Image processing tools for petabyte-scale
light sheet microscopy data

Xiongtao Ruan'”, Matthew Mueller!:2, Gaoxiang Liu!, Frederik
Gorlitz!®, Tian-Ming Fu®?, Daniel E. Milkie?, Joshua L.
Lillvis3, Alexander Kuhn*, Chu Yi Aaron Herr!, Wilmene

Hercule!, Marc Nienhaus?, Alison N. Killilea!, Eric Betzig!2:3:>*f
and Srigokul Upadhyayula®67*f

'Department of Molecular and Cell Biology, University of California,
Berkeley, CA 94720.
?Howard Hughes Medical Institute, Berkeley, CA 94720.
3Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
20417.
4NVIDIA, Berlin, 10623, Germany.
5Department of Physics, Helen Wills Neuroscience Institute, University of
California, Berkeley, CA 94720.
5Molecular Biophysics and Integrated Bioimaging Division, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720.
"Chan Zuckerberg Biohub, San Francisco, CA 94158.
8Current address: Department of Microsystems Engineering, University of
Freiburg, Freiburg, 79110, Germany.
9Current address: Department of Electrical and Computer Engineering,
Princeton University, Princeton, NJ 08540.

*Corresponding authors. E-mails: xruan@berkeley.edu;
betzige@janelia.hhmi.org; sup@berkeley.edu;
TThese authors contributed equally, names are listed alphabetically.

Abstract

Light sheet microscopy is a powerful technique for high-speed 3D
imaging of subcellular dynamics and large biological specimens. How-
ever, it often generates datasets ranging from hundreds of gigabytes
to petabytes in size for a single experiment. Conventional com-
putational tools process such images far slower than the time to
acquire them and often fail outright due to memory limitations. To
address these challenges, we present LLSM5DTools, a scalable soft-
ware solution for efficient petabyte-scale light sheet image processing.
This software incorporates a suite of commonly used processing tools
that are memory and performance-optimized. Notable advancements
include rapid image readers and writers, fast and memory-efficient

2 Image processing tools for petabyte-scale light sheet microscopy data

geometric transformations, high-performance Richardson-Lucy decon-
volution, and scalable Zarr-based stitching. These features outperform
state-of-the-art methods by over one order of magnitude, enabling
the processing of petabyte-scale image data at the full teravoxel
rates of modern imaging cameras. The software opens new avenues
for biological discoveries through large-scale imaging experiments.

Keywords: Image processing, light sheet microscopy, deskew and rotation,
deconvolution, stitching, large-scale processing, real-time processing

1 Introduction

Light sheet microscopy enables fast 3D imaging of cells, tissues, and organs
[1]. Within this realm, lattice light sheet microscopy (LLSM) allows long-term
visualization of subcellular dynamics with near-isotropic 3D resolution in single
or multicellular environments while maintaining reduced photobleaching and
phototoxicity [2, 3]. Combined with expansion microscopy [4], LLSM has been
used to image millimeter-scale cleared and expanded samples while achiev-
ing nanoscale resolution [5]. In such cases, the data produced from a single
experiment can explode to hundreds of gigabytes to petabytes. These data gen-
eration rates introduce significant challenges for data storage and processing
that complicate visualization, analysis, and assessment of the data. First, even
individual volumes from a 4D time series can be so large as to render their
pre-processing unwieldy or even impossible for conventional processing codes.
Second, acquisition in a non-Cartesian coordinate space adds substantial com-
putational overhead. Third, LLSM data is often acquired at multi-terabyte per
hour rates too fast for conventional tools to process in real-time, impeding the
rapid feedback needed to adjust imaging conditions or locations on the fly or
to extract biological insights from the resulting datasets in a timely manner.
Numerous computational tools encompassing various functionalities have
been developed to facilitate light sheet image pre-processing, including deskew
and rotation [6, 7], deconvolution [8, 9], stitching [10], and visualization [11, 12].
While these tools have proven valuable for light sheet images on the gigabyte
scale, their utility wanes for data sizes surpassing the terabyte threshold, due
to a lack of scalability and efficiency required to process images in real-time.
Furthermore, many of these tools are standalone applications, providing only
partial processing steps in a specialized context and varying input formats and
requirements. This often requires extensive manual effort to integrate them
into multi-step workflows, limiting their utility, especially for large-scale data.
To address these challenges, particularly for long-term imaging of subcellu-
lar dynamics or vast multicellular image volumes, we developed LLSM5DTools,
a software solution designed to enable real-time processing of petabyte-scale
light sheet imaging data. The software contains commonly used pre- and
post-processing tools that are memory and performance-optimized, including

Image processing tools for petabyte-scale light sheet microscopy data 3

deskew, rotation, deconvolution, and stitching, all integrated into a high-
performance computing framework capable of executing user-defined functions
in a scalable and distributed manner.

To further increase throughput, we developed novel algorithms for image
input/output (IO) using the Zarr data format for image storage [13] and pro-
cessing in conjunction with custom parallelized image readers and writers.
Finally, for multi-tiled volumes, we built a scalable stitching pipeline that
supports user-defined preprocessing and flat field correction, automatic cross-
correlation-based registration with global optimization, and block-based tile
fusion, making it suitable for handling the tens of thousands of tiles common
in petabyte-scale datasets. These capabilities have been seamlessly integrated
into a single pipeline that allows for partitioned parallel processing and subse-
quent merging of petabyte-scale datasets. The software incorporates an online
mode during image acquisition to automatically process data and provide
near-instantaneous feedback that is critical during long-term time series or
high-throughput large sample imaging. To ensure accessibility for users with
little or no programming experience, the software includes a user-friendly
graphical user interface (GUI).

2 Results

2.1 Overall design: distributed computing accelerates
image processing

High frame rate modern cameras enable light sheet microscopes to capture
images at nearly four terabytes per hour per camera. This presents formidable
challenges for sustained image acquisition, real-time (de)compression, stor-
age, and processing, especially when using a single conventional workstation.
In response, we developed a distributed computing architecture compris-
ing a cluster of computing nodes and networked data storage servers that
enables uninterrupted streaming and real-time processing of vast quantities of
data continuously acquired over extended periods. Our standard workflow is
illustrated in Fig. la.

Moving beyond the limitations of single-machine processing, our approach
exploits scalability and efficiency to handle large datasets. We created a generic
distributed computing framework in MATLAB to parallelize user-defined func-
tions ((Fig. 1b). The complete dataset or set of tasks is divided into distinct,
self-contained subtasks, each appropriately sized for processing by an individ-
ual worker unit with one or more CPU cores or GPUs (Fig. 1c-d). A conductor
job orchestrates all operations, distributes tasks across the computing cluster,
and monitors their progress to completion (Fig. 1b). Failed jobs are promptly
resubmitted with additional resources. Our MATLAB-based framework offers
greater flexibility for various task types, enhanced robustness against fail-
ures, and seamless integration across multiple processing steps, compared with
Spark [14] and Dask [15]. We use it to manage all processing methods in
LLSM5DTools (Fig. 1e).

4 Image processing tools for petabyte-scale light sheet microscopy data

2.2 Fast image readers and writers

Efficient image reading and writing are essential for real-time image processing.
Unfortunately, conventional image readers and writers for the widely used Tiff
format are not designed for large-scale compressed data, being restricted to
single-threaded operations (e.g., libtiff). For instance, an 86 GB 16-bit Tiff
file (512 x 1,800 x 50, 000) with libtiff (LZW compression) in MATLAB takes
approximately 8.5 and 16 minutes to read and write, respectively (Fig. Sla-b,
last groups). These speeds pose a considerable bottleneck for efficient image
processing.

To rectify this, we developed a highly optimized Tiff reader and writer
in C++. This implementation leverages the OpenMP framework to facilitate
concurrent multi-threaded reading and writing. Our Cpp-Tiff reader and writer
are over 22x and 7x faster than conventional ones, respectively, for compressed
data (Fig. 2a-b and Fig. Sla-b for a 24-core node). Moreover, they substantially
outperform the fast Python reader and writer library for Tiff files (tifffile in
Python, Fig. 2a-b, and Fig. S1 a-b). Their speeds also increase linearly as more
CPU cores are devoted to read/write operations (Fig. Sle-f).

Although the Tiff format is commonly used for raw microscopy images, it
is not the most efficient for parallel reading and writing, especially for very
large image datasets. One major limitation is its single-container structure
for file writes, which restricts it to single-threaded operations. To overcome
this, we instead chose Zarr [13], a next-generation file format optimized for
multi-dimensional data. Zarr efficiently stores data in non-overlapping chunks
of uniform size (border regions can be smaller) and saves them as individual
files. The format is similar to N5 [16], OME-Zarr [17], and TensorStore [18].

Zarr allows workers to access only the specific data of interest at a given
time. Distinct regions can be saved to disk independently and in parallel.
Using optimized C/C++ code that leverages OpenMP, our Zarr reader /writer
is 10-23x faster for reading and 5-8x faster for writing (Fig. 2c-d, Fig. Slec-d)
than the current implementation (using MATLAB’s blockedImage function
to interface with the Python version of Zarr). Their performances also scale
as more CPU cores are devoted to read/write operations (Fig. Slg-h). Our
implementation is also 5-10x and 5-8x faster for read/write compared with
the native Python implementation of Zarr (Fig. 2¢-d, Fig. Slc-d). Moreover,
compared to TensorStore, Cpp-Zarr is 2.2x and 1.5x faster for reading and
writing, respectively, for their preferred data orders (row-major in TensorStore
and column-major in Cpp-Zarr, Table S1). We opted to use the zstd compres-
sion algorithm at compression level 1 to achieve better compression ratios at
comparable read/write times to the 1z4 algorithm at level 5 (default in native
and OME-Zarr) (Fig. S1i-k).

2.3 Fast combined deskew and rotation

In many light sheet microscopes, including LLL.SM, the excitation and detection
objectives are oriented at an angle with respect to the substrate holding the

Image processing tools for petabyte-scale light sheet microscopy data 5

specimen. It is convenient in such cases to image the specimen by sweeping it
in the plane of this substrate, but the resulting raw image stack is then sheared
and rotated with respect to the conventional specimen Cartesian coordinates
(Fig. 3a). Traditionally, the data is transformed back to these coordinates
by deskewing and rotating in two sequential steps (Fig. 3b). However, zero
padding during deskew drastically increases data size, slowing computation
and risking out-of-memory faults, particularly for large images with many
frames (Fig. 3c).

To address this issue, we combined deskew and rotation into a single step,
which is possible given that both operations are rigid geometric transforma-
tions. When the ratio of the scan step size in the xy plane to the xy voxel size
(defined as “skew factor”) is smaller than 2.0, this is readily feasible (Fig. 3d,
top). However, when the skew factor is larger than 2.0, artifacts may man-
ifest due to the interpolation of voxels that are spatially distant within the
actual sample space during the combined operations, as depicted in Fig. S2 a-
b. Thus, in this case, we first interpolate the raw skewed data between adjacent
planes within the proper coordinate system to add additional planes to reduce
potential artifacts in the following combined operations (Fig. 3d, bottom).

Combined deskew and rotation yield nearly identical results to the same
operations performed sequentially (Fig. 3e and Fig. S2c-e). The combined oper-
ation becomes increasingly fast and memory efficient compared to sequential
operation as the number of frames increases. This enables us to process 10x
larger data with the same computational resources (Fig. 3f-g, and Fig. S2 f-g).
By additionally combining our fast Tiff reader/writer with combined deskew/
rotation, we achieve a 20x gain in processing speed compared to conventional
Tiff and sequential processing, allowing us to process much larger data (Fig.
3h and Fig. S2h). Finally, resampling and cropping, if involved, can be also
integrated with deskewing and rotation to optimize processing efficiency and
minimize storage requirements for intermediate data.

2.4 OTF masked Richardson-Lucy deconvolution

Deconvolution plays a crucial role in reconstructing the most accurate possible
representation of the sample from light sheet microscopy images, especially
for light sheets with strong side lobes associated with higher axial resolution
[19]. Richardson-Lucy (RL) deconvolution is the most widely used approach
for LLSM images due to its accuracy and robustness [20, 21]. We have found
that applying RL to the raw LLSM data prior to combined deskew /rotation
is not only faster (due to no zero padding) but also yields better results with
fewer edge artifacts (Fig. S3a). To do so, the reference point spread function
(PSF) used for deconvolution must either be measured in the skewed space as
well (Fig. S3c), or else calculated by skewing a PSF acquired in the sample
Cartesian coordinates (Fig. S3b).

RL is an iterative method that in its traditional form often requires 10-200
iterations to converge depending on the type of light sheet. Thus, compared to
deskew, rotation, and stitching, RL deconvolution is the most computationally

6 Image processing tools for petabyte-scale light sheet microscopy data

expensive step, particularly for big data, even with GPU acceleration. Inspired
by Zeng et al. [22] and Guo et al. [9], we optimized the iteration process by
adapting backward projectors. Despite being notably faster than the tradi-
tional RL method, the Wiener-Butterworth (WB) backward projector used by
Guo et al. was initially demonstrated on Gaussian light sheets with ellipsoid
support, and failed to achieve full-resolution reconstruction of LLSM images
(Fig. 4a-b, Fig. S3d-f) since it truncates the Optical Transfer Function (OTF
near the edges of its support (Fig. 4a-b, Fig. S3d-f), resulting in the loss of
information. This limitation is particularly pronounced for lattice light sheets
capable of high axial resolution, such as the hexagonal, hexrect, and multi-
Bessel types [19], whose OTF supports are nearly rectangular rather than
ellipsoidal in the xz and yz planes. Another concern is that the WB method
suppresses high-frequency regions near the border of its back projector’s ellip-
soid, thereby underweighting or even eliminating high-resolution information
in the deconvolved images.

To address these issues, we used the OTF support to define an apodization
function that filters noise close to the support and eliminates all information
beyond it (Fig. 4a-b, Fig. S3d-f, Fig. S4a-b). The apodization is defined by
creating a weight matrix with decreasing weights from 1 to 0 near the OTF sup-
port, followed by multiplying with a Wiener filter (Fig. S4c-d). Unlike the WB
method, this OTF masked Wiener (OMW) technique covers all relevant fre-
quencies in the Fourier space (Fig. 4c-d, Fig. S3h) and achieves full-resolution
image reconstruction while maintaining rapid convergence speed (Fig. 4e-f,
Fig. S3i-1). By using the OTF support for apodization, the OMW method is
generic for any PSF. Our specific implementation offers support for both CPUs
and GPUs and offers a 10-fold speed improvement compared to the traditional
RL method on both platforms (Fig. 4g-h, Fig. Sha-f).

