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Abstract 
Even though alternative RNA splicing was discovered in 1977 (nearly 50 years ago), we still understand very little about 

most isoforms arising from a single gene, including in which tissues they are expressed and if their functions differ. 

Human gene annotations suggest remarkable transcriptional complexity, with approximately 252,798 distinct RNA 

isoform annotations from 62,710 gene bodies (Ensembl v109; 2023), emphasizing the need to understand their 

biological effects. For example, 256 gene bodies have g50 annotated isoforms and 30 have g100, where one protein-

coding gene (MAPK10) even has 192 distinct RNA isoform annotations. Whether such isoform diversity results from 

biological noise (i.e., spurious alternative splicing) or whether it represents biological intent and specialized functions 

(even if subtle) remains a mystery. Recent studies by Aguzzoli-Heberle et al., Leung et al., and Glinos et al. demonstrate 

long-read RNAseq enables improved RNA isoform quantification for essentially any tissue, cell type, or biological 

condition (e.g., disease, development, aging, etc.) making it possible to better assess individual isoform expression and 

function. While each study provided important discoveries related to RNA isoform diversity, deeper exploration is 

needed. We sought, in part, to quantify real isoform usage across tissues (compared to annotations) and explore 

whether observed diversity is biological noise or intent. We used long-read RNAseq data from 58 GTEx samples across 

nine tissues (three brain, two heart, muscle, lung, liver, and cultured fibroblasts) generated by Glinos et al. and found 

considerable isoform diversity within and across tissues. Cerebellar hemisphere was the most transcriptionally complex 

tissue (22,522 distinct isoforms; 3,726 unique); liver was least diverse (12,435 isoforms; 1,039 unique). We highlight 

gene clusters exhibiting high tissue-specific isoform diversity per tissue (e.g., TPM1 expresses 19 in heart9s atrial 
appendage), and specific genes (PAX6 and TPM1) that counterintuitively exhibit evidence that their expressed isoform 

diversity results from both biological noise and intent. We also validated 447 of the 700 new isoforms discovered by 

Aguzzoli-Heberle et al. and found that 88 were expressed in all nine tissues, while 58 were specific to a single tissue. This 

study represents a broad survey of the RNA isoform landscape, demonstrating isoform diversity across nine tissues and 

emphasizes the need to better understand how individual isoforms from a single gene body contribute to human health 

and disease. 
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Introduction 
According to our analysis of Ensembl gene annotations v109 (released February 2023)1, 38% of human gene bodies (85% 

protein coding) express multiple RNA and protein isoforms via alternative splicing, corroborating other analyses2,3, yet 

despite researchers knowing about alternative splicing for decades4–6, little is known about individual isoforms for most 

genes, including if or how their functions differ. In fact, when discussing a given gene9s function, researchers often speak 

as if the gene has a single function, despite the many RNA and protein isoforms it expresses. We argue that one of the 

most important next-steps in understanding the biology of complex organisms, including human health and disease, will 

be to understand the functions of individual RNA and protein isoforms arising from a <single= gene (i.e., expressed from 

a single gene body). While by definition, a gene is simply a specific DNA sequence, if a single gene body gives rise to 

multiple RNA and protein isoforms with different functions, we question whether it truly is a <single= gene in practice. 

Historically, RNA sequencing studies have collapsed expression across all RNA isoforms for a given gene into a single 

gene expression measurement due to technical limitations in short-read sequencing, ignoring the underlying complexity. 

This approach prevents researchers from: (1) discovering and characterizing all isoforms for a given gene, (2) quantifying 

expression for distinct isoforms, and (3) fully understanding each isoform9s function, as it is not possible to truly 
understand an isoform9s function without knowing its expression patterns across all tissues and cell types.  

Given the complexity of many eukaryotes, including humans, it is reasonable to assume that distinct RNA and protein 

isoforms from a single gene body may have unique functions, even if the functions are closely related. There are a few 

well-documented examples where different isoforms from a single gene body have clearly different (even opposite) 

functions. Perhaps the most recognized example is BCL-X (BCL2L1)7, where one isoform is pro-apoptotic (BCL-Xs) while 

the other is anti-apoptotic (BCL-XL). Additional examples, where different isoforms appear to have more subtle 

functional differences, include: (1) RAP1GDS1 (also known as SmgGDS)8, where its isoforms interact differently with 

small GTPases8,9; and (2) TRPM3, which encodes cation-selective channels in humans, and can be alternatively spliced 

into two variants targeting different ions10–12. RAP1GDS1 and TRPM3 showcase isoforms performing functions that are 

closely related yet not identical, while BCL-X (BCL2L1) is an excellent example where the isoforms perform entirely 

opposite functions. 

Until recently, it has not been possible to quantify individual RNA isoform expression with the same accuracy that long-

read sequencing technologies like PacBio and Oxford Nanopore Technologies (ONT) afford. It is now possible to more 

accurately characterize and quantify expression for individual RNA isoforms expressed for each gene across essentially 

any tissue, cell type, or biological condition (e.g., diseases, development, aging, etc.). Long reads are not perfect because 

of RNA degradation and technical challenges13, but along with work by Leung et al.14, our recent work in Aguzzoli-

Heberle et al.2 demonstrated the value of long-read sequencing in human brain and the technology9s ability to quantify 
expression for individual RNA isoforms, including de novo isoforms and entirely new gene bodies. Similarly, Glinos et al.15 

performed long-read RNA sequencing across 15 tissues, providing valuable data to begin assessing how expression 

patterns for individual RNA isoforms from a single gene body vary across human tissues. By characterizing and 

quantifying expression for individual RNA isoforms across human tissues, we can begin to understand whether different 

RNA isoforms from a single gene body perform different functions—even if subtle—where an isoform might be more 

carefully tuned for the tissue it is expressed in. In fact, some of the subtler differences may explain challenging medical 

mysteries that remain unresolved, including why patients react differently to certain exposures (e.g., medicines, 

vaccines, etc.).medicines, vaccines, etc.). 

In their research, Glinos et al.15 initiated an investigation into tissue-specific RNA isoform expression, but given the broad 

scope of their article and the crucial importance of this subject, we believe a more thorough exploration is warranted. To 

provide a broad survey and to characterize the RNA isoform landscape across the human genome and emphasize the 

importance of alternative splicing in complex organisms, including humans, our aims are three-fold; (1) briefly 

characterize the history of gene body and RNA isoform discovery since 2014 by comparing Ensembl1 gene annotations 

from 2014 to 2023 to assess changes over time; (2) characterize individual isoform expression across nine GTEx tissues 

(58 samples total) using data generated by Glinos et al.15; and (3) verify the existence and quantify the expression of new 

RNA isoforms, including those from new gene bodies, that we previously discovered in Aguzzoli-Heberle et al.2 across 
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the nine GTEx tissues. We further provide a user-friendly website to explore the RNA isoform expression data for the 

GTEx samples (https://ebbertlab.com/gtex_rna_isoform_seq.html) and for our own RNA isoform expression data from 

prefrontal cortex (https://ebbertlab.com/brain_rna_isoform_seq.html)2. 

Results 
Here, we present results beginning with a broad overview of gene body and RNA isoform discovery in the past ten years, 

followed by a more in-depth analysis of RNA isoform expression across nine tissue types, using long-read data generated 

by Glinos et al.15 combined with results from our recent study of deep long-read cDNA sequencing in human prefrontal 

cortex (Brodmann 9/46) in Aguzzoli-Heberle et al.2  

Also, while we report a few minor shortcomings in the Ensembl1 tools for tracking annotation changes over the years, 

we emphasize that the overall quality and utility of Ensembl, their team, and their collaborators is incredible. Accurately 

resolving gene and isoform annotations is a Herculean task and is not a solved problem. We only call attention to the 

seeming inconsistencies in annotation variations over the years to highlight how challenging this problem is, and to 

demonstrate how much we have learned as a field in the past ten years. The minor shortcomings we report are only as 

feedback for improvement to enhance scientific transparency and reproducibility. 

Methodological overview 

For this study (see study design in Figure 1), we retrieved long-read cDNA data for GTEx samples from Glinos et al.15 

sequenced using the Oxford Nanopore Technologies (ONT) minION. For consistency across data sets, we reanalyzed 

samples using our bioinformatics pipeline. Analysis included isoform quantification with Bambu16 using Ensembl1 v109 

annotations with the addition of the 700 new isoforms discovered in Aguzzoli-Heberle et al.2. We only retained tissues 

with at least five samples from unique subjects in our analyses. We further removed technical replicates, samples with 

experimental conditions (i.e., PTBP1 knockdown), and samples with low total read counts (< 1,000,000 reads; Figure 1). 

One liver sample was removed because it clustered poorly during principal components analysis (PCA; Supplemental 

Figure S1-2; Supplemental Table S1). Ensembl annotations across a ten-year period (2014-2023, one per year) were 

downloaded for additional analyses, as discussed below (Figure 1; Supplemental Table S2). 

While it is possible to sequence entire RNA isoforms with long-read sequencing, many reads still cannot be uniquely 

mapped to an isoform because of degradation and technical limitations13, even with high-quality RNA (e.g., RIN g 9). To 

address this challenge, Bambu—the quantification tool we employed—provides RNA isoform expression estimates in 

three forms, each with particular pros and cons: (1) total counts, (2) full-length counts, and (3) unique counts. 

The <total counts= metric utilizes all aligned reads—its primary advantage—where credit for a single read count is split 

for reads that map to multiple isoforms. For example, if a read is equally likely to originate from two isoforms, each 

isoform receives credit for 0.5 reads. The disadvantage is that this approach likely overestimates expression for some 

isoforms while underestimating expression for others, but is a valid approach given the challenge of assigning 

ambiguous reads to the correct isoform.  

The <full-length counts= metric only includes reads containing all exon junctions for at least one isoform. If the read is 

still not unique to a single isoform, Bambu will split the read count among the relevant isoforms (same as total counts). 

Thus, the full-length counts metric reduces ambiguity, but also likely dramatically underrepresents longer isoforms 

because they will not be fully sequenced as often13. For reference, 51% of reads were <full-length= in this study.  

