

1 **Emergence and spread of SARS-CoV-2 variants from farmed mink to humans and back during**
2 **the epidemic in Denmark, June–November 2020.**

3

4 Thomas Bruun Rasmussen^{1*}, Amanda Gammelby Qvesel^{1,2,3}, Anders Gorm Pedersen^{2,3}, Ann
5 Sofie Olesen¹, Jannik Fonager¹, Morten Rasmussen¹, Raphael Niklaus Sieber⁴, Marc Stegger⁴,
6 Francisco Fernando Calvo Artavia⁵, Esben Rahbek Thuesen^{2,3}, Marlies Jilles Francine
7 Goedknegt², Louise Lohse¹, Sten Mortensen⁵, Anders Fomsgaard¹, Anette Boklund⁶, Anette
8 Bøtner⁶, Graham J. Belsham^{6*}

9

10 1: Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut,
11 Artillerivej 5, DK-2300 Copenhagen S, Denmark

12 2: Department of Health Technology, Section for Bioinformatics, Technical University of
13 Denmark, DK-2800 Kgs. Lyngby, Denmark

14 3: PandemiX Center, Department of Science and Environment, Roskilde University, DK-4000
15 Roskilde, Denmark

16 4: Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300
17 Copenhagen S, Denmark

18 5: Danish Veterinary and Food Administration, Ministry of Environment and Food, DK-2600
19 Glostrup, Denmark

20 6: Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1860
21 Frederiksberg C, Denmark

22

23 **Short title:** Evolution of SARS-CoV-2 in mink and humans in Denmark during 2020.

24 **Corresponding authors:** Thomas Bruun Rasmussen (tbru@ssi.dk) and Graham J. Belsham

25 (grbe@sund.ku.dk)

26 **Abstract**

27 The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has not only caused the
28 COVID-19 pandemic but also had a major impact on farmed mink production in several
29 European countries. In Denmark, the entire population of farmed mink (over 15 million
30 animals) was culled in late 2020. During the period of June to November 2020, mink on 290
31 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2.

32 Genome sequencing identified changes in the virus within the mink and it is estimated that
33 about 4000 people in Denmark became infected with these mink virus variants. Phylogenetic
34 analysis revealed the generation of multiple clusters of the virus within the mink. A detailed
35 analysis of the changes in the virus during replication in mink and, in parallel, in the human
36 population in Denmark, during the same time period, has been performed here. The majority
37 of cases in mink involved variants that had the Y435F substitution and the H69/V70 deletion
38 within the Spike (S) protein; these changes emerged early on during the outbreak. However,
39 further introductions of the virus, with variants lacking these changes, from the human
40 population into mink also occurred. Based on phylogenetic analysis of the available viral
41 genome data, we estimate that there were a minimum of about 17 separate examples of mink
42 to human transmission of the virus in Denmark, using a conservative approach, but up to 60
43 such events (95% credible interval: (35-77)) were identified using parsimony to count cross-
44 species jumps on transmission trees inferred using a Bayesian method. Using the latter
45 approach, it was estimated that there were 136 jumps (95% credible interval: (112-164)) from

46 humans to mink. Thus, transmission of these viruses from humans to mink, mink to mink,
47 from mink to humans and between humans were all observed. (296 words)

48 **Author summary**

49 In addition to causing a pandemic in the human population, SARS-CoV-2 also infected
50 farmed mink. In Denmark, after the first identification of infection in mink during June 2020,
51 a decision was made in November 2020 to cull all the farmed mink. Within this outbreak,
52 mink on 290 farms (out of about 1100 in the country) were found to have been infected. We
53 showed, by analysis of the viruses from the mink, that the viruses on the farms were mainly
54 of three different, but closely related, types (termed Clusters 2, 3 and 4) that shared certain
55 distinctive features. Thus, we found that many outbreaks in mink resulted from transmission
56 of the virus between mink farms. However, we identified that new introductions of other
57 virus variants, presumably from infected humans, also occurred. Furthermore, we showed
58 that spread of the virus from infected mink to humans also happened on multiple occasions.
59 Thus, transmission of these viruses from humans to mink, mink to mink, from mink to
60 humans and between humans were all observed. (172 words)

61

62

63

64

65 **Introduction**

66 The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the
67 COVID-19 pandemic [1], with over 675 million cases reported globally and it has contributed
68 to the deaths of at least 6.8 million people [2]. The coronavirus (RaTG13), which has been
69 found to be the most closely related to SARS-CoV-2, was detected in horseshoe bats
70 (*Rhinolophus affinis*) in China [3], with about 1200 nucleotide (nt) differences between their

71 full-length RNA genomes of about 30,000 nt (ca. 96% identity). It is not known how the
72 virus moved from these bats to humans or if there was an intermediate host [4, 5], as with
73 civet cats for the SARS-CoV [6]. In addition to the effect of the continuing pandemic in
74 humans, the same virus has also had a drastic impact on farmed mink production worldwide.
75 Outbreaks of disease on mink farms, caused by infection with SARS-CoV-2, were initially
76 identified, during April 2020, in the Netherlands (NL) [7]. These were followed closely (from
77 June 2020) by outbreaks in Denmark (DK) [8], a country with one of the highest levels
78 (about 40%) of global mink production, involving at that time over 1100 farms and a
79 population of about 17 million mink [9]. Spread of SARS-CoV-2 into mink was also
80 observed in a variety of other countries, including Canada, France, Greece, Italy, Lithuania,
81 Spain, Sweden and the USA [10].

82 In total, SARS-CoV-2 infections were detected on 290 mink farm premises in DK (ca.
83 25% of the total) and this contributed to the Danish government's decision in early November
84 2020 to stop all mink production within DK [11]. The entire mink population was culled [9]
85 and mink production halted until the end of 2022. The production of mink in the NL was also
86 stopped in 2020, bringing forward an earlier planned end to this industry [12].

87 During the course of the outbreaks in mink in DK, a large number of different virus
88 variants were observed. However, most of the viruses from mink that were analyzed had a
89 specific mutation (A22920T) within the gene encoding the Spike (S) protein, resulting in the
90 conservative amino acid substitution Y453F (tyrosine to phenylalanine), which occurred on
91 the first mink farm found to have infected animals in DK [8]. This mutation was one of the
92 defining changes that lead to the emergence of the virus pangolin lineage termed B.1.1.298
93 within the European Clade 20B. This same change was seen on one mink farm in the NL,
94 early in the outbreak there, but also later in other mink farms [7, 13]. However, these
95 variants, belonged to two different clades, 19A and 20A, and did not predominate in the NL.

96 The residue Y453 lies within the receptor binding domain (RBD) of the S protein that is
97 known to interact with the cellular receptor, angiotensin-converting enzyme 2 (ACE2), which
98 is used by the virus [14]. It has been reported that the Y453F substitution enhances binding of
99 the virus to the mink ACE2 protein without compromising interaction with the human ACE2
100 protein [15].

101 A second, early, change in the viruses circulating in the mink population was the
102 deletion of six contiguous nucleotides in the S gene coding sequence, which resulted in the
103 loss of two amino acid residues, H69 and V70 (termed H69/V70del), from the S protein [16].
104 This change was first detected (in August 2020) on the 4th farm with infected mink in DK
105 along with additional sequence changes, in other parts of the virus genome (including
106 nucleotide changes leading to the amino acid substitutions P3395S in ORF1a and S2430I in
107 ORF1b).

108 After the appearance of the Y453 and H69/V70del variants in mink, viruses with
109 these changes were also found in the human population in the same region of DK, namely
110 Northern Denmark [8, 11]. In total, the mink variants of SARS-CoV-2 were detected in over
111 1,100 people in DK out of 53,933 sequenced samples during the period from June 2020 to
112 January 2021 [17] and this incidence was used to estimate that about 4000 humans in DK
113 became infected with mink-derived viruses [11]. In Northern Denmark, where most SARS-
114 CoV-2 outbreaks in mink occurred, amongst the people connected to mink farms, about 30%
115 tested positive for SARS-CoV-2 in the period from June to November 2020 and
116 approximately 27% of the SARS-CoV-2 samples from humans in this community were mink-
117 associated [11].

118 During August and September 2020, mink on substantially more farms tested positive
119 for SARS-CoV-2 [9]. This was coincident with extensive community spread of the virus [11]
120 and further sequence changes generating multiple discrete clusters of viruses (termed Clusters

121 2, 3, 4 and 5) within the mink phylogeny (Figure 1). There was particular concern about a
122 Cluster 5 isolate (named hCoV-19/Denmark/DCGC-3024/2020, GISAID EPI_ISL_616802),
123 which had a number of amino acid sequence changes in the S protein (Y453F, I692V and
124 M1229I as well as the H69/V70del). Preliminary testing of this virus isolate suggested a
125 possible decrease in neutralization of this virus variant by human antibodies [18]. However,
126 further analysis [19] showed that the impact of these changes on the ability of this virus to be
127 neutralized by antibodies from convalescent humans was generally rather limited. Similarly,
128 it has been found that there was very little loss of neutralization of pseudoviruses carrying a
129 Cluster 5-like S protein, compared to wild-type, by sera from people twice vaccinated with
130 Pfizer or Moderna mRNA vaccines [20].

131 In the current study, the genomic sequences of viruses from nearly all known infected
132 mink farm premises in DK have been analyzed together with the sequences of the viruses
133 circulating in the human population in DK during the same time period. This sheds light on
134 the spread and evolution of the virus within mink and also describes many occasions when
135 the virus was transmitted from humans to mink, as well as *vice-versa*.