RL is an iterative method whose performance relies crucially on finding an
optimum number of iterations: too few yields fuzzy images and, in the case of
LLSM, incomplete sidelobe collapse; too many amplifies noise and potentially
collapses and fragments continuous structures as represented in the decon-
volved image. To find an optimum, we use Fourier Shell Correlation (FSC)
[23]. For the traditional RL method, tens of iterations are often needed to
optimize resolution by the FSC metric (Fig. S5g). In [19], it was determined
that a slightly higher threshold produced better results (Fig. S5g, purple cir-
cle). However, with OMW, we found that two iterations yield the best results
when we use FSC to determine the optimal Wiener parameter (Fig. S5h-i) for
the backward projector.

2.5 ZarrStitcher: Zarr-based scalable stitching

To image specimens such as organoids, tissues, or whole organisms larger than
the field of view of the microscope, it is necessary to stitch together multiple
smaller image tiles. Overlap regions between adjacent tiles facilitate precise
registration and stitching. With the combination of high-resolution light sheet
microscopy and expansion microscopy, thousands of tiles comprising hundreds

Image processing tools for petabyte-scale light sheet microscopy data 7

of terabytes of data may be involved. This presents substantial challenges for
existing stitching software, particularly with respect to the large number of
tiles, the overall data size, and the need for computational efficiency. To address
these issues, we developed ZarrStitcher, a petabyte-scale framework for image
stitching.

ZarrStitcher involves three primary steps (Fig. 5a): data format conver-
sion, cross-correlation registration, and stitching (fusion). We first convert tiles
into the computationally efficient Zarr format, while also applying user-defined
preprocessing functions such as flat-field correction and data cropping if nec-
essary. Next, we use the normalized cross-correlation algorithm [24] to correct
for sample movement and stage motion errors and thereby accurately register
the relative positions of adjacent tiles. We then apply a global optimization
to infer the optimal shifts (Fig. 5b, middle) of all tiles collectively. This bet-
ter manages potential discrepancies between neighboring tiles than the typical
“greedy” local approach (Fig. 5b, left). For large volumes, data is often col-
lected in multiple batches, each consisting of multiple tiles, sometimes with
differing rectangular grids in each batch. In such cases, we implement two-step
optimization, where global optimization is first applied to each batch, followed
by an optimization across batches (Fig. 5b, right).

The final operation in ZarrStitcher involves stitching the registered tiles
together into a single unified volume. We developed a scalable distributed
architecture to this end, with individual tasks allocated to different workers for
different subregions. The software incorporates multiple methods to address
overlapping regions, including direct merging, mean, median, or feather blend-
ing. Feather blending, a type of weighted averaging with weights determined
by distances to the border, has proven to be particularly effective [25].

ZarrStitcher is substantially faster than BigStitcher [10] (Table S2): in the
case of a 108 TB dataset, ZarrStitcher took 1.7 hours using 20 computing
nodes (480 CPU cores) to assemble the complete volume, 11.8x faster than
BigStitcher. Stitching-spark [5], another alternative, is not usable at this scale,
due to its use of Tiff files that are limited to 4 GB size. ZarrStitcher outperforms
BigStitcher in fusing images with extensive overlap, minimizing ghost image
artifacts caused by imperfect structure matches in overlapping regions (Fig.
S6).

By integrating fast readers and writers, combined deskew and rotation,
and ZarrStitcher, we assembled a pipeline with real-time feedback during
microscopy acquisition that facilitates rapid analysis and decision-making. It
allows acquisition errors to be identified mid-stream, so that corrections can
be made (Fig. S7a), and helps determine when the specimen has been fully
imaged so the acquisition can be concluded (Fig. S7b). It also enables quick
identification of specific cells or specific events in a large field view worthy of
more detailed investigation (Fig. 5d-e), such as cell fusion (Fig. S8a) or cell
division (Fig. S8b, Movie S1).

We have also coupled our processing pipeline to NVIDIA’s multi-GPU
IndeX platform [27] to enable real-time visualization of 4D petabyte-scale data

8 Image processing tools for petabyte-scale light sheet microscopy data

at full resolution (Supplementary note, Movie S3). This allows us to simulta-
neously follow the dynamics of hundreds to thousands of cells (Fig. 5f, Movies
S2 and S3), and identify infrequent or rare events such as normal cell divisions
or the division of a cell into three daughter cells (Fig. 5g-h, Movies S2 and S3,).
The entire processing and imaging pipeline is applicable to many microscope
modalities in addition to light sheet microscopy, such as high speed, large field
of view oblique illumination “phase” imaging (Fig. 5d-e, Movie S1) and large
volume adaptive optical two-photon microscopy (Fig. S8c-f, Movie S4).

2.6 Strategies for large-scale processing

For large datasets consisting of many tiles, it is most efficient to stitch the
tiles in skewed space before deconvolution (Fig. 6a), thereby eliminating dupli-
cated effort in overlap regions as well as potential edge artifacts. Deconvolving
still in skewed coordinates immediately thereafter is most efficient (Fig. S3a),
because the data is more compact than after deskewing. Thus, the optimal
processing sequence is stitching (if necessary), followed by deconvolution, and
finally combined deskew and rotation (Fig. 6a).

When handling datasets that exceed memory capacity, certain process-
ing steps become challenging. ZarrStitcher already enables stitching data that
exceed memory limitations as long as the intermediate steps can be fitted into
memory. For stitching with even larger tiles, we developed a maximum inten-
sity projection (MIP) slab-based stitching technique (Fig. 6a, left) where tiles
are downsampled by different factors for different axes (e.g., 2x for the xy axes
and 100x for z) to generate MIP slabs that fit into memory. These slabs are
used to calculate registration information and estimate distance-based weights
for feather blending, ensuring accurate stitching of the complete dataset (Fig.
S6b,d,f).

For deskew, rotation, and deconvolution, we distribute large data among
multiple workers for faster processing, and merge the results into the final
output (Fig. 6a, middle and right). Zarr seamlessly enables this process.

In many imaging scenarios, a substantial amount of data beyond the bound-
ary of the specimen is empty to ensure complete coverage. Processing these
empty regions is unnecessarily inefficient, particularly for deconvolution (Fig.
S9a-b, f). We therefore define the boundary based on MIPs across all three axes
and skip the empty regions for large-scale deconvolution and deskew /rotation
(Fig. S9c-d,f-h).

With the above techniques, petabyte-scale processing becomes feasible
and efficient. Processing time scales linearly for stitching, deconvolution, and
deskew /rotation for data sizes ranging from 1 TB to 1 PB (Fig. 6b-d).

As an example, we processed a 38 TB image volume of the Drosophila adult
ventral nerve cord (VNC) at 8x expansion, as shown in Fig. 6e-i and Movie
S5. All glutamatergic neurons, which include all motor neurons, are shown in
cyan, and a subset of VNC neurons that includes a small number of these
motor neurons is shown in purple. The ability to image, process, and visualize
major complete anatomical regions such as the VNC at nanoscale resolution

Image processing tools for petabyte-scale light sheet microscopy data 9

in multiple colors at such speeds opens the door to study the stereotypy and
variability of neural circuits at high resolution over long distances, across large
populations, different sexes, and multiple species.

3 Discussion

Our pipeline achieves real-time processing at the multi-terabyte per hour
acquisition rates of modern scientific cameras, for the extended times and/or
large volumes that produce petabyte-scale data sets. It can be applied to many
imaging modalities but includes deskew and rotation operations specifically
useful in light sheet microscopy.

One limitation of the current pipeline is that it only supports rigid reg-
istration to compensate for sample translation, which performs well in most
scenarios. However, it may not be suitable for image tiles with rotation, shrink-
ing, swelling, or warping, which would require non-rigid methods such as elastic
registration [26]. While zstd compression in Zarr is helpful, storing raw and
intermediate data for petabyte-scale or larger datasets may still require hun-
dreds of terabytes to petabytes of storage. Real-time preprocessing of raw data
followed by massive compression during acquisition may be necessary to tackle
this challenge.

Notably, our pipeline is at least tenfold more efficient computationally than
existing processing solutions, which can be used to either increase experimental
throughput or decrease the number (and hence the cost) of computing nodes
needed. In the former case, high throughput could prove useful in obtaining
high-quality training data for deep learning image processing tasks [27-29],
such as deconvolution [30], denoising [31], or registration [32]. The speed of the
pipeline is also attractive for combining with multi-GPU 4D visualization [33]
to monitor vast image-based biological experiments in real-time, including high
throughput, high-resolution 3D drug screening [34], large tissue or whole organ-
ism spatial transcriptomics [35], or long-term imaging of subcellular dynamics
in live multicellular organisms [3, 36].

10

Image processing tools for petabyte-scale light sheet microscopy data

References

1]

2]

[12]

[13]

Stelzer, E. H. et al. Light sheet fluorescence microscopy. Nature Reviews
Methods Primers 1 (1), 73 (2021) .

Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to
embryos at high spatiotemporal resolution. Science 346 (6208), 1257998
(2014) .

Liu, T.-L. et al. Observing the cell in its native state: Imaging subcellular
dynamics in multicellular organisms. Science 360 (6386), eaaq1392 (2018)

Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science
347 (6221), 543-548 (2015) .

Gao, R. et al. Cortical column and whole-brain imaging with molecular
contrast and nanoscale resolution. Science 363 (6424), eaau8302 (2019) .

Aguet, F. et al. Membrane dynamics of dividing cells imaged by lattice
light-sheet microscopy. Molecular biology of the cell 27 (22), 3418-3435
(2016) .

Lamb, J. R., Ward, E. N. & Kaminski, C. F. Open-source software pack-
age for on-the-fly deskewing and live viewing of volumetric lightsheet
microscopy data. Biomedical Optics Express 14 (2), 834-845 (2023) .

Schmid, B. & Huisken, J. Real-time multi-view deconvolution. Bioinfor-
matics 31 (20), 3398-3400 (2015) .

Guo, M. et al. Rapid image deconvolution and multiview fusion for optical
microscopy. Nature biotechnology 38 (11), 1337-1346 (2020) .

Horl, D. et al. Bigstitcher: reconstructing high-resolution image datasets
of cleared and expanded samples. Nature methods 16 (9), 870-874 (2019)

Schmid, B., Schindelin, J., Cardona, A., Longair, M. & Heisenberg, M. A
high-level 3d visualization api for java and imagej. BMC bioinformatics
11 (1), 1-7 (2010) .

Campagnola, L., Klein, A., Larson, E., Rossant, C. & Rougier, N. P.
Vispy: harnessing the gpu for fast, high-level visualization (2015).

Miles, A. et al. zarr-developers/zarr-python: v2.16.1 (2023). URL https:
//doi.org/10.5281 /zenodo.8263439.

https://doi.org/10.5281/zenodo.8263439
https://doi.org/10.5281/zenodo.8263439

Image processing tools for petabyte-scale light sheet microscopy data 11

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

22]

Zaharia, M. et al. Apache spark: a unified engine for big data processing.
Communications of the ACM 59 (11), 56-65 (2016) .

Rocklin, M. et al. Dask: Parallel computation with blocked algorithms and
task scheduling (2015).

Saalfeld, S. et al. saalfeldlab/n5: n5-2.5.1 (2022). URL https://doi.org/
10.5281/zenodo.6578232.

Moore, J. et al. Ome-zarr: a cloud-optimized bioimaging file for-
mat with international community support. Histochemistry and Cell
Biology 160 (3), 223-251 (2023). URL https://doi.org/10.1007/
s00418-023-02209-1. https://doi.org/10.1007/s00418-023-02209-1 .

TensorStore developers. Tensorstore: Library for reading and writing large
multi-dimensional arrays. URL https://github.com/google /tensorstore.

Liu, G. et al Characterization, comparison, and opti-
mization of lattice light sheets. Science Advances 9 (13),
eade6623 (2023). URL https://www.science.org/doi/abs/10.
1126/sciadv.ade6623. https://doi.org/10.1126 /sciadv.ade6623,

https://www.science.org/doi/pdf/10.1126 /sciadv.ade6623 .

Richardson, W. H. Bayesian-based iterative method of image restoration.
JoSA 62 (1), 55-59 (1972) .

Lucy, L. B. An iterative technique for the rectification of observed
distributions. The astronomical journal 79, 745 (1974) .

Zeng, G. L. & Gullberg, G. T. Unmatched projector/backprojector pairs
in an iterative reconstruction algorithm. IEFEFE transactions on medical

imaging 19 (5), 548-555 (2000) .

Koho, S. et al. Fourier ring correlation simplifies image restoration in
fluorescence microscopy. Nature communications 10 (1), 3103 (2019) .

Briechle, K. & Hanebeck, U. D. Template matching using fast normalized
cross correlation, Vol. 4387, 95-102 (SPIE, 2001).

Szeliski, R. et al. Image alignment and stitching: A tutorial. Foundations
and Trends®) in Computer Graphics and Vision 2 (1), 1-104 (2007) .

Li, J., Wang, Z., Lai, S., Zhai, Y. & Zhang, M. Parallax-tolerant
image stitching based on robust elastic warping. IEEE Transactions on
multimedia 20 (7), 1672-1687 (2017) .

Liu, Z. et al. A survey on applications of deep learning in microscopy
image analysis. Computers in biology and medicine 134, 104523 (2021) .

https://doi.org/10.5281/zenodo.6578232
https://doi.org/10.5281/zenodo.6578232
https://doi.org/10.1007/s00418-023-02209-1
https://doi.org/10.1007/s00418-023-02209-1
https://doi.org/10.1007/s00418-023-02209-1
https://github.com/google/tensorstore
https://www.science.org/doi/abs/10.1126/sciadv.ade6623
https://www.science.org/doi/abs/10.1126/sciadv.ade6623
https://doi.org/10.1126/sciadv.ade6623
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.ade6623

12

(28]

[29]

[30]

[31]

[37]

[38]

Image processing tools for petabyte-scale light sheet microscopy data

Melanthota, S. K. et al. Deep learning-based image processing in optical
microscopy. Biophysical Reviews 14 (2), 463—481 (2022) .

Volpe, G. et al. Roadmap on deep learning for microscopy. ArXiv (2023) .

Li, Y. et al. Incorporating the image formation process into deep learn-
ing improves network performance. Nature Methods 19 (11), 1427-1437
(2022) .

Laine, R. F., Jacquemet, G. & Krull, A. Imaging in focus: an introduction
to denoising bioimages in the era of deep learning. The international
journal of biochemistry & cell biology 140, 106077 (2021) .