The <unique counts= metric is the strictest and includes only reads that align uniquely to a single isoform, because of a 

unique exon-exon junction structure. In theory, unique counts would be the ideal metric because the alignment is 

unambiguous and would best represent the observed expression for all isoforms. Unfortunately, this approach is biased 

against isoforms that only differ towards the 59 end (degradation bias) and isoforms that have the same exon-exon 

junctions but only differ in their start or end sites (e.g., shortened 39 UTR).16. Approximately 63% of reads aligned 

uniquely to an isoform in this study; while far from perfect, this is still a significant improvement over short-read 

sequencing. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.579945doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.579945
http://creativecommons.org/licenses/by-nc-nd/4.0/


Currently, there is no perfect solution to the challenge of unambiguously assigning reads to the correct isoform. While 

we anticipate more sophisticated approaches will be developed in the coming years, we used a relatively simplistic 

approach involving both the total counts (to utilize all reads; i.e., sensitivity) and unique counts (for specificity) provided 

by Bambu. Specifically, to minimize false positives, a given isoform was only included in this study if it had both a median 

counts-per-million (CPM) > 1 (total counts) and a median unique counts g 1 across all samples within a given tissue, 

unless otherwise specified. 
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Figure 1: Study design to assess RNA isoform 

diversity across human tissues. We used long-

read RNAseq data from GTEx samples generated 

by Glinos et al. to characterize and quantify RNA 

isoform expression and diversity across various 

tissues. These data were combined with results 

from our recent work in Aguzzoli-Heberle et al. 

GTEx data were reanalyzed for consistency across 

data sets, as shown. After filtering samples and 

tissues (as shown) we included nine tissues in our 

analyses. Created with BioRender.com. 
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Gene and RNA isoform annotation comparison from 2014-2023 reveals a general increase in gene 

body and RNA isoform discoveries. 

Gene body annotations.  

To quantify the rate of gene body and RNA isoform discoveries in the past ten years, and demonstrate how much the 

field has learned, we compared Ensembl annotations spanning 2014 to 2023 at both the gene and RNA isoform levels 

(Figure 2). Starting with Ensembl v76 (released August 2014), there were 58,764 gene annotations present, compared to 

62,710 by Ensembl v109 (released February 2023; 3,946 increase; Figure 2a). We observed a sharp increase in new gene 

body annotations in 2015 (1,792), followed by a sharper decrease in 2016 (2,505). Between 2016 and 2023, there was a 

general increase in gene annotations, including large increases in 2020 and 2023. Comparing gene body annotations 

between 2019, 2021, and 2023, 196 and 14 were unique to 2019 and 2021, respectively, with 149 shared between them 

that were missing in 2023 (Venn diagram in Figure 2a), indicating that many gene body annotations were dropped 

between 2021 and 2023. 

Exactly why gene body annotations were dropped in subsequent releases is not clear, nor is it available in publicly 

accessible data (to our knowledge), but we point out the seeming inconsistencies to highlight how challenging 

annotating a genome is. Ensembl provides an ID History Converter tool that reports specific release versions whenever a 

gene ID had a major update. While useful for specific situations, the tool does not explicitly state what changed, nor 

could we access ID history via a high-throughput method (i.e., it required manual curation). Our analysis does not 

account for gene ID changes because, to our knowledge, extracting this information through Ensembl is not currently 

possible via a high-throughput method. Documentation on why changes are made, and the ability to programmatically 

assess them genome-wide would provide increased transparency and improve scientific reproducibility. To be clear, 

however, Ensembl and their collaborators employ a manually supervised computational workflow combined with expert 

annotators to resolve these challenging problems17, and their contributions to the field are both significant and 

essential. 

In contrast to the full set of gene body annotations, there were multiple large increases and decreases for protein-

coding genes from 2014-2017 (Figure 2b) and small decreases between 2019 and 2021. Comparing protein-coding gene 

body annotations between 2019, 2021, and 2023, 125 and 7 were unique to 2019 and 2021, respectively, with 89 shared 

between them that were not present in 2023 (Venn diagram in Figure 2b). For interest, there was a single protein-

coding gene body annotation present in 2019 and 2023 that was absent in 2021 (Supplemental Table S3); the 

annotation was present in all three releases, but the gene9s biotype changed from <protein coding= to <transcribed 
unprocessed pseudogene= in February 2021 (Ensembl release 103)18, but reverted to <protein coding= by December 

2021 (Ensembl release 105)19 . 

RNA isoform annotations.  

In our view, a reference genome is only as good as its annotations; thus, while having properly annotated gene bodies is 

critical, having fully characterized and annotated RNA isoforms for all genes is equally important for understanding an 

organism9s full complexity. Exactly 194,305 RNA isoforms annotations existed in 2014 (Ensembl v76), compared to 

252,798 in 2023 (58,493 increase); 19,291 were newly annotated between 2019 and 2020 alone (Figure 2c). We cannot 

verify why this sudden increase occurred, but we believe it is directly related to long-read sequencing technologies 

becoming more accessible in previous years. Comparing RNA isoform annotations between 2019, 2021, and 2023, 1,638 

and 47 were unique to 2019 and 2021, respectively, with 2,091 shared between them that were not present in 2023, 

again showing annotations being dropped (Venn diagram in Figure 2c). 

We saw similar patterns for RNA isoforms annotated as protein-coding, with 79,431 annotated in 2014 (Ensembl v76) 

and 89,374 in 2023 (Ensembl v109; 9,943 increase; Figure 2d). Comparing protein-coding RNA isoforms between 2019, 

2021, and 2023, 1,712 and 41 were unique to 2019 and 2021, respectively with 2,248 shared between them that were 

not present in 2023 (Venn diagram in Figure 2d). Interestingly, there were 5 RNA isoforms annotated as protein-coding 

that were shared between 2019 and 2023 but were not annotated as protein-coding in 2021 (Venn diagram in Figure 2d; 

Supplemental Table S3). 
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We also characterized the transcript biotype for all RNA isoforms in Ensembl v109 (2023; Figure 2e). The top five 

annotation categories were protein-coding (with 89,374 RNA isoforms), lncRNA (56,103), retained intron (34,074), 

protein-coding CDS not defined (26,471), and nonsense mediated decay (21,347; Figure 2e). 

RNA isoforms per gene.  

We quantified the distribution of RNA isoforms per gene body and, as expected, most gene bodies (38,690) have only 

one annotated isoform (median = 1; 75th percentile: 4; 85th: 8; 95th: 16; Figure 2f). Comparatively, only 2,922 protein-

coding genes (14.6%) have a single annotated isoform while the median number of annotated isoforms is 6 (75th 

percentile: 11 isoforms), demonstrating the transcriptional complexity among protein-coding genes and supporting the 

hypothesis that at least individual protein-coding isoforms may serve different functions. Remarkably, the most 

annotated isoforms for a single gene body and a single protein-coding gene were 296 (PCBP1-AS1; ENSG00000179818; 

Figure 2f) and 192 (MAPK10; ENSG00000109339; Figure 2g), respectively. Similarly, we observed 7,255, 256, and 30 

gene bodies with g10, g50, and g100 annotated isoforms, respectively, and 6,162, 169, and 94 protein-coding gene 

bodies for the same respective thresholds. While biology regularly surprises scientific expectations and humans are 

complex organisms, we were skeptical that any single gene body could legitimately express so many isoforms (e.g., 50). 

Thus, we wanted to determine whether we actually observe genes expressing so many unique isoforms using the long-

read sequencing data from the GTEx samples15 (described below). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.579945doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.579945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 2: Ensembl gene and isoform annotations generally increased between 2014 & 2023, and reveal complex RNA isoform diversity. For 

figures (a-d), a representative Ensembl annotation was chosen for each year from 2014-2023. (a) 58,764 gene annotations existed in Ensembl v76 

(2014) compared to 62,710 by Ensembl v109 (2023; 3,946 increase). There was a sharp increase in gene body annotations in 2015 (1,792), followed 

by a sharper decrease in 2016 (2,505). Comparing annotations between 2019, 2021, and 2023, 196 and 14 were unique to 2019 and 2021, 

respectively, with 149 shared between them that were missing in 2023 (Venn diagram), indicating dropped annotations between 2021 and 2023. 

(b) Same as (a) but restricted to protein-coding genes. In contrast, there were multiple large increases and decreases from 2014-2017, and small 

decreases between 2019 and 2021. (c) 194,305 RNA isoform annotations existed in 2014 compared to 252,798 in 2023 (58,493 increase); 19,291 

were newly annotated between 2019 and 2020, alone. Comparing RNA isoform annotations between 2019, 2021, and 2023 also shows annotations 

were dropped. (d) Similar patterns existed for RNA isoforms annotated as protein-coding, with 79,431 annotated in 2014 and 89,374 in 2023 (9,943 

increase). Figures (e-g) reference only Ensembl v109 (2023). (e) Bar plot showing transcript biotype for all isoforms. As expected, protein-coding 

was the most common biotype. Interestingly, retained intron was 3rd and nonsense mediated decay was 5th. (f) Histogram showing number of 

annotated isoforms per gene. Colored, zoomed subplots shown for convenience. Most gene bodies (38,690) had only one annotated isoform 

(median = 1; 75th percentile: 4; 85th: 8; 95th: 16). The most annotated isoforms for a single gene body was 296 (PCBP1-AS1; ENSG00000179818). (g) 

Comparatively, only 2,922 protein-coding genes (14.6%) have a single annotated isoform while the median number of annotated isoforms is 6 (75th 

percentile: 11 isoforms), demonstrating the transcriptional complexity among protein-coding genes and supporting the hypothesis that individual 

isoforms may serve different functions. The most annotations for a single protein-coding gene body was 192 (MAPK10; ENSG00000109339). 
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Long-read RNA isoform expression reveals high isoform diversity and variation across nine tissues. 

RNA isoform diversity across tissues.  

With the large number of annotated RNA isoforms in Ensembl v109, we wanted to characterize and quantify individual 

isoforms being expressed in human tissues, relative to their annotations as described above. Using long-read RNAseq 

data from Glinos et al.15, we compared RNA isoform expression patterns across nine tissues, including three brain 

regions (cerebellar hemisphere, frontal cortex, and putamen), two heart regions (left ventricle and atrial appendage), 

liver, lung, skeletal muscle, and cultured fibroblast cells. We only included cultured fibroblast cells for interest since 

many scientific experiments utilize them. 

The number of distinct isoforms that exceeded our thresholds ranged between 12,435 (liver; from 8,857 genes) and 

22,522 (cerebellar hemisphere; from 13,236 genes; Figure 3a,b)—a surprisingly large range (a difference of 10,087), 

suggesting substantial molecular diversity across tissues. For interest, the total number of isoforms with a 0 < CPM f 1 

ranged from 5,691 (heart [left ventricle]) to 12,385 (cerebellar hemisphere; Figure 3a), demonstrating the large number 

of isoforms that were observed with a CPM f 1. Using an ultra-conservative CPM threshold of 10, expressed isoforms 

ranged between 3,815 (liver) and 7,916 (cerebellar hemisphere) (Figure 3a). 

