

1 **TITLE**

2 Tumor-localized interleukin-2 and interleukin-12 combine with radiation therapy to safely
3 potentiate regression of advanced malignant melanoma in pet dogs

4

5 **AUTHORS**

6 Jordan A. Stinson^{1,2,*}, Matheus Moreno P. Barbosa^{3,*}, Allison Sheen^{1,2}, Noor Momin^{1,2,4},
7 Elizabeth Fink^{1,5}, Jordan Hampel³, Kimberly Selting³, Rebecca Kamerer³, Keith L. Bailey⁶, K.
8 Dane Wittrup^{1,2,5}, Timothy M. Fan^{3,7}

9

10 *These authors contributed equally to this work.

11

12 **AFFILIATIONS**

13 ¹ Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology,
14 Cambridge, MA

15 ² Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA

16 ³ Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign,
17 Urbana, IL

18 ⁴ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA

19 ⁵ Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

20 ⁶ Alnylam Pharmaceuticals, Inc., Cambridge, MA

21 ⁷ Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL

22

23 **AUTHOR CONTRIBUTIONS**

24 JAS, MMPB, AS, NM, KDW and TMF designed research; JAS, MMPB, AS, NM, EF, JH, KS,
25 RK, KLB, and TMF performed research; JAS, MMPB, AS, NM, EF, KS, KLB, KDW, and TMF
26 analyzed data; and JAS, MMPB, EF, TMF, and KDW wrote the paper.

27

28 **FINANCIAL SUPPORT**

29 This work was supported by CA271243 and EB031082.

30

31 **CORRESPONDING AUTHORS**

32 T.M. Fan (t-fan@illinois.edu) and K.D. Wittrup (wittrup@mit.edu) contributed equally as co-
33 senior authors of this article.

34 Timothy M. Fan, email: t-fan@illinois.edu

35 Karl Dane Wittrup, email: wittrup@mit.edu

36

37 **ETHICS DECLARATIONS - COMPETING INTERESTS**

38 NM and KDW are named as inventors in a patent application filed by the Massachusetts
39 Institute of Technology related to the data presented in this work (US20200102370A1). NM is
40 an advisor to and KDW holds equity in Cullinan Oncology, which has licensed rights to the
41 intellectual property mentioned above.

42

43 **ABSTRACT**

44

45 The clinical use of interleukin-2 and -12 cytokines against cancer is limited by their narrow
46 therapeutic windows due to on-target, off-tumor activation of immune cells when delivered
47 systemically. Engineering IL-2 and IL-12 to bind to extracellular matrix collagen allows these
48 cytokines to be retained within tumors after intralesional injection, overcoming these clinical
49 safety challenges. While this approach has potentiated responses in syngeneic mouse tumors
50 without toxicity, the complex tumor-immune interactions in human cancers are difficult to
51 recapitulate in mouse models of cancer. This has driven an increased role for comparative
52 oncology clinical trials in companion (pet) dogs with spontaneous cancers that feature
53 analogous tumor and immune biology to human cancers. Here, we report the results from a
54 dose-escalation clinical trial of intratumoral collagen-binding IL-2 and IL-12 cytokines in pet dogs
55 with malignant melanoma, observing encouraging local and regional responses to therapy that
56 may suggest human clinical benefit with this approach.

57 **MAIN**

58

59 The recent success of immune checkpoint inhibitors has ushered in a new era to treat advanced
60 cancers through rational engagement of the immune system^{1–3}. Remarkable objective
61 responses have been observed at primary tumors across a multitude of cancer immunotherapy
62 strategies, although achievement of objective responses at metastatic sites remains an elusive
63 clinical outcome for the majority of patients^{4–6}. As such, combinations of checkpoint inhibitors
64 with immune agonists have been explored to enhance systemic anti-tumor responses by
65 overcoming immune-suppressive barriers operative at these metastatic sites^{7,8}. In particular, the
66 cytokines interleukin-2 (IL-2) and interleukin-12 (IL-12) have garnered significant interest owing
67 to their ability to proliferate, activate, and differentiate critical effector immune cell populations
68 unleashed by checkpoint inhibitors^{9,10}. Encouraging synergy has been observed with these
69 interleukin/checkpoint inhibitor combinations in early clinical trials, although adverse side effects
70 have been encountered in patients^{11–13}. As key signaling molecules between immune cells,
71 endogenous immune-stimulating cytokines like IL-2 and IL-12 exhibit tightly controlled spatial
72 distributions and diffusional kinetics to prevent aberrant and pathologic activation. However, in
73 the therapeutic setting, systemically-dosed cytokines can elicit on-target, off-tumor activation of
74 immune cells and subsequently possess an extremely narrow therapeutic window constrained
75 by dose-limiting toxicities^{14–16}. These clinical limitations resulting from cytokines administered
76 systemically have driven recent interest in protein engineering strategies to mitigate systemic
77 toxicities, through tumor-targeting immunocytokines^{17–21}, conditionally-active/masked
78 cytokines^{22–26}, and receptor-biased cytokine agonists^{27–30} to enable their inclusivity alongside
79 checkpoint inhibitors and other first-line cancer treatments such as radiation, chemotherapy,
80 and surgery.

81 These elegant protein engineering efforts converge on the same objective for cytokine
82 therapies: promote their accumulation within the tumor and constrain their signaling to the
83 immediate tumor microenvironment. With advances in image-guided injection techniques,
84 intratumoral dosing of therapies is now possible for the majority of solid tumor indications. As
85 such, we and others have begun to explore strategies to physically retain cytokines like IL-2 and
86 IL-12 within the tumor microenvironment after intratumoral injection through binding to co-dosed
87 biomaterials^{31–34} or extracellular matrix components like collagen^{25,35–37}. These approaches
88 minimize the systemic biodistribution, tumor accumulation, and toxicity challenges associated
89 with systemic dosing of engineered cytokines, and have led to marked improvements in both
90 safety and efficacy profiles versus non-retained cytokines in mouse tumor models^{31,35,36}.

91 However, mouse syngeneic transplant tumor models lack the long-term immune selection
92 pressures that sculpt human tumor genetics and thus they incompletely recapitulate critical
93 evolutionary features of the complex human tumor microenvironment^{38,39}. As a result, the
94 achievement of treatment efficacy in mouse preclinical models with investigational
95 immunotherapies is not sufficient for predicting their success when translated to human clinical
96 trials^{40–42}. For this reason, naturally-occurring tumors in larger companion animals complement
97 these conventional model systems by illuminating the nuanced and complex tumor-immune
98 interactions otherwise undetectable in mouse tumors, aiding translational investigation of novel
99 anti-cancer strategies.

100 Here, we build upon our prior work in murine tumor models by examining the safety and
101 efficacy of intratumorally-delivered, collagen-retained IL-2 and IL-12 cytokines in advanced
102 malignant melanomas that spontaneously develop in outbred pet dogs. Dogs develop cancer at
103 similar rates to humans, yet are an underutilized model to bridge the gaps between mouse and
104 human studies of novel immunotherapies or treatment combinations^{43–45}. Canine tumors feature
105 many of the same biological immune escape mechanisms, driver mutations, and intratumor
106 genetic heterogeneity that define human cancers, while also possessing more human-relevant
107 body characteristics that enable prediction of drug biodistribution and PK/PD^{46–49}. Moreover, a
108 significant fraction of pet dogs with cancer presents with metastatic disease, enabling the
109 evaluation of locoregional response to intratumoral therapy, which has been far more difficult to
110 model and test in murine tumors or GEMMs. We previously evaluated the safety and
111 mechanism of action of an intratumoral collagen-binding cytokine approach in canine soft tissue
112 sarcomas, but did not have the opportunity to investigate long term anti-tumor responses due to
113 the medical ethical obligation to resect such tumors shortly after treatment⁵⁰. Guided by
114 palliative regimens for malignant melanoma using hypofractionated radiation therapy (RT), we
115 here report our studies of the safety and efficacy of a single RT dose with repeat dosing of
116 tumor-localized IL-2 and IL-12 cytokines against malignant melanoma, a canine cancer that
117 metastasizes in over 70% of cases⁵¹. Through a dose-escalation trial inclusive of key
118 immunobiologic endpoints, we observed provocative activity engendered at both primary and
119 metastatic tumors in a defined cohort of pet dogs. Profiling of canine patients that progress after
120 therapy inform hypotheses regarding new therapeutic combinations predicted to improve tumor
121 response rates, and we intend to deploy these strategies in both mouse models and pet dogs
122 with naturally occurring cancers. Collectively, these efforts underscore the potential utility of
123 comparative oncology inclusive of canine tumors to build, test, and optimize treatment regimens
124 prior to commencing human clinical studies.

125 **RESULTS**

126

127 **Patient enrollment and study population**

128 For this study, clients whose dogs met trial inclusion criteria provided written informed consent
129 before enrollment, and all procedures were performed in accordance with the study protocol
130 approved by the University of Illinois Urbana-Champaign (UIUC) IACUC. Dogs were eligible
131 after histologic or cytologic confirmation of oral malignant melanoma (OMM; n=14) or malignant
132 melanoma involving other facial structures (n=1) and if their primary tumor was between 0.5-7.5
133 cm in diameter. Eligible dogs were also required to have adequate organ function as measured
134 by standard laboratory tests, and have had a minimum three-week washout period if they had
135 been recently treated with radiation therapy, systemic chemotherapy, immunotherapy, or any
136 additional homeopathic/alternative therapy. There were no exclusion criteria for tumor stage or
137 metastatic burden, age, weight, sex, breed, or neuter status for this study. Dogs were
138 sequentially enrolled into a modified-Fibonacci 3+3 dose escalation trial design, with the initial
139 IL-2 and IL-12 cytokine dose chosen from prior allometric scaling calculations and evaluation in
140 both healthy beagles and pet dogs with soft tissue sarcomas (**Table 1**)⁵⁰. In total, 15 dogs with
141 median age 11 (min: 4, max: 16) were enrolled into the trial, with 10/15 (66%) dogs presenting
142 with WHO Stage III or greater tumors, indicating metastatic disease at lymph nodes or lung
143 tissue sites (**Extended Data Figure 1**).

144

145 **Tumor-localized IL-2/IL-12 with radiation is effective against canine oral melanoma**

146 The primary objective of this study was to examine the anti-tumor efficacy potentiated by the
147 combination of intratumoral collagen-anchored IL-2 and IL-12 with a single dose of radiation
148 therapy. As current veterinary practice patterns favor the use of hypofractionated radiation
149 therapy (RT) protocols using 8-10 Gray fraction size for OMM⁵²⁻⁵⁴, dogs treated in this study
150 were provided a single RT dose of 9 Gy to stimulate tumor cell death and antigen generation.
151 Local and regional lymph nodes were not irradiated, regardless of appearance or suspicion of
152 possible metastatic disease. Dogs then received 6 doses of intratumoral collagen-anchored
153 cytokines at the same two-week cadence similar to an existing FDA-approved intratumoral
154 immune strategy (e.g. T-VEC) (**Figure 1a**). Pursuit of consecutive additional RT doses was not
155 instituted due to concerns for detrimental lymphodepletion within the tumor and draining lymph
156 node following preliminary experiments in the murine B16F10 model and other reports⁵⁵⁻⁵⁷
157 (**Extended Data Figure 2**). Moreover, the subsequent dosing of intratumoral cytokine alone
158 enabled attribution of patient symptoms uniquely to cytokine treatment, and bypassed the

159 requirement to deconvolute individual or interactive toxicities generated by continuous
160 combinatorial therapy of RT with IL-2 and IL-12. All dogs were monitored for 48 hours after
161 intratumoral cytokine dosing for symptoms of toxicity and had periodic blood draws performed
162 for cellular and chemistry analyses.

163 Primary tumor volumes at the time of first intratumoral dose had a median volume of 7.5
164 cm³ (min: 0.5, max: 43.4), although the highest dose cohort ('5x') included a dog with a primary
165 tumor volume near the upper end of our eligibility criteria (**Figure 1b**). Responses to therapy
166 were evaluated through comparative and serial assessments of computed tomography (CT)
167 scans of primary tumor and associated regional metastatic lymph nodes identified at baseline
168 (pre-treatment) with subsequent CT scans performed at day 28 and day 84. Rapid primary
169 tumor volume reduction occurred in 13/15 (86.7%) malignant melanomas at the day 28 scan
170 after just two doses of cytokine therapy and single RT dose (**Figure 1c**). At the day 84 CT scan
171 performed two weeks after the final (6th) dose of intratumoral cytokine treatment, primary tumor
172 responses were found to be stable or have further improved for 10/13 (76.9%) surviving dogs
173 (**Figure 1d**). Two patients were euthanized before the day 84 CT tumor measurement due to
174 progression of their primary and/or metastatic tumor sites. These tissues were collected for
175 additional analysis detailed later in this study.

176 Treated pet dogs were followed after the twelve-week treatment period to monitor the
177 durability of their responses and assess overall survival. As of the time of writing (January
178 2024), median survival regardless of tumor stage is 256 days, with three dogs still alive past two
179 years (**Figure 1e, Extended Data Figure 3**). This is in contrast to reported median survival of
180 65 days for dogs with untreated oral melanoma⁵⁸ and 147 days for OMM dogs treated with 9 Gy
181 x 4 RT⁵³. Two dogs were euthanized due to unrelated issues (age/quality of life; development of
182 sinonasal chondrosarcoma) nearly a year after completing treatment. Interestingly, there
183 appeared to be no correlation between the cytokine dose level and overall survival (**Extended**
184 **Data Figure 4**). Of the dogs alive nearly 1000 days after treatment, the local response to
185 therapy was rapid and robust, with less treatment morbidity than curative-intent surgical removal
186 of OMM (**Figure 1f,g**). Overall, the objective responses observed in these canine patients with
187 advanced stage and heterogeneous primary tumors were favorable, and further corroborate and
188 extend upon the documented anticancer activities demonstrated in mouse models treated with
189 the same collagen-binding cytokine approach^{35,37}.

190

191 **Effective intratumoral doses of IL-2/IL-12 are also safe in pet dogs**

192 The clinical promise of IL-2 and IL-12 cytokines has been limited by the toxicities observed at
193 therapeutically effective doses^{9,10,15,16,59,60}. As such, evaluating if the collagen-anchoring
194 approach would ameliorate cytokine-driven toxicities at doses capable of promoting anti-tumor
195 responses in pet dogs was paramount and translationally relevant. Analysis of whole blood at
196 intervals following the first and second doses of intratumoral cytokine therapy indicated minimal
197 elevation of systemic alanine transaminase (ALT) levels for most patients tested at the lowest
198 three dose levels, with ALT levels normalizing prior to administration of each subsequent
199 cytokine dose (**Figure 2a**). The predominant adverse events observed were mostly grade 1 and
200 2 across dose-level cohorts, with the most commonly occurring events being associated with
201 hemoglobinemia, thrombocytopenia, lethargy, anorexia, and elevation in ALT and ALP levels
202 (**Extended Data Figure 5**). The owner of one 2x-dose-level dog with elevated ALT chose not to
203 pursue the 6th dose of cytokine treatment. Select dogs demonstrated elevated ALT in the 3.3x
204 dose cohort and responded well to s-adenosylmethionine and silybin to mitigate hepatocyte
205 toxicity and normalize liver function. More clinically significant ALT elevation and symptoms
206 consistent with cytokine release syndrome (i.e. thrombocytopenia, hypoproteinemia, severe
207 lethargy, pyrexia) were observed in the 5x dose cohort (**Extended Data Figure 5**). These
208 patients received supportive care including intravenous fluids and dexamethasone SP (0.5
209 mg/kg, IV) and fully recovered after treatment. A reduction in subsequent doses to this cohort to
210 3.3x was instituted to minimize discomfort and health risks in these patients.

211 To correlate the observed clinical activity and potential toxicity with pharmacodynamic
212 biomarkers, profiling of the systemic chemokine/cytokine responses to combination RT with
213 intratumoral cytokine treatment was performed. Similar response dynamics to those previously
214 reported were observed, wherein IL-12 drives elevation of systemic levels of interferon gamma
215 (IFN- γ), with a delay in the elevation of IL-10 (**Figure 2b**)^{50,61-64}. Peak levels of IFN- γ were
216 mostly consistent among the lowest three dose cohorts, but spiked significantly higher at the
217 more toxic 5x dose level. To confirm circulating elevations of IFN- γ and IL-10 were biomarkers
218 of intratumoral cytokine activities and not an epiphenomenon of ionizing radiation or injection
219 site trauma, an additional cohort of four dogs receiving only a single dose of RT (9 Gy) and
220 sham intratumoral saline injection was analyzed, and no measurable concentrations of
221 circulating IFN- γ or IL-10 was identified (**Extended Data Figure 6**). Moreover, a cohort of three
222 dogs receiving intratumoral cytokine only without RT demonstrated similar dynamics of IFN- γ
223 and IL-10 changes following treatment, providing further evidence that the dynamic responses

224 observed via multiplex-serum profiling are IL-2/IL-12 mediated rather than due to the
225 combination of RT with intratumoral cytokine treatment (**Extended Data Figure 6**).

226 Given the importance of IFN- γ both directly on tumor cells and in facilitating productive
227 anti-tumor immune responses^{65–68}, an estimation of the systemic exposure of patients to IFN- γ
228 via area-under-the-curve (AUC) was calculated. The analysis provided some evidence of
229 immune tachyphylaxis, in which the response to intratumoral cytokine therapy appears to have
230 diminished by the sixth dose, relative to the responses to the initial doses of therapy (**Figure 2c**)
231 This is most pronounced in the 2x dose cohort, although some pet owners elected to not
232 continue treatment with 6 doses of intratumoral cytokine therapy due to complete regression of
233 the local tumor site concurrent with some adverse toxicities (2 of 4 dogs, 50%), confounding the
234 statistical comparisons at the 3.3x dose level. The phenomenon of immunologic defervescence
235 has been difficult to study in murine models, but has been noted in human patients, highlighting
236 the potential utility to examine various treatment regimens in dogs to minimize tachyphylaxis.
237 Characterization of anti-drug antibody responses that could attenuate immunostimulatory
238 activities to collagen-anchored cytokines found the existence of antibodies but not at levels high
239 enough to explain the magnitude of reduced IFN- γ response at the final dose timepoint
240 (**Extended Data Figure 7**).

241 Finally, patient body temperatures were measured during the post-treatment monitoring
242 phase, and it was observed that most dogs became mildly febrile regardless of dose level
243 (**Figure 2d**). These mild symptoms did not require medical intervention, and were often
244 accompanied by transient inappetence and lethargy amongst patients during the monitoring
245 phase. Overall, the responses potentiated by therapy were well-tolerated at the 1x and 2x dose
246 levels, with dose-limiting toxicities first observed at the 3.3x dose level in a subset of patients
247 but amongst a majority of patients at 5x.

248

249 **Tumor-localized IL-2/IL-12 with RT potentiates responses at metastatic lesions**

250 Many pet dogs enrolled in this trial presented with metastatic lesions, providing an opportunity to
251 examine whether local treatment of the primary tumor with IL-2, IL-12, and RT could promote
252 locoregional responses at untreated metastatic sites, an important outcome for intratumoral
253 therapies. CT measurements were obtained for metastatic lymph nodes and measured for
254 radiologic response in comparison with their pre-treatment volumes (**Figure 3a**). Following
255 treatment of primary tumors with RT and intratumoral cytokines, 3/10 dogs (30%) displayed a
256 partial response at metastatic lymph nodes. Two additional dogs achieved stable disease during
257 the treatment period, for an overall biologic response rate to combination therapy of 50% (5/10

258 dogs). Two dogs were euthanized prior to the day 84 measurement; one due to suspected
259 progression of brain/CNS metastases, and another for significant progression of lung
260 metastases. For a subset of the responding patients, appreciable regional edema was present
261 at metastatic lymph node sites at the interim (day 28) measurement.

262 For one patient, a pre-treatment fine needle aspirate (FNA) of the tumor-draining lymph
263 node as well as a subsequent FNA of the same regional lymph node on the day 28 CT scan
264 were obtained (**Figure 3b**). Prior to treatment, this lymph node was completely effaced with
265 disease, as detected via the absence of immune cells and the majority presence of cancerous
266 melanocytes and extracellular melanin (**Figure 3c**). After two doses of intratumoral cytokine and
267 single RT treatment, the lymph node CT scan indicated a robust decrease in metastatic regional
268 lymph node volume (-35.3%; partial response) and concurrent immunologic clearing of
269 melanoma cells and pigmentation (**Figure 3d**). We observed the presence of
270 polymorphonuclear (PMN) cells, likely neutrophils, in the FNA, many of which had
271 phagocytosed tumor cell debris and melanin. One additional patient had detectable lung
272 metastasis at time of presentation and trial enrollment (**Figure 3e**). While this dog ultimately
273 succumbed to progressive metastatic disease, there was evidence of at least one regressing
274 lung metastasis lesion during treatment (**Figure 3f**). This mixed abscopal response may be due
275 to underlying genetic differences between primary and disseminated disease, as well as among
276 differing clonally-derived lung metastases⁶⁹⁻⁷¹. However, the locoregional response of
277 metastatic disease to combined intratumoral IL-2/IL-12 and single-dose RT treatment is
278 consistent with an immune-mediated mechanism of action, and similar to prior reports of
279 combined radiation with immunotherapy⁷²⁻⁷⁶.

280 Similar to the pivotal Phase III clinical trials with T-VEC⁷⁷, out of concern that longitudinal
281 sampling of the primary treated tumors could confound results by introducing additional paths
282 for intratumoral dose egress, we did not profile the immune response to therapy during
283 treatment. However, building upon our prior characterization of the immune-mediated response
284 to collagen-anchored cytokines in canine soft tissue sarcoma and murine tumors^{35,50}, we
285 highlight an anecdotal case of long-term anti-tumor response after the completion of treatment
286 in oral melanoma which presumably involved immune activity.

287 One patient had a strong primary tumor response while on-therapy, but displayed slow
288 growth of that tumor in the year following treatment completion (**Figure 3g**). However, at the 12-
289 month follow-up appointment after treatment, the primary tumor was no longer visible and was
290 later confirmed to be absent via CT (**Figure 3h-i**), as well as histopathology (**Figure 3j**).
291 Additional immunohistochemistry for Melan-A further confirmed the absence of disease in the

292 gingival tissue of this patient at day 529 (**Extended Data Figure 8**). While examples of
293 spontaneous human tumor regressions have been reported^{78,79}, they are quite rare (~10⁻⁵)⁷⁸.
294 The slow post-treatment tumor growth may correspond to a state of immune equilibrium, leading
295 eventually to tumor elimination, similar to other immunotherapy approaches^{80,81}.
296

297 **Dysfunctional antigen presentation predicts resistance to tumor-localized cytokine 298 therapy**

299 Identifying and understanding which factors, if any, contributed to poor response to the
300 combined RT plus intratumoral cytokine treatment regimen was further studied. Towards this
301 goal, FFPE-processed primary and metastatic tumor tissue from eight dogs who were
302 euthanized for progressive disease were advanced for detailed histologic and genomic
303 evaluations. No clear trends were observed between overall survival of these progressor
304 patients and immune infiltration status profiled through immunohistochemistry for CD3 and Iba1
305 (**Extended Data Figure 9**). Extracted RNA from these tissue sections were profiled using the
306 Nanostring nCounter platform (**Figure 4a**). A hierarchical cluster of pathway-specific gene
307 expression emerged that encompassed the coordination of innate and adaptive immunity,
308 including T-cell, B-cell, and macrophage function as well as antigen presentation (**Figure 4b**).
309 Within this cluster, varied expression amongst the progressor dogs was observed, and
310 additional unsupervised clustering of the antigen presentation gene set yielded two clusters of 4
311 dogs each (**Figure 4c**). Given that tumor dysregulation of antigen presentation and response to
312 IFN- γ is a common immune evasion mechanism^{66,82,83}, the expression of MHC class I-related
313 genes were examined, and identified a significant difference in *B2m* and *Dla-79* transcripts
314 between the clusters of progressor dogs (**Figure 4d**). This result suggested that the first cluster
315 of dogs may have had impaired MHC-I expression, at least amongst a partial population within
316 the heterogeneous tumor. Broader comparisons in gene expression between these two cohorts
317 indicated greater expression of effector lymphocyte-associated genes such as *Slamf6*, *Ctsw*,
318 and *Trgc3* as well as interferon-inducible genes including *Ido1*, *Gbp5*, and *Cxcl10* amongst the
319 MHC-I higher expression cohort, Cluster 2 (**Figure 4e**).

320 Intriguingly, the most differentially expressed gene was for Fas-ligand (*Faslg*) and may
321 represent a consistent mechanism of immune escape within the cohort of progressor dogs
322 (Cluster 2) with greater *B2m* expression. It has been established that peripheral expression of
323 Fas-ligand on multiple cell types in response to inflammatory stimulus promotes deletion of
324 auto-reactive T lymphocytes (e.g. peripheral tolerance)⁸⁴, so we examined whether there were
325 compositional differences in the immune compartments from the tumors of the progressor dog

326 cohorts. Using CIBERSORTx⁸⁵, the relative abundance of immune cell populations from the
327 bulk Nanostring profiling data were estimated. Tumors with reduced *B2m* expression were
328 accompanied by greater populations of canonical tumor-suppressive immune cells (i.e. “M2”
329 polarized macrophages, neutrophils), while dogs with higher MHC-I antigen presentation had
330 more activated macrophages and CD4 T lymphocytes (**Figure 4f**). Together, these differences
331 likely contributed to the poorer prognosis of patients with reduced MHC class I antigen
332 presentation, regardless of tumor stage at presentation (**Figure 4g**, Log-rank hazard ratio:
333 4.472).

334 To explore why the cohort of dogs with higher class I antigen presentation and reduced
335 abundance of immunosuppressive immune populations (Cluster 2) still progressed after
336 therapy, gene expression was examined within tissue collected from metastatic tumor sites.
337 Using a gene set describing common genetic mutations that enable immune escape at primary
338 or metastatic tumor tissues⁷¹, the differences in expression between cohorts is diminished at the
339 metastatic tumors (**Figure 4h**). This suggests that the metastatic tumors from dogs with higher
340 MHC-I expression at their primary tumors may have been preferentially seeded by tumor
341 subpopulations with greater genetic immune escape, such as MHC-I loss of heterozygosity. We
342 further examined gene expression between cohorts at their primary and metastatic tumors
343 across an annotated set predictive of human response to checkpoint inhibitors⁸⁶. We found that
344 only the primary tumors of higher expression MHC-I dogs are expected to have positive
345 response to immunotherapy, consistent with the observed local response but metastatic
346 progression of these patients following our combined cytokine treatment (**Figure 4i**). Overall,
347 these results motivate exploration of treatment combinations to overcome dysfunctional MHC
348 class I antigen presentation in tumors to extend therapeutic benefit to a greater population of pet
349 dogs, with the intention that lessons gleaned from comparative oncology studies can be quickly
350 pivoted to accelerate novel immunotherapeutic strategies to benefit human cancer patients.

351 **DISCUSSION**

352

353 Mechanisms of primary and adaptive resistance to immunotherapy contribute to the lack of
354 clinical benefit for a majority of cancer patients treated with antagonistic, checkpoint-inhibiting
355 antibodies⁵. As a result, there have been attempts to combine these therapies with agonistic, or
356 immune-stimulating, agents to overcome tumor resistance mechanisms and drive more durable
357 responses^{87,88}. Cytokines, such as IL-2 and IL-12, are one class of agonistic therapies that have
358 shown great promise against human cancers, but suffer from unacceptable toxicities due to their
359 activation of immune cells throughout the body^{15,16}. Approaches to restrict the activity of potent
360 cytokines to the tumor have gained momentum, one of which includes the retention of
361 engineered cytokines to tumor extracellular matrix following intratumoral injection^{25,35-37}. We and
362 others have previously reported on the safety improvements provided by this strategy of
363 anchoring cytokines to tumor collagen in both mice and pet dogs^{25,35,50}, but the efficacy in
364 advanced canine tumors was previously unexplored.

365 In this work, we evaluated the efficacy of tumor-localized IL-2 and IL-12 cytokines in pet
366 dogs with advanced oral malignant melanoma to potentially predict success of clinically
367 translating this approach. As dogs share key physical features and tumor biology with humans,
368 they have gained traction as models for human comparative oncology^{43,45,48}. Here, we have
369 observed encouraging results for both the anti-tumor efficacy and tolerability of single-dose
370 radiation therapy with repeat intratumoral IL-2 and IL-12 cytokines. Primary tumor responses
371 were often rapid and durable, with 256-day median survival across all treated cohorts;
372 significantly longer than the historical 65-day median for untreated canine oral melanoma⁵⁸.
373 Moreover, many of these responses were observed among dogs in the non-toxic 1x and 2x
374 cohorts, suggesting that the tumor-localization strategy via retention to tumor collagen is
375 clinically promising for safely and effectively treating human malignancies. Locoregional
376 responses at metastatic sites driven by intratumoral therapy achieved an overall biologic
377 response against combined tumor and metastases in 10/13 dogs (76.9%) receiving the full
378 therapy, with partial responses in 8/13 (61.5%) of dogs (**Extended Data Figure 10**). This result
379 provides early evidence that intratumoral treatment with collagen-bound cytokines may
380 potentiate systemic anti-tumor immunity in pet dogs with naturally occurring cancers.
381 Importantly, these canine tumors develop under evolving tumor immune evasion and
382 suppression mechanisms analogous to those in humans, suggesting this engineered cytokine
383 approach may achieve similar responses in human clinical trials.

384 Profiling of dogs that progressed while, or soon after, receiving the RT plus intratumoral
385 cytokine treatment revealed that dysfunctional antigen presentation may contribute to the rapid
386 progression of canine malignant melanoma. This complements a growing list of canine tumor
387 features that overlap with the human hallmarks of cancer, including sustained proliferative
388 signaling⁸⁹, and mutations to oncogenic driver or tumor suppressor genes^{49,90}. While less
389 definitive, the dogs with higher MHC class-I expression may have progressed due to tumor
390 microenvironment-induced dysfunction of immune cells. With the observation that *Faslg* and
391 *Ido1* are more highly expressed by these tumors, we suspect that the combination cytokine
392 therapy was actively promoting an anti-tumor response met by immune counter-regulation, as
393 we observed previously in canine soft tissue sarcomas⁵⁰. The combination of IL-12/IL-2 has
394 been described to upregulate the expression of Fas-ligand on draining lymph node
395 lymphocytes⁹¹, which, while aiding their ability to kill malignant tumor cells, could contribute to
396 eventual lymphocyte fratricide or suicide⁹². This mechanism might contribute to our observation
397 of tachyphylaxis in some of the dogs (**Figure 2c**). Moreover, the mixed response between
398 primary tumors and metastatic sites may manifest from the varied gene expression landscape
399 and erected barriers to immune function observed between these metastatic tumors and their
400 primary tumor counterparts, suggesting that systemic therapies (such as anti-PD-1 antibodies)
401 may be necessary to leverage cytotoxic effector cells primed by local intratumoral therapy^{35,50}.

402 Our learnings from each group of progressing dogs provides actionable insights for
403 future combination treatments to test alongside the intratumoral cytokine approach. To this end,
404 we are interested in evaluating the combination of checkpoint inhibitors with the RT plus
405 intratumoral cytokine treatment in future studies. Our prior work with canine soft tissue
406 sarcomas indicated that checkpoint blockade might relieve counter-regulatory responses to
407 intratumoral cytokine therapy, which we confirmed in the murine B16F10 tumor model⁵⁰.
408 However, resistance to intratumoral IL-2 and IL-12 therapy via beta-2-microglobulin (B2M) loss
409 and subsequently, dysfunctional antigen presentation, appears to overlap with known resistance
410 mechanisms to checkpoint inhibitors^{82,93}. As a result, future screening of canine *B2m* and MHC
411 class-I associated genes expression prior to trial enrollment could help accrue patients into
412 separate, more rationally-designed combination treatments. For dogs with reduced or
413 dysfunctional antigen presentation, there have been strategies reported for combining
414 immunotherapies with epigenetic drugs to remove silencing of B2M and restore MHC-I
415 expression⁹⁴⁻⁹⁶, in addition to strategies to engage innate immune cells for direct tumor-cell
416 killing⁹⁷⁻⁹⁹ or to coordinate their licensing of antigen-independent killing by CD8+
417 lymphocytes^{100,101}. Finally, given our observation of tachyphylaxis in response to repeat cytokine

418 dosing and reports of the importance for immune rest in engineered CAR-T therapies¹⁰², we are
419 interested in exploring longer intervals between cytokine doses to minimize AICD or induced
420 dysfunction of primed CD8+ T cells.

421 Overall, this work highlights the benefit of pre-clinical evaluation of a novel
422 immunotherapy alongside current standard of care in a more human-analogous cancer model
423 than mouse tumors. While statistical power of such a trial in pet dogs is more limited, we argue
424 that the value gained in predictive efficacy, safety, and resistance to therapy are obtained at
425 dramatically lesser expense and greater speed than a corresponding human clinical trial.
426 Exploitation of canine trials as a bridge from murine studies to the clinic should be expanded to
427 reap these benefits more widely. Certain methodology to maximize value from these canine
428 cancer trials stands to gain from broader investigation as well. We recognize that a primary
429 limitation of this study is the lack of longitudinal sampling from canine tumors to characterize the
430 evolution of anti-tumor responses as well as resistance to cytokine treatment. Through
431 comparative oncologic testing, we anticipate a greater likelihood of future clinical success for
432 our collagen-binding cytokine approach, as well as more broadly for other novel
433 immunotherapies investigated in pet dogs with cancer.

434 **METHODS**

435

436 **Ethics statement**

437 This study complies with all relevant ethical norms and principles. This research study protocol
438 was approved by the Institutional Animal Care and Use Committee at the University of Illinois
439 Urbana-Champaign.

440

441 **Trial eligibility and enrollment of pet dogs**

442 Client-owned pet dogs with cytologically or histologically confirmed OMM were included in the
443 study. Eligibility criteria required dogs to have 1) primary tumor measure between 0.5 to 7.5
444 centimeters in diameter, 2) adequate organ function determined by laboratory evaluations
445 (complete blood count, serum biochemical profile, and urinalysis), and 3) a minimum three-week
446 washout period for radiation therapy, systemic chemotherapy, or any additional
447 immunosuppressive/homeopathic/alternative therapy. No exclusion criteria for tumor stage or
448 metastatic burden, age, weight, sex, or neuter status were applied for this trial. Tumor staging at
449 enrollment was determined based the World Health Organization (WHO) staging scheme for
450 dogs with oral melanoma¹⁰³. All patient owners provided written consent before enrollment and
451 all procedures were performed in accordance with the study protocol approved by the University
452 of Illinois Urbana-Champaign (UIUC) IACUC.

453

454 **Collagen-anchoring IL-2 and IL-12 cytokine protein production**

455 Canine cytokines (cLAIR-CSA-cIL-2, cIL-12-CSA-cLAIR) were cloned and recombinantly
456 expressed as previously described⁵⁰. Briefly, stable HEK293-F cell lines for each cytokine were
457 prepared through cloning into the expression cassette of PiggyBac (System Biosciences)
458 transposon vector, followed by dual transfection of the transposon vector and the Super
459 PiggyBac transposase plasmid. Stable integration was confirmed after sorting EGFP+ cells 3-4
460 days after transfection (BD FACS Aria). Protein was produced from IL-2 and IL-12 expressing
461 stable lines during one-week culture in serum-free media (Freestyle 293, Invitrogen) and
462 purified with HisPur Ni-NTA affinity resin (ThermoFisher Scientific). Protein was analyzed by
463 size exclusion chromatography (Superdex 200 Increase 10/300 GL column, Cytiva Life
464 Sciences on AKTA FPLC system) for size and aggregation and validated to meet low endotoxin
465 levels (<5EU/kg) by Endosafe Nexgen-PTS system (Charles River Labs). Activity of cytokines
466 was confirmed through CTL2-2 and HEK Blue IL-12 activation assays, while collagen-binding

467 was confirmed through ELISA. Aliquots of cytokines were snap-frozen in liquid nitrogen and
468 thawed immediately prior to dilution in sterile saline for dosing intratumorally to dogs.

469

470 **Study design and intratumoral dosing of cytokines**

471 Fifteen eligible dogs were enrolled into a modified-Fibonacci 3+3 dose escalation trial design of
472 four different cohorts. The trial consisted of a regimen involving treatment with a single 9 Gray
473 (Gy) dose of radiation therapy followed by 6 doses of cLAIR-CSA-cIL2 (IL-2) and cLAIR-CSA-
474 cIL12 (IL-12) every two-weeks (Table 1). Radiation was delivered using a Varian™ TrueBeam™
475 linear accelerator with 6 MV photons at standard dose rate of 6 Gy/minute (Varian Medical
476 Systems, Palo Alto, CA, USA). Depending on location and proximate organs at risk, dose was
477 delivered either using manual calculations for parallel opposed portals, or with 3-dimensional
478 conformal radiation plan using CT guidance and a treatment planning system (Varian Eclipse
479 v.15). The dose was calculated to the central axis for parallel opposed portals, and with the goal
480 of 100% of dose to 95% of the planning target volume (gross tumor volume plus a 3-5 mm
481 expansion) for computer plans. The initial doses of IL-2 and IL-12 cytokines were determined
482 from prior allometric scaling calculations and evaluation in both healthy beagles and pet dogs
483 with soft tissue sarcomas⁵⁰. Doses of cLAIR-CSA-cIL2 (17.4 µg/kg) and cIL12-CSA-cLAIR (2.08
484 µg/kg) were prepared from frozen protein aliquots and combined in a total volume not exceeding
485 0.5 mL in sterile saline. A 29-gauge, ½-inch insulin syringe was used to slowly inject the full
486 dose volume via a single insertion point using a fanning pattern into the tumor. No additional
487 measures were used to avoid any internal necrotic areas within the tumor. Radiation therapy
488 was performed using Varian TrueBeam system. Adverse events were classified and graded in
489 accordance with the Veterinary Cooperative Oncology Group's Common Terminology Criteria
490 for Adverse Events (VCOG-CTCAE v2)¹⁰⁴.

491

492 **Clinical response assessment**

493 Clinical and vital evaluations were conducted on all patients at baseline and preceding each
494 treatment administration at the UIUC Veterinary Teaching Hospital. In addition, after
495 intratumoral cytokine administration, a 48-hour monitoring period was initiated to assess the
496 presence of any toxicity-related symptoms, coupled with blood sampling for complete blood
497 count, serum biochemical profiling, and urinalysis. In addition, after each treatment, blood draws
498 by jugular venipuncture were performed for cytokine/chemokine analysis before treatment, 2, 4,
499 8, 24, and 48 hours post treatment. Patients were followed-up until death or removal from the
500 trial.

501 Clinical and caliper measurements of the maximum tumor and lymph node dimensions
502 were conducted by board-certified veterinary oncologists and measurements were documented
503 in millimeters during each examination. In addition, primary tumor or metastatic lesions were
504 assessed by computed tomography (CT) (Somatom Definition AS, Siemens) at pre-treatment,
505 day 28, day 70, and day 84 (two weeks after the last treatment). The tumor size and the
506 percentage of change were determined based on CT measurements. Because determination of
507 longest dimension is challenging with these frequently irregularly marginated tumors, tumor
508 volume was used to measure response to therapy. Volume was determined using radiation
509 therapy treatment planning software (Eclipse v15, Varian, Palo Alto, CA) by importing CT scan
510 images (1.5 mm slices) before and after treatment. Gross tumor volume was delineated based
511 on distortion of normal tissues by the mass effect combined with changes in Hounsfield units
512 that reflect contrast enhancement due to changes in electron density. The software will yield a
513 three dimensional volume based on the contours that are created. Standard criteria for
514 volumetric assessment of tumor response were used. Furthermore, the assessment of tumor
515 response was carried out during each visit and was determined in accordance with the
516 guidelines established by the Response Evaluation Criteria for Solid Tumours in Dogs (v1.0)
517 (VCOG)¹⁰⁵. Patients presenting with stable or progressive disease were allowed to remain in the
518 study under the condition that no adverse events were observed, or if such events could be
519 mitigated through the implementation of a dose reduction protocol. Clients had the option to
520 remove their dogs from study if their pets' conditions worsened, they showed signs of declining
521 health, or if the treatment caused unbearable side effects. The decision could be made by the
522 investigator, the dog's owner, or both.

523

524 **Multiplex cytokine assay and ELISA**

525 Serum samples collected from patients following treatment were examined for concentrations of
526 13 cytokine and chemokine analytes, including GM-CSF, IFN- γ , IL-2, IL-6, IL-7, IL-8/CXCL8, IL-
527 10, IL-15, IL-18, IP-10/ CXCL10, KC-like, MCP-1/CCL2, and TNF α (Canine MILLIPLEX
528 Magnetic Bead Panel, Millipore Sigma) at Eve Technologies (Calgary, AB, Canada). Individual
529 analyte concentrations were determined from panel standard curves for each cytokine or
530 chemokine. Time course analysis of patient response to IL-2/IL-12 and radiation therapy was
531 performed by determining the log₁₀ fold-change of analyte concentrations relative to their pre-
532 treatment levels. IFN- γ and IL-10 serum concentrations following treatment with collagen-
533 anchored cytokines and radiation therapy were further measured using the Canine IFN- γ

534 Quantikine ELISA kit (R&D) and the Canine IL-10 Quantikine ELISA kit (R&D) according to the
535 manufacturer's instructions.

536

537 **Nanostring RNA profiling**

538 RNA was isolated from 10-µm FFPE samples from resected canine primary melanoma tumor or
539 metastatic tumor lesions using an RNEasy FFPE Kit and deparaffinization solution (Qiagen).
540 Isolated RNA was examined by Bioanalyzer (Agilent) for assessment of fragment size prior to
541 hybridization with nCounter probe sets (Nanostring). Canine RNA samples were hybridized with
542 the Canine IO nCounter Panel code set for 22 hours at 65°C per the manufacturer's
543 instructions. Following hybridization, samples were loaded into the analysis cartridge and
544 scanned at maximum resolution using NanoString PrepStation and Digital Analyzer.

545 Canine RCC count files were normalized using nSolver software (Nanostring) after
546 background thresholding using the mean of 8 negative control probes and batch correction
547 against a panel standard control. Normalized gene counts were processed using the nSolver
548 Advanced Analysis module for differential expression and pathway enrichment analysis. *P* value
549 adjustment was performed using the Benjamini–Hochberg method to estimate FDRs of
550 differentially expressed genes (DEG).

551

552 **Estimation of tumor immune cell abundance**

553 Relative abundance of tumor-infiltrating cell fraction was estimated from bulk NanoString
554 profiling data by employing CIBERSORTx⁸⁵ algorithm using a validated leukocyte gene
555 signature matrix (LM22). Bulk NanoString profiling data was assessed in relative mode, with 100
556 permutation runs and without quantile normalization.

557

558 **Immunohistochemistry and cytology**

559 Canine advanced malignant melanoma tumors were resected at specific indicated timepoints.
560 Following resection, tumor tissues were fixed in 10% formalin and subjected to a paraffin
561 processing and embedding protocol. Immunohistochemistry (IHC) was used to determine the
562 presence of inflammatory cells, specifically positive for CD3 (T lymphocyte; Biocare CP215C),
563 Iba-1 (macrophage; Biocare, catalog no. CP 290 B, RRID:AB_10583150), and Melan-A
564 (melanoma-specific antigen; Biocare A103) for melanoma cells. All samples were histologically
565 evaluated and classified by a single board-certified veterinary pathologist. Tumor tissues were
566 classified based on CD3 T cell infiltration status into an immune phenotype, defined as a)
567 inflamed - highly infiltrated by CD3+ T cells, b) immune desert/cold – devoid of CD3+ T cells,

568 and c) immune excluded – bordered yet not infiltrated by CD3+ T cells¹⁰⁶. Cytology of tumors
569 was performed at specified timepoints. Cellular specimens were collected using a 22-gauge
570 needle attached to a 5 mL syringe. Following aspiration, samples were smeared onto a glass
571 slide for subsequent cytochemical staining. Cytology slides were then evaluated by a board-
572 certified veterinary pathologist. IHC staining and cytology samples were assessed on an
573 Olympus BX45 microscope using a high-power 10x microscope objective. Digital images were
574 captured used an Olympus DP28 digital camera and processed using Olympus cellSens
575 Imaging Software (v4.2).

576

577 **Statistical analysis**

578 Statistical analyses were conducted using Prism v10 (GraphPad). Power calculations were not
579 conducted to predetermine sample size. The details of statistical analysis have been provided in
580 the descriptions for figures.