Fu, Y. et al. Deep learning in medical image registration: a review. Physics
in Medicine & Biology 65 (20), 20TR01 (2020) .

NVIDIA IndeX developers. Nvidia index: 3d scientific data visualization.
URL https://developer.nvidia.com/index.

Wang, Y. & Jeon, H. 3d cell cultures toward quantitative high-throughput
drug screening. Trends in Pharmacological Sciences (2022) .

Stahl, P. L. et al. Visualization and analysis of gene expression in tissue
sections by spatial transcriptomics. Science 353 (6294), 78-82 (2016) .

Wan, Y., McDole, K. & Keller, P. J. Light-sheet microscopy and its
potential for understanding developmental processes. Annual review of
cell and developmental biology 35, 655-681 (2019) .

Team, B. D. Blosc: A blocking, shuffling and lossless compression library.
URL https://github.com/Blosec/c-blosc.

van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria.
Journal of Structural Biology 151 (3), 250-262 (2005). URL https://
www.sciencedirect.com/science/article/pii/S1047847705001292. https://
doi.org/https://doi.org/10.1016/j.jsb.2005.05.009 .

Peng, T. et al. A basic tool for background and shading correction of
optical microscopy images. Nature communications 8 (1), 14836 (2017) .

Diao, F. et al. Plug-and-play genetic access to drosophila cell types using
exchangeable exon cassettes. Cell reports 10 (8), 1410-1421 (2015) .

Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational
enhancers to increase transgene expression in drosophila. Proceedings of
the National Academy of Sciences 109 (17), 6626—6631 (2012) .

https://developer.nvidia.com/index
https://github.com/Blosc/c-blosc
https://www.sciencedirect.com/science/article/pii/S1047847705001292
https://www.sciencedirect.com/science/article/pii/S1047847705001292
https://doi.org/https://doi.org/10.1016/j.jsb.2005.05.009
https://doi.org/https://doi.org/10.1016/j.jsb.2005.05.009

Image processing tools for petabyte-scale light sheet microscopy data 13

[42]

[43]

Lillvis, J. L. et al. Rapid reconstruction of neural circuits using tissue
expansion and light sheet microscopy. Elife 11, 81248 (2022) .

Schindelin, J. et al. Fiji: an open-source platform for biological-image
analysis. Nature methods 9 (7), 676682 (2012) .

Biggs, D. S. & Andrews, M. Acceleration of iterative image restoration
algorithms. Applied optics 36 (8), 1766-1775 (1997) .

Hanisch, R. J., White, R. L. & Gilliland, R. L. in Deconvolution of hubbles
space telescope images and spectra 310-360 (1996).

Glaser, A. et al. Expansion-assisted selective plane illumination
microscopy for nanoscale imaging of centimeter-scale tissues (2023). URL
http://dx.doi.org/10.7554 /eLife.91979.1. https://doi.org/10.7554 /elife.
91979.1 .

http://dx.doi.org/10.7554/eLife.91979.1
https://doi.org/10.7554/elife.91979.1
https://doi.org/10.7554/elife.91979.1

14 Image processing tools for petabyte-scale light sheet microscopy data

Online methods

Generic computing framework

Our generic computing framework supports both single machines and large-
scale Slurm-based computing clusters with CPU and/or GPU node config-
urations. The conductor job orchestrates the processing after it receives a
collection of function strings (MATLAB function call or a Bash command
executed by each worker), input file names, output file names, and relevant
parameters for job settings, such as required memory, the number of CPU
cores, and the system environment. The conductor job initially checks for the
presence of output files, skipping those that already exist. In single-machine
setups or when Slurm job submission is disabled, the conductor job will
sequentially execute tasks. Conversely, in cluster environments with Slurm job
scheduler, the conductor job formats and submits Slurm commands based on
the function strings and job parameters, delegating tasks to workers in the
cluster. It continuously monitors these jobs, ensuring the completion of the
tasks. If a worker job fails, the conductor job resubmits it with an increased
memory and CPU resources, often doubling the original specifications, until
all tasks are completed, or a preset maximum retry limit is reached. Addi-
tionally, the framework allows users to define a custom configuration file. This
feature tailors Slurm-related parameters to specific needs, ensuring adaptabil-
ity to various user-defined function strings and compatibility with different
Slurm-based computing clusters.

Fast Tiff and Zarr readers and writers

Our Tiff reader/writer leverages the capabilities of the libtiff library in C++
with the MATLAB MEX interface. When reading, a binary search is used to
determine the number of z slices by identifying the last valid slice, as there is no
direct way to query the number of z slices in libtiff. The OpenMP framework
is then used to distribute the reading tasks across multiple threads, partition-
ing the z slices into evenly sized batches (except for the last one). For large
2D images, the Tiff strips are partitioned to facilitate multi-threaded reading
using the OpenMP framework. For the Tiff writer, LZW compression from
libtiff is adapted to support compression on individual z slices. This approach
enables parallel compression across z slices, leveraging the OpenMP frame-
work for multi-threading. The final compressed data is written to disk using a
single thread since a Tiff file is a single container, making parallel writing of
compressed data infeasible.

As MATLAB lacks a native Zarr reader and writer, we developed custom
C++ code that compiles with the Zarr specification with enhanced paralleliza-
tion. This code is also integrated with MATLAB through the MEX interface.
In our implementation, the OpenMP framework is used for both reading and
writing to distribute the tasks across multiple threads, treating each chunk
as a separate task. We use the compression algorithms from the Blosc library

Image processing tools for petabyte-scale light sheet microscopy data 15

[37], which introduces an additional layer of multi-threading, thus optimizing
the use of system resources. Zstd compression with a level 1 setting is used to
achieve an optimal balance of compression ratio and read/write time. The high
compression ratio of zstd substantially reduces the overall data size, reducing
network load, particularly in extensive high-throughput processing scenarios
where the network is often the primary bottleneck. By default, we read and
write Zarr files in the “Fortran” (column-major layout) order since MATLAB
is based on “Fortran” order, and converting between “C” (row-major layout)
and “Fortran” orders adds additional overhead.

Combined deskew, rotation, resampling, and cropping

We execute deskew, rotate, and resampling (if needed) in a single step by com-
bining these geometric transformations. The fundamental geometric transform
involves:

I, = Fr(I)
where I is the original image, I; represents the transformed image, Fr(-)
denotes the image warp function corresponding to the geometric transforma-
tion matrix 7. The deskew operator applies a shear transformation defined by
the shear transformation matrix Sgs. In the rotation process, there are four
sub-steps: translating the origin to the image center, resampling in the z-axis
to achieve isotropic voxels, rotating along the y-axis, and translating the origin
back to the starting index. Let the transformation matrices be denoted as T,
S, R, and Ty, respectively. If resampling factors are provided (by default as 1),
then there are three additional sub-steps in resampling: translating the origin
to the image center, resampling based on the factors provided, and translating
the origin back to the start index. Let the transformation matrices in these
sub-steps be Tgr1, Sgr, and Tgs, respectively.

Traditionally, these three steps are executed independently, resulting in
multiple geometric transformations. However, this incurs substantial overhead
in runtime and memory usage, particularly during the deskew step. Instead,
we combine deskew, rotation, and resampling into one single step, resulting in
a unified affine transformation matrix:

A = S4s(T1SRT3)(Tr1SrTR2)

This affine transformation matrix can be directly applied to the raw image if
the scan step size is sufficiently small. A quantity, denoted as “skew factor”,
is defined to describe the relative step size as

fsk = dz COs Q/Px

where 6 € (—n/2,7/2] is the skewed angle, d, denotes the scan step size, and
Pz is the pixel size in the xy plane. If fg, < 2, the direct combined processing
operates smoothly without noticeable artifacts. For fs > 2, interpolation of
the raw data within the skewed space is performed before deskew and rotation,

16 Image processing tools for petabyte-scale light sheet microscopy data

taking account of the proper relative positions of slices. Neighboring slices
above and below are utilized to interpolate a z slice. Let ws and w; = 1 —
w, represent the normalized distances (ranging from 0 to 1) along the z-axis
between the neighboring slices and the target z slice. In the interpolation, we
first create two planes aligned with the correct voxel positions of the target
z slice by displacing the neighboring slices with a specific distance in the x
direction (wsd, cosf and wd, cos 8, respectively). Following this, the target
z slice is obtained by linearly interpolating these two planes along the z-axis
with weights 1 —ws and 1 — w;. Because the image warp function permits the
specification of the output view, we have also incorporated a cropping feature
by providing a bounding box that allows us to skip empty regions or capture
specific regions.

In the objective scan mode of LLSM, the deskew operation is not needed.
The above processing can still be applied, provided Sys is replaced with the
identity matrix.

Deconvolution

Richardson-Lucy (RL) deconvolution has the form of

I

(k+1) — (_*
! (Faam

® b7)z®

where T is the raw data, f is the forward projector (i.e., the point spread
function (PSF)), b is the backward projector, ® denotes the convolution oper-
ator, and () is the deconvolution result in k-th iteration. In traditional RL
deconvolution, b = f. In the OTF masked Wiener (OMW) method we use, the
backward projector is generated with these steps:

1. The optical transfer function (OTF) H of the PSF f is computed, H =
F(f), where .Z(-) represents the Fourier transform.

2. The OTF mask for the OTF support is segmented by applying a threshold
to the amplitude |H|. The threshold value is determined by a specified
percentile (90% by default) of the accumulated sum of sorted values in |H]|
from high to low.

3. The OTF mask undergoes a smoothing process, retaining only the central
object, followed by convex hull filling. For deskewed space deconvolution,
the three major components are kept after object smoothing and con-
catenated into a unified object along the z-axis, followed by convex hull
filling.

4. The distance matrix D is computed with the image center as 0, and the
edge of the support as 1 with the ray distance from the center to the border
of the whole image.

5. The distance matrix D is used to calculate the weight matrix W with
the Hann window function for apodization, as expressed by the following

Image processing tools for petabyte-scale light sheet microscopy data 17

formula:
1 <l
w(z) = cosQ(g((Z:ll;) l<z<u
0 > u

Where [and u are the lower and upper bounds for the relative distances. By
default, { = 0.8 and u = 1 (edge of the support). For skewed space decon-
volution, the weight matrix is given as a single distance matrix by adding
the distance matrix from the corresponding three components together.

6. Calculate Wiener filter F' = ‘H?ﬁ, where « is the Wiener parameter, and
H* denotes the conjugate transpose of H.

7. The backward projection in the Fourier space is expressed as B=W O F,
where @ denotes the Hadamard product operator (element-wise multiplica-
tion), and the backward projector in the real space is b = .% ~1(B), where
Z~1(-) represents the inverse Fourier transform.

The Fourier Shell Correlation (FSC) method [23] is used to determine the
optimal number of traditional RL iterations and the optimal Wiener param-
eter in the OMW method. Here, the central portion of the volume, which
is consistent in size across all three axes and covers sufficient content (i.e.,
202 x 202 x 202 for a volume with size 230 x 210 x 202), is employed to compute
the relative resolution. By default, the FSC is calculated with a radius of 10
pixels and an angle interval of 7/12. Cutoff frequencies for relative resolution
are determined using one-bit thresholding [38]. The relative resolution across
iterations (or different Wiener parameters) is plotted. The optimal number of
RL iterations or the Wiener parameter is defined by the value closest to 1.01
times the minimum of the curve beyond the point where the curve reaches its
minimum value.

Stitching

The stitching process requires a CSV meta-file documenting file names and
corresponding coordinates. The pipeline consists of three steps: Tiff to Zarr
conversion (or preprocessing), cross-correlation registration, and parallel block
stitching (fusion). The overall stitching workflow is governed by a conductor
job in the generic computing framework. For Tiff to Zarr conversion and/or
processing on individual tiles, the conductor job distributes tasks to individ-
ual worker jobs, assigning one worker for each tile. Each worker: a) reads its
data using the Cpp-Tiff or Cpp-Zarr (if existing Zarr data need rechunking
or preprocessing) reader depending on the format; b) performs optional pro-
cessing such as flipping, cropping, flat field correction, edge erosion, or other
user-defined operations; and c¢) writes the processed data using the Cpp-Zarr
writer.

Following file conversion, stitching can be executed directly using the
input tile coordinates, or normalized cross-correlation registration [24] can
be employed first to refine and optimize the coordinates before stitching. In
the registration, the conductor job utilizes coordinate information and tile

18 Image processing tools for petabyte-scale light sheet microscopy data

indices to establish tile grids and identify neighboring tiles with overlaps.
Cross-correlation registration is performed for overlapping tiles that are direct
neighbors, defined as those whose tile indices differ by 1, and only in one axis.
To optimize computing time and memory usage, only the overlap regions for
the tiles are loaded, including a buffer size determined by the maximum allowed
shifts along the xyz axes within one tile. We can also downsample the overlap
data to achieve faster cross-correlation computing. The optimal shift between
the two tiles is identified as the one exhibiting the maximum correlation within
the allowable shift limits. After completing the cross-correlation computation
for all pairs of direct neighbor tiles, we determine the shifts for all tiles using
either a local or global method. The local approach is based on the concept of
the minimum spanning tree, where the pairs of overlapping tiles are pruned to
form a tree based on the correlation values from high to low, followed by reg-
istration with the pairwise optimal shifts. In the global approach, the optimal
final shifts are calculated from the pairwise relative shifts through a nonlinear
constrained optimization process:

mwinz wijl|zs — ;5 — dig3
i

st I<zi—zj<u

where Xspift = {1, ..., xn} are the final shifts for the tiles. d;; is the pairwise
relative shift between tile ¢ and j, w;; is the weight between tile 7 and j based
on the squares of max cross-correlation values. [and u are the lower and upper
bounds for the maximum allowable shift. The goal is to position all tiles at
optimal coordinates by minimizing the weighted sum of the squared differences
between their distances and the pairwise relative shifts while adhering to the
specified maximum allowable shifts.

For images collected by subregions (batches) that have different tile grids,
we employ the global method for tiles within each subregion. Subsequently, the
subregions are treated as super nodes, and a nonlinear constrained optimiza-
tion is applied to those nodes, by minimizing the sum of squared differences
of the centroid distances to the averaged shift distances.

mwinz lzri —xpj — dm‘j”%
,J

st lp <Xy — Trj < Uy

where z,; and z,; are the centroid coordinates for subregions ¢ and j, I, and
u, are lower and upper bounds for the maximum allowable shifts across subre-
gions. The averaged shift distance, denoted as d,.;;, is determined by a weighted
average of the absolute shifts across subregions, as expressed below

ZmESi,TLESj wm"dm"

dr ij =
5]
ZmGSi,nES]‘ Wmn

Image processing tools for petabyte-scale light sheet microscopy data 19

where w,,, is the cross-correlation value at the optimal shift between tiles
m € 5;, and n € S, and S, denotes the set of tiles in subregion k. Once the
optimal shifts for the subregions are obtained, the last step is to reconstruct
the optimal shifts for the tiles within each subregion by applying the optimal
shifts of the centroid of the subregion to the coordinates of the tiles in it. The
final optimal shifts are then applied to the tile coordinates to determine their
final positions.