136

137 **Results**

138 *Appearance of multiple clusters of SARS-CoV-2 in mink*

139 After the initial cases (starting in June 2020) of SARS-CoV-2 infection on four mink
140 farms in DK [8, 16], there was further spread of the virus to other farms (Figure 1, Table 1).
141 Outbreaks initially occurred within Northern Denmark but spread into Central and Southern
142 Denmark (Figure 2). The virus variants found in mink in DK, during August and September
143 2020, all belonged to the same pangolin lineage, B.1.1.298, as for the initial cases, and were
144 most likely descendants from the virus identified in the mink population in June. They all had
145 the Y453F substitution in the S protein that was first observed on farm 1 [8]. It should be

146 noted that from farm 1 onwards, each farm with infected mink was numbered consecutively
147 following detection of SARS-CoV-2 on the farm. The SARS-CoV-2 in DK at that time, in
148 both humans and mink, all had the A23403G change (encoding the substitution D614G
149 within the S protein) compared to the Wuhan strain and this change is not considered further.

150 Additional mutations emerged within the infected mink. Whole-genome-based
151 phylogenetic analysis, using the maximum-likelihood method, performed on 698 sequences
152 from infected mink (from nearly all the affected farms in DK), showed a segregation of the
153 viruses from the initial cases into four major clusters (termed Clusters 2, 3, 4 and 5)
154 indicating multiple transmission pathways (Figure 1 and Supplementary Figure 1). A circular
155 representation of the phylogenetic tree clearly shows the general dominance of Clusters 2, 3
156 and 4 within this epidemic (Figure 1), but sequencing was only performed on a small subset
157 of the infected mink, thus the precise proportions of mink infected with each variant is not
158 known. A rectangular version of the phylogenetic tree based on the same set of virus
159 sequences, but including sequence IDs and farm numbers, is shown in Supplementary Figure
160 S1.

161 Viruses present on farms 1-4 [16], represent parental sequences to Clusters 2, 3, 4 and
162 5 (Supplementary Figure S1). In total, 270 of the 290 farms (i.e. 93%) that were tested
163 positive for SARS-CoV-2 by the end of November had mink infected with variants of lineage
164 B.1.1.298. Cluster 4 was the most common virus variant found amongst these outbreaks
165 (Figure 1) and was detected on 121 farms, while Cluster 2 and Cluster 3 viruses were found
166 on 76 and 66 farms, respectively (note, some farms had viruses from more than one cluster
167 present, see Supplementary Figure S1). In contrast, the Cluster 5 variant was only observed in
168 mink from five farms in Northern Denmark (Table 1 and Figure 2A) and only during the first
169 part of September 2020, whereas the other Clusters persisted until the culling of all mink in

170 DK that ended in late November (Table 1). Further details of the various Clusters are
171 described in Supplementary Information file S1.

172 The mink variant viruses with Y453F (within lineage B.1.1.298 including Clusters 2,
173 3, 4 and 5) clearly made up the majority of the variants found on Danish mink farms during
174 the mink epidemic (Figure 1). However, new introductions of SARS-CoV-2 into mink also
175 occurred, which lead to the C1-C8 variant groups. These new introductions occurred in
176 multiple locations within Northern, Central and Southern Denmark (Figure 2B). These
177 viruses are clearly distinct from the majority of those that infected the mink. For example, the
178 viruses in C1-C8 lack the Y453F substitution in the S protein and they do not belong to the
179 B.1.1.298 lineage. In total, mink on eighteen farms were infected with SARS-CoV-2 lineage
180 variants other than B.1.1.298. These individual independent introductions are described in
181 more detail in Supplementary Information file S2.

182 *Evolution of SARS-CoV-2 in mink and humans*

183 In order to investigate the evolution of SARS-CoV-2 in mink and in humans within
184 DK, the sequences of the viruses from both hosts were compared. The full-genome sequences
185 of SARS-CoV-2 from samples collected from Danish mink were collected from GISAID [21]
186 and low-quality sequences (i.e. with more than 10 unresolved nucleotides) were removed.
187 Sequences from humans in DK, circulating at the same time, were also retrieved. For each of
188 the datasets, identical or nearly identical sequences were also removed (see Materials and
189 Methods). The final data set comprised 258 sequences from mink on 129 farms and 497
190 sequences from humans across DK. These were aligned to the Wuhan-Hu-1 reference
191 genome (GenBank accession no. NC_045512) as described, and a phylogenetic tree,
192 including the mink and human viruses, was constructed (Figure 3). It is apparent that there
193 was considerable heterogeneity among both the mink and human sequences in DK during this
194 period. Furthermore, it can be seen that sequences derived from mink and human hosts are

195 interspersed on the tree, indicating multiple cross-species transmission events occurred
196 (Figure 3).

197 *Evolution and spread of mink-derived virus variants*

198 At the time of the first introduction of SARS-CoV-2 into farm 1, in Northern
199 Denmark (Figure 2A), the amino acid substitution Y453F, in the receptor-binding domain of
200 the S protein (resulting from the mutation A22920T), had not been seen anywhere else
201 (globally) except in mink from one of the infected mink farms in the NL. In this case, the
202 substitution was in a different clade (19A) of SARS-CoV-2 [7, 8], so this finding did not
203 indicate a connection between the outbreaks in DK and in the NL. Virus from the person
204 connected to farm 1 in DK, who is presumed to be the source of the outbreak in mink, did not
205 have this mutation in the spike protein gene. Indeed, the viruses from mink on farm 1 varied
206 at this position, some had the A22920T mutation (resulting in the Y453F substitution)
207 whereas others lacked this change [8] (Figure 1). Phylogenetic analysis based on whole-
208 genome SARS-CoV-2 sequences from both mink and human hosts, also clearly showed that
209 the Y453F substitution evolved only once (among mink on farm 1) and then spread, with all
210 descendant mink- and human-derived sequences retaining this mutation (Figure 3 and 4).

211 The deletion of residues H69/V70 in the S protein, on the other hand, appears to have
212 evolved up to 5 times independently among the human and mink viruses analyzed here
213 (Figures 5 and 6). One of these events occurred among the group of viruses in the mink that
214 already had the Y453F substitution. The H69/V70del modification, as well as two other
215 deletions in ORF1a, were observed for the first time on farm 4 [16]. Specifically, and based
216 on the clock-tree reconstructed using BEAST 2, the deletion resulting in the H69/V70del
217 change evolved about 2-7 weeks after the appearance of the Y453F variant (Supplementary
218 Figure S2). This is consistent with a previous analysis, which showed that deletion of
219 H69/V70 from the S protein increases virus infectivity and compensates for an infectivity

220 defect resulting from the RBD-substitutions N439K and Y453F [22]. All viruses, in the clade
221 descending from this event, inherited this deletion, which was, therefore, present in the vast
222 majority of the mink-derived viruses analyzed here.

223 Among viruses, which do not have the Y453F substitution, the H69/V70 deletion
224 appeared again in 4 separate locations on the phylogeny (Figures 5 and 6). Two of these are
225 singleton human sequences, that are basal to the Danish sequences, and they may, therefore,
226 represent separate introductions rather than cases where the deletion evolved among Danish
227 viruses. In addition to these single leaves, there are two clades, within the non-Y453F part of
228 the tree, where multiple related sequences all have the deletion (Figure 6). It appears that the
229 deletion evolved independently among Danish viruses in these two cases, and then spread.
230 One of these clades contains 3 human sequences, while the other contains 1 mink-sequence
231 and 4 human sequences indicating that virus with the deletion was transferred between
232 humans and mink. In some of these viruses, the H69/V70 deletion was coupled with the
233 N439K substitution in the S protein, which is also within the RBD, and where the deletion
234 has also been reported to function as a compensatory change [22].

235

236 *Inference of the number of cross-species transmissions in DK*

237 In previous studies, Wang et al. [23] defined criteria for identifying a cross-species
238 transmission event for SARS-CoV-2 using a subset of Danish sequences. These criteria were:
239 (1) that the direct two branches after the root of the clade have a different host; and (2) that
240 the posterior probability of both branch and ancestral host for the root of the clade is >0.8 . In
241 the dataset used by Wang et al. [23], three independent cross-species transmission events
242 were observed, all of which were caused by human-to-mink transmission. In addition, six
243 SARS-CoV-2 sequences from humans were found to be very similar to mink-derived viral
244 genomes, indicating they were most likely transmitted from mink to humans. However,

245 Wang et al. [23] could not determine, using their analyses, how many independent cross-
246 species transmission events occurred due to the low posterior probabilities of the branches.

