

1 **Short title: Plasticity of the *Arabidopsis* leaf lipidome and proteome**

2

3 **Plasticity of the *Arabidopsis* leaf lipidome and proteome in**

4 **response to pathogen infection and heat stress**

5 Patricia Scholz<sup>1,x,\*</sup>, Nathan M. Doner<sup>2,y</sup>, Katharina Gutbrod<sup>3</sup>, Cornelia Herrfurth<sup>1,4</sup>, Philipp Niemeyer<sup>1</sup>,  
6 Magdiel S. S. Lim<sup>5</sup>, Katharina Blersch<sup>5</sup>, Kerstin Schmitt<sup>6</sup>, Oliver Valerius<sup>6</sup>, John Shanklin<sup>7</sup>, Ivo  
7 Feussner<sup>1,4</sup>, Peter Dörmann<sup>3</sup>, Gerhard H. Braus<sup>4,6</sup>, Robert T. Mullen<sup>2</sup>, Till Ischebeck<sup>1,4,5,\*</sup>

8 <sup>1</sup>University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant  
9 Biochemistry, Goettingen 37077, Germany

10 <sup>2</sup>Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada

11 <sup>3</sup>Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn,  
12 Germany.

13 <sup>4</sup>University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goettingen 37077,  
14 Germany

15 <sup>5</sup>Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster,  
16 Münster 48143, Germany

17 <sup>6</sup>University of Goettingen, Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics  
18 Department for Molecular Microbiology and Genetics, Goettingen 37077, Germany

19 <sup>7</sup>Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA

20 x Present address: Laboratoire Reproduction et Développement des Plantes (RDP), Université de  
21 Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France

22 y Present address: Center for Genomics and Systems Biology, Department of Biology, New York  
23 University, New York, New York 10003, USA

24 <sup>12\*</sup> Address for correspondence: [patricia.scholz@ens-lyon.fr](mailto:patricia.scholz@ens-lyon.fr) (P.S.), till. [ischebeck@uni-munster.de](mailto:ischebeck@uni-munster.de)  
25 (T.I.).

---

<sup>1</sup> **List of author contributions**

P.S., J.S., R.T.M. and T.I. designed the work, P.S., N.M.D., K.G., C.H., P.N., M.S.S.L., K.B., K.S. and  
O.V. performed research, P.S., N.M.D., K.G., C.H., K.S., I.F., P.D., G.H.B., R.T.M. and T.I. analyzed  
data, and P.S., R.T.M. and T.I. wrote the manuscript with contributions by the other authors. All  
authors critically read and revised the manuscript and approved the final version.

<sup>2</sup> **Funding information:** This work was supported by funding from the German research foundation  
DFG (IS 273/10-1 and IRTG 2172 PReTECT to T.I., INST 186/1167-1 to I.F.) and the Studienstiftung  
des deutschen Volkes (to P.S.), the U.S. Department of Energy, Office of Science, BES-Physical  
Biosciences Program (DE-SC0016536, in part to R.T.M. to support *N. benthamiana* experiments, and  
KC0304000 to J. S.), the Natural Sciences and Engineering Research Council of Canada (RGPIN-  
2018-04629 to R.T.M.), and an Ontario Graduate Scholarship to N.M.D. Proteomics measurements  
performed at the Service Unit LCMS Protein Analytics of the Göttingen Center for Molecular  
Biosciences (GZMB) was supported by DFG funding (INST 186/1230-1 FUGG to Stefanie Pöggeler).

26

27 **One sentence summary:** Biotic and heat stress strongly alters the lipidome and  
28 proteome of Arabidopsis leaves including the proteome of lipid droplets.

29

30

31 **Abstract**

32 Plants must cope with a variety of stressors during their life cycle, and the adaptive  
33 responses to these environmental cues involve all cellular organelles. Among them,  
34 comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their  
35 core set of neutral lipids and associated surface proteins to the rewiring of cellular processes  
36 in response to stress. Here, we analyzed the changes that occur in the lipidome and  
37 proteome of *Arabidopsis* leaves after pathogen infection with *Botrytis cinerea* or  
38 *Pseudomonas syringae*, or after heat stress. Analyses were carried out in wild-type plants  
39 and the oil-rich double mutant *tgd1-1 sdp1-4* that allowed for an allied study of the LD  
40 proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based  
41 methods, we show that a hyperaccumulation of the primary LD core lipid triacylglycerol is a  
42 general response to stress and that acyl chain and sterol composition are remodeled during  
43 cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-  
44 treated leaves highlighted the plasticity of the LD proteome as part of the general stress  
45 response. We further identified at least two additional LD-associated proteins, whose  
46 localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein  
47 fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular  
48 adaptation processes that underlie how plants respond to environmental stress.

49

50 **Introduction**

51 Plants naturally encounter a plethora of abiotic and biotic threats during their life cycle.  
52 Consequently, plant cells have to be highly adaptive at the transcriptomic, proteomic and  
53 metabolic level, which requires the interplay of different signaling pathways and organelles  
54 (Kumar et al., 2016; Zhu, 2016; Crawford et al., 2018). One pertinent example of this cellular  
55 interplay is lipid remodeling, whereby fatty acid synthesis and lipid turnover in the plastids,  
56 and lipid turnover in the endomembrane system act together to modify cellular membrane  
57 composition in response to stress. More specifically, acyl chains removed from the  
58 membrane lipid pool appear to be transferred into triacylglycerols (TAGs) stored in cytosolic  
59 lipid droplets (LDs; Xu and Shanklin, 2016). In heat-stressed *Arabidopsis* seedlings for  
60 example, cytosolic TAGs with a high degree of unsaturation accumulate and the respective  
61 polyunsaturated acyl chains originate, at least in part, from chloroplasts (Mueller et al., 2015;  
62 Mueller et al., 2017). Similarly, in tobacco pollen tubes, heat stress leads to an increase in  
63 the proportion of saturated acyl chains in the membrane lipids phosphatidylcholine (PC) and  
64 phosphatidylethanolamine (PE), at the expense of mono- and polyunsaturated acyl chains,  
65 while total TAG levels increase (Krawczyk et al., 2022a). Similar effects have been observed  
66 in heat-stressed leaves of *Arabidopsis* (Higashi et al., 2015) and accumulation of TAG is  
67 linked to a number of stresses, e.g., freezing stress (Moellering et al., 2010), drought and

68 cold treatment (Tara<sup>z</sup>ona et al., 2015) or pathogen infection (Schieferle et al., 2021), which  
69 implies that LDs are important organelles in the plant stress response.

70 Cytosolic LDs consist of a hydrophobic core of neutral lipids, primarily TAGs and sterol  
71 esters (SEs), delimited by a monolayer of phospholipids (Guzha et al., 2023). Embedded into  
72 and/or associated with the surface of the monolayer are various proteins that convey to the  
73 LDs different functions depending on the cellular context (Brocard et al., 2017; Ischebeck et  
74 al., 2020; Kretzschmar et al., 2020). Most studies on LDs have been carried out with  
75 tissues/organs where they are highly abundant, including seeds, seedlings and pollen  
76 (Vance and Huang, 1987; Tzen et al., 1993; Chen et al., 1999; Lin et al., 2002; Hsieh and  
77 Huang, 2004; Kretzschmar et al., 2020). Indeed, the best described LD proteomes are those  
78 in oilseeds, where members of the oleosin (OLE), caleosin (CLO) and steroleosin (also  
79 called hydroxysteroid dehydrogenase [HSD]) protein families predominate (Jolivet et al.,  
80 2004; Katavic et al., 2006; Jolivet et al., 2009; Kretzschmar et al., 2018; Kretzschmar et al.,  
81 2020).

82 LDs function in seeds predominantly as lipid storage organelles, and oleosins are considered  
83 to function primarily in stabilizing LDs and preventing their coalescence (Cummins et al.,  
84 1993; Murphy, 1993). However, during seedling establishment, the LD proteome undergoes  
85 a transformation as the seed LD proteins are degraded and other LD proteins confer new  
86 functionalities to the LDs (Deruyffelaere et al., 2018; Kretzschmar et al., 2018; Kretzschmar  
87 et al., 2020). Among the latter, the LD-ASSOCIATED PROTEIN (LDAP) family, the LDAP-  
88 INTERACTING PROTEIN (LDIP), and SEIPIN proteins, which are endoplasmic reticulum  
89 (ER) membrane proteins that are situated at ER-LD junctions, are crucial for LD biogenesis  
90 (Cai et al., 2015; Taurino et al., 2018; Pyc et al., 2021). Additional LD proteins that function in  
91 seedlings have also been described, including those with enzyme activities involved in the  
92 synthesis or breakdown of primary and secondary metabolites (Corey et al., 1993; Diener et  
93 al., 2000; Shimada et al., 2014a; Müller and Ischebeck, 2018). Furthermore, a protein  
94 partially localizing to LDs, RABC1/LDS1, influences LD dynamics during guard cell  
95 development (Ge et al., 2022).

96 Environmental changes also influence LD-related processes. LD abundance in *Arabidopsis*  
97 leaves, for instance, increases in response to drought, cold or heat stress (Gidda et al., 2016;  
98 Doner et al., 2021). Correspondingly, *Arabidopsis* plants that over-accumulate LDs, such as  
99 transgenic lines overexpressing *LDAPs* (Gidda et al., 2016), are also more drought-tolerant  
100 (Kim et al., 2016a), further suggesting that LDs play a role in stress tolerance. In addition,  
101 CLO3 is probably the best characterized LD protein in non-seed tissues and has been  
102 implicated in stress responses in leaves (Partridge and Murphy, 2009; Aubert et al., 2010;  
103 Blée et al., 2014). For example, a role of CLO3 in the biotic stress response has been  
104 attributed to its peroxygenase function (Shimada et al., 2014a). After infection of *Arabidopsis*

105 leaves with the fungal pathogen *Colletotrichum higginsianum*, CLO3 and  $\alpha$ -DIOXYGENASE  
106 1 ( $\alpha$ -DOX1) accumulate at LDs in the perilesional area of the infection. There, they are  
107 thought to serve in tandem to convert  $\alpha$ -linolenic acid, stored in the neutral lipids of LDs, into  
108 2-hydroxy-octadecatrienoic acid (2-HOT), which then counteracts fungal spread (Shimada et  
109 al., 2014a).

110 Despite the growing knowledge on selected LDs proteins and their roles in vegetative plant  
111 organs, the relatively low abundance of LDs in these tissues has generally been a technical  
112 challenge for lipidomic and/or proteomic studies. Nevertheless, successful studies have been  
113 carried out on the leaf LD proteome of senescing and drought-stress leaves, as well as  
114 leaves infected with *Pseudomonas syringae* pv. *tomato* (*Pto*) DC3000 *avrRpm1* (Brocard et  
115 al., 2017; Fernández-Santos et al., 2020; Doner et al., 2021), which have resulted in the  
116 identification of several novel LD proteins. However, the dynamics of LDs, especially in terms  
117 of their proteome, during the plant stress response remain unclear. Leaves are constantly  
118 exposed to a vast array of environmental conditions, so it seems likely that the composition  
119 of leaf LDs is highly flexible in order to react to these external cues. Here, we assessed the  
120 changes that leaves and leaf LDs undergo when subjected to biotic and abiotic stresses.  
121 Arabidopsis plants were infected with one of two different pathogens or exposed to heat  
122 stress, and subsequently their leaf proteome and lipidome were analyzed. Comparisons with  
123 control treatments allowed us to observe the alterations induced by the three different  
124 treatments. In addition, proteomic analysis of LD-enriched fractions isolated from leaves  
125 subjected to the same treatments enabled us to survey specifically the dynamics of the LD  
126 proteome and, in doing so, identify two new LD proteins.

127

## 128 **Results**

129 Heat stress and pathogen infection cause differential changes in the Arabidopsis leaf  
130 lipidome

131 Reports on TAG accumulation and elevated numbers of LDs induced by abiotic and biotic  
132 stresses were among the first indications for the involvement of LDs in the stress response of  
133 leaves (Gidda et al., 2016; Higashi and Saito, 2019; Doner et al., 2021; Schieferle et al.,  
134 2021). To confirm these previous observations and determine if the overall lipidome is also  
135 affected by our treatments, we analyzed changes in the leaf lipidome in infected or heat-  
136 stressed plants (Suppl. Datasets S1 - S7). For this, we subjected seven-week-old  
137 Arabidopsis wild-type plants to heat stress (consisting of 24 hours at 37°C) or spray-infected  
138 them with either *Botrytis cinerea* or *Pseudomonas syringae* pv. *tomato* DC3000  
139  $\Delta$ *avrPto*/ $\Delta$ *avrPtoB* (hereafter: *Pseudomonas*), and subsequently carried out lipidomic  
140 analyses.

141 Overall, most of the analyzed lipid classes did not change significantly in abundance.  
142 However, triacylglycerol (TAG) levels were significantly higher after *Pseudomonas* infection  
143 and heat treatment and were also increased, albeit not significantly, after infection with *B.*  
144 *cinerea* (Figure 1). Interestingly, the amount of sterol esters (SEs) decreased under heat  
145 stress. Furthermore, several lipid classes showed an altered distribution of molecular lipid  
146 species (Figures 2 and 3; Suppl. Figures S1 – S4), most prominently for heat stressed leaves  
147 with increased proportions of acyl chains with a lower number of carbon atoms and fewer  
148 double bonds in membrane lipids like mono- and digalactosyldiacylglycerol (MGDG, DGDG,  
149 Figure 2) and phosphatidylcholine and phosphatidylethanolamine (PC, PE). In contrast, in  
150 TAGs of heat-stressed leaves, lipid species with a higher number of carbon atoms and more  
151 double bonds increased in proportion. For infection treatments, acyl chain adaptations  
152 likewise occurred albeit with a less pronounced pattern (Figure 3). Interestingly, both  
153 *Pseudomonas* and *B. cinerea* infections led to similar changes in the profile of free sterols,  
154 as the contribution of stigmasterol and isofucosterol increased at the expense of  $\beta$ -sitosterol  
155 (Figure 3), while the effects of heat stress on free sterols were less prominent (Suppl. Figure  
156 S1).

157

158 The *Arabidopsis* leaf proteome changes in response to biotic and heat stress

159 To test if the proteome also undergoes changes, we extracted the total proteome from  
160 *Arabidopsis* leaves subject to the same stress treatments. Proteins from the mutant line *tgd1-*  
161 *1 sdp1-4*, that was stressed in parallel, were also extracted. Additionally, LD-enriched  
162 fractions were isolated. We used the *tgd1-1 sdp1-4* double mutant, as it has increased TAG  
163 levels stored in LDs in leaves (Fan et al., 2014) thereby making it easier to isolate LDs  
164 especially under unstressed conditions. At the same time, TAG accumulation in this mutant  
165 is not triggered by transcription factors that have a direct influence on gene expression like  
166 WRINKLED1 or LEAFY COTYLEDON 2 (Cernac and Benning, 2004; Kim et al., 2015; Qiao  
167 et al., 2022). For all samples, peptides were analyzed by liquid chromatography-tandem  
168 mass spectrometry (LC-MS/MS) and MS raw data was processed with the MaxQuant  
169 software (Cox and Mann, 2008) to identify and relatively quantify the original proteins. Two  
170 algorithms were used for quantification: the intensity-based absolute quantification (iBAQ)  
171 and the label-free quantification (LFQ) algorithm (Cox and Mann, 2008; Schwambässer et  
172 al., 2011; Cox et al., 2014). Protein quantification values were then normalized as per  
173 thousand of the total combined intensity in each sample, resulting in relative iBAQ (riBAQ)  
174 and relative LFQ (rLFQ) values (Suppl. Dataset S8, all metadata can be found in Suppl.  
175 Table S1). rLFQ values were used for comparisons of samples with similar protein  
176 compositions, i.e., total extract (TE) samples of different conditions or genotypes. riBAQ  
177 values were used for calculations of enrichment factors between LD-enriched fractions and

178 TE fractions, as here sample composition differed strongly. Overall, this data set allowed us  
179 to compare (i) the effects of the different stresses on the total proteome in the wild type and  
180 double mutant line, (ii) differences between the wild type and the *tgd1-1 sdp1-4* double  
181 mutant, (iii) protein abundances in total cellular fractions and LD fractions to identify  
182 previously unknown LD-associated proteins (iv) changes especially in the LD proteome  
183 under stress in the double mutant.

184 Based on rLFQ values we compared changes of protein abundance in Col-0 leaves and  
185 calculated statistical significance of changes between the different treatments and their  
186 respective controls (Suppl. Datasets S9 – S11). The results were visualized as volcano plots,  
187 and proteins whose abundance was changed at least 1.5-fold between conditions with  $p <$   
188 0.05 were selected for further analysis (Figure 4).

189 Among the selected proteins, we identified individual proteins that had been linked previously  
190 to the respective stress treatment. For instance, for *B. cinerea* infection, the phospholipase  
191 PLA2A was only detected in our proteomic dataset after infection (Figure 4; Suppl. Dataset  
192 S9), which is consistent with a previous study that showed its accumulation after infection  
193 and dependent on jasmonic acid (JA) signaling (La Camera et al., 2005). Among the most  
194 highly increased proteins after *Pseudomonas* infection were the two pathogenesis-related  
195 (PR) proteins PR1 and PR2 (Suppl. Dataset S10), both of which are known to be  
196 upregulated as part of systemic acquired resistance to pathogen infection (Uknes et al.,  
197 1993; Fu and Dong, 2013). A third PR-protein, PR5, also more than doubled in abundance.  
198 Another defence-related protein that increased upon *Pseudomonas* infection was  
199 HYPERSENSITIVE INDUCED REACTION 2 (HIR2; Suppl. Dataset S7), which organizes  
200 immune receptors at the plasma membrane into nanoclusters (Qi et al., 2011; Qi and  
201 Katagiri, 2012). Finally, in response to heat treatment, the heat shock protein HSP70-4  
202 showed the most pronounced increase in protein abundance (Figure 4), consistent with its  
203 role in thermotolerance against long term heat stress (Wang et al., 2021). Other heat shock  
204 proteins like HSP90.2 and HSP90.5 increased in abundance (Figure 4, Suppl. Dataset S11)  
205 as well, confirming that the plants were able to sense and respond to the applied  
206 temperature conditions.

207 In order to determine if whole networks of interacting and/or functionally-related proteins are  
208 changed under stress, we employed the web tool at the STRING v11.5 database  
209 (<https://string-db.org>; (Szklarczyk et al., 2021) to assess the differentially abundant proteins  
210 for each treatment with at least a 1.5-fold change and  $p < 0.05$ . Proteins with decreased or  
211 increased abundance were evaluated separately and only interactions of high confidence  
212 were analyzed. In plants stressed with *B. cinerea* or heat, chloroplastic and photosynthetic  
213 proteins dominated amongst proteins with decreased abundance (Suppl. Figure S5). Among  
214 the proteins with decreased abundance after *B. cinerea* infection were different members of

215 photosystem I, II and the light-harvesting complexes. Similarly, after heat treatment, proteins  
216 of photosystem II were decreased as well as proteins of the chloroplastic electron transport  
217 chain and subunits of RuBisCO.

218 The upregulated proteins of the different treatments did not form as extensive networks as  
219 the downregulated ones (Suppl. Figure S5). Among the most extensive interaction networks  
220 upon heat stress was the one formed by heat shock proteins and chaperone proteins with  
221 the functional role of assisting protein folding. Other protein networks mostly contained two or  
222 three proteins, nevertheless, these small networks pointed towards metabolic adjustments  
223 induced by the different stress treatments. For example, heat treatment induced the  
224 accumulation of two catalases, CAT2 and CAT3, (Shimada et al., 2014a; Gidda et al., 2016)  
225 while infection with *B. cinerea* or *Pseudomonas* both led to an accumulation of glutathione  
226 S-transferase proteins. More specific for *B. cinerea*, metabolic adaptation included the  
227 upregulation of proteins involved in the biosynthesis of tryptophan and the detoxification of  
228 cyanide as for example TRYPTOPHAN SYNTHASE ALPHA CHAIN, TRYPTOPHAN  
229 SYNTHASE BETA-SUBUNIT 1,  $\beta$ -CYANOALANINE SYNTHASE C1 and NITRILASE 4  
230 (Yamaguchi et al., 2000; Piotrowski et al., 2001).

231 Among the 117 proteins with a known or putative function in lipid metabolism (Suppl. Dataset  
232 S12), only few were significantly changed, such as peroxisomal 3-ketoacyl-CoA thiolase,  
233 which is involved in  $\beta$ -oxidation (Germain et al., 2001) and was 2-fold upregulated under heat  
234 stress.

235

236 The *Arabidopsis tgd1-1 sdp1-4* double mutant is altered in the leaf lipidome and  
237 proteome

238 As mentioned, LDs have been implicated with both biotic and abiotic stress responses  
239 (Shimada et al., 2014a; Gidda et al., 2016; Kim et al., 2016b; Fernández-Santos et al., 2020),  
240 and we also found strong increases of TAG under stress in our experiments. Given this, we  
241 investigated the LD proteome of *Arabidopsis* leaves under stress making use of the *tgd1-1*  
242 *sdp1-4* double mutant. TAG levels in this mutant were reported to reach approximately 8% of  
243 leaf dry weight with a concomitant increase in number and size of leaf LDs (Fan et al., 2014).  
244 We could confirm a 65-fold increase of TAG levels in leaves of the *tgd1-1 sdp1-4* double  
245 mutant (Suppl. Figures S6). The acyl chain composition of leaf TAG in the mutant was also  
246 strongly altered, favoring TAGs with 54 carbon atoms, whose proportion increased from ca.  
247 50% to ca. 70%. Interestingly though, the relative proportion of the most desaturated TAG  
248 species 54:9 decreased (Suppl. Figure S6). For SEs, a similar decrease of SE species with  
249 the acyl chain 18:3 could be observed, and the overall amounts of SEs decreased by ca. 25  
250 % (Suppl. Figures S6, S7). Among membrane lipids, the mutant leaves contained  
251 significantly less of the plastidial lipids MGDG and DGDG while PC and phosphatidylinositol

252 (PI) were significantly increased. Further, the acyl chain composition followed the trend  
253 already observed for TAGs and SEs, with generally decreased percentages of more highly  
254 desaturated lipid species (Suppl. Figure S6, S7). For example, in MGDG, DGDG, PC and  
255 PE, the proportions of 36:6 species were strongly decreased. In contrast, the phytosterol  
256 composition was not affected (Suppl. Figure S7).

257 When we examined the changes in the proteome of *tgd1-1 sdp1-4* mutant plant leaves under  
258 stress, we observed some common trends with the wild type (Suppl. Datasets S13-S15).  
259 This included for example a decrease in plastidial and photosynthetic proteins in reaction to  
260 stress and also the treatment-dependent accumulation of individual proteins described in the  
261 previous section (Suppl. Datasets S9-S11). However, when stress-responsive proteins were  
262 selected with the same criteria as for the wild type, less than 50% of proteins were shared  
263 amongst the up- or downregulated proteins of each treatment. As these differences pointed  
264 to underlying changes in the proteome of the double mutant, we decided to compare the  
265 proteome of *tgd1-1 sdp1-4* to the wild type under non-stressed conditions (Figure 5A, Suppl.  
266 Dataset S16). Using the same selection criteria as for the analysis of treatment-induced  
267 changes (enrichment or depletion of at least 1.5-fold,  $p < 0.05$ ), 253 affected proteins were  
268 selected for further analysis.

