 5).
Therefore, all the scMAE experiments were performed with a 0.25 masking ratio.

Training setting

The configuration includes a batch size of 768, drop path regularization of 0.1, AdamW
optimizer with momentum of 0.9 and weight decay of 0.05, learning rate of 0.0005 with a
cosine scheduler, and label smoothing during fine-tuning.

Computational cost in training and inference
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The pre-training required 10 days with four of GeForce RTX 2080 Ti Rev. A to process 6.5M
cells through 200 epochs. Fine-tuning the model for cell type annotation took 13 days on a
single GeForce RTX 2080 Ti Rev. A GPUs to process 29.4 million cells through 100 epochs,
with early stopping implemented. For inference, the runtime was 1.2 hours for 7.3M cells
under the Vaccine dataset and 2.1 hours for 18.4M cells under the Acute2020 dataset and
Acute2021 dataset, both on a single GPU.

Benchmarking models

Manual gating

Each sample from all datasets was manually gated using the OMIQ platform to obtain the 46
terminal populations used as ground truth labels. Representative gates from our strategy are
shown in Supplementary Figure 3.

Static gating
For each gate in our hierarchy, we aggregated the candidate gate positions from all training

samples in the Vaccine dataset into one consensus gate. By definition, a point is in the
consensus gate if it falls into at least 30% of all the candidate gates (Supplementary Figure
4). We then created a consensus hierarchy out of all consensus gates and applied it
statically to all test samples.

FlowSOM clustering

The same 60% of the Vaccine data samples were used to train an unsupervised FlowSOM
clustering model. Version 2.6.0 of the FlowSOM R package was used with default
parameters, except for the total number of metaclusters, which we set to 46 to match the
number of ground truth labels. As an unsupervised clustering algorithm, FlowSOM does not
have an inference mode. We performed inference on testing datasets (20% of the Vaccine
dataset as an internal test set, and the two external test sets) by assigning each datapoint to
the nearest SOM node from the trained model, and preserving the assignment of nodes to
metaclusters from the training phase. Evaluation of accuracy and balanced accuracy
required the extra information of a bipartite matching between the 46 FlowSOM clusters and
the 46 ground truth labels. Following Weber, L. M. et al.*!, we obtained the matching using
the Hungarian algorithm, implemented in the function solve_LSAP of the R package clue.

Gradient Boosting Decision Tree (GBDT)

We used XGBoost® python package for GBDT. We ran XGBoost regressor or classifier with
100 estimators and 0.03 learning rate and set early stopping based on the performance
change for the validation set.

Fully connected Deep Neural Network (DNN)

DGCyTOF (Cheng, L. et al.*°) and DeepCyTOF (Li, H et al.?") proposed a fully-connected
neural network for cytometry data. Both were designed for a cell representation and cell-
level prediction tasks, so we use this architecture as a comparison model.

Convolutional Neural Network (CNN)

Hu. Z et al.® proposed a model using convolutional neural network for cytomegalovirus
(CMV) classification. The original model was designed for subject-level tasks, but since it
uses a CNN structure to draw cell representations and pool them, we modified to the same
architecture without the pooling layer as a comparison model.

Metrics

Balanced accuracy (Bacc)

For a multi-class imbalanced dataset, we used Balanced accuracy (Bacc) instead of
Accuracy. Balanced accuracy is defined as a macro-average of recall scores per class in a
multi-class classification.
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A Recall score is defined as:

Recall = i (23)
ccatt = TP+ FN’

where TP is true positive, and FN is false negative.

R-squared
In a regression task, if ¥; is the predicted value of the i-th sample and y; is the

corresponding true value for total n samples, the R-squared is defined as:
2iea(vi — 912

RP=1-TF—F——"2=, 24
DENCAE @
where § =~%1, y;.
AUROC
A receiver operating characteristic (ROC) curve is widely used for evaluating prediction
models. It plots True Positive Rate (TPR) against False Positive Rate (FPR).
TP
TPR = TP PN’ (25)
FPR = P (26)
~ FP+TN’

Where TP, FP, TN, and FN are the number of true positives, false positives, true negatives,
and false negatives respectively. AUROC stands for the area under the ROC curve.

Cohen’s d
Cohen’s d is defined as the difference between two means divided by a standard deviation

for the data,
g="_"M 27)

/512 + 52
2

where m; and s; are mean and standard deviation of method 1 and, m, and s, are mean
and standard deviation of method 2.

Protein embeddings

After pre-training through MScM, the trained E € RP*@-1 in scMAE represents protein
embeddings for p proteins. It is expected that they have protein information about the
heterogenous, complex, and dynamic immune cells without any prior information, only
through learning on the data itself. This was confirmed by the PCA 2-dimensional plot in
Figure 2a.

Imputation

We masked CD45R0O, CD45RA, CD27, CD28, TCRgd, CD197, and CD127 expressions and
used the remaining markers to predict the expression of these seven marker expressions.
Infinity Flow used GBDT as the imputer. Similarly, the unmasked cell representations were
first extracted from the pre-trained scMAE and used as input to GBDT to train and then
evaluated on the external test sets (not end-to-end).

Attention score
From Equation 4, we first obtain the output of softmax function for the interpretation for cell
i (Equation 28) and calculate the attention score W; by averaging over the query axis

(Equation 29).
QiKiT>

Jan

A; = softmax< (28)
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p
1
Wi =52Ai[k,:] (29)

In our experiments, we sampled 2% of all cells for each dataset. To calculate the attention
score, we only used the information from the first layer, because the first layer is the most
influential in determining which inputs to give attention to, and there was no significant
difference in attention between inputs after the second layer.

Few-shot learning setting in the cell type annotation

For N-shots, we trained using only the first s samples per class in the training and validation
sets and then evaluated on the entire test set. We compared performance for 5, 10, 15, and
20 shots.

Software

This project would not have been possible without numerous open-source Python packages
including torch, torchvision, timm, deepspeed, einops, jupyter, matplotlib, numpy, pandas,
scikit-learn, seaborn, FlowCytometryTools, scipy, etc. Specific versions for each package
can be found at https://github.com/JaesikKim/scMAE/blob/master/requirements.ixt.

Data availability
The data presented within this study is available upon formal request to the corresponding
author.

Code availability
All software for dataset construction, model training, deployment, and analysis is available
on our Github page: https:/github.com/JaesikKim/scMAE.

Figure Preparation

All plots were generated via Python scripts using the following open-source visualization
packages: seaborn 0.12.1. Microsoft PowerPoint was used for the final annotation and
assembly of panels. BioRender was used for generating Figure S2. Mathematical equations
were prepared with LaTeX.
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