After registration, the conductor job determines the final stitched image
size and the specific locations to place the tiles. To facilitate parallel stitch-
ing, the process is executed region by region in a non-overlapping manner.
These regions are saved directly as one or more distinct chunk files in Zarr
format. For each region, the system stores information about the tiles therein
and their corresponding bounding boxes. The conductor job submits stitching
tasks to worker jobs. If the region comes from one tile, the data for the region
is saved directly. If the region spans multiple tiles, these must be merged into
a single cohesive region. For the overlap regions, several blending options are
available: “none”, “mean”, “median”, “max” and “feather”. For the “none”
option, half of the overlap region is taken from each tile. For the “mean”,
“median”, and “max” options, the voxel values in the stitched region are cal-
culated as the mean, median, and maximum values from the corresponding
voxels in the overlapping regions, respectively. Feather blending involves cal-
culating the weighted average across the tiles [25]. The weights are the power
of the distance transform of the tiles as follows:

m = dﬁm/(dgm + d]a,n) and Wj,n = d?,n/(dgm + d?,n)

Is,l = wi,mIi,m + wj,nlj,n
where d; »,, and d; ,, are distance transforms for voxel m in tile ¢ and voxel n in
tile j, a is the order (10 by default), I; and I; are the intensities from image
I; and I;, and I, is the stitched image. Here we assume voxel m in tile ¢ and
voxel n in tile j are fused to voxel [in the stitched image. For the distance
transform, we utilize a weighted approach, applying the distance transform to
each z slice and then applying the Tukey window function across z slices to
address the anisotropic properties of voxel sizes. When all tiles are the same
size, we compute the weight matrix for a single tile and apply it across all
other tiles in the stitching process to save computing time. The final stitched
image is obtained once all the chunks are processed.

Large-scale processing

For stitching involving large tiles where intermediate steps above exceed mem-
ory capacities, including large, stitched subregions, challenges arise in the
registration and calculation of the distance transformation for feather blend-
ing, due to the need to load large regions or tiles into memory. In such cases, we
use MIP slabs for the registration and distance transform. These are computed
across all three axes with downsampling factors [M,, My, M., mg, m,, m;]. The

20 Image processing tools for petabyte-scale light sheet microscopy data

MIP slab for each specific axis is computed using the major down sample fac-
tor M; for that axis, and the minor down sampling factors m; and my, for the
other two. To enrich the signal for cross-correlation in sparse specimens, we use
max pooling, i.e., taking the max value in the neighborhood for the downsam-
pling. Alternatively, we can also smooth the initial data by linear interpolation
before max pooling. For the registration, normalized cross-correlation is calcu-
lated between direct neighbor tiles using all three MIP slabs, generating three
sets of optimal shifts. The optimal shifts from the minor axes are then aver-
aged to obtain the final optimal shifts, with weights assigned based on the
squares of the cross-correlation values. For the distance transform, only the
MIP slab along the z-axis (major axis) is employed to compute the weights for
feather blending. In the stitching process, for overlapping regions, the down-
sampled weight regions are up-sampled using linear interpolation to match the
size of the regions in the stitching. The up-sampled weights are then utilized
for feather blending, following the same approach as employed for stitching
with smaller tiles.

For large-scale deskew and rotation, tasks are divided across the y-axis
based on the size in the x and z axes, with a buffer of one or two pixels on
both sides in the y-axis. These tasks are then allocated to individual worker
jobs for processing, with the results saved as independent Zarr regions on disk.
MIP masks can be used to define a tight boundary for the object to optimize
efficiency in data reading, processing, and writing. We also perform deskewing
and rotation for the MIP along the y-axis to define the bounding box for the
output in the xz axes. The geometric transformation function directly relies on
this bounding box to determine the output view to minimize the empty regions,
thereby further optimizing processing time, memory, and storage requirements.

For large-scale deconvolution, tasks are distributed across all three axes,
ensuring that regions occupy entire chunk files. An additional buffer size, set to
at least half of the PSF size (plus some extra size, 10 by default), is included to
eliminate edge artifacts. MIP masks are again used to define a tight specimen
boundary to speed computing. In a given task, all three MIP masks for the
region are loaded and checked for empty ones. If a mask is empty, deconvolution
is skipped, resulting in an output of zeros for that region.

Image processing and simulations

All images were processed using LLSM5DTools. Flat-field correction was
applied for the large field of view cell data (Fig. 5f-h), phase contrast data (Fig.
5c-e), and VNC data (Fig. 6e-j) with either experimentally collected flat-fields
or ones estimated based on the data using BaSiC [39].

The images used to benchmark different readers and writers, deskew /rota-
tion, and deconvolution algorithms were generated by cropping or replicating
frames from a uintl6 image of size 512 x 1,800 x 3,400. The stripped line
patterns used to compare deconvolution methods were simulated using the
methodology outlined in [19]. The confocal PSF for the given pinhole size

Image processing tools for petabyte-scale light sheet microscopy data 21

used in the stripped line pattern simulation was generated based on the the-
oretical widefield PSF. We benchmarked large-scale stitching from 1 TB to
1 PB using one channel of the VNC dataset with 1,071 tiles, each sized at
320 x 1,800 x 17,001. The datasets were created by either including specific
numbers of tiles or replicating tiles across all three axes based on the total
data size from 1 TB to 1 PB, as specified in the table below. We benchmarked
large-scale deconvolution and deskew /rotation using the stitched VNC dataset
(15,612 x 28,478 x 21,299, uint16) by either cropping or replicating the data
in all three axes to generate the input datasets, as indicated in the table below.

Stitching Deconvolution Deskew/rotation

(# tiles) (input size) (input size)
1TB 57 6,046 x 11,027 x 8,248 2,722 x 34,367 x 5,879
10 TB 562 13,024 x 23,757 x 17,769 5,864 x 74,041 x 12,665

100 TB | 5,644 28,059 x 51,183 x 38,280 | 12,632 x 159,516 x 27,284

1 PB 57,392 60,931 x 111,145 x 83,127 | 27,431 x 346,393 x 59,248
The table above shows the number of tiles for stitching, and the input data
dimensions for deconvolution and deskew/rotation in large-scale processing
benchmarks.

Computing infrastructures

Our computing cluster has 38 CPU/GPU computing nodes: 30 CPU nodes (24
nodes with dual Intel Xeon Gold 6146 CPUs, 6 nodes with dual Intel Xeon Gold
6342 CPUs) and 8 GPU nodes (3 nodes with dual Intel Xeon Silver 4210R, and
4 NVIDIA Titan V GPUs each, 4 nodes with dual Intel Xeon Gold 6144 and 4
NVIDIA A100 GPUs each, and 1 NVIDIA DGX A100 with dual AMD EPYC
7742 CPUs and 8 NVIDIA A100 GPUs). The Intel Xeon Gold 6146 CPU and
GPU nodes have 512 GB RAM on each node, the Intel Xeon Gold 6342 CPU
nodes have 1024 GB RAM on each node, and the NVIDIA DGX A100 has 2
TB RAM. The hyperthreading on all Intel CPUs was disabled. Benchmarks
were performed on hardware aged approximately three to four years. We have
four flash data servers, including a 70 TB (SSD, Supermicro), two 300 TB
(NVMe, Supermicro), and a 1000 TB parallel file system (VAST Data). We also
accessed the Perlmutter supercomputer from the National Energy Research
Scientific Computing Center (NERSC), with both CPU and GPU nodes. Each
CPU node is equipped with two AMD EPYC 7713 CPUs and 512 GB RAM;
each GPU node has a single AMD EPYC 7713 CPU, 4 NVIDIA A100 GPUs,
and 256 or 512 GB RAM.

Microscope hardware

Imaging was performed on a lattice light sheet microscope comparable to
a published system [3]. Two lasers, 488 nm and 560 nm (500 mW, MPB

22 Image processing tools for petabyte-scale light sheet microscopy data

Communications 2RU-VFL-P-500-488-B1R, and 2RU-VFL-P-1000-560-B1R),
were employed as the light sources. Water immersion excitation (EO, Thor-
labs TL20X-MPL) and detection objectives (DO, Zeiss, 20X, 1.0 NA, 1.8 mm
FWD, 421452-9800-000) were used for imaging. The imaging conditions for
the datasets can be found in Table S4.

Cell culture and imaging

Pig kidney epithelial cells (LLC-PK1, a gift from M. Davidson at Florida State
University) cells and HeLa cells were cultured in DMEM with GlutaMAX
(Gibco, 10566016) supplemented with 10% fetal bovine serum (FBS; Seradigm)
in an incubator with 5% COgz at 37°C and 100% humidity. LLC-PK1 cells sta-
bly expressing the ER marker mEmerald-Calnexin and the chromosome marker
mCherry-H2B were grown on coverslips (Thorlabs, CG15XH) coated with
200 nm diameter fluorescent beads (Invitrogen FluoSpheresTM Carboxylate-
Modified Microspheres, 505/515 nm, F8811). When cells reached 30 — 80%
confluency, they were imaged at 37°C in Leibovitz’s L-15 Medium without
Phenol Red (Gibco catalog # 21-083-027), with 5% fetal bovine serum (ATCC
SCRR-30- 2020™), and an antibiotic cocktail consisting of 0.1% Ampicillin
(ThermoFisher 611770250), 0.1% Kanamycin (ThermoFisher, 11815024) and
0.1% Penicillin/Streptomycin (ThermoFisher, 15070063). HeLa cells were cul-
tivated on 25 mm coverslips until approximately 50% confluency was achieved.
They were imaged in the same media as above.

Mouse brain sample preparation and imaging

All mice experiments were conducted at Janelia Research Campus, Howard
Hughes Medical Institute (HHMTI) in accordance with the US National Insti-
tutes of Health Guide for the Care and Use of Laboratory Animals. Procedures
and protocols were approved by the Institutional Animal Care and Use
Committee of the Janelia Research Campus, HHMI.

Transgenic Thyl-YFPH mice 8 weeks or older with cytosolic expression of
yellow fluorescent protein (YFP) at high levels in motor, sensory, and subsets
of central nervous system neurons were anesthetized with isoflurane (1—2% by
volume in oxygen) and placed on a heated blanket. An incision was made on
the scalp followed by removing of the exposed skull. A cranial window made of
a single 170-um-thick coverslip (no.1) was embedded in the craniotomy. The
cranial window and a headbar were sealed in place with dental cement for
subsequent imaging.

Fly VINC sample preparation and imaging

A genetically modified strain of fruit flies (Drosophila melanogaster) was
raised on a standard cornmeal-agar-based medium in a controlled environ-
ment of 25°C on a 12:12 light/dark cycle. On the day of eclosion, female
flies were collected, and group housed for 4-6 days. The genotype was
VGIutMI04979_Tex A:QFAD/MN-GAL4 (attp40); 13XLexAop-Syn21-mScarle

Image processing tools for petabyte-scale light sheet microscopy data 23

[JK65C], 20XUAS-Syn21-GFP [attp2]/MN-GAL4 [attp2] [40, 41]. Dissection
and immunohistochemistry of the fly VNC were performed following the pro-
tocol in [42] with minor modifications. The primary antibodies were chicken
anti-GFP (1:1000, Abcam, ab13970) and rabbit anti-dsRed (1:1000, Takara
Bio, 632496). The secondary antibodies were goat anti-chicken IgY Alexa Fluor
488 (1:500, Invitrogen, A11039) and goat anti-rabbit IgG Alexa Fluor 568
(1:500, Invitrogen, A11011). VNC samples were prepared for 8x expansion
as described in [42]. The imaging protocol for the expanded VNC sample was
identical to that described in [5].

Visualization and software

Movies were made with Imaris (Oxford Instruments), Fiji [43], Amira (Fisher
Scientific), NVIDIA IndeX (NVIDIA), and MATLAB R2023a (MathWorks)
software. Figures were made with MATLAB R2023a (MathWorks). Python
(3.8.8) with Zarr-Python (2.16.1), tifffile (2023.7.10), and TensorStore (0.1.45)
libraries were used for benchmarking image readers and writers. The tra-
ditional RL deconvolution method is an accelerated version of the original
RL algorithm [44, 45]. It was implemented and adapted from MATLAB’s
deconvlucy.m with enhancements such as GPU computing and customized
parameters. Backward projectors for the WB deconvolution method were gen-
erated using the code from regDeconProject. Spark versions of BigStitcher
(BigStitcher-Spark) and stitching-spark were used for the stitching compari-
son.

Acknowledgments

We thank Jonathan Lefman and the NVIDIA IndeX team for sharing the
NVIDIA Index software. We thank John White for managing our comput-
ing cluster. We also thank Allen Institute for making their exaSPIM datasets
publicly available [46]. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility located at Lawrence Berkeley National Labora-
tory, operated under Contract No. DE-AC02-05CH11231 using NERSC award
DDR-ERCAP0025501.

Funding

X.R., G.L., F.G., and S.U. are partially funded by the Philomathia Founda-
tion. X.R. and G.L. are partially funded by the Chan Zuckerberg Initiative.
X.R. and S.U. are supported by Lawrence Berkeley National Lab’s LDRD.
M.M., T.F., D.M., J.L.L., and E.B. are funded by HHMI. F.G. is partially
funded by the Feodor Lynen Research Fellowship, Humboldt Foundation. E.B.
is an HHMI Investigator. S.U. is funded by the Chan Zuckerberg Initiative
Imaging Scientist program. S.U. is a Chan Zuckerberg Biohub — San Francisco
Investigator.

https://github.com/eguomin/regDeconProject
https://github.com/JaneliaSciComp/BigStitcher-Spark
https://github.com/saalfeldlab/stitching-spark

24 Image processing tools for petabyte-scale light sheet microscopy data

Conflict of interest

There are no conflicts of interest.