269 When analyzed with the STRING web tool, two protein-interaction networks among the  
270 downregulated proteins were most striking (Suppl. Figure S8). That is, several components  
271 of the light harvesting complexes (among others LHCA3, LHC3) and the photosynthetic  
272 electron transfer chain (e.g. PSBA, PSBE, PETA, PETD, PSAE-2) were decreased in the  
273 double mutant. The same was true for several ribosomal proteins of both cytosolic and  
274 plastidial ribosomes. Among the upregulated proteins in the double mutant, enzymes of  
275 various metabolic pathways could be found, including four glutamine synthetases (GLN1;1,  
276 GLN1;2, GLN1;3, GS2) and three proteins of the glycine cleavage system (GLDT, GLDP1,  
277 GDC-H1) that plays a role in photorespiration (Bauwe et al., 2010).

278 Among the less abundant proteins in the *tgd1-1 sdp1-4* mutant proteome, we observed two  
279 allene oxide cyclase proteins, AOC2 and AOC4, which catalyze the cyclisation step in the  
280 biosynthesis of jasmonic acid (JA, Figure 5A). In contrast, the SA-related proteins PR2, PR3  
281 and PR5 were upregulated and this upregulation in comparison to the wild type was also  
282 observed under stress conditions (Suppl. Figure S9). Following up on this possible change in  
283 SA-related signaling, we tested the gene expression of *PR1*, *PR2* and *PR5* in non-stressed  
284 leaves of Col-0 and *tgd1-1 sdp1-4* by qPCR and observed increased transcript levels in the  
285 mutant (Figure 5B). Finally, we also measured phytohormone levels in leaves. In line with the  
286 observed changes of *PR* gene expression and protein abundance, the base level of SA in  
287 non-stressed plants is increased in *tgd1-1 sdp1-4*, as is the amount of its glycosylated  
288 derivative, salicylic acid glucoside (SAG; Figure 5C). Due to the low amount of JA and JA-

289 derivatives in non-stressed plants, we were not able to determine if their basal  
290 concentrations were also affected, as the lower protein amounts of AOC2 and AOC4  
291 suggested.

292

293 Survey of proteins enriched at *Arabidopsis* leaf LDs reveals LD localization of LDNP  
294 and CB5-E

295 An important aim of this work was to identify proteins so far unknown to localize to LDs in  
296 leaves, since our understanding of LD biology hinges on the understanding of its associated  
297 proteins and their functions. We therefore obtained an enriched LD fraction from leaves of  
298 *tgd1-1 sdp1-4* mutant *Arabidopsis* plants and investigated the proteome using quantitative  
299 label-free proteomics. First, to evaluate the success of LD enrichment, we combined the  
300 riBAQ values of all known detected LD proteins (Gidda et al., 2016; Brocard et al., 2017; Pyc  
301 et al., 2017; Kretzschmar et al., 2018; Fernández-Santos et al., 2020; Kretzschmar et al.,  
302 2020; Doner et al., 2021; Ge et al., 2022; Li et al., 2022) revealing a strong enrichment of this  
303 combined abundance by a factor of 65 to 775 in the LD fractions of the different treatment  
304 conditions (Suppl. Figure S10). We then tested if other organelles co-enrich with LDs. Using  
305 the plant proteome database (PPDB; <http://ppdb.tc.cornell.edu/>; Sun et al., 2009), the  
306 abundance of all proteins with an assigned unique subcellular localization was combined.  
307 The ER and plastoglobule proteomes were most prominently co-enriched by factors of 4.8 to  
308 45 and 4.9 to 33, respectively, which might be a reflection of LD biogenesis at the ER and  
309 the similarities in the density of cytosolic LDs and chloroplastic plastoglobuli. All other  
310 subcellular structures were either not strongly enriched or significantly depleted in the LD-  
311 enriched fractions (Suppl. Figure S10).

312 In order to identify potential new LD proteins, we then calculated the enrichment and its  
313 statistical significance for individual proteins (Suppl. Dataset S17). By combining all datasets  
314 from the different treatments, we were able to identify proteins that consistently showed a  
315 higher accumulation in the LD-enriched fractions (Figure 6). In total, 553 proteins significantly  
316 accumulated in the LD-enriched fractions, 102 of which had an enrichment factor of more  
317 than 16 (Figure 6B). Among these were several known LD proteins, most prominently CLO3,  
318 LDAP3, and LDIP (Shimada et al., 2014a; Gidda et al., 2016; Pyc et al., 2017). Another  
319 protein with a high enrichment value was SEC61γ, a subunit of the SEC61 translocon  
320 previously described at ER-LD contact sites (Kretzschmar et al., 2020). A high LD  
321 enrichment was also observed for a protein (AT5G04830) that is annotated at The  
322 *Arabidopsis* Information Resource (TAIR; Berardini et al., 2015) as NUCLEAR TRANSPORT  
323 FACTOR 2 (NTF2) family member but has not been functionally characterized. Additional  
324 proteins that were studied further were selected based on their enrichment value, predicted  
325 transmembrane (TMD) regions, and/or possible LD-related functions. Among these were two

326 cytochrome *b*<sub>5</sub> proteins, CB5-D (AT5G48810) and CB5-E (AT5G53560), that were both  
327 highly enriched in the LD fraction (Figure 6B) and might serve in electron transfer during  
328 possible lipid oxidation reactions at LDs. We also examined the intrinsically disordered  
329 protein EARLY RESPONSIVE TO DEHYDRATION 14 (AT1G76180), which is proposed to  
330 act as chaperone in stressed plants (Kovacs et al., 2008; Szalainé Ágoston et al., 2011), as  
331 well as six other so far uncharacterized proteins, i.e., AT1G65270, AT1G72170, AT3G18430,  
332 AT4G12590, AT4G16450 and AT5G01750, some of which are annotated (at TAIR) to  
333 contain domains of unknown function (AT1G72170, AT4G12590, AT5G01750) and some are  
334 annotated to be part of membrane protein complexes (AT1G65270, AT1G72170,  
335 AT4G12590). Further, we focused on two other proteins, AT3G18430 and AT4G16450, that  
336 are annotated as a calcium-binding EF-hand family protein and NADH-ubiquinone  
337 oxidoreductase, respectively, and therefore drew our attention as being potentially involved  
338 in signaling or redox processes at the LD.

339 We analyzed the subcellular localization of all the above-mentioned candidate LD proteins by  
340 transient expression in *Nicotiana benthamiana* leaves, which is a well-established model  
341 plant system for protein localization (Sparkes et al., 2006), including LD proteins  
342 (Kretzschmar et al., 2020; Doner et al., 2021; Pyc et al., 2021; Krawczyk et al., 2022b).  
343 Candidates were expressed with an N- or C-terminal mCherry fluorescent tag and subcellular  
344 localization was analyzed by confocal laser-scanning microscopy (CLSM). To assess  
345 possible LD co-localization, LDs were stained with the neutral lipid-specific stain BODIPY  
346 493/503 (Listenberger and Brown, 2007). Furthermore, selected candidate LD proteins were  
347 co-expressed with the mouse (*Mus musculus*) enzyme DIACYLGLYCEROL  
348 ACYLTRANSFERASE 2 (MmDGAT2), which enhances LD proliferation in plant cells (Cai et  
349 al., 2019). As shown in Figure 7 the NTF2 protein family member often localized to the  
350 surface of BODIPY-stained LDs, particularly in cells co-expressing MmDGAT2 (Figure 7A,  
351 B). We therefore termed this protein LD-LOCALISED NTF2 FAMILY PROTEIN (LDNP). For  
352 CB5-E, we observed two distinct subcellular localizations depending on the position of the  
353 appended mCherry: the C-terminal mCherry-tagged CB5-E (CB5-E-mCherry) localized to  
354 reticular structures, consistent with the ER (Figure 7C), while N-terminal mCherry-tagged  
355 CB5-E (mCherry-CB5-E) displayed mostly LD localization (Figure 7D). Given that  
356 bioinformatic tools predict a single TMD near the C-terminus of CB5-E (Suppl. Figure S11),  
357 this region might be less accessible with a C-terminal-appended mCherry and therefore  
358 resulting in the observed differences in CB5-E localization. Overall, the other eight candidate  
359 proteins appended to mCherry at their N and/or C-termini did not localize to BODIPY-stained  
360 LDs, although CB5-D appeared to partially localize to LDs and some proteins (e.g.,  
361 AT5G01750 and AT1G76180 [ERD14]) displayed a distinct reticular, ER-like fluorescence  
362 patterns that were often closely associated with LDs (Suppl. Figure S12), which may be

363 notable given the role of the ER in LD biogenesis (Guzha et al., 2023). Indeed, the apparent  
364 association of ERD14 in reticulum-like structures associated with LDs was more pronounced  
365 upon co-expression with MmDGAT2 (Suppl. Figure S12), suggesting a possible role for  
366 ERD14 at the ER during LD proliferation.

367

368 The *Arabidopsis* leaf LD proteome responds to environmental stresses

369 Based on an examination of the LD proteome in leaves of *tgd1-1 sdp1-4* mutant plants  
370 without stress treatment, CLO3 and LDAP3 were the most abundant proteins (Table 1) as  
371 they combined abundance amounts to around 80% of total LD protein. Additional proteins  
372 detected in the LDs of leaves without treatment included LDAP1 and LDAP2, their interacting  
373 protein LDIP, and the protein ERD7 (Gidda et al., 2016; Pyc et al., 2017; Doner et al., 2021).  
374 Several other proteins connected to metabolism (i.e., GPAT4, STEROL  
375 METHYLTRANSFERASE 1, CYCLOARTENOL SYNTHASE 1, OIL BODY LIPASE 3, LD-  
376 ASSOCIATED LIPASE 2,  $\alpha$ -DOX1, LD-ASSOCIATED METHYLTRANSFERASE 1 or 2) and  
377 protein degradation (PLANT UBX DOMAIN-CONTAINING PROTEIN) were also found in  
378 smaller amounts. In addition, LDNP and CB5-E described above were detected (Table 1).

379 We did not observe any additional LD proteins specific to the different stress treatments.  
380 However, we were able to follow the changes in the LD proteome composition in response to  
381 the individual stresses (Figure 8). Overall, the combined abundance of LD proteins tended to  
382 increase after stress, especially after infections (Figure 8A). However, increased abundance  
383 was not evenly distributed across all LD proteins, so that the relative proportions of detected  
384 LD proteins in the known LD proteome changed (Figure 8B, Table 1). For example, the  
385 proportion of CLO3 increased after all three treatments in contrast to LDAP3, whose relative  
386 contribution either decreased or did not change (Figure 8C). Among the low-abundant leaf  
387 LD proteins,  $\alpha$ -DOX1 strongly accumulated at LDs after both pathogen treatments, which fits  
388 with the previously described functional interaction between CLO3 and  $\alpha$ -DOX1 (Shimada et  
389 al., 2014b). Interestingly,  $\alpha$ -DOX1 did not increase in response to heat treatment (Figure 8C),  
390 pointing to a more specific role in defense against pathogens. For CB5-E, we also observed  
391 its accumulation specifically after pathogen infection, although on a smaller scale than for  
392  $\alpha$ -DOX1 (Figure 8C). Furthermore, LD-ASSOCIATED METHYLTRANSFERASE 1 or 2 (the  
393 distinct isoform could not be resolved based on the analysis) increased under *B. cinerea* but  
394 not *Pseudomonas* infection. Most other proteins fluctuated in abundance but showed no  
395 clear trend with the possible exception of PUX10, which was depleted after all the treatments  
396 (Figure 8C).

397

## 398 **Discussion**

399 Biotic and abiotic stresses alter lipid homeostasis in *Arabidopsis* leaves

400 Higher temperatures lead to increased membrane fluidity so that membrane lipids are usually  
401 remodeled and acyl chains with three double bonds are replaced by more saturated acyl  
402 chains (Falcone et al., 2004; Higashi and Saito, 2019; Yu et al., 2021). Such a remodeling  
403 was also observed in our study with presumably 16:0 and 18:0-containing lipid species  
404 increasing especially in PC, and 18:3 in MGDG and DGDG being replaced by 18:2 and 18:1  
405 (Figure 2). TAG acts as sink for the released acyl chains (Mueller et al., 2017), which is  
406 reflected in the increase of 54:8 and 54:9-TAG species after heat stress that we and others  
407 observed (Higashi et al., 2015; Mueller et al., 2015; Mueller et al., 2017). Interestingly, the  
408 amount of SEs decreased (Figure 1), corroborating previous results (Shiva et al., 2020).  
409 Furthermore, other sterol derivatives like sterol glycosides and acylated sterol glycosides  
410 have been reported to increase in response to heat stress in *Arabidopsis* leaves and tobacco  
411 pollen tubes (Shiva et al., 2020; Krawczyk et al., 2022a). This indicates that LDs cannot only  
412 serve as a sink for acyl chains stored as TAG, but at the same time might be a source for  
413 free sterols or sterol derivatives derived from LD-stored SEs. These sterols could help to  
414 stabilize membranes under heat stress (Dufourc, 2008). Regarding the potential dual role of  
415 LDs as a metabolic sink and source, it is unclear if SEs and TAGs in plant cells are both  
416 present in mixed-compound LDs or form distinct LD subpopulations, as has been reported  
417 for LDs in some animal cells (Khor et al., 2014).

418 Unlike lipidomic changes after heat stress, less is known about the impact of pathogen  
419 infection. Infection of leaves with the avirulent *Pseudomonas* strain *Pseudomonas syringae*  
420 pv. *tomato* DC3000 *avrRpm1* causes an increase in TAG levels (Schieferle et al., 2021) and  
421 leads to increased numbers of leaf LDs (Fernández-Santos et al., 2020) within one day after  
422 infection. Using another avirulent *Pseudomonas* strain (*Pseudomonas syringae* pv. *tomato*  
423 DC3000 *ΔavrPto/ΔavrPtoB*) and measuring neutral lipids after symptom development, we  
424 observed a similar trend to increased TAG levels (Figure 1), which was mainly driven by the  
425 TAG species 54:8 and 54:9 (Suppl. Datasets S4, S6). Fungal infection of *Arabidopsis* with  
426 *B. cinerea* in leaves (Figure 1) and *Verticillium longisporum* in roots (Schieferle et al., 2021)  
427 are also accompanied by a trend towards increased TAG levels. Interestingly, in case of  
428 *V. longisporum*, TAG accumulation in leaves was proposed as a systemic effect initiated by  
429 the infected roots (Schieferle et al., 2021). It thus seems that increased TAG levels are a  
430 general plant response to infection. However, the reasons for that are not clear yet. With  
431 regard to sterol lipids, the most striking change after infection is the increase of stigmasterol  
432 at the expense of  $\beta$ -sitosterol (Figure 3). This effect on free sterols has been described  
433 previously (Griebel and Zeier, 2010; Wang et al., 2012), however, descriptions of its role in  
434 the plant-pathogen interaction are conflicting. In *Arabidopsis*, the conversion of  $\beta$ -sitosterol to  
435 stigmasterol is catalyzed by the cytochrome P450 enzyme AtCYP710A1 (Morikawa et al.,  
436 2006), and T-DNA mutants of *CYP710A1* with decreased stigmasterol levels were reported

437 to be more resistant to infection with *P. syringae* pv. *maculicola* (Griebel and Zeier, 2010).  
438 Later reports on another *cyp710a1* mutant described the opposite effect though, as the  
439 mutant was more susceptible to a variety of *P. syringae* strains (Wang et al., 2012).  
440 The substantial changes observed in the lipidome especially under heat stress are not  
441 reflected in the abundance of proteins involved in lipid metabolism. This could be due to low  
442 coverage of such proteins, as only around 20% of the proteins were detected in our data  
443 (Suppl. Dataset S12). Previous reports on heat-stressed leaves indicated regulation of lipid-  
444 related genes on the transcriptional level (Higashi et al., 2015). However, in a study on the  
445 transcript changes in pollen tubes under heat stress (Krawczyk et al., 2022a), only few  
446 changes were observed. As of this it can be speculated that lipid remodeling is also  
447 controlled by post-translational modifications or other factors.

448

449 The *Arabidopsis* cellular proteome is readjusted under stress

450 One common theme under stress was the reduction in the levels of photosynthesis-related  
451 proteins. This could be a protection mechanism to reduce photosynthesis rates given that  
452 chlorophyll fluorescence studies have shown reduced quantum efficiency in response to  
453 infection (Bonfig et al., 2006; Pavicic et al., 2021) or heat stress (Kim and Portis, 2005;  
454 Salvucci, 2007). On the other hand, oxidative stress in the plastids could also lead to an  
455 increased damage and degradation of photosynthesis-related proteins. In addition, heat  
456 stress is especially linked to decreases in RuBisCO activity (Kobza and Edwards, 1987; Kim  
457 and Portis, 2005; Salvucci, 2007), consistent with our observation of RuBisCO subunits  
458 among the depleted proteins (Suppl. Figure S5). Furthermore, for infection, several  
459 transcriptomics studies have shown that reduced gene expression of photosynthetic genes is  
460 a general response to a plethora of pathogens, possibly to allow for the upregulation of  
461 defense response pathways (Bilgin et al., 2010; Jiang et al., 2017).

462 Proteins that were upregulated were more diverse between the treatments, conferring  
463 specificity to the plant's reaction. In the proteome of heat-stressed plants this resulted in an  
464 accumulation of heat shock proteins (HSPs; Figure 4), as expected. HSPs prevent the  
465 formation of protein aggregates and assist protein folding and protein transport across  
466 membranes (Lin et al., 2001; Rosenzweig et al., 2019). Additionally, several chloroplast  
467 chaperonin subunits were upregulated in response to heat stress, including CPN60A1 and  
468 CPN60B1 of chaperonin 60, which interacts in the assembly of RuBisCO (Hemmingsen et  
469 al., 1988; Ishikawa et al., 2003).

470 In the proteome of infected leaves, several metabolic proteins were upregulated, including  
471 glutathione S-transferases (GSTs) after both infections (Suppl. Figure 5). Different GSTs  
472 were previously reported to change in abundance in a 2D-proteomics study of *Arabidopsis*  
473 infected with *Alternaria brassicicola* (Mukherjee et al., 2010). GSTs thus may form part of a

474 general defense responses, although the functional role of various GST proteins are likely  
475 different. GSTF6, for example, has been implicated in the biosynthesis of camalexin (Su et  
476 al., 2011), a phytoalexin with antifungal properties against some *B. cinerea* strains  
477 (Kliebenstein et al., 2005). GSTF2, on the other hand, was suggested to bind small  
478 molecules, including antimicrobial compounds like camalexin, and to transport them within  
479 the cell to their site of action (Dixon et al., 2010; Ahmad et al., 2017). Further metabolic  
480 pathways upregulated after *B. cinerea* infection were tryptophan biosynthesis and cyanide  
481 detoxification. Both might be connected to synthesis of camalexin, as it derives from  
482 tryptophan, and in camalexin biosynthesis, cyanide is released (Böttcher et al., 2009).  
483 Interestingly, the phospholipase PLA2A, which was upregulated after *B. cinerea* infection,  
484 has been described to negatively influence plant resistance to *B. cinerea* (La Camera et al.,  
485 2005), indicating that metabolic adjustments are influenced by both the plant and the  
486 pathogen. Altogether, the rewiring of metabolism appears as a common feature after  
487 pathogen infection, and the selectivity of altered metabolic pathways conveys the distinct  
488 responses towards specific pathogens.

489

490 Effects of the *tgd1-1 sdp1-4* mutations in Arabidopsis are not limited to lipid  
491 metabolism

492 We used the Arabidopsis double mutant *tgd1-1 sdp1-4* as a tool for LD isolation, and we also  
493 included it in our lipidomic and proteomic analyses. The original characterization of the  
494 double mutant had highlighted its strong increase in TAG levels in leaves (Fan et al., 2014)  
495 and we confirmed this increase in our lipidomics measurements (Suppl. Figure 6). While the  
496 increase of TAG is caused by both the mutations in *SDP1* and *TGD1*, the changes in the  
497 membrane lipidome are likely mostly caused by the mutation of *TGD1* alone. *TGD1* is  
498 involved in the import of membrane lipid precursors into plastids, and its loss in the *tgd1-1*  
499 mutant leads to a moderate reduction of thylakoid galactolipids and an altered FA profile of  
500 galactolipids, PC, PE and PA (Xu et al., 2003; Fan et al., 2014). We found similar alterations  
501 not only in PG that predominantly occurs in plastids (Joyard et al., 2004) but also in  
502 phosphatidylinositol and phosphatidylserine, indicating that also non-plastidial lipid  
503 metabolism is strongly affected.

504 Regarding the proteome of the mutant, it is notable that we detected LDAP3 as the most  
505 abundant protein of the LDAP family (Figure 8B, Table 1). In previous proteomic studies of  
506 senescent or drought-stressed leaves of Arabidopsis Col-0, LDAP1 was the major LDAP  
507 protein (Brocard et al., 2017; Doner et al., 2021). A possible explanation could be that  
508 expression of *LDAP1* in contrast to *LDAP3* is upregulated in response to drought stress  
509 (Wilkins et al., 2010) and during leaf senescence (Schmid et al., 2005). Apart from the  
510 differences between LDAP1 and LDAP3, the composition of the LD proteome is overall quite

511 similar to previously-published LD proteomes in senescent and drought-stressed Col-0  
512 leaves (Brocard et al., 2017; Doner et al., 2021). As well as in these other proteomic studies,  
513 CLO3 was a dominant LD protein and, along with the LDAP proteins, comprised up to more  
514 than 90% of the LD proteome. Other less abundant LD proteins were also found, including  
515 LDIP and  $\alpha$ -DOX1, with relative contributions to the total LD proteome that did not exceed  
516 2% (Brocard et al., 2017; Doner et al., 2021) and thus similar to our observations in *tgd1-1*  
517 *sdp1-4* (Table 1).

518 Besides the proteome of LD-enriched fractions, we also analyzed total protein fractions from  
519 leaves of *tgd1-1 sdp1-4*, which we compared to total protein fractions from *Arabidopsis* wild  
520 type. This comparison revealed the upregulation of the defense-related proteins PR1, PR2  
521 and PR5 and the concomitant increase in SA levels in *tgd1-1 sdp1-4* (Figure 5). Neither  
522 TGD1 nor SDP1 have been linked to SA synthesis in *Arabidopsis* (Rekhter et al., 2019).  
523 However, previous studies reported that interference with plastid lipid metabolism impacts  
524 endogenous levels of jasmonates (Lin et al., 2016). Knockout of a gene encoding a  
525 chloroplast outer envelope protein that synthesizes DGDG caused the concomitant increase  
526 of JA and JA-Ile (Lin et al., 2016). Assuming that the *tgd1* mutation might also affect  
527 phytohormones that derive from plastids, the observed differing levels of SA in *tgd1-1 sdp1-4*  
528 could then be a secondary effect on the crosstalk between the phytohormones salicylic acid  
529 and jasmonates (Spoel et al., 2003; Pieterse et al., 2012). In this context, it is interesting to  
530 note that reduced growth is a phenotype of both *tgd1-1* and *tgd1-1 sdp1-4* (Xu et al., 2005;  
531 Fan et al., 2014). Given the differences in TAG accumulation between the single and the  
532 double mutant (Fan et al., 2014), reduced growth is probably not caused by the  
533 hyperaccumulation of TAGs, instead, autoimmune reactions might contribute to this growth  
534 difference. If that is the case, connections between autoimmunity and mutations designed to  
535 increase TAG levels should be considered in any future biotechnological approaches aimed  
536 at the hyperaccumulation of TAG in vegetative tissues.

537

538 Observed LD-localization of *Arabidopsis* LDNP and CB5-E indicates new LD  
539 functions

540 While the number of known LD-associated plant protein families has steadily increased in  
541 recent years (Fernández-Santos et al., 2020; Kretzschmar et al., 2020; Doner et al., 2021;  
542 Ge et al., 2022; Krawczyk et al., 2022b; Li et al., 2022), the number is still only roughly two  
543 dozen (Guzha et al., 2023). These studies were often followed up by the functional  
544 characterizations of these proteins, greatly increasing our understanding of LDs (Shimada et  
545 al., 2014a; Gidda et al., 2016; Deruyffelaere et al., 2018; Kretzschmar et al., 2018; Pyc et al.,  
546 2021; Krawczyk et al., 2022b). Here, we identified two additional proteins with the ability to  
547 localize to LDs in plant leaves, CB5-E and LDNP (Figure 7). Of these, the LD localization of

548 LDNP became more distinct upon LD proliferation due to the co-expression with MmDGAT2,  
549 which could indicate that LDNP requires a certain threshold number of LDs to localize to  
550 LDs. CB5-E and LDNP were also shown previously to be enriched in LD-fractions from  
551 Arabidopsis seedlings and drought-stressed leaves, but neither protein was investigated in  
552 regard to LD targeting (Kretzschmar et al., 2018; Kretzschmar et al., 2020; Doner et al.,  
553 2021). CB5-E was originally described as cytochrome *b*<sub>5</sub> protein able to accept electrons  
554 from the NADH-dependent cytochrome *b*<sub>5</sub> reductase CBR (Fukuchi-Mizutani et al., 1999).  
555 CB5-E is part of a five-member protein family in Arabidopsis, and its homolog CB5-D was  
556 also enriched in our LD fractions (Suppl. Dataset S17). Arabidopsis CBR and CB5 proteins  
557 are involved in desaturation reactions (Kumar et al., 2006; Kumar et al., 2012). In microsomal  
558 fractions of castor bean, desaturation and hydroxylation reactions in the synthesis of  
559 ricinoleic acid depended on cytochrome *b*<sub>5</sub> proteins (Smith et al., 1992). CB5-D has also  
560 been previously localized to the ER (Maggio et al., 2007). We could indeed observe ER  
561 localization for CB5-D and CB5-E. However, CB5-E also localized predominantly to LDs in  
562 cells co-expressing MmDGAT2 (Figure 7). This raises the question if particularly CB5-E  
563 could be involved in additional redox reactions at the LD surface during LD proliferation.  
564 In comparison to CB5-E, much less is known about the function(s) of LDNP. Expression of  
565 LDNP did not show specific tissue or developmental preferences (Klepikova et al., 2016) and  
566 the protein is also found in LD fractions of 24 h – 60 h old seedlings and drought-stressed  
567 leaves of Arabidopsis (Kretzschmar et al., 2020; Doner et al., 2021). LDNP was classified as  
568 a NTF2 family protein, probably based on a predicted protein fold, which is thought to form a  
569 cone-like shape with internal cavity (Eberhardt et al., 2013). This protein structure is also  
570 found in several other enzymatic and non-enzymatic proteins (Eberhardt et al., 2013),  
571 making LDNP an interesting target for further functional characterization.

572

573 Changes in the Arabidopsis LD proteome establish LDs as an additional player in  
574 stress responses

575 We analyzed the LD proteome in leaves of the *tgd1-1 sdp1-4* double mutant after different  
576 stresses and observed that it was altered dynamically (Figure 8B). When analyzing these  
577 changes, it has to be considered that there are significant differences in the overall proteome  
578 of leaf total protein fractions between the double mutant and the wild type. The observed  
579 alterations of the LD proteome of *tgd1-1 sdp1-4* therefore might not be completely the same  
580 at leaf LDs in Col-0. Nevertheless, shared upregulated proteins between wild type and the  
581 double mutant demonstrate that our treatments induced similar pathways in both Arabidopsis  
582 lines. Hence it seems likely that our stress treatments induce analogous reactions in the LD  
583 proteome of both the double mutant and the wild type. One example is the increased protein

584 abundances of CLO3 and  $\alpha$ -DOX1 that fit well with their previously described roles in  
585 pathogen defense in wild-type *Arabidopsis* plants (Shimada et al., 2014a).  
586 CLO3 and  $\alpha$ -DOX1 were among the most strongly responding LD proteins to pathogen  
587 treatment, and the protein abundance of CLO3 additionally increased after heat stress  
588 (Figure 8). This is in line with reported transcriptome changes of leaves infected with  
589 *B. cinerea* and seedlings subjected to heat, salinity and osmotic stress, i.e., CLO3  
590 expression was induced by all treatments, whereas  $\alpha$ -DOX1 expression was reported as  
591 increased during infection and osmotic but not heat treatment (Sham et al., 2015).  
592 How LDs are integrated in plant stress response remains an interesting question.  
593 Environmental cues might alter the interaction of LDs with other organelles, e.g. prompting  
594 the formation of membrane contact sites for lipid remodeling. A first such contact site of LDs  
595 with the plasma membrane has been recently described (Krawczyk et al., 2022b) and  
596 although the physiological relevance is unclear as of yet, the interaction of LDs in plant  
597 membrane contact sites especially in reaction to stress are an exciting avenue of future LD  
598 research.  
599

## 600 **Material and Methods**

### 601 *Plant lines and growth conditions*

602 Lipidomic and proteomic experiments were carried out with *Arabidopsis* Col-0 and the oil-rich  
603 *tgd1-1 sdp1-4* double mutant line (Fan et al., 2014).  
604 Seeds of *Arabidopsis* lines were surface-sterilized with 6% (w/v) sodium hypochlorite and  
605 0.1% (v/v) Triton X-100 and germinated on half-strength Murashige and Skoog (MS; Duchefa  
606 Biochemie, Haarlem, The Netherlands) medium (Murashige and Skoog, 1962) containing  
607 0.8% (w/v) agar. After ten days, seedlings were transferred to soil (Einheitserde SPECIAL  
608 Vermehrung, Patzer Erden, Sinntal-Altengronau, Germany) and grown under short-day  
609 condition (8 h light/16 h darkness) at 22°C in the light and 18°C in the dark as described  
610 previously (Guzha et al., 2022). For lipidomic or proteomic analyses, plants were grown for  
611 seven weeks before stress treatment was applied and samples were prepared as described  
612 below.

613

### 614 *P. syringae* and *B. cinerea* strains

615 For plant infections and further proteomic and lipidomic analysis of LDs, the *Pseudomonas*  
616 strain *P. syringae* pv. *tomato* (*Pto*) DC3000  $\Delta$ *avrPto*  $\Delta$ *avrPtoB* and the *Botrytis cinerea* strain  
617 B05.10 were used.

618 Spores of *B. cinerea* were cultured on potato dextrose agar (PDA; Merck KGaA, Darmstadt,  
619 Germany) for ten days before conidiospores were harvested by washing them off with 1/4  
620 potato dextrose broth (PDB; Merck KGaA, Darmstadt, Germany) and filtering through

621 Miraclot (Merck KGaA, Darmstadt, Germany). Spores were counted with a counting  
622 chamber (Fuchs-Rosenthal) and stocks in 15% (v/v) glycerol were stored at -80°C.

623

624 *Pathogen treatment for lipidomic and proteomic analysis and subsequent LD-enrichment*

625 For omics-samples of infection treatments, both pathogens were used in spray infections.

626 Infection with *Pto* DC3000  $\Delta$ avr*Pto*  $\Delta$ avr*PtoB* was adapted from (Yao et al., 2013). Briefly,

627 *Pto* DC3000  $\Delta$ avr*Pto*  $\Delta$ avr*PtoB* was cultured in NYG-medium (0.5% [w/v] peptone, 0.3%

628 [w/v] yeast extract, 2% [v/v] glycerol; Merck KGaA, Darmstadt, Germany) with appropriate

629 antibiotics (50  $\mu$ g/ml rifampicin, 50  $\mu$ g/ml kanamycin; Duchefa Biochemie, Haarlem, The

630 Netherlands) over night and harvested by centrifugation (1500  $\times$  g, 20 min, room

631 temperature) at the day of infection. Bacteria were washed once with 10 mM MgCl<sub>2</sub> and then

632 resuspended in 10 mM MgCl<sub>2</sub> and 0.02% (v/v) Silwet. Bacterial density was adjusted to an

633 OD<sub>600</sub> of 1.0 and the bacterial suspension sprayed onto well-watered plants until all leaves

634 were evenly wet. Control plants were sprayed with 10 mM MgCl<sub>2</sub> and 0.02% (v/v) Silwet.

635 Plants were then covered with plastic hoods to keep them at high humidity.

636 *B. cinerea* spores from glycerol stocks were diluted to a concentration of  $5 \times 10^4$  spores/ml in

637 1/4 PDB (Merck KGaA, Darmstadt, Germany) and pre-germinated for 4 hours at room

638 temperature. Plants were sprayed until sprayed droplets ran off the leaves and subsequently

639 kept at humid conditions. Mock-treated plants were treated analogously with 1/4 PDB.

640 Plants were observed until they developed first symptoms to ensure infections were effective

641 and plant proteome alterations had occurred. Sampling was thus carried out 4-5 days after

642 infection by leaf homogenization and LD isolation by ultracentrifugation adapting previous

643 protocols (Kretzschmar et al., 2018). In addition to the pathogen- and mock-treated plants,

644 one proteomic dataset was obtained from plants that were not treated at all.

645 For LD enrichment used for proteomic analysis, leaves were ground in grinding buffer (50

646 mM Tris-HCl pH 7.5, 10 mM KCl, 0.4 M sucrose, 200  $\mu$ M proteinase inhibitor PMSF; Carl

647 Roth GmbH + Co. KG, Karlsruhe, Germany) with sea sand as abrasive agent. Grinding

648 buffer, mortar and pestle were precooled to 0°C and samples were kept between 0 – 4°C

649 during processing. To remove sand and cellular debris, samples were centrifuged for 1

650 minute at 100  $\times$  g. An aliquot was taken as total protein extract sample, and proteins were

651 precipitated in 96% ethanol at -20°C. Subsequently, samples were centrifuged at 100,000  $\times$  g

652 for 35 min in a swing-out rotor. LDs were collected as fat pad from the top of the sample and

653 washed in grinding buffer. After washing, the fat pad was collected and proteins were

654 precipitated with 96% (v/v) ethanol at -20°C.

655

656 *Heat stress treatment for lipidomic and proteomic analysis and subsequent LD-enrichment*

657 For heat stress, plants were kept at 37°C for 24 hours, starting with the beginning of the light  
658 cycle, while control plants were kept at normal temperatures. For proteomic analysis, LDs  
659 were enriched directly after heat stress. To that end, leaves were ground with grinding buffer  
660 (10 mM sodium phosphate buffer pH 7.5, 150 mM NaCl, 0.6 M sucrose, 25 mM Lomant's  
661 reagent, 10 mM *N*-ethylmaleimide, 200 µM proteinase inhibitor PMSF; Carl Roth GmbH +  
662 Co. KG, Karlsruhe, Germany and Merck KGaA, Darmstadt, Germany). Sea sand was used  
663 as abrasive agent and together with cellular debris removed after grinding by centrifugation  
664 for 1 minute at 100 x *g*. Total protein extract samples were precipitated from the supernatant  
665 at -20°C with 96% ethanol in 10x excess. LDs were enriched by two ultracentrifugation steps  
666 at 100,000 x *g* for 60 min in a swing-out rotor. After the first ultracentrifugation, LDs were  
667 collected as fat pad and resuspended in washing buffer (10 mM sodium phosphate buffer pH  
668 7.5, 150 mM NaCl, 0.4 M sucrose, 200 µM proteinase inhibitor PMSF, 0.1% [v/v] Tween 20;  
669 Carl Roth GmbH + Co. KG, Karlsruhe, Germany). The LD suspension was overlaid with  
670 overlay buffer (10 mM sodium phosphate buffer pH 7.5, 150 mM NaCl, 0.2 M sucrose, 200  
671 µM proteinase inhibitor PMSF, 0.1% [v/v] Tween 20; Carl Roth GmbH + Co. KG, Karlsruhe,  
672 Germany). After the second ultracentrifugation, LDs were collected as floating fat pad and  
673 proteins precipitated at -20°C with 96% ethanol. Before protein precipitation, samples were  
674 kept at 0 – 4°C throughout LD enrichment; buffers, mortar and pestle were precooled to the  
675 same temperature.

676

#### 677 *Lipidomic sample preparation and measurements*

678 Infection with *Pto* DC3000  $\Delta$ avr*Pto*  $\Delta$ avr*PtoB* and *B. cinerea*, and heat stress treatment were  
679 carried out as for proteomic samples. Samples were also harvested after the same  
680 incubation times and flash-frozen in liquid nitrogen.

681 Extraction and analysis of triacylglycerol and sterol esters was adapted from (Herrfurth et al.,  
682 2021). In brief, frozen leaf material was homogenized with a ball mill, and 500 mg of each  
683 sample were extracted by monophasic extraction with 6 ml propan-2-ol:hexane:water  
684 (60:26:14, v/v/v) at 60°C. Tripentadecanoic acid was added as internal standard. After extraction,  
685 samples were centrifuged (2500 x *g*, 10 min) and the supernatant evaporated to dryness  
686 under a nitrogen stream. Extracted lipids were reconstituted in 400 µl  
687 tetrahydrofuran:methanol:water (7:2:1, v/v/v). UPLC-nanoESI-MS/MS analysis was carried  
688 out as described (Herrfurth et al., 2021) with the parameters listed in Suppl. Table S2. Peak  
689 integration was performed with the MultiQuant software (AB Sciex, Framingham, MA, USA).  
690 Quantitative analysis of integrated peak values was done in RStudio 4.0.1.

691 For the analysis of the free sterols, the samples were extracted in the same manner and  
692 heptadecanoic acid was added as an internal standard. Aliquots of the samples (1/8 of the  
693 volume) were dried under nitrogen stream, dissolved in 15 µl pyridine and derivatized with 30

694  $\mu$ l N-methyl-N-(trimethylsilyl)trifluoracetamid (MSTFA) before being analyzed by GC-MS  
695 (Agilent 7890B GC-Agilent 5977N-MSD) as previously described (Berghoff et al., 2021).  
696 Phospho- and galactolipids were also extracted from frozen and homogenized leaf material.  
697 To inactivate phospholipase activity, samples were initially incubated in boiling propan-2-ol  
698 for 20 min. After evaporating the leaf material to dryness, lipids were sequentially extracted  
699 with 1 ml of chloroform:methanol (1:2, v/v), 1 ml of chloroform:methanol (2:1, v/v), and 1 ml  
700 of chloroform. For each extraction step, samples were vortexed thoroughly, centrifuged for  
701 10 min at 1500  $\times$  g and the supernatants collected in a new tube. To the combined  
702 supernatant, 0.75 ml of 300 mM  $\text{NH}_4\text{CH}_3\text{CO}_2$  was added, samples were vortexed thoroughly,  
703 centrifuged for 5 min at 1500  $\times$  g, and the lower phase transferred to a new tube. Extracts  
704 were evaporated to dryness and dissolved in chloroform:methanol:300 mM ammonium  
705 acetate (300:665:35, v/v/v). The dry weight of the sample was determined and the amount of  
706 the internal standard adjusted accordingly. Samples were analyzed via direct infusion  
707 nanospray MS on an Agilent 6530 Accurate-Mass Q-TOF LC/MS instrument equipped with a  
708 ChipCube interface as previously described (Welti et al., 2002; Gasulla et al., 2013; Gutbrod  
709 et al., 2021). The parameters for the MS/MS experiments are listed in Suppl. Dataset S1.  
710

#### 711 *Proteomic sample preparation and LC-MS/MS analysis of peptides*

712 Proteins were defatted and washed with 80% ethanol and then dissolved in 6 M urea and 5%  
713 (w/v) SDS. Determination of protein concentration, in-gel tryptic-digest and peptide desalting  
714 was carried out as described previously (Shevchenko et al., 2006; Rappaport et al., 2007;  
715 Kretzschmar et al., 2018). Dried peptides were reconstituted in 20  $\mu$ l sample buffer (2%  
716 acetonitrile, 0.1% formic acid) and subjected to LC-MS/MS analysis. To that end, 1 to 3  $\mu$ l of  
717 each sample were subjected to reverse phase LC for peptide separation using an RSLC nano  
718 Ultimate 3000 system (Thermo Fisher Scientific). Peptides were loaded on an Acclaim  
719 PepMap 100 pre-column (100  $\mu$ m x 2 cm, C18, 5  $\mu$ m, 100  $\text{\AA}$ ; Thermo Fisher Scientific) with  
720 0.07% trifluoroacetic acid at a flow rate of 20  $\mu$ L/min for 3 min. Analytical separation of  
721 peptides was accomplished on an Acclaim PepMap RSLC column (75  $\mu$ m x 50 cm, C18, 2  
722  $\mu$ m, 100  $\text{\AA}$ ; Thermo Fisher Scientific) at a flow rate of 300 nL/min. The solvent composition  
723 followed a gradual change within 94 min: from 96% solvent A (0.1% formic acid) and 4%  
724 solvent B (80% acetonitrile, 0.1% formic acid) to 10% solvent B within 2 minutes, to 30%  
725 solvent B within the next 58 min, to 45% solvent B within the following 22 min, and to 90%  
726 solvent B within the last 12 min of the gradient. All solvents and acids had Optima grade for  
727 LC-MS (Thermo Fisher Scientific). Eluting peptides were on-line ionized by nano-  
728 electrospray (nESI) using the Nanospray Flex Ion Source (Thermo Fisher Scientific) at 1.5  
729 kV (liquid junction) and transferred to the mass spectrometer. For mass spectrometry, either  
730 an Orbitrap Velos Pro hybrid mass spectrometer or a Q Exactive HF mass spectrometer

731 (both Thermo Fisher Scientific) were used. On the Orbitrap Velos Pro hybrid mass  
732 spectrometer, full scans were recorded within a mass range of 300 to 1850 m/z at a  
733 resolution of 30,000 with the Orbitrap-FT analyzer. Full scans were followed by data-  
734 dependent top 10 CID fragmentation (dynamic exclusion enabled) within the ion trap Velos  
735 Pro analyzer. For the Q Exactive HF mass spectrometer, full scans were recorded in a mass  
736 range of 300 to 1650 m/z at a resolution of 30,000 and followed by data-dependent top 10  
737 HCD fragmentation at a resolution of 15,000 (dynamic exclusion enabled). LC-MS method  
738 programming and data acquisition was performed with the XCalibur 4.0 software (Thermo  
739 Fisher Scientific).

740

741 *Computational processing of MS/MS data*

742 MS/MS raw data were processed in the MaxQuant software (version 1.6.2.17) for feature  
743 detection, peptide identification and protein group assembly (Cox and Mann, 2008). Mostly,  
744 default settings were used with additional settings as specified in Suppl. Table S1. The  
745 TAIR10 protein database was used as reference for identification. For quantification, label  
746 free quantification was calculated according to the iBAQ and LFQ algorithms (Cox and Mann,  
747 2008; Schwahnässer et al., 2011; Cox et al., 2014). Further data analysis was done in  
748 Perseus 1.6.2.2 (Tyanova et al., 2016), Excel (Microsoft Office) and RStudio 4.0.1 (RStudio  
749 Team (2021). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston,  
750 MA. <http://www.rstudio.com/>). All relevant data can be found within the manuscript and its  
751 supporting materials. Proteomic raw data can be found in the PRIDE database (Vizcaíno et  
752 al., 2014) under the identifier PXD045596 (<https://www.ebi.ac.uk/pride/>). All metadata can be  
753 found in Suppl. Table S1.

754 Protein localization was annotated based on the Plant Proteome Database (Sun et al., 2009)  
755 as of 14<sup>th</sup> June 2022. LD localization was assigned based on previous studies (Kretzschmar  
756 et al., 2018; Fernández-Santos et al., 2020; Kretzschmar et al., 2020; Doner et al., 2021; Ge  
757 et al., 2022; Li et al., 2022). Volcano plots were calculated in Perseus. rLFQ and riBAQ  
758 values of proteins were log2-transformed and missing values were imputed from normal  
759 distribution (parameters: width 0.3, down shift 2.5, separately for each sample). For the  
760 comparison of different treatments, plant lines or isolated fraction, *p*-values were calculated  
761 by two-sided t-tests. For plotting, transformed and imputed rLFQ or riBAQ values, and  
762 calculated *p*-values were exported and plotted in RStudio 4.0.1.

763 Proteins with relevance in lipid metabolism were selected based on a compiled list of  
764 Arabidopsis lipid genes using KEGG pathway (<https://www.genome.jp/kegg/pathway.html>,  
765 latest update 10th March 2020), Aralip  
766 (<http://aralip.plantbiology.msu.edu/pathways/pathways>; (Li-Beisson et al., 2013) and genes  
767 from (Kelly and Feussner, 2016); (Kretzschmar et al., 2020); and from Plant Sphingolipid

768 Metabolism and Function, Chapter 11 (Luttgeharm et al., 2016). n.d., not detected in control  
769 and treatment, n.d. in control, only detected under treatment. p-values are based on  
770 Student's t-test.

771 Identification of candidate proteins for LD localization was done using web tools. Potential  
772 membrane-spanning regions were predicted using the TMHMM - 2.0 server, which predicts  
773 transmembrane helices based on hidden Markov models (Krogh et al., 2001).

774

775 *PR gene expression analysis via qRT-PCR*

776 Leaves of wild-type and *tgd1-1 sdp1-4* plants were frozen in liquid nitrogen and ground to  
777 fine powder with a ball mill (Retsch GmbH, Haan, Germany). RNA was extracted from 100  
778 mg of ground leaf material per biological replicate and line. RNA isolation was done using the  
779 Spectrum Plant Total RNA Kit (Sigma-Aldrich) and subsequently treated with DNaseI  
780 (Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer's instructions. For  
781 cDNA synthesis, 0.5 µg RNA was reverse transcribed (Maxima Reverse Transcriptase;  
782 Thermo Fisher Scientific). The reaction product was diluted 1:10 in double-distilled water  
783 before qPCR. For each qPCR sample, 4 µl of the diluted cDNA was used together with  
784 Takyon No Rox SYBR MasterMix dTTP Blue (Eurogentec, Seraing, Belgium). *AT3G01150*  
785 was chosen as reference gene (Czechowski et al., 2005), used primers for all genes of  
786 interest and the reference gene are listed in Suppl. Table S3. The following PCR program  
787 was used for amplification: 95°C for 1 min 20 s (95°C for 20 s, 58°C for 20 s, 72°C for 40 s) ×  
788 39, 72°C 4 min. Amplicons were tested by melt curve analysis. PCR amplification and melt  
789 curve analysis were carried out in an iQ5 qPCR cycler (BioRad Laboratories, Hercules, CA,  
790 USA).

