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Following severe liver injury, when hepatocyte-mediated regeneration is
impaired, biliary epithelial cells (BECs) can transdifferentiate into functional
hepatocytes. However, the subset of BECs with such facultative tissue stem
cell potential, as well as the mechanisms enabling transdifferentiation,
remains elusive. Here we identify a transitional liver progenitor cell (TLPC),
which originates from BECs and differentiates into hepatocytes during
regeneration from severe liver injury. By applying a dual genetic lineage
tracing approach, we specifically labeled TLPCs and found that they are
bipotent, as they either differentiate into hepatocytes or re-adopt BEC

fate. Mechanistically, Notch and Wnt/p-catenin signaling orchestrate
BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively.

Together, our study provides functional and mechanistic insights into
transdifferentiation-assisted liver regeneration.

Theliver performs critical life-enabling metabolic, endocrine and secre-
tory functions via its two epithelial cell compartments. Hepatocytes
metabolize nutrients and xenobiotics, produce and recycle proteins,
and generate bile acids. BECs (also termed cholangiocytes) constitute
thebile duct network responsible for collecting and transporting bile
into the gut, thereby supporting metabolite excretion and digestion™*.
Maintaining afunctional hepatocyte poolis essential to guarantee liver
function during homeostatic cell turnover or in response to injury’°.

Previous genetic lineage tracing studies demonstrated that
the hepatocyte pool is mainly replenished through self-renewal of
pre-existing hepatocytes rather than differentiation from liver stem/
progenitor cells during homeostasis and injury conditions leaving
hepatocyte proliferation intact’™". BECs are also able to proliferate

and generate auxiliary biliary ducts in a regenerative process called
ductular reaction'. However, when hepatocytes become senescent
and hepatocyte-mediated liver regenerationisimpaired in mice, BECs
can serve as facultative liver progenitor cells (LPCs) and transdiffer-
entiate into functional replication-competent hepatocytes ™, In
zebrafish, hepatic BECs or LPCs convertinto hepatocytes after severe
loss of hepatocytes'®?, ina process thatis tightly modulated by genetic
and epigenetic regulators to enable efficient liver regeneration® >,
Given the widespread hepatocyte senescence and impaired liver
regeneration in patients with chronic liver disease and cirrhosis***,
BEC-to-hepatocyte transdifferentiation could be animportant