Authors Contributions

E.B. and S.U. supervised the project. X.R. wrote the manuscript with input
from all coauthors. E.B. and S.U. edited the initial draft. X.R. designed the
algorithms and implemented the software. M.M. implemented the fast image
readers and writers under X.R.’s guidance. M.M. designed and developed the
graphical user interfaces, and C.Y.A.H. contributed to the implementation.
J.L.L. prepared the VNC sample and G.L. performed the imaging experiments.
W.H. and A.N.K. prepared the cultured LLC-PK1 cells and F.G. performed
the live cell imaging experiment. T.F. performed the imaging experiments for
the live mouse brain imaging and phase imaging of HeLa cells. D.M. developed
the microscope software for the imaging experiments. A.K. and M.N. helped set
up the workflows for the real-time visualization movie using NIVIDA IndeX.
X.R. performed all image processing and analysis and made the figures. X.R.
and M.M. made all movies with S.U.’s input.

Data availability

The datasets used in this manuscript will be shared upon reasonable request.

Code availability

The source code of the software is available at: LLSM5DTools. The graphical
user interface for the software can be downloaded from: LLSM Processing GUI.

https://github.com/abcucberkeley/LLSM5DTools/tree/dev
https://github.com/abcucberkeley/LLSM_Processing_GUI

Image processing tools for petabyte-scale light sheet microscopy data 25

Figures

Fig. 1: Overall design of the image processing framework. a, image acquisition
and processing workflows. b, illustration of the generic distributed computing
framework. c, illustration of distributed processing of many independent files
across multiple workers. d, illustration of distributed processing of the split-
process-merge mechanism for the distributed processing of a large image file.
e, overall functionalities and features in LLSM5DTools.

26 Image processing tools for petabyte-scale light sheet microscopy data

b
Tiff read efficency vs frames per stack Tiff write efficency vs frames per stack
0 14

s [ottt P | [E—T

[ifffile tifffile
30 Cpp-Tiff 27 28 10 Cpp-Tiff
s 2 % m xm B]

T i I £ 8l 73 73 72 74 10 ¥ %

N
8

Performance gain
&
Performance gain
>

3

61| s9| 60| 60| 63| 65| 74 21 22/ | 22| 23| 23| 23| 22
9 00 O 4 0 0
0 0
500 1000 2000 5000 10000 20000 50000 500 1000 2000 5000 10000 20000 50000
Frames/stack Frames/stack
c) d y N
Zarr read efficency vs frames per stack Zarr write efficency vs frames per stack
25 23 10
[""""] MATLAB interface of Zarr I 1 MATLAB interface of Zarr 8.3
204 [C—Zzar 8 Zarr i
Cpp-Zarr Cpp-Zarr
< < 61 60 60
S5 ‘f i@ 2 S 6 ss ¥ 1 I k2
Y 12 13 2 50 &
2 & ™ e &
2 10 e
<1 <1
£ 10 [l E 4
S S
& &
5 2
34 1.5
dlala sl il ol il o
Y P P = A ,

500 1000 2000 5000 10000 20000 50000 500 1000 2000 5000 10000 20000 50000
Frames/stack Frames per stack

Fig. 2: Performance improvement factors of our C++ Tiff and Zarr readers
and writers. a, performance gains of our Cpp-Tiff reader versus the conven-
tional Tiff reader in MATLAB and tifffile reader in Python versus the number
of frames in the 3D stack. b, performance gains of our Cpp-Tiff writer versus
the conventional tiff writer in MATLAB and the tifffile writer in Python versus
the number of frames in the 3D stack. a, performance gains of our Cpp-Zarr
reader versus the conventional Zarr reader (MATLAB interface of Zarr) and
native Zarr in Python versus the number of frames in the 3D stack. d, acceler-
ation folds of Cpp-Zarr writers versus the conventional Zarr writer (MATLAB
interface of Zarr) and native Zarr in Python versus the number of frames in
the 3D stack. The image size is 512 x 1800 (xy) in all cases. The benchmarks
were run independently ten times on a 24-core CPU computing node (dual
Intel Xeon Gold 6146 CPUs).

Image processing tools for petabyte-scale light sheet microscopy data 27

Fig. 3: Combined deskew and rotation. a, traditional sequential deskew and
rotation processes. b, orthogonal views of raw (skewed), deskewed (DS), and
deskewed /rotated (DSR) images for cultured cells. ¢, the semi-log plot of the
data sizes of a stack of raw 512 x 1800 pixel images, deskewed, deskewed /ro-
tated data as a function of the numbers of frames per stack. The dashed line
indicates the memory limit (500 GB) of a computing node. d, the addition
of skewed space interpolation prior to deskew/rotation when the z-step size
between image planes is too large. e, histogram of the normalized differences
between deskewed /rotated results of sequential versus combined methods for
the same image in b. f, performance gain for combined direct and combined
interpolated over sequential deskew /rotation versus the number of frames per
stack, from 500 to 5,000. Comparisons do not include read/write time, which
is considered in Fig. 2. g, memory efficiency gain for the same three scenar-
ios. h, performance gain for the same three scenarios. This comparison does
include the differences in read/write time when the conventional Tiff software
is used for the sequential deskew/rotation, and our Cpp-Tiff is used for com-
bined deskew /rotation.

28 Image processing tools for petabyte-scale light sheet microscopy data

Fig. 4: Fast RL deconvolution. a, Left: theoretical xy and xz PSFs (top, intensity
~v = 0.5, scale bar: 1 um) and OTFs (bottom, log-scale, scale bar: 2,um71) for the
multi-Bessel (MB) light sheet with excitation NA 0.43 and annulus NA 0.40 - 0.47.
Blue: theoretical support; orange and yellow: theoretical maximum (orange) and
experimental (yellow) envelopes for the BW method; magenta: experimental envelope
for the OMW method. Right: illustration of deconvolution of a simulated stripe
pattern. The raw and deconvolved images with traditional, BW, and OMW methods
are on the right, and the corresponding line cuts are on the left. The orange lines
indicate the theoretical line locations, and the blue curves give the actual intensities
along the line cuts. b, similar results for a Sinc light sheet (NA 0.32, oy = 5.0).
c-d, illustration of backward projectors (top, scale bar: 1 um), their Fourier spectra
(middle, intensity v = 0.5), and the products with forward projectors in Fourier
spaces (bottom, intensity v = 0.5, scale bar: 1 um™!) for the MB light sheet (c) and
Sinc light sheet (d). e-f, orthogonal views of cell images for raw, conventional RL
decon, WB, and OMW methods for the MB light sheet (e) and Sinc light sheet (f),
with iteration numbers as shown (scale bar: 2 um). The Fourier spectra are shown
below each deconvolved image (intensity v = 0.5, scale bar: lpmfl). g-h, relative
deconvolution acceleration for traditional and OMW methods on CPU (g) and GPU
(h) (only the deconvolution itself is used in the comparison).

Image processing tools for petabyte-scale light sheet microscopy data 29

Fig. 5: The Zarr-based distributed stitching framework. a, schematic of the
stitching steps. b, schematic of different registration methods: local, grid, and
grouped. Boxes indicate tiles and green/blue lines indicate pairs of tiles/-
groups involved in registration. ¢, raw 2D phase tiles before processing. d, final
processed phase contrast image for live HeLa cells after stitching, flat-field cor-
rection, and deconvolution. Boxes labeled S8a and S8b indicate regions shown
at higher magnification in Fig. S8a and S8b. e, zoomed region of d showing
retraction fibers. f, long-term large field of view 3D imaging of cultured LLC-
PK1 cells. Blue: H2B-Cherry; hot: Connexin-Emerald. Intensity v = 0.5. g,
cropped regions from e showing stages in cell division. h, time-lapse series of
the division of one cell into three daughter cells from f.

30 Image processing tools for petabyte-scale light sheet microscopy data

Fig. 6: Large-scale processing. a, Schematic of processing steps for large-scale
stitching, deconvolution, and deskew/rotation. For deconvolution, the data is
split into slabs in all three axes with an overlap border size of slightly over
half of the PSF size. For deskew and rotation, the data is split along the y-
axis with a border of one slice. b, total run times for large-scale stitching of
a single volume with size ranging from 1 TB to 1 PB. ¢, total run times for
large-scale deconvolution of a single volume with size ranging from 1 TB to 1
PB. d, total run times for large-scale deskew and rotation of a single volume
with size ranging from 1 TB to 1 PB. e, MIP view of the entire fly VNC
at 8x expansion. Cyan: VGlutM497_LexA::QFAD, and purple: MN-GALA4.
Intensity v = 0.5. f-i, MIP views of cropped regions from e. Intensity v = 0.75
for all four regions.