For RNA isoforms annotated as protein coding (regardless of the gene annotation), the number ranged from 10,114 in 

liver to 14,649 in cerebellar hemisphere (Supplemental Figure S3, Figure 3b). Isoforms expressed with a 0 < CPM f 1 

ranged from 2,888 (heart [left ventricle]) to 4,723 (cerebellar hemisphere; Supplemental Figure S3). Between 3,521 

(liver) and 6,560 (cerebellar hemisphere) protein coding isoforms were expressed using an ultra-conservative threshold 

of 10 (Supplemental Figure S3). As expected, the top five (5) expressed transcript biotypes for each tissue closely 

mirrored the distributions from Ensembl annotations, with some minor exceptions (compare Figure 2e and 

Supplemental Figure S4). 

Comparing the number of RNA isoforms expressed across tissues, the cerebellar hemisphere not only expressed 

substantially more total isoforms, but also a substantially larger proportion of non-protein-coding RNAs when compared 

to heart (Figure 3b,c). Specifically, cerebellar hemisphere expressed 7,873 (35.0%) non-protein-coding RNA isoforms 

compared to 2,329 for the heart9s left ventricle (17.9%; p = 1.90e-255; Chi-square test; Figure 3b,c); this includes all RNA 

isoforms not annotated as <protein coding=, even if it derived from a known protein-coding gene body. It is unclear 

whether the significant increase in non-protein-coding RNAs within cerebellar hemisphere compared to an arguably less 

complex tissue like the heart is biologically meaningful, but it merits further investigation; determining what role non-

coding RNAs play in human health and disease remains a critical question in human biology. 

RNA isoforms per gene.  

As discussed, Ensembl v109 suggests that 7,255, 256, and 30 genes express g 10, g 50, and g 100 RNA isoforms, where 

the highest number of annotated isoforms for a single gene body was for PCBP1-AS1 (lncRNA; 296) and, for protein-

coding, MAPK10 (192). Despite the regular surprises that biology presents to researchers, and human biological 

complexity, we were skeptical that a single gene could legitimately express such a high number of RNA isoforms. Thus, 

we quantified the number of isoforms we observed for all genes across the nine tissues included in this study. 

To estimate the maximum number of distinct RNA isoforms we observed for each gene body across the nine tissues 

(erring on the side of sensitivity), we used a minimum threshold of one unique count in any sample for any tissue (i.e., a 

single read that uniquely aligns to the given isoform from g 1 sample). A large number of annotated isoforms for many 

of these genes are, in fact, observed at this forgiving threshold (Figure 3d; Supplemental Table S4). The most RNA 

isoforms observed for a single gene body and protein-coding body were 105 (PCBP1-AS1) and 60 (FANCL), respectively. 

Surprisingly, 2,751 of the 3,121 (88.1%) gene bodies expressing g 10 distinct RNA isoforms were protein coding, and 
1,085 were medically relevant genes, as defined by Wagner et al.20, including PSEN2 (19 isoforms), PAX6 (43), and 

MAPK10 (46; Supplemental Table S4-5). Similarly, 231 of the 304 (80.0%) gene bodies expressing g 25 distinct RNA 
isoforms were protein coding. We only observed ten gene bodies expressing g 60 distinct RNA isoforms, where only one 
(10%) was protein coding. Considering that RNA expression measurements are simply a snapshot of expression in time, 
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and the large number of additional tissues not included in this data set, it seems reasonable that some genes may 

legitimately express the additional RNA isoforms not observed here. 

When using a stricter threshold of five unique counts, we observed 1,188 total gene bodes that expressed g 10 distinct 
RNA isoforms, where 1,036 (87.2%) were protein coding (Supplemental Table S5; Supplemental Figure S5a); only three 

gene bodies expressed g 60 RNA isoforms (all lncRNAs). Similarly, when using thresholds of 10 and 20 unique counts 

(Supplemental Table S5; Supplemental Figure S5b,c), we observed 608 (524 protein coding; 86.2%) and 270 (227 

protein coding; 84.1%) gene bodies expressing g 10 RNA isoforms, respectively; exactly two and one gene bodies 

expressed g 60 RNA isoforms, respectively. 

Returning to our standard and stricter threshold (median unique count g 1 and CPM > 1), we quantified how many 

distinct isoforms per gene for a given tissue are consistently expressed. We still consistently observed gene bodies 

expressing g 10 isoforms and protein-coding gene bodies expressing g 5 isoforms at these high levels (Figure 3e; 

Supplemental Figure S6; Supplemental Table S6). Using cerebellar hemisphere as an example (Figure 3e), 25 genes 

expressed g 10 isoforms and 123 expressed g 5 protein-coding isoforms. Cerebellar hemisphere expresses more 

isoforms than others.  

RNA isoforms per tissue and overlap.  

Looking at the overall number of expressed isoforms per tissue is itself informative, but understanding the overlap of 

isoforms expressed across tissues is equally important. Knowing which isoforms are common across all tissues versus 

those expressed in only a few or even a single tissue provides additional understanding about the potential function of 

the isoforms. Using our thresholds, 7,023 isoforms had shared expression across all nine tissues (Figure 3f). Cerebellar 

hemisphere uniquely expressed 3,726 isoforms—more than half (53.1%) of the number of isoforms expressed across all 

nine tissues, 2.22x more than the next largest overlap (1,680 isoforms; expressed in all three brain regions), and 19.7x 

more than the tissue with the least number of uniquely expressed isoforms (189; heart [left ventricle]; Figure 3f,g). 

These stark differences mark the cerebellar hemisphere as a truly unique tissue in this study, as similarly suggested by 

Glinos et al.15.  

Curiously, the proportion of protein-coding isoforms expressed uniquely within a tissue varied. The cerebellar 

hemisphere uniquely expressed 3,726 isoforms, where only 30.9% (1,152 of 3,726) were protein-coding. Approximately 

64.8% (435 out of 671) were protein-coding for skeletal muscle, however (Figure 3g,h). Cultured fibroblasts had the 

highest percentage of protein-coding isoforms at 73.7% (1,180 out of 1,601), though whether this would generalize to 

fibroblasts in vivo, we cannot say. Recent work by Cadiz et al.21, however, demonstrated that microglial cell cultures 

exhibited significantly unique expression signature compared to freshly isolated microglia, demonstrating that cell 

cultures likely do not accurately represent reality. The large range in ratio of protein-coding isoforms to all other RNA 

isoforms solidifies our stance that understanding the interaction of isoforms in different tissues is needed. 
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Figure 3: Long-read RNA isoform expression reveals high isoform diversity and variation across nine tissues. (a) Line graph showing the number of 

isoforms expressed across CPM thresholds from 0-10. (a,b) Number of distinct isoforms that exceeded our thresholds (median-unique-counts g 1 & 
CPM > 1) ranged between 12,435 (liver; from 8,857 genes) and 22,522 (cerebellar hemisphere; from 13,236 genes; 10,087 difference), showing 

substantial molecular diversity across tissues. Horizontal line beginning each distribution resulted from removing isoforms that did not meet the 

median-unique-counts g 1 threshold. Total isoforms with a 0 < CPM f 1 ranged from 18,680 (left ventricle) to 12,385 (cerebellar hemisphere). An 

ultra-conservative threshold of 10 ranges between 3,815 (liver) and 7,916 (cerebellar hemisphere). (b) Using our standard threshold, number of 

protein-coding isoforms ranged from 10,114 in liver to 14,649 in cerebellar hemisphere. (c) Bar plot comparing the proportion of protein-coding 

isoforms to other isoforms expressed across the nine GTEx tissues. Cerebellar hemisphere expressed 7,873 (35.0%) non-protein-coding RNA 

isoforms compared to 2,329 for heart (left ventricle) (17.9%; Chi-square p = 1.90e-255). (d) To estimate the maximum number of distinct RNA 

isoforms we observed for each gene body across the nine tissues (max sensitivity), we used a minimum threshold of one unique count in any 

sample for any tissue. The most RNA isoforms observed for a single gene body and single protein-coding gene body were 105 (PCBP1-AS1) and 60 

(FANCL), respectively. Surprisingly, 2,751 of the 3,121 (88.1%) gene bodies expressing g 10 distinct RNA isoforms were protein coding, and 1,085 
were medically relevant genes, as defined by Wagner et al.20, including PSEN2 (19 isoforms), PAX6 (43), and MAPK10 (46). Exactly 304 (231 protein 

coding; 80.0%) gene bodies expressed g 25 distinct RNA isoforms. Only ten gene bodies expressed g 60 distinct RNA isoforms. Zoomed subplot 

shown for convenience. (e) Using cerebellar hemisphere as an example, we saw 25 genes expressing g 10 isoforms and 123 genes expressing g 5 
protein-coding isoforms using our standard threshold (median unique count g 1 & CPM = 1). Zoomed subplot is protein-coding isoforms per gene. 

(f) Upset plot showing the first 20 interactions of isoform overlap between tissues. Exactly 7,023 isoforms had shared expression across all nine 

tissues. Cerebellar hemisphere has the largest number of isoforms uniquely expressed in a single tissue—more than half (53.1%) of the number of 

isoforms expressed across all nine tissues. (g,h) Bar plot showing the total number of isoforms that were uniquely expressed in each tissue. The 

grayed portion is the number of unique isoforms labeled protein-coding. The cerebellar hemisphere expressed 3,726 isoforms uniquely, where only 

30.9% (1,152) were protein-coding. Exactly 64.8% (435 out of 671) were protein-coding for skeletal muscle, however. 
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Genes selectively express many isoforms per tissue. Biological noise, or biological intent? 

We were fascinated to find certain genes actively transcribe so many distinct isoforms in a single tissue type, which 

raises the question of why a single gene body is expressing multiple distinct isoforms simultaneously. Specifically, it is 

unclear whether the level of observed splicing is simply noise, driven by high expression and spurious alternative 

splicing, or whether it is biologically intended and functional. Ultimately, targeted experimental work will be required to 

determine what function, if any, each isoform from a single gene body performs, but characterizing which genes and 

tissues these events occur in is the first step to understanding this phenomenon. 

We selected all genes expressing > 5 distinct isoforms above our thresholds in at least one tissue, totaling 416 genes. We 

generated a clustered heatmap based on the isoform diversity (i.e., the number of isoforms, not expression values) to 

identify gene clusters that preferentially express many isoforms for specific tissues (Figure 4a; Supplemental Figure S7; 

Supplemental Table S7). We identified several tissue-specific clusters, including for cerebellar hemisphere, brain (as a 

whole), muscle (including heart and skeletal muscle), liver, and lung (Figure 4a; Supplemental Figure S7; Supplemental 

Table S7). There are several fascinating examples of isoform complexity for each cluster, but we will only highlight a few. 

PAX6, CACNA1A, and CRELD1 exhibit high isoform diversity in cerebellar hemisphere.  

We have highlighted that the cerebellar hemisphere has greater isoform diversity than other tissues, including other 

brain regions. Thus, it is not surprising that cerebellar hemisphere has its own cluster that is distinct from the other brain 

regions. (Figure 4a; Supplemental Figure S7). Two examples of isoform diversity within the cerebellar hemisphere are 

PAX6 and CACNA1A, where only the three brain regions have any isoforms above our noise threshold. Only two to three 

isoforms met our criteria for putamen and prefrontal cortex for both genes, yet 16 and 11 isoforms met our criteria for 

the cerebellar hemisphere for PAX6 and CACNA1A, respectively (Figure 4a; Supplemental Figure S7,8,9; Supplemental 

Table S7). Notably, PAX6 is historically associated with eye diseases22–24 and early neural development25, yet it is already 

known to be highly expressed in the cerebellar hemisphere in adults26, suggesting a major function in this tissue. 

CACNA1A, on the other hand, is known to be directly involved in spinocerebellar ataxia type 6 (SCA6)27, where several 

DNA variants directly cause the disease. Thus, knowing the individual functions of individual RNA isoforms could be 

essential to treating this disease. 

Similarly, the number of unique CRELD1 isoforms ranges from three to five for all tissues except for the cerebellar 

hemisphere, where 12 exceeded our noise threshold (Figure 4a; Supplemental Figure S10; Supplemental Table S7)—
double that of the next highest (liver). CRELD1 is a known heart disease gene28,29, yet it has recently been implicated in a 

range of neurodevelopmental disorders, including epilepsy and movement disorders, for which the cerebellar 

hemisphere is major player30. A foundation dedicated to CRELD1-related diseases and associated research (CRELD1 

Warriors; https://www.creld1.com/) has even been established in recent years31. Notably, total CRELD1 expression is 

approximately three times higher in cerebellar hemisphere than in heart, according to GTEx32, and its isoform diversity in 

cerebellar hemisphere is four times greater (twelve) than what we observed in heart (three). 

The stark difference in isoform diversity between tissue regions of the same primary organ (e.g., brain) is an excellent 

example demonstrating the need to understand why a single gene body can express many unique isoforms. Of course, it 

could be argued that such isoform diversity within the cerebellar hemisphere is purely noise, being an artifact of 

spurious alternative splicing; in our opinion, however, that does not explain why we do not observe the same diversity in 

the other brain regions, suggesting the cerebellar hemisphere may legitimately need and utilize the different isoforms. 

ARPP21, SNCA, and MIR9-1HG exhibit high isoform diversity in brain.  

An interesting example of RNA isoform diversity across all three brain regions, compared to the other tissues, is ARPP21, 

where little is known about this gene. ARPP21 is highly expressed across brain regions and has been associated with 

entorhinal cortex thickness in an Alzheimer9s disease study33. It also displays high isoform diversity across all three brain 

regions included in this study, ranging from four (cerebellar hemisphere) to nine (putamen; Figure 4a; Supplemental 

Figure S11; Supplemental Table S7). Interestingly, the only other tissue within this study where any ARPP21 isoform 

exceeds our noise threshold is skeletal muscle, which raises another critical point about gene and isoform function: what 

common molecular function fulfilled by ARPP21 that both brain and skeletal muscle need that other tissues don9t appear 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.579945doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.579945
http://creativecommons.org/licenses/by-nc-nd/4.0/


to need is a fascinating question given the distinct differences between the two tissues (Figure 4a; Supplemental Figure 

S11; Supplemental Table S7). Indeed, according to GTEx, relative expression of ARPP21 is highest in brain, followed by 

skeletal muscle, where most other tissues have very low expression34. 

SNCA, acknowledged for its role in both Parkinson9s35 and Alzheimer9s disease35–38, is also highly expressed across all 

included brain regions and has elevated isoform diversity (putamen: 4; frontal cortex: 8; cerebellar hemisphere: 8) 

compared to other tissues that express this gene (lung: 2; heart [left ventricle]: 1; heart [atrial appendage]: 1; Figure 4a; 

Supplemental Figure S12; Supplemental Table S7). The transcript ENST00000394991 is expressed across all tissues that 

express SNCA and accounts for more than half of the total gene expression, but its expression is at least 5.5x higher in 

the three brain regions compared to other tissues, with median CPMs > 50 for all three regions. This isoform shares 

identical protein-coding sequence with four other isoforms expressed in this data (differing only in their untranslated 

regions [UTRs]), all of which have much lower CPM values (1.42 to 38.87 in brain). Why ENST00000394991 is clearly 

favored over the other isoforms when the only differences are in the UTR, and whether the UTR differences are 

biologically meaningful remain important biological questions. 

As a non-protein-coding example, we observed a long non-coding RNA (lncRNA), MIR9-1HG (also known as C1orf61) that 

is only expressed in brain regions and is expressing between 32 and 36 distinct isoforms (Figure 4a; Supplemental Figure 

S13). While little is generally known about non-protein-coding gene bodies, they constitute more than 50% of all 

transcribed gene bodies. MIR9-1HG, specifically, has been implicated in development of ganglionic eminences, according 

to Zhao et al.39, which is consistent with MIR9-1HG being so highly expressed in brain tissue. Why MIR9-1HG expresses 

>30 distinct isoforms and whether they have distinct functions (or any function at all) is an important question. 

TPM1 and TNNT2 exhibit high isoform diversity in heart and skeletal muscle.  

According to the GTEx portal40, TPM1 has high expression across several tissues, including heart and skeletal muscle, and 

plays an important role in cellular structure across numerous cell and tissue types. In muscle cells, specifically, TPM1 

provides structural support to the actin filament41. Most of the nine tissues expressed between two and nine isoforms 

(Figure 4a; Supplemental Table S7), but 16 and 19 RNA isoforms were expressed in the heart9s left ventricle and atrial 
appendage, respectively, where total gene expression was a median CPM of 14,355.69 and 8,890.88, respectively, 

including isoforms that did not exceed our noise threshold (Figure 4a; Supplemental Figure S14; Supplemental Table 

S7). Those expression values are roughly 1,344x and 859x greater than the median expression value in each tissue, 

respectively. The next closest was cultured fibroblasts with eleven, but whether this pattern would generalize to 

fibroblasts in vivo is unknown. What may be the most compelling comparison, however, is the isoform diversity 

displayed by TPM1 in heart tissue compared to skeletal muscle (8 isoforms), leaving us to wonder whether heart tissue 

genuinely needs 16 to 19 distinct TPM1 to function properly—or at least optimally—and why skeletal muscle only 

expresses half that many. 

The TNNT2 gene is directly associated with various cardiomyopathies42–44 and is primarily expressed in heart muscle45. 

Like TPM1, TNNT2 expresses a large repertoire of RNA isoforms with 16 distinct isoforms, but six are annotated as non-

protein-coding (Figure 4a; Supplemental Figure S15; Supplemental Table S7)—again raising the question regarding 

what role, if any, each of the individual isoforms play in heart health. The complexities of understanding how genes 

interact throughout tissues are staggering, and considering the added complexity of so many isoforms being expressed, 

it is even more difficult to comprehend. Interestingly, five TNNT2 isoforms were expressed in prefrontal cortex and one 

in lung , but those are expressed at much lower levels (median CPMs ranged from 1.39 to 29.5) than what we observed 

for TNNT2 in heart (median CPMs ranged from 1.01 to 3,494.74 for the 16 isoforms; Figure 4a; Supplemental Table S7). 

It is interesting that the most highly expressed isoform in frontal cortex is not the isoform that is most highly expressed 

in heart. Whether the relatively lowly expressed isoforms in prefrontal cortex and lung are performing important 

biological functions in these tissues remains unknown. 

Albumin (ALB) isoform diversity in liver may explain its many known functions. 

The albumin protein (ALB) was allegedly one of the first proteins discovered, and one of the most studied in history, 

where it was first precipitated from urine circa 1500 A.D.46. The breadth of ALB9s functions is remarkable. The ALB 
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protein is expressed and excreted by the liver and is widely reported to be the most abundant protein in blood plasma46–

49. ALB is a multifunctional protein that contributes approximately 70% of osmotic pressure47,50 while also serving to bind 

and transport a range of endogenous and exogenous compounds, including reactive oxygen species (ROS), 

pharmaceuticals, and hormones46–50. We observed eight ALB isoforms expressed in the liver (Figure 4a; Supplemental 

Figure S16; Supplemental Table S7), seven of which are annotated as protein-coding with distinct CDS regions. No other 

tissue expresses a single ALB isoform passing our thresholds. The most highly expressed isoform is ENST00000295897 

(median CPM: 31,327.14), followed by ENST00000415165 (median CPM: 7,896.24). For reference, the median CPM for 

all isoforms expressed in the liver is 4.51, even when excluding isoforms that did not reach our noise threshold. Given 

the many functions attributed to ALB, it seems plausible that the multiple isoforms afforded by alternative splicing make 

this possible. Interrogating these isoforms further would allow us to determine if the difference in coding sequence 

results in a substantially different protein and if the proteins have different or complementary functions. Using the 24 

genes in the liver cluster (Figure 4a), we performed a pathway enrichment analysis using Metascape51 and found 

enrichment for immune response, including the <complement system= and <network map of SARS-CoV-2 signaling 

pathways= (Figure 4b). 

CSF3R isoform diversity in lung highlights the immune role in lungs. 

Within the lung cluster, CSF3R is a gene that encodes a cytokine receptor and is involved in the creation and regulation 

of granulocytes, a type of white blood cell. CSF3R has been directly implicated as a causal gene for chronic neutrophilic 

leukemia and atypical chronic myloid leukemia52,53, and has also been associated with neutropenia (insufficient 

neutrophils)54. In all, CSF3R is strongly implicated as an immune-related gene, and neutrophils specifically, yet we 

observed seven different isoforms above our thresholds in the lung, while other tissues expressed zero or one isoforms 

(Figure 4a; Supplemental Figure S17). Observing a neutrophil-related gene expressing seven distinct isoforms in the 

lungs may seem counterintuitive, initially, but the lungs host a large number of both innate and adaptive immune cells 

to protect against the regular exposure to pathogens55,56. Of the seven observed isoforms, three are annotated as 

protein-coding, three are annotated as retained intron, and one is protein-coding without a defined coding sequence 

(CDS). For CSF3R, the differences between protein-coding isoforms appear to be minimal compared to some of the other 

genes we have highlighted, raising the question of whether the differences are biologically meaningful, or simply noise. 