791

792 *Analysis of phytohormone levels*

793 Phytohormones were extracted by biphasic extraction with methyl-*tert*-butyl ether based on  
794 (Matyash et al., 2008). After extraction, phytohormones were reversed phase-separated  
795 using an ACQUITY UPLC system (Waters Corp., Milford, MA, USA) and analyzed by  
796 nanoelectrospray ionization (nanoESI) (TriVersa Nanomate, Advion BioSciences, Ithaca, NY,  
797 USA) coupled with an AB Sciex 4000 QTRAP tandem mass spectrometer (AB Sciex,  
798 Framingham, MA, USA) employed in scheduled multiple reaction monitoring modes  
799 (Herrfurth and Feussner, 2020) with the following modifications. For quantification, 10 ng D<sub>4</sub>-  
800 SA (C/D/N Isotopes Inc., Pointe-Claire, Canada) were added at the beginning of the  
801 extraction procedure. For SA and SAG analysis, the following mass transitions were  
802 included: 137/93 [declustering potential (DP) -25 V, entrance potential (EP) -6 V, collision  
803 energy (CE) -20 V] for SA, 141/97 (DP -25 V, EP -6 V, CE -22 V) for D<sub>4</sub>-SA, and 299/137 (DP  
804 -30 V, EP -4 V, CE -18 V) for SAG.

805  
806 *Molecular cloning and candidate localization studies in Nicotiana benthamiana leaves*  
807 Open reading frames of selected candidate genes were amplified from cDNA prepared with  
808 Maxima Reverse Transcriptase (Thermo Fisher Scientific) according to manufactureres  
809 instruction using leaf RNA that had been extracted using the Spectrum Plant Total RNA Kit  
810 (Merck KGaA, Darmstadt, Germany). Constructs were amplified with the Phusion High-  
811 Fidelity DNA Polymerase (Thermo Fisher Scientific, Waltham, MA, USA) following  
812 manufacturer's instructions and using primers listed in Suppl. Table S4. Gateway cloning into  
813 the plant binary vectors pMDC32-ChC and pMDC32-ChN was carried out by traditional or  
814 fast Gateway® cloning as described in (Müller et al., 2017). Vector construction of pMDC32-  
815 ChC and pMDC32-ChN has been described previously in Kretzschmar et al., 2020 and  
816 Doner et al., 2021, respectively. The construct of MmDGAT2 in pMDC32, which was used for  
817 co-expression experiments, has been described in Cai et al., 2019. Localization of  
818 candidates was analyzed in leaves of *N. benthamiana* that were transiently transformed by  
819 infiltration with *Agrobacterium tumefaciens* harboring candidate expression vectors. *N.*  
820 *benthamiana* plant growth, leaf infiltration, BODIPY staining, and CLSM imaging was  
821 performed as previously described (Gidda et al., 2016; Kretzschmar et al., 2020).  
822 Micrographs of leaves were acquired using a Leica SP5 CLSM (Leica Microsystems).  
823 Excitations and emission signals for fluorescent proteins and BODIPY were collected  
824 sequentially as single optical sections in double-labeling experiments like those described in  
825 Gidda et al., 2016.

826  
827 **Accession numbers**  
828 AT3G01420 (α-DOX1); AT1G73680 (α-DOX2); AT2G07050 (CAS); AT5G53560 (CB5-E);  
829 AT2G33380 (CLO3); AT2G17840 (ERD7); AT1G01610 (GPAT4); AT4G00400 (GPAT8);  
830 AT1G67360 (LDAP1); AT2G47780 (LDAP2); AT3G05500 (LDAP3); AT5G16550 (LDIP);  
831 AT5G04830 (LDNP); AT1G43890 (LDS1); AT1G73920 (LIDL2); AT4G33110 (LIME1);  
832 AT4G33120 (LIME2); AT1G45201 (OBL3); AT4G10790 (PUX10); AT5G13710 (SMT1);  
833 NP\_080660.1 (MmDGAT2)

834  
835 **Supplemental Data**  
836 **Supplemental Figure S1:** Membrane and sterol lipid composition in heat-stressed leaves.  
837 **Supplemental Figure S2:** Membrane lipid composition after infection by *B. cinerea*.  
838 **Supplemental Figure S3:** Composition of membrane lipids after infection with *P. syringae*.  
839 **Supplemental Figure S4:** Relative composition of triacylglycerols and sterol esters species after  
840 different infection treatments.  
841 **Supplemental Figure S5:** STRING networks of differentially accumulating proteins of *Arabidopsis*  
842 Col-0 leaves after different stresses.

843 **Supplemental Figure S6:** Alterations in total abundance and species composition of membrane and  
844 hydrophobic lipids of the Arabidopsis double mutant *tgd1-1 sdp1-4*.

845 **Supplemental Figure S7:** Alterations in species composition of membrane and sterol lipids of the  
846 Arabidopsis double mutant *tgd1-1 sdp1-4*.

847 **Supplemental Figure S8:** STRING networks of differentially accumulating proteins in leaf total protein  
848 fractions of Arabidopsis Col-0 and *tgd1-1 sdp1-4*.

849 **Supplemental Figure S9:** Protein abundance of three pathogenesis-related proteins in Arabidopsis  
850 leaves of Col-0 and *tgd1-1 sdp1-4* after different treatments.

851 **Supplemental Figure S10:** Enrichment of different organelle proteomes in the LD-enriched fraction.

852 **Supplemental Figure S11:** Prediction of the membrane-interacting region in CB5-E.

853 **Supplemental Figure S12:** Additional subcellular localization studies of candidate proteins in  
854 *Nicotiana benthamiana* leaves.

855 **Supplemental Table S1:** Metadata file for LC-MS/MS data processing with MaxQuant.

856 **Supplemental Table S2:** Parameters for lipid analysis by UPLC-nanoESI-MS/MS.

857 **Supplemental Table S3:** Primers used for gene expression analysis via qPCR

858 **Supplemental Table S4:** Primers used for Gateway cloning and sequencing

859 **Supplemental Dataset S1:** Arabidopsis leaf membrane lipids - absolute amounts.

860 **Supplemental Dataset S2:** Arabidopsis leaf membrane lipids - relative composition of species per  
861 class.

862 **Supplemental Dataset S3:** Arabidopsis leaf neutral lipids - absolute peak areas.

863 **Supplemental Dataset S4:** Arabidopsis leaf neutral lipids - normalized icf-corrected peak areas.

864 **Supplemental Dataset S5:** Relative contribution of sterol esters with a common sterol moiety to total  
865 sterol ester signal intensity.

866 **Supplemental Dataset S6:** Relative proportions of individual TAG species.

867 **Supplemental Dataset S7:** Free sterols

868 **Supplemental Dataset S8:** Proteins found in Arabidopsis leaves - normalised rLFQ and riBAQ  
869 values.

870 **Supplemental Dataset S9:** Comparison of protein abundance in Arabidopsis Col-0 leaves after  
871 infection with *B. cinerea* to mock-treated plants.

872 **Supplemental Dataset S10:** Comparison of protein abundance in Arabidopsis Col-0 leaves in  
873 reaction to infection with *P. syringae* pv. *tomato* DC3000  $\Delta$ avrPto  $\Delta$ avrPtoB.

874 **Supplemental Dataset S11:** Comparison of protein abundance in Arabidopsis Col-0 leaves after heat  
875 stress.

876 **Supplemental Dataset S12:** Proteins with relevance in lipid metabolism found in Arabidopsis leaves -  
877 normalised rLFQ and riBAQ values

878 **Supplemental Dataset S13:** Comparison of protein abundance in Arabidopsis *tgd1-1 sdp1-4* leaves  
879 after infection with *B. cinerea* to mock-treated plants.

880 **Supplemental Dataset S14:** Comparison of protein abundance in Arabidopsis *tgd1-1 sdp1-4* leaves  
881 in reaction to infection with *P. syringae* pv. *tomato* DC3000  $\Delta$ avrPto  $\Delta$ avrPtoB.

882 **Supplemental Dataset S15:** Comparison of protein abundance in Arabidopsis *tgd1-1 sdp1-4* leaves  
883 after heat stress.

884 **Supplemental Dataset S16:** Comparison of proteins in non-stressed leaves of Arabidopsis Col-0 and  
885 *tgd1-1 sdp1-4*.

886 **Supplemental Dataset S17:** Comparison of proteins in LD-enriched fractions to total protein fractions  
887 of Arabidopsis *tgd1-1 sdp1-4* leaves.

888

889 **Acknowledgements**

890 We are grateful to Marcel Wiermer for his support with pathogen infections and we thank him and  
891 George Haughn for valuable advice. We thank Changcheng Xu for providing the *tgd1-1 sdp1-4* seeds.  
892 Technical assistance was provided by Helga Peisker, Jannis Anstatt, Denis Krone, and Annabel Maisl.

893

894

895 **Table 1: Composition of LD proteome in LD-enriched fractions of leaves from *Arabidopsis tgd1-1 sdp1-4*.** LDs were isolated from  
 896 *Arabidopsis* leaves of *tgd1-1 sdp1-4* in non-stressed conditions and after different stresses. Stress treatments of leaves included infection with  
 897 *Botrytis cinerea* (*B. cinerea*) or *Pseudomonas syringae* pv. *tomato* DC3000  $\Delta$ avrPto  $\Delta$ avrPtoB (*Pseudomonas*), or heat stress for 24 hours at 37°C.  
 898 For each stress, a mock or control treatment was performed. The relative contribution of individual LD proteins to the total LD protein abundance  
 899 (riBAQ values) was calculated for each treatment separately. \* denotes proteins that could not be identified unequivocally.

| Gene symbol    | AGI code              | Protein name                           | % of LD proteins |                            |                   |                             |                    |               |
|----------------|-----------------------|----------------------------------------|------------------|----------------------------|-------------------|-----------------------------|--------------------|---------------|
|                |                       |                                        | No treatment     | Mock ( <i>B. cinerea</i> ) | <i>B. cinerea</i> | Mock ( <i>Pseudomonas</i> ) | <i>Pseudomonas</i> | control       |
| $\alpha$ -DOX1 | AT3G01420             | $\alpha$ -DIOXYGENASE 1                | 0.044            | 0                          | 1.864             | 0                           | 0.296              | 0.003 0       |
| CAS1           | AT2G07050             | CYCLOARTENOL SYNTHASE 1                | 0.455            | 0                          | 0.071             | 0.654                       | 0.153              | 1.540 0.587   |
| CB5-E          | AT5G53560             | CYTOCHROME B5 ISOFORM E                | 2.216            | 3.109                      | 3.022             | 1.340                       | 5.322              | 1.148 0.389   |
| CLO3           | AT2G33380             | CALEOSIN 3                             | 41.633           | 33.859                     | 53.205            | 40.516                      | 73.881             | 9.051 18.235  |
| ERD7           | AT2G17840             | EARLY RESPONSIVE TO DEHYDRATION 7      | 1.463            | 0                          | 0.490             | 0.030                       | 0.058              | 5.378 5.226   |
| GPAT4          | AT1G01610             | GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 4 | 0.218            | 0                          | 0.063             | 0                           | 0                  | 2.003 0.756   |
| GPAT8          | AT4G00400             | GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 8 | 0                | 0                          | 0                 | 0                           | 0                  | 0.109 0       |
| LDAP1          | AT1G67360             | LD ASSOCIATED PROTEIN 1                | 1.071            | 0.889                      | 1.924             | 0.402                       | 0                  | 4.171 4.232   |
| LDAP2          | AT2G47780             | LD ASSOCIATED PROTEIN 2                | 0.166            | 0                          | 0.077             | 0                           | 0                  | 0.154 0.064   |
| LDAP3          | AT3G05500             | LD ASSOCIATED PROTEIN 3                | 41.577           | 50.700                     | 30.210            | 43.158                      | 15.446             | 53.114 51.045 |
| LDIP           | AT5G16550             | LDAP - INTERACTING PROTEIN             | 4.056            | 2.635                      | 2.154             | 2.613                       | 0.994              | 6.115 7.684   |
| LDNP           | AT5G04830             | LD-LOCALISED NTF2 FAMILY PROTEIN       | 3.135            | 2.641                      | 2.634             | 6.021                       | 2.456              | 3.332 3.723   |
| LDS1           | AT1G43890             | LIPID DROPLETS AND STOMATA 1           | 1.803            | 2.555                      | 1.253             | 2.356                       | 1.061              | 3.536 3.208   |
| LIDL2          | AT1G73920             | LD-ASSOCIATED LIPASE 2                 | 0.109            | 0                          | 0                 | 0                           | 0                  | 0.061 0.036   |
| LIME1/2*       | AT4G33110 / AT4G33120 | LD-ASSOCIATED METHYLTRANSFERASE 1/2    | 0.432            | 0.473                      | 0.699             | 0.609                       | 0                  | 1.963 1.350   |

|       |           |                                           |   |       |       |       |       |       |       |       |  |
|-------|-----------|-------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|--|
|       |           |                                           | * |       |       |       |       |       |       |       |  |
| OBL3  | AT1G45201 | OIL BODY LIPASE 3                         |   | 0.618 | 0.592 | 0.338 | 0.922 | 0.250 | 3.025 | 1.918 |  |
| PUX10 | AT4G10790 | PLANT UBX DOMAIN<br>CONTAINING PROTEIN 10 |   | 0.479 | 0.728 | 0.297 | 0.307 | 0     | 0.580 | 0.259 |  |
| SMT1  | AT5G13710 | STEROL<br>METHYLTRANSFERASE 1             |   | 0.525 | 1.818 | 1.698 | 1.073 | 0.084 | 4.716 | 1.286 |  |

900

901 **Figure 1: Changes in total abundance of membrane and hydrophobic lipids after**  
902 **different stress treatments.** Arabidopsis plants were infected with *Botrytis cinerea* or  
903 *Pseudomonas syringae* pv. *tomato* DC3000  $\Delta$ avrPto/ $\Delta$ avrPtoB (*Pseudomonas*), or kept for  
904 24 h at 37 °C (heat stress) and compared to mock-infected or non-stressed plants. After  
905 stress treatment, leaves were harvested, lipids isolated, and their amounts determined by  
906 mass spectrometry. Values of all species in the indicated lipid classes were added up and  
907 this sum was normalized to the respective control. Statistical comparisons were calculated  
908 with Student's t-test, using Holm-Bonferroni correction for multiple comparisons. Values are  
909 shown as mean  $\pm$  standard deviation. Significant differences are indicated with \* and \*\*\* for  
910  $p < 0.05$  and  $p < 0.001$ , respectively.  $n \geq 4$  biological replicates. MGDG,  
911 monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG,  
912 sulfoquinovosyldiacylglycerol; PG, phosphatidylglycerol; PC, phosphatidylcholine, PE,  
913 phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; FS, free sterols;  
914 SE, sterol esters; TAG, triacylglycerol.

915 **Figure 2: Heat-induced changes in membrane lipid and triacylglycerol composition.**  
916 Arabidopsis Col-0 was heat-stressed (37°C for 24 h) or kept at normal temperature regime  
917 (control). Subsequently, membrane and hydrophobic lipids were isolated and analyzed by  
918 mass spectrometry. For individual lipids classes, the relative species composition was  
919 calculated and is shown here for the glycoglycerolipids monogalactosyldiacylglycerol and  
920 digalactosyldiacylglycerol, the phosphoglycerolipids phosphatidylcholine and  
921 phosphatidylethanolamine, and triacylglycerol. Lipid species are described by the combined  
922 number of all carbon atoms and double bonds of all fatty acids esterified to the glycerol  
923 backbone. Statistical comparisons were calculated with Student's t-test, using Holm-  
924 Bonferroni correction for multiple comparisons. Values are shown as mean  $\pm$  standard  
925 deviation. Significant differences are indicated with \*, \*\* and \*\*\* for  $p < 0.05$ ,  $p < 0.01$  and  $p <$   
926 0.001, respectively.  $n \geq 4$  biological replicates.

927 **Figure 3: Alterations in the Arabidopsis lipid profile of phosphatidylcholine,**  
928 **phosphatidylethanolamine and free sterols after infection.** Arabidopsis Col-0 plants  
929 were infected with *Botrytis cinerea* or *Pseudomonas syringae* pv. *tomato* DC3000  
930  $\Delta$ avrPto/ $\Delta$ avrPtoB (*Pseudomonas*). After the infection, lipids were isolated from leaves and  
931 analyzed by mass spectrometry. The relative composition of lipid species was determined  
932 and is displayed here for phosphatidylcholine, phosphatidylethanolamine and free sterols.  
933 For the phosphoglycerolipids, lipid species are described by the combined number of all  
934 carbon atoms and double bonds of all fatty acids esterified to the glycerol backbone.  
935 Statistical comparisons were calculated with Student's t-test, using Holm-Bonferroni  
936 correction for multiple comparisons. Values are shown as mean  $\pm$  standard deviation.

937 Significant differences are indicated with \*, \*\* and \*\*\* for  $p < 0.05$ ,  $p < 0.01$  and  $p < 0.001$ ,  
938 respectively.  $n \geq 4$  biological replicates.

939 **Figure 4: Alterations of total cellular proteins of *Arabidopsis* leaves subjected to**  
940 **different stress treatments.** *Arabidopsis* plants were infected with *Botrytis cinerea* (*B.*  
941 *cinerea*), *Pseudomonas syringae* pv. *tomato* DC3000  $\Delta$ avrPto/ $\Delta$ avrPtoB (*Pseudomonas*) or  
942 heat stressed for 24 h at 37 °C. Protein abundances (rLFQ values) of individual proteins  
943 were normalised to the respective values of the control treatment and the resulting ratio was  
944 log<sub>2</sub>-transformed. Statistical significance of the log<sub>2</sub>-fold change was calculated by Student's  
945 t-test. The constructed volcano plots indicate proteins that are significantly enriched (upper  
946 right) or depleted (upper left) in reaction to the individual stress treatments. For each  
947 experiment, only proteins detected in all replicates of either mock-treated or infected plants  
948 were included in the analysis. For heat stress, proteins present in at least four replicates of  
949 either heat-stressed or control plants were analyzed. Vertical lines indicate 1.5-fold  
950 enrichment or depletion, while the horizontal line indicates a significance of  $p = 0.05$ . Proteins  
951 further mentioned in the text are labeled and highlighted in cyan.  $n=5$  (biological replicates)  
952 for *B. cinerea* and its mock control,  $n=3$  for *Pseudomonas* treatment and its control,  $n=5$  for  
953 heat stress treatment and  $n=4$  for its control.

954 **Figure 5: Differences in the proteome of *Arabidopsis* Col-0 compared to the double**  
955 **mutant *tgd1-1 sdp1-4*.** The proteome of Col-0 and *tgd1-1 sdp1-4* total protein fractions of  
956 non-stressed plants was analyzed. Changes in protein abundance are visualized in a  
957 volcano plot, displaying proteins accumulated (upper right) or depleted (upper left) in the  
958 double mutant (A). Proteins were only included in the analysis if they were present in all  
959 replicate samples of at least one line. Vertical lines indicate 1.5-fold enrichment or depletion,  
960 and the horizontal line indicates a  $p$ -value of 0.05. Proteins further discussed in the text are  
961 marked: the glutathione S-transferase GSTF7 and the PR proteins PR1, PR2 and PR5  
962 accumulate in the mutant (cyan dots), while the allene oxide cyclases AOC2 and AOC4 are  
963 depleted (orange dots). PR gene expression was further analyzed in leaves of Col-0 or *tgd1-*  
964 *1 sdp1-4* and expression levels were calculated relative to the reference gene *PTB1*  
965 (*AT3G01150*) (B). Leaves of both plant lines were also analyzed by UPLC-nanoESI-MS/MS  
966 for their salicylic acid (SA) and SA glucoside (SAG) content (C).  $p$ -values in (A) were  
967 calculated by Student's t-test. Values are shown as mean  $\pm$  standard deviation in (B) and  
968 (C). Statistical analysis in (B) and (C) was carried out with the Wilcoxon-Mann-Whitney-Test,  
969 using Holm-Bonferroni correction for multiple comparisons. Statistical differences with  $p < 0.05$   
970 are indicated by different letters.  $n \geq 3$  biological replicates in (A),  $n=6$  biological replicates in  
971 (B) and (C). For (B) two independent technical replicates of each biological replicate were  
972 measured.

973 **Figure 6: Enrichment analysis of proteins in the LD-enriched fractions prepared from**  
974 **Arabidopsis leaves.** LDs were enriched from leaves of *Arabidopsis tgd1-1 sdp1-4* plants  
975 that were either untreated or subjected to different stresses. Subsequently, the proteome of  
976 the LD-enriched fractions and the corresponding total leaf protein extract was measured. Of  
977 the detected proteins, a volcano plot was created, plotting the enrichment of each protein in  
978 the LD-fraction against its respectively calculated *p*-value (A). Treatments were combined,  
979 however, proteins were only included in the analysis if they were identified by at least two  
980 peptides and were present in at least three replicates in one of the sample types. Proteins  
981 significantly enriched in the LD-fraction cluster in the upper right corner and this section of  
982 the volcano plot is depicted enlarged in (B). Previously known LD proteins are marked in  
983 orange; proteins investigated in this study that did or did not localize to LDs are highlighted in  
984 red and cyan, respectively. Known and new LD proteins are labeled, in addition the protein  
985 SEC61 $\gamma$  is indicated. *P*-values were calculated by Student's t-test. Vertical lines indicate 1.5-  
986 fold enrichment or depletion, while the horizontal line indicates a significance of *p* < 0.05.  
987 LD, lipid droplet; TE, total protein extract; CAS1, CYCLOARTENOL SYNTHASE 1; CB5-D/E,  
988 CYTOCHROME B5 ISOFORM D/E; CLO3, CALEOSIN 3; ERD7/14, EARLY-RESPONSIVE  
989 TO DEHYDRATION 7/14; GPAT4, GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 4;  
990 LDAP1/3, LD-ASSOCIATED PROTEIN 1/3; LDIP, LDAP INTERACTING PROTEIN; LDNP,  
991 LD-LOCALISED NTF2 FAMILY PROTEIN; LDS1, LIPID DROPLETS AND STOMATA 1;  
992 LIME, LD-associated methyltransferase; OBL3, OIL BODY LIPASE 3; PUX10, PLANT UBX  
993 DOMAIN CONTAINING PROTEIN 10; SEC61 $\gamma$ , SEC61 GAMMA; SMT1, STEROL  
994 METHYLTRANSFERASE 1.

995

996 **Figure 7: LDNP and CB5-E localize to LDs in *Nicotiana benthamiana* leaf cells.**  
997 Subcellular localization studies of N- and/or C-terminal mCherry-tagged LDNP and CB5-E  
998 were carried out by transient expression in *N. benthamiana* leaves. Proteins were fused to an  
999 mCherry-tag (magenta channel) and LDs were stained with BODIPY 493/503 (cyan  
1000 channel). Shown are also the corresponding merged images; boxes in (A, D) highlight  
1001 regions of the cell shown with higher magnification in the insets. LDNP-mCherry localization  
1002 to BODIPY-stained LDs was observed when the protein was expressed alone (A) or when  
1003 co-expressed with MmDGAT2 (B), which causes a proliferation of LDs in plant cells (Cai et  
1004 al., 2019). CB5-E appended at its C-terminus to mCherry did not localize to LDs (C),  
1005 however, N-terminal mCherry-tagged CB5-E localized to LDs (D). Bars = 10  $\mu$ m (2  $\mu$ m in  
1006 insets).