	㈱㤠〠潢樊㰼 呩瑬攨﻿㈲〠〠潢樊㰼 呩瑬攨﻿㈲ㄠ〠潢樊㰼 呩瑬攨﻿㈲㈠〠潢樊㰼 呩瑬攨﻿㈲㌠〠潢樊㰼 呩瑬攨﻿㈲㐠〠潢樊㰼 呩瑬攨﻿㈲㔠〠潢樊㰼 呩瑬攨﻿㈲㘠〠潢樊㰼 呩瑬攨﻿㈲㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㈮㜹㔠㐴㜮〵㌠㔹⸷㘹‴㔵⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‵㤱⸹㌷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄳ⸲㘸‴ㄱ⸰㔳‱㈰⸲㐲‴ㄹ⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‵㔷⸹㜴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㈳⸹㈸‴ㄱ⸰㔳‱㌰⸹〲‴ㄹ⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‵ㄲ⸰ㄲ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〶⸳㌱‴ㄱ⸰㔳″ㄳ⸳〵‴ㄹ⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‴㘶⸰㐹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㘳⸰㌴″㠷⸰㔳‱㜰⸰〸″㤵⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‴㌲⸰㠷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱〸⸲㌵′㌱⸰㔳‱ㄵ⸲〹′㌹⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰″㤸⸱㈴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄸ⸲㌠㈳ㄮ〵㌠ㄲ㔮㈰㐠㈳㤮㐶㙝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㔶⸰〵〠㌵㈮ㄶ㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㘮〶′㌱⸰㔳′〳⸰㌴′㌹⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰″〶⸱㤹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〶⸰㔵′㌱⸰㔳′ㄳ⸰㈹′㌹⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰′㜲⸲㌶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘱⸲㐷′㌱⸰㔳′㜳⸲〳′㌹⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵ㄮ〲㐰′㌸⸲㜳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔶⸸㜶′㌱⸰㔳″㘸⸸㌲′㌹⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵ㄮ〲㐰‱㤲⸳ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㜱⸸㔳′㌱⸰㔳″㠳⸸〸′㌹⸴㘶崊⽄敳琠嬱㠠〠删⽘奚‵ㄮ〲㐰‱㐶⸳㐸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌴⸳㌱‵㔱⸹〷″㐶⸲㠶‵㘰⸳㉝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㔱⸰㈴〠ㄱ㈮㌸㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄲ㤮㘷㌠㈱㔮㜹㌠ㄳ㘮㘴㜠㈲㘮㘴㉝ਯ䑥獴⁛㈲‰⁒ 塙娠㔱⸰㈴〠㔷㘮㈱㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㄰㈮㜷㜠ㄶ㜮㈴‱〹⸷㔱‱㜹⸱㤵崊⽄敳琠嬲㈠〠删⽘奚‵ㄮ〲㐰‵㜶⸲ㄹ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳〶⸳㔱‱㐳⸲㐠㌱㌮㌲㔠ㄵ㔮ㄹ㕝ਯ䑥獴⁛㈲‰⁒ 塙娠㔱⸰㈴〠㔷㘮㈱㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈶〮㈵㈠ㄱ㤮㈴′㘷⸲㈶‱㌱⸱㤵崊⽄敳琠嬲㈠〠删⽘奚‵ㄮ〲㐰‵㜶⸲ㄹ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬸㈮㤰㘠㜳⸷㌱‹㐮㠶ㄠ㠲⸱㐴崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰‶ㄲ⸹〴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㔰⸹㌴‷㌮㜳ㄠㄶ㈮㠸㤠㠲⸱㐴崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰‵㜸⸹㐱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㐰⸵㜷‵㤮㈴‱㐷⸵㔱‷ㄮㄹ㕝ਯ䑥獴⁛㈲‰⁒ 塙娠㔱⸰㈴〠㔷㘮㈱㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㤴⸹ㄴ‴㌵⸴㌹‱〱⸸㠷‴㐷⸳㤴崊⽄敳琠嬳ㄠ〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱〷⸰ㄸ‴ㄱ⸴㌹‱ㄳ⸹㤲‴㈳⸳㤴崊⽄敳琠嬳ㄠ〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㜷⸱㤹″㐱⸹㌠ㄸ㤮ㄵ㐠㌵〮㌴㍝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㔱⸰㈴〠ㄱ㈮㌸㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㤮ㄳ㔠㌰㔮㤳′ㄱ⸰㤠㌱㐮㌴㍝ਯ䑥獴⁛㈳‰⁒ 塙娠㔱⸰㈴〠㔴㐮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶㤮㠹㠠㌰㔮㤳′㠱⸸㔳″ㄴ⸳㐳崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰‵ㄱ⸰ㄶ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㘶⸰㌷″〵⸹㌠㌷㜮㤹㌠㌱㐮㌴㍝ਯ䑥獴⁛㈳‰⁒ 塙娠㔱⸰㈴〠㐵㌮〵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱㔮㌷㜠㈵㔮㐳㤠㌲㈮㌵ㄠ㈶㜮㌹㑝ਯ䑥獴⁛㌱‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈶㐮㌳㔠ㄹ㔮㐳㤠㈷ㄮ㌰㤠㈰㜮㌹㑝ਯ䑥獴⁛㌱‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㜵⸷㜷‵㘱⸴ㄷ‸㈮㜵ㄠ㔷㌮㌷㉝ਯ䑥獴⁛㌵‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌰㐮ㄲ㘠㔴㤮㐱㜠㌱ㄮㄠ㔶ㄮ㌷㉝ਯ䑥獴⁛㌵‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㄰㘮ㄵ‵ㄳ⸴ㄷ‱ㄳ⸱㈴‵㈵⸳㜲崊⽄敳琠嬳㔠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㜴⸰㘷‴㘵⸴ㄷ″㠱⸰㐠㐷㜮㌷㉝ਯ䑥獴⁛㌵‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱㤮㌲㐠㌹㌮㐱㜠㌲㘮㈹㜠㐰㔮㌷㉝ਯ䑥獴⁛㌵‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈲〮㠹㠠㌶㤮㐱㜠㈲㜮㠷㈠㌸ㄮ㌷㉝ਯ䑥獴⁛㌵‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈹㔮ㄵ㘠㌳㌮㐱㜠㌰㈮ㄳ″㐵⸳㜲崊⽄敳琠嬳㔠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵〮〲㜠㈸㔮㐱㜠㔷⸰〱′㤷⸳㜲崊⽄敳琠嬳㔠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㈮㜹㔠ㄸ㌮㤷㔠㘴⸷㔠ㄹ㈮㌸㝝ਯ䑥獴⁛㈳‰⁒ 塙娠㔱⸰㈴〠㐱㤮〹〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㜮〷㔠ㄷㄮ㤷㔠㈹㤮〳‱㠰⸳㠷崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰″㐹⸱㈸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〳⸲㠷‱㜱⸹㜵″ㄵ⸲㐳‱㠰⸳㠷崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰″ㄵ⸱㘵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄸ⸶㘵‵㠷⸹〷‱㌰⸶㈠㔹㘮㌲崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰′㠱⸲〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〶⸷㐵‵㠷⸹〷′ㄳ⸷ㄸ‵㤶⸳㉝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㔶⸰〵〠㈷㈮㈳㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㜴⸲㜳‵㈵⸴ㄷ‸ㄮ㈴㜠㔳㜮㌷㉝ਯ䑥獴⁛㌹‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈰㜮㈴㔠㔱㌮㐱㜠㈱㐮㈱㤠㔲㔮㌷㉝ਯ䑥獴⁛㌹‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄱ㈮〴㘠㐷㤮㤰㜠ㄲ㐮〰ㄠ㐸㠮㌲崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰‴ㄹ⸰㤰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㈱⸴㐱″㤳⸴ㄷ‱㈸⸴ㄵ‴〵⸳㜲崊⽄敳琠嬳㤠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲〲⸴㜳″㐵⸴ㄷ′〹⸴㐷″㔷⸳㜲崊⽄敳琠嬳㤠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㘸⸸〹″㌳⸴ㄷ″㜵⸷㠲″㐵⸳㜲崊⽄敳琠嬳㤠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲〹⸳㜵′㠵⸴ㄷ′ㄶ⸳㐸′㤷⸳㜲崊⽄敳琠嬳㤠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㈮㜹㔠㈱㔮㤰㜠㘴⸷㔠㈲㐮㌲崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰′㌵⸲㐰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㠹⸴㤵′〳⸹〷″〱⸴㔠㈱㈮㌲崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰‴ㄹ⸰㤰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㜷⸷㤷‵㌷⸴ㄷ′㠴⸷㜠㔴㤮㌷㉝ਯ䑥獴⁛㐴‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㤮㘱㘠㐹ㄮ㤰㜠㌴ㄮ㔷ㄠ㔰〮㌲崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰′〱⸲㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㤱⸸㘹‴㔳⸴ㄷ‱㤸⸸㐳‴㘵⸳㜲崊⽄敳琠嬴㐠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㠵⸰〵‴㈹⸴ㄷ‱㤱⸹㜹‴㐱⸳㜲崊⽄敳琠嬴㐠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㈵⸲㔹″㠱⸴ㄷ′㌲⸲㌳″㤳⸳㜲崊⽄敳琠嬴㐠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㐱⸷㌹′㤹⸹〷″㔳⸶㤵″〸⸳㉝ਯ䑥獴⁛㈳‰⁒ 