Larger studies, deeper analyses, and ultimately experimental work will be required to determine whether the variation is 

biologically meaningful. 

A word of caution: total gene expression and number of expressed isoforms are correlated 

While we have highlighted gene clusters that express an enriched number of isoforms in specific tissues, it is important 

to exercise caution when drawing conclusions. In biology, proper interpretation is often not so simple. There are likely 

additional underlying reasons for these genes to express multiple isoforms in a single tissue and not in others. For 

example, it is possible that the increased number of isoforms exceeding our noise threshold is simply biological noise 

resulting from overall increased gene expression and spurious alternative splicing. It is also important not to conflate 

isoform diversity and complexity with total expression. Even though a given gene body may be expressing ten discrete 

isoforms, most of the expression generally comes from one or two specific isoforms. Still, some of the isoforms with 

lower expression relative to other isoforms from the same gene body are expressed at levels much higher than most 

genes as a whole. Understanding the biological purpose in isoform diversity is, indeed, complex. 

To assess whether increased isoform counts could result from increased gene expression, we tested for a correlation 

between the two measures using Spearman correlation and found that total gene expression is, in fact, correlated with 

the number of distinct isoforms expressed (p = 4.38e-48 for heart [left ventricle]; Figure 4c, Supplemental Figure S18), 

supporting the hypothesis that the number of observed isoforms may be driven by overall gene expression—at least in 

part. On the other hand, overall gene expression would also increase if a given cell is intentionally expressing multiple 

distinct isoforms. Thus, we cannot infer cause or biological significance from these data alone, but can only conclude 

that the two metrics are correlated. We think it is likely that some isoform diversity is biological noise from spurious 

splicing events, but that much is biologically intended and functional. Specifically, it has long been established that 

alternative splicing is an evolutionarily evolved process that enables biological diversity and complexity57–59 and it seems 
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unlikely to us that only 20,000+ protein-coding genes performing a single function could support organisms as complex 

as humans with such diverse cell types, tissues, and developmental stages. Regardless of whether the distinct isoforms 

expressed from a single gene perform distinct functions (even if subtle), we need to fully characterize their nature to 

truly understand the underlying biology of human health and disease.  

Here, we provide two examples with different expression patterns, where both genes (PAX6 & TPM1) may 

counterintuitively exhibit evidence of both biological noise and biological intent. As discussed, PAX6 expresses 16 

isoforms above our thresholds in cerebellar hemisphere (Supplemental Figure S8). Twelve of the 16 isoforms represent 

only minimal relative expression, ranging from 0.71% to 4.96%, which could indicate these isoforms are simply biological 

noise resulting from high expression and spurious splicing events. The other four, however, have high expression (CPM 

between 19.99 and 35.67) and arguably similar relative expression levels (ranging from 12.69% to 22.22%; Figure 4d). 

Given the top four isoforms constitute 68.74% of total PAX6 expression with similar relative abundances, it could 

indicate the four isoforms are, in fact, necessary for optimal cellular function. In other words, based on these data alone, 

we think it is likely that at least the twelve lowest-expressed isoforms are biological noise within cerebellar hemisphere, 

and the top four may result from biological intent or need, but deeper work is needed to formally assess this assertion. 

TPM1 also appears to demonstrate both biological noise and intent, but based on a different expression pattern 

compared to PAX6. As discussed, total TPM1 expression levels in the heart9s left ventricle and atrial appendage are 

extremely high, being 1,344x and 859x greater than the median expression value in the respective tissues (10.68 and 

10.35). Thus, given such high expression, it is plausible that many of the 16 and 19 expressed isoforms may have met our 

inclusion criteria through biological noise (i.e., spurious alternative splicing). Additionally, a single isoform 

(ENST00000403994) constitutes between 89.2% and 98.2% of TPM19s total expression for skeletal muscle and the two 

heart tissues (next highest tissue at 2.0%; Figure 4e; Supplemental Figure S14), suggesting the other isoforms are not 

essential in these tissues, if at all necessary.  

The evidence supporting at least some of the additional TPM1 isoforms are biologically intended and important, 

however, is that three isoforms appear to have tissue-specific expression, where ENST00000403994, ENST00000267996, 

and ENST00000334895 are specific to heart and skeletal muscle, lung and liver (percent abundance: 37.1% to 43.0%; 

next highest tissue at 18.3% ; Figure 4e), and brain tissues (percent abundance: 28.1% to 40.1%; next highest tissue at 

6.8%; Figure 4e), respectively. Whether these distinct isoforms are ultimately functionally different or simply somehow 

preferred by the respective tissues remains to be seen. In our opinion, the expression patterns for PAX6 and TPM1 show 

evidence for both biological noise and intent, where some of the distinct isoforms may imply distinct functions, even if 

subtle. In either case, the examples of PAX6 and TPM1 highlight the need to exercise caution when interpreting results, 

as individual metrics can be misleading. 
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Figure 4: Genes selectively express many isoforms per tissue. Biological noise, or biological intent? We selected all genes expressing >5 isoforms 

in g1 tissue. (a) Clustered heatmap showing isoform diversity (i.e., number of isoforms, not expression values) to identify gene clusters that 

preferentially express many isoforms in specific tissues. Dark purple indicates g7 distinct isoforms. Each tissue set had a representative cluster. One 

gene (MIR9-1HG) expressed 36 isoforms in putamen. (b) Metascape pathway analysis for liver cluster shows enrichment for genes associated with 

immune response, including the complement system and SARS-CoV-2 signaling pathway. (c) Total gene expression and the number of isoforms 

expressed were correlated (Spearman9s p = 4.38e-48); left ventricle shown as representative sample (see Supplemental Figure 18 for other 

tissues). We cannot determine cause and effect from these data alone, however, but can only conclude the two are correlated. Figures (d-e) show 

two representative gene examples from our R Shiny app (https://ebbertlab.com/gtex_rna_isoform_seq.html) expressing many isoforms within a 

single tissue, but with distinct expression patterns. Both genes (PAX6 & TPM1) may counterintuitively exhibit evidence of both biological noise (i.e., 

spurious splicing events) and biological intent. Specifically, at least the 12 lowest-expressed PAX6 isoforms may result from biological noise and the 

top four may result from biological intent or need. For TPM1, we believe most of the 16 and 19 isoforms expressed in left ventricle and atrial 

appendage result from biological noise, but two that appear to be biological noise in heart tissue also appear to be preferentially expressed in 

other tissues, suggesting biological intent and function. Only deeper work can formally assess the reality. (d) PAX6 expressed 16 isoforms in 

cerebellar hemisphere; we highlight the top 5, here (see full plot in Supplemental Figure 8). (e) TPM1 expresses 16 and 19 isoforms in left ventricle 

and atrial appendage, respectively. We highlight three TPM1 isoforms showing potential biological intent where each isoform shows preferential 

isoform expression across distinct tissue sets. TPM1 is generally associated with heart disease, but plays an important role in cellular structure 

across numerous cell and tissue types (see full plot in Supplemental Figure 14). 
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New Since 2019 

New RNA isoforms since 2019, including isoforms from medically relevant genes.  

Many RNA isoforms were discovered between 2019 and 2023 (44,271), where 19,291 were newly annotated between 

2019 and 2020, alone (Figure 2c). To assess the value added in the last four years of RNA isoform discovery, we 

quantified the expression of new isoforms from April 2019 (Ensembl v96) through February 2023 (Ensembl v109), within 

the nine GTEx tissues. Here, we excluded isoforms recently discovered in Glinos et al.15, Leung et al.14, and Aguzzoli-

Heberle et al.2. Using our threshold, the number of RNA isoforms discovered since 2019 expressed in individual tissues 

ranged from 594 (liver) to 2,054 (cerebellar hemisphere; Figure 5a), including 180 and 508 from medically relevant 

genes (Figure 5b), respectively. Of the total new isoforms since 2019, 126 and 303 isoforms contained new protein-

coding sequence in liver and cerebellar hemisphere, respectively, and 66 and 124 were both medically relevant and have 

new protein-coding sequence (Figure 5b).  

Of the 2,054 new RNA isoforms discovered since 2019 that are expressed in the cerebellar hemisphere, 36 are brain-

disease relevant, including notable genes such as MAPT, SNCA, and KIF5A (Figure 5b). Exactly 33 brain-disease relevant 

genes are also expressed in lung, which provides an example of disease-relevant genes that may have important 

functions beyond what they are most associated with. Most of the brain-disease relevant genes expressed in cerebellar 

hemisphere and lung do not overlap, however (Venn diagram in Figure 5b). Similarly, 194 of the 829 newly discovered 

RNA isoforms since 2019 expressed in atrial appendage heart tissue come from medically relevant genes, including 

MED12, TPM1, and DYM. For lung, 301 of 1053 new isoforms since 2019 come from medically relevant genes. 

Quantifying RNA isoforms expression patterns for a given gene across tissues is important to understanding its 

complexity and function, but arguably the <most important= isoforms may be the most highly expressed. Thus, we 

wanted to assess relative abundance for isoforms annotated since 2019 (compared to isoforms already known) in genes 

where g 1 isoform was discovered in that time period. Limiting to only medically relevant gene bodies, we summed the 

relative abundance for all new isoforms since 2019 for each of the 497 genes meeting these criteria. Of these 497 

medically relevant genes, isoforms discovered since 2019 for 171 (34.4%) genes had a combined relative abundance > 

25% in all nine tissues, showing that many of the isoforms discovered since 2019 consistently constitute a meaningful 

proportion of the gene9s expression; this result also highlights the importance of their respective discoveries. Similarly, 

50 (10.1%) of the 497 medically relevant genes with isoforms discovered since 2019 constituted > 75% relative 

abundance (Figure 5c). For the 452 genes with new protein-coding isoforms discovered since 2019, the combined 

relative expression of the new isoforms for 184 (40.7%) of the genes constituted > 25% relative abundance in all nine 

tissues. Total expression for the new isoforms for 72 (15.9%) of those genes constituted a relative abundance greater 

than 75% in at least one tissue. (Supplementary Figure 19; Supplementary Table S8) 

KIF5A is a brain-disease relevant gene with a large amount of its relative abundance stemming from isoforms discovered 

since 2019, where the four new isoforms (since 2019) comprise 62.4%, 57.0%, and 79.8% of total gene expression for 

frontal cortex, putamen, and cerebellar hemisphere, respectively (Figure 5d). KIF5A is implicated in several diseases, 

including spastic paraplegia 1060–62, neonatal intractable myoclonus63,64, and amyotrophic lateral sclerosis (ALS)65–67. For 

those with a vested interest in understanding and treating these diseases, knowing about and understanding all of 

KIF5A9s isoforms and their function is essential—perhaps especially in the context of interpreting the functional 

consequences of genetic variants2.  

DYM is another a medically relevant gene where mutations are known to cause Dyggve-Melchior-Clausen syndrome 

(DMC), a type of skeletal dysplasia also known to be associated with brain developmental defects68,69. The overall 

median gene expression falls between approximately five and 25 CPM for the nine GTEx tissues included here 

(Supplementary Figure 20). DYM was first named in 2003 and has 20 annotated isoforms in Ensembl v109. Only two 

isoforms are expressed above our thresholds where one (ENST00000675505) is new since 2019, has a new protein-

coding sequence, and accounts for most of the gene expression in all three brain regions (frontal cortex: 80.0%; 

cerebellar hemisphere: 83.9%; putamen: 100.0%; Figure 5e,f,g); this isoform is also present in four other tissues (skeletal 

muscle, lung, left ventricle [heart] and atrial appendage [heart]), but is not the primary isoform expressed. This 

described expression pattern may imply that these isoforms have tissue-specific roles. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.579945doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.579945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5: Expression patterns across nine GTEx tissues for isoforms discovered since 2019 demonstrate the importance of characterizing and 

quantifying isoform expression. (a) Line graph showing the number of isoforms new since 2019 expressed across CPM thresholds ranging from 0-

10. RNA isoforms discovered since 2019 expressed in individual tissues ranged from 594 (liver) to 2,054 (cerebellar hemisphere). Figures (b-e) 

assume the CPM > 1 threshold. (b) Bar graph showing number of isoforms discovered since 2019 per tissue from medically and disease-relevant 

genes. For example, cerebellar hemisphere expressed 508 isoforms discovered since 2019 from medically relevant genes, and liver expressed 180. 

Venn diagram shows overlap of isoforms new since 2019 from brain disease relevant genes in cerebellar hemisphere, frontal cortex, and lung. (c) 

Boxplot showing relative abundance of isoforms from 497 medically relevant genes where g1 isoforms were annotated since 2019 and was 

expressed in at least one tissue. Each point represents the summed relative abundance for all new isoforms annotated for a given gene since 2019. 

For example, the highlighted point (magenta) represents a gene where its newly annotated isoforms (since 2019) constituted 100% of the gene9s 
expression in frontal cortex. The shaded area highlights genes where its newly discovered isoforms constitute >25% of its total expression for the 

given tissue. 171 (34.4%) of the 497 genes had a combined relative abundance > 25% in all nine tissues, and new isoforms for 50 (10.1%) 

constituted >75% of relative abundance in g1 tissue. All 497 genes are plotted for each tissue. Each point represents a gene, where the relative 

abundance of all its isoforms that are new since 2019 have been summed to a single value to represent the gene. (d) Barplot showing the summed 

relative abundance of all isoforms new since 2019 for KIF5A, a brain disease relevant gene. The newly discovered isoforms since 2019 constitute a 

major proportion of total expression for the gene. (e) Barplot showing relative abundance for the DYM isoform discovered since 2019 

(ENST00000675505), a medically relevant gene. Figures (f-g) contain plots from our R-shiny app. (f) Plot of five of the isoforms from DYM, showing 

a cartoon of their exon structure (colored by discovery), the log2(CPM + 1) of the isoforms, and the relative abundance for each isoform. The first 

isoform was discovered since 2019 and is the most highly expressed isoform in several tissues. (g) Boxplots show the divergent expression patterns 

for the top two isoforms from DYM suggesting preferential expression between different tissue groups (brain regions vs the rest). Specifically, 

ENST00000675505 is preferentially expressed in brain while ENST00000269445 is preferentially expressed in the other tissues, particularly skeletal 

muscle.  
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Newly discovered isoforms from brain frontal cortex are expressed across various tissues 

In our recent work by Aguzzoli-Heberle et al.2, we discovered a total of 700 new, high-confidence RNA isoforms using 

deep long-read cDNA sequencing in human prefrontal cortex (Brodmann area 9/46) from twelve aged brain samples (six 

Alzheimer9s disease cases and six age-matched controls), where 428 of the 700 new isoforms were from known nuclear 

gene bodies, 267 were from entirely new nuclear gene bodies, and five were spliced isoforms from mitochondrially 

encoded gene bodies. We directly validated many of these new RNA isoforms from known genes at the protein level via 

mass spectrometry, along with three from new gene bodies2. Observing spliced isoforms from mitochondrially encoded 

gene bodies was entirely unexpected given dogma dictates that mitochondrially encoded genes are not spliced, but our 

results supported previous work by Herai et al.70 demonstrating the same phenomenon. For interest, we also discovered 

2,729 other potential new RNA isoforms2, but here, we limit our analyses to those we considered high-confidence (i.e., 

median CPM > 1 in our previous study). Thus, here, we sought to quantify expression for our high-confidence isoforms 

across the nine GTEx tissues. 

For each tissue we first quantified the proportion of the new isoforms that exceeded our threshold (median unique 

count g 1 & median CPM > 1; Figure 6a,d,g). For new isoforms from known gene bodies (nuclear and mitochondrial), we 

unsurprisingly found the greatest proportion of isoforms validated in the GTEx frontal cortex samples where 336 (78%) 

of our recently discovered isoforms were expressed above our required threshold (Figure 6a). Of the remaining 92 (22%) 

that did not meet our threshold, 52 (12%) were observed with 0 < median CPM f 1, while still requiring the median 

unique counts g 1. The large difference in sequencing depth between the two studies may explain why the remaining 

10% did not validate in the GTEx frontal cortex data. Median sequencing depth per sample in Aguzzoli-Heberle et al. was 

35.5 million aligned reads per sample2, whereas median sequencing depth within the GTEx samples was 4.95 million 

aligned reads per sample15. We also found that 292 (67%) and 300 (69%) of our newly discovered RNA isoforms from 

known gene bodies were expressed in the cerebellar hemisphere (brain) and putamen (brain), respectively (Figure 6a).  

Many of the new RNA isoforms from known genes were also expressed in the other tissues, ranging from 116 (27%; 

liver) to 188 (43% atrial appendage; Figure 6a). In total, 447 and 384 isoforms validated in at least one of the nine tissues 

for all new isoforms and only isoforms from known genes, respectively. 

Next, we quantified how many new isoforms from known gene bodies were expressed in multiple tissues (Figure 6b). 

Surprisingly, of those isoforms that validated in the GTEx tissues, 83 were expressed in all nine (largest bar in Figure 6b), 

whereas the next highest group was for isoforms found in three tissues with 76. Observing such a large proportion that 

validate in three tissues was unsurprising since three of the tissues are from brain—the organ where the isoforms were 

originally discovered—but observing so many expressed in all nine tissues was surprising. Potential explanations for why 

such a large proportion validate in all nine tissues include two complete opposite possibilities: (1) many of these RNA 

isoforms perform essential <housekeeping= functions across tissue types, or (2) many are simply transcriptional noise. 

Only deeper experimental work will be able to determine with certitude. 

For the 42 new RNA isoforms from known gene bodies expressed in a single tissue, we assessed which tissue they 

validated in (Figure 6b,c) because isoforms being expressed in a single tissue could indicate tissue <specificity=. Even 

though these new isoforms were discovered in prefrontal cortex, having greater expression in another tissue may 

indicate the isoform is <more essential= in that tissue. Unsurprisingly, most of the new isoforms that validated in only a 
single tissue were found in the prefrontal cortex (18), but several appeared to be <specific= to other, non-brain tissues 

(Figure 6c). In total, there were seven isoforms—one in cultured fibroblasts (ATOX1), one in each heart tissue (MYADM 

& RORB-AS1), two in skeletal muscle (SPOUT1 & ENSG00000288717), and two in lung (TMOD1 & THEMIS2; Figure 6c; 

Supplemental Table S9).  

We found similar validation patterns when limiting to new isoforms from known medically relevant genes (Figure 6d-e), 

except only one validated in only a single tissue (GAP43 in frontal cortex). Median expression for new medically relevant 

isoforms was comparable across all tissues (Figure 6f). All eleven of the new isoforms from known genes that validated 

at the protein level in our previous work were also expressed in at least one GTEx tissue, two of which were from 

medically relevant genes (Figure 6f).  
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Many newly discovered gene bodies are expressed across the nine tissues 

In addition to discovering new isoforms from known genes, we also previously discovered 267 isoforms from 245 new 

gene bodies2. Exactly 63 isoforms from the new genes validated in at least one tissue, most of which were in brain 

tissues (Figure 6g,h). Only five were expressed in all nine tissues (Figure 6h). Those that were expressed in a single tissue 

were primarily specific to a brain tissue. 

Unsurprisingly, most isoforms from the new gene bodies were more highly expressed across the three brain tissues, 

though the median isoform expression across all tissues was below 3 CPM (Figure 6i). Surprisingly, the highest median 

CPM values for isoforms from new gene bodies did not come from a brain region, however. Cultured fibroblasts and 

lung expressed BambuGene224803 at median CPM 48.26 and 19.61 respectively. BambuGene78526 has an isoform 

(BambuTx2076) expressed in Heart - Left Ventricle at 24.71 and Heart - Atrial Appendage at 18.04. The highest median 

CPM for an isoform from a new gene body in brain came from BambuGene121451, expressed in putamen at 16.78. 

Overall, 6.0% (16) of isoforms from new gene bodies were seen in at least one tissue above a CPM of 5. Of the three 

isoforms from new gene bodies that previously validated via mass spectrometry, only one (1) was expressed in the GTEx 

samples, and it was only in two of the brain tissues (Figure 6i). 
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Figure 6: Newly discovered isoforms validated across nine GTEx tissues, including many from new gene bodies. Figures (a-c) deal with new 

isoforms from previously known gene bodies. (a) Barplot showing proportion of new isoforms from known genes that validated (at median CPM > 

1) for each tissue. Exactly 292 (67%), 336 (78%), and 300 (69%) of our newly discovered RNA isoforms from known gene bodies were expressed in 

the cerebellar hemisphere, frontal cortex, and putamen, respectively, within the GTEx data. Many new RNA isoforms from known genes were also 

expressed in the other tissues, ranging from 116 (27%; liver) to 188 (43% atrial appendage). In total, 447 (64%) and 384 (90%) isoforms from known 

genes validated in at least one of the nine tissues for all new isoforms and for isoforms only from known genes, respectively. (b) Barplot of how 

many tissues in which isoforms were expressed. Of those isoforms that validated in GTEx tissues, 83 were expressed in all nine (largest bar), 

whereas the next highest group was for isoforms found in three tissues (76). Observing such a large proportion validate in three tissues was 

unsurprising since three of the tissues are from brain—the organ where the isoforms were originally discovered—but observing so many expressed 

in all nine tissues was surprising. (c) Barplot showing tissues where isoforms expressed in only a single tissue were seen. As expected, most 

isoforms that validated in only a single tissue were found in the prefrontal cortex (18), but several appeared to be <specific= to other, non-brain 

tissues. In total, there were seven isoforms—one in cultured fibroblasts (ATOX1), one in each heart tissue (MYADM & RORB-AS1), two in skeletal 

muscle (SPOUT1 & ENSG00000288717), and two in lung (TMOD1 & THEMIS2). Figures (d-f) deal with new isoforms from medically relevant genes 

(subset of new isoforms from known genes). (d) Barplot of the proportion of new isoforms from medically relevant genes that validated in each 

tissue. (e) Same as (b) but for medically relevant genes. For figures (f,i), colored dots indicate the expression of isoforms that validated at the 

protein level in Aguzzoli-Heberle et al.2 (f) Boxplot of the log2(median CPM +1) of each isoform expressed from the medically relevant genes. 

Figures (g-i) deal with isoforms from new gene bodies. (g) Proportion of isoforms from new gene bodies that validated in each respective tissue. (h) 

Same as (b) and (e), but for new gene bodies. (i) Boxplot of the log2(median CPM + 1) of each isoform from new gene bodies. 
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Newly discovered isoforms demonstrate potential tissue specificity or housekeeping roles 

We were especially intrigued by the newly discovered RNA isoforms that fell into two specific categories: (1) those that 

only validated in a single tissue, suggesting potential tissue specificity; and (2) those that validated in all nine tissues, 

suggesting either broad transcriptional noise or potential housekeeping roles. In both cases, these newly discovered RNA 

isoforms could have significant roles in human health and disease. To refine the list of isoforms showing potential tissue 

specificity or housekeeping roles, we performed differential expression using DESeq2, because simply separating 

isoforms by the number of tissues in which they are expressed is an overly simplistic approach. 

Many isoforms exhibit <preferential= expression for specific tissues  

Given we have data for two heart regions and three brain regions, we allowed isoforms to be <preferentially expressed= 

in up to three tissues for this analysis. For our purposes, we designated isoforms as preferentially expressed if they were 

positively and differentially expressed in up to three tissues compared to all other tissues (pairwise). Specifically, we 

required a log2-fold change > 1, a false discovery rate (FDR) less than 0.1, and the isoform had to be upregulated relative 

to the other tissues. We were not interested in isoforms with lower expression relative to the other tissues because this 

would not suggest tissue specificity. We only included isoforms expressed with a CPM > 1 in at least one tissue.  

We identified 23 isoforms that were preferentially expressed in a single tissue, 46 preferentially expressed in two 

tissues, and 68 in three tissues (Figure 7a). Exactly 22 were from new genes (5 in single tissue, 8 in two tissues, and 9 in 

three tissues). Unsurprisingly, most of these isoforms were preferentially expressed in at least one brain tissue (12, 39, 

and 62 from single tissue, two tissues, and three tissues, respectively).  

Isoforms preferentially expressed in tissues other than brain were especially intriguing, given they were discovered in 

brain tissue. MAOB, for example, encodes an enzyme that helps break down neurotransmitters (often in the brain)71 and 

is a target for treating Parkinson9s disease symptoms. Parkinson9s patients suffer from tremors, rigidity, bradykinesia 

(slow movement), and resting tremors, in part because of insufficient dopamine levels. MAO-B inhibitors are used to 

decrease MAOB activity and increase dopamine levels, therefore mitigating symptoms in Parkinson9s disease patients72. 

According to our analyses, the newly discovered isoform for MAOB is preferentially expressed in muscle, liver, and the 

left ventricle of the heart, which may imply a distinct function in these tissues (median CPM from 17.37 to 32.48, next 

highest is 5.87 in brain [putamen]; Figure 7b). This preferential expression in other tissues highlights the need for a more 

in-depth interrogation of MAOB isoforms.  

Newly discovered isoforms exhibit potential housekeeping functions.  

Opposite of genes and RNA isoforms that demonstrate tissue specificity or preference are genes and RNA isoforms that 

perform housekeeping functions—genes and isoforms that are broadly required across cells and tissues for proper 

function. Here, we consider isoforms as having potential <housekeeping= roles if they were expressed in all nine tissues 

above our noise threshold and demonstrated relatively similar expression across all nine tissues (i.e., were within a log2-

fold change of two for all tissues). Using these thresholds, we identified 35 of the newly discovered isoforms that are 

potential housekeeping isoforms (Figure 7c). As potential validation, 23 of these isoforms matched genes listed in Joshi 

et al. as housekeeping genes (or Gini genes) found in GTEx data based on the Gini coefficient—a statistical measure of 

the inequality among groups, often used in economics where a lower Gini coefficient indicates lower income 

inequality73. One of those genes is OAZ1, which has been listed as a housekeeping gene73,74, though some publications 

disagree with this assignment75,76. These discrepancies could be due to the lack of annotation for the newly discovered 

isoform which we classify as housekeeping and is highly expressed (median CPM from 413.71 to 1341.99; Figure 7d). In 

addition, two of the housekeeping isoforms we found come from newly discovered genes.  

There were two genes, DGUOK and EEF1AKMT1, that were especially interesting because they both had an isoform that 

met our criteria for preferential expression while the other isoform met our criteria for a potential housekeeping 

isoform. Both genes were also identified as housekeeping genes by Joshi et al.73. One of these genes, DGUOK, encodes 

an enzyme that is critical in the mitochondria. As most cells contain mitochondria, it is unsurprising that DGUOK would 

be classified as a housekeeping gene based on the Gini index and that a specific isoform could be the primary 

contributor for its housekeeping status, as is the case with one of the new isoforms, BambuTx977. The other new 
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isoform (BambuTx978), however, is preferentially expressed in brain (Figure 7e,f), which may be because the brain has a 

high energy demands and may require tissue-specific functions from DGUOK. Based on this hypothesis, however, it is 

unclear why an additional isoform would be required instead of simply increasing expression for another isoform in 

brain regions. Only deeper investigation will be able to assess whether these new DGUOK isoforms have essential 

housekeeping and brain-specific functions, respectively. 
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Figure 7: Newly discovered isoforms may have preferential expression and/or housekeeping potential. (a) The number of newly discovered 

isoforms that are preferentially expressed across one, two, and three tissues range from 18 to 59. For new gene bodies, they range from 5 to 9. (b) 

MAOB expression and relative abundance. The new isoform (BambuTx1879) is much shorter than the primary isoform but has a new exon. It is 

preferentially expressed across liver, muscle, and left ventricle (see Supplemental Figure 21 for unedited plot); whether the new isoform is 

biologically functional is unknown. (c) The number of newly discovered isoforms that are expressed across all tissues within a log2 fold change of 

each other for known and new gene bodies, indicating potential housekeeper responsibilities. 23 of the 35 (66%) known genes that meet our 

criteria for a potential housekeeping gene were already identified as housekeeping genes by Joshi et al.73, supporting our hypothesis that the other 

genes that met our criteria may also have housekeeping functions, including our newly discovered genes from Aguzzoli-Heberle et al.2. (d) OAZ1 

expression and relative abundance. OAZ1 was previously identified as a housekeeping gene, though its housekeeping status has been debated. The 

new OAZ1 isoform is consistent with our defined housekeeping expression pattern, being expressed across all nine tissues and are within log2 fold 

change of each other (see Supplemental Figure 22 for unedited plot). Whether OAZ1 fits criteria for a housekeeping gene may be vary according to 

which isoform(s) are being measured in a given assay (e.g., different PCR primers). (e) The two newly discovered DGUOK isoforms suggest the gene 

may serve both preferential and housekeeping biological needs. One isoform (BambuTx978) appears to be preferentially expressed, while the other 

(BambuTx977) exhibits housekeeping-like expression behavior. DGUOK, encodes an enzyme that is critical in the mitochondria, which are in much 

greater abundance in the brain, which may explain why an additional isoform (BambuTx978) may be needed. (see Supplemental Figure 23 for 

unedited plot) (f) CPM values of the two DGUOK isoforms, showing clearly unique expression profiles across the nine tissues included in this study.  
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Web application for GTEx RNA isoform expression 

Using the GTEx data from this study, we created a resource for fellow researchers to explore and query this RNA isoform 

expression data across nine human tissues. The web app can be found at 

https://ebbertlab.com/gtex_rna_isoform_seq.html.  

Discussion 
Alternative splicing has long been known to play an important role in the biology of complex organisms, like humans, but 

our understanding for the role various isoforms play is limited. In our opinion, it seems unlikely that 20,000+ protein-

coding genes performing a single function can enable such complex organisms2. Thus, here, we have provided a broad 

survey of the RNA isoform landscape to demonstrate both the complexity and diversity of RNA isoforms across nine 

human tissues from data generated by Glinos et al.15 and Aguzzoli-Heberle et al.2. We have also tried to demonstrate 

how little is known about the various isoforms and why it is essential to fully characterize and quantify individual RNA 

isoform expression across the human cell types, tissues, and lifespan. One of the most important next steps in biology 

will be to determine the function for individual RNA isoforms for every gene.  

Short-read sequencing technologies have been a major boon for assessing total gene expression across a range of tissue 

and cell types, and across various diseases, but short-read sequencing struggles to accurately quantify expression for 

individual isoforms. Essentially, expression for every isoform within a gene is collapsed into a single expression 

measurement because of technical limitations of short-read sequencing data.  

Long-read sequencing, however, provides a major improvement in our ability to accurately characterize and quantify 

individual RNA isoforms, but here we also demonstrate that accurately quantifying expression for individual RNA 

isoforms is not a solved problem, as have others2,13,16. For example, these studies highlight the challenges associated 

with quantifying RNA isoforms given that a large percentage of reads cannot be uniquely assigned to a single isoform, 

though it is still a major improvement over short-read sequencing data. 

Perhaps the most important discussion item arising from this work, however, is whether the many isoforms expressed 

for certain genes are biologically meaningful, or simply biological noise. We already know of various examples where the 

distinct isoforms for a given gene are not only biologically meaningful, but essential. BCL-X (BCL2L1)7 is a classic example, 

where one isoform is pro-apoptotic (BCL-Xs) while the other is anti-apoptotic (BCL-XL). Other examples (e.g., RAP1GDS1 

and TRPM3) are known to have more subtle functional differences. Subtle differences do not necessarily imply they are 

insignificant, however. As we continue to learn more about individual isoforms, we expect to find some proportion that 

are a result of biological noise, but also expect that most of them will have biological significance. Ultimately, only 

deeper studies, including experimental work will be able to fully address these questions. 

Conclusion 
As sequencing technology (including preserving natural RNA) and associated algorithms advance, our ability to study 

individual RNA isoforms will improve dramatically. Here, we provided a broad survey of the RNA isoform landscape, 

demonstrating the isoform diversity across nine tissues and emphasizing the need to better understand how individual 

isoforms from a single gene body contribute to human health and disease. We found genes whose isoform expression 

patterns differed in interesting and potentially significant ways and we validated isoforms recently discovered in 

Aguzzoli-Heberle et al.2. We also identified isoforms that exhibit patterns consistent with preferential expression for a 

given set of tissues, and others that behaved as prospective housekeeping isoforms. The breadth and depth of what can 

and should be studied is vast and warrants significant efforts, if we are to understand the complexities and subtleties of 

human health and disease. 
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Methods 

Downloading and Comparing Ensembl annotations 
Gene transfer format (GTF) files for ten representative Ensembl GRCh38 annotations spanning ten years (2014-2023; 

one per year) were downloaded from the Ensembl website (Supplemental Table S2). Using Python version 3.11.3 within 

a Jupyter notebook (version 6.5.4)77Using Python version 3.11.3 within a Jupyter notebook (version 6.5.4)77 (CODE 

AVAILABILITY), we quantified the number of genes and isoforms per year, as well as the number of protein-coding genes 

based on annotations within the GTF file (Supplemental Table S2). Specifically, for a gene or transcript (i.e., isoform) to 

be considered protein-coding, their respective <gene_biotype= and <transcript_biotype= must have been 

<protein_coding=. We performed set comparisons between the years 2019, 2021, and 2023 to identify the overlap 

between annotations. We used the Ensembl v109 (2023) annotations to quantify the most common transcript biotypes, 

as shown in Figure 2e. To calculate the number of annotated isoforms per gene and per protein-coding gene (shown in 

Figure 2f,g), respectively, we summed the number of unique transcripts (based on Ensembl transcript ID) for each 

unique Ensembl Gene ID. We also calculated the percentiles for annotated isoforms per gene using R version 4.3.1. 

Annotations from 2014 and 2015 had additional alternative contigs that we excluded from these analyses. 

Downloading GTEx data, read pre-processing, genomic alignment, and quality control 

We obtained the publicly available GTEx nanopore long-read cDNA RNAseq data from Glinos et al.15 for this study 

through the AnVIL portal78. The data consists of 88 GTEx samples from 15 different human tissues and cell-lines. The 

data were re-processed using the same methods used in our recent paper by Aguzzoli-Heberle et al.2.  

Briefly, we pre-processed the cDNA data with Pychopper (version 2.7.6), applying settings compatible with the PCS109 

sequencing kit, since the GTEx data were sequenced using this chemistry. Pychopper discards any reads missing primer 

sequences on either end and recovers reads that contain primer sequence in the middle, which result from fused 

molecules. Pychopper also orients the reads according to their genomic strand and removes any adapter or primer 

sequences. We then aligned the pre-processed reads to GRCh38 with minimap2 version 2.26-r117579, including the <-x 

splice= (to allow spliced alignments) and <-uf= (to identify splicing sites using the transcript strand) alignment 

parameters. We used the GRCh38 reference genome without alternate contigs for alignment. We removed reads that 

mapped with a Mapping Quality (MAPQ) score below 10 using samtools (version 1.17). The BAM files were then sorted 

by genomic coordinates and indexed using samtools. See Code Availability for all scripts. Due to minor differences 

between our pipelines (i.e., we employed Pychopper), the number of reads we included for isoform quantification in 

Bambu is lower than what Glinos et al. used. See Supplemental Table S1 for number of reads analyzed by Bambu. See 

Glinos et al.15 for quality control data for these samples.  

Sample inclusion criteria 

Glinos et al.15 originally sequenced 88 cDNA GTEx samples across 15 tissues and cell lines using the Oxford Nanopore 

Technologies MinION. For our analyses, we ultimately only included nine of the 15 tissues after applying the following 

inclusion criteria: (1) we only included tissues with samples from at least five unique subjects; (2) excluded samples with 

experimental conditions (i.e., PTBP1 knockdown); (3) excluded technical replicates; (4) excluded samples with 

<1,000,000 reads; and (5) excluded any samples that did not cluster with their respective tissue group based on a 

principal component analysis (PCA). In the end, we retained 58 samples across nine tissues, including cerebellar 

hemisphere (brain), frontal cortex (brain), putamen (brain), cultured fibroblasts, atrial appendage (heart), left ventricle 

(heart), liver, lung, and skeletal muscle. When selecting which sample to retain among technical replicates, we chose the 

sample with the highest number of total reads that was below the maximum total reads for that tissue (to avoid 

including a sample that would be an outlier). We then performed a PCA analysis, using the DESeq280 <plotPCA= function 

after DESeq2 normalization on the total counts matrix from Bambu (excluding the filtered samples) and excluded one 

liver sample due to poor clustering (Supplemental Figures S1,2). The full list of included samples can be found in 

Supplemental Table S1.  
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GTEx analyses 

To limit false positives and to be consistent with our recent work in Aguzzoli-Heberle et al.2, we selected CPM = 1 as the 

noise threshold and further required a median-unique-counts g1, to exclude any isoforms that have not been 
consistently observed uniquely across samples. Unless otherwise specified, we only included isoforms with a median 

CPM > 1 (and median-unique-counts g 1) in our analyses. We calculated counts-per-million (CPM), gene CPM, relative 

abundance, and the median relative abundance for each isoform using Bambu9s <total counts= metric. For reference, 

relative abundance is the percent expression for a given isoform within a gene. We used Ensembl v109 annotations 

(2023) combined with the 700 new isoforms discovered in Aguzzoli-Heberle et al.2 to quantify isoform expression with 

Bambu. We quantified the number of isoforms expressed within each tissue across a range of CPM thresholds from 0-

10.01 in 0.01 increments, as shown in Figure 3a and further stratified these analyses across a range of gene and isoform 

types, including protein-coding isoforms, medically relevant isoforms, protein-coding isoforms from medically relevant 

genes, and brain disease relevant isoforms. Medically relevant genes were as defined by Wagner et al.20 with additions 

from Aguzzoli-Heberle et al.2. We generated an upset plot evaluating the overlap of isoform expression across several 

combinations of different tissues in rank order using R package ggupset version 0.3.081. We also assessed the 

significance of protein-coding to non-protein-coding isoforms between cerebellar hemisphere and heart9s left ventricle 

by running a Chi-square test.  

Isoform heatmap across nine GTEx tissues and pathway analysis. We wanted to identify genes that have a high number 

of isoforms expressed, so we created a list of genes that express > 5 isoforms at least one tissue (above our 8noise9 
thresholds described above). Using those genes and the number of isoforms expressed by tissue, we created a clustered 

heatmap with the raw isoform numbers (not expression values). We performed pathway analyses using Metascape51 

(accessed January 2024). We also plotted the relationship between total gene expression and number of isoforms 

expressed, and ran a Spearman correlation for the significance of the correlation for the left ventricle. 

New Since 2019 isoforms. To assess the isoforms that are new since the Ensembl v96 annotations (released April 2019), 

we retained all Ensembl transcript ID9s from Ensembl v109 (released February 2023) that were not present in v96. To 

quantify the percent of total expression for new isoforms since 2019 (as shown in Figure 5c), we summed the relative 

abundance for those isoforms for a given gene.  

New isoforms from Aguzzoli-Heberle et al.2 

To assess expression patterns for the 700 new isoforms reported in Aguzzoli-Heberle et al.2, we separated the isoforms 

into new isoforms from known genes (433 isoforms) and new isoforms from new gene bodies (267 isoforms) and 

created an additional subset of new isoforms from medically relevant genes (54 isoforms). Note that in Aguzzoli-Heberle 

et al., they reported 53 isoforms in this category—the discrepancy between these numbers is due to filtering out the 

spliced mitochondrial isoform, which we do not exclude here. We then calculated the proportion of new isoforms 

present in each tissue at a median-unique-counts g 1 and median CPM > 1 (as well as median CPM > 0) by taking the 

number of isoforms expressed in the group and dividing it by the total number of isoforms possible in the group. We 

also calculated the number of tissues each isoform was expressed in at a median CPM > 1. Taking the isoforms that were 

only expressed in a single tissue, we looked at which tissue was expressing the isoform. We plotted the log2(median 

CPM + 1) of the isoforms in the new from medically relevant genes and new genes categories at a CPM > 0.  

Potential preferential and housekeeping isoforms from new isoforms 

To assess whether any of the new isoforms were potentially preferentially expressed in a given set of tissues, or exhibit 

housekeeping-like behavior (expressed across all tissues), we performed pairwise differential expression analyses 

between each tissue pair using DESeq2 (normalizations using the total counts matrix with all isoforms, then filtering to 

only newly discovered isoforms for comparisons). To meet our criteria for preferential tissue expression, we required a 

log2-fold change > 1, a false discovery rate (FDR) less than 0.1, and the isoform had to be upregulated relative to the 

other tissues. To meet potential housekeeper criteria, we required isoforms to be expressed in all nine tissues above our 

noise threshold and demonstrate similar expression across all nine tissues (i.e., within a log2-fold change of two for all 

pairwise tissue comparisons). 
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Figures and tables 

We created figures and tables using a variety of python (version 3.11.3) and R (version 4.3.1) scripts. Some figures were 

downloaded from our Rshiny app (R version 4.3.0). All scripts are available on GitHub (see code availability). Isoform 

structures were visualized using R package ggtranscript82 (version 0.99.9)We created figures and tables using a variety of 

python (version 3.11.3) and R (version 4.3.1) scripts. Some figures were downloaded from our Rshinyg app (R version 

4.3.0). All scripts are available on GitHub (see code availability). Isoform structures were visualized using R package 

ggtranscript82 (version 0.99.9). Final figures were assembled using Adobe Illustrator.  

Data availability 
GTEx long-read RNAseq data used is available through the AnVIL project78 at the following link: 

https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_GTEx_V9_hg38. All resulting data from this work will be 

uploaded to the GTEx AnVIL project for proper data management. Data can be visualized on the Ebbert Lab website at 

https://ebbertlab.com/gtex_rna_isoform_seq.html and the deep long-read frontal cortex data from Aguzzoli-Heberle 

can be viewed at https://ebbertlab.com/brain_rna_isoform_seq.html. 
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