247 In order to further investigate the incidence of cross-species virus transmission events,
248 the collected whole-genome sequences from DK (as described here) were used to infer the
249 number of times that SARS-CoV-2 jumped from mink to humans (and *vice-versa*). Briefly,
250 BEAST2 [24] was used to reconstruct clock model-based phylogenies. Then TransPhylo [25]
251 was used to infer transmission trees based on the output from BEAST2, and finally the sumt
252 and phylotreeelib python packages [26,27] were used to analyze the transmission trees and
253 count the likely number of zoonotic and reverse zoonotic jumps between the two species.
254 This number was calculated using three different methods (see Materials & Methods). In
255 method A, the number of inferred direct transmissions from an observed mink sequence to an
256 observed human sequence were counted. Using this approach, it was estimated that there had
257 been about 9 direct transmissions (posterior mean: 8.6; 95% credible interval: 6-11) from one
258 of the 258 mink sequences included in the dataset, to one of the 497 human sequences. In
259 method B, *indirect* transmissions were also inferred from an observed mink sequence, via an
260 unobserved intermediate host, to an observed human sequence. Using this approach, it was
261 estimated that there had been about 17 jumps (posterior mean: 17.3, 95% credible interval:
262 14-21) from one of the mink to one of the humans in the data set. Using this same method,
263 there were estimated to be about 18 jumps (posterior mean: 18.3; 95% credible interval: 14-
264 21) from humans to mink. Finally, in method C, the number of cross-species jumps was
265 estimated using a parsimony method applied to the TransPhylo output, including inferred
266 unobserved mink and human hosts also. Using this approach, it was found that there had been
267 about 60 jumps from mink to humans in DK during the investigated period (posterior mean:
268 59.6; 95% credible interval: 35-77). The result of method B, about 17 jumps from mink to
269 humans, can be considered as a fairly high-confidence, but conservative, estimate, i.e., it is

270 reasonably sure that the number of jumps is not less than this. However, since the virus from
271 only a small proportion of the infected mink that were in DK during that time have been
272 sequenced, it is almost certain that many interspecies jumps will be missed. The result from
273 method C, i.e. about 60 jumps, may be argued to be probably closer to the real number as it
274 represents a less conservative estimate. However, it comes with a greater uncertainty.

275 Using method C, a parsimony method applied to the TransPhylo output, it was
276 estimated that there had also been about 136 jumps from humans to mink (posterior mean:
277 135.5, 95% credible interval: 112-164). This fits fairly well with the 129 different mink
278 farms, with infected mink, represented in our data set, since it is assumed that most of the
279 virus introductions into the mink farms have occurred by independent human-to-mink
280 transmission events (not by mink from one farm directly infecting mink at another farm).

281

282 **Discussion**

283 SARS-CoV-2 infection of farmed mink in DK contributed to the epidemic in humans
284 in DK during 2020. The epidemic in mink was not being efficiently controlled by the
285 measures taken (mink on 290 farms out of about 1100 in the country were found to have been
286 infected) and it was decided to cull over 15 million mink. This resulted in the closure of the
287 mink production industry until after the end of 2022. Most of the outbreaks in mink were
288 caused by one of three different virus lineages, termed Clusters 2, 3 and 4, all of which
289 belong to the pangolin lineage B.1.1.298 (Figure 1). These clusters shared some common
290 features, namely the H69/V70del and Y453F changes, within the S protein. The deletion of
291 H69/V70 has arisen independently in a variety of different lineages of SARS-CoV-2, both
292 within mink and human variants. The deletion is associated with increased cleavage of the S
293 protein and confers enhanced virus infectivity [22].

294 A virus isolate from Cluster 5, with additional amino acid changes, was the focus of
295 considerable attention since preliminary studies indicated this isolate showed resistance to
296 neutralization by antibodies from a small panel of convalescent human patients [18].
297 However, in follow up studies [19], it was found that the antibodies from just 3 out of 44
298 patient samples tested had a >3-fold reduction in virus neutralization titer against the Cluster
299 5 virus isolate compared to a virus from early in the pandemic. Only one sample from the 44
300 patients had a neutralization titer that was reduced by 4-fold or more [19]; the latter being the
301 threshold set for defining neutralization resistance [28].

302 The Y453F substitution was found to have evolved only once in the mink in DK, on
303 farm 1 [8]. This change was present in the majority of the sampled mink sequences (Figure 1
304 and Suppl. Figure S1) and was also found in sequences from more than 1100 human cases in
305 DK. It has been estimated that about 4000 humans have been infected with this variant [11].
306 Thus the Y453F change clearly does not have a severely detrimental effect on the ability of
307 the virus to infect humans [29]. However, viruses with this change were rapidly lost
308 following the culling of all the mink (Table 1 and [11]). Cluster 5 viruses were not detected in
309 mink or humans after mid-Sept. 2020 but viruses of the B.1.1.298 lineage (with the Y453F
310 change) were detected in humans until January 2021 [17]. This suggests that viruses with the
311 Y453F change did not have a selective advantage in humans at this time point. However, the
312 generation of the Y453F variant (with the H69/V70del) in a patient with lymphoma has been
313 reported [30], in a virus lineage separate from the mink viruses. As indicated above, the
314 Y453F change only occurred once in mink in DK, on farm 1 [8], and was then retained in all
315 descendant viruses analyzed here. However, it is notable that this change also has occurred
316 independently in other mink virus sequences in the NL [7], Poland [31], the USA [32] and
317 (based on sequences from GISAID [21]) in Lithuania and Latvia. All of these changes
318 occurred in lineages other than B.1.1.298, indicating convergent evolution due to selective

319 advantages in mink. It should be noted that all but one sequence within the B.1.1.298 lineage
320 originated from DK [21]. The single sequence from outside DK was found in a human
321 sample collected in the Faroe Islands in September 2020.

322 In the lineage C4, which was first recognized in mid-October 2020 (i.e. shortly before
323 the cull commenced) and lacks the Y453F change, another change, N501T, was detected on
324 multiple farms (Supplementary Information file S2). Like the Y453F change, this substitution
325 occurs at the interface between the ACE2 receptor and the S protein. Thus, it may achieve a
326 similar effect [29]. It is notable that this change has also occurred in mink sequences from
327 multiple countries and in different virus lineages as for the Y453F substitution (see above).

328 It is most likely that the initial introductions of SARS-CoV-2 into mink farms
329 occurred from infected people. It is apparent that the virus, having acquired the Y453F
330 change, then spread quickly and easily within the mink [8, 16]. Transmission from mink back
331 into the human population clearly occurred too.

332 Assessing the extent of interspecies virus transmission is not simple, see Wang et al.
333 [23]. Due to the many highly similar sequences, there will be several branches in the
334 phylogenetic tree with poor support, and this causes what may be termed an entropic problem
335 leading to an upward bias in the count of interspecies jumps [33]. If a set of, say, 5 mink
336 sequences and 5 human sequences each have one unique mutation, then their pairwise
337 distances will all be 2, and all the possible resolutions of this 10-leaf subtree will be equally
338 likely. However, since there are many more possible subtrees where the 5 mink and 5 human
339 leaves are intermingled, than there are possible subtrees where they are cleanly separated,
340 then the average number of inferred jumps will be biased towards more than 1 inter-species
341 jump, even though the data would also be consistent with only one zoonotic event. This
342 means that ordinarily used methods for dealing with phylogenetic uncertainty, such as
343 performing the computation on all or many trees from BEAST's posterior sample, will not

344 work (instead of getting a reliable posterior count, accounting for the uncertainty, the
345 inclusion of less supported trees will create a bias for over-counting).

346 Here, we have used three different methods to assess interspecies virus transmission.

347 Using method B, the analysis of the sequences indicated that at least 17 (95% credible
348 interval: 14-21) different mink to human transmission events have happened in DK. This was
349 estimated using a very conservative approach. Using an alternative method, based on
350 analyzing the output from TransPhylo using parsimony (termed here method C), about 60
351 jumps from mink to humans were estimated to have occurred. Furthermore, this methodology
352 generated an estimate of 135 jumps from humans to mink. This number fits well with the 129
353 farms represented in the data set that had infected mink. The transmission of the mink variant
354 viruses from one mink farm to another occurred very efficiently. However, the mechanisms
355 involved in this spread are not established [9]. In many cases, it may have been by human
356 contacts with multiple mink farms but other routes are also possible. It is assumed that most
357 of the introductions of the virus onto these mink farms have occurred by independent mink-
358 to-human and then human-to-mink transmission events (not by mink from one farm infecting
359 mink at another farm). Airborne transmission of the virus from mink farms to humans not
360 connected to the farm seems unlikely, since the concentration of virus in the air outside of the
361 mink farms appears to be low [9]. However, this topic deserves further study. The major
362 proportion of the viruses that infected mink in DK had the Y453F substitution together with
363 the H69/V70del in the S protein, including all of the viruses in Clusters 2, 3, 4 and 5 (Figure
364 1). This suggests that, although new introductions of the virus from humans occurred (as with
365 C1-C8), these were much less important for the total outbreak in mink than the mink farm to
366 mink farm transmission. However, it is clearly not possible to know whether some of these
367 virus variants would have become predominant among the mink if they had not been culled.

368

369 *Concluding remarks*

370 It is apparent that SARS-CoV-2 readily infected farmed mink and spread quickly
371 between farms. Transmission from infected humans to mink and from infected mink to
372 humans occurred on multiple occasions and the mink-derived viruses then spread among
373 people. There were legitimate concerns that replication of SARS-CoV-2 in a large population
374 of mink could generate novel variants that would have adverse effects on human health due
375 to antigenic change, greater transmissibility or higher fitness. However, mink-derived viruses
376 with such unwelcome characteristics did not spread among humans before the mink
377 population was culled. Variants of SARS-CoV-2 that did arise in mink (e.g. with the changes
378 Y453F and H69/V70del in the S protein) were transmitted to, and within, the human
379 population but died out either before, or soon after, the culling of the mink population in DK.

380

381

382 **Materials and Methods**

383 *Sequencing strategy*

384 Whole genome amplification of SARS-CoV-2 in mink and human samples was
385 performed using a modified ARTIC tiled PCR protocol (see [34]) with amplicons ranging
386 from 1000-1500 bp. A custom 2-step PCR with barcoding was applied to the amplicon
387 libraries, then the libraries were normalized, pooled, and sequenced using Oxford Nanopore's
388 SQK-LSK109 ligation kit on a MinION device with R.9.4.1 flowcells. The full protocol is
389 available [35].

390

391 *Construction of maximum likelihood phylogenetic tree*

392 The maximum likelihood phylogeny of all 698 SARS-CoV-2 sequences from mink
393 isolates was reconstructed using IQ-TREE version 2.0.3 [36] with a GTR model, based on the

394 alignment obtained by comparing each sequence to the Wuhan-Hu-1 reference genome
395 (GenBank accession no. NC_045512) using MAFFT version 7.475 [37] with option '--
396 addfragments'. The phylogenetic tree was thereafter annotated using package ggtree in R
397 version 4.2.1 [38]. Clusters 2-5 were derived from the initial cases (on farms 1-5) while the
398 separate introductions that resulted in the C1-C8 variant groups were defined from a
399 phylogeny based on human and mink sequences by picking the smallest possible
400 monophyletic group containing one or more mink sequences.

401

402 *Construction of Bayesian phylogenetic trees*

403 Whole-genome sequences of SARS-CoV-2 derived from infected farmed mink and
404 humans in DK were collected from GISAID [21] on August 31st 2023. Sequences derived
405 from mink were collected by searching for complete sequences passing GISAID's high
406 coverage filter (allowing only entries with <1% Ns and <0.05% unique AA mutations) with a
407 precise collection date. These gave rise to dataset 1; for this dataset, consisting of mink virus
408 sequences, duplicate sequences derived from samples from the same farm on the same date
409 were removed. Similarly, sequences derived from humans were collected by searching for
410 complete sequences with a collection date between June 1st 2020 and February 28th 2021
411 passing GISAID's high coverage filter. Two different datasets were constructed consisting of
412 human virus sequences: dataset 2 with the amino acid substitution S:Y453F and dataset 3
413 without the amino acid substitution S:Y453F. For datasets 2 and 3, duplicate sequences were
414 removed if they were sampled on the same day. This was done to preserve the temporal
415 signal in the data.

416 Sequences with more than 10 undetermined nucleotides were removed from the
417 datasets, and the datasets were pre-processed by masking as described [39], removing
418 sequences with more than 100 end gaps. Dataset 3 was further reduced to minimize the
419 computational load using CD-HIT-EST from CD-HIT [40] to achieve a representative dataset

420 using a similarity threshold of 0.999. The three datasets were combined into one consisting of
421 258 sequences from mink (derived from 129 mink farms), 49 sequences from humans
422 without the S:Y453F substitution and 448 sequences from humans with the S:Y453F
423 substitution. These sequences were aligned as described above.

424

425 *Estimation of the number of zoonotic jumps from mink to human*

426 To determine transmission pathways, information from the phylogenies together with
427 the relative sampling dates was combined. Phylogenetic trees were reconstructed using
428 BEAST 2 [24]. The substitution model was GTR with empirical base frequencies and
429 gamma-distributed rates with 4 discrete categories, combined with a strict molecular clock
430 model calibrated by using the sequence sampling-dates, obtained from GISAID, to date the
431 tips of the tree. The tree prior was the birth-death skyline serial model, with 10 dimensions
432 for the reproductive number parameter, and one dimension for the sampling proportion [41].
433 The model estimates a separate effective reproduction number for each of 10 equally large
434 time-intervals covering the time-span from the root of the tree to the farthest tip. The prior for
435 the becoming-uninfectious rate parameter was lognormal($M=52.0$, $S=1.25$, mean in real
436 space) per year, corresponding to a prior 95% credible interval of [1.3, 180] days for the
437 duration of an infectious period. The prior for the clockrate was lognormal($M=0.001$, $S=1.25$,
438 mean in real space) substitutions per site per year, corresponding to a 95% prior interval of
439 [4.0E-5, 5.3E-3] substitutions per site per year. Both of these priors are weakly informative
440 and help to regularize model fitting without imposing very strict constraints on the estimated
441 values for these parameters. Other priors were left at their default values. Two parallel
442 MCMC chains were run for 50 million iterations each with logging of trees and other
443 parameters every 4000 iterations (for a total of 2 x 12,500 parameter samples). A burn-in of
444 30% (15 million generations) was used. The software Tracer v1.7.2 [42] was used to analyze

445 parameter samples. Marginal posterior distributions from the two runs were essentially
446 identical, indicating good convergence. Effective sample sizes for all parameters were well
447 above 200, except for the following: posterior (ESS=166), likelihood (ESS=94), tree-length
448 (ESS=136), BDSKY_serial (ESS=138). The software phylotreelib [26] and sumt [27] were
449 used to analyze tree-samples, and to extract post-burnin trees and compute maximum clade
450 credibility trees. Tree samples from the two independent runs were very similar, with average
451 standard deviation of split frequencies (ASDSF) of 0.0125. The number of effective tree
452 samples was estimated by first computing the log clade credibility for each tree-sample
453 (based on clade frequencies from all post-burnin trees), and then using Tracer to compute
454 ESS from this proxy measure [43]. Computed this way, the tree-sample ESS was 287,
455 indicating an acceptable number of independent tree samples in the posterior.

456 To infer transmission trees, the software TransPhylo v1.4.10 [25] was used. This takes
457 as input a pre-computed, dated phylogeny, where leaves correspond to pathogens sampled
458 from the known infected hosts. The main output is a transmission tree that indicates “who”
459 infected “whom”, including the potential existence of unsampled individuals who may have
460 acted as missing transmission intermediates. For input we used the maximum clade
461 credibility (MCC) tree with common-ancestor depths. A further 28 other trees from
462 BEAST2’s posterior samples were analyzed, chosen to cover a range of different log-clade
463 credibility values. We also used common-ancestor depths to set the branch lengths of these
464 trees. Before analyzing any of these trees, the original Wuhan sequence was removed from
465 the tree with the aim of having a more homogeneous substitution process on the remaining
466 branches for the TransPhylo analysis. The generation time distribution in TransPhylo was set
467 to be gamma-distributed with shape-parameter=60 and scale-parameter=0.0004105. These
468 parameters were chosen to match the posterior 95% credible interval, found in the BEAST-
469 analysis, as closely as possible (6.86 to 11.4 days). The parameters were found using the

470 optimize.minimize function from the SciPy python package [44]. TransPhylo was run for 10
471 million iterations, sampling every 2000 generations, and using a burnin of 50%. This gave a
472 total of 2500 post-burnin samples of transmission trees and other parameters, for the MCC
473 tree and for each of the 28 other trees from the BEAST posterior sample. For the TransPhylo
474 run, we set updateOff.p=TRUE to allow estimation of the offspring distribution.
475 Convergence was checked by inspecting trace plots and computing ESS.

476 The output from TransPhylo was further analyzed to estimate the number of times
477 SARS-CoV-2 jumped between mink and humans. This was done by inspecting each of the
478 72,500 posterior transmission-tree samples (i.e. 29 times 2500), and for each of them
479 counting the number of jumps in three different ways. In method A: the inferred direct
480 transmissions from an observed mink sequence to an observed human sequence were counted
481 (i.e., cases where TransPhylo inferred that both the source and the target of a cross-species
482 transmission event were included in the data set). In method B: the number of inferred
483 *indirect* transmissions from an observed mink sequence to an observed human sequence were
484 counted. Occasionally TransPhylo will infer transmission chains that include one or more
485 unobserved links (e.g., mink -> unknown -> unknown -> human), and these, of course, also
486 imply transmission of the virus from a mink to a human somewhere in that chain. In method
487 C: a parsimony method was used to infer the minimum number of mink-to-human
488 transmissions based on the posterior sample of the transmission trees inferred by TransPhylo.
489 Specifically, the algorithm of Hartigan [45] was implemented in a version that allowed some
490 internal nodes on the tree to be observed (i.e., their state sets are simply taken to be the
491 observed host for that internal node).

492

493 *Pangolin lineage determination*

494 The Pangolin lineage for the individual variants has been determined by analysis of
495 the mink sequences in the database PANGO lineages [46]. In addition, a search in the
496 GISAID EpiCoV database [21] has been used for further analysis in order to examine the
497 occurrence of selected variants in published mink sequences and human sequences. When
498 describing the observed changes in the S protein, the change D614G (compared to the
499 reference Wuhan strain) was omitted, as this change occurred very early in the pandemic and
500 is present in all sequences during the period of interest.

501

502

503 **Author contributions**

504 Conceptualization: T.B.R., A.Bø., G.J.B.; Data curation: T.B.R., A.S.O.; Formal analysis:
505 T.B.R., A.G.Q, A.G.P., M.J.F.G., J.F., M.R.; Funding acquisition: A.Bø., T.B.R., G.J.B.,
506 A.G.P.; Investigation: T.B.R., R.N.S., M.S., L.L. A.Bo.; Methodology: R.N.S., M.S., A.G.Q.,
507 A.G.P.; Resources: L.L., S.M. (study materials); Software: R.N.S., A.G.P., A.G.Q, ;
508 Supervision: T.B.R., A.G.P., A.Bø.; Validation: T.B.R.; Visualization: T.B.R., A.G.Q.,
509 F.F.C.A., M.J.F.G., E.R.T., R.N.S., A.G.P., A.Bo.; Writing- original draft preparation: G.J.B;
510 Writing- review & editing: All authors.

511 **Acknowledgements**

512 We gratefully acknowledge all data contributors, i.e., the Authors and their Originating
513 laboratories responsible for obtaining the specimens, and their Submitting laboratories for
514 generating the genetic sequence and metadata and sharing via the GISAID Initiative, on
515 which this research is partially based. We thank Kåre Mølbak for helpful comments on an
516 early draft of the manuscript.

517 This research was funded by the Danish Veterinary and Food Administration (FVST) as part
518 of the agreement for commissioned work between the Danish Ministry of Food and

519 Agriculture and Fisheries and the University of Copenhagen and the Statens Serum Institut.

520 Further funding has been received from the Danish National Research Foundation (grant

521 number DNRF170 to A.G.P).

522

523

524 **References**

525 1. World Health Organization. <https://www.who.int/emergencies/diseases/novel->
526 [coronavirus-2019](https://www.who.int/emergencies/diseases/novel-coronavirus-2019)

527 2. Johns Hopkins University. Coronavirus resource center <https://coronavirus.jhu.edu/>
528 [accessed 2022 October 21]

529 3. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al.. A pneumonia
530 outbreak associated with a new coronavirus of probable bat origin. *Nature*. 2020;579:
531 270-273. [doi: 10.1038/s41586-020-2012-7](https://doi.org/10.1038/s41586-020-2012-7).

532 4. Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, et al. Evolutionary
533 origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19
534 pandemic. *Nat Microbiol*. 2020;5 :1408-1417. [doi: 10.1038/s41564-020-0771-4](https://doi.org/10.1038/s41564-020-0771-4).

535 5. Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, et al. The
536 molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. *Science*.
537 2022;377: 960-966. [doi: 10.1126/science.abp8337](https://doi.org/10.1126/science.abp8337).

538 6. Wang LF, Eaton BT. Bats, civets and the emergence of SARS. *Curr Top Microbiol*
539 *Immunol*. 2007;315: 325-44. doi: 10.1007/978-3-540-70962-6_13.

540 7. Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der
541 Honing RW, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April
542 and May 2020. *Euro Surveill*. 2020;25: 2001005. [doi: 10.2807/1560-7917.ES.2020.25.23.2001005](https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005)

544 8. Hammer AS, Quaade ML, Rasmussen TB, Fonager J, Rasmussen M, Mundbjerg K, et
545 al. SARS-CoV-2 Transmission between Mink (*Neovison vison*) and Humans,
546 Denmark. *Emerg Infect Dis.* 2021; 27: 547-551. [doi: 10.3201/eid2702.203794](https://doi.org/10.3201/eid2702.203794).

547 9. Boklund A, Hammer AS, Quaade ML, Rasmussen TB, Lohse L, Strandbygaard B, et
548 al. SARS-CoV-2 in Danish Mink Farms: Course of the Epidemic and a Descriptive
549 Analysis of the Outbreaks in 2020. *Animals (Basel)*. 2021;11:164. [doi:
550 10.3390/ani11010164](https://doi.org/10.3390/ani11010164).

551 10. SARS-CoV-2 in animals used for fur farming. 2021.
552 [https://www.woah.org/app/uploads/2021/03/glews-risk-assessment-fur-animals-sars-
cov-2.pdf](https://www.woah.org/app/uploads/2021/03/glews-risk-assessment-fur-animals-sars-
553 cov-2.pdf)

554 11. Larsen HD, Fonager J, Lomholt FK, Dalby T, Benedetti G, Kristensen B, et al.
555 Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers
556 associated with community spread, Denmark, June to November 2020. *Euro Surveill.*
557 2021;26: 2100009. [doi: 10.2807/1560-7917.ES.2021.26.5.210009](https://doi.org/10.2807/1560-7917.ES.2021.26.5.210009).

558 12. <https://promedmail.org/promed-post/?id=7994061>.

559 13. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E,
560 Molenkamp R, et al. Transmission of SARS-CoV-2 on mink farms between humans
561 and mink and back to humans. *Science.* 2021;371: 172-177. [doi:
562 10.1126/science.abe5901](https://doi.org/10.1126/science.abe5901).

563 14. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of
564 SARS-CoV-2 by full-length human ACE2. *Science.* 2020;367: 1444-1448. [doi:
565 10.1126/science.abb2762](https://doi.org/10.1126/science.abb2762).

566 15. Ren W, Lan J, Ju X, Gong M, Long Q, Zhu Z, et al. Mutation Y453F in the spike
567 protein of SARS-CoV-2 enhances interaction with the mink ACE2 receptor for host
568 adaption. PLoS Pathog. 2021;17: e1010053. [doi: 10.1371/journal.ppat.1010053](https://doi.org/10.1371/journal.ppat.1010053).

569 16. Rasmussen TB, Fonager J, Jørgensen CS, Lassaunière R, Hammer AS, Quaade ML, et
570 al. Infection, recovery and re-infection of farmed mink with SARS-CoV-2. PLoS
571 Pathog. 2021;17: e1010068. [doi: 10.1371/journal.ppat.1010068](https://doi.org/10.1371/journal.ppat.1010068).

572 17. <https://www.covid19genomics.dk/statistics>

573 18. Lassaunière R, Fonager J, Rasmussen M, Frische A, Polacek Strandh C, Rasmussen
574 TB, et al. SARS-CoV-2 Spike Mutations Arising in Danish Mink and Their Spread to
575 Humans. København: Statens Serum Institut. 2020. . https://files.ssi.dk/Mink-cluster-5-short-report_AFO2

577 19. Lassaunière R, Fonager J, Rasmussen M, Frische A, Polacek C, Rasmussen TB, et
578 al. *In vitro* Characterization of Fitness and Convalescent Antibody Neutralization of
579 SARS-CoV-2 Cluster 5 Variant Emerging in Mink at Danish Farms. Front Microbiol.
580 2021;12: 698944. [doi: 10.3389/fmicb.2021.698944](https://doi.org/10.3389/fmicb.2021.698944).

581 20. Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM, et al.
582 Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral
583 immunity. Cell. 2021;184: 2372-2383.e9. [doi: 10.1016/j.cell.2021.03.013](https://doi.org/10.1016/j.cell.2021.03.013).

584 21. Shu, Y. and McCauley, J. GISAID: from vision to reality. Euro Surveill. 2017; 22:13
585 [doi: 10.2807/1560-7917.ES.2017.22.13.30494](https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494)

586 22. Meng B, Kemp SA, Papa G, Datir R, Ferreira IATM, Marelli S, et al. Recurrent
587 emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant
588 B.1.1.7. Cell Rep. 2021;35: 109292. [doi: 10.1016/j.celrep.2021.109292](https://doi.org/10.1016/j.celrep.2021.109292).

589

590 23. Wang L, Didelot X, Bi Y, Gao GF. Assessing the extent of community spread caused
591 by mink-derived SARS-CoV-2 variants. *Innovation (Camb)*. 2021; 2(3):100128. doi:
592 10.1016/j.xinn.2021.100128.

593 24. Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C-H., Xie D., Suchard MA.,
594 Rambaut A., Drummond A. J. BEAST 2: A Software Platform for Bayesian
595 Evolutionary Analysis. *PLoS Computational Biology*. 2014; 10(4): e1003537.
596 doi:10.1371/journal.pcbi.1003537

597 25. Didelot X, Fraser C, Gardy J, Colijn C. Genomic Infectious Disease Epidemiology in
598 Partially Sampled and Ongoing Outbreaks. *Mol Biol Evol*. 2017; 34(4):997-1007. doi:
599 10.1093/molbev/msw275.

600 26. Pedersen A.G. phylotree: a python library for analyzing and manipulating
601 phylogenetic trees (Version 1.27.0) [Computer software]. 2023.
602 <https://doi.org/10.5281/zenodo.10148565>

603 27. Pedersen, A.G. sumt: a command-line program for computing consensus trees and
604 other phylogenetic tree summaries (Version 3.8.1) [Computer software]. 2023.
605 <https://doi.org/10.5281/zenodo.10148693>

606 28. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The Impact of Mutations in SARS-
607 CoV-2 Spike on Viral Infectivity and Antigenicity. *Cell*. 2020;182: 1284-1294.e9.
608 doi: [10.1016/j.cell.2020.07.012](https://doi.org/10.1016/j.cell.2020.07.012).

609 29. Zhou J, Peacock TP, Brown JC, Goldhill DH, Elrefaey AME, Penrice-Randal R, et al.
610 Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the
611 human airway. *Cell Rep*. 2022;38:110344. doi: 10.1016/j.celrep.2022.110344.

612 30. Stanevich OV, Alekseeva EI, Sergeeva M, Fadeev AV, Komissarova KS, Ivanova AA
613 et al. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. *Nat
614 Commun*. 2023;14(1):149. doi: 10.1038/s41467-022-34033-x.

615 31. Domańska-Blicharz K, Orłowska A, Smreczak M, Niemczuk K, et al. Mink SARS-
616 CoV-2 Infection in Poland - Short Communication. *J Vet Res.* 2021;65: 1-5. doi:
617 10.2478/jvetres-2021-0017.

618 32. Cossaboom CM, Wendling NM, Lewis NM, Rettler H, Harvey RR, et al. One Health
619 Investigation of SARS-CoV-2 in People and Animals on Multiple Mink Farms in
620 Utah. *Viruses.* 2022;15: 96. doi: 10.3390/v15010096.

621 33. Duchêne S, Lanfear R. Phylogenetic uncertainty can bias the number of evolutionary
622 transitions estimated from ancestral state reconstruction methods. *J Exp Zool B Mol
623 Dev Evol.* 2015;324(6): 517-524. doi: 10.1002/jez.b.22638.

624 34. Quick J. nCoV-2019 sequencing protocol V.1. 2020.
625 [dx.doi.org/10.17504/protocols.io.bbmuik6w](https://doi.org/10.17504/protocols.io.bbmuik6w)

626 35. Sørensen EA, Karst SM, Knutsson S. AAU-nCoV-2019 tailed long amplicon
627 sequencing. *protocols.io*; 2020. [dx.doi.org/10.17504/protocols.io.bfc3jiyn](https://doi.org/10.17504/protocols.io.bfc3jiyn)

628 36. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and
629 Effective Stochastic Algorithm for Estimating Maximum-Likelihood
630 Phylogenies, *Molecular Biology and Evolution.* 2015;32:268–
631 274. <https://doi.org/10.1093/molbev/msu300>

632 37. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:
633 Improvements in Performance and Usability, *Molecular Biology and
634 Evolution.* 2013;30: 772–780. <https://doi.org/10.1093/molbev/mst010>

635 38. Yu G, Smith DK, Zhu H, Guan Y, Lam TT.-Y. ggtree: an r package for visualization
636 and annotation of phylogenetic trees with their covariates and other associated data.
637 *Methods Ecol Evol.* 2017; 8: 28-36. <https://doi.org/10.1111/2041-210X.12628>

638 **39.** De Maio N, Walker C, Borges R, Weilguny L, Slodkowicz G et al. Masking strategies
639 for SARS-CoV-2 alignments, 2020. <https://virological.org/t/masking-strategies-for-sars-cov-2-alignments/480>

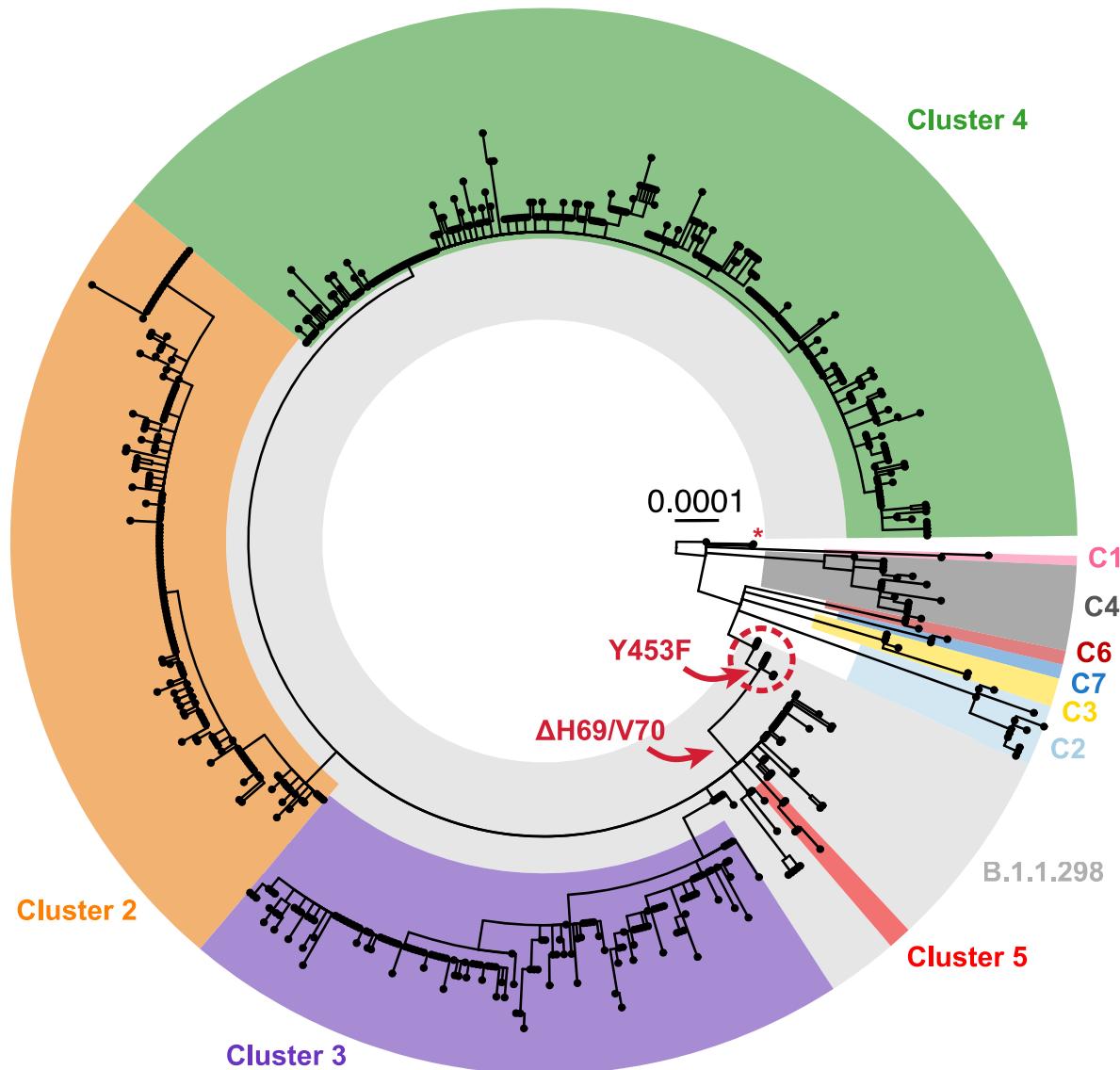
640 **40.** Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of
641 protein or nucleotide sequences. Bioinformatics. 2006; 22: 1658–1659.

642 **41.** Stadler T, Kühnert D, Bonhoeffer S, Drummond AJ. Birth-death skyline plot reveals
643 temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc Natl
644 Acad Sci USA. 2013;110(1):228-33. doi: 10.1073/pnas.1207965110.

645 **42.** Rambaut A, Drummond AJ, Xie D, Baele G and Suchard MA. Posterior
646 summarisation in Bayesian phylogenetics using Tracer 1.7. *Systematic Biology*. 2018;
647 syy032. [doi:10.1093/sysbio/syy032](https://doi.org/10.1093/sysbio/syy032)

648 **43.** Lanfear R, Hua X, Warren DL. Estimating the Effective Sample Size of Tree
649 Topologies from Bayesian Phylogenetic Analyses. *Genome Biol Evol*. 2016 Aug
650 16;8(8):2319-32. doi: 10.1093/gbe/evw171.

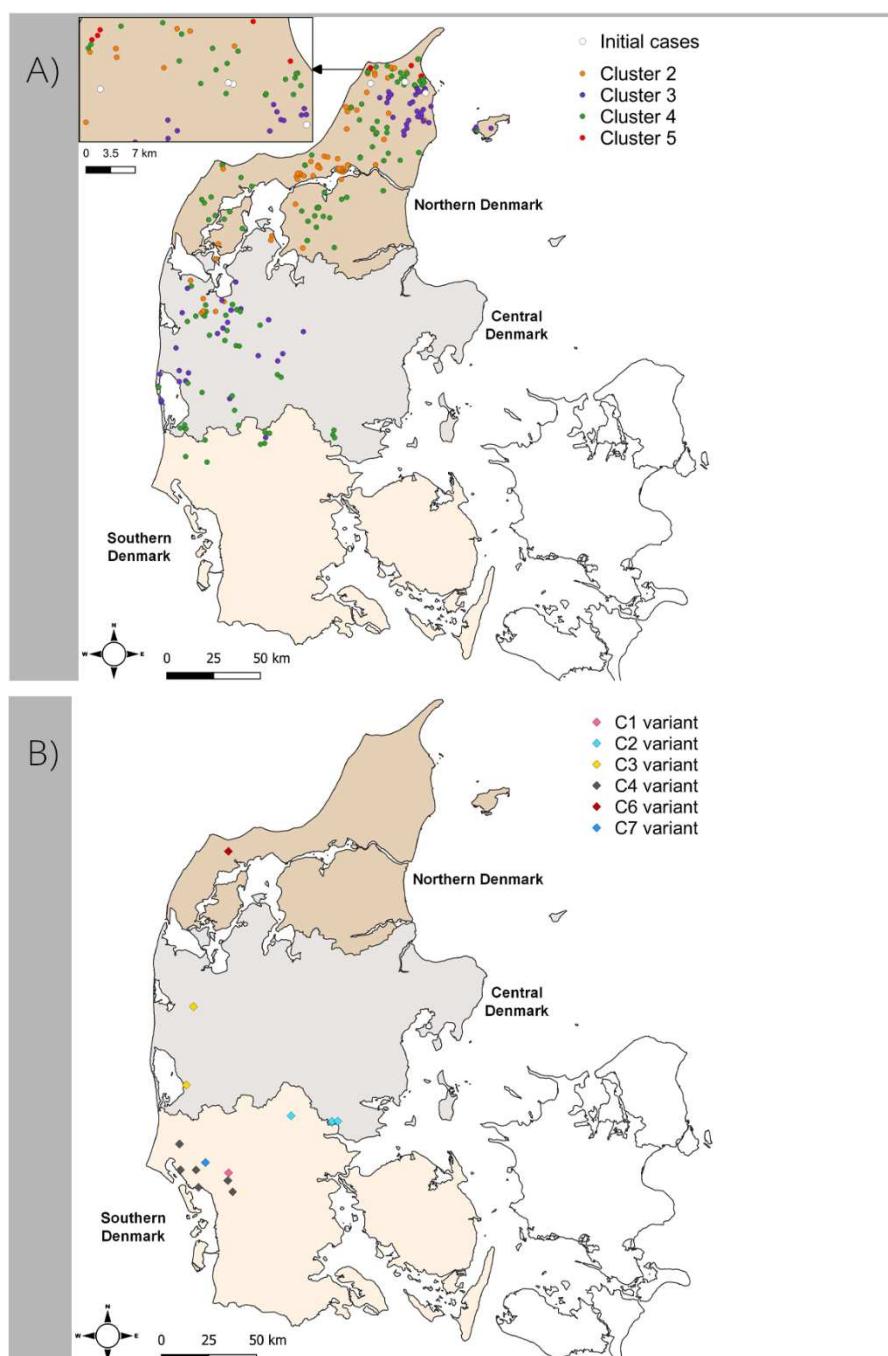
651 **44.** Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al.
652 SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms for scientific computing in
653 Python. *Nat Methods*. 2020; 17(3): 261-272. doi: 10.1038/s41592-019-0686-2.


654 **45.** Hartigan, JA. Minimum mutation fits to a given tree. *Biometrics* 1973; 29, 53.

655 **46.** Rambaut A, Holmes EC, O'Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic
656 nomenclature proposal for SARS-CoV-2 lineages to assist genomic
657 epidemiology. *Nat Microbiol*. 2020; 5: 1403–1407. <https://doi.org/10.1038/s41564-020-0770-5>

658
659
660
661

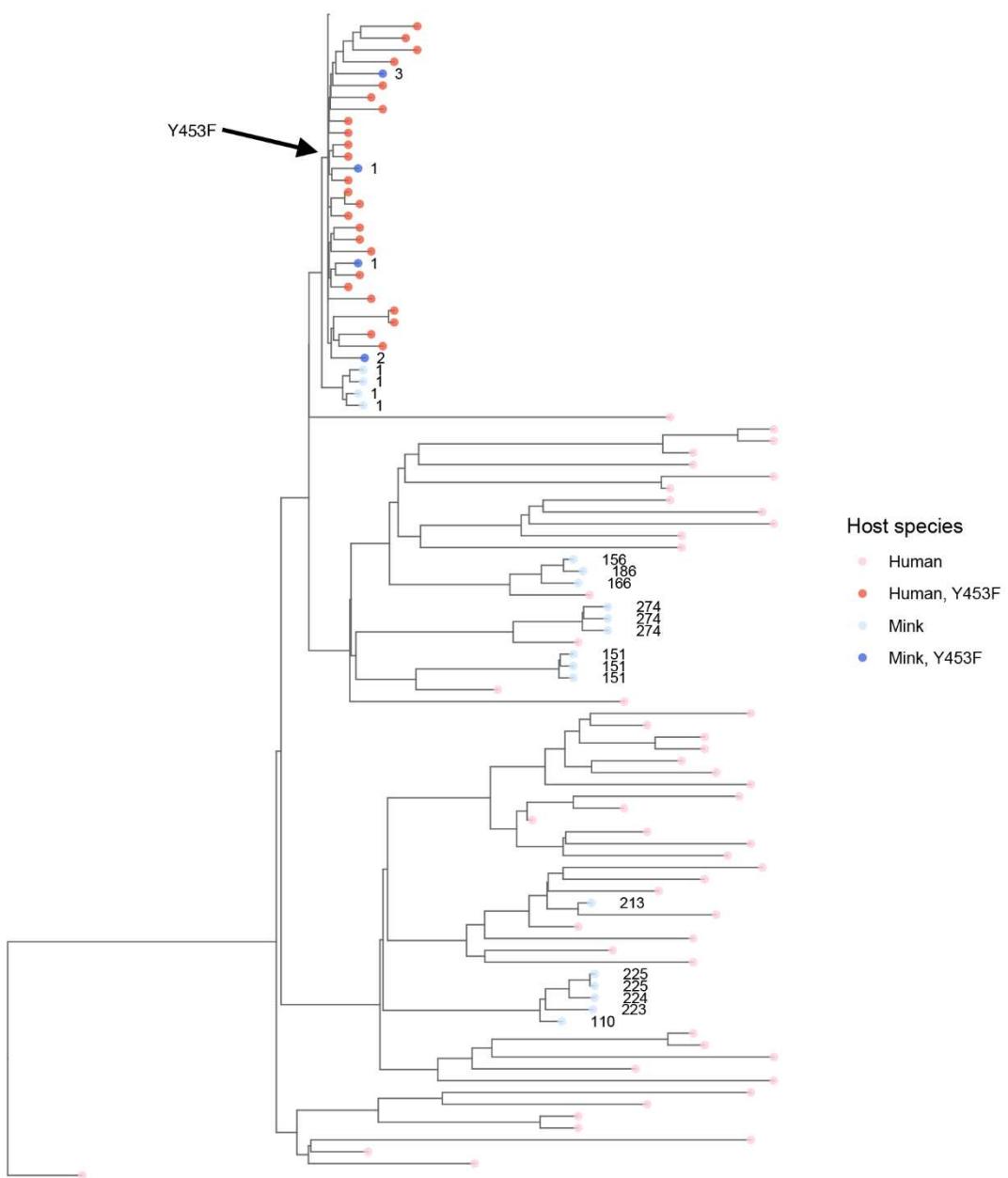
662


663

665 **Figure 1. Phylogeny of the 698 SARS-CoV-2 whole-genome sequences from Danish**
666 **mink.** The majority of viruses found on infected farms, including those from the initial cases
667 (farms 1-3, indicated within a red dashed circle) and viruses in Clusters 2-5, belong to
668 pangolin lineage B.1.1.298 and are highlighted in light grey. Clusters 2-5 and viruses
669 subsequently found as further spillovers from humans (C1-C4 and C6-C7) are highlighted in
670 different colours. A singleton sequence belonging to C8 is indicated by a red asterisk. The
671 occurrence of key sequence changes that were present in most mink virus sequences are
672 indicated with red arrows. The scale bar indicates number of substitutions per variable site.
673 The phylogeny was rooted with the basal reference sequence (NC_45512.1/EPI_ISL_406798,
674 known as the Wuhan-Hu-1 virus) as the outgroup.

675

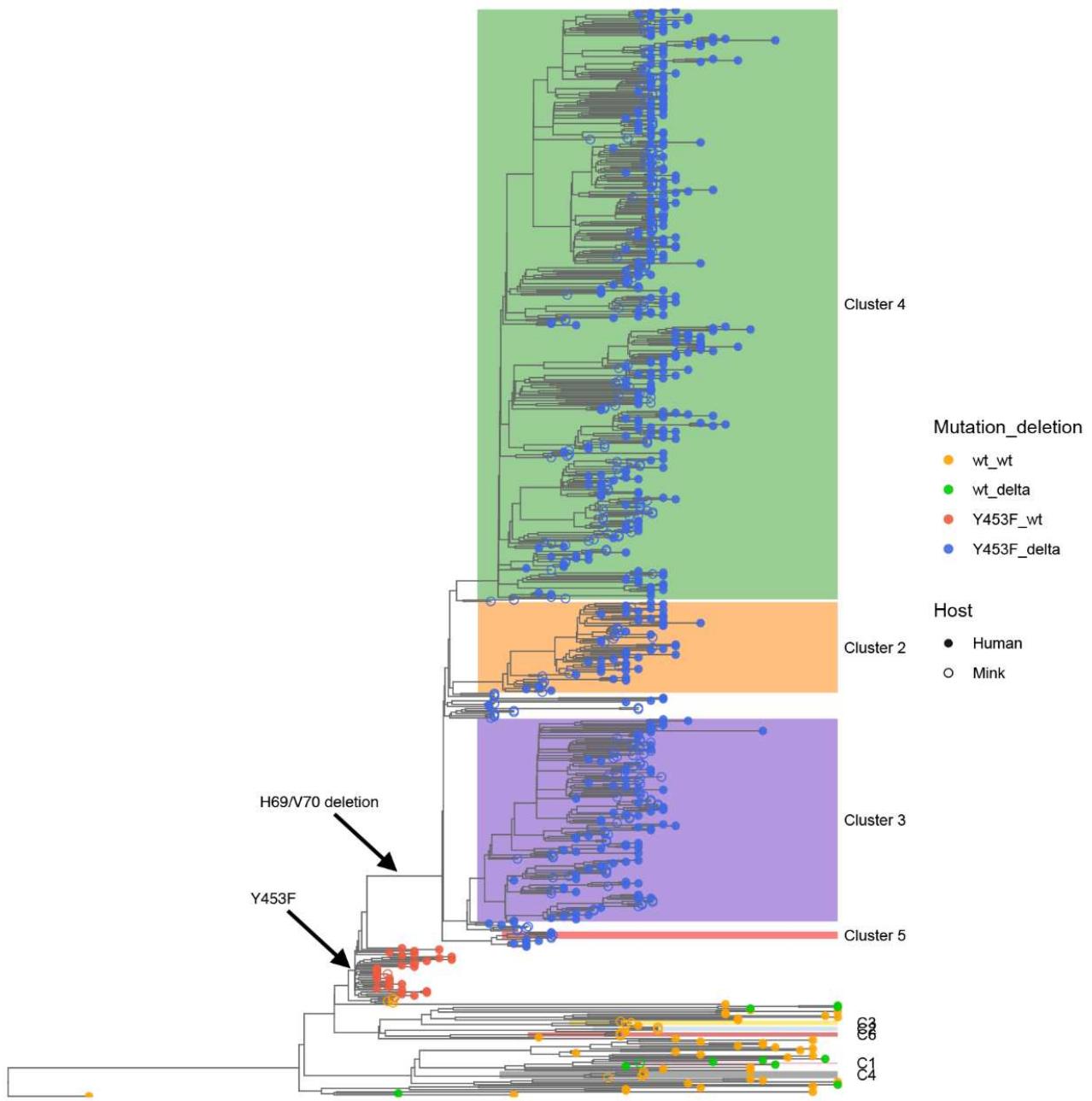
676


677

678 **Figure 2. Location of different SARS-CoV-2 variants in mink during the epidemic in**
679 **Denmark, June-November 2020.** Panel A. The location of the initial cases of SARS-CoV-2
680 infection in Northern Denmark are indicated. Subsequently, further cases occurred and the
681 virus diverged, within lineage B.1.1.298, into Clusters 2, 3, 4 and 5 (as shown in Figure 1).
682 Panel B. Later in the epidemic, new introductions of viruses from different lineages occurred
683 and these are named as C1-C7 (see Table 1).

684

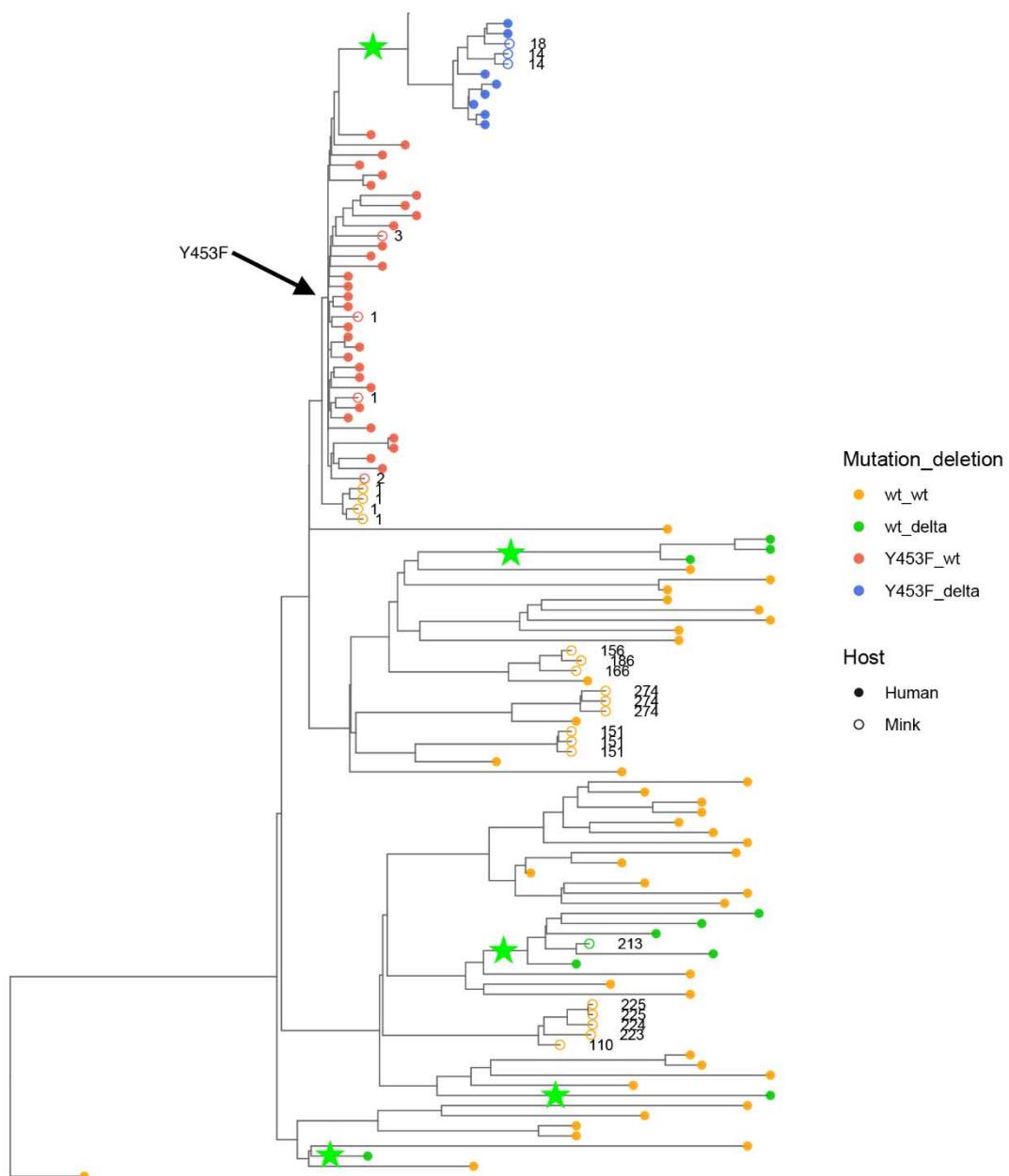
685
686 **Figure 3. Phylogenetic tree based on whole-genome SARS-CoV-2 sequences from**
687 **viruses obtained from humans and mink.** Phylogenetic analysis was performed using
688 BEAST2 with a strict clock model, GTR+gamma substitution model, and a BDSKY-serial
689 tree prior. Shown here is the maximum clade-credibility (MCC) tree based on 17,500 post-
690 burnin tree samples. Tips are colored based on host species (Human: red, Mink: blue), and on
691 whether the encoded Spike protein contains the Y453F substitution (Yes: darker colors, No:
692 lighter colors) resulting from the A22920T mutation. The Y453F substitution can be seen to
693 evolve once (arrow pointing to tree branch), after which point it was retained in all
694 descendant viruses. Also note how mink and human sequences are interspersed indicating
695 frequent cross-species jumps.


697 **Figure 4. Zoom of phylogenetic tree from Figure 3 showing details around the branch**
698 **where the Y453F S protein substitution occurred.** Tips are colored based on host species
699 (Human: red, Mink: blue) and on whether the encoded Spike protein contains the Y453F
700 substitution (Yes: darker colors, no: lighter colors). Mink sequences are annotated with a
701 number indicating the ID of the farm from which the sample was obtained. Note how only
702 farm 1 had some mink without the Y453F change (light blue) and some with it (dark blue).
703 This is consistent with the substitution occurring in the mink on farm 1.

704

705

706


707

708

709

710 **Figure 5. Phylogenetic tree from Figure 3 with tips colored according to presence or**
711 **absence of the Y453F S protein substitution and the H69/V70 S protein deletion.** The
712 format used to label tips is <Y453F status> <deletion status>, with “wt” indicating the
713 absence of substitution or deletion, “Y453F” indicating the presence of that substitution, and
714 “delta” indicating the presence of the deletion: wt_wt: orange, wt_delta: green, Y453F_wt:
715 red, Y453F_delta: blue. Host species is indicated using open circles for mink and closed
716 circles for human. Note that the H69/V70 deletion appears shortly after the Y453F
717 substitution (arrows pointing to branches), and both changes are subsequently present in all
718 descendant sampled viruses, from both humans and mink. The deletion was also present in 4
719 separate clades among viruses without Y453F (4 groups of green tips in bottom part of tree –
720 see Figure 6 for further detail).

721
722 **Figure 6. Zoom of phylogenetic tree from Figure 5 showing details around the branches**
723 **where the H69/V70 deletion appeared.** Color scheme is the same as in Figure 5. Mink-
724 derived sequences are further annotated with a number indicating the farm ID from which the
725 sample was obtained. The deletion can be seen to have evolved on a branch shortly after the
726 Y453F substitution and to then have been retained in all viruses descending from this branch
727 (see upper part of tree in Figure 5). Among the viruses, that do not have Y453F, the deletion
728 is present in 4 separate clusters (green tips in bottom part of tree). The basal branches (where
729 the deletions presumably evolved) of these 4 clusters are indicated with green stars. Two of
730 the 4 clusters are human singletons (green closed circles near bottom of plot) and may
731 correspond to independent introductions into DK of viruses already harboring the deletion.
732 The two other clusters contain multiple sequences (3 and 6 respectively), indicating that the
733 deletion may have evolved in DK and subsequently spread. One of these clusters contains
734 only humans sequences, while the other contains the sequence from a single mink (from farm
735 213), that appears to have been infected by a human harboring virus with the deletion.

736

737

Cluster	Pangolin lineage	Clade	Spike protein signature	Spike protein deletion ¹	No. of mink sequences	No. of farms	First sequence (date)	Last sequence (date)	Location
Initial cases	B.1.1.298	20B	(Y435F)	(H69/V70)	43	4	14-06	06-11	Northern Denmark
2	B.1.1.298	20B	Y453F	H69/V70	174	76	09-09	12-11	Northern/ Central Denmark
3	B.1.1.298	20B	Y453F	H69/V70	142	66	14-09	15-11	Northern/ Central Denmark
4	B.1.1.298	20B	Y453F	H69/V70	272	121	10-09	03-12	Northern/ Central Denmark
5	B.1.1.298	20B	Y453F	H69/V70	5	5	31-08	15-09	Northern Denmark
C1	B.1.258.9	20A	N439K; G1223S	H69/V70	2	1	03-11	-	Southern Denmark
C2	B.1.1.219	20B	F157L; (A845S)		13	4	16-10	13-11	Central Denmark
C3	B.1.1.170	20B	(G1167S)		6	3	23-10	29-10	Central Denmark
C4	B.1.536	20A	(N501T)		19	7	16-10	18-11	Southern Denmark
C6	B.1.1.294	20B			3	1	23-10	-	Northern Denmark
C7	B.1.1.159	20B			3	1	12-11		Southern Denmark
C8	B.1.177	20E	A222V		1	1	02-11	-	Northern Denmark

738 ¹: Changes shown in parenthesis were only found in some of the mink sequences in the cluster

739

740 **Table 1. Summary of the SARS-CoV-2 sequences from infected mink from farms in**
 741 **DK.** The features of the different Clusters (as identified in Figure 1) are shown. The later
 742 introductions into mink from infected humans, designated C1-C8 are also indicated; these
 743 viruses lack the Y453F change.

744