塙娠㔱⸰㈴〠ㄶ㜮㌱㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㐮㜴′㠷⸹〷″〶⸶㤵′㤶⸳㉝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㔱⸰㈴〠㈳㠮㈷㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄷ㔮㠶㔠㈵ㄮ㤰㜠ㄸ㈮㠳㠠㈶〮㌲崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‴㌲⸰㠷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㤸⸲〶‱〵⸴ㄷ′〵⸱㠠ㄱ㜮㌷㉝ਯ䑥獴⁛㐴‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌴㌮㌱㠠㔸㔮㐱㜠㌵〮㈹㈠㔹㜮㌷㉝ਯ䑥獴⁛㐴‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈷㠮㜵㜠㔶ㄮ㐱㜠㈸㔮㜳ㄠ㔷㌮㌷㉝ਯ䑥獴⁛㐴‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈷㐮㤲㤠㔲㔮㐱㜠㈸ㄮ㤰㌠㔳㜮㌷㉝ਯ䑥獴⁛㐴‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈵㔮㠷㘠㐵㜮㐸㐠㈶㈮㠵‴㘹⸴㌹崊⽄敳琠嬴㠠〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㐰⸳㜠㌹㜮㐸㐠㈴㜮㌴㌠㐰㤮㐳㥝ਯ䑥獴⁛㐸‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌰㌮㠵㐠㌳㜮㐸㐠㌱〮㠲㠠㌴㤮㐳㥝ਯ䑥獴⁛㐸‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㄰㘮㠹㠠㈴ㄮ㐸㐠ㄱ㌮㠷ㄠ㈵㌮㐳㥝ਯ䑥獴⁛㐸‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌳ㄮ㜴㤠ㄳ㌮㐸㐠㌳㠮㜲㌠ㄴ㔮㐳㥝ਯ䑥獴⁛㐸‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌲ㄮ㤹㜠㄰㤮㐸㐠㌲㠮㤷ㄠㄲㄮ㐳㥝ਯ䑥獴⁛㐸‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㘮㜹㐠㐱㠮㤸㘠ㄱ㠮㜴㤠㐲㜮㌹㥝ਯ䑥獴⁛㈳‰⁒ 塙娠㔱⸰㈴〠ㄳ㌮㌵㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵㘮㤰㤠㌱〮㤸㘠㌶㠮㠶㐠㌱㤮㌹㥝ਯ䑥獴⁛㈳‰⁒ 塙娠㔱⸰㈴〠㠷⸳㠹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㜱⸸㔳″㄰⸹㠶″㠳⸸〸″ㄹ⸳㤹崊⽄敳琠嬵㈠〠删⽘奚‵ㄮ〲㐰‵㜸⸹㐱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㐸⸹〶′㤸⸹㠶‱㘰⸸㘲″〷⸳㤹崊⽄敳琠嬵㈠〠删⽘奚‵ㄮ〲㐰‵㔶⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄲ⸹㘳′㤸⸹㠶′㈴⸹ㄸ″〷⸳㤹崊⽄敳琠嬵㈠〠删⽘奚‵ㄮ〲㐰‵ㄱ⸰ㄶ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㤸⸰㌳′㤸⸹㠶″〹⸹㠹″〷⸳㤹崊⽄敳琠嬵㈠〠删⽘奚‵ㄮ〲㐰‴㘵⸰㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㜴⸶㈠㈸㘮㤸㘠㌸㘮㔷㔠㈹㔮㌹㥝ਯ䑥獴⁛㔲‰⁒ 塙娠㔱⸰㈴〠㐳ㄮ〹〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㌮㔰㈠㈶㈮㤸㘠㈶㔮㐵㜠㈷ㄮ㌹㥝ਯ䑥獴⁛㔲‰⁒ 塙娠㔱⸰㈴〠㌹㜮ㄲ㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄷ㈮㠲㜠㈵〮㤸㘠ㄸ㐮㜸㌠㈵㤮㌹㥝ਯ䑥獴⁛㔲‰⁒ 塙娠㔱⸰㈴〠㌶㌮ㄶ㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㜮ㄸ′㌸⸹㠶‱㤴⸱㔴′㐷⸳㤹崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‵ㄲ⸰ㄲ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤸⸲㔠㈳㠮㤸㘠㈱〮㈰㔠㈴㜮㌹㥝ਯ䑥獴⁛㔲‰⁒ 塙娠㔱⸰㈴〠㌲㤮㈰㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌶㈮ㄱㄠ㤶⸸㤸″㠹⸳㐳‱〸⸸㔴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮㔲㠱⽺敮潤漮㠲㘳㐳㤩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㜰⸵〶‸㐮㠹㠠㈲㈮㜹㜠㤶⸸㔴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮㔲㠱⽺敮潤漮㠲㘳㐳㤩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌱㜮㈵㈠㔲㤮㐹ㄠ㌸㤮㌴㌠㔴ㄮ㐴㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸵㈸ㄯ穥湯摯⸶㔷㠲㌲⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬷〮㔰㘠㔱㜮㐹ㄠㄷ㜮㤳㜠㔲㤮㐴㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸵㈸ㄯ穥湯摯⸶㔷㠲㌲⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌱〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㜹⸶ㄵ‴㜱⸵㈹″㠹⸳㐳‴㠳⸴㠴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮㄰〷⽳〰㐱㠭〲㌭〲㈰㤭ㄩ㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄱ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㜰⸵〶‴㔹⸵㈹‱㔷⸶㈴‴㜱⸴㠴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮㄰〷⽳〰㐱㠭〲㌭〲㈰㤭ㄩ㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄶ㈮㠱㘠㐵㤮㔲㤠㌵㜮㘶㤠㐷ㄮ㐸㑝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱〰㜯猰〴ㄸⴰ㈳ⴰ㈲〹ⴱ⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲〹⸸㘲‴㈵⸵㘶″㠰⸶ㄱ‴㌷⸵㈱崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯杯潧汥⽴敮獯牳瑯牥⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㈵⸸ㄷ″㜹⸶〳″㠹⸳㐳″㤱⸵㔸崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽷睷⹳捩敮捥⹯牧⽤潩⽡扳⼱〮ㄱ㈶⽳捩慤瘮慤收㘲㌩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㜰⸵〶″㘷⸶〳‱㘱⸹㐱″㜹⸵㔸崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽷睷⹳捩敮捥⹯牧⽤潩⽡扳⼱〮ㄱ㈶⽳捩慤瘮慤收㘲㌩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄶ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㈱㈮㌱㈠㌶㜮㘰㌠㌸㘮㔷㔠㌷㤮㔵㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱ㄲ㘯獣楡摶⹡摥㘶㈳⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬷〮㔰㘠㌵㔮㘰㌠㌲㌮㐱㤠㌶㜮㔵㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯慲硩瘮潲术慢猯桴瑰猺⼯睷眮獣楥湣攮潲术摯椯灤是㄰⸱ㄲ㘯獣楡摶⹡摥㘶㈳⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬹㐮㠵㤠㐰㌮㘰㌠㈵ㄮ㘳㌠㐱㔮㔵㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯摥癥汯灥爮湶楤楡⹣潭⽩湤數⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬹㐮㠵㤠㈵㔮㜵㌠㈴㌮㐹㜠㈶㜮㜰㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽂汯獣⽣ⵢ汯獣⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌲〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㔲⸱㐹′㈱⸷㤠㌸㤮㌴㌠㈳㌮㜴㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯睷眮獣楥湣敤楲散琮捯洯獣楥湣支慲瑩捬支灩椯匱〴㜸㐷㜰㔰〱㈹㈩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㜰⸵〶′〹⸷㤠㌴㔮㔳ㄠ㈲ㄮ㜴㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯睷眮獣楥湣敤楲散琮捯洯獣楥湣支慲瑩捬支灩椯匱〴㜸㐷㜰㔰〱㈹㈩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌵㈮ㄴ㤠㈰㤮㜹″㠹⸳㐳′㈱⸷㐵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽤潩⹯牧⽨瑴灳㨯⽤潩⹯牧⼱〮㄰ㄶ⽪⹪獢⸲〰㔮〵⸰〹⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌲㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬷〮㔰㘠ㄹ㜮㜹′㠶⸵㠵′〹⸷㐵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽤潩⹯牧⽨瑴灳㨯⽤潩⹯牧⼱〮㄰ㄶ⽪⹪獢⸲〰㔮〵⸰〹⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌲㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬷〮㔰㘠㐳㜮㔶㘠㈴㘮ㄸㄠ㐴㤮㔲ㅝਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰㨯⽤砮摯椮潲术㄰⸷㔵㐯敌楦攮㤱㤷㤮ㄩ㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㈵㤮㐱㌠㐳㜮㔶㘠㌸㤮㌴㌠㐴㤮㔲ㅝਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸷㔵㐯敬楦攮㤱㤷㤮ㄩ㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㜰⸵〶‴㈸⸰㔷‱〵⸱㔴‴㌶⸴㝝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸷㔵㐯敬楦攮㤱㤷㤮ㄩ㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔲⸷㤵‵㤹⸹〷‶㐮㜵‶〸⸳㉝ਯ䑥獴⁛㔲‰⁒ 塙娠㔱⸰㈴〠㈸㌮㈴〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶㘮ㄲ㐠㐱㘮㜵㘠㈷㠮〷㤠㐲㔮ㄶ㥝ਯ䑥獴⁛㈳‰⁒ 塙娠㔱⸰㈴〠㈳㔮㈴〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳㤮㔲㠠㌳㈮㜵㘠㈵ㄮ㐸㐠㌴ㄮㄶ㥝ਯ䑥獴⁛㔲‰⁒ 塙娠㔱⸰㈴〠㈴㤮㈷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵㐮㘸㐠㠵⸱㜷″㘶⸶㌹‹㌮㔹崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰′〱⸲㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㔳⸰㔳″㐷⸹〷′㘵⸰〹″㔶⸳㉝ਯ䑥獴⁛㈳‰⁒ 塙娠㔱⸰㈴〠ㄶ㜮㌱㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈵㌮㤴㔠ㄵ㜮㐸㐠㈶〮㤱㤠ㄶ㤮㐳㥝ਯ䑥獴⁛㐴‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔰⸰㈷‱㐵⸴㠴‵㜮〰ㄠㄵ㜮㐳㥝ਯ䑥獴⁛㐴‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄶ㘮㤵㌠ㄴ㔮㐸㐠ㄷ㌮㤲㜠ㄵ㜮㐳㥝ਯ䑥獴⁛㐸‰⁒ 塙娠㔱⸰㈴〠㘱㘮㠶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈷〮㤷㜠ㄳ㔮㤷㔠㈸㈮㤳㈠ㄴ㐮㌸㝝ਯ䑥獴⁛㔲‰⁒ 塙娠㔱⸰㈴〠ㄹㄮ㌱㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄶ㘮㜳‷㔮㤷㔠ㄷ㠮㘸㘠㠴⸳㠷崊⽄敳琠嬲㌠〠删⽘奚‵ㄮ〲㐰‴ㄹ⸰㤰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㐴⸱㈲‶㤮㘴㠠ㄵㄮ〹㔠㜸⸰㘱崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‵ㄲ⸰ㄲ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〷⸲㔸‵㤹⸹〷″ㄹ⸲ㄳ‶〸⸳㉝ਯ䑥獴⁛㔲‰⁒ 塙娠㔱⸰㈴〠ㄵ㜮㌵㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㌮㜹㐠㔹㤮㤰㜠㌳㔮㜴㤠㘰㠮㌲崊⽄敳琠嬵㈠〠删⽘奚‵ㄮ〲㐰‱㈳⸳㠹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌴〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬹〮㈱㘠㔷㔮㤰㜠㄰㈮ㄷㄠ㔸㐮㌲崊⽄敳琠嬶㜠〠删⽘奚‵ㄮ〲㐰‶ㄲ⸹〴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌴ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㈰⸵ㄴ‵ㄵ⸹〷‱㌲⸴㘹‵㈴⸳㉝ਯ䑥獴⁛㘷‰⁒ 塙娠㔱⸰㈴〠㘱㈮㤰㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㈮㌹㈠㔰㌮㤰㜠ㄸ㤮㌶㘠㔱㈮㌲崊⽄敳琠嬱㠠〠删⽘奚‵㘮〰㔰‴㌲⸰㠷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌴㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〶⸹㤵‴㔹⸹㜵″ㄸ⸹㔠㐶㠮㌸㝝ਯ䑥獴⁛㘷‰⁒ 塙娠㔱⸰㈴〠㔷㠮㤴㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄱ㠮㐷㤠㌸㜮㤷㔠ㄳ〮㐳㐠㌹㘮㌸㝝ਯ䑥獴⁛㘷‰⁒ 塙娠㔱⸰㈴〠㔴㐮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㘮㈲㘠㌸㜮㤷㔠ㄴ㠮ㄸㄠ㌹㘮㌸㝝ਯ䑥獴⁛㘷‰⁒ 塙娠㔱⸰㈴〠㔱ㄮ〱㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄷ㜮〲ㄠ㌵〮〳㜠㈵ㄮ㈹㠠㌶〮㠸㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽥杵潭楮⽲敧䑥捯湐牯橥捴⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌴㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬵㌮㤰㈠㌳㜮㐸㐠ㄳ㌮㈹㤠㌴㤮㐳㥝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽊慮敬楡卣楃潭瀯䉩杓瑩瑣桥爭印慲欩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㤮〵″㌷⸴㠴′㈵⸳㠵″㐹⸴㌹崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯獡慬晥汤污戯獴楴捨楮札獰慲欩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㌮㘵㈠㈴㌮〵㌠ㄴ㔮㘰㠠㈵ㄮ㐶㙝ਯ䑥獴⁛㘷‰⁒ 塙娠㔱⸰㈴〠㐷㜮〵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㈵㜮㠲㔠㈹㐮㈱㜠㌲㈮㠳ㄠ㌰㔮〶㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽡扣畣扥牫敬敹⽌䱓䴵䑔潯汳⽴牥支摥瘩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㈸㜮㜶㠠㈸㈮㈱㜠㌸㘮㔷㔠㈹㌮〶㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽡扣畣扥牫敬敹⽌䱓䵟偲潣敳獩湧彇啉⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㐳⸰㐹‱㤷⸰㘷‱㔰⸰㈲′〷⸹ㄵ崊⽄敳琠嬳ㄠ〠删⽘奚‵ㄮ〲㐰‶ㄶ⸸㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㘠〠潢樊㰼⽔祰支䵥瑡摡瑡ਯ卵扴祰支塍䰯䱥湧瑨‱㌷㠾㹳瑲敡洊㰿硰慣步琠扥杩渽⟯뮿✠楤㴧圵䴰䵰䍥桩䡺牥卺乔捺正㥤✿㸊㰿慤潢攭硡瀭晩汴敲猠敳挽≃剌䘢㼾਼砺硭灭整愠硭汮猺砽❡摯扥㩮猺浥瑡⼧⁸㩸浰瑫㴧塍倠瑯潬歩琠㈮㤮ㄭㄳⰠ晲慭敷潲欠ㄮ㘧㸊㱲摦㩒䑆⁸浬湳㩲摦㴧桴瑰㨯⽷睷⹷㌮潲术ㄹ㤹⼰㈯㈲⵲摦⵳祮瑡砭湳⌧⁸浬湳㩩堽❨瑴瀺⼯湳⹡摯扥⹣潭⽩堯ㄮ〯✾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩰摦㴧桴瑰㨯⽮献慤潢攮捯洯灤是ㄮ㌯✾㱰摦㩐牯摵捥爾䝐䰠䝨潳瑳捲楰琠㄰⸰〮〼⽰摦㩐牯摵捥爾਼灤昺䭥祷潲摳㸼⽰摦㩋敹睯牤猾਼⽲摦㩄敳捲楰瑩潮㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺硭瀽❨瑴瀺⼯湳⹡摯扥⹣潭⽸慰⼱⸰⼧㸼硭瀺䵯摩晹䑡瑥㸲〲㐭〲ⴱ㕔〶㨴㠺㐱娼⽸浰㩍潤楦祄慴放਼硭瀺䍲敡瑥䑡瑥㸲〲㐭〲ⴱ㕔〶㨴㠺㐱娼⽸浰㩃牥慴敄慴放਼硭瀺䍲敡瑯牔潯氾䱡呥堠睩瑨⁨祰敲牥昼⽸浰㩃牥慴潲呯潬㸼⽲摦㩄敳捲楰瑩潮㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺硡灍䴽❨瑴瀺⼯湳⹡摯扥⹣潭⽸慰⼱⸰⽭洯✠硡灍䴺䑯捵浥湴䥄㴧畵楤㩣摥㍣㠷㔭〳敡ⴱㅦ愭〰〰ⵤ㈹扢㐲攵ぢ㌧⼾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩤挽❨瑴瀺⼯灵牬⹯牧⽤振敬敭敮瑳⼱⸱⼧⁤挺景牭慴㴧慰灬楣慴楯港灤昧㸼摣㩴楴汥㸼牤昺䅬琾㱲摦㩬椠硭氺污湧㴧砭摥晡畬琧㸼⽲摦㩬椾㰯牤昺䅬琾㰯摣㩴楴汥㸼摣㩣牥慴潲㸼牤昺卥焾㱲摦㩬椾㰯牤昺汩㸼⽲摦㩓敱㸼⽤挺捲敡瑯爾㱤挺摥獣物灴楯渾㱲摦㩁汴㸼牤昺汩⁸浬㩬慮朽❸ⵤ敦慵汴✾㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺摥獣物灴楯渾㰯牤昺䑥獣物灴楯渾਼⽲摦㩒䑆㸊㰯砺硭灭整愾ਠ††††††††††††††††††††††††††††††††††† ††††††††††††††††††††††††††††††††††††਼㽸灡捫整⁥湤㴧眧㼾੥湤獴牥慭੥湤潢樊硲敦ਰ″㔷ਰ〰〰〰〰〠㘵㔳㔠映ਰ〰〰㌳㌹㈠〰〰〠渠ਰ〰〰㐵㔹㜠〰〰〠渠ਰ〰〰㔲㌵㔠〰〰〠渠ਰ〰〰㔹㐹ㄠ〰〰〠渠ਰ〰〰㘶㜳㜠〰〰〠渠ਰ〰〰㠱㔵㔠〰〰〠渠ਰ〰〰㠸㜱㤠〰〰〠渠ਰ〰〰㌳㘷㤠〰〰〠渠ਰ〰〰㐰㠲㜠〰〰〠渠ਰ〰㤰㌹㘹㐠〰〰〠渠ਰ〰㤰㐰ㄵ㐠〰〰〠渠ਰ〰〰㐰㠴㜠〰〰〠渠ਰ〰〰㐱ㄴ㐠〰〰〠渠ਰ〰〰㐱㌹〠〰〰〠渠ਰ〰〰㐱㜴㈠〰〰〠渠ਰ〰㤰㐰㐹㘠〰〰〠渠ਰ〰㤰㐰㤶㔠〰〰〠渠ਰ〰〰㤳㠸㌠〰〰〠渠ਰ〰〰㐲〲〠〰〰〠渠ਰ〰〰㐵㠵㌠〰〰〠渠ਰ〰〰㔲㈷㤠〰〰〠渠ਰ〰〱㤱ㄶ㜠〰〰〠渠ਰ〰〰㤸㔸㜠〰〰〠渠ਰ〰〰㔲㌰〠〰〰〠渠ਰ〰〰㔲㘱ㄠ〰〰〠渠ਰ〰〰㔹㌹㌠〰〰〠渠ਰ〰㤰㐱㌱㌠〰〰〠渠ਰ〰㤰㐱㜱〠〰〰〠渠ਰ〰㤰㐲〱ㄠ〰〰〠渠ਰ〰㤰㐲㐶ㄠ〰〰〠渠ਰ〰〹㐰ㄹㄠ〰〰〠渠ਰ〰〰㔹㐱㐠〰〰〠渠ਰ〰〰㔹㜷ㄠ〰〰〠渠ਰ〰〰㘶㘵〠〰〰〠渠ਰ〰ㄱ㜷㌴〠〰〰〠渠ਰ〰〰㘶㘷ㄠ〰〰〠渠ਰ〰〰㘷〱㜠〰〰〠渠ਰ〰〰㜴〹㠠〰〰〠渠ਰ〰ㄶ㌵㤳㐠〰〰〠渠ਰ〰〰㜴ㄱ㤠〰〰〠渠ਰ〰〰㜴ㄷ㐠〰〰〠渠ਰ〰〰㜴㐳㤠〰〰〠渠ਰ〰〰㠱㐷㤠〰〰〠渠ਰ〰㈶㠱㠴㘠〰〰〠渠ਰ〰〰㠱㔰〠〰〰〠渠ਰ〰〰㠱㠱㤠〰〰〠渠ਰ〰〰㠸㘳㈠〰〰〠渠ਰ〰㘶㔸㌷ㄠ〰〰〠渠ਰ〰〰㠸㘵㌠〰〰〠渠ਰ〰〰㠸㤹㤠〰〰〠渠ਰ〰〰㤳㠰㜠〰〰〠渠ਰ〰〱〴㤹㜠〰〰〠渠ਰ〰〰㤳㠲㠠〰〰〠渠ਰ〰〰㤴〹㈠〰〰〠渠ਰ〰〰㤸㐹㤠〰〰〠渠ਰ〰㤰㐲㜹㐠〰〰〠渠ਰ〰㤰㐳ㄴ〠〰〰〠渠ਰ〰〰㤸㔲〠〰〰〠渠ਰ〰〰㤸㠶〠〰〰〠渠ਰ〰〱〳㤴㌠〰〰〠渠ਰ〰〱〳㤶㐠〰〰〠渠ਰ〰〱〴ㄲ㐠〰〰〠渠ਰ〰〱〴㌴㤠〰〰〠渠ਰ〰〱〵㈳㠠〰〰〠渠ਰ〰〱㄰㈹㘠〰〰〠渠ਰ〰〱㄰㌱㜠〰〰〠渠ਰ〰〱㄰㌷㌠〰〰〠渠ਰ〰〱㄰㔹〠〰〰〠渠ਰ〰〱ㄲ㜹〠〰〰〠渠ਰ〰〱ㄲ㠱ㄠ〰〰〠渠ਰ〰〱ㄲ㠶㜠〰〰〠渠ਰ〰〱ㄳ〵㈠〰〰〠渠ਰ〰〱ㄹ㌱〠〰〰〠渠ਰ〰〱ㄹ㌳ㄠ〰〰〠渠ਰ〰〱ㄹ㌸㘠〰〰〠渠ਰ〰〱ㄹ㔸㜠〰〰〠渠ਰ〰〱㈵㤲㔠〰〰〠渠ਰ〰㤰㐳㐴㐠〰〰〠渠ਰ〰㤰㐳㠶㈠〰〰〠渠ਰ〰㤰㐴ㄳㄠ〰〰〠渠ਰ〰㤰㐴㔲㐠〰〰〠渠ਰ〰〱㈵㤴㘠〰〰〠渠ਰ〰〱㈶〴㜠〰〰〠渠ਰ〰〱㈶㈳㈠〰〰〠渠ਰ〰〱㌲㌴㜠〰〰〠渠ਰ〰〱㌲㌶㠠〰〰〠渠ਰ〰〱㌲㔳㔠〰〰〠渠ਰ〰㤰㐴㠶㌠〰〰〠渠ਰ〰㤰㐵〱㠠〰〰〠渠ਰ〰〱㌲㜵㤠〰〰〠渠ਰ〰〱㌳㘳ㄠ〰〰〠渠ਰ〰〱㌳㠴㤠〰〰〠渠ਰ〰〱㐰㔱㜠〰〰〠渠ਰ〰㤰㐵㈳㌠〰〰〠渠ਰ〰㤰㐵㐷㐠〰〰〠渠ਰ〰㤰㐵㜶ㄠ〰〰〠渠ਰ〰㤰㐶ㄴ㔠〰〰〠渠ਰ〰〱㐰㔳㠠〰〰〠渠ਰ〰〱㐰㘸㈠〰〰〠渠ਰ〰〱㐰㠹㠠〰〰〠渠ਰ〰〱㐱〵㌠〰〰〠渠ਰ〰〱㐱㈶㐠〰〰〠渠ਰ〰〱㐲ㄵ㐠〰〰〠渠ਰ〰〱㐲㌴㈠〰〰〠渠ਰ〰〱㐸㐲ㄠ〰〰〠渠ਰ〰〱㐸㐴㌠〰〰〠渠ਰ〰〱㐸㘰㔠〰〰〠渠ਰ〰〱㐸㠲〠〰〰〠渠ਰ〰〱㐹㐳㈠〰〰〠渠ਰ〰〱㐹㘳㘠〰〰〠渠ਰ〰〱㔶㌸㈠〰〰〠渠ਰ〰〱㔶㐰㐠〰〰〠渠ਰ〰〱㔶㐹㐠〰〰〠渠ਰ〰〱㔶㜳〠〰〰〠渠ਰ〰〱㘳㘰㠠〰〰〠渠ਰ〰〱㘳㘳〠〰〰〠渠ਰ〰〱㘳㜲〠〰〰〠渠ਰ〰〱㘳㤲㐠〰〰〠渠ਰ〰〱㜰ㄴ㈠〰〰〠渠ਰ〰〱㜰ㄶ㐠〰〰〠渠ਰ〰〱㜰㐲㔠〰〰〠渠ਰ〰〱㜰㜰ㄠ〰〰〠渠ਰ〰〱㜰㠴㤠〰〰〠渠ਰ〰〱㜱〶㤠〰〰〠渠ਰ〰〱㜱㈱㔠〰〰〠渠ਰ〰〱㜱㐳ㄠ〰〰〠渠ਰ〰〱㜳㤸㠠〰〰〠渠ਰ〰〱㜴ㄷ㘠〰〰〠渠ਰ〰〱㠰㌶ㄠ〰〰〠渠ਰ〰〱㠰㌸㌠〰〰〠渠ਰ〰〱㠰㔳㘠〰〰〠渠ਰ〰〱㠰㜵㌠〰〰〠渠ਰ〰〱㠱㌳ㄠ〰〰〠渠ਰ〰〱㠱㘲㌠〰〰〠渠ਰ〰〱㠷㔲㌠〰〰〠渠ਰ〰〱㠷㔴㔠〰〰〠渠ਰ〰〱㠷㘲㌠〰〰〠渠ਰ〰〱㠷㠳㔠〰〰〠渠ਰ〰〱㤱〸㤠〰〰〠渠ਰ〰〱㤱ㄱㄠ〰〰〠渠ਰ〰〱㤱㌷㤠〰〰〠渠ਰ〰〱㤲㤵㠠〰〰〠渠ਰ〰〱㤲㤸〠〰〰〠渠ਰ〰〹㐰〸㠠〰〰〠渠ਰ〰〹㐰ㄲ㌠〰〰〠渠ਰ〰〹㐰㐰㌠〰〰〠渠ਰ〰〹㐲㠲〠〰〰〠渠ਰ〰〹㐲㠴㈠〰〰〠渠ਰ〰ㄱ㜷㈳㜠〰〰〠渠ਰ〰ㄱ㜷㈷㈠〰〰〠渠ਰ〰ㄱ㜷㔶㠠〰〰〠渠ਰ〰ㄱ㠰㜵㠠〰〰〠渠ਰ〰ㄱ㠰㜸〠〰〰〠渠ਰ〰ㄶ㌵㠳ㄠ〰〰〠渠ਰ〰ㄶ㌵㠶㘠〰〰〠渠ਰ〰ㄶ㌶ㄴ㘠〰〰〠渠ਰ〰ㄶ㐰㈱㈠〰〰〠渠ਰ〰ㄶ㐰㈳㐠〰〰〠渠ਰ〰㈶㜲〶㈠〰〰〠渠ਰ〰㈶㜲㐹ㄠ〰〰〠渠ਰ〰㈶㜲㠹㘠〰〰〠渠ਰ〰㈶㜳ㄸ㜠〰〰〠渠ਰ〰㈶㜳㐳㐠〰〰〠渠ਰ〰㈶㜳㜸㌠〰〰〠渠ਰ〰㈶㜴〱㠠〰〰〠渠ਰ〰㈶㜴〵㌠〰〰〠渠ਰ〰㈶㠲〵㠠〰〰〠渠ਰ〰㈶㠴㔹㈠〰〰〠渠ਰ〰㈶㠴㘱㐠〰〰〠渠ਰ〰㘶㔸㈶㠠〰〰〠渠ਰ〰㘶㔸㌰㌠〰〰〠渠ਰ〰㘶㔸㔸㌠〰〰〠渠ਰ〰㘶㘱ㄶ㜠〰〰〠渠ਰ〰㘶㘱ㄸ㤠〰〰〠渠ਰ〰㤰㌹㔶㠠〰〰〠渠ਰ〰㤰㌹㘰㌠〰〰〠渠ਰ〰㤰㐶㌹㜠〰〰〠渠ਰ〰㤰㔰〸㔠〰〰〠渠ਰ〰㈶㜴ㄸ㔠〰〰〠渠ਰ〰〱㐸㤶〠〰〰〠渠ਰ〰㤰㔶㌵㔠〰〰〠渠ਰ〰〰㐲㄰㤠〰〰〠渠ਰ〰㈶㜵㈹㠠〰〰〠渠ਰ〰〱㜱㔶〠〰〰〠渠ਰ〰〱㌲㠸㐠〰〰〠渠ਰ〰〰㐳㈶㔠〰〰〠渠ਰ〰〱㜳㈹㠠〰〰〠渠ਰ〰㤰㔹㜹ㄠ〰〰〠渠ਰ〰㤰㘰㐵㤠〰〰〠渠ਰ〰〱㜳㔲㠠〰〰〠渠ਰ〰㤰㘵㄰㜠〰〰〠渠ਰ〰㤰㘵㠲㤠〰〰〠渠ਰ〰〱㠰㠵㜠〰〰〠渠ਰ〰㤰㘶㠶㜠〰〰〠渠ਰ〰㤰㘷㐸〠〰〰〠渠ਰ〰〱㐱㐲㜠〰〰〠渠ਰ〰㤰㜲㠶㜠〰〰〠渠ਰ〰〱〴㐱㜠〰〰〠渠ਰ〰㈶㜶ㄴ㐠〰〰〠渠ਰ〰〱㐱㜷㌠〰〰〠渠ਰ〰㤰㜵㐶㤠〰〰〠渠ਰ〰㤰㜵㔷㈠〰〰〠渠ਰ〰㈶㠱㜳㌠〰〰〠渠ਰ〰〱㌳㌰ㄠ〰〰〠渠ਰ〰〱㌳㔳㌠〰〰〠渠ਰ〰〱㜳㠱〠〰〰〠渠ਰ〰㤰㜵㘵㠠〰〰〠渠ਰ〰〱㜳㠹㠠〰〰〠渠ਰ〰㤰㜵㜴㤠〰〰〠渠ਰ〰㤰㜶〰〠〰〰〠渠ਰ〰㤰㜶ㄷ㌠〰〰〠渠ਰ〰㤰㜶㐶㌠〰〰〠渠ਰ〰〱㠱㈳㠠〰〰〠渠ਰ〰㤰㜶㘵ㄠ〰〰〠渠ਰ〰㤰㜶㤱ㄠ〰〰〠渠ਰ〰㤰㜷〴㘠〰〰〠渠ਰ〰〱㐲〶〠〰〰〠渠ਰ〰㤰㜷㜲㜠〰〰〠渠ਰ〰㤰㜷㜴㤠〰〰〠渠ਰ〰㤰㜷㜷ㄠ〰〰〠渠ਰ〰㤰㜷㜹㌠〰〰〠渠ਰ〰㤰㜷㠱㔠〰〰〠渠ਰ〰㤰㜷㠳㜠〰〰〠渠ਰ〰㤰㜷㠵㤠〰〰〠渠ਰ〰㤰㜷㠸ㄠ〰〰〠渠ਰ〰㤰㜷㤰㌠〰〰〠渠ਰ〰㤰㜷㤲㔠〰〰〠渠ਰ〰㤰㜸〸㌠〰〰〠渠ਰ〰㤰㜸㈴㌠〰〰〠渠ਰ〰㤰㜸㐰㌠〰〰〠渠ਰ〰㤰㜸㔶㌠〰〰〠渠ਰ〰㤰㜸㜲㌠〰〰〠渠ਰ〰㤰㜸㠸㌠〰〰〠渠ਰ〰㤰㜹〴㈠〰〰〠渠ਰ〰㤰㜹㈰ㄠ〰〰〠渠ਰ〰㤰㜹㌶ㄠ〰〰〠渠ਰ〰㤰㜹㔲ㄠ〰〰〠渠ਰ〰㤰㜹㘸ㄠ〰〰〠渠ਰ〰㤰㜹㠴ㄠ〰〰〠渠ਰ〰㤰㠰〰〠〰〰〠渠ਰ〰㤰㠰ㄶ〠〰〰〠渠ਰ〰㤰㠰㌱㤠〰〰〠渠ਰ〰㤰㠰㐷㠠〰〰〠渠ਰ〰㤰㠰㘳㜠〰〰〠渠ਰ〰㤰㠰㜹㌠〰〰〠渠ਰ〰㤰㠰㤵ㄠ〰〰〠渠ਰ〰㤰㠱㄰㠠〰〰〠渠ਰ〰㤰㠱㈶㜠〰〰〠渠ਰ〰㤰㠱㐲㜠〰〰〠渠ਰ〰㤰㠱㔸㘠〰〰〠渠ਰ〰㤰㠱㜴㐠〰〰〠渠ਰ〰㤰㠱㤰㌠〰〰〠渠ਰ〰㤰㠲〶㈠〰〰〠渠ਰ〰㤰㠲㈲㈠〰〰〠渠ਰ〰㤰㠲㌸㈠〰〰〠渠ਰ〰㤰㠲㔴〠〰〰〠渠ਰ〰㤰㠲㘹㠠〰〰〠渠ਰ〰㤰㠲㠵㜠〰〰〠渠ਰ〰㤰㠳〱㘠〰〰〠渠ਰ〰㤰㠳ㄷ㘠〰〰〠渠ਰ〰㤰㠳㌳㘠〰〰〠渠ਰ〰㤰㠳㐹㔠〰〰〠渠ਰ〰㤰㠳㘵㌠〰〰〠渠ਰ〰㤰㠳㠱〠〰〰〠渠ਰ〰㤰㠳㤶㤠〰〰〠渠ਰ〰㤰㠴ㄲ㤠〰〰〠渠ਰ〰㤰㠴㈸㜠〰〰〠渠ਰ〰㤰㠴㐴㘠〰〰〠渠ਰ〰㤰㠴㘰㐠〰〰〠渠ਰ〰㤰㠴㜶㐠〰〰〠渠ਰ〰㤰㠴㤲㌠〰〰〠渠ਰ〰㤰㠵〸㌠〰〰〠渠ਰ〰㤰㠵㈴㌠〰〰〠渠ਰ〰㤰㠵㐰㌠〰〰〠渠ਰ〰㤰㠵㔶㌠〰〰〠渠ਰ〰㤰㠵㜱㤠〰〰〠渠ਰ〰㤰㠵㠷㜠〰〰〠渠ਰ〰㤰㠶〳㘠〰〰〠渠ਰ〰㤰㠶ㄹ㔠〰〰〠渠ਰ〰㤰㠶㌵㔠〰〰〠渠ਰ〰㤰㠶㔱㔠〰〰〠渠ਰ〰㤰㠶㘷㔠〰〰〠渠ਰ〰㤰㠶㠳㐠〰〰〠渠ਰ〰㤰㠶㤹㈠〰〰〠渠ਰ〰㤰㠷ㄵㄠ〰〰〠渠ਰ〰㤰㠷㌱〠〰〰〠渠ਰ〰㤰㠷㐷〠〰〰〠渠ਰ〰㤰㠷㘳〠〰〰〠渠ਰ〰㤰㠷㜹〠〰〰〠渠ਰ〰㤰㠷㤴㤠〰〰〠渠ਰ〰㤰㠸㄰㠠〰〰〠渠ਰ〰㤰㠸㈶㠠〰〰〠渠ਰ〰㤰㠸㐲㠠〰〰〠渠ਰ〰㤰㠸㔸㠠〰〰〠渠ਰ〰㤰㠸㜴㠠〰〰〠渠ਰ〰㤰㠸㤰㠠〰〰〠渠ਰ〰㤰㠹〶㜠〰〰〠渠ਰ〰㤰㠹㈲㜠〰〰〠渠ਰ〰㤰㠹㌸㜠〰〰〠渠ਰ〰㤰㠹㔴㜠〰〰〠渠ਰ〰㤰㠹㜰㜠〰〰〠渠ਰ〰㤰㠹㠶㘠〰〰〠渠ਰ〰㤰㤰〲㘠〰〰〠渠ਰ〰㤰㤰ㄸ㘠〰〰〠渠ਰ〰㤰㤰㌴㔠〰〰〠渠ਰ〰㤰㤰㔰㐠〰〰〠渠ਰ〰㤰㤰㘹㈠〰〰〠渠ਰ〰㤰㤰㠷㠠〰〰〠渠ਰ〰㤰㤱〶㜠〰〰〠渠ਰ〰㤰㤱㈵㔠〰〰〠渠ਰ〰㤰㤱㐴㠠〰〰〠渠ਰ〰㤰㤱㘴〠〰〰〠渠ਰ〰㤰㤱㠳㌠〰〰〠渠ਰ〰㤰㤲〲ㄠ〰〰〠渠ਰ〰㤰㤲㈲㘠〰〰〠渠ਰ〰㤰㤲㐳〠〰〰〠渠ਰ〰㤰㤲㘱㤠〰〰〠渠ਰ〰㤰㤲㠴㔠〰〰〠渠ਰ〰㤰㤳〲㤠〰〰〠渠ਰ〰㤰㤳㈱ㄠ〰〰〠渠ਰ〰㤰㤳㐲㠠〰〰〠渠ਰ〰㤰㤳㘴㐠〰〰〠渠ਰ〰㤰㤳㠵ㄠ〰〰〠渠ਰ〰㤰㤴〵㜠〰〰〠渠ਰ〰㤰㤴㈴㘠〰〰〠渠ਰ〰㤰㤴㐳㐠〰〰〠渠ਰ〰㤰㤴㘲〠〰〰〠渠ਰ〰㤰㤴㜷㘠〰〰〠渠ਰ〰㤰㤴㤳㘠〰〰〠渠ਰ〰㤰㤵〹㘠〰〰〠渠ਰ〰㤰㤵㈵㌠〰〰〠渠ਰ〰㤰㤵㐱㈠〰〰〠渠ਰ〰㤰㤵㔷㈠〰〰〠渠ਰ〰㤰㤵㜳〠〰〰〠渠ਰ〰㤰㤵㠹〠〰〰〠渠ਰ〰㤰㤶〵〠〰〰〠渠ਰ〰㤰㤶㈰㜠〰〰〠渠ਰ〰㤰㤶㌶㔠〰〰〠渠ਰ〰㤰㤶㔲㐠〰〰〠渠ਰ〰㤰㤶㘸㌠〰〰〠渠ਰ〰㤰㤶㠴ㄠ〰〰〠渠ਰ〰㤰㤷〰〠〰〰〠渠ਰ〰㤰㤷ㄵ㤠〰〰〠渠ਰ〰㤰㤷㌱㠠〰〰〠渠ਰ〰㤰㤷㐷㠠〰〰〠渠ਰ〰㤰㤷㘳㠠〰〰〠渠ਰ〰㤰㤷㠳ㄠ〰〰〠渠ਰ〰㤰㤸〳㈠〰〰〠渠ਰ〰㤰㤸㈲㠠〰〰〠渠ਰ〰㤰㤸㌸㠠〰〰〠渠ਰ〰㤰㤸㔹㈠〰〰〠渠ਰ〰㤰㤸㜹㔠〰〰〠渠ਰ〰㤰㜷ㄸ㌠〰〰〠渠ਰ〰㤰㜷㌸㌠〰〰〠渠ਰ〰㤰㜷㘵〠〰〰〠渠ਰ〰㤰㤸㤵㔠〰〰〠渠ੴ牡楬敲਼㰯卩穥″㔷㸾ੳ瑡牴硲敦ਲ㈱ਥ╅但�

