

1 Early mechanisms of aortic failure in 2 a zebrafish model for thoracic aortic 3 dissection and rupture

4 Michiel Vanhooydonck MSc.¹, Maxim Verlee MD.¹, Marta Santana Silva MSc.¹, Lore
5 Pottie PhD.¹, Annekatrien Boel PhD.², Matthias Van Impe MSc.³, Hanna De Saffel
6 BSc.¹, Lisa Caboor BSc.¹, Piyanoot Tapaneeeyaphan MSc.¹, Anne Bonnin PhD.⁴, Patrick
7 Segers PhD.³, Adelbert De Clercq PhD.⁵, Andy Willaert PhD.¹, Delfien Syx PhD.¹,
8 Patrick Sips PhD.^{1a}, Bert Callewaert MD. PhD.^{1a*}

9
10 ¹ Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine,
11 Ghent University, 9000 Ghent, Belgium

12 ² Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine,
13 Ghent University, 9000 Ghent, Belgium

14 ³ Biophysical Models for Medical Applications (bioMMeda), Institute of Biomedical
15 Engineering and Technology (IBiTech), Ghent University, 9000 Ghent, Belgium.

16 ⁴ Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI, Switzerland.

17 ⁵ Evolutionary Developmental Biology, Biology Department, Ghent University, 9000
18 Ghent, Belgium.

19 ^a Bert Callewaert and Patrick Sips contributed equally as senior authors.

20

21 *Corresponding Author: Bert Callewaert, PhD, MD

22 Bert.Callewaert@Ugent.be; ORCID: 0000-0002-9743-4205

23 Word count: 8888

24 **ABSTRACT**

25 Thoracic aortic aneurysm and dissection (TAAD) associates with a high mortality rate.
26 Despite the existence of different mouse models for TAAD, the underlying disease
27 mechanisms remain elusive. Treatment options are limited and mainly consist of
28 surgical repair at critical aortic diameters as current pharmacological interventions are
29 unable to stop disease progression.

30

31 In humans, loss of function (LOF) of *SMAD3* and *SMAD6* impairs vascular homeostasis,
32 increasing the risk for TAAD. We developed a zebrafish model for thoracic aortic
33 dissection/rupture by targeting both ohnologs of *smad3* and *smad6*. At 10 days post
34 fertilization, we found an increased diameter of the ventral aorta in *smad3a*^{-/-}; *smad3b*^{-/-}
35 double knockout zebrafish, while *smad6a*^{-/-}; *smad6b*^{-/-} double knockout zebrafish have a
36 reduced aortic diameter associated with early mortality. We discovered that a *smad3a*^{-/-}
37 ; *smad3b*^{-/-}; *smad6a*^{-/-}; *smad6b*^{-/-} quadruple knockout (qKO) zebrafish model is viable and
38 survives to adulthood, although exposure to stress leads to sudden death. Histological
39 analysis of the adult ventral aorta shows medial elastolysis, aortic dissections and
40 ruptures at sites exposed to high biomechanical stress. RNA-sequencing of 5 days post
41 fertilization qKO zebrafish indicates a profile of reduced negative regulation of
42 proteolysis and upregulation of melanogenesis, a previously unaddressed pathway in
43 this pathology. We confirm that pharmacological modulation of tyrosinase, the enzyme
44 responsible for the production of melanin, influences aortic morphology.

45

46 Overall, the qKO mutant, thus far the only known zebrafish model of thoracic aortic
47 dissection and rupture, reveals novel SMAD3/6-dependent pathways that impact
48 thoracic aortic homeostasis, in this way opening avenues for the development of novel
49 treatments in TAAD.

50 NON-STANDARD ABBREVIATIONS AND ACRONYMS

AA3	aortic arch 3
AA4	aortic arch 4
BMPs	bone morphogenetic proteins
Co-SMAD	common mediator SMAD
CPM	counts per million
DEG	differentially expressed genes
DKO	double knockout
dpf	days post fertilization
ECM	extracellular matrix
FDR	false discovery rate
GDFs	differentiation factors
GO	gene ontology
GRCz11	Genome Reference Consortium Zebrafish Build 11
GSEA	gene set enrichment analysis
ID	intellectual disability
I-SMAD	inhibitory SMAD
KEGG	Kyoto Encyclopedia of Genes and Genomes
LDS3	Loeys-Diets syndrome type 3
LOF	loss of function
mpf	months post fertilization
MR	magnetic resonance
PSI	Paul Scherrer Institut
PTU	1-phenyl-2-thiourea treatment
qKO	$\text{smad3a}^{-/-};\text{smad3b}^{-/-};\text{smad6a}^{-/-};\text{smad6b}^{-/-}$ quadruple knockout
RO	reverse osmosis
R-SMAD	receptor-regulated SMAD

SKO	single knockout
<i>smad3a/b</i> DKO	<i>smad3a</i> ^{-/-} ; <i>smad3b</i> ^{-/-} double knockout
<i>smad6a/b</i> DKO	<i>smad6a</i> ^{-/-} ; <i>smad6b</i> ^{-/-} double knockout
TAA	thoracic aortic aneurysm
TAAD	thoracic aortic aneurysm and dissection
TAD	thoracic aortic dissection
TEM	transmission electron microscopy
TGF- β	transforming growth factor β
ZIRC	Zebrafish International Research Center

52 INTRODUCTION

53 Thoracic aortic dissection (TAD) affects 3-4 individuals per 100,000 people per year¹.
54 This life-threatening event is often, but not exclusively, preceded by thoracic aortic
55 aneurysm (TAA). The disease mechanisms are incompletely understood, but evidence
56 from genetic disorders implicates altered cell-matrix interactions (by impaired
57 hemodynamic sensing or impaired matrix assembly), as well as aberrant transforming
58 growth factor β (TGF- β) signaling²⁻⁵. Despite several mouse models for TAD⁶, the initial
59 molecular mechanisms remain obscure.

60 Members of the TGF- β superfamily include TGF- β proteins, bone morphogenetic
61 proteins (BMPs), activins, and growth and differentiation factors (GDFs). Binding of
62 TGF- β to the tetrameric TGF β -receptor complex results in phosphorylation of the
63 receptor-regulated (R-) SMAD2 and -3 proteins. Binding of BMP and GDF to the
64 tetrameric BMP-receptor complex results in phosphorylation of R-SMAD1, -5, and -8.
65 Phosphorylated R-SMAD proteins recruit the common mediator (Co-) SMAD4 to form a
66 heterotrimeric complex and translocate to the nucleus to activate the transcription of the
67 TGF- β or BMP target genes⁷. The TGF- β and BMP signaling is negatively regulated by
68 the inhibitory (I-) SMAD6 and -7 proteins. I-SMAD6 primarily suppresses the pathway
69 activated by the BMP-receptor, whereas I-SMAD7 inhibits both the TGF- β and BMP
70 induced pathways⁸.

71 Pathogenic variants in *SMAD3* cause Loeys-Dietz syndrome type 3 (LDS3). LDS3
72 typically presents with early-onset osteo-arthritis, and arterial aneurysm and dissection,
73 mainly affecting the ascending aorta. Other features include arterial tortuosity, mitral
74 valve prolapse and craniofacial characteristics^{2,9}. Pathogenic variants in *SMAD6* are

75 associated with craniosynostosis¹⁰, radio-ulnar synostosis¹¹ or congenital heart disease
76 including bicuspid aortic valve¹² with or without TAAD¹³ and Shone complex with a
77 hypoplastic ascending aorta and arch¹⁴. Biallelic variants in *SMAD6* underly more
78 complex cardiovascular phenotypes¹⁵. Interestingly, identical pathogenic variants in
79 *SMAD6* may result in either cardiovascular anomalies, craniosynostosis or radioulnar
80 synostosis¹³. Because *SMAD3* and *SMAD6* have been in linkage disequilibrium
81 throughout evolution from teleost fish to human, it has been postulated that *SMAD3*
82 could have a modifier role on *SMAD6* deficiency¹⁶. In line with this observation, we
83 identified a 1.5 Mb 15q22.31-15q23 microdeletion encompassing *SMAD3* and *SMAD6*
84 in an 11-year-old-boy and his 33-year-old mother, both presenting with bicuspid aortic
85 valve and arterial tortuosity, but no aneurysms, along with skeletal and cutaneous
86 anomalies of LDS3, hinting that deletion of *SMAD6* may influence the phenotype
87 caused by *SMAD3* LOF (**Supplementary Case Presentation**¹⁷). Due to the teleost
88 specific genome duplication, zebrafish have two ohnolog copies for both *SMAD3* and
89 *SMAD6*¹⁸. We established zebrafish models deficient for each of these ohnologs
90 identified as *smad3a* and *smad3b*, and *smad6a* and *smad6b*, respectively. The human
91 *SMAD3* (ENSP00000332973) protein has a sequence similarity of 97.17% with
92 zebrafish *Smad3a* (ENSDARP00000045373) and 93.4% with zebrafish *Smad3b*
93 (ENSDARP00000043454). *SMAD6* (ENSP00000288840) is less conserved with a
94 similarity of 53.3% and 62.38% with zebrafish *Smad6a* (ENSDARP00000112408) and
95 *Smad6b* (ENSDARP00000091342) respectively. *Smad6a* and *Smad6b* show 58.33%
96 protein sequence similarity, which is considered large enough to assume similar

97 function¹⁹. The sequence similarity and the same spatial expression patterns of *Smad3a*
98 and *Smad3b* as well as *Smad6a* and *smad6b* suggest²⁰⁻²².

99 In this study, we investigated modifying effects of *smad3a/smad3b* on *smad6a/smad6b*
100 and vice versa which enabled us to model TAAD in zebrafish. Additionally, we identified
101 early molecular mechanisms in aortic failure to identify druggable pathways.

102 **METHODS**

103 ***Ethics statement and housing***

104 This study was approved by the Animal Ethics Committee of the Ghent University
105 Faculty of Medicine and Health Sciences (Permit number: ECD 14/70) and housed
106 adhering to the general guidelines, in agreement with EU Directive 2010/63/EU for
107 laboratory animals^{23,24}.

108 ***Zebrafish lines: design and generation***

109 *Smad3a*^{sa2363/+} was acquired from the Zebrafish International Research Center (ZIRC).
110 All other models were generated using CRISPR/Cas9 gene editing technology utilizing
111 CRISPRdirect software²⁵⁻²⁷. Specific gBlocks for all target sites are listed in
112 **Supplementary Table 1**. Genotyping primers are given in **Supplementary Table 2**. All
113 variants are described using Genome Reference Consortium Zebrafish Build 11
114 (GRCz11) and described in **Supplementary Table 3**.

115 ***Vasculogenesis in embryos***

116 Zebrafish were outcrossed to the transgenic *Tg(fli1:EGFP)* line in order to visualize
117 endothelial cells as previously described²⁸. Head length was used as normalization
118 factor. An overview of the acquired measurements and specific breeding schemes are
119 given in **Supplementary Fig. 1a-c**.

120 ***3D reconstruction of the ventral aorta in adult zebrafish***

121 Serial 5 µm paraffin cross sections of the entire ventral aorta of zebrafish between 6 and
122 13 months post fertilization (mpf) were stained with Weigert's iron hematoxylin, rinsed in
123 water and stained with Resorcin-Fuchsin for one hour followed by two wash steps in

124 95% ethanol and one wash with reverse osmosis (RO) water. Slides were dehydrated
125 and mounted with Entellan mounting medium. Pictures of serial sections were aligned
126 via the TrakEM2 1.0²⁹⁻³¹ and 3D reconstructed with Mimics 24.0 software.

127 ***Ultrasound analysis***

128 Ultrasound analysis was performed on zebrafish of 6-7 mpf as previously described³².
129 All measurements were performed in Vevo Lab 5.5.0.

130 ***Acute net handling stress induction***

131 Induction of handling stress was adapted from previously described procedures³³. Six
132 mpf zebrafish were netted and air suspended for 90 seconds, returned to the housing
133 tank for 90 seconds, netted and air suspended for 90 seconds and returned to the
134 housing tank.

135 ***Alizarin Red staining for mineralized bone***

136 Alizarin red staining for mineralized bone was performed as previously described³⁴, at
137 13 mpf. The qKO were stained after sudden death between 6 and 13 mpf.
138 Ectopic bone on the sinistral skeletal elements of the vertebral bodies was scored on
139 abdominal and caudal vertebrae of adult zebrafish in lateral position³⁵.

140 Skull morphometrics were performed on images of the zebrafish heads in lateral
141 position. Acquired lengths were measured in ImageJ and are given in **Supplementary**
142 **Fig. 1b.** Diameter of the eye was used for normalization since eye diameter correlates
143 with standard length³⁶. Cranial surface area was measured with standard length as
144 normalization factor.

145 ***Transcriptome analysis***

146 RNA sequencing was performed on five pools, each containing five qKO or WT control
147 cousins. Following RNA extraction (RNeasy® Mini kit), libraries were prepared (TruSeq
148 Stranded Total RNA kit from Illumina) and sequenced on a NovaSeq6000 instrument
149 (Illumina).

150 Following quality control ^{37,38}, raw reads were mapped (STAR³⁹) and through R
151 packages, additional normalization and filtering was performed⁴⁰⁻⁴². The top list of DEG
152 was obtain via differential expression analysis (edgeR), with the necessary adjustments
153 to account for multiple testing^{43,44}. An adjusted p-value of 0.05 and a fold change of 2
154 were used as thresholds to determine genes of relevance. Finally gene enrichment
155 analysis was carried out⁴⁵. Further details can be found in the **Supplementary**

156 **Methods.**

157 ***Synchrotron phase contrast micro Computed tomography imaging***

158 Propagation-based phase-contrast synchrotron X-ray imaging was performed at the
159 TOMCAT (X02DA) beamline of the Swiss Light Source (Paul Scherrer Institute in
160 Villigen, Switzerland) as previously described⁴⁶. Tomographic reconstruction was
161 performed using the Gridrec algorithm after applying the Paganin phase retrieval
162 method^{47,48}.

163 ***3D Biomechanical modeling to assess principal stress at systolic peak in***
164 ***the aortic wall***

165 In a previous study⁴⁶, zebrafish-specific 3D biomechanical fluid-structure interaction
166 models of five different 13-month-old zebrafish were developed. All parameter settings

167 as described in⁴⁶ were maintained except for flow through right aortic arch 2, 3 and 4,
168 which was set to nearly zero in order to mimic the vascular organization found in qKO
169 mutants.

170 ***Transmission electron microscopy***

171 In short, WT and qKO zebrafish of 16 mpf were euthanized, fixed in Karnovsky fixative,
172 followed by decalcification for three weeks. Post-fixation in 1% osmium tetroxide, 0.1M
173 cacodylate buffer with 8% saccharose and 0.004% CaCl₂ was followed by *en bloc*
174 staining in 1% aqueous uranyl acetate. After dehydration, the samples were embedded
175 in Spurr's resin. 80 nm sections were stained with uranyl acetate and lead citrate and
176 examined by transmission electron microscopy (TEM) (JEM 1010, JEOL) equipped with
177 a CCD side-mounted Vela camera (EMTIS).

178 ***Swimming behavior studies***

179 Swimming behavior of 9 mpf WT, *smad3a^{+/−};smad3b^{−/−};smad6a^{+/−};smad6b^{−/−}* and qKO
180 zebrafish was analyzed in a custom-made dark observation chamber (Noldus) equipped
181 with the Basler GenICam. Data was analyzed using the EthoVision XT 17 software
182 (Noldus). Zebrafish were placed individually in a tank and could acclimatize for 10
183 minutes before a 10-minute test period, was performed in the dark. Movement is
184 depicted as total distance travelled during the test period, normalized for standard
185 length. Movement frequency was also recorded.

186 **1-phenyl-2-thiourea treatment**

187 At 1 day post fertilization (dpf), 0.003% 1-phenyl-2-thiourea treatment (PTU) in E3
188 medium was administered to WT zebrafish. The medium was changed daily until 10 dpf.
189 Starting from 5 dpf, zebrafish were given dry food for 2 hours daily, after which the
190 medium was refreshed again.

191 **Statistical analyses**

192 All statistical analyses were performed with GraphPad Prism version 10.1.1 for
193 Windows (GraphPad Software, Boston, Massachusetts USA, www.graphpad.com).
194 Kruskal-Wallis test with Dunn's multiple comparisons test against WT controls was used
195 to determine if there was an increase in ectopic bone on the skeletal elements of the
196 vertebral bodies. For PTU treatment, a two-tailed t-test was used, when standard
197 deviation differed significantly between the groups, Welch's correction was applied. For
198 all other comparisons, One-way ANOVA with Dunnett's multiple comparison test against
199 WT controls was used. Brown-Forsythe and Welch ANOVA with Dunnett's T3 multiple
200 comparison test against WT controls was used when the genotypes showed a
201 significantly different standard deviation, determined with the Brown-Forsythe test.

202 **RESULTS**

203 ***Disruption of one of the smad3 or smad6 ohnologs does not show a***
204 ***cardiovascular or skeletal phenotype in zebrafish***

205 Using CRISPR/Cas9 gene editing technology, we generated frameshift indels in the
206 *smad3b*, *smad6a*, and *smad6b* genes, resulting in the generation of a premature

207 termination codon in each mutant: *smad3b*^{c.455_459delinsATG/c.455_459delinsATG},
208 *smad6a*^{c.905_906delTG/c.905_906delTG} and *smad6b*^{c.283_287delACGGT/c.283_287delACGGT}

209 (**Supplementary Table 3**). To study *smad3a* function we made use of the available
210 *Smad3a*^{sa2363/+} line, in which a premature termination codon is introduced (c.682G>T).

211 For the reader's benefit, we will use the term single knockout (SKO) for *smad3a*,
212 *smad3b*, *smad6a* and *smad6b* single homozygous knockout zebrafish. At 5 dpf,
213 measurement of the ventral aorta in the transgenic *Tg(fli1:EGFP)* reporter background
214 is similar for heterozygous and SKO zebrafish for each gene as compared to sibling
215 controls (**Error! Reference source not found.**).

216 However, incross of *smad3a* SKO results in 100% embryonic lethality at 2 dpf with
217 severe body axis deformities and pericardial edema formation, while incross of *smad3b*
218 SKO and *smad3a*^{+/−}; *smad3b*^{+/−} shows offspring with normal survival, suggesting that
219 maternal *smad3a* expression is necessary for early embryonic survival, which is
220 supported by previously published results²⁰. Incross of *smad6a* or *smad6b* SKO showed
221 normal survival.

222 In 6-7 mpf adult zebrafish, ultrasound measurements show that all measured
223 parameters of cardiac function are similar in all SKO compared heterozygous mutants
224 and sibling controls, with an exception of *smad6a*^{+/−} which shows a small increase in

225 normalized projected surface area of the ventricle in diastole (**Error! Reference source**
226 **not found.**).

227 In addition, skeletal evaluation and alizarin red staining for mineralized bone at 13 mpf
228 do not show any vertebral column deformities or an increase in ectopic bone formation
229 (**Figure , Error! Reference source not found.-6**). Skull morphometrics are normal,
230 except for the *smad3a* SKO, in which a decrease of the snout to frontal bone distance is
231 observed (**Error! Reference source not found.-8**).

232 ***Smad3a/b DKO and smad6a/b DKO show altered vasculogenesis***

233 To bypass embryonic lethality due to loss of maternal *smad3a*, we performed a cross
234 between a *smad3a*^{+/−}; *smad3b*^{+/−} female and *smad3a/b* DKO male zebrafish to obtain
235 50% *smad3a*^{+/−}; *smad3b*^{+/−} and 50% *smad3a/b* DKO zebrafish, which survive normally. At
236 10 dpf, the *smad3a/b* DKO show a significant increase in normalized surface area of the
237 aortic segment between aortic arch 3 and 4 ($p = 0.0449$), a reduced normalized length
238 of the segment ($p = 0.0366$) and an increased normalized mean aortic diameter ($p =$
239 0.0335). The diameter adjacent to the bulbus arteriosus remains unchanged (**Error!**
240 **Reference source not found.**).

241 The *smad6a/b* DKO show normal early survival rates, as indicated by normal Mendelian
242 distribution of all genotypes in 10 dpf-old offspring obtained from *smad6a*^{+/−}; *smad6b*^{+/−}
243 incrosses. Nevertheless, *smad6a/b* DKO zebrafish are unable to survive to adulthood.

244 *Smad6a/b* DKO zebrafish show a significant reduction of the ventral aortic diameter at
245 10 dpf ($p < 0.0001$). The diameter adjacent to the bulbus arteriosus as well as the
246 normalized surface area of the aorta segment is decreased ($p < 0.0001$, $p < 0.0001$). To a

247 lesser extent, the diameter of the aorta segment of *smad6a^{+/−};smad6b^{−/−}* is also reduced
248 (p = 0.0016), while the length of the aorta segment remains unchanged in all *smad6*
249 knockouts (**Error! Reference source not found.**).

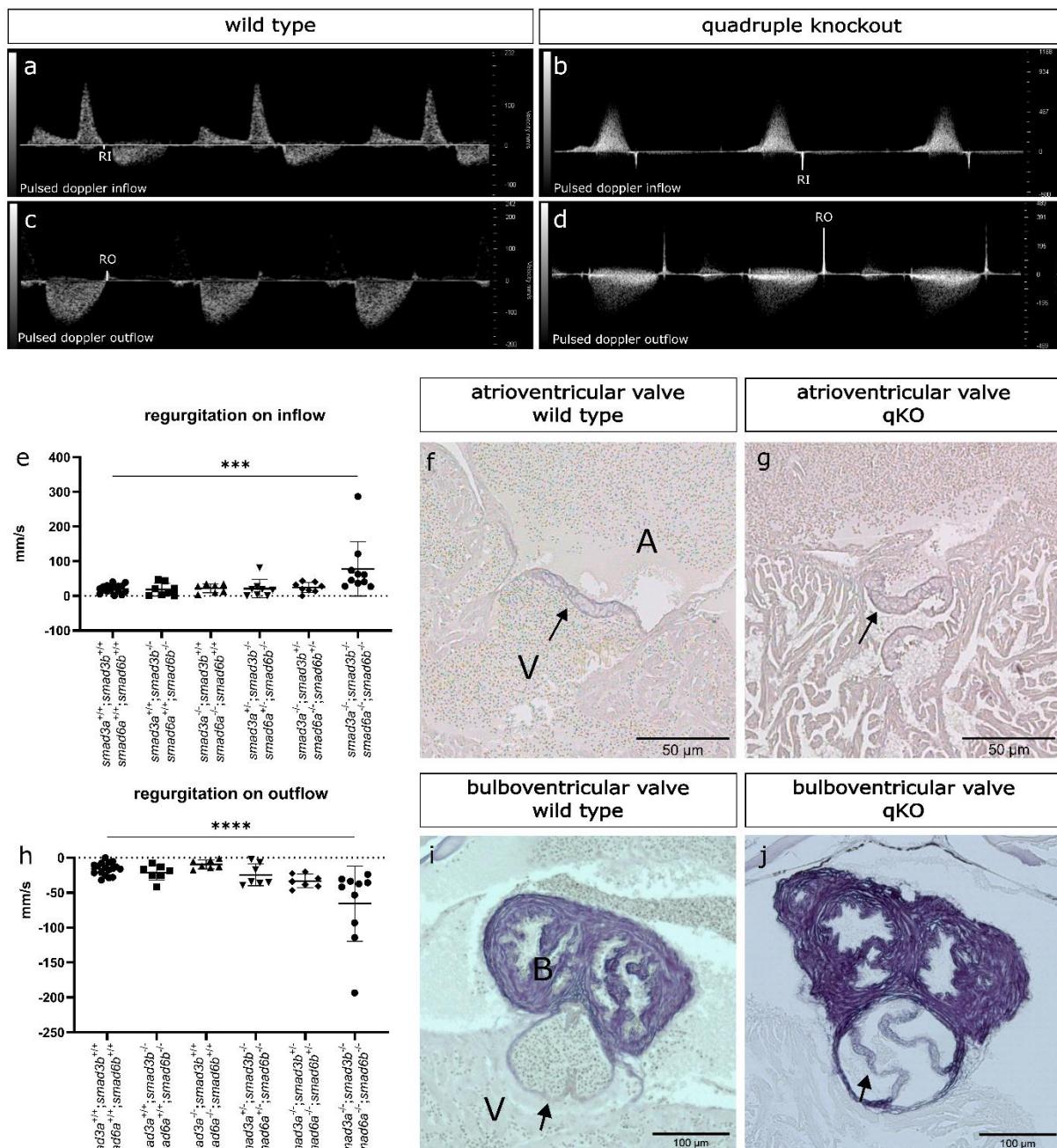
250 Ultrasound analysis at 6-7 mpf of all viable *smad3* (*smad3a^{+/−};smad3b^{−/−}*, *smad3a^{−/−}*
251 ;*smad3b^{+/−}* and *smad3a/b* DKO) or *smad6* (*smad6a^{+/−};smad6b^{−/−}* and *smad6a^{−/−};smad6b^{+/−}*
252) KO combinations do not show any significant differences in cardiac parameters (**Error!**
253 **Reference source not found.-4**).

254 ***Loss of smad3 ohnologs in zebrafish induces ectopic bone formation and***
255 ***vertebral column deformations***

256 Alizarin red staining for mineralized bone on 13 mpf *smad3a/b* DKO zebrafish shows
257 ectopic bone formation on the ribs, neural arches, neural spines, haemal arches, and
258 haemal spines (p = 0.0012) (**Figure**) as well as hyperlordosis, notochord mineralization
259 and notochord sheet mineralization (**Supplementary Fig 5**). Overall, the thickness of
260 the haemal arches is increased (**Fig. 4**) and the normalized surface area of the cranial
261 roof is reduced compared to WT controls (p = 0.0101) (**Error! Reference source not**
262 **found.**). The presence of a single WT copy of either *smad3a* or *smad3b* prevents any of
263 these skeletal malformations to develop (**Fig. 4, Supplementary Fig. 8**). Skull
264 morphometrics show a mild decrease of the distance between the tip of the snout and
265 the most posterior part of the supraoccipital bone in *smad3a^{−/−}* zebrafish (p = 0.0486),
266 but not in the *smad3a/b* DKO (**Error! Reference source not found.**).

267 Likewise, a significant increase in ectopic bone can be seen in 13 mpf *smad6a^{−/−}*
268 ;*smad6b^{+/−}* (p = 0.0022) as well as in *smad6a^{+/−};smad6^{−/−}* (p = 0.0033) zebrafish,

269 although to a lesser extent than observed in the *smad3a/b* DKO (**Figure**). Since the
270 *smad6a/b* DKO does not reach adulthood, these features cannot be analyzed in this
271 genotype. No premature fusion of the cranial roof bones is observed, and the
272 normalized surface areas of the cranial roof are similar to controls (**Error! Reference**
273 **source not found.**). Skull morphometrics do show a decrease in length between the tip
274 of the snout and tip of the frontal bone in *smad6a^{+/−};smad6b^{−/−}* mutants ($p = 0.0056$)
275 (**Error! Reference source not found.**).


276 ***Loss of smad3 and smad6 ohnologs in zebrafish induces ventral aortic***
277 ***dissection and rupture***

278 To investigate potential modifying effects of *smad3* on *smad6* and vice versa, we
279 generated a *smad3a^{−/−};smad3b^{−/−};smad6a^{−/−};smad6b^{−/−}* qKO zebrafish line
280 (**Supplementary Table 3**).

281 Unlike the *smad6a/b* DKO, qKO zebrafish reach adulthood and generate viable
282 offspring. Microscopic analysis of vasculogenesis at 10 dpf shows a severe decrease of
283 the normalized surface area of the aortic projection ($p < 0.0001$), the normalized mean
284 diameter of the aortic segment between aortic arch 3 and 4 ($p = 0.0241$), and the
285 normalized diameter adjacent to the bulbus arteriosus ($p = 0.0005$) compared to WT
286 controls, similar to *smad3a^{+/−};smad3b^{−/−};smad6a^{+/−};smad6b^{−/−}* zebrafish ($p < 0.0001$,
287 $p < 0.0001$, $p = 0.0032$, respectively). The normalized length of the aortic segment is only
288 decreased in the qKO ($p = 0.006$) (**Fig. 1, Supplementary Fig. 9**). In addition, the qKO
289 shows tortuosity of the ventral aorta, aortic arches and hypobranchial artery (**Error!**
290 **Reference source not found.**, **Error! Reference source not found.**10).

291 In adult qKO zebrafish, we observed sudden deaths, mostly after breeding, netting, or
292 changing the tank positions. To investigate stress as a trigger, we performed a netting
293 test that is harmless in WT controls, but results in a mortality rate of 60% in qKO.
294 Sudden death associated with a red discoloration anterior in the abdominal region.
295 Sectioning of the entire ventral aorta and staining with Resorcin-Fuchsin to visualize the
296 elastic fibers shows the presence of aortic intramural hematomas and false lumens in
297 multiple qKO. 3D-reconstructions of the aorta based on histological images and from
298 synchrotron micro-CT images of intact zebrafish, confirm the presence of regions of
299 ventral aortic damage (**Fig. 2** and **Supplementary movie 1-8**).
300 Regions of ventral aortic damage start close to a branching point (6/6 qKO, 0/4 WT) and
301 dissection or rupture is present at the most affected sites, (5/6 qKO, 0/4 WT). The
302 diameter of the aortic branches is asymmetrically distributed in all qKO zebrafish (6/6
303 qKO, 0/4 WT) with one side consistently showing narrower branches than the other. In
304 more severe cases, one or more aortic arches are missing (2/5 qKO, 0/4 WT) or
305 attached at the wrong side of the ventral aorta (1/6 qKO, 0/4 WT) (**Supplementary**
306 **Movie 9-13**). No morphological differences can be detected in WT controls
307 (**Supplementary Movie 14-16**) or *smad3a/b* DKO zebrafish (**Supplementary Movie**
308 **17-19**).
309 TEM shows a severely decreased elastin deposition in the internal elastic lamina of 15
310 mpf qKO zebrafish. Additionally, abnormal collagen deposition is detected near the
311 intima of the ventral aorta (**Fig. 2**).
312 Cardiac ultrasound analysis in 6-7 mpf qKO zebrafish shows regurgitation on ventricular
313 in- (p = 0.0009) and outflow (p<0.0001), suggestive of valve dysfunction

314 (Supplementary Fig. 11). Elastin staining of paraffin sections of the valves shows
315 hypertrophy of the valve interstitial cells, resulting in a more rounded appearance of the
316 qKO bulboventricular valve in contrast to the normal heart-shaped structure in WT
317 control zebrafish. Similarly, the atrioventricular valve shows hypertrophy and altered
318 morphology of the valve interstitial cells (

319

320 **Figure, Supplementary Fig. 12).**

321 ***Aortic damage in the qKO zebrafish correlates with increased stress at***
322 ***branching regions***

323 In qKO zebrafish, asymmetric branching and reduction of the diameter of the aortic
324 arches is apparent. To determine if the morphological changes of the aorta in adult qKO
325 zebrafish increase the principal stress within the vessel wall and to identify which
326 locations endure the largest differences, aortic morphology was compared using *in silico*
327 simulation models representing 13 mpf WT and qKO zebrafish aortae. To model the
328 severe reduction of the diameter of the qKO aortic arches, the blood flow through the
329 right aortic arches (aortic arch 2, 3 and 4) was reduced to nearly zero in the model. The
330 principal stress within the aortic wall was increased in all 5 qKO simulations, with the
331 most affected region close to branching points. This corresponds to the *ex vivo*
332 observations of the location of regions of damage in the ventral aorta of qKO zebrafish
333 (**Error! Reference source not found.**).

334 ***qKO zebrafish show skeletal aberrations, but largely normal swimming***
335 ***behavior***

336 The qKO show an increased presence of ectopic bone formation ($p = 0.0014$). Scoliosis,
337 hyperlordosis and hyperkyphosis, bending of the arches and ribs, as well as
338 intervertebral ligament mineralization and notochord mineralization are apparent in the
339 qKO zebrafish only (**Figure , Error! Reference source not found.**).

340 In qKO zebrafish, the nasal region of the skull is underdeveloped with a significantly
341 reduced distance between the tip of the snout and tip of the frontal bone ($p < 0.0001$).

342 (Figure , Error! Reference source not found.). Interestingly, qKO show normal values
343 for the normalized surface area of the cranial roof in contrast to the *smad3a/b* DKO,
344 which was significantly decreased ($p = 0.0101$) (Supplementary Fig. 8). Since qKO
345 embryos show a tortuous hypobranchial artery, which provides blood flow to the teeth,
346 tooth morphology was evaluated, but appears normal (Error! Reference source not
347 found.).

348 At 9 mpf, qKO zebrafish show a decrease in movement frequency ($p = 0.0197$), but not
349 in normalized total distance traveled compared to WT zebrafish (Error! Reference
350 source not found.).

351 ***Bulk RNA sequencing of 5 dpf qKO shows a reduction in the negative
352 regulation of proteolysis and upregulation of melanogenesis***

353 Bulk RNA sequencing in 5 dpf qKO and 2nd degree related WT control zebrafish
354 identified 1131 differentially expressed genes (DEG) (adjusted p-value <0.05)
355 (Supplementary Table 4). The top 10 enriched GO-terms in the upregulated gene set
356 mostly involve pigmentation (pigment metabolic process, pigment biosynthetic process,
357 melanosome organization, pigment granule organization, melanocyte differentiation,
358 pigmentation, developmental pigmentation). One of the central DEG driving this
359 enrichment is the *mitfa* transcription factor, which is known to signal downstream of
360 BMP and governs melanocyte differentiation and development via tyrosinase (log FC *tyr*
361 2.01), tyrosinase related protein 1 (log FC *tyrp1a* 1.82 and log FC *tyrp1b* 2.08), the
362 premelanosome protein (log FC *pmela* 1.44 and log FC *pmelb* 3.66), dopachrome
363 tautomerase (log FC *dct* 2.6), and the melanosomal transporter (log FC *slc24a5*
364 2.35)^{49,50}. The top 10 enriched GO-terms in the downregulated gene set are linked to

365 negative regulation of proteolysis (negative regulation peptidase activity, negative
366 regulation proteolysis, regulation of peptidase activity, negative regulation of
367 endopeptidase activity, regulation of proteolysis) and immune response (regulation of
368 immune response, positive regulation of immune system process) (**Supplementary**
369 **Table 5-6**). A heatmap with stringent thresholds ($p.\text{adjust} \geq 0.0001$ and $|\log 2\text{FC}| \geq 1$)
370 and a volcano plot are shown in **Figure**. Annotated dysregulated genes with a known
371 role in aortic wall homeostasis, include *loxl3a*, *emilin3a* and *fbn2b* (elastic fiber
372 assembly), *vcana* and *lamc2* (vascular cell adhesion glycoproteins), *mhc1uma* (a
373 zebrafish specific MHC class I gene), and *uts2a* (a vasoconstrictor linked to
374 hypertension and heart failure in humans). Dysregulation of *omd* (a transcription factor,
375 activated via BMP signaling, that links to cell adhesion and bone mineralization) might
376 relate to the observed bone phenotypes.

377 ***Tyrosinase inhibition increases diameter of the ventral aorta in 10 dpf***
378 ***zebrafish***

379 To investigate the involvement of melanogenesis-related pathways in aortic
380 development, we administered 0.003% PTU, a known inhibitor of tyrosinase in the
381 medium of WT zebrafish embryos starting at 1 dpf. At 10 dpf, treated zebrafish show a
382 significant increase of normalized ventral aortic surface area ($p = 0.0066$) and mean
383 normalized aorta diameter between aortic arch 3 and 4 ($p = 0.0065$) compared to
384 vehicle control. Length of the aortic segment and diameter adjacent to the bulbus
385 arteriosus remained unchanged compared to non-treated sibling controls (**Figure**).

386 DISCUSSION

387 TGF β and BMP signaling show significant crosstalk during vascular and skeletal
388 development and homeostasis. Our results support the existence of modifier effects
389 particularly on aortic phenotypes associated with *SMAD6*-deficiency, which range from
390 bicuspid aortic valve with or without ascending aortic dilatation to Shone complex with a
391 hypoplastic ascending aorta and aortic arch.

392 In the genome of mammals and teleost fish, *SMAD3* and *SMAD6* locate closely
393 together, but in different topologically associated domains¹⁶. Since zebrafish express
394 *smad3a*, *smad3b*, *smad6a* and *smad6b*⁵¹⁻⁵⁴, this model provides flexibility to investigate
395 the interactions between these genes upon gene dosage. Although maternal *smad3a* is
396 required during early embryogenesis, which is supported by previous findings⁴⁸, SKO
397 show no obvious vascular or skeletal phenotype, except for mild craniofacial alterations
398 in *smad3a*^{-/-} zebrafish. However, *smad3a/b* or *smad6a/b* DKO do manifest
399 cardiovascular and mild skeletal phenotypes, supporting compensation between the
400 ohnologs of either *smad3* or *smad6*, in line with their strongly conserved protein
401 structure¹⁹.

402 *Smad6a/b* and *smad3a/b* DKO show opposite vascular phenotypes. *Smad3a/b* DKO
403 zebrafish show an increase in aortic diameter in early larval stages. This aligns with
404 previous findings in which loss of *alk5*^{-/-}, the type 1 TGF- β receptor which activates
405 SMAD3, leads to an increased diameter of the cardiac outflow tract in zebrafish
406 embryos, followed by a failed development of the ventral aorta causing death at 7 dpf⁵⁵.
407 It is plausible that in *smad3a/b* DKO limited amounts of Smad2/Smad4 complexes
408 partially rescue the phenotype preventing early death and an adult cardiovascular

409 phenotype, in contrast to Alk5 loss of function, in which both Smad2 and Smad3 will not
410 be activated⁵⁶.

411 *Smad6a/b* DKO show a reduced aortic diameter, and early death. The qKO also shows
412 a reduction of the aortic diameter and arterial tortuosity, but survives to adulthood. The
413 observation that the *smad3a^{+/−};smad3b^{−/−};smad6a^{+/−};smad6b^{−/−}* shows a more severe
414 reduction in aortic diameter than the qKO might be explained by the exclusion of the
415 most affected qKO embryos, since clear edge detection of the ventral aorta in these
416 embryos is hindered due to excessive tortuosity. Hence, it seems reasonable to
417 generalize that smad3 loss of function increases, while lack of smad6 decreases the
418 diameter of the aorta. The overall net result in the qKO shows a decreased diameter of
419 the ventral aorta with asymmetrical branching and a high susceptibility for dissection
420 and rupture in adult zebrafish. It has been previously reported that zebrafish *smad6b* is
421 involved together with BMP in modulation of lateral sprouting of the dorsal aorta⁵⁴.

422 Abnormal aortic branching results in altered hemodynamics and elevated systolic wall
423 stress, as confirmed by our fluid-structure interaction models presented here. Areas
424 exposed to perturbed local flow patterns prove prone to aortic wall damage and
425 dissection, as demonstrated by histological and synchrotron imaging of the aorta. TEM
426 analysis reveals a severe reduction of elastic fiber deposition in the inter-elastic
427 laminae, which can be linked to a lessened resilience to hemodynamic stress.
428 Additionally, abnormal collagen deposition near the intima of qKO zebrafish recapitulate
429 increased collagen deposition in human TAAD⁵⁷, indicating that similar
430 pathophysiological processes are activated in our zebrafish model. The presence of an
431 atrioventricular and bulboventricular valve defect in the qKO is in line with the role of

432 SMAD6 in human bicuspid aortic valve disease⁵⁸. It is conceivable that unopposed loss
433 of both *smad6* ohnologs in zebrafish leads to a failure to maintain aortic homeostasis or
434 to severe valve dysfunction, resulting in the premature death observed in the *smad6a/b*
435 DKO late juvenile zebrafish.

436 The spectrum of bone phenotypes observed in the different genotypes confirms the
437 modulatory interactions between the different *smad* genes. Indeed, *smad3a/b* DKO, but
438 not *smad3a^{+/−};smad3b^{−/−}* or *smad3a^{−/−};smad3b^{+/−}* zebrafish, show increased ectopic bone
439 formation, a decreased normalized cranial roof surface area, and vertebral column axis
440 deviations. In contrast, the *smad6a^{+/−};smad6b^{−/−}* and the *smad6a^{−/−};smad6b^{+/−}* zebrafish
441 do show an increase in ectopic bone formation, although it needs to be highlighted that
442 adult *smad6a/b* DKO cannot be studied since they do not survive until adulthood. The
443 qKO zebrafish show more ectopic bone formation, and more severe column axis
444 deviations. These observations suggest a larger impact of BMP signaling on skeletal
445 development, that is further impacted by loss of TGFβ signaling.

446 Enrichment analysis of bulk RNA sequencing data of qKO embryos at 5 dpf revealed
447 upregulation of multiple pathways related to pigmentation, including the central
448 transcription factor *mitfa* as well as downstream effectors in melanin production such as
449 *tyrp1a*, *tyrp1b*, *tyr* and *dct*. MITF is a known downstream target of BMP signaling that is
450 inhibited by SMAD6^{59–61}. MITF also acts upstream of lysosome biogenesis and it was
451 previously shown that lysosomal dysfunction in zebrafish due to loss of function of
452 *atp6v1e1b* associates with dilatation of the ventral aorta and narrow aortic branches²⁸.
453 Finally, MITF is known to be important for cell metabolism and cell cycle regulation,
454 promoting mitochondrial biogenesis and having complex effects on proliferation

455 depending on the level of MITF activity⁶². It is conceivable that one or more of these
456 effects of MITF are linked to the development of the phenotype observed in our qKO
457 model.

458 The transcriptional changes of pigmentation-related pathways in the qKO model
459 prompted us to test the consequences of pharmacological inhibition of tyrosinase, a key
460 enzyme responsible for eumelanin production, at a dose commonly used in zebrafish
461 research to block pigment formation. Inhibition of tyrosinase via PTU treatment resulted
462 in an increase of the aorta diameter while a decreased aortic diameter in qKO at 10 dpf
463 is associated with upregulated tyrosinase expression. This strongly supports a role for
464 the pigment biosynthesis pathway in aortic homeostasis. Therefore, the use of PTU for
465 imaging purposes should be approached with caution due to the potential for
466 unintended effects on other organ systems, especially when evaluating cardiovascular
467 phenotypes. Undesired effects of PTU have been reported previously including
468 autophagy activation⁶³, activation of cytochrome P4501A1 (*cyp1a1*)⁶⁴, suppression of
469 retinol-binding protein 4 (*rbp4*)⁶⁵ and reduction of the diameter of the eye⁶⁶.

470 Despite upregulation of melanin-producing pathways, no increase of skin pigmentation
471 could be observed in the embryo or adult qKO zebrafish. Previous research showed
472 that tyrosinase follows a specific spatiotemporal expression pattern during
473 embryogenesis, which is not confined to skin cells⁶⁷. At 7 dpf, small amounts of melanin
474 can already be detected around the dorsal aorta, while at 1 month, melanin deposition
475 is apparent⁶⁸. It is therefore tempting to speculate that pigmentation-related pathways
476 affect vascular development, particularly since it was recently shown that tyrosinase
477 reduces expression of vascular endothelial growth factors⁶⁹.

478 The relevance of the qKO model to study the disease mechanisms of dissection is
479 further supported by the transcriptomic changes concordant with established models
480 and known pathogenetic mechanisms of TAD. Altered elastic fiber homeostasis, which
481 was confirmed in the qKO aortic wall using TEM, is reflected in upregulation of *Fbn2b*⁷⁰
482 (logFC 1.04), a fibrillin known to be involved in endocardial morphogenesis, which might
483 be upregulated as a response to the coarctation in the qKO, and downregulation of
484 *mfap4* (logFC -3.26), an important component of the extracellular matrix (ECM) involved
485 in elastic fiber assembly. In zebrafish, MFAP4 also regulates the balance between
486 myeloid and lymphoid development⁷¹. Another immune cell-related gene expressed
487 differently in qKO zebrafish is *itgam* (LogFC -5.33), coding for a component of the
488 heterodimeric $\alpha_M\beta_2$ integrin expressed on leukocytes which is also known as
489 macrophage-1 antigen (Mac-1) or CD11b. This protein plays a crucial role in binding to
490 ECM components and intracellular adhesion molecules, involved in adhesion and
491 transmigration of leukocytes across blood vessels. The qKO transcriptomic profile also
492 indicates that matrix proteolysis is increased, due to downregulation of the
493 metalloproteinase inhibitor *timp4* (LogFC -3.28), in combination with upregulation of
494 *mmp11b* (logFC 1.34) and *mmp13a* (logFC 1.35). These targets are all widely
495 established in the pathogenesis of vascular and bone homeostasis⁷²⁻⁷⁴. *Loxl3a*, an
496 orthologue of the human *LOXL3*⁷⁵ important for crosslinking of elastin and collagen, is
497 significantly downregulated in qKO zebrafish. In mice, deletion of *Loxl3* results in
498 abnormal skeletal development and is expressed in the precursors of the occipital and
499 interparietal bones and nasal area, affected in the qKO model⁷⁶.

500 In conclusion, Smad3-deficiency modifies Smad6-deficient phenotypes whereby
501 *smad3a^{-/-};smad3b^{-/-};smad6a^{-/-};smad6b^{-/-}* qKO zebrafish model aortic dissection and
502 rupture, resulting from defective vasculogenesis and resultant local wall stress. In
503 addition to known signatures of TAAD in human and mouse models, this model
504 implicates the pigmentation pathway in the development of the aortic phenotypes.
505 Follow-up studies on the precise contribution of these pathways are warranted and are
506 likely to lead to novel targets for therapeutic intervention in TAAD.

507 **ACKNOWLEDGMENTS**

508 The authors thank the family for their participation in this research. We also would like to
509 thank the Zebrafish Facility Ghent Core at Ghent University, and particularly Karen
510 Vermeulen for the diligent care for the zebrafish. We acknowledge the Paul Scherrer
511 Institut (PSI), Villigen, Switzerland for provision of synchrotron radiation beamtime at the
512 TOMCAT beamline X02DA of the Swiss Light Source, and would like to thank Karo De
513 Rycke, Violette Deleeuw, Marina Horvat, Yousof Mohammad Asaad Abdel-Raouf
514 (Ghent University) and Isaac Rodriguez Rovira (University of Barcelona) for their
515 assistance in acquiring the synchrotron imaging data. Finally, we would like to thank the
516 Nematology Research Unit, member of the UGent TEM Core Facility and the
517 sequencing core of UZ Ghent.

518 **SOURCES OF FUNDING**

519 This work was supported by a Concerted Research Action grant from the Ghent
520 University Special Research Fund (grant number BOF GOA019-21) to BC and PS, A
521 research project of the Research Foundation – Flanders (grant number G0B4920N) and
522 the Marfan Foundation Innovators Grant Program (grant number
523 INT.DIV.2023.0008.01) to BC. Bert Callewaert is a senior clinical investigator of the
524 Research Foundation-Flanders.

525 **DISCLOSURES**

526 None

527 **DATA AVAILABILITY**

528 Raw RNAseq data is available at Gene Expression Omnibus with accession number
529 GSE249792. To review GEO accession GSE249792. For reviewers, following link is
530 available to access the data.

531 <https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE249792&data=05%7C02%7Cmichiel.vanhooydonck%40ugent.be%7Cbeba6c62b40641ced96408dbfa282a45%7Cd7811cdeceef496c8f91a1786241b99c%7C1%7C0%7C638378822642521272%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzliLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=7g1JeMJOvj4IZVmQ6FVdkN%2FA2zrRUcuVlw6Hcear5vs%3D&reserved=0>

538 Enter token obmhwiqkbbssprkt into the box.

539 All other data will be made available upon request.

540

541 **AUTHOR CONTRIBUTIONS**

542 Conceptualization: MVH., PSI., BC. Methodology: MVH., MVE., MSS., LP., AKB., DS.,
543 PSI., BC. Software: MSS., MVI. Formal analysis: MVH., MSV., MVI., DS. Investigation:
544 MVH., MVE., MVI., MSS., LP., AKB., HDS., LC., PT., DS. Resources: PSI., BC. Data
545 Curation: MVH., MSS. Writing (original draft): MVH., MVE. Writing (review & editing):
546 MVH., MVE., MSS., LP., AKB., MVI., HDS., LC., PT., AB., P.SE., ADC., AW., DS., PSI.,
547 BC. Visualization: MVH. MVE. Supervision: PSI., BC. Funding acquisition: PSI., BC.

548

549 **SUPPLEMENTARY MATERIAL**

550 Supplementary Case Presentation

551 Supplementary Methods

552 Supplementary References

553 Supplementary Figures 1 - 17

554 Supplementary Tables 1 - 7

555 Supplementary Movies 1 - 19

556 REFERENCES

- 557 1. Lemaire SA, Russell L. Epidemiology of thoracic aortic dissection. *Nature reviews. Cardiology*. 2011;8(2):103–113.
- 559 2. Van De Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, De Graaf BM, Verhagen JMA, Hoedemaekers YM, Willemsen R, Severijnen LA, Venselaar H, Vriend G, Pattynama PM, Collée M, Majoor-Krakauer D, Poldermans D, et al. 560 561 562 563 Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. *Nature Genetics*. 2011;43(2):121–126.
- 564 3. Deleeuw V, Carlson E, Renard M, Zientek KD, Wilmarth PA, Reddy AP, 565 Manalo EC, Tufa SF, Keene DR, Olbinado M, Stampanoni M, Kanki S, 566 Yanagisawa H, Mosquera LM, Sips P, et al. Unraveling the role of TGF β signaling 567 in thoracic aortic aneurysm and dissection using Fbn1 mutant mouse models. 568 *Matrix biology : journal of the International Society for Matrix Biology*. 569 2023;123:17–33.
- 570 4. Doyle JJ, Gerber EE, Dietz HC. Matrix-dependent perturbation of TGF β 571 signaling and disease. *FEBS Letters*. 2012;586(14):2003–2015.
- 572 5. Li W, Li Q, Jiao Y, Qin L, Ali R, Zhou J, Ferruzzi J, Kim RW, Geirsson A, 573 Dietz HC, Offermanns S, Humphrey JD, Tellides G. Tgfbr2 disruption in postnatal 574 smooth muscle impairs aortic wall homeostasis. *The Journal of Clinical 575 Investigation*. 2014;124(2):755–767.
- 576 6. Bellini C, Bersi MR, Caulk AW, Ferruzzi J, Milewicz DM, Ramirez F, Rifkin 577 DB, Tellides G, Yanagisawa H, Humphrey JD. Comparison of 10 murine models 578 reveals a distinct biomechanical phenotype in thoracic aortic aneurysms. *Journal 579 of the Royal Society Interface*. 2017;14(130):20161036.
- 580 7. Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular 581 specificity and functional flexibility. *Nature reviews. Molecular cell biology*. 582 2007;8(12):970–982.
- 583 8. Miyazawa K, Miyazono K. Regulation of TGF- β Family Signaling by 584 Inhibitory Smads. *Cold Spring Harbor perspectives in biology*. 585 2017;9(3)::a022095.
- 586 9. Liu Y, Festing M, Thompson JC, Hester M, Rankin S, El-Hodiri HM, Zorn 587 AM, Weinstein M. Smad2 and Smad3 coordinately regulate craniofacial and 588 endodermal development. *Developmental Biology*. 2004;270(2):411–426.
- 589 10. Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, 590 Bilguvar K, Tikhonova I, Mane S, Yang JF, Sawh-Martinez R, Persing S, Zellner 591 EG, Loring E, Chuang C, et al. Two locus inheritance of non-syndromic midline

592 craniosynostosis via rare SMAD6 and common BMP2 alleles. *eLife*.
593 2016;5(September2016):e20125.

594 11. Yang Y, Zheng Y, Li W, Li L, Tu M, Zhao L, Mei H, Zhu G, Zhu Y. SMAD6
595 is frequently mutated in nonsyndromic radioulnar synostosis. *Genetics in*
596 *medicine : official journal of the American College of Medical Genetics*.
597 2019;21(11):2577–2585.

598 12. Tan HL, Glen E, Töpf A, Hall D, O'Sullivan JJ, Sneddon L, Wren C, Avery
599 P, Lewis RJ, ten Dijke P, Arthur HM, Goodship JA, Keavney BD. Nonsynonymous
600 variants in the SMAD6 gene predispose to congenital cardiovascular
601 malformation. *Human Mutation*. 2012;33(4):720–727.

602 13. Luyckx I, MacCarrick G, Kempers M, Meester J, Geryl C, Rombouts O,
603 Peeters N, Claes C, Boeckx N, Sakalihasan N, Jacquinet A, Hoischen A,
604 Vandeweyer G, Van Lent S, Saenen J, et al. Confirmation of the role of
605 pathogenic SMAD6 variants in bicuspid aortic valve-related aortopathy. *European*
606 *Journal of Human Genetics*. 2019;27(7):1044–1053.

607 14. Luyckx I, Verstraeten A, Goumans MJ, Loeys B. SMAD6-deficiency in
608 human genetic disorders. *NPJ Genomic Medicine*. 2022;7(1):68.

609 15. Kloth K, Bierhals T, Johannsen J, Harms FL, Juusola J, Johnson MC,
610 Grange DK, Kutsche K. Biallelic variants in SMAD6 are associated with a complex
611 cardiovascular phenotype. *Human genetics*. 2019;138(6):625–634.

612 16. Rajderkar S, Barozzi I, Zhu Y, Hu R, Zhang Y, Li B, Alcaina Caro A,
613 Fukuda-Yuzawa Y, Kelman G, Akeza A, Blow MJ, Pham Q, Harrington AN,
614 Godoy J, Meky EM, et al. Topologically associating domain boundaries are
615 required for normal genome function. *Communications Biology*. 2023;6:435.

616 17. Giehl KA, Eckstein GN, Pasternack SM, Praetzel-Wunder S, Ruzicka T,
617 Lichtner P, Seidl K, Rogers M, Graf E, Langbein L, Braun-Falco M, Betz RC,
618 Strom TM. Nonsense mutations in AAGAB cause punctate palmoplantar
619 keratoderma type Buschke-Fischer-Brauer. *American journal of human genetics*.
620 2012;91(4):754–759.

621 18. Glasauer SMK, Neuhauss SCF. Whole-genome duplication in teleost
622 fishes and its evolutionary consequences. *Molecular genetics and genomics : MGG*. 2014;289(6):1045–1060.

623 19. Pearson WR. An Introduction to Sequence Similarity (“Homology”)
624 Searching. *Current protocols in bioinformatics*. 2013;chapter 3:3.1.1-3.1.8.

625 20. Jia S, Ren Z, Li X, Zheng Y, Meng A. smad2 and smad3 Are Required for
626 Mesendoderm Induction by Transforming Growth Factor-/Nodal Signals in
627 Zebrafish. *Journal of Biological Chemistry*. 2008;283(4):2418–2426.

629 21. Casari A, Schiavone M, Facchinello N, Vettori A, Meyer D, Tiso N, Moro
630 E, Argenton F. A Smad3 transgenic reporter reveals TGF-beta control of zebrafish
631 spinal cord development. *Developmental biology*. 2014;396(1):81–93.

632 22. Pogoda HM, Meyer D. Zebrafish smad7 is regulated by Smad3 and BMP
633 signals. *Developmental Dynamics*. 2002;224(3):334–349.

634 23. Lawrence C, Sanders GE, Varga ZM, Baumann DP, Freeman A, Baur B,
635 Francis M. Regulatory compliance and the Zebrafish. *Zebrafish*. 2009;6(4):453–
636 456.

637 24. Westerfield M, Doerry E, Kirkpatrick AE, Douglas SA. Chapter 19
638 Zebrafish Informatics and the ZFIN Database. *Methods in Cell Biology*.
639 1998;60(C):339–355.

640 25. Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing
641 CRISPR/Cas guide RNA with reduced off-target sites. *Bioinformatics*.
642 2015;31(7):1120.

643 26. Boel A, De Saffel H, Steyaert W, Callewaert B, De Paepe A, Coucke PJ,
644 Willaert A. CRISPR/Cas9-mediated homology-directed repair by ssODNs in
645 zebrafish induces complex mutational patterns resulting from genomic integration
646 of repair-template fragments. *DMM Disease Models and Mechanisms*.
647 2018;11(10):dmm035352.

648 27. Boel A, Steyaert W, De Rocker N, Menten B, Callewaert B, De Paepe A,
649 Coucke P, Willaert A. BATCH-GE: Batch analysis of Next-Generation Sequencing
650 data for genome editing assessment. *Scientific Reports*. 2016;6(July):30330.

651 28. Pottie L, van Gool W, Vanhooydonck M, Hanisch FG, Goeminne, Rajkovic
652 A, Coucke P, Sips P, Callewaert B. Loss of zebrafish atp6v1e1b, encoding a
653 subunit of vacuolar ATPase, recapitulates human ARCL type 2C syndrome and
654 identifies multiple pathobiological signatures. *PLoS genetics*.
655 2021;17(6):e1009603.

656 29. Saalfeld S, Cardona A, Hartenstein V, Tomančák P. As-rigid-as-possible
657 mosaicking and serial section registration of large ssTEM datasets.
658 *Bioinformatics*. 2010;26(12):i57–i63.

659 30. Saalfeld S, Fetter R, Cardona A, Tomancak P. Elastic volume
660 reconstruction from series of ultra-thin microscopy sections. *Nature methods*.
661 2012;9(7):717–720.

662 31. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S,
663 Longair M, Tomancak P, Hartenstein V, Douglas RJ. TrakEM2 software for neural
664 circuit reconstruction. *PloS one*. 2012;7(6):e38011.

665 32. Van Impe M, Caboor L, Deleeuw V, Rycke K De, Vanhooydonck M,
666 Backer J De, Segers P, Sips P. Application of an automated analysis framework
667 for pulsed-wave Doppler cardiac ultrasound measurements to generate reference
668 data in adult zebrafish. *American Journal of Physiology*. 2023;325(6):R782–R796.

669 33. Ramsay JM, Feist GW, Varga ZM, Westerfield M, Kent ML, Schreck CB.
670 Whole-body cortisol response of zebrafish to acute net handling stress.
671 *Aquaculture*. 2009;297(1–4):157–162.

672 34. Jarayseh T, Guillemin B, De Saffel H, Bek JW, Syx D, Symoens S,
673 Gansemans Y, Van Nieuwerburgh F, Jagadeesh S, Raja J, Malfait F, Coucke PJ,
674 De Clercq A, Willaert A. A tapt1 knock-out zebrafish line with aberrant lens
675 development and impaired vision models human early-onset cataract. *Human
676 Genetics*. 2023;142(3):457–476.

677 35. Bird NC, Mabee PM. Developmental morphology of the axial skeleton of
678 the zebrafish, *Danio rerio* (Ostariophysi: Cyprinidae). *Developmental Dynamics*.
679 2003;228(3):337–357.

680 36. Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal
681 table of postembryonic zebrafish development: Staging by externally visible
682 anatomy of the living fish. *Developmental Dynamics*. 2009;238(12):2975–3015.

683 37. Andrews S. Babraham Bioinformatics - FastQC A Quality Control tool for
684 High Throughput Sequence Data. *FastQC A Quality Control tool for High
685 Throughput Sequence Data*. 2010.

686 38. Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B.
687 FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo. 2021.

688 39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
689 Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner.
690 *Bioinformatics*. 2013;29(1):15–21.

691 40. Sayols S, Scherzinger D, Klein H. dupRadar: a Bioconductor package for
692 the assessment of PCR artifacts in RNA-Seq data. *BMC bioinformatics*.
693 2016;17(1):428.

694 41. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis
695 results for multiple tools and samples in a single report. *Bioinformatics*.
696 2016;32(19):3047–3048.

697 42. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose
698 program for assigning sequence reads to genomic features. *Bioinformatics*.
699 2014;30(7):923–930.

700 43. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package
701 for differential expression analysis of digital gene expression data. *Bioinformatics*
702 (*Oxford, England*). 2010;26(1):139–140.

703 44. Chen Y, Lun ATL, Smyth GK. From reads to genes to pathways:
704 Differential expression analysis of RNA-Seq experiments using Rsubread and the
705 edgeR quasi-likelihood pipeline. *F1000Research*. 2016;5.

706 45. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for
707 comparing biological themes among gene clusters. *Omics : a journal of integrative*
708 *biology*. 2012;16(5):284–287.

709 46. Van Impe M, Caboor L, Deleeuw V, Olbinado M, De Backer J, Sips P,
710 Segers P. Fluid-Structure Interaction Modeling of the Aortic Hemodynamics in
711 Adult Zebrafish: a Pilot Study based on Synchrotron X-Ray Tomography. *IEEE*
712 *Transactions on Biomedical Engineering*. 2023;70(7):2101–2110.

713 47. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. Simultaneous
714 phase and amplitude extraction from a single defocused image of a
715 homogeneous object. *Journal of Microscopy*. 2002;206(1):33–40.

716 48. Marone F, Stampanoni M. Regridding reconstruction algorithm for real-
717 time tomographic imaging. *Journal of synchrotron radiation*. 2012;19(Pt 6):1029–
718 1037.

719 49. Hsiao JJ, Fisher DE. The roles of microphthalmia-associated transcription
720 factor and pigmentation in melanoma. *Archives of Biochemistry and Biophysics*.
721 2014;563:28–34.

722 50. Bian C, Li R, Wen Z, Ge W, Shi Q. Phylogenetic Analysis of Core Melanin
723 Synthesis Genes Provides Novel Insights Into the Molecular Basis of Albinism in
724 Fish. *Frontiers in Genetics*. 2021;12:707228.

725 51. Casari A, Schiavone M, Facchinello N, Vettori A, Meyer D, Tiso N, Moro
726 E, Argenton F. A Smad3 transgenic reporter reveals TGF-beta control of zebrafish
727 spinal cord development. *Developmental Biology*. 2014;396(1):81–93.

728 52. Pogoda HM, Meyer D. Zebrafish smad7 is regulated by Smad3 and BMP
729 signals. *Developmental Dynamics*. 2002;224(3):334–349.

730 53. De Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K,
731 Lagendijk AK, Schilling TF, Herzog W, Abdelilah-Seyfried S, Hammerschmidt M,
732 Bakkers J. Bmp signaling exerts opposite effects on cardiac differentiation.
733 *Circulation Research*. 2012;110(4):578–587.

734 54. Mouillesseaux KP, Wiley DS, Saunders LM, Wylie LA, Kushner EJ, Chong
735 DC, Citrin KM, Barber AT, Park Y, Kim JD, Samsa LA, Kim J, Liu J, Jin SW,

736 Bautch VL. Notch regulates BMP responsiveness and lateral branching in vessel
737 networks via SMAD6. *Nature Communications*. 2016;7:13247.

738 55. Boezio GLM, Bensimon-Brito A, Piesker J, Guenther S, Helker CSM,
739 Stainier DYR. Endothelial TGF- β signaling instructs smooth muscle cell
740 development in the cardiac outflow tract. *eLife*. 2020;9:1–32.

741 56. Lucarelli P, Schilling M, Kreutz C, Vlasov A, Boehm ME, Iwamoto N,
742 Steiert B, Lattermann S, Wäsch M, Stepath M, Matter MS, Heikenwälder M,
743 Hoffmann K, Deharde D, Damm G, et al. Resolving the Combinatorial Complexity
744 of Smad Protein Complex Formation and Its Link to Gene Expression. *Cell
745 Systems*. 2018;6(1):75-89.e11.

746 57. Wang X, LeMaire SA, Chen L, Shen YH, Gan Y, Bartsch H, Carter SA,
747 Utama B, Ou H, Coselli JS, Wang XL. Increased Collagen Deposition and
748 Elevated Expression of Connective Tissue Growth Factor in Human Thoracic
749 Aortic Dissection. *Circulation*. 2006;114(SUPPL. 1):I200–I205.

750 58. Bechtel JFM, Misfeld M, Schmidtke C, Sievers HH. The bicuspid aortic
751 valve. In: *Aortic Root Surgery*.; 2010:89–101.

752 59. Yang J, Wang J, Pan L, Li H, Rao C, Zhang X, Niu G, Qu J, Hou L. BMP4
753 is required for the initial expression of MITF in melanocyte precursor
754 differentiation from embryonic stem cells. *Experimental cell research*.
755 2014;320(1):54–61.

756 60. Massaous J, Hata A. TGF-B signalling through the Smad pathway. *Cell
757 Biology*. 1997;7:187–192.

758 61. Steinfeld J, Steinfeld I, Coronato N, Hampel ML, Layer PG, Araki M,
759 Vogel-Höpker A. RPE specification in the chick is mediated by surface ectoderm-
760 derived BMP and Wnt signalling. *Development*. 2013;140(24):4959–4969.

761 62. Goding CR, Arnheiter H. Mitf—the first 25 years. *Genes and
762 Development*. 2019;33(15–16):983–1007.

763 63. Chen XK, Kwan JSK, Chang RCC, Ma ACH. 1-phenyl 2-thiourea (PTU)
764 activates autophagy in zebrafish embryos. *Autophagy*. 2021;17(5):1222–1231.

765 64. Wang W Der, Wang Y, Wen HJ, Buhler DR, Hu CH. Phenylthiourea as a
766 weak activator of aryl hydrocarbon receptor inhibiting 2,3,7,8-tetrachlorodibenzo-
767 p-dioxin-induced CYP1A1 transcription in zebrafish embryo. *Biochemical
768 Pharmacology*. 2004;68(1):63–71.

769 65. Tingaud-Sequeira A, Forgue J, André M, Babin PJ. Epidermal transient
770 down-regulation of retinol-binding protein 4 and mirror expression of
771 apolipoprotein Eb and estrogen receptor 2a during zebrafish fin and scale
772 development. *Developmental Dynamics*. 2006;235(11):3071–3079.

773 66. Li Z, Ptak D, Zhang L, Walls EK, Zhong W, Leung YF. Phenylthiourea
774 Specifically Reduces Zebrafish Eye Size. *PLOS ONE*. 2012;7(6):e40132.

775 67. Camp E, Lardelli M. Tyrosinase gene expression in zebrafish embryos.
776 *Development genes and evolution*. 2001;211(3):150–153.

777 68. Miano JM, Georger MA, Rich A, De Mesy Bentley KL. Ultrastructure of
778 zebrafish dorsal aortic cells. *Zebrafish*. 2006;3(4):455–463.

779 69. Clahsen T, Hatami N, Büttner C, Reis A, Cursiefen C. Tyrosinase reduces
780 expression of vascular endothelial growth factors and improves corneal graft
781 survival. *Investigative Ophthalmology & Visual Science*. 2022;63(7):909-A0273.

782 70. Mellman K, Huisken J, Dinsmore C, Hoppe C, Stainier DY. Fibrillin-2b
783 regulates endocardial morphogenesis in zebrafish. *Developmental biology*.
784 2012;372(1):111–119.

785 71. Ong SLM, De Vos IJHM, Meroshini M, Poobalan Y, Dunn & NR.
786 Microfibril-associated glycoprotein 4 (Mfap4) regulates hematopoiesis in
787 zebrafish. 2020;10:11801.

788 72. Koskivirta I, Rahkonen O, Mäyränpää M, Pakkanen S, Husheem M, Sainio
789 A, Hakovirta H, Laine J, Jokinen E, Vuorio E, Kovanen P, Järveläinen H. Tissue
790 inhibitor of metalloproteinases 4 (TIMP4) is involved in inflammatory processes of
791 human cardiovascular pathology. *Histochemistry and cell biology*.
792 2006;126(3):335–342.

793 73. Johansson N, Ahonen M, Kähäri VM. Matrix metalloproteinases in tumor
794 invasion. *Cellular and Molecular Life Sciences*. 2000;10(6):415–433.

795 74. Jones JA, Ikonomidou JS. The Pathogenesis of Aortopathy in Marfan
796 Syndrome and Related Diseases. *Current cardiology reports*. 2010;12(2):99–107.

797 75. Van Boxtel AL, Gansner JM, Hakvoort HWJ, Snell H, Legler J, Gitlin JD.
798 Lysyl oxidase-like 3b is Critical for Cartilage Maturation During Zebrafish
799 Craniofacial Development. *Matrix biology : journal of the International Society for
800 Matrix Biology*. 2011;30(2001):178–187.

801 76. Santamaría PG, Dubus P, Bustos-tauler J, Floristán A, Vázquez-naharro
802 A, Morales S, Cano A, Portillo F. Loxl2 and Loxl3 Paralogues Play Redundant
803 Roles during Mouse Development. *International Journal of Molecular Sciences*.
804 2022;23(10):5730.

805

806

807 **FIGURES WITH FIGURE LEGENDS**

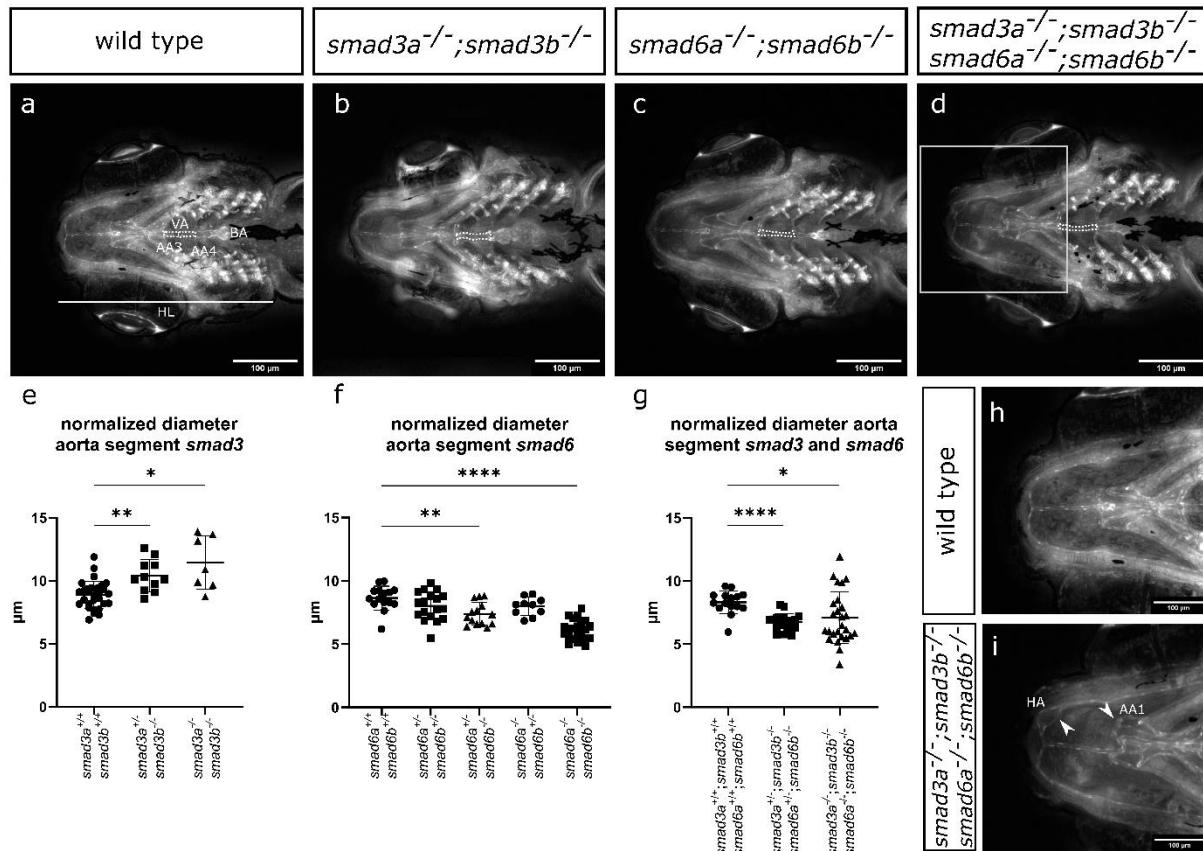
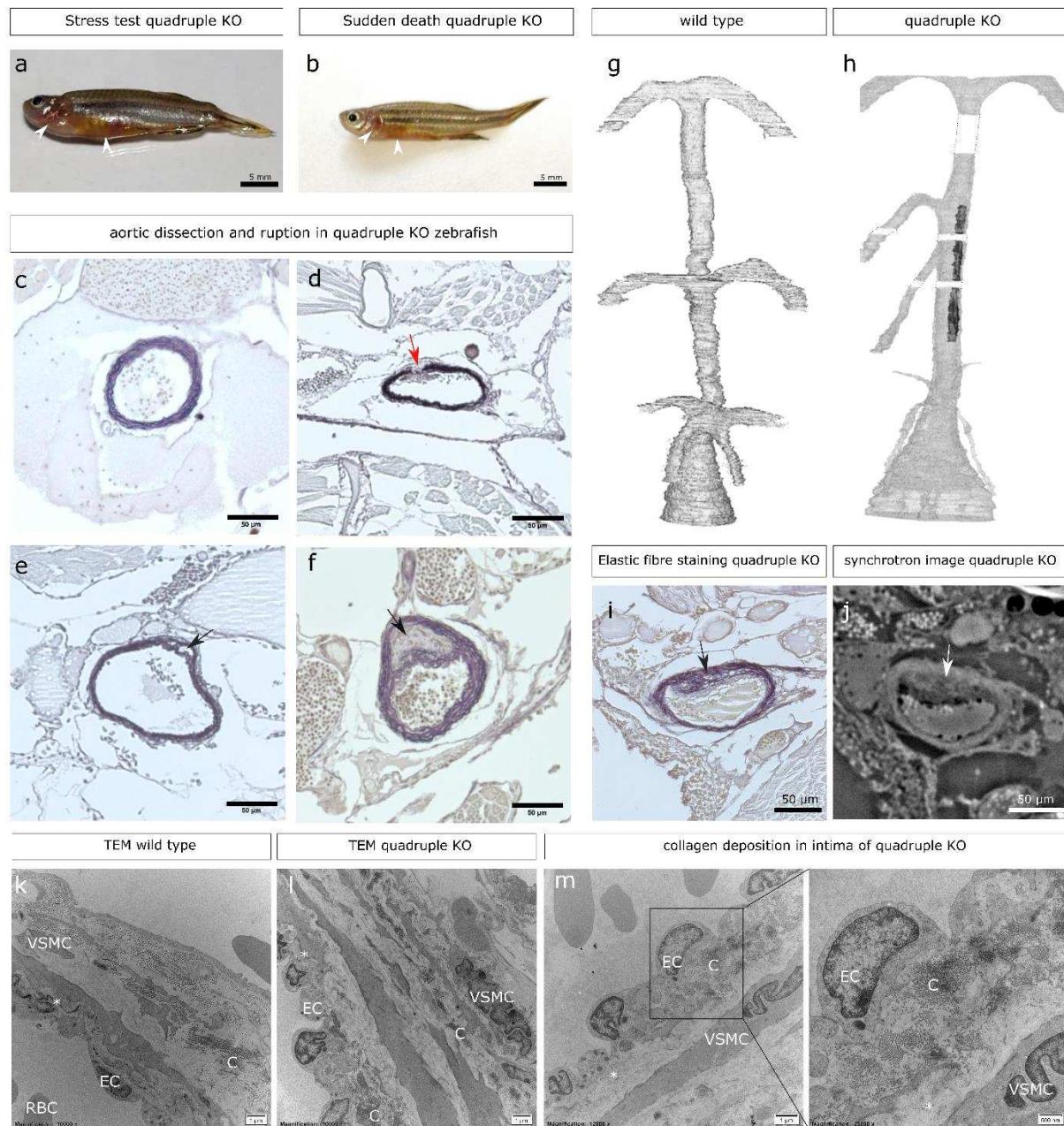

808 Links with access to high quality figures and the supplementary movies. Lower quality
809 figures can be found below:

Figure 1	https://figshare.com/s/58540e31ae5dcfed3750
Figure 2	https://figshare.com/s/b08f40d0b6c136b31ee4
Figure 3	https://figshare.com/s/9fbc19810756ed1b34b4
Figure 4	https://figshare.com/s/07b6703f58ea0653336e
Figure 5	https://figshare.com/s/2b913da4b07559cc0607
Figure 6	https://figshare.com/s/42bdead6d4b916ec7327
Supplementary Figure 1	https://figshare.com/s/1d96715da2007c11ae96
Supplementary Figure 2	https://figshare.com/s/7117068f173e59e3b7e7
Supplementary Figure 3	https://figshare.com/s/8a7ce09585ca754dedd1
Supplementary Figure 4	https://figshare.com/s/e754b6c96ea2c0588a15
Supplementary Figure 5	https://figshare.com/s/c902712aae5ffea8e862
Supplementary Figure 6	https://figshare.com/s/9bcfadde922edd89090ad
Supplementary Figure 7	https://figshare.com/s/00039d2f1472d980fb15
Supplementary Figure 8	https://figshare.com/s/19aa5c0c33dfbf52f76b
Supplementary Figure 9	https://figshare.com/s/3b70b2174c355aafa4c8
Supplementary Figure 10	https://figshare.com/s/2ed90596b1477259fc3f
Supplementary Figure 11	https://figshare.com/s/5c8b0c3c23600bd54b15
Supplementary Figure 12	https://figshare.com/s/2c1733efb6b877eed39a
Supplementary Figure 13	https://figshare.com/s/2a70a063f0dbda9c8bac
Supplementary Figure 14	https://figshare.com/s/58a4c79c1b31b4474c1c
Supplementary Figure 15	https://figshare.com/s/5ccc12c8bf07a477ab19
Supplementary Figure 16	https://figshare.com/s/64b5c5461c87858830e5
Supplementary Figure 17	https://figshare.com/s/a950dec1eb4b32f8559a
Supplementary Movie 1	https://figshare.com/s/5f3e5147898632f68274
Supplementary Movie 2	https://figshare.com/s/cdf6d880d1a241c750f4
Supplementary Movie 3	https://figshare.com/s/5b6d3fb558aeb40771d2
Supplementary Movie 4	https://figshare.com/s/f2c26de3a7403d10148c
Supplementary Movie 5	https://figshare.com/s/03f83afad3ad6383aa20
Supplementary Movie 6	https://figshare.com/s/51aa1e42b4cb45ecdc60
Supplementary Movie 7	https://figshare.com/s/415c7431de05ecfc5449
Supplementary Movie 8	https://figshare.com/s/8a2169e10ff223bc971d
Supplementary Movie 9	https://figshare.com/s/a3aaebcb00ccb50f9b4d
Supplementary Movie 10	https://figshare.com/s/84ac6e35c61e47142339
Supplementary Movie 11	https://figshare.com/s/b87dfe1d640a284edf86
Supplementary Movie 12	https://figshare.com/s/f74f27f17b2cb7343559
Supplementary Movie 13	https://figshare.com/s/b9f1f922f31ada373b87
Supplementary Movie 14	https://figshare.com/s/9a1291cd30650944a05f
Supplementary Movie 15	https://figshare.com/s/3a08c958c980bb16c948

Supplementary Movie 16	https://figshare.com/s/5cd90d5c165d52dfa319
Supplementary Movie 17	https://figshare.com/s/3bac7c34e759d5849442
Supplementary Movie 18	https://figshare.com/s/db1b70cf18c9fe058a57
Supplementary Movie 19	https://figshare.com/s/769438c9b5a3cfade65d

810

811

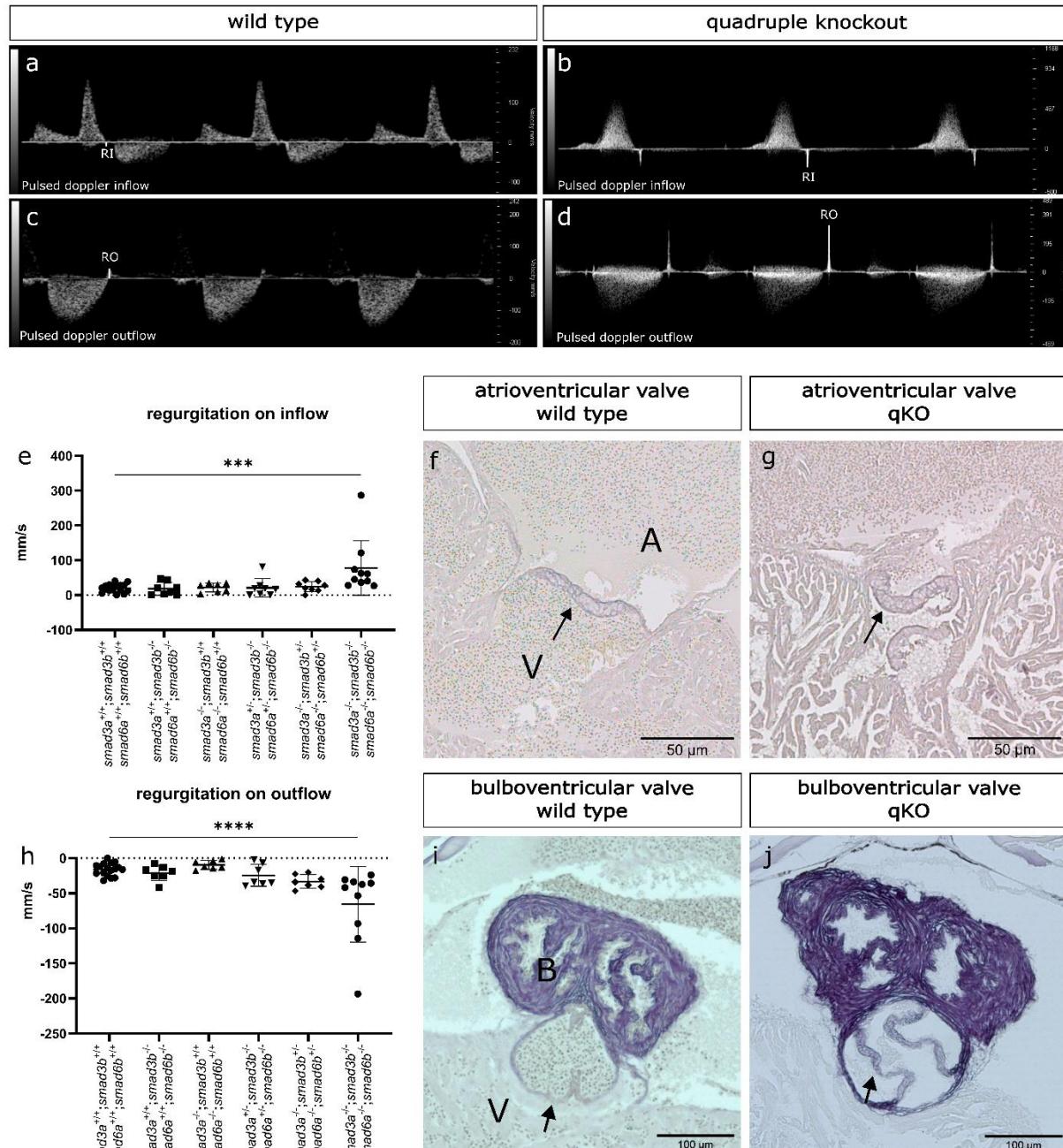

812

813 **Figure 1: Altered vasculogenesis at 10 dpf in double and qKO mutants. (a-d)**

814 Ventral view of the cardiovascular structures at 10 dpf of *smad* knockout lines crossed
815 with a *Tg(fli1:EGFP)* reporter line. Legend: “VA” ventral aorta, “BA” bulbus arteriosus,
816 “AA3” aortic arch 3, “AA4” aortic arch 4, “HL” head length. The projected surface area of
817 the ventral aorta between aortic arch 3 and aortic arch 4 has been outlined with a white
818 dashed line. (e) *smad3a*^{+/+}; *smad3b*^{-/-} and *smad3a*^{-/-}; *smad3b*^{-/-} zebrafish of 10 dpf show
819 an increase in normalized aorta diameter (n=29-11-7). (f) *smad6a*^{+/+}; *smad6b*^{-/-} as well as
820 *smad6a*^{-/-}; *smad6b*^{-/-} show a decrease in diameter of the ventral aorta (n=15-18-14-10-
821 23). (g) *smad3a*^{+/+}; *smad3b*^{-/-}; *smad6a*^{+/+}; *smad6b*^{-/-} and *smad3a*^{-/-}; *smad3b*^{-/-}; *smad6a*^{-/-}
822 ; *smad6b*^{-/-} both show a decrease in diameter of the ventral aorta (n=15-18-26). (h,i)

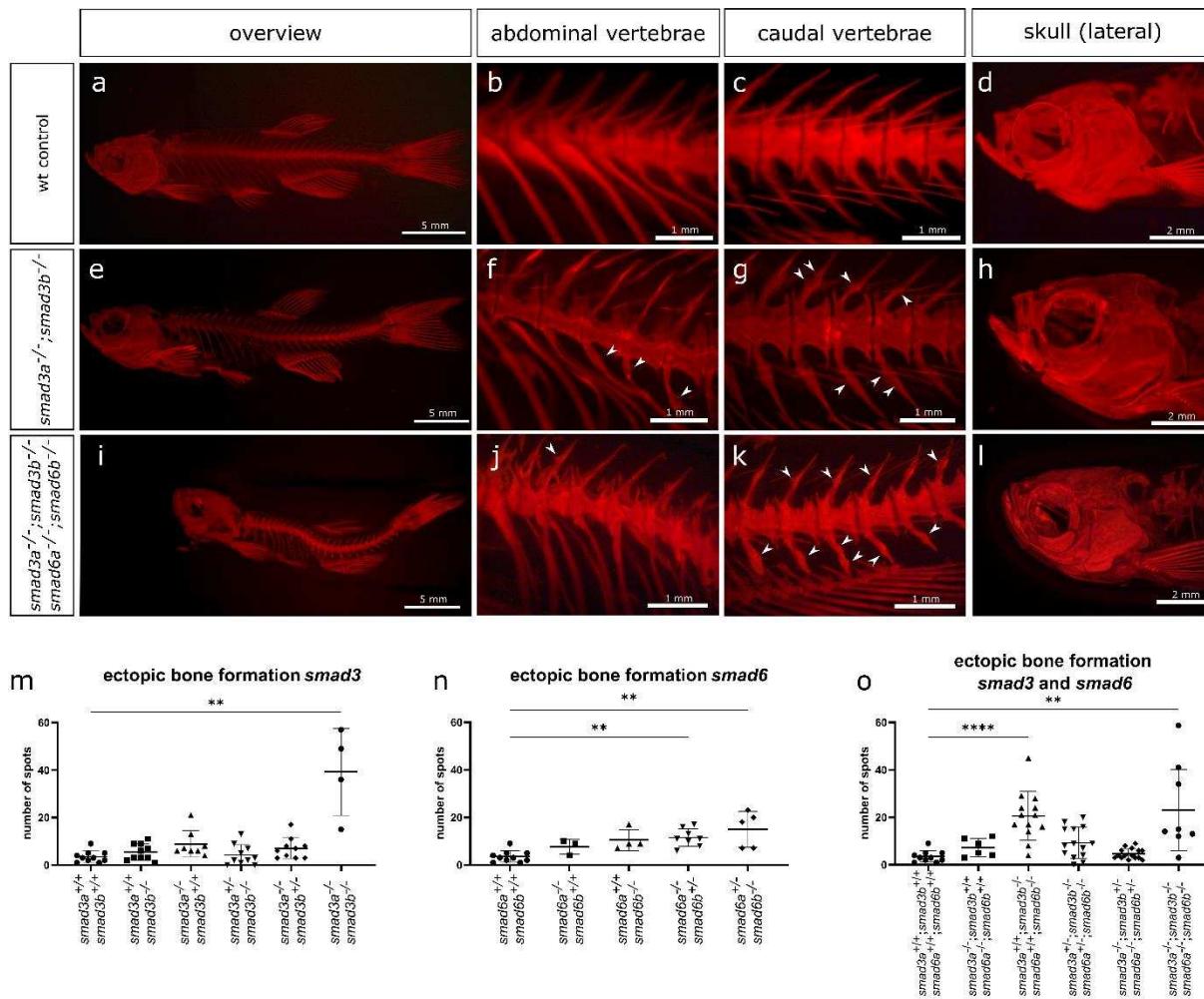
823 Overview of the hypobranchial artery in a WT control and qKO zebrafish line. Tortuosity
824 and irregular branching of the hypobranchial artery (HA) and aortic arch 1 (AA1) can be
825 observed **(i)** magnification of boxed area in d. **(a-d,h,i)** stack focused Z-stack pictures
826 obtained with ZEISS Axio Observer.Z1 microscope **(f)** One-way ANOVA with Dunnett's
827 multiple comparison test against WT controls. **(e,g)** Brown-Forsythe and Welch ANOVA
828 with Dunnett's T3 multiple comparison test against WT controls. Asterisks indicate
829 significant differences. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Data represented
830 as average \pm standard deviation.

831



832

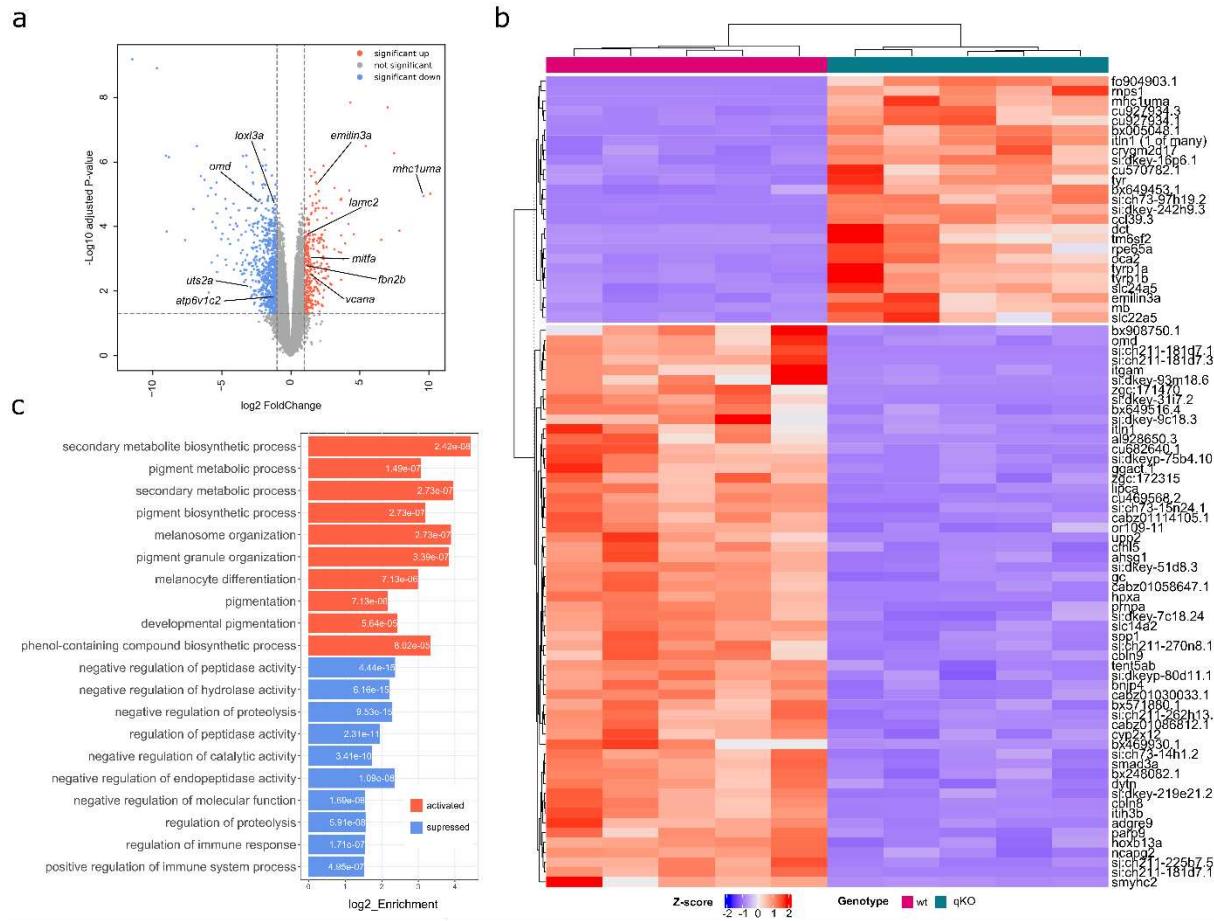
833 **Figure 2: qKO zebrafish exhibit thoracic aortic dissection and rupture. (a, b)** qKO
834 zebrafish that died suddenly show similar external features compared to qKO zebrafish
835 that die due to stress induction. Red discoloration around the heart and gill area
836 (anterior abdominal area) is indicated with a white arrowhead. **(c)** Resorcin-Fuchsin
837 staining of WT control. **(d)** Resorcin-Fuchsin staining of the elastic fiber on a 5 μ m


838 cross-section of the ventral aorta shows rupture of the aortic wall (red arrow). **(e,f)**
839 Resorcin-Fuchsin staining of the elastic fiber on 5 μm thick cross-sections of the ventral
840 aorta. False lumen is indicated with a black arrow. **(g,h)** 3D reconstruction using 3D-
841 modelling software Mimics 24.0 of the ventral aorta shows a decrease in diameter of the
842 aortic arches. Symmetrical branching of the aortic arches is lost in the qKO model.
843 Region with aortic damage has been colored black **(i,j)**. The area of damage identified
844 on a histological resorcin-fuchsin staining of the ventral aorta can similarly be observed
845 on a synchrotron micro-CT scan of the same region. Damage is indicated with arrows.
846 **(k,l)** TEM of aortic wall in WT and qKO, respectively. Severe decrease of elastic fiber in
847 the inner elastic lamina is apparent. **(m)** TEM of qKO shows collagen deposition in
848 intima. **(k,l,m)** Legend: “VSMC” vascular smooth muscle cell, “EC” endothelial cell,
849 “RBC” red blood cell, “C” collagen, * indicates inner elastic lamina.

850

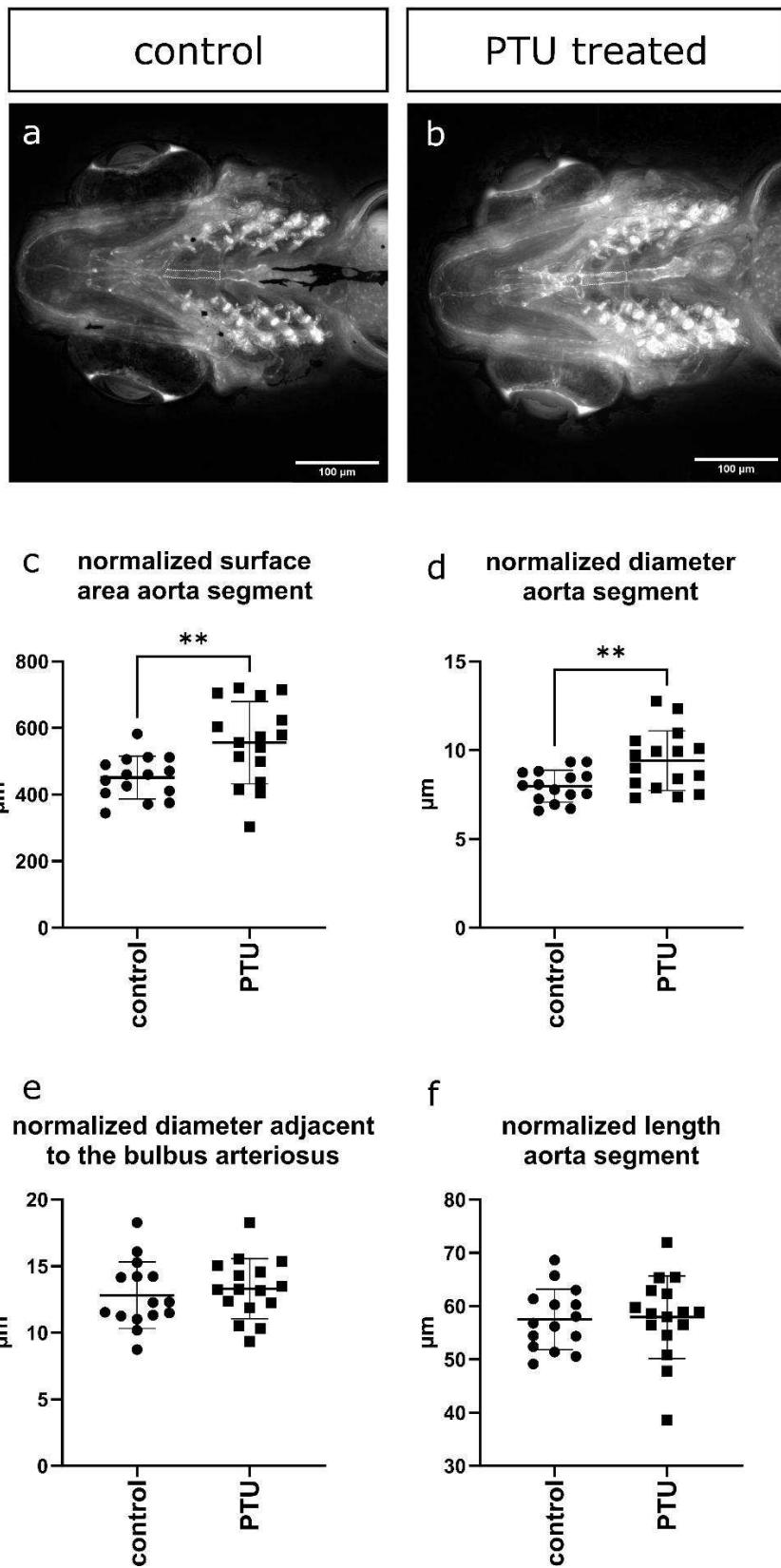
857 Resorcin Fuchsin staining shows hypertrophy of the valve interstitial cells and abnormal
858 leaflet morphology in the atrioventricular valve of qKO zebrafish. **(h)** Increased
859 regurgitation on outflow in qKO (n=17-7-7-7-7-10). **(i,j)** Resorcin Fuchsin staining of the
860 bulboventricular valve in WT and qKO zebrafish shows hypertrophy of the valve and
861 altered orientation in the qKO. **(a-j)** Legend: “RI” regurgitation inflow, “RO” regurgitation
862 outflow, “A” atrium, “V” ventricle, “B” bulbus arteriosus. Black arrows indicate valves.
863 **(e,h)** One-way ANOVA with Dunnett’s multiple comparison test against WT controls.
864 Asterisks indicate significant differences. ***p<0.001, ****p<0.0001. Data represented as
865 average \pm standard deviation.

866



867

868 **Figure 4: qKO zebrafish show scoliosis, lordosis and ectopic bone formation in**
 869 **the vertebral column. (a-l)** Overview pictures of alizarin red staining for mineralized
 870 bone of abdominal and caudal vertebrae, and the skull (lateral view) of WT (a-d),
 871 *smad3a^{-/-};smad3b^{-/-}* DKO zebrafish (e-h), and *smad3a^{-/-};smad3b^{-/-};smad6a^{-/-};smad6b^{-/-}*
 872 qKO zebrafish (i-l). Ectopic bone has been indicated with white arrowheads. Scoliosis
 873 and lordosis can be observed in (i). (k) Notochord sheet mineralization can also be
 874 observed between the vertebrae. Small craniofacial aberrations are detected. (l) The
 875 nasal bone structures appear to be missing, resulting in a clockwise rotation of the
 876 snout. (m-o) Quantification of spots of ectopic bone in *smad3* (n=10-10-8-10-10-4),
 877 *smad6* (n=10-10-8-10-10-4), and *smad3 and smad6* (n=10-10-8-10-10-4) genotypes.
 878 Statistical significance is indicated by ** (p < 0.01) and **** (p < 0.0001).


877 *smad6* (n=10-4-3-8-5), *smad3/smad6* (n=10-6-13-14-15-8) genotypes. **(a-l)** Whole-
878 mount alizarin red staining for mineralized bone pictures taken with Leica M165 FC
879 Fluorescent Stereo Microscope. **(m-o)** Kruskal-Wallis test with Dunn's multiple
880 comparisons test against WT controls. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
881 Data represented as average \pm standard deviation.

882

883

884 **Figure 5: RNA sequencing data shows downregulation of negative regulators of**
 885 **proteolysis and upregulation of melanogenesis. (a)** Volcano Plot showing
 886 upregulated genes (red) and downregulated genes (blue) with genes of importance
 887 annotated. Thresholds: $p.\text{adjust} \geq 0.05$ and $|\log2FC| \geq 1$; **(b)** Heatmap with top DEG
 888 results between WT and qKO. Thresholds: $p.\text{adjust} \geq 0.0001$ and $|\log2FC| \geq 1$; **(c)** Top
 889 10 hits of GO enrichment analysis for both sets of upregulated (red) and downregulated
 890 (blue) genes. Numbers inside the bars represent the corresponding adjusted p-value
 891 value.

893 **Figure 6: Tyrosinase inhibition increases the aorta diameter of 10 dpf zebrafish.**

894 **(a)** Ventral view of the vasculature of 10 dpf WT control zebrafish. **(b)** Ventral view of
895 the vasculature of 10 dpf WT zebrafish treated with 0.003% PTU treatment starting at
896 24 hpf. **(c, d)** PTU-treated zebrafish show a significant increase in normalized surface
897 area of the aortic segment and aortic diameter (n=15-16). **(e,f)** Normalized diameter
898 adjacent to the bulbus arteriosus and length of the aorta segment is similar between
899 treated and non-treated zebrafish (n=15-16). **(a,b)** Dashed white line indicates aorta
900 segment between aortic arch 3 and 4. Stack focused Z-stack pictures obtained with
901 ZEISS Axio Observer.Z1 microscope. **(c,d)** Unpaired two-tailed t-test with Welch's
902 correction. **(e,f)** Unpaired two-tailed t-test. Asterisks indicate significant differences.
903 **p<0.01. Data represented as average \pm standard deviation.

904