581 **DATA AVAILABILITY**

582

583 The data generated in this study are available within the article and its supplementary files.

584 Nanostring expression data for canine tumor expression in dogs progressing after completion of

585 RT with IL-2 and IL-12 therapy has been made publicly available in Gene Expression Omnibus

586 (GEO) at GSE253243.

587

588 **ACKNOWLEDGEMENTS**

589

590 We gratefully thank all of our pet dog owners for their consent and willingness to participate in

591 this investigational trial. This study was supported by National Cancer Institute grant

592 R01CA271243 (T.M.F. and K.D.W) and National Institute of Biomedical Imaging and

593 Bioengineering grant R01EB031082 (K.D.W). A.S. was supported by National Science

594 Foundation Graduate Research Fellowship Program. The authors would like to acknowledge Dr.

595 Amy Schnelle and the Tumor Engineering and Phenotyping Shared Resource (TEP) at the

596 Cancer Center at Illinois for assistance with histology and immunohistochemistry analysis.

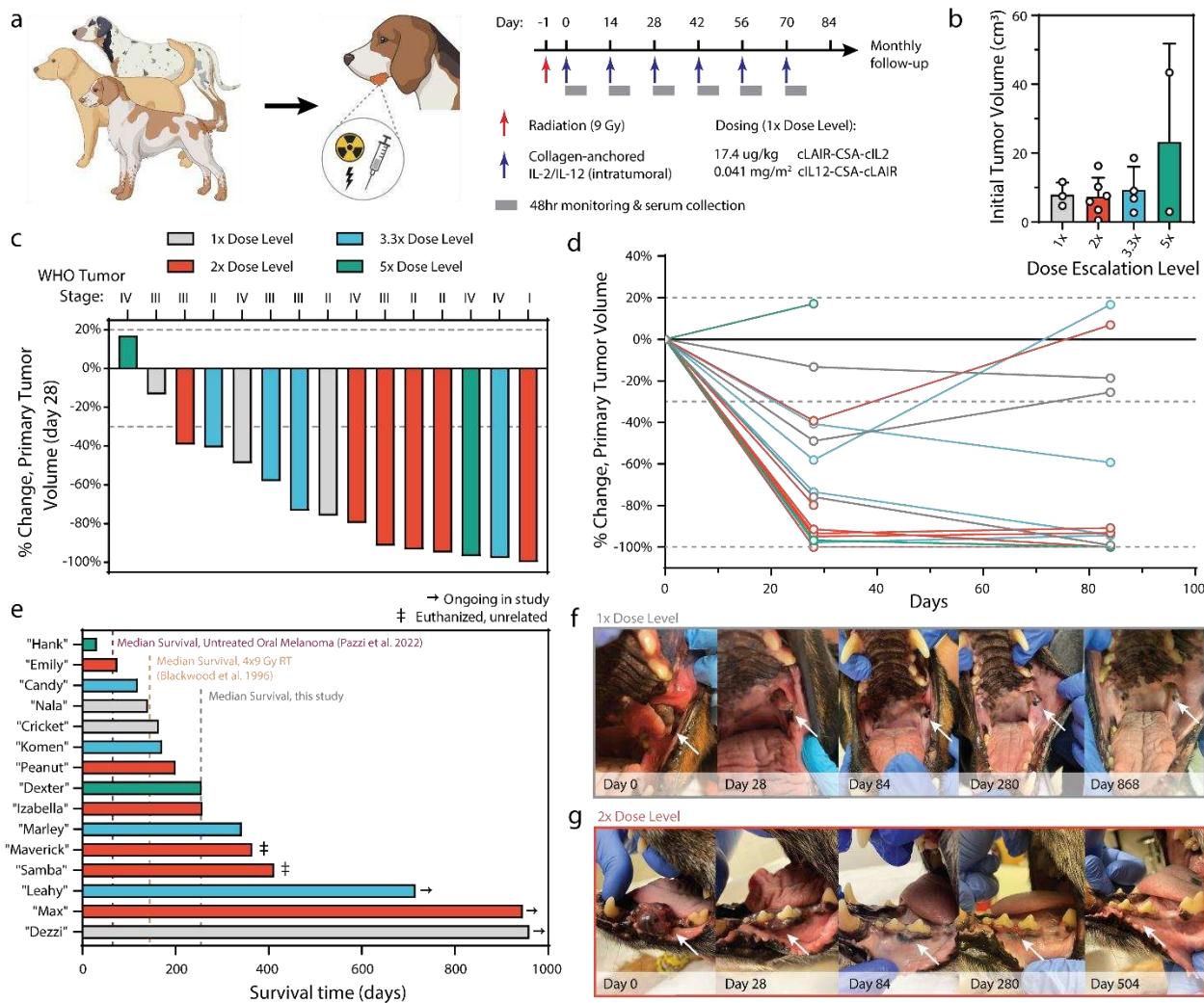
597 **TABLES**

598

599 **Table 1: Dosing information and baseline patient characteristics.** Description and dosing
600 group allocation of 15 canine patients enrolled in the study. Patient breed, age, weight, tumor
601 location, initial volume, and World Health Organization (WHO) domestic animal tumor stage are
602 reported.

603

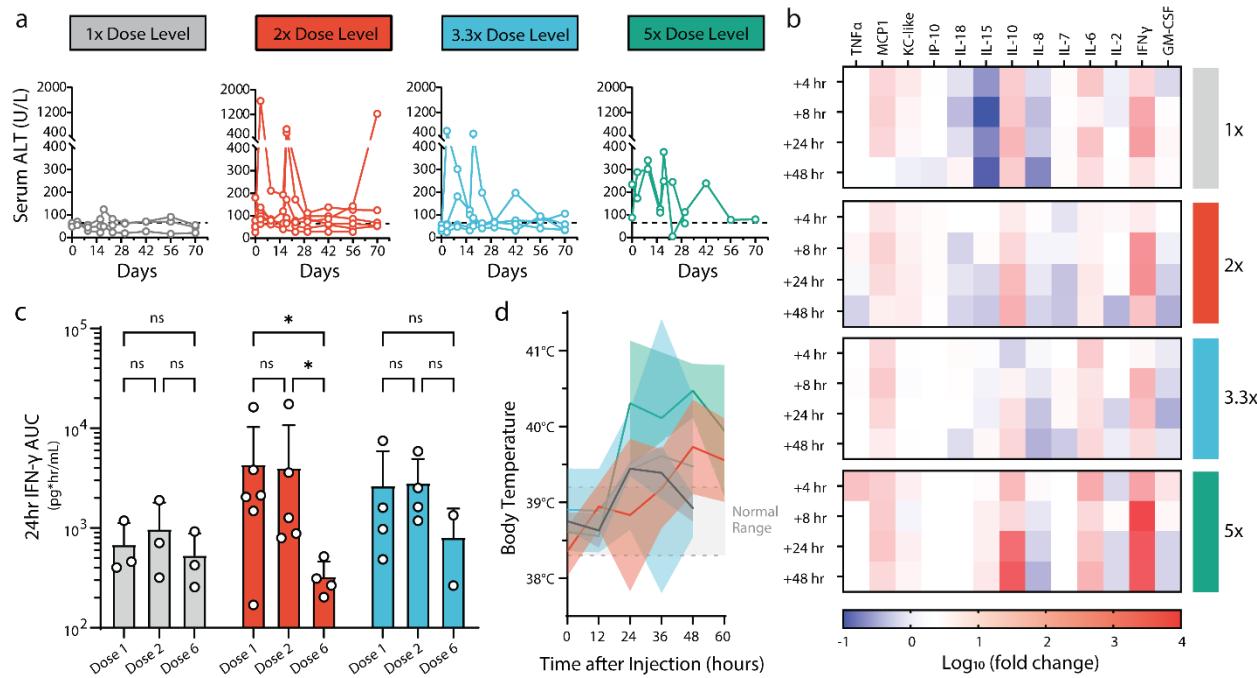
	Cohort 1x (n=3)	Cohort 2x (n=6)	Cohort 3.3x (n=4)	Cohort 5x (n=2)	Total (n=15)
Dosing Information					
LAIR-CSA-IL-2 dose ("IL-2"; µg/kg)	17.4	34.8	57.4	87.0	80 doses
IL-12-CSA-LAIR dose ("IL-12"; µg/kg)	2.08	4.16	6.86	10.4	80 doses
Breed					
Purebred					
Miniature Schnauzer	1 (33%)	-	-	-	1 (6.7%)
German Shepard	1 (33%)	-	-	-	1 (6.7%)
German Shorthaired Pointer	-	1 (16.6%)	-	-	1 (6.7%)
Labrador Retriever	-	1 (16.6%)	1 (25%)	1 (50%)	3 (20%)
Dachshund	-	-	1 (25%)	-	1 (6.7%)
Yorkshire Terrier	-	-	1 (25%)	-	1 (6.7%)
Shih Tzu	-	1 (16.6%)	-	-	1 (6.7%)
Standard Poodle	-	-	-	1 (50%)	1 (6.7%)
Australian Cattle Dog	-	-	1 (25%)	-	1 (6.7%)
Mixed Breed	1 (33%)	3 (50%)	-	-	4 (26.7%)
Primary site of malignant melanoma [n (%)]					
Lip/Buccal Mucosa	-	2 (33%)	-	1 (50%)	3 (20%)
Mandible/Mandibular Mucosa	1 (33%)	3 (50%)	1 (25%)	-	5 (33.3%)
Maxilla/Maxillary Mucosa	1 (33%)	1 (17%)	3 (75%)	1 (50%)	6 (40%)
Periocular	1 (33%)	-	-	-	1 (16.7%)
Age (years)					
Median (min, max)	11 (4, 13)	11.5 (8, 16)	10.5 (7, 12)	10.5 (10, 11)	11 (4, 16)
Baseline weight (kg)					
Median (min, max)	23.2 (5.8, 33.2)	16.5 (6.8, 33.9)	12.8 (4.7, 31.8)	34.9 (29.3, 40.4)	21.2 (4.7, 40.4)
Baseline tumor volume (cm³)					
Median (min, max)	7.5 (4.7, 11.6)	6.8 (0.5, 16.3)	7.9 (2.7, 18.6)	23.2 (3.0, 43.4)	7.5 (0.5, 43.4)
Baseline WHO Stage [n (%)]					
I	-	1 (17%)	-	-	1 (6.7%)
II	1 (33%)	2 (33%)	1 (25%)	-	4 (26.7%)
III	1 (33%)	2 (33%)	2 (50%)	-	5 (33%)
IV	1 (33%)	1 (17%)	1 (25%)	2 (100%)	5 (33%)


604

605

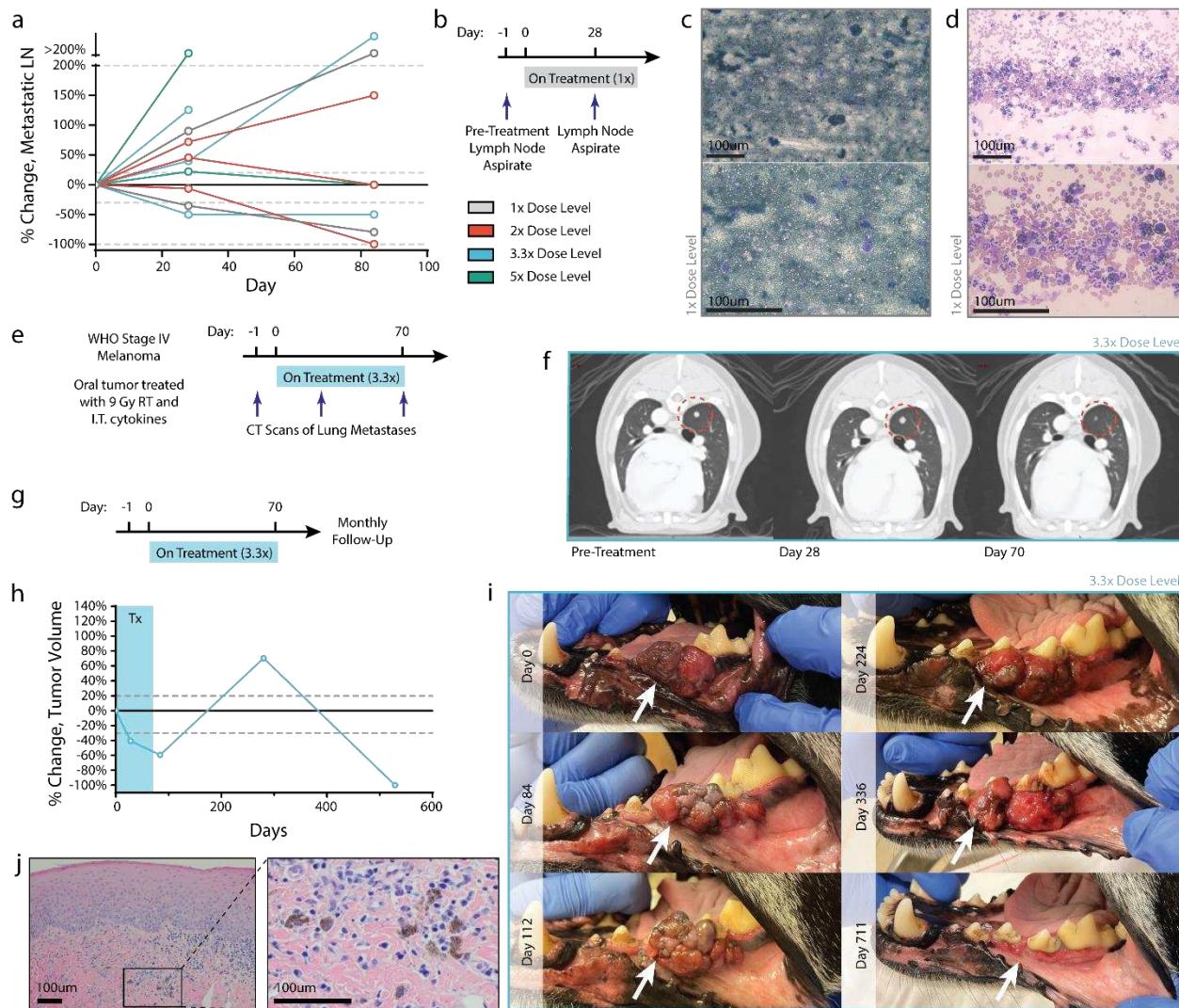
606

607 **FIGURES**


608

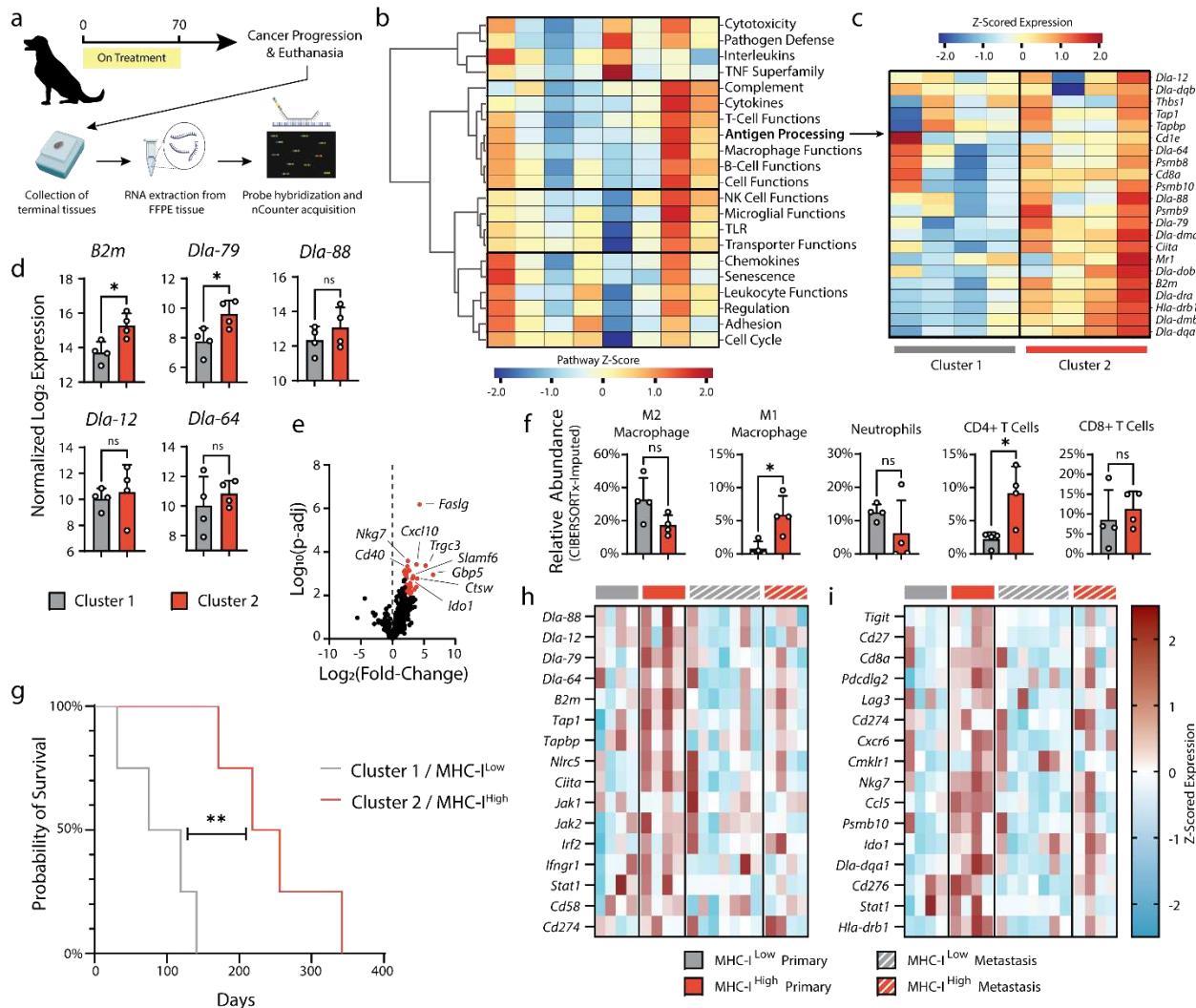
609
610

Figure 1. Study design and treatment outcomes.


612 (a) Study-eligible dogs received 9 Gray (Gy) of radiation (red arrow) followed by 6 doses of
613 intratumorally administered cytokines (blue arrows). Each cytokine dose was followed by 48 hours
614 of clinical monitoring and serum collection. (b) Pretreatment primary tumor size quantified via CT
615 radiologic assessment. (c) Percent change in tumor volume after radiation and 2 doses of
616 intratumorally administered cytokines. Dotted lines depict RECIST criteria for tumor progression
617 or clinical response. (d) Percent change in primary tumor volume over the course of treatment
618 with intratumorally administered cytokines. One patient in each of the 2x and 5x dosing cohorts
619 was euthanized prior to day 84 due to outgrowth of metastatic or primary tumors. (e) Swimmer
620 plot of length of patient survival after trial start. (f-g) Images of primary tumors taken at indicated
621 time points from select dogs from the 1x (f) and 2x (g) cohorts who displayed durable and
622 complete response to treatment.

623
624

Figure 2. Safety profile of collagen-anchored cytokine therapy.


(a) Serum alanine transaminase (ALT) levels measured via blood work at indicated time points following intratumoral cytokine dosing at day 0 and day 14. Dotted line indicates a clinically healthy ALT threshold. (b) Serum was collected at several time points after the first intratumoral cytokine injection and analyzed for cytokines and chemokines. Heatmap rows describe averaged sera data from each dosing cohort, reported as \log_{10} fold change in concentration compared with pretreatment values. (c) Serum was collected 4-, 8-, and 24-hours post-cytokine administration after the indicated doses and analyzed for systemic exposure to interferon gamma (IFN- γ), as represented by 24-hour IFN- γ area under the curve (AUC). (d) Body temperature of patients was measured at the indicated time points after the first cytokine administration. Dotted lines indicate normal body temperature range. Statistics: IFN- γ AUCs compared by two-way ANOVA with Tukey's multiple comparisons test. ns, not significant; * $P < 0.05$.

638
639

Figure 3. Case studies of patients demonstrating abscopal immune responses.

(a) Percent change in volume of regional lymph node metastasis relative to pre-treatment volume, as determined by CT measurement. (b) Fine needle aspirates were collected from the lymph node of a patient in the 1x cohort before treatment and after 2 intratumoral cytokine doses. (c) Pretreatment aspirate shows diffuse infiltration of melanocytes. (d) Lymph node disease is decreased after 2 cytokine treatments, with a marked increase in polymorphonuclear immune cells. (e) CT images from a stage IV patient in the 3.3x treatment group were collected tracking the progression of a lung metastasis after local treatment of oral melanoma. (f) CT images suggest pseudoprogression of a lung metastasis after early cytokine doses, with later regression after additional cytokine doses. (g-i) A patient in the 3.3x dosing group received a full course of treatment and had routine follow-up visits to monitor tumor progression. Tumor measurements (h) and images (i) were taken at the indicated time points, demonstrating a significantly delayed treatment response. (j) Hematoxylin and eosin staining on this tumor showed an absence of tumor cells with only scattered melanophages observed at day 529. Scale bars: 100um.

654

655 **Figure 4. Nanostring RNA profiling of terminal primary and metastatic tumor tissues.**

656 (a) Terminal primary and metastatic tumor tissues from euthanized patients were collected and
 657 FFPE processed. RNA was extracted from FFPE tissues and prepared for NanoString analysis
 658 with the NanoString Canine ImmunoOncology nCounter panel. (b) Pathway scoring and
 659 hierarchical clustering of NanoString annotated pathways involved in canine cancer immune
 660 response. Pathway scores were calculated as the first principal component of the pathway genes
 661 normalized expression. Heatmap columns represent individual patients' primary oral melanoma.
 662 (c) Z-scored expression of genes related to canine antigen presentation, with tumor samples
 663 grouping into two hierarchical clusters. (d) Normalized expression (log 2) of MHC class-I related
 664 genes. (e) Volcano plot of differential gene expression of cluster 2 (MHC-I^{Hi}) relative to cluster 1
 665 (MHC-I^{Low}). Genes associated with significant P-adj values (<0.05) are highlighted in red. (f)
 666 Relative abundance of intratumoral immune populations as determined through application of the
 667 CIBERSORTx algorithm on NanoString data. (g) Survival of MHC-I^{Hi} and MHC^{Low} progressor
 668 dogs. (h-i) Z-scored expression data for genes associated with tumor immune escape⁷¹ (h) and
 669 response to immune checkpoint blockade⁸⁶ (i) for primary and metastatic lesions of MHC-I^{Hi} and
 670 MHC^{Low} patients. Statistics: Differential gene expression and relative abundance of immune

671 populations compared using one-way ANOVA with Tukey's multiple comparisons test. Survival
672 compared with log-rank Mantel-Cox test. ns, not significant; *P<0.05; **P<0.01.

673 **REFERENCES**

674

675

676 1. Larkin, J. *et al.* Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced
677 Melanoma. *N. Engl. J. Med.* **381**, 1535–1546 (2019).

678 2. Topalian, S. L. *et al.* Five-Year Survival and Correlates Among Patients With Advanced
679 Melanoma, Renal Cell Carcinoma, or Non-Small Cell Lung Cancer Treated With
680 Nivolumab. *JAMA Oncol* **5**, 1411–1420 (2019).

681 3. Robert, C. *et al.* Seven-Year Follow-Up of the Phase III KEYNOTE-006 Study:
682 Pembrolizumab Versus Ipilimumab in Advanced Melanoma. *J. Clin. Oncol.* **41**, 3998–4003
683 (2023).

684 4. Cogdill, A. P., Andrews, M. C. & Wargo, J. A. Hallmarks of response to immune checkpoint
685 blockade. *Br. J. Cancer* **117**, 1–7 (2017).

686 5. Sharma, P., Hu-Lieskován, S., Wargo, J. A. & Ribas, A. Primary, Adaptive, and Acquired
687 Resistance to Cancer Immunotherapy. *Cell* **168**, 707–723 (2017).

688 6. Koyama, S. *et al.* Adaptive resistance to therapeutic PD-1 blockade is associated with
689 upregulation of alternative immune checkpoints. *Nat. Commun.* **7**, 10501 (2016).

690 7. Yuan, J. *et al.* Current strategies for intratumoural immunotherapy - Beyond immune
691 checkpoint inhibition. *Eur. J. Cancer* **157**, 493–510 (2021).

692 8. Weber, R. *et al.* Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of
693 Immune Checkpoint Inhibitors. *Front. Immunol.* **9**, 1310 (2018).

694 9. Briukhovetska, D. *et al.* Interleukins in cancer: from biology to therapy. *Nat. Rev. Cancer*
695 **21**, 481–499 (2021).

696 10. Wigginton, J. M. & Wiltz, R. H. IL-12/IL-2 combination cytokine therapy for solid tumours:
697 translation from bench to bedside. *Expert Opin. Biol. Ther.* **2**, 513–524 (2002).

698 11. Buchbinder, E. I. *et al.* Therapy with high-dose Interleukin-2 (HD IL-2) in metastatic
699 melanoma and renal cell carcinoma following PD1 or PDL1 inhibition. *J Immunother Cancer*
700 **7**, 49 (2019).

701 12. Falchook, G. *et al.* 481 Phase 1/2 study of THOR-707 (SAR444245), a pegylated
702 recombinant non-alpha IL-2, as monotherapy and in combination with pembrolizumab or
703 cetuximab in patients (pts) with advanced solid tumors. *J Immunother Cancer* **9**, (2021).

704 13. Algazi, A. P. *et al.* Phase II Trial of IL-12 Plasmid Transfection and PD-1 Blockade in
705 Immunologically Quiescent Melanoma. *Clin. Cancer Res.* **26**, 2827–2837 (2020).

706 14. Lotze, M. T. *et al.* In vivo administration of purified human interleukin 2. II. Half life,
707 immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL
708 2. *J. Immunol.* **135**, 2865–2875 (1985).

709 15. Berraondo, P. *et al.* Cytokines in clinical cancer immunotherapy. *Br. J. Cancer* **120**, 6–15

710 (2019).

711 16. Santollani, L. & Wittrup, K. D. Spatiotemporally programming cytokine immunotherapies
712 through protein engineering. *Immunol. Rev.* (2023) doi:10.1111/imr.13234.

713 17. Hutmacher, C. & Neri, D. Antibody-cytokine fusion proteins: Biopharmaceuticals with
714 immunomodulatory properties for cancer therapy. *Adv. Drug Deliv. Rev.* **141**, 67–91 (2019).

715 18. Garcin, G. *et al.* High efficiency cell-specific targeting of cytokine activity. *Nat. Commun.* **5**,
716 3016 (2014).

717 19. Gillies, S. D. *et al.* Antibody-IL-12 fusion proteins are effective in SCID mouse models of
718 prostate and colon carcinoma metastases. *J. Immunol.* **160**, 6195–6203 (1998).

719 20. Fallon, J. *et al.* The immunocytokine NHS-IL12 as a potential cancer therapeutic.
720 *Oncotarget* **5**, 1869–1884 (2014).

721 21. Wieckowski, S. *et al.* Therapeutic efficacy of the F8-IL2 immunocytokine in a metastatic
722 mouse model of lung adenocarcinoma. *Lung Cancer* **88**, 9–15 (2015).

723 22. Venetz, D., Koovely, D., Weder, B. & Neri, D. Targeted Reconstitution of Cytokine Activity
724 upon Antigen Binding using Split Cytokine Antibody Fusion Proteins. *J. Biol. Chem.* **291**,
725 18139–18147 (2016).

726 23. Steiner, P. *et al.* Conditionally Activated IL-12 or IFNa IndukineTM Molecules Inhibit
727 Syngeneic Lymphoma Tumor Growth in Mice, Induce Anti-Tumor Immune Responses and
728 Are Tolerated in Non-Human Primates. *Blood* **138**, 2258–2258 (2021).

729 24. Nirschl, C. J. *et al.* Discovery of a Conditionally Activated IL-2 that Promotes Antitumor
730 Immunity and Induces Tumor Regression. *Cancer immunology research* vol. 10 581–596
731 (2022).

732 25. Mansurov, A. *et al.* Collagen-binding IL-12 enhances tumour inflammation and drives the
733 complete remission of established immunologically cold mouse tumours. *Nat Biomed Eng*
734 **4**, 531–543 (2020).

735 26. Xue, D. *et al.* A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control
736 established tumors. *Sci Immunol* **7**, eabi6899 (2022).

737 27. Levin, A. M. *et al.* Exploiting a natural conformational switch to engineer an interleukin-2
738 “superkine.” *Nature* **484**, 529–533 (2012).

739 28. Sun, Z. *et al.* A next-generation tumor-targeting IL-2 preferentially promotes tumor-
740 infiltrating CD8+ T-cell response and effective tumor control. *Nat. Commun.* **10**, 3874
741 (2019).

742 29. Charych, D. H. *et al.* NKTR-214, an Engineered Cytokine with Biased IL2 Receptor Binding,
743 Increased Tumor Exposure, and Marked Efficacy in Mouse Tumor Models. *Clin. Cancer
744 Res.* **22**, 680–690 (2016).

745 30. Chen, X. *et al.* A novel human IL-2 mutein with minimal systemic toxicity exerts greater

746 antitumor efficacy than wild-type IL-2. *Cell Death Dis.* **9**, 989 (2018).

747 31. Agarwal, Y. *et al.* Intratumourally injected alum-tethered cytokines elicit potent and safer
748 local and systemic anticancer immunity. *Nat Biomed Eng* **6**, 129–143 (2022).

749 32. Lutz, E. A. *et al.* Alum-anchored intratumoral retention improves the tolerability and
750 antitumor efficacy of type I interferon therapies. *Proc. Natl. Acad. Sci. U. S. A.* **119**,
751 e2205983119 (2022).

752 33. Zaharoff, D. A., Hance, K. W., Rogers, C. J., Schlom, J. & Greiner, J. W. Intratumoral
753 immunotherapy of established solid tumors with chitosan/IL-12. *J. Immunother.* **33**, 697–
754 705 (2010).

755 34. Park, C. G. *et al.* Extended release of perioperative immunotherapy prevents tumor
756 recurrence and eliminates metastases. *Sci. Transl. Med.* **10**, (2018).

757 35. Momin, N. *et al.* Anchoring of intratumorally administered cytokines to collagen safely
758 potentiates systemic cancer immunotherapy. *Sci. Transl. Med.* **11**, (2019).

759 36. Ishihara, J. *et al.* Targeted antibody and cytokine cancer immunotherapies through collagen
760 affinity. *Sci. Transl. Med.* **11**, (2019).

761 37. Momin, N. *et al.* Maximizing response to intratumoral immunotherapy in mice by tuning
762 local retention. *Nat. Commun.* **13**, 109 (2022).

763 38. Zitvogel, L., Pitt, J. M., Daillère, R., Smyth, M. J. & Kroemer, G. Mouse models in
764 oncoimmunology. *Nat. Rev. Cancer* **16**, 759–773 (2016).

765 39. Buqué, A. & Galluzzi, L. Modeling Tumor Immunology and Immunotherapy in Mice. *Trends
766 Cancer Res.* **4**, 599–601 (2018).

767 40. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in
768 cancer treatment. *Am. J. Transl. Res.* **6**, 114–118 (2014).

769 41. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related
770 parameters. *Biostatistics* **20**, 273–286 (2019).

771 42. Ireson, C. R., Alavijeh, M. S., Palmer, A. M., Fowler, E. R. & Jones, H. J. The role of mouse
772 tumour models in the discovery and development of anticancer drugs. *Br. J. Cancer* **121**,
773 101–108 (2019).

774 43. Rowell, J. L., McCarthy, D. O. & Alvarez, C. E. Dog models of naturally occurring cancer.
775 *Trends Mol. Med.* **17**, 380–388 (2011).

776 44. Gardner, H. L., Fenger, J. M. & London, C. A. Dogs as a Model for Cancer. *Annu Rev Anim
777 Biosci* **4**, 199–222 (2016).

778 45. Von Rueden, S. K. & Fan, T. M. Cancer-Immunity Cycle and Therapeutic Interventions-
779 Opportunities for Including Pet Dogs With Cancer. *Front. Oncol.* **11**, 773420 (2021).

780 46. Schiffman, J. D. & Breen, M. Comparative oncology: what dogs and other species can
781 teach us about humans with cancer. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **370**, (2015).

782 47. Park, J. S. *et al.* Canine cancer immunotherapy studies: linking mouse and human. *J*
783 *Immunother Cancer* **4**, 97 (2016).

784 48. LeBlanc, A. K. & Mazcko, C. N. Improving human cancer therapy through the evaluation of
785 pet dogs. *Nat. Rev. Cancer* **20**, 727–742 (2020).

786 49. Wu, K. *et al.* Analyses of canine cancer mutations and treatment outcomes using real-world
787 clinico-genomics data of 2119 dogs. *NPJ Precis Oncol* **7**, 8 (2023).

788 50. Stinson, J. A. *et al.* Collagen-Anchored Interleukin-2 and Interleukin-12 Safely Reprogram
789 the Tumor Microenvironment in Canine Soft-Tissue Sarcomas. *Clin. Cancer Res.* **29**, 2110–
790 2122 (2023).

791 51. Smith, S. H., Goldschmidt, M. H. & McManus, P. M. A comparative review of melanocytic
792 neoplasms. *Vet. Pathol.* **39**, 651–678 (2002).

793 52. Bateman, K. E., Catton, P. A., Pennock, P. W. & Kruth, S. A. 0-7-21 radiation therapy for
794 the treatment of canine oral melanoma. *J. Vet. Intern. Med.* **8**, 267–272 (1994).

795 53. Blackwood, L. & Dobson, J. M. Radiotherapy of oral malignant melanomas in dogs. *J. Am.*
796 *Vet. Med. Assoc.* **209**, 98–102 (1996).

797 54. Proulx, D. R. *et al.* A retrospective analysis of 140 dogs with oral melanoma treated with
798 external beam radiation. *Vet. Radiol. Ultrasound* **44**, 352–359 (2003).

799 55. Marciscano, A. E. *et al.* Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of
800 Stereotactic Radiation Therapy and Immunotherapy. *Clin. Cancer Res.* **24**, 5058–5071
801 (2018).

802 56. Cho, Y. *et al.* Impact of Treatment-Related Lymphopenia on Immunotherapy for Advanced
803 Non-Small Cell Lung Cancer. *Int. J. Radiat. Oncol. Biol. Phys.* **105**, 1065–1073 (2019).

804 57. Saddawi-Konefka, R. *et al.* Lymphatic-preserving treatment sequencing with immune
805 checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. *Nat.*
806 *Commun.* **13**, 4298 (2022).

807 58. Pazzi, P., Steenkamp, G. & Rixon, A. J. Treatment of Canine Oral Melanomas: A Critical
808 Review of the Literature. *Vet. Sci.* **9**, (2022).

809 59. Donnelly, R. P., Young, H. A. & Rosenberg, A. S. An overview of cytokines and cytokine
810 antagonists as therapeutic agents. *Ann. N. Y. Acad. Sci.* **1182**, 1–13 (2009).

811 60. Saxton, R. A., Glassman, C. R. & Garcia, K. C. Emerging principles of cytokine
812 pharmacology and therapeutics. *Nat. Rev. Drug Discov.* (2022) doi:10.1038/s41573-022-
813 00557-6.

814 61. Paoloni, M. *et al.* Defining the Pharmacodynamic Profile and Therapeutic Index of NHS-
815 IL12 Immunocytokine in Dogs with Malignant Melanoma. *PLoS One* **10**, e0129954 (2015).

816 62. Cope, A., Le Frie, G., Cardone, J. & Kemper, C. The Th1 life cycle: molecular control of
817 IFN- γ to IL-10 switching. *Trends Immunol.* **32**, 278–286 (2011).

818 63. Gillies, S. D. *et al.* Bi-functional cytokine fusion proteins for gene therapy and antibody-
819 targeted treatment of cancer. *Cancer Immunol. Immunother.* **51**, 449–460 (2002).

820 64. Schwarz, E. & Carson, W. E., 3rd. Analysis of potential biomarkers of response to IL-12
821 therapy. *J. Leukoc. Biol.* **112**, 557–567 (2022).

822 65. Dighe, A. S., Richards, E., Old, L. J. & Schreiber, R. D. Enhanced in vivo growth and
823 resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors.
824 *Immunity* **1**, 447–456 (1994).

825 66. Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K. & Oliveira, M. J. Interferon-Gamma
826 at the Crossroads of Tumor Immune Surveillance or Evasion. *Front. Immunol.* **9**, 847
827 (2018).

828 67. Bromberg, J. F., Horvath, C. M., Wen, Z., Schreiber, R. D. & Darnell, J. E., Jr.
829 Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon
830 alpha and interferon gamma. *Proc. Natl. Acad. Sci. U. S. A.* **93**, 7673–7678 (1996).

831 68. Kaplan, D. H. *et al.* Demonstration of an interferon γ -dependent tumor surveillance system
832 in immunocompetent mice. *Proceedings of the National Academy of Sciences* **95**, 7556–
833 7561 (1998).

834 69. Martínez-Jiménez, F. *et al.* Pan-cancer whole-genome comparison of primary and
835 metastatic solid tumours. *Nature* **618**, 333–341 (2023).

836 70. Yates, L. R. *et al.* Genomic Evolution of Breast Cancer Metastasis and Relapse. *Cancer
837 Cell* **32**, 169-184.e7 (2017).

838 71. Martínez-Jiménez, F. *et al.* Genetic immune escape landscape in primary and metastatic
839 cancer. *Nat. Genet.* **55**, 820–831 (2023).

840 72. Wei, J. *et al.* Sequence of α PD-1 relative to local tumor irradiation determines the induction
841 of abscopal antitumor immune responses. *Sci Immunol* **6**, (2021).

842 73. Demaria, S. *et al.* Immune-mediated inhibition of metastases after treatment with local
843 radiation and CTLA-4 blockade in a mouse model of breast cancer. *Clin. Cancer Res.* **11**,
844 728–734 (2005).

845 74. Formenti, S. C. *et al.* Radiotherapy induces responses of lung cancer to CTLA-4 blockade.
846 *Nat. Med.* **24**, 1845–1851 (2018).

847 75. Seung, S. K. *et al.* Phase 1 study of stereotactic body radiotherapy and interleukin-2-tumor
848 and immunological responses. *Sci. Transl. Med.* **4**, 137ra74 (2012).

849 76. Mills, B. N. *et al.* Stereotactic Body Radiation and Interleukin-12 Combination Therapy
850 Eradicates Pancreatic Tumors by Repolarizing the Immune Microenvironment. *Cell Rep.*
851 **29**, 406-421.e5 (2019).

852 77. Andtbacka, R. H. I. *et al.* Talimogene Laherparepvec Improves Durable Response Rate in
853 Patients With Advanced Melanoma. *J. Clin. Oncol.* **33**, 2780–2788 (2015).

854 78. Challis, G. B. & Stam, H. J. The spontaneous regression of cancer. A review of cases from
855 1900 to 1987. *Acta Oncol.* **29**, 545–550 (1990).

856 79. Sousa, L. G. de *et al.* Spontaneous tumor regression following COVID-19 vaccination. *J*
857 *Immunother Cancer* **10**, (2022).

858 80. Quezada, S. A., Peggs, K. S., Curran, M. A. & Allison, J. P. CTLA4 blockade and GM-CSF
859 combination immunotherapy alters the intratumor balance of effector and regulatory T cells.
860 *J. Clin. Invest.* **116**, 1935–1945 (2006).

861 81. Liakou, C. I. *et al.* CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to
862 shift the ratio of effector to regulatory T cells in cancer patients. *Proc. Natl. Acad. Sci. U. S.*
863 *A.* **105**, 14987–14992 (2008).

864 82. Sade-Feldman, M. *et al.* Resistance to checkpoint blockade therapy through inactivation of
865 antigen presentation. *Nat. Commun.* **8**, 1136 (2017).

866 83. Beatty, G. L. & Gladney, W. L. Immune escape mechanisms as a guide for cancer
867 immunotherapy. *Clin. Cancer Res.* **21**, 687–692 (2015).

868 84. Bonfoco, E. *et al.* Inducible nonlymphoid expression of Fas ligand is responsible for
869 superantigen-induced peripheral deletion of T cells. *Immunity* **9**, 711–720 (1998).

870 85. Newman, A. M. *et al.* Determining cell type abundance and expression from bulk tissues
871 with digital cytometry. *Nat. Biotechnol.* **37**, 773–782 (2019).

872 86. Ayers, M. *et al.* IFN- γ -related mRNA profile predicts clinical response to PD-1 blockade. *J.*
873 *Clin. Invest.* **127**, 2930–2940 (2017).

874 87. Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles Posed by the Tumor
875 Microenvironment to T cell Activity: A Case for Synergistic Therapies. *Cancer Cell* **31**, 311–
876 325 (2017).

877 88. Veillette, A. & Davidson, D. Developing combination immunotherapies against cancer that
878 make sense. *Sci Immunol* **3**, (2018).

879 89. Fowles, J. S., Denton, C. L. & Gustafson, D. L. Comparative analysis of MAPK and
880 PI3K/AKT pathway activation and inhibition in human and canine melanoma. *Vet. Comp.*
881 *Oncol.* **13**, 288–304 (2015).

882 90. Kim, T.-M. *et al.* Cross-species oncogenic signatures of breast cancer in canine mammary
883 tumors. *Nat. Commun.* **11**, 3616 (2020).

884 91. Wigginton, J. M. *et al.* IFN-gamma and Fas/FasL are required for the antitumor and
885 antiangiogenic effects of IL-12/pulse IL-2 therapy. *J. Clin. Invest.* **108**, 51–62 (2001).

886 92. Li, J.-H., Rosen, D., Sondel, P. & Berke, G. Immune privilege and FasL: two ways to
887 inactivate effector cytotoxic T lymphocytes by FasL-expressing cells. *Immunology* **105**,
888 267–277 (2002).

889 93. Zaretsky, J. M. *et al.* Mutations Associated with Acquired Resistance to PD-1 Blockade in

890 Melanoma. *N. Engl. J. Med.* **375**, 819–829 (2016).

891 94. Hicks, K. C. *et al.* Tumour-targeted interleukin-12 and entinostat combination therapy
892 improves cancer survival by reprogramming the tumour immune cell landscape. *Nat.*
893 *Commun.* **12**, 5151 (2021).

894 95. Hogg, S. J., Beavis, P. A., Dawson, M. A. & Johnstone, R. W. Targeting the epigenetic
895 regulation of antitumour immunity. *Nat. Rev. Drug Discov.* **19**, 776–800 (2020).

896 96. Liu, Z. *et al.* A New Trend in Cancer Treatment: The Combination of Epigenetics and
897 Immunotherapy. *Front. Immunol.* **13**, 809761 (2022).

898 97. Wang, C. *et al.* Reprogramming NK cells and macrophages via combined antibody and
899 cytokine therapy primes tumors for elimination by checkpoint blockade. *Cell Rep.* **37**,
900 110021 (2021).

901 98. Hirschhorn, D. *et al.* T cell immunotherapies engage neutrophils to eliminate tumor antigen
902 escape variants. *Cell* **186**, 1432–1447.e17 (2023).

903 99. Linde, I. L. *et al.* Neutrophil-activating therapy for the treatment of cancer. *Cancer Cell* **41**,
904 356–372.e10 (2023).

905 100. Lerner, E. C. *et al.* CD8+ T cells maintain killing of MHC-I-negative tumor cells through the
906 NKG2D-NKG2DL axis. *Nat Cancer* (2023) doi:10.1038/s43018-023-00600-4.

907 101. Kruse, B. *et al.* CD4+ T cell-induced inflammatory cell death controls immune-evasive
908 tumours. *Nature* **618**, 1033–1040 (2023).

909 102. Weber, E. W. *et al.* Transient rest restores functionality in exhausted CAR-T cells through
910 epigenetic remodeling. *Science* **372**, (2021).

911 103. Bergman, P. J. Canine oral melanoma. *Clin. Tech. Small Anim. Pract.* **22**, 55–60 (2007).

912 104. LeBlanc, A. K. *et al.* Veterinary Cooperative Oncology Group-Common Terminology Criteria
913 for Adverse Events (VCOG-CTCAE v2) following investigational therapy in dogs and cats.
914 *Vet. Comp. Oncol.* **19**, 311–352 (2021).

915 105. Nguyen, S. M., Thamm, D. H., Vail, D. M. & London, C. A. Response evaluation criteria for
916 solid tumours in dogs (v1.0): a Veterinary Cooperative Oncology Group (VCOG) consensus
917 document. *Vet. Comp. Oncol.* **13**, 176–183 (2015).

918 106. Sobottka, B. *et al.* Establishing standardized immune phenotyping of metastatic melanoma
919 by digital pathology. *Lab. Invest.* **101**, 1561–1570 (2021).