1007 **Figure 8: Changes in the known LD proteome of leaves after stress treatments.** The  
1008 protein abundance (riBAQ values) of known LD proteins in the LD-enriched fraction isolated

1009 from *Arabidopsis* leaves was followed in reaction to infection with *Botrytis cinerea* (*B.*  
1010 *cinerea*), or *Pto* DC3000  $\Delta$ avrPto/ $\Delta$ avrPtoB (*Pseudomonas*), or heat stress for 24 h at 37°C.  
1011 The total LD protein abundance was calculated by summing up riBAQ values of all LD  
1012 proteins for each treatment (A). In addition, the relative contribution of all detected LD  
1013 proteins to the total LD protein abundance was calculated (B). Stacked bar plots show the  
1014 relative proportion of individual LD proteins in the order displayed in the legend, i.e.  
1015 percentage of GPAT8 at the top and percentage of CLO3 at the bottom. The changes in  
1016 abundance of individual proteins was followed by calculating the ratio of their riBAQ values in  
1017 LD fractions of stressed plants relative to their riBAQ values in respective control treatments  
1018 (C). Values above and below 1 indicate enrichment or depletion upon individual stresses,  
1019 respectively. The horizontal line highlights ratios of 1. Proteins were only included if they  
1020 were identified by at least two peptides and were detected in at least three replicates of at  
1021 least one sample type.  $n \geq 3$  replicates per treatment.

1022  $\alpha$ -DOX1,  $\alpha$ -DIOXYGENASE 1; CAS1, CYCLOARTENOL SYNTHASE 1; CB5-E,  
1023 CYTOCHROME B5 ISOFORM E; CLO3, CALEOSIN 3; ERD7, EARLY-RESPONSIVE TO  
1024 DEHYDRATION 7; GPAT4/8, GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 4/8;  
1025 LDAP1/2/3, LD-ASSOCIATED PROTEIN 1/2/3; LDIP, LDAP INTERACTING PROTEIN;  
1026 LDNP, LD-LOCALISED NTF2 FAMILY PROTEIN; LDS1, LIPID DROPLETS AND STOMATA  
1027 1; LIDL2, LIDL2, LD-ASSOCIATED LIPASE 2; LIME, LD-ASSOCIATED  
1028 METHYLTRANSFERASE 1/2 (ambiguously identified); OBL3, OIL BODY LIPASE 3; PUX10,  
1029 PLANT UBX DOMAIN CONTAINING PROTEIN; SEC61 $\gamma$ , SEC61 GAMMA; SMT1, STEROL  
1030 METHYLTRANSFERASE 1.

1031 **References**

1032 **Ahmad L, Rylott EL, Bruce NC, Edwards R, Grogan G** (2017) Structural evidence for *Arabidopsis*  
1033 glutathione transferase AtGSTF2 functioning as a transporter of small organic ligands. *FEBS*  
1034 *Open Bio* **7**: 122–132

1035 **Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud J-P** (2010)  
1036 RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought  
1037 tolerance in *Arabidopsis thaliana*. *Plant Cell Physiol* **51**: 1975–1987

1038 **Bauwe H, Hagemann M, Fernie AR** (2010) Photorespiration: players, partners and origin. *Trends*  
1039 *Plant Sci* **15**: 330–336

1040 **Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E** (2015) The *Arabidopsis*  
1041 information resource: Making and mining the “gold standard” annotated reference plant  
1042 genome. *Genesis* **53**: 474–485

1043 **Berghoff SA, Spieth L, Sun T, Hosang L, Depp C, Sasmita AO, Vasileva MH, Scholz P, Zhao Y,**  
1044 **Krueger-Burg D, et al** (2021) Neuronal cholesterol synthesis is essential for repair of  
1045 chronically demyelinated lesions in mice. *Cell Rep* **37**: 109889

1046 **Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH** (2010) Biotic stress globally  
1047 downregulates photosynthesis genes. *Plant Cell Environ* **33**: 1597–1613

1048 **Blée E, Boachon B, Burcklen M, Le Guédard M, Hanano A, Heintz D, Ehltung J, Herrfurth C,**  
1049 **Feussner I, Bessoule J-J** (2014) The reductase activity of the *Arabidopsis* caleosin  
1050 **RESPONSIVE TO DESSICATION20** mediates gibberellin-dependent flowering time, abscisic  
1051 acid sensitivity, and tolerance to oxidative stress. *Plant Physiol* **166**: 109–124

1052 **Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S** (2006) Infection with virulent and avirulent  
1053 *P. syringae* strains differentially affects photosynthesis and sink metabolism in *Arabidopsis*  
1054 leaves. *Planta* **225**: 1–12

1055 **Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E** (2009) The multifunctional  
1056 enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to  
1057 camalexin in the indole-3-acetonitrile metabolic network of *Arabidopsis thaliana*. *Plant Cell* **21**:  
1058 1830–1845

1059 **Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule J-J,**  
1060 **Bréhélin C** (2017) Proteomic analysis of lipid droplets from *Arabidopsis* aging leaves brings  
1061 new insight into their biogenesis and functions. *Front Plant Sci* **8**: 894

1062 **Cai Y, Goodman JM, Pyc M, Mullen RT, Dyer JM, Chapman KD** (2015) *Arabidopsis* SEIPIN  
1063 proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. *Plant*  
1064 *Cell* **27**: 2616–2636

1065 **Cai Y, Whitehead P, Chappell J, Chapman KD** (2019) Mouse lipogenic proteins promote the co-  
1066 accumulation of triacylglycerols and sesquiterpenes in plant cells. *Planta* **250**: 79–94

1067 **Cernac A, Benning C** (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the  
1068 control of storage compound biosynthesis in *Arabidopsis*. *Plant J* **40**: 575–585

1069 **Chen JCF, Tsai CCY, Tzen JTC** (1999) Cloning and secondary structure analysis of caleosin, a  
1070 unique calcium-binding protein in oil bodies of plant seeds. *Plant Cell Physiol* **40**: 1079–1086

1071 **Corey EJ, Matsuda SP, Bartel B** (1993) Isolation of an *Arabidopsis thaliana* gene encoding  
1072 cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase  
1073 by the use of a chromatographic screen. *Proc Natl Acad Sci U S A* **90**: 11628–11632

1074 **Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M** (2014) Accurate proteome-wide label-free  
1075 quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.  
1076 *Mol Cell Proteomics* **13**: 2513–2526

1077 **Cox J, Mann M** (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range  
1078 mass accuracies and proteome-wide protein quantification. *Nat Biotechnol* **26**: 1367–1372

1079 **Crawford T, Lehotai N, Strand Å** (2018) The role of retrograde signals during plant stress responses.  
1080 *J Exp Bot* **69**: 2783–2795

1081 **Cummins I, Hills MJ, Ross JHE, Hobbs DH, Watson MD, Murphy DJ** (1993) Differential, temporal  
1082 and spatial expression of genes involved in storage oil and oleosin accumulation in developing  
1083 rapeseed embryos: implications for the role of oleosins and the mechanisms of oil-body  
1084 formation. *Plant Mol Biol* **23**: 1015–1027

1085 **Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R** (2005) Genome-wide identification  
1086 and testing of superior reference genes for transcript normalization in *Arabidopsis*. *Plant*  
1087 *Physiol* **139**: 5–17

1088 **Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Cacas J-L, Chardot T, Gallois J-L, D'Andrea S**  
1089 (2018) PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated  
1090 oleosins from seed lipid droplets in *Arabidopsis*. *Plant Cell* **30**: 2116–2136

1091 **Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR** (2000) Sterol methyltransferase 1  
1092 controls the level of cholesterol in plants. *Plant Cell* **12**: 853–870

1093 **Dixon DP, Skipsey M, Edwards R** (2010) Roles for glutathione transferases in plant secondary  
1094 metabolism. *Phytochemistry* **71**: 338–350

1095 **Doner NM, Seay D, Mehling M, Sun S, Gidda SK, Schmitt K, Braus GH, Ischebeck T, Chapman  
1096 KD, Dyer JM, et al** (2021) *Arabidopsis thaliana* EARLY RESPONSIVE TO DEHYDRATION 7  
1097 localizes to lipid droplets via its senescence domain. *Front Plant Sci* **12**: 658961

1098 **Dufourc EJ** (2008) Sterols and membrane dynamics. *J Chem Biol* **1**: 63–77

1099 **Eberhardt RY, Chang Y, Bateman A, Murzin AG, Axelrod HL, Hwang WC, Aravind L** (2013) Filling  
1100 out the structural map of the NTF2-like superfamily. *BMC Bioinformatics* **14**: 327

1101 **Falcone DL, Ogas JP, Somerville CR** (2004) Regulation of membrane fatty acid composition by  
1102 temperature in mutants of *Arabidopsis* with alterations in membrane lipid composition. *BMC*  
1103 *Plant Biol* **4**: 17

1104 **Fan J, Yan C, Roston R, Shanklin J, Xu C** (2014) *Arabidopsis* lipins, PDAT1 acyltransferase, and  
1105 SDP1 triacylglycerol lipase synergistically direct fatty acids toward β-oxidation, thereby  
1106 maintaining membrane lipid homeostasis. *Plant Cell* **26**: 4119–4134

1107 **Fernández-Santos R, Izquierdo Y, López A, Muñiz L, Martínez M, Cascón T, Hamberg M,  
1108 Castresana C** (2020) Protein profiles of lipid droplets during the hypersensitive defense  
1109 response of *Arabidopsis* against *Pseudomonas* infection. *Plant Cell Physiol* **61**: 1144–1157

1110 **Fu ZQ, Dong X** (2013) Systemic acquired resistance: Turning local infection into global defense. *Annu  
1111 Rev Plant Biol* **64**: 839–863

1112 **Fukuchi-Mizutani M, Mizutani M, Tanaka Y, Kusumi T, Ohta D** (1999) Microsomal electron transfer  
1113 in higher plants: Cloning and heterologous expression of NADH-cytochrome *b* 5 reductase  
1114 from *Arabidopsis*. *Plant Physiol* **119**: 353–362

1115 **Gasulla F, Vom Dorp K, Dombrink I, Zähringer U, Gisch N, Dörmann P, Bartels D** (2013) The role  
1116 of lipid metabolism in the acquisition of desiccation tolerance in *Craterostigma plantagineum*:  
1117 a comparative approach. *Plant J* **75**: 726–741

1118 **Ge S, Zhang R-X, Wang Y-F, Sun P, Chu J, Li J, Sun P, Wang J, Hetherington AM, Liang Y-K**  
1119 (2022) The Arabidopsis Rab protein RABC1 affects stomatal development by regulating lipid  
1120 droplet dynamics. *Plant Cell* **34**: 4274–4292

1121 **Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde J-P, Bryce JH, Graham IA,**  
1122 **Smith SM** (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development,  
1123 fatty acid  $\beta$ -oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings.  
1124 *Plant J* **28**: 1–12

1125 **Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, Wu P, Andrews DW, Chapman KD, Dyer JM,**  
1126 **Mullen RT** (2016) Lipid droplet-associated proteins (LDAPs) are required for the dynamic  
1127 regulation of neutral lipid compartmentation in plant cells. *Plant Physiol* **170**: 2052–2071

1128 **Griebel T, Zeier J** (2010) A role for beta-sitosterol to stigmasterol conversion in plant-pathogen  
1129 interactions. *Plant J* **63**: 254–268

1130 **Gutbrod K, Peisker H, Dörmann P** (2021) Direct infusion mass spectrometry for complex lipid  
1131 analysis. In D Bartels, P Dörmann, eds, *Plant Lipids*. Springer US, New York, NY, pp 101–115

1132 **Guzha A, McGee R, Scholz P, Hartken D, Lüdke D, Bauer K, Wenig M, Zienkiewicz K, Herrfurth**  
1133 **C, Feussner I, et al** (2022) Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity  
1134 of Arabidopsis against *Botrytis cinerea*. *Plant Physiol* **189**: 1794–1813

1135 **Guzha A, Whitehead P, Ischebeck T, Chapman KD** (2023) Lipid droplets: Packing hydrophobic  
1136 molecules within the aqueous cytoplasm. *Annu Rev Plant Biol* **74**: 195–223

1137 **Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix**  
1138 **RW, Ellis RJ** (1988) Homologous plant and bacterial proteins chaperone oligomeric protein  
1139 assembly. *Nature* **333**: 330–334

1140 **Herrfurth C, Feussner I** (2020) Quantitative jasmonate profiling using a high-throughput UPLC-  
1141 NanoESI-MS/MS method. *Methods Mol Biol* **2085**: 169–187

1142 **Herrfurth C, Liu Y-T, Feussner I** (2021) Targeted analysis of the plant lipidome by UPLC-NanoESI-  
1143 MS/MS. *Methods Mol Biol* **2295**: 135–155

1144 **Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K** (2015) Landscape of the lipidome and  
1145 transcriptome under heat stress in *Arabidopsis thaliana*. *Sci Rep* **5**: 1–11

1146 **Higashi Y, Saito K** (2019) Lipidomic studies of membrane glycerolipids in plant leaves under heat  
1147 stress. *Prog Lipid Res* **75**: 100990

1148 **Hsieh K, Huang AHC** (2004) Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells.  
1149 *Plant Physiol* **136**: 3427–3434

1150 **Ischebeck T, Krawczyk HE, Mullen RT, Dyer JM, Chapman KD** (2020) Lipid droplets in plants and  
1151 algae: Distribution, formation, turnover and function. *Semin Cell Dev Biol* **108**: 82–93

1152 **Ishikawa A, Tanaka H, Nakai M, Asahi T** (2003) Deletion of a chaperonin 60 $\beta$  gene leads to cell  
1153 death in the *Arabidopsis* lesion initiation 1 mutant. *Plant Cell Physiol* **44**: 255–261

1154 **Jiang Z, He F, Zhang Z** (2017) Large-scale transcriptome analysis reveals *arabidopsis* metabolic  
1155 pathways are frequently influenced by different pathogens. *Plant Mol Biol* **94**: 453–467

1156 **Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, d'Andréa S, Chardot T, Nesi N**  
1157 (2009) Protein composition of oil bodies from mature *Brassica napus* seeds. *Proteomics* **9**:  
1158 3268–3284

1159 **Jolivet P, Roux E, D'Andrea S, Davanture M, Negroni L, Zivy M, Chardot T** (2004) Protein  
1160 composition of oil bodies in *Arabidopsis thaliana* ecotype WS. *Plant Physiol Biochem* **42**: 501–  
1161 509

1162 **Joyard J, Maréchal E, Miège C, Block MA, Dorne A-J, Douce R** (2004) Structure, distribution and  
1163 biosynthesis of glycerolipids from higher plant chloroplasts. In P-A Siegenthaler, M Norio, eds,  
1164 Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer Academic Publishers,  
1165 Dordrecht, pp 21–52

1166 **Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ** (2006) Protein and lipid composition  
1167 analysis of oil bodies from two *Brassica napus* cultivars. *Proteomics* **6**: 4586–4598

1168 **Kelly AA, Feussner I** (2016) Oil is on the agenda: Lipid turnover in higher plants. *Biochim Biophys  
1169 Acta* **1861**: 1253–1268

1170 **Khor VK, Ahrends R, Lin Y, Shen W-J, Adams CM, Roseman AN, Cortez Y, Teruel MN, Azhar S,  
1171 Kraemer FB** (2014) The proteome of cholesteryl-ester-enriched versus triacylglycerol-  
1172 enriched lipid droplets. *PLoS One* **9**: e105047

1173 **Kim EY, Park KY, Seo YS, Kim WT** (2016a) Arabidopsis Small Rubber Particle Protein Homolog  
1174 SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in  
1175 Drought Stress Responses. *Plant Physiol* **170**: 2494–2510

1176 **Kim EY, Park KY, Seo YS, Kim WT** (2016b) Arabidopsis small rubber particle protein homolog SRPs  
1177 play dual roles as positive factors for tissue growth and development and in drought stress  
1178 responses. *Plant Physiol* **170**: 2494–2510

1179 **Kim HU, Lee K-R, Jung S-J, Shin HA, Go YS, Suh M-C, Kim JB** (2015) Senescence-inducible LEC2  
1180 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.  
1181 *Plant Biotechnol J* **13**: 1346–1359

1182 **Kim K, Portis AR** (2005) Temperature dependence of photosynthesis in *Arabidopsis* plants with  
1183 modifications in Rubisco Activase and membrane fluidity. *Plant Cell Physiol* **46**: 522–530

1184 **Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA** (2016) A high resolution  
1185 map of the *Arabidopsis thaliana* developmental transcriptome based on RNA-seq profiling.  
1186 *Plant J* **88**: 1058–1070

1187 **Kliebenstein DJ, Rowe HC, Denby KJ** (2005) Secondary metabolites influence *Arabidopsis/Botrytis*  
1188 interactions: variation in host production and pathogen sensitivity. *Plant J* **44**: 25–36

1189 **Kobza J, Edwards GE** (1987) Influences of leaf temperature on photosynthetic carbon metabolism in  
1190 wheat. *Plant Physiol* **83**: 69–74

1191 **Kovacs D, Kalmar E, Torok Z, Tompa P** (2008) Chaperone activity of ERD10 and ERD14, two  
1192 disordered stress-related plant proteins. *Plant Physiol* **147**: 381–390

1193 **Krawczyk HE, Rotsch AH, Herrfurth C, Scholz P, Shomroni O, Salinas-Riester G, Feussner I,  
1194 Ischebeck T** (2022a) Heat stress leads to rapid lipid remodeling and transcriptional  
1195 adaptations in *Nicotiana tabacum* pollen tubes. *Plant Physiol* **189**: 490–515

1196 **Krawczyk HE, Sun S, Doner NM, Yan Q, Lim MSS, Scholz P, Niemeyer PW, Schmitt K, Valerius  
1197 O, Pleskot R, et al** (2022b) SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET  
1198 PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-  
1199 plasma membrane tethering. *Plant Cell* **34**: 2424–2448

1200 **Kretzschmar FK, Doner NM, Krawczyk HE, Scholz P, Schmitt K, Valerius O, Braus GH, Mullen  
1201 RT, Ischebeck T** (2020) Identification of low-abundance lipid droplet proteins in seeds and  
1202 seedlings. *Plant Physiol* **182**: 1326–1345

1203 **Kretzschmar FK, Mengel LA, Müller AO, Schmitt K, Blersch KF, Valerius O, Braus GH,  
1204 Ischebeck T** (2018) PUX10 is a lipid droplet-localized scaffold protein that interacts with CELL  
1205 DIVISION CYCLE48 and is involved in the degradation of lipid droplet proteins. *Plant Cell* **30**:  
1206 2137–2160

1207 **Krogh A, Larsson B, von Heijne G, Sonnhammer EL** (2001) Predicting transmembrane protein  
1208 topology with a hidden Markov model: application to complete genomes. *J Mol Biol* **305**: 567–  
1209 580

1210 **Kumar D, Hazra S, Datta R, Chattopadhyay S** (2016) Transcriptome analysis of *Arabidopsis* mutants  
1211 suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic  
1212 stress. *Sci Rep* **6**: 36867

1213 **Kumar R, Tran L-SP, Neelakandan AK, Nguyen HT** (2012) Higher plant cytochrome b5 polypeptides  
1214 modulate fatty acid desaturation. *PLoS One* **7**: e31370

1215 **Kumar R, Wallis JG, Skidmore C, Browse J** (2006) A mutation in *Arabidopsis* cytochrome b5  
1216 reductase identified by high-throughput screening differentially affects hydroxylation and  
1217 desaturation. *Plant J* **48**: 920–932

1218 **La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T** (2005) A pathogen-  
1219 inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in  
1220 *Arabidopsis*. *Plant J* **44**: 810–825

1221 **Li F, Han X, Guan H, Xu MC, Dong YX, Gao X-Q** (2022) PALD encoding a lipid droplet-associated  
1222 protein is critical for the accumulation of lipid droplets and pollen longevity in *Arabidopsis*. *New*  
1223 *Phytol* **235**: 204–219

1224 **Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D,**  
1225 **Debono A, Durrett TP, et al** (2013) Acyl-lipid metabolism. *Arabidopsis Book* **11**: e0161

1226 **Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M** (2001) Genomic analysis of  
1227 the Hsp70 superfamily in *Arabidopsis thaliana*. *Cell Stress Chaperones* **6**: 201–208

1228 **Lin L-J, Tai SSK, Peng C-C, Tzen JTC** (2002) Steroleosin, a sterol-binding dehydrogenase in seed  
1229 oil bodies. *Plant Physiol* **128**: 1200–1211

1230 **Lin Y-T, Chen L-J, Herrfurth C, Feussner I, Li H** (2016) Reduced biosynthesis of  
1231 digalactosyldiacylglycerol, a major chloroplast membrane lipid, leads to oxylipin  
1232 overproduction and phloem cap lignification in *Arabidopsis*. *Plant Cell* **28**: 219–232

1233 **Listenberger LL, Brown DA** (2007) Fluorescent detection of lipid droplets and associated proteins.  
1234 *Curr Protoc Cell Biol* **35**: 24.2.1-24.2.11

1235 **Luttgeharm KD, Kimberlin AN, Cahoon EB** (2016) Plant sphingolipid metabolism and function. *In* Y  
1236 Nakamura, Y Li-Beisson, eds, *Lipids in Plant and Algae Development*. Springer International  
1237 Publishing, Cham, pp 249–286

1238 **Maggio C, Barbante A, Ferro F, Frigerio L, Pedrazzini E** (2007) Intracellular sorting of the tail-  
1239 anchored protein cytochrome b5 in plants: a comparative study using different isoforms from  
1240 rabbit and *Arabidopsis*. *J Exp Bot* **58**: 1365–1379

1241 **Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D** (2008) Lipid extraction by  
1242 methyl- *tert*-butyl ether for high-throughput lipidomics. *J Lipid Res* **49**: 1137–1146

1243 **Moellering ER, Muthan B, Benning C** (2010) Freezing tolerance in plants requires lipid remodeling at  
1244 the outer chloroplast membrane. *Science* **330**: 226–228

1245 **Morikawa T, Mizutani M, Aoki N, Watanabe B, Saga H, Saito S, Oikawa A, Suzuki H, Sakurai N,**  
1246 **Shibata D, et al** (2006) Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in  
1247 *Arabidopsis* and tomato. *Plant Cell* **18**: 1008–1022

1248 **Mueller SP, Krause DM, Mueller MJ, Fekete A** (2015) Accumulation of extra-chloroplastic  
1249 triacylglycerols in *Arabidopsis* seedlings during heat acclimation. *J Exp Bot* **66**: 4517–4526

1250 **Mueller SP, Unger M, Guender L, Fekete A, Mueller MJ** (2017) Phospholipid:diacylglycerol  
1251 acyltransferase-mediated triacylglycerol synthesis augments basal thermotolerance. *Plant*  
1252 *Physiol* **175**: 486–497

1253 **Mukherjee AK, Carp M-J, Zuchman R, Ziv T, Horwitz BA, Gepstein S** (2010) Proteomics of the  
1254 response of *Arabidopsis thaliana* to infection with *Alternaria brassicicola*. *J Proteomics* **73**:  
1255 709–720

1256 **Müller AO, Blersch KF, Gippert AL, Ischebeck T** (2017) Tobacco pollen tubes – a fast and easy tool  
1257 for studying lipid droplet association of plant proteins. *Plant J* **89**: 1055–1064

1258 **Müller AO, Ischebeck T** (2018) Characterization of the enzymatic activity and physiological function  
1259 of the lipid droplet-associated triacylglycerol lipase AtOBL1. *New Phytol* **217**: 1062–1076

1260 **Murashige T, Skoog F** (1962) A revised medium for rapid growth and bio assays with tobacco tissue  
1261 cultures. *Physiol Plant* **15**: 473–497

1262 **Murphy DJ** (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants.  
1263 *Prog Lipid Res* **32**: 247–280

1264 **Partridge M, Murphy DJ** (2009) Roles of a membrane-bound caleosin and putative peroxygenase in  
1265 biotic and abiotic stress responses in *Arabidopsis*. *Plant Physiol Biochem* **47**: 796–806

1266 **Pavicic M, Overmyer K, Rehman A ur, Jones P, Jacobson D, Himanen K** (2021) Image-based  
1267 methods to score fungal pathogen symptom progression and severity in excised *Arabidopsis*  
1268 leaves. *Plants (Basel)* **10**: 158

1269 **Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM** (2012) Hormonal  
1270 modulation of plant immunity. *Annu Rev Cell Dev Biol* **28**: 489–521

1271 **Piotrowski M, Schönfelder S, Weiler EW** (2001) The *Arabidopsis thaliana* isogene NIT4 and its  
1272 orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. *J Biol Chem* **276**:  
1273 2616–2621

1274 **Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, Kretzschmar FK, Ischebeck T, Valerius O, Braus  
1275 GH, Chapman KD, et al** (2017) *Arabidopsis* lipid droplet-associated protein (LDAP) -  
1276 interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both  
1277 leaves and seeds. *Plant J* **92**: 1182–1201

1278 **Pyc M, Gidda SK, Seay D, Esnay N, Kretzschmar FK, Cai Y, Doner NM, Greer MS, Hull JJ,  
1279 Coulon D, et al** (2021) LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet  
1280 biogenesis in *Arabidopsis*. *Plant Cell* **33**: 3076–3103

1281 **Qi Y, Katagiri F** (2012) Membrane microdomain may be a platform for immune signaling. *Plant Signal  
1282 Behav* **7**: 454–456

1283 **Qi Y, Tsuda K, Nguyen LV, Wang X, Lin J, Murphy AS, Glazebrook J, Thordal-Christensen H,  
1284 Katagiri F** (2011) Physical association of *Arabidopsis* hypersensitive induced reaction  
1285 proteins (HIRs) with the immune receptor RPS2. *J Biol Chem* **286**: 31297–31307

1286 **Qiao Z, Kong Q, Tee WT, Lim ARQ, Teo MX, Olieric V, Low PM, Yang Y, Qian G, Ma W, et al**  
1287 (2022) Molecular basis of the key regulator WRINKLED1 in plant oil biosynthesis. *Sci Adv* **8**:  
1288 eabq1211

1289 **Rappaport J, Mann M, Ishihama Y** (2007) Protocol for micro-purification, enrichment, pre-  
1290 fractionation and storage of peptides for proteomics using StageTips. *Nat Protoc* **2**: 1896–  
1291 1906

1292 **Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner  
1293 I** (2019) Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. *Science*  
1294 **365**: 498–502

1295 **Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B** (2019) The Hsp70 chaperone network. *Nat Rev Mol Cell Biol* **20**: 665–680

1297 **Salvucci ME** (2007) Association of Rubisco activase with chaperonin-60 : a possible mechanism for 1298 protecting photosynthesis during heat stress. *J Exp Bot* **59**: 1923–1933

1299 **Schieferle S, Tappe B, Korte P, Mueller MJ, Berger S** (2021) Pathogens and elicitors induce local 1300 and systemic changes in triacylglycerol metabolism in roots and in leaves of *Arabidopsis* 1301 *thaliana*. *Biology (Basel)* **10**: 920

1302 **Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU** (2005) A gene expression map of *Arabidopsis thaliana* development. *Nat Genet* **37**: 501–506

1305 **Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M** (2011) 1306 Global quantification of mammalian gene expression control. *Nature* **473**: 337–342

1307 **Sham A, Moustafa K, Al-Ameri S, Al-Azzawi A, Iratni R, AbuQamar S** (2015) Identification of 1308 *Arabidopsis* candidate genes in response to biotic and abiotic stresses using comparative 1309 microarrays. *PLoS One* **10**: e0125666

1310 **Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M** (2006) In-gel digestion for mass 1311 spectrometric characterization of proteins and proteomes. *Nat Protoc* **1**: 2856–2860

1312 **Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K, et al** (2014a) Leaf oil body functions as a subcellular factory for the production of a 1313 phytoalexin in *Arabidopsis*. *Plant Physiol* **164**: 105–118

1315 **Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K, et al** (2014b) Leaf oil body functions as a subcellular factory for the production of a 1317 phytoalexin in *Arabidopsis*. *Plant Physiol* **164**: 105–118

1318 **Shiva S, Samarakoon T, Lowe KA, Roach C, Vu HS, Colter M, Porras H, Hwang C, Roth MR, Tamura P, et al** (2020) Leaf lipid alterations in response to heat stress of *Arabidopsis thaliana*. *Plants (Basel)* **9**: 845

1321 **Smith MA, Jonsson L, Stymne S, Stobart K** (1992) Evidence for cytochrome *b* 5 as an electron 1322 donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean ( 1323 *Ricinus communis* L.). *Biochem J* **287**: 141–144

1324 **Sparks IA, Runions J, Kearns A, Hawes C** (2006) Rapid, transient expression of fluorescent fusion 1325 proteins in tobacco plants and generation of stably transformed plants. *Nat Protoc* **1**: 2019– 1326 2025

1327 **Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J-P, Brown R, Kazan K, et al** (2003) NPR1 modulates cross-talk between salicylate- 1328 and jasmonate-dependent defense pathways through a novel function in the cytosol. *Plant 1329 Cell* **15**: 760–770

1331 **Su T, Xu J, Li Y, Lei L, Zhao L, Yang H, Feng J, Liu G, Ren D** (2011) Glutathione-indole-3- 1332 acetonitrile is required for camalexin biosynthesis in *Arabidopsis thaliana*. *Plant Cell* **23**: 364– 1333 380

1334 **Sun Q, Zyballov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ** (2009) PPDB, the plant 1335 proteomics database at Cornell. *Nucleic Acids Res* **37**: D969–D974

1336 **Szalainé Ágoston B, Kovács D, Tompa P, Perczel A** (2011) Full backbone assignment and 1337 dynamics of the intrinsically disordered dehydrin ERD14. *Biomol NMR Assign* **5**: 189–193

1338 **Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al** (2021) The STRING database in 2021: customizable protein-protein 1339

1340 networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic  
1341 Acids Res* **49**: D605–D612

1342 **Tarazona P, Feussner K, Feussner I** (2015) An enhanced plant lipidomics method based on  
1343 multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold-  
1344 and drought-induced membrane remodeling. *Plant J* **84**: 621–633

1345 **Taurino M, Costantini S, De Domenico S, Stefanelli F, Ruano G, Delgadillo MO, Sánchez-  
1346 Serrano JJ, Sanmartín M, Santino A, Rojo E** (2018) SEIPIN proteins mediate lipid droplet  
1347 biogenesis to promote pollen transmission and reduce seed dormancy. *Plant Physiol* **176**:  
1348 1531–1546

1349 **Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J** (2016) The  
1350 Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat  
1351 Methods* **13**: 731–740

1352 **Tzen J, Cao Y, Laurent P, Ratnayake C, Huang A** (1993) Lipids, proteins, and structure of seed oil  
1353 bodies from diverse species. *Plant Physiol* **101**: 267–276

1354 **Uknes S, Winter AM, Delaney T, Vernooij B, Morse A, Friedrich L, Nye G, Potter S, Ward E,  
1355 Ryals J** (1993) Biological induction of systemic acquired resistance in *Arabidopsis*. *Mol Plant  
1356 Microbe Interact* **6**: 692–698

1357 **Vance VB, Huang AH** (1987) The major protein from lipid bodies of maize. Characterization and  
1358 structure based on cDNA cloning. *J Biol Chem* **262**: 11275–11279

1359 **Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T,  
1360 Bandeira N, et al** (2014) ProteomeXchange provides globally coordinated proteomics data  
1361 submission and dissemination. *Nat Biotechnol* **32**: 223–226

1362 **Wang K, Senthil-Kumar M, Ryu C-M, Kang L, Mysore KS** (2012) Phytosterols play a key role in  
1363 plant innate immunity against bacterial pathogens by regulating nutrient efflux into the  
1364 apoplast. *Plant Physiol* **158**: 1789–1802

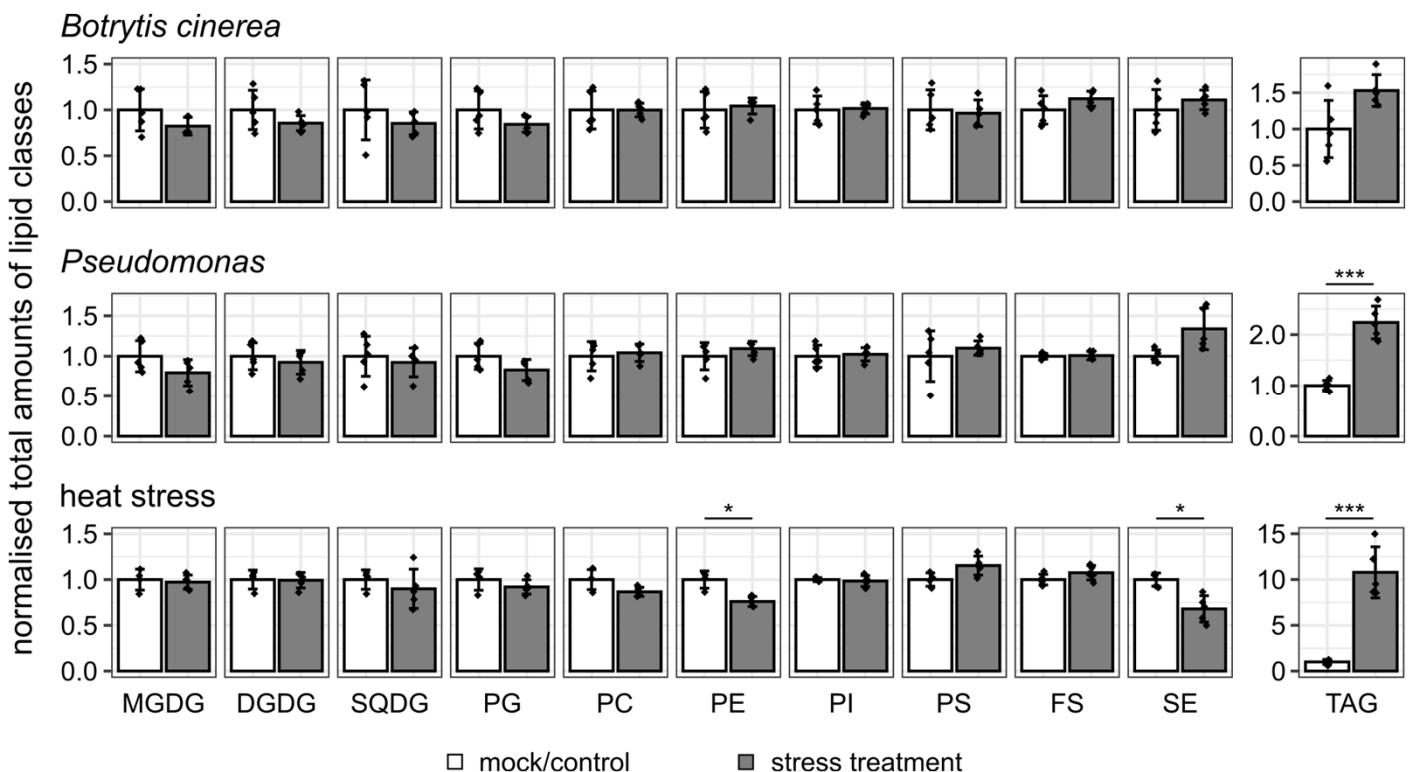
1365 **Wang T-Y, Wu J-R, Duong NKT, Lu C-A, Yeh C-H, Wu S-J** (2021) HSP70-4 and farnesylated AtJ3  
1366 constitute a specific HSP70/HSP40-based chaperone machinery essential for prolonged heat  
1367 stress tolerance in *Arabidopsis*. *J Plant Physiol* **261**: 153430

1368 **Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekhar CB, Williams TD, Wang X** (2002)  
1369 Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in  
1370 freezing-induced lipid changes in *Arabidopsis*. *J Biol Chem* **277**: 31994–32002

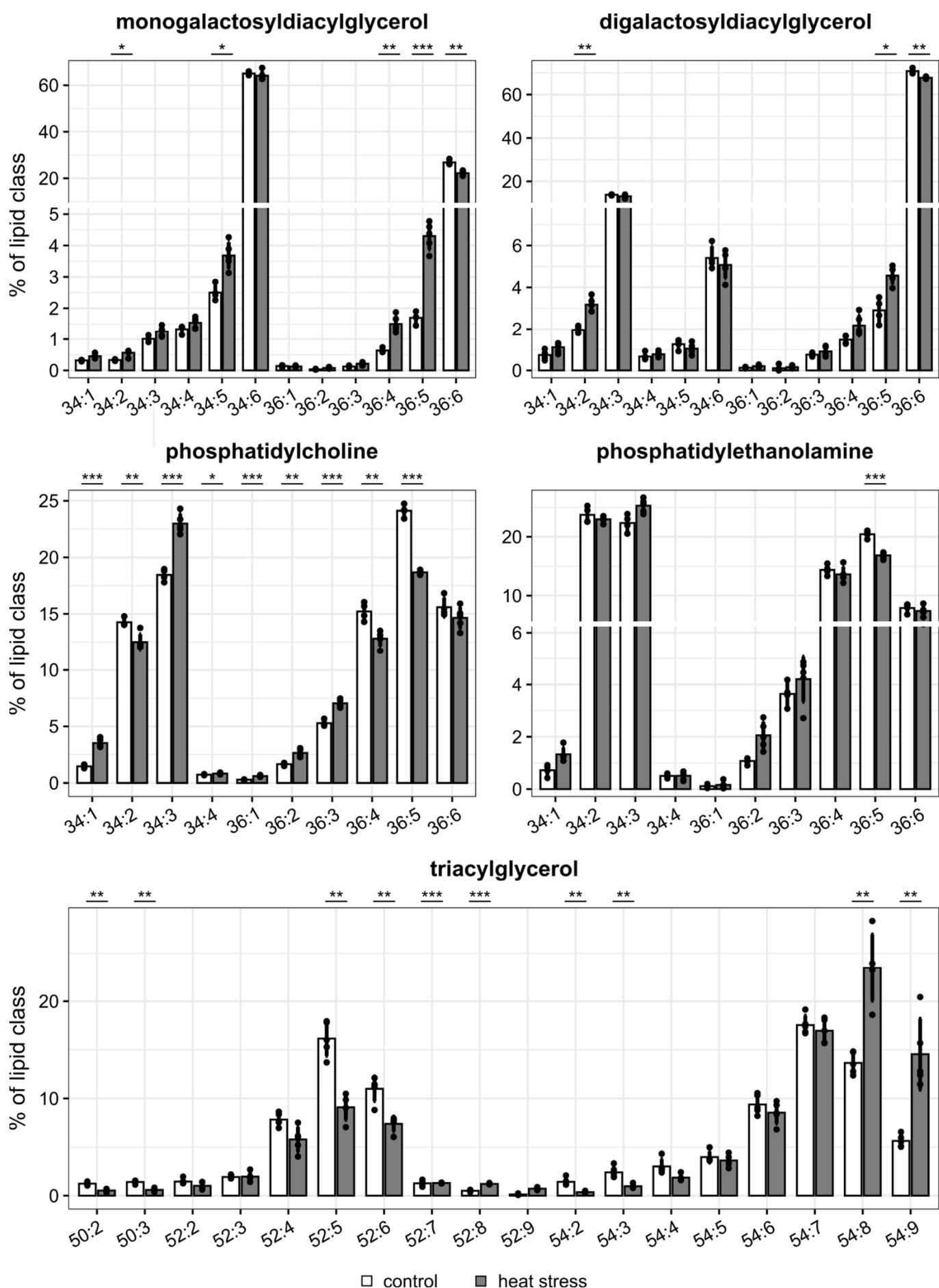
1371 **Wilkins O, Bräutigam K, Campbell MM** (2010) Time of day shapes *Arabidopsis* drought  
1372 transcriptomes. *Plant J* **63**: 715–727

1373 **Xu C, Fan J, Froehlich JE, Awai K, Benning C** (2005) Mutation of the TGD1 chloroplast envelope  
1374 protein affects phosphatidate metabolism in *Arabidopsis*. *Plant Cell* **17**: 3094–3110

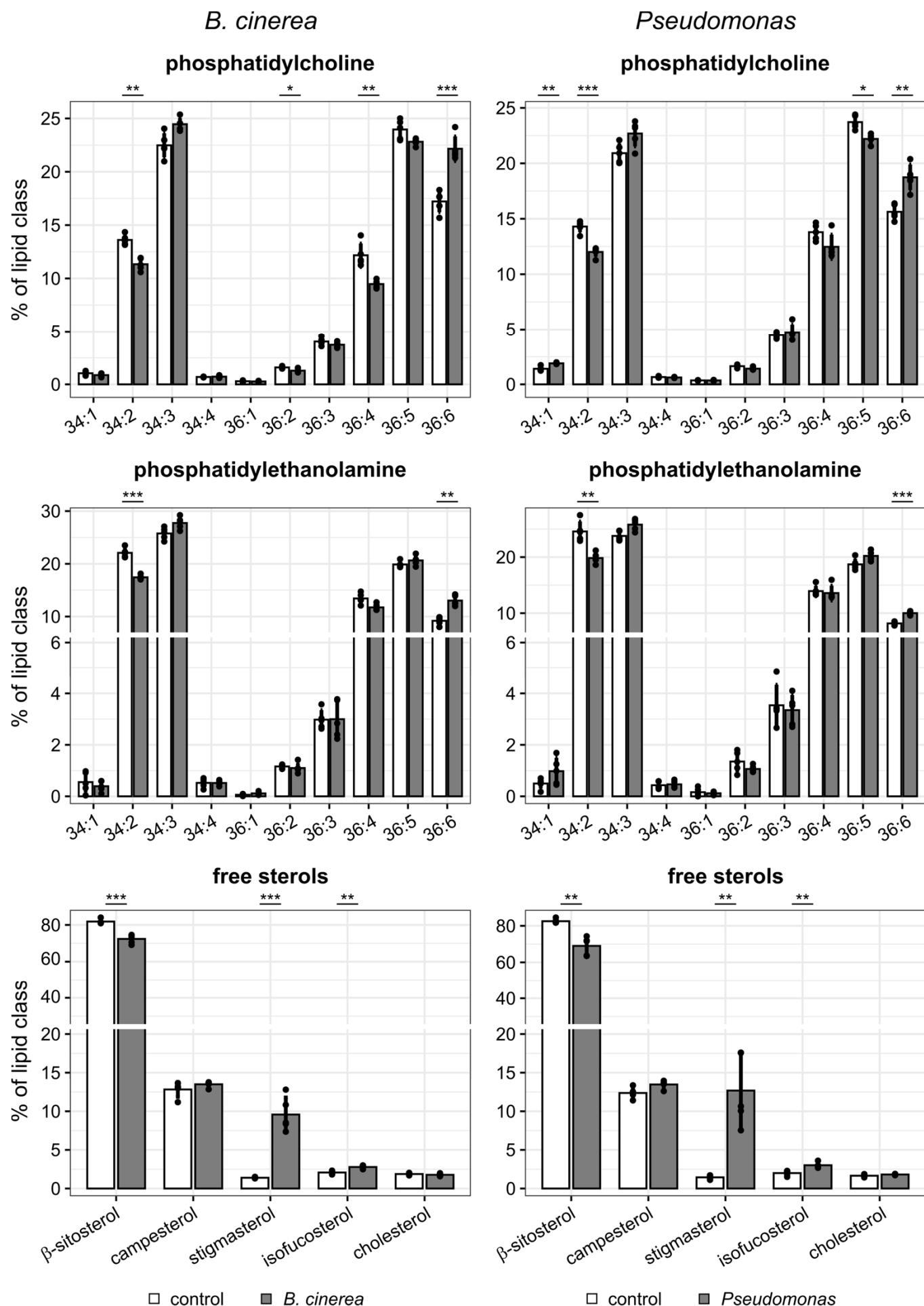
1375 **Xu C, Fan J, Riekhof W, Froehlich JE, Benning C** (2003) A permease-like protein involved in ER to  
1376 thylakoid lipid transfer in *Arabidopsis*. *EMBO J* **22**: 2370–2379


1377 **Xu C, Shanklin J** (2016) Triacylglycerol metabolism, function, and accumulation in plant vegetative  
1378 tissues. *Annu Rev Plant Biol* **67**: 179–206

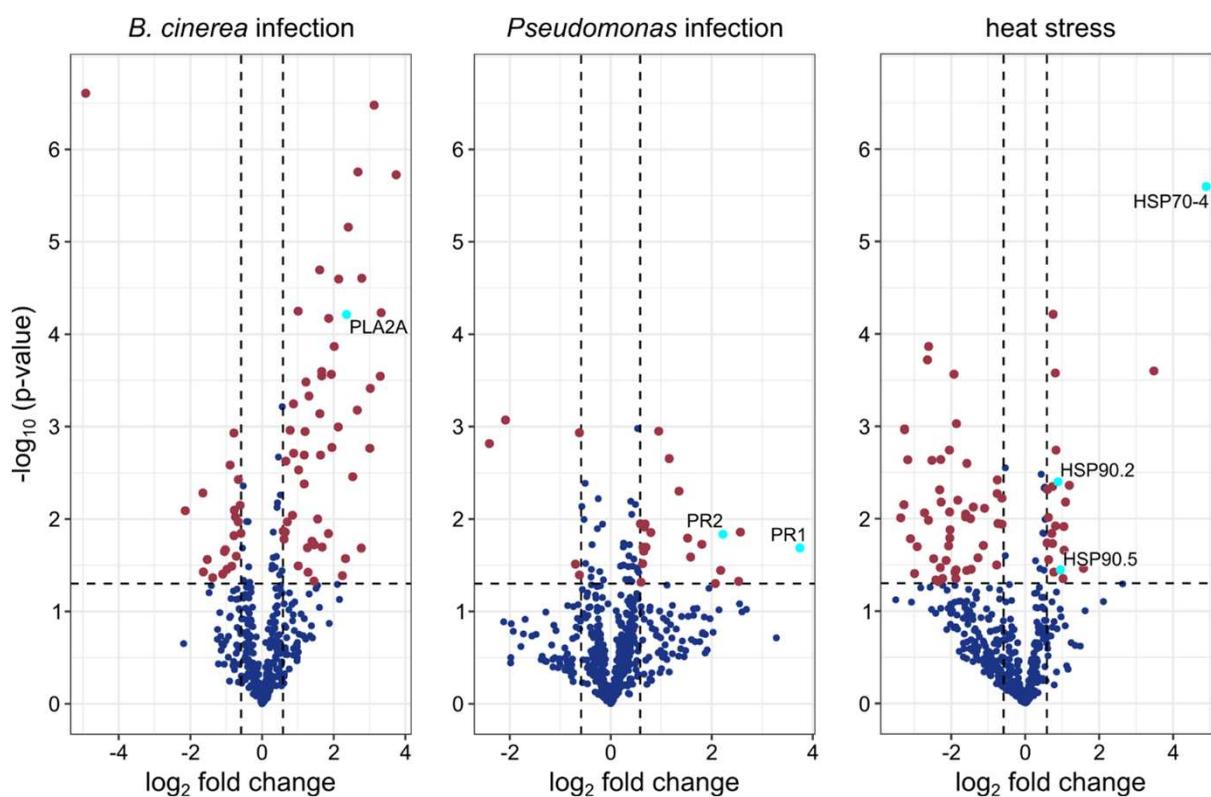
1379 **Yamaguchi Y, Nakamura T, Kusano T, Sano H** (2000) Three *Arabidopsis* genes encoding proteins  
1380 with differential activities for cysteine synthase and  $\beta$ -cyanoalanine synthase. *Plant Cell  
1381 Physiol* **41**: 465–476


1382 **Yao J, Withers J, He SY** (2013) *Pseudomonas syringae* infection assays in *Arabidopsis*. *Methods Mol  
1383 Biol* **1011**: 63–81

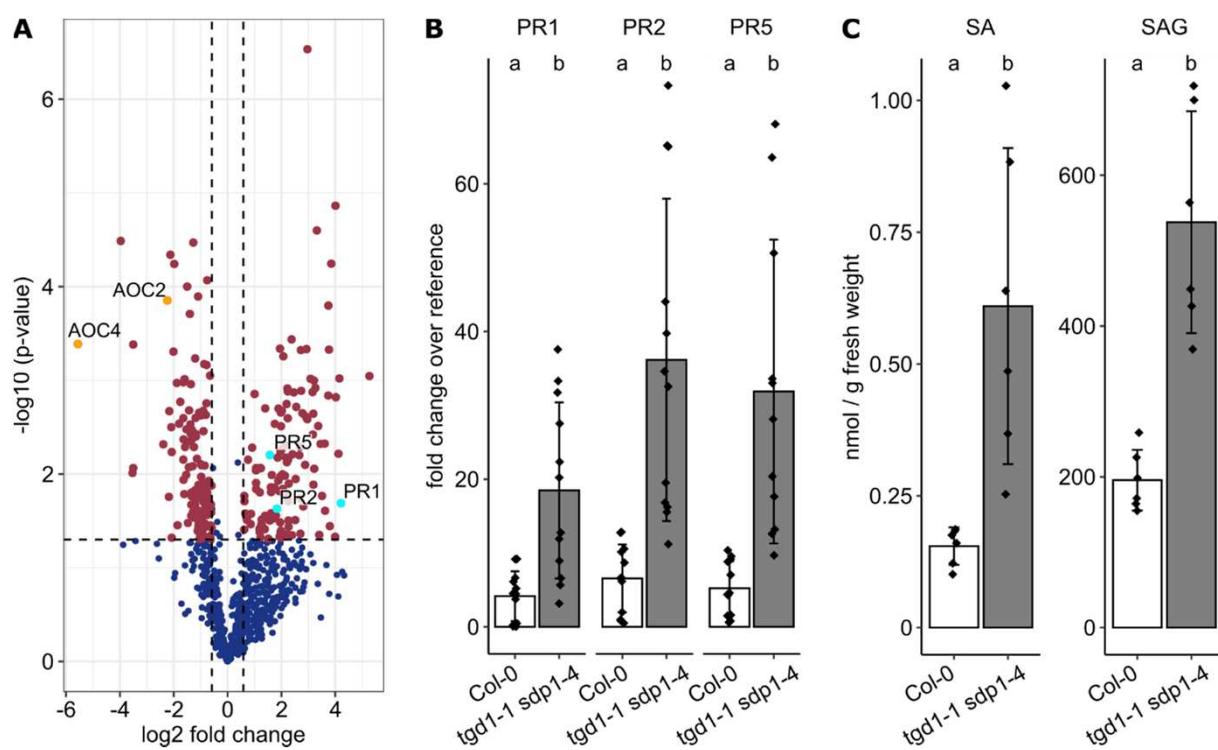
1384 **Yu L, Zhou C, Fan J, Shanklin J, Xu C** (2021) Mechanisms and functions of membrane lipid  
1385 remodeling in plants. *Plant J* **107**: 37–53


1386 **Zhu J-K** (2016) Abiotic stress signaling and responses in plants. *Cell* **167**: 313–324

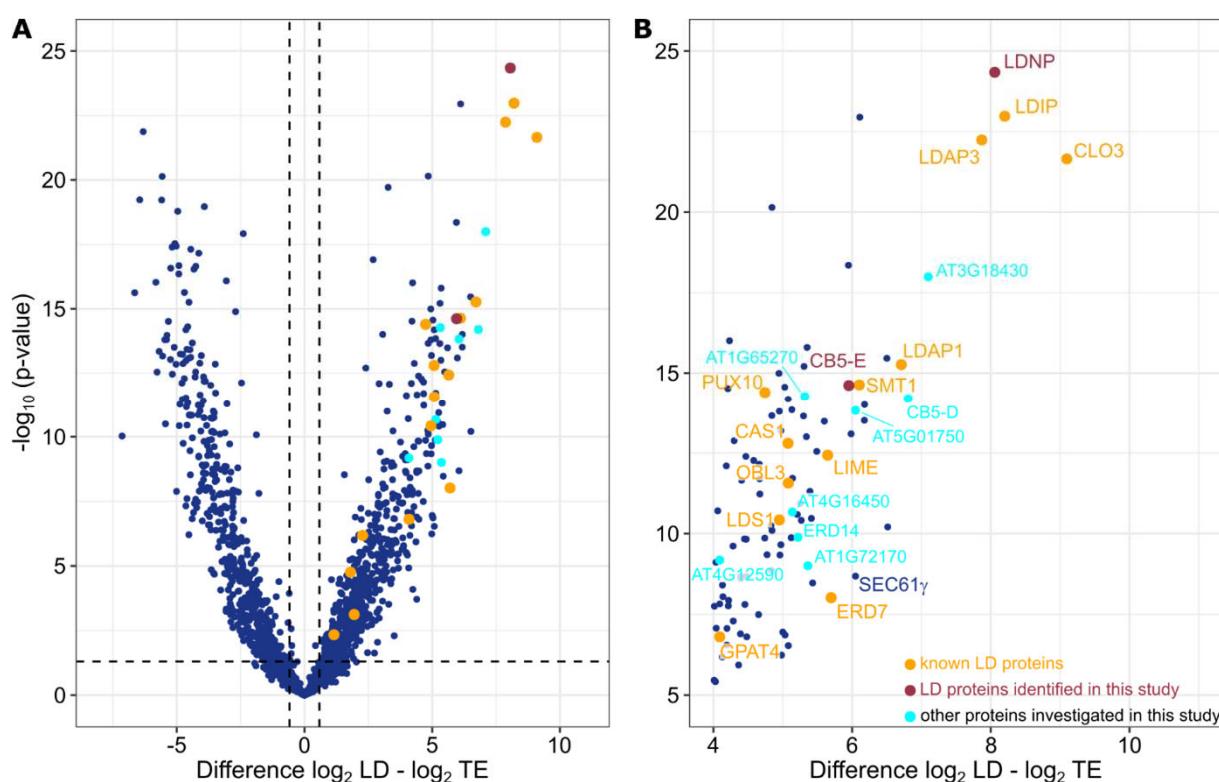



**Figure 1: Changes in total abundance of membrane and hydrophobic lipids after different stress treatments.** Arabidopsis plants were infected with *Botrytis cinerea* or *Pseudomonas syringae* pv. *tomato* DC3000  $\Delta$ avrPto/ $\Delta$ avrPtoB (*Pseudomonas*), or kept for 24 h at 37 °C (heat stress) and compared to mock-infected or non-stressed plants. After stress treatment, leaves were harvested, lipids isolated, and their amounts determined by mass spectrometry. Values of all species in the indicated lipid classes were added up and this sum was normalized to the respective control. Statistical comparisons were calculated with Student's t-test, using Holm-Bonferroni correction for multiple comparisons. Values are shown as mean  $\pm$  standard deviation. Significant differences are indicated with \* and \*\*\* for  $p < 0.05$  and  $p < 0.001$ , respectively.  $n \geq 4$  biological replicates. MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol; PG, phosphatidylglycerol; PC, phosphatidylcholine, PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; FS, free sterols; SE, sterol esters; TAG, triacylglycerol.



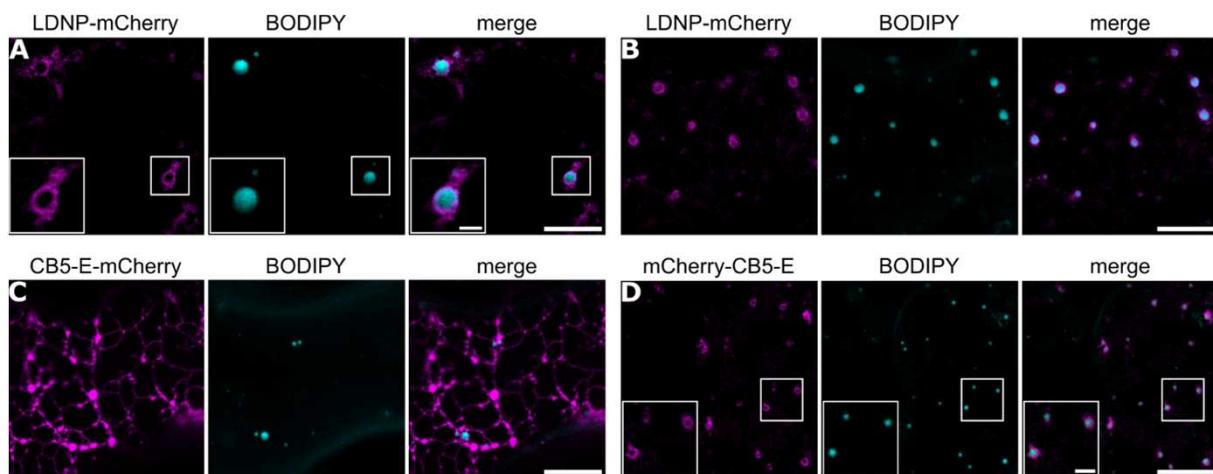

**Figure 2: Heat-induced changes in membrane lipid and triacylglycerol composition.** *Arabidopsis* Col-0 was heat-stressed (37°C for 24 h) or kept at normal temperature regime (control). Subsequently, membrane and hydrophobic lipids were isolated and analyzed by mass spectrometry. For individual lipids classes, the relative species composition was calculated and is shown here for the glycoglycerolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol, the phosphoglycerolipids phosphatidylcholine and phosphatidylethanolamine, and triacylglycerol. Lipid species are described by the combined number of all carbon atoms and double bonds of all fatty acids esterified to the glycerol backbone. Statistical comparisons were calculated with Student's t-test, using Holm-Bonferroni correction for multiple comparisons. Values are shown as mean  $\pm$  standard deviation. Significant differences are indicated with \*, \*\* and \*\*\* for  $p < 0.05$ ,  $p < 0.01$  and  $p < 0.001$ , respectively.  $n \geq 4$  biological replicates.




**Figure 3: Alterations in the *Arabidopsis* lipid profile of phosphatidylcholine, phosphatidylethanolamine and free sterols after infection.** *Arabidopsis* Col-0 plants were infected with *Botrytis cinerea* or *Pseudomonas syringae* pv. *tomato* DC3000  $\Delta$ *avrPto*/ $\Delta$ *avrPtoB* (*Pseudomonas*). After the infection, lipids were isolated from leaves and analyzed by mass spectrometry. The relative composition of lipid species was determined and is displayed here for phosphatidylcholine, phosphatidylethanolamine and free sterols. For the phosphoglycerolipids, lipid species are described by the combined number of all carbon atoms and double bonds of all fatty acids esterified to the glycerol backbone. Statistical comparisons were calculated with Student's t-test, using Holm-Bonferroni correction for multiple comparisons. Values are shown as mean  $\pm$  standard deviation. Significant differences are indicated with \*, \*\* and \*\*\* for  $p < 0.05$ ,  $p < 0.01$  and  $p < 0.001$ , respectively.  $n \geq 4$  biological replicates.

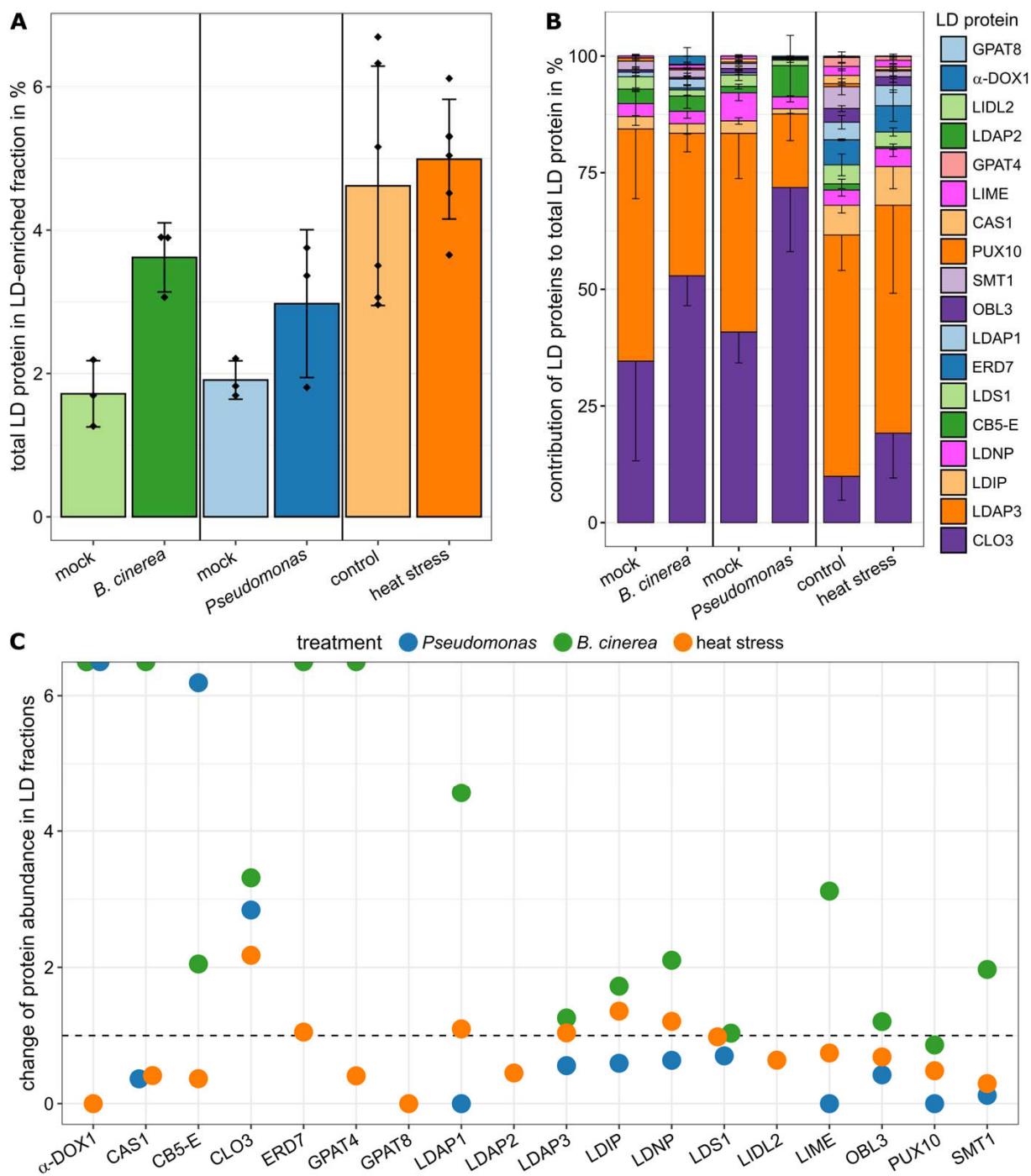


**Figure 4: Alterations of total cellular proteins of *Arabidopsis* leaves subjected to different stress treatments.** *Arabidopsis* plants were infected with *Botrytis cinerea* (*B. cinerea*), *Pseudomonas syringae* pv. *tomato* DC3000  $\Delta\text{avrPto}/\Delta\text{avrPtoB}$  (*Pseudomonas*) or heat stressed for 24 h at 37 °C. Protein abundances (rLFQ values) of individual proteins were normalised to the respective values of the control treatment and the resulting ratio was  $\log_2$ -transformed. Statistical significance of the  $\log_2$ -fold change was calculated by Student's t-test. The constructed volcano plots indicate proteins that are significantly enriched (upper right) or depleted (upper left) in reaction to the individual stress treatments. For each experiment, only proteins detected in all replicates of either mock-treated or infected plants were included in the analysis. For heat stress, proteins present in at least four replicates of either heat-stressed or control plants were analyzed. Vertical lines indicate 1.5-fold enrichment or depletion, while the horizontal line indicates a significance of  $p = 0.05$ . Proteins further mentioned in the text are labeled and highlighted in cyan. n=5 (biological replicates) for *B. cinerea* and its mock control, n=3 for *Pseudomonas* treatment and its control, n=5 for heat stress treatment and n=4 for its control.




**Figure 5: Differences in the proteome of *Arabidopsis* Col-0 compared to the double mutant *tgd1-1 sdp1-4*.** The proteome of Col-0 and *tgd1-1 sdp1-4* total protein fractions of non-stressed plants was analyzed. Changes in protein abundance are visualized in a volcano plot, displaying proteins accumulated (upper right) or depleted (upper left) in the double mutant (A). Proteins were only included in the analysis if they were present in all replicate samples of at least one line. Vertical lines indicate 1.5-fold enrichment or depletion, and the horizontal line indicates a  $p$ -value of 0.05. Proteins further discussed in the text are marked: the glutathione S-transferase GSTF7 and the PR proteins PR1, PR2 and PR5 accumulate in the mutant (cyan dots), while the allene oxide cyclases AOC2 and AOC4 are depleted (orange dots). PR gene expression was further analyzed in leaves of Col-0 or *tgd1-1 sdp1-4* and expression levels were calculated relative to the reference gene *PTB1* (*AT3G01150*) (B). Leaves of both plant lines were also analyzed by UPLC-nanoESI-MS/MS for their salicylic acid (SA) and SA glucoside (SAG) content (C).  $p$ -values in (A) were calculated by Student's t-test. Values are shown as mean  $\pm$  standard deviation in (B) and (C). Statistical analysis in (B) and (C) was carried out with the Wilcoxon-Mann-Whitney-Test, using Holm-Bonferroni correction for multiple comparisons. Statistical differences with  $p < 0.05$  are indicated by different letters.  $n \geq 3$  biological replicates in (A),  $n = 6$  biological replicates in (B) and (C). For (B) two independent technical replicates of each biological replicate were measured.




**Figure 6: Enrichment analysis of proteins in the LD-enriched fractions prepared from *Arabidopsis* leaves.** LDs were enriched from leaves of *Arabidopsis tgd1-1 sdp1-4* plants that were either untreated or subjected to different stresses. Subsequently, the proteome of the LD-enriched fractions and the corresponding total leaf protein extract was measured. Of the detected proteins, a volcano plot was created, plotting the enrichment of each protein in the LD-fraction against its respectively calculated  $p$ -value (A). Treatments were combined, however, proteins were only included in the analysis if they were identified by at least two peptides and were present in at least three replicates in one of the sample types. Proteins significantly enriched in the LD-fraction cluster in the upper right corner and this section of the volcano plot is depicted enlarged in (B). Previously known LD proteins are marked in orange; proteins investigated in this study that did or did not localize to LDs are highlighted in red and cyan, respectively. Known and new LD proteins are labeled, in addition the protein SEC61 $\gamma$  is indicated.  $P$ -values were calculated by Student's t-test. Vertical lines indicate 1.5-fold enrichment or depletion, while the horizontal line indicates a significance of  $p < 0.05$ .

LD, lipid droplet; TE, total protein extract; CAS1, CYCLOARTENOL SYNTHASE 1; CB5-D/E, CYTOCHROME B5 ISOFORM D/E; CLO3, CALEOSIN 3; ERD7/14, EARLY-RESPONSIVE TO DEHYDRATION 7/14; GPAT4, GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 4; LDAP1/3, LD-ASSOCIATED PROTEIN 1/3; LDIP, LDAP INTERACTING PROTEIN; LDNP, LD-LOCALISED NTF2 FAMILY PROTEIN; LDS1, LIPID DROPLETS AND STOMATA 1; LIME, LD-associated methyltransferase; OBL3, OIL BODY LIPASE 3; PUX10, PLANT UBX DOMAIN CONTAINING PROTEIN 10; SEC61 $\gamma$ , SEC61 GAMMA; SMT1, STEROL METHYLTRANSFERASE 1.



**Figure 7: LDNP and CB5-E localize to LDs in *Nicotiana benthamiana* leaf cells.**

Subcellular localization studies of N- and/or C-terminal mCherry-tagged LDNP and CB5-E were carried out by transient expression in *N. benthamiana* leaves. Proteins were fused to an mCherry-tag (magenta channel) and LDs were stained with BODIPY 493/503 (cyan channel). Shown are also the corresponding merged images; boxes in (A, D) highlight regions of the cell shown with higher magnification in the insets. LDNP-mCherry localization to BODIPY-stained LDs was observed when the protein was expressed alone (A) or when co-expressed with MmDGAT2 (B), which causes a proliferation of LDs in plant cells (Cai et al., 2019). CB5-E appended at its C-terminus to mCherry did not localize to LDs (C), however, N-terminal mCherry-tagged CB5-E localized to LDs (D). Bars = 10  $\mu$ m (2  $\mu$ m in insets).



**Figure 8: Changes in the known LD proteome of leaves after stress treatments.**

The protein abundance (riBAQ values) of known LD proteins in the LD-enriched fraction isolated from *Arabidopsis* leaves was followed in reaction to infection with *Botrytis cinerea* (*B. cinerea*), or *Pto* DC3000  $\Delta$ *avrPto*/ $\Delta$ *avrPtoB* (*Pseudomonas*), or heat stress for 24 h at 37°C. The total LD protein abundance was calculated by summing up riBAQ values of all LD proteins for each treatment (A). In addition, the relative contribution of all detected LD proteins to the total LD protein abundance was calculated (B). Stacked bar plots show the relative proportion of individual LD proteins in the order displayed in the legend, i.e. percentage of GPAT8 at the top and percentage of CLO3 at the bottom. The changes in abundance of individual proteins was followed by calculating the ratio of their riBAQ values in LD fractions of stressed plants relative to their riBAQ values in respective control treatments (C). Values above and below 1 indicate enrichment or depletion upon individual stresses, respectively. The horizontal line highlights ratios of 1. Proteins were only included if they were identified by at least two peptides and were detected in at least three replicates of at least one sample type.  $n \geq 3$  replicates per treatment.

$\alpha$ -DOX1,  $\alpha$ -DIOXYGENASE 1; CAS1, CYCLOARTENOL SYNTHASE 1; CB5-E, CYTOCHROME B5 ISOFORM E; CLO3, CALEOSIN 3; ERD7, EARLY-RESPONSIVE TO DEHYDRATION 7; GPAT4/8, GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 4/8; LDAP1/2/3, LD-ASSOCIATED PROTEIN 1/2/3; LDIP, LDAP INTERACTING PROTEIN; LDNP, LD-LOCALISED NTF2 FAMILY PROTEIN; LDS1, LIPID DROPLETS AND STOMATA 1; LIDL2, LIDL2, LD-ASSOCIATED LIPASE 2; LIME, LD-ASSOCIATED METHYLTRANSFERASE 1/2 (ambiguously identified); OBL3, OIL BODY LIPASE 3; PUX10, PLANT UBX DOMAIN CONTAINING PROTEIN; SEC61 $\gamma$ , SEC61 GAMMA; SMT1, STEROL METHYLTRANSFERASE 1.

## Parsed Citations

Ahmad L, Rylott EL, Bruce NC, Edwards R, Grogan G (2017) Structural evidence for *Arabidopsis* glutathione transferase AtGSTF2 functioning as a transporter of small organic ligands. *FEBS Open Bio* 7: 122–132  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud J-P (2010) RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in *Arabidopsis thaliana*. *Plant Cell Physiol* 51: 1975–1987  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. *Trends Plant Sci* 15: 330–336  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E (2015) The *Arabidopsis* information resource: Making and mining the "gold standard" annotated reference plant genome. *Genesis* 53: 474–485  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Berghoff SA, Spieth L, Sun T, Hosang L, Depp C, Sasmita AO, Vasileva MH, Scholz P, Zhao Y, Krueger-Burg D, et al (2021) Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. *Cell Rep* 37: 109889  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH (2010) Biotic stress globally downregulates photosynthesis genes. *Plant Cell Environ* 33: 1597–1613  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Blée E, Boachon B, Burcklen M, Le Guédard M, Hanano A, Heintz D, Ehling J, Herrfurth C, Feussner I, Bessoule J-J (2014) The reductase activity of the *Arabidopsis* caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. *Plant Physiol* 166: 109–124  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent *P. syringae* strains differentially affects photosynthesis and sink metabolism in *Arabidopsis* leaves. *Planta* 225: 1–12  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Böttcher C, Westphal L, Schmott C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of *Arabidopsis thaliana*. *Plant Cell* 21: 1830–1845  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Brocard L, Immel F, Coulon D, Esnay N, Tophile K, Pascal S, Claverol S, Fouillen L, Bessoule J-J, Bréhélin C (2017) Proteomic analysis of lipid droplets from *Arabidopsis* aging leaves brings new insight into their biogenesis and functions. *Front Plant Sci* 8: 894  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cai Y, Goodman JM, Pyc M, Mullen RT, Dyer JM, Chapman KD (2015) *Arabidopsis* SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. *Plant Cell* 27: 2616–2636  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cai Y, Whitehead P, Chappell J, Chapman KD (2019) Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. *Planta* 250: 79–94  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in *Arabidopsis*. *Plant J* 40: 575–585  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen JCF, Tsai CCY, Tzen JTC (1999) Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. *Plant Cell Physiol* 40: 1079–1086  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Corey EJ, Matsuda SP, Bartel B (1993) Isolation of an *Arabidopsis thaliana* gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. *Proc Natl Acad Sci U S A* 90: 11628–11632  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. *Mol Cell Proteomics* 13: 2513–2526  
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and

proteome-wide protein quantification. *Nat Biotechnol* 26: 1367–1372

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Crawford T, Lehotai N, Strand Å (2018) The role of retrograde signals during plant stress responses. *J Exp Bot* 69: 2783–2795

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cummins I, Hills MJ, Ross JHE, Hobbs DH, Watson MD, Murphy DJ (1993) Differential, temporal and spatial expression of genes involved in storage oil and oleosin accumulation in developing rapeseed embryos: implications for the role of oleosins and the mechanisms of oil-body formation. *Plant Mol Biol* 23: 1015–1027

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in *Arabidopsis*. *Plant Physiol* 139: 5–17

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Casas J-L, Chardot T, Gallois J-L, D'Andrea S (2018) PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in *Arabidopsis*. *Plant Cell* 30: 2116–2136

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. *Plant Cell* 12: 853–870

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. *Phytochemistry* 71: 338–350

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Doner NM, Seay D, Mehling M, Sun S, Gidda SK, Schmitt K, Braus GH, Ischebeck T, Chapman KD, Dyer JM, et al (2021) *Arabidopsis thaliana* EARLY RESPONSIVE TO DEHYDRATION 7 localizes to lipid droplets via its senescence domain. *Front Plant Sci* 12: 658961

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dufourc EJ (2008) Sterols and membrane dynamics. *J Chem Biol* 1: 63–77

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Eberhardt RY, Chang Y, Bateman A, Murzin AG, Axelrod HL, Hwang WC, Aravind L (2013) Filling out the structural map of the NTF2-like superfamily. *BMC Bioinformatics* 14: 327

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Falcone DL, Ogas JP, Somerville CR (2004) Regulation of membrane fatty acid composition by temperature in mutants of *Arabidopsis* with alterations in membrane lipid composition. *BMC Plant Biol* 4: 17

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fan J, Yan C, Roston R, Shanklin J, Xu C (2014) *Arabidopsis* lipins, PDAT1 acyltransferase, and SDP1 triacylglycerol lipase synergistically direct fatty acids toward β-oxidation, thereby maintaining membrane lipid homeostasis. *Plant Cell* 26: 4119–4134

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fernández-Santos R, Izquierdo Y, López A, Muñiz L, Martínez M, Cascón T, Hamberg M, Castresana C (2020) Protein profiles of lipid droplets during the hypersensitive defense response of *Arabidopsis* against *Pseudomonas* infection. *Plant Cell Physiol* 61: 1144–1157

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fu ZQ, Dong X (2013) Systemic acquired resistance: Turning local infection into global defense. *Annu Rev Plant Biol* 64: 839–863

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fukuchi-Mizutani M, Mizutani M, Tanaka Y, Kusumi T, Ohta D (1999) Microsomal electron transfer in higher plants: Cloning and heterologous expression of NADH-cytochrome b 5 reductase from *Arabidopsis*. *Plant Physiol* 119: 353–362

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gasulla F, Vom Dorp K, Dombrink I, Zähringer U, Gisch N, Dörmann P, Bartels D (2013) The role of lipid metabolism in the acquisition of desiccation tolerance in *Craterostigma plantagineum*: a comparative approach. *Plant J* 75: 726–741

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ge S, Zhang R-X, Wang Y-F, Sun P, Chu J, Li J, Sun P, Wang J, Hetherington AM, Liang Y-K (2022) The *Arabidopsis* Rab protein RABC1 affects stomatal development by regulating lipid droplet dynamics. *Plant Cell* 34: 4274–4292

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde J-P, Bryce JH, Graham IA, Smith SM (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid β-oxidation and breakdown of triacylglycerol in lipid bodies of

**Arabidopsis seedlings.** *Plant J* 28: 1–12

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT (2016) Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells.** *Plant Physiol* 170: 2052–2071

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Griebel T, Zeier J (2010) A role for beta-sitosterol to stigmasterol conversion in plant-pathogen interactions.** *Plant J* 63: 254–268

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Gutbrod K, Peisker H, Dörmann P (2021) Direct infusion mass spectrometry for complex lipid analysis.** In D Bartels, P Dörmann, eds, *Plant Lipids*. Springer US, New York, NY, pp 101–115

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Guzha A, McGee R, Scholz P, Hartken D, Lüdke D, Bauer K, Wenig M, Zienkiewicz K, Herrfurth C, Feussner I, et al (2022) Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of *Arabidopsis* against *Botrytis cinerea*.** *Plant Physiol* 189: 1794–1813

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Guzha A, Whitehead P, Ischebeck T, Chapman KD (2023) Lipid droplets: Packing hydrophobic molecules within the aqueous cytoplasm.** *Annu Rev Plant Biol* 74: 195–223

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly.** *Nature* 333: 330–334

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Herrfurth C, Feussner I (2020) Quantitative jasmonate profiling using a high-throughput UPLC-NanoESI-MS/MS method.** *Methods Mol Biol* 2085: 169–187

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Herrfurth C, Liu Y-T, Feussner I (2021) Targeted analysis of the plant lipidome by UPLC-NanoESI-MS/MS.** *Methods Mol Biol* 2295: 135–155

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K (2015) Landscape of the lipidome and transcriptome under heat stress in *Arabidopsis thaliana*.** *Sci Rep* 5: 1–11

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Higashi Y, Saito K (2019) Lipidomic studies of membrane glycerolipids in plant leaves under heat stress.** *Prog Lipid Res* 75: 100990

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Hsieh K, Huang AHC (2004) Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells.** *Plant Physiol* 136: 3427–3434

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Ischebeck T, Krawczyk HE, Mullen RT, Dyer JM, Chapman KD (2020) Lipid droplets in plants and algae: Distribution, formation, turnover and function.** *Semin Cell Dev Biol* 108: 82–93

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Ishikawa A, Tanaka H, Nakai M, Asahi T (2003) Deletion of a chaperonin 60 $\beta$  gene leads to cell death in the *Arabidopsis* lesion initiation 1 mutant.** *Plant Cell Physiol* 44: 255–261

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Jiang Z, He F, Zhang Z (2017) Large-scale transcriptome analysis reveals *arabidopsis* metabolic pathways are frequently influenced by different pathogens.** *Plant Mol Biol* 94: 453–467

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, d'Andréa S, Chardot T, Nesi N (2009) Protein composition of oil bodies from mature *Brassica napus* seeds.** *Proteomics* 9: 3268–3284

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Jolivet P, Roux E, D'Andrea S, Davanture M, Negroni L, Zivy M, Chardot T (2004) Protein composition of oil bodies in *Arabidopsis thaliana* ecotype WS.** *Plant Physiol Biochem* 42: 501–509

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

**Joyard J, Maréchal E, Miège C, Block MA, Dorne A-J, Douce R (2004) Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts.** In P-A Siegenthaler, M Norio, eds, *Lipids in Photosynthesis: Structure, Function and Genetics*. Kluwer Academic Publishers, Dordrecht, pp 21–52

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two *Brassica napus* cultivars. *Proteomics* 6: 4586–4598

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kelly AA, Feussner I (2016) Oil is on the agenda: Lipid turnover in higher plants. *Biochim Biophys Acta* 1861: 1253–1268

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Khor VK, Ahrends R, Lin Y, Shen W-J, Adams CM, Roseman AN, Cortez Y, Teruel MN, Azhar S, Kraemer FB (2014) The proteome of cholesterol-ester-enriched versus triacylglycerol-enriched lipid droplets. *PLoS One* 9: e105047

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim EY, Park KY, Seo YS, Kim WT (2016a) Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses. *Plant Physiol* 170: 2494–2510

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim EY, Park KY, Seo YS, Kim WT (2016b) Arabidopsis small rubber particle protein homolog SRPs play dual roles as positive factors for tissue growth and development and in drought stress responses. *Plant Physiol* 170: 2494–2510

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim HU, Lee K-R, Jung S-J, Shin HA, Go YS, Suh M-C, Kim JB (2015) Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth. *Plant Biotechnol J* 13: 1346–1359

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim K, Portis AR (2005) Temperature dependence of photosynthesis in *Arabidopsis* plants with modifications in Rubisco Activase and membrane fluidity. *Plant Cell Physiol* 46: 522–530

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA (2016) A high resolution map of the *Arabidopsis thaliana* developmental transcriptome based on RNA-seq profiling. *Plant J* 88: 1058–1070

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence *Arabidopsis*/Botrytis interactions: variation in host production and pathogen sensitivity. *Plant J* 44: 25–36

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kobza J, Edwards GE (1987) Influences of leaf temperature on photosynthetic carbon metabolism in wheat. *Plant Physiol* 83: 69–74

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. *Plant Physiol* 147: 381–390

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krawczyk HE, Rotsch AH, Herrfurth C, Scholz P, Shomroni O, Salinas-Riester G, Feussner I, Ischebeck T (2022a) Heat stress leads to rapid lipid remodeling and transcriptional adaptations in *Nicotiana tabacum* pollen tubes. *Plant Physiol* 189: 490–515

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krawczyk HE, Sun S, Doner NM, Yan Q, Lim MSS, Scholz P, Niemeyer PW, Schmitt K, Valerius O, Pleskot R, et al (2022b) SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-plasma membrane tethering. *Plant Cell* 34: 2424–2448

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kretzschmar FK, Doner NM, Krawczyk HE, Scholz P, Schmitt K, Valerius O, Braus GH, Mullen RT, Ischebeck T (2020) Identification of low-abundance lipid droplet proteins in seeds and seedlings. *Plant Physiol* 182: 1326–1345

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kretzschmar FK, Mengel LA, Müller AO, Schmitt K, Blersch KF, Valerius O, Braus GH, Ischebeck T (2018) PUX10 is a lipid droplet-localized scaffold protein that interacts with CELL DIVISION CYCLE48 and is involved in the degradation of lipid droplet proteins. *Plant Cell* 30: 2137–2160

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J Mol Biol* 305: 567–580

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kumar D, Hazra S, Datta R, Chattopadhyay S (2016) Transcriptome analysis of *Arabidopsis* mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. *Sci Rep* 6: 36867

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kumar R, Tran L-SP, Neelakandan AK, Nguyen HT (2012) Higher plant cytochrome b5 polypeptides modulate fatty acid

desaturation. *PLoS One* 7: e31370

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kumar R, Wallis JG, Skidmore C, Browse J (2006) A mutation in *Arabidopsis* cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. *Plant J* 48: 920–932

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in *Arabidopsis*. *Plant J* 44: 810–825

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li F, Han X, Guan H, Xu MC, Dong YX, Gao X-Q (2022) PALD encoding a lipid droplet-associated protein is critical for the accumulation of lipid droplets and pollen longevity in *Arabidopsis*. *New Phytol* 235: 204–219

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, et al (2013) Acyl-lipid metabolism. *Arabidopsis Book* 11: e0161

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in *Arabidopsis thaliana*. *Cell Stress Chaperones* 6: 201–208

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lin L-J, Tai SSK, Peng C-C, Tzen JTC (2002) Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. *Plant Physiol* 128: 1200–1211

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lin Y-T, Chen L-J, Herrfurth C, Feussner I, Li H (2016) Reduced biosynthesis of digalactosyldiacylglycerol, a major chloroplast membrane lipid, leads to oxylipin overproduction and phloem cap lignification in *Arabidopsis*. *Plant Cell* 28: 219–232

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Listenberger LL, Brown DA (2007) Fluorescent detection of lipid droplets and associated proteins. *Curr Protoc Cell Biol* 35: 24.2.1-24.2.11

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Luttgehrarm KD, Kimberlin AN, Cahoon EB (2016) Plant sphingolipid metabolism and function. In Y Nakamura, Y Li-Beisson, eds, *Lipids in Plant and Algae Development*. Springer International Publishing, Cham, pp 249–286

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Maggio C, Barbante A, Ferro F, Frigerio L, Pedrazzini E (2007) Intracellular sorting of the tail-anchored protein cytochrome b5 in plants: a comparative study using different isoforms from rabbit and *Arabidopsis*. *J Exp Bot* 58: 1365–1379

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl- tert -butyl ether for high-throughput lipidomics. *J Lipid Res* 49: 1137–1146

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. *Science* 330: 226–228

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Morikawa T, Mizutani M, Aoki N, Watanabe B, Saga H, Saito S, Oikawa A, Suzuki H, Sakurai N, Shibata D, et al (2006) Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in *Arabidopsis* and tomato. *Plant Cell* 18: 1008–1022

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mueller SP, Krause DM, Mueller MJ, Fekete A (2015) Accumulation of extra-chloroplastic triacylglycerols in *Arabidopsis* seedlings during heat acclimation. *J Exp Bot* 66: 4517–4526

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mueller SP, Unger M, Guender L, Fekete A, Mueller MJ (2017) Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol synthesis augments basal thermotolerance. *Plant Physiol* 175: 486–497

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mukherjee AK, Carp M-J, Zuchman R, Ziv T, Horwitz BA, Gepstein S (2010) Proteomics of the response of *Arabidopsis thaliana* to infection with *Alternaria brassicicola*. *J Proteomics* 73: 709–720

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Müller AO, Blersch KF, Gippert AL, Ischebeck T (2017) Tobacco pollen tubes – a fast and easy tool for studying lipid droplet association of plant proteins. *Plant J* 89: 1055–1064

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Müller AO, Ischebeck T (2018) Characterization of the enzymatic activity and physiological function of the lipid droplet-associated triacylglycerol lipase AtOBL1. *New Phytol* 217: 1062–1076

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. *Physiol Plant* 15: 473–497

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murphy DJ (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants. *Prog Lipid Res* 32: 247–280

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in *Arabidopsis*. *Plant Physiol Biochem* 47: 796–806

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pavacic M, Overmyer K, Rehman A ur, Jones P, Jacobson D, Himanen K (2021) Image-based methods to score fungal pathogen symptom progression and severity in excised *Arabidopsis* leaves. *Plants (Basel)* 10: 158

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. *Annu Rev Cell Dev Biol* 28: 489–521

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Piotrowski M, Schönfelder S, Weiler EW (2001) The *Arabidopsis thaliana* isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. *J Biol Chem* 276: 2616–2621

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, Kretzschmar FK, Ischebeck T, Valerius O, Braus GH, Chapman KD, et al (2017) *Arabidopsis* lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. *Plant J* 92: 1182–1201

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pyc M, Gidda SK, Seay D, Esnay N, Kretzschmar FK, Cai Y, Doner NM, Greer MS, Hull JJ, Coulon D, et al (2021) LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in *Arabidopsis*. *Plant Cell* 33: 3076–3103

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Qi Y, Katagiri F (2012) Membrane microdomain may be a platform for immune signaling. *Plant Signal Behav* 7: 454–456

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Qi Y, Tsuda K, Nguyen LV, Wang X, Lin J, Murphy AS, Glazebrook J, Thordal-Christensen H, Katagiri F (2011) Physical association of *Arabidopsis* hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. *J Biol Chem* 286: 31297–31307

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Qiao Z, Kong Q, Tee WT, Lim ARQ, Teo MX, Olieric V, Low PM, Yang Y, Qian G, Ma W, et al (2022) Molecular basis of the key regulator WRINKLED1 in plant oil biosynthesis. *Sci Adv* 8: eabq1211

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rappaport J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. *Nat Protoc* 2: 1896–1906

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I (2019) Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. *Science* 365: 498–502

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. *Nat Rev Mol Cell Biol* 20: 665–680

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salvucci ME (2007) Association of Rubisco activase with chaperonin-60 : a possible mechanism for protecting photosynthesis during heat stress. *J Exp Bot* 59: 1923–1933

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schieferle S, Tappe B, Korte P, Mueller MJ, Berger S (2021) Pathogens and elicitors induce local and systemic changes in triacylglycerol metabolism in roots and in leaves of *Arabidopsis thaliana*. *Biology (Basel)* 10: 920

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of *Arabidopsis thaliana* development. *Nat Genet* 37: 501–506

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian

gene expression control. *Nature* 473: 337–342

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sham A, Moustafa K, Al-Ameri S, Al-Azzawi A, Iratni R, AbuQamar S (2015) Identification of *Arabidopsis* candidate genes in response to biotic and abiotic stresses using comparative microarrays. *PLoS One* 10: e0125666

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. *Nat Protoc* 1: 2856–2860

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K, et al (2014a) Leaf oil body functions as a subcellular factory for the production of a phytoalexin in *Arabidopsis*. *Plant Physiol* 164: 105–118

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K, et al (2014b) Leaf oil body functions as a subcellular factory for the production of a phytoalexin in *Arabidopsis*. *Plant Physiol* 164: 105–118

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shiva S, Samarakoon T, Lowe KA, Roach C, Vu HS, Colter M, Porras H, Hwang C, Roth MR, Tamura P, et al (2020) Leaf lipid alterations in response to heat stress of *Arabidopsis thaliana*. *Plants (Basel)* 9: 845

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smith MA, Jonsson L, Stymne S, Stobart K (1992) Evidence for cytochrome b 5 as an electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (*Ricinus communis* L.). *Biochem J* 287: 141–144

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. *Nat Protoc* 1: 2019–2025

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J-P, Brown R, Kazan K, et al (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. *Plant Cell* 15: 760–770

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Su T, Xu J, Li Y, Lei L, Zhao L, Yang H, Feng J, Liu G, Ren D (2011) Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in *Arabidopsis thaliana*. *Plant Cell* 23: 364–380

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. *Nucleic Acids Res* 37: D969–D974

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Szalainé Ágoston B, Kovács D, Tompa P, Perczel A (2011) Full backbone assignment and dynamics of the intrinsically disordered dehydrin ERD14. *Biomol NMR Assign* 5: 189–193

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Res* 49: D605–D612

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tarazona P, Feussner K, Feussner I (2015) An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling. *Plant J* 84: 621–633

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Taurino M, Costantini S, De Domenico S, Stefanelli F, Ruano G, Delgadillo MO, Sánchez-Serrano JJ, Sanmartín M, Santino A, Rojo E (2018) SEIPIN proteins mediate lipid droplet biogenesis to promote pollen transmission and reduce seed dormancy. *Plant Physiol* 176: 1531–1546

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat Methods* 13: 731–740

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tzen J, Cao Y, Laurent P, Ratnayake C, Huang A (1993) Lipids, proteins, and structure of seed oil bodies from diverse species. *Plant Physiol* 101: 267–276

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Uknes S, Winter AM, Delaney T, Vernooij B, Morse A, Friedrich L, Nye G, Potter S, Ward E, Ryals J (1993) Biological induction of systemic acquired resistance in *Arabidopsis*. *Mol Plant Microbe Interact* 6: 692–698

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vance VB, Huang AH (1987) The major protein from lipid bodies of maize. Characterization and structure based on cDNA cloning. *J Biol Chem* 262: 11275–11279

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. *Nat Biotechnol* 32: 223–226

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang K, Senthil-Kumar M, Ryu C-M, Kang L, Mysore KS (2012) Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. *Plant Physiol* 158: 1789–1802

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang T-Y, Wu J-R, Duong NKT, Lu C-A, Yeh C-H, Wu S-J (2021) HSP70-4 and farnesylated AtJ3 constitute a specific HSP70/HSP40-based chaperone machinery essential for prolonged heat stress tolerance in *Arabidopsis*. *J Plant Physiol* 261: 153430

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekhar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in *Arabidopsis*. *J Biol Chem* 277: 31994–32002

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wilkins O, Bräutigam K, Campbell MM (2010) Time of day shapes *Arabidopsis* drought transcriptomes. *Plant J* 63: 715–727

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu C, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in *Arabidopsis*. *Plant Cell* 17: 3094–3110

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu C, Fan J, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in *Arabidopsis*. *EMBO J* 22: 2370–2379

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu C, Shanklin J (2016) Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. *Annu Rev Plant Biol* 67: 179–206

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three *Arabidopsis* genes encoding proteins with differential activities for cysteine synthase and  $\beta$ -cyanoalanine synthase. *Plant Cell Physiol* 41: 465–476

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yao J, Withers J, He SY (2013) *Pseudomonas syringae* infection assays in *Arabidopsis*. *Methods Mol Biol* 1011: 63–81

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yu L, Zhou C, Fan J, Shanklin J, Xu C (2021) Mechanisms and functions of membrane lipid remodeling in plants. *Plant J* 107: 37–53

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhu J-K (2016) Abiotic stress signaling and responses in plants. *Cell* 167: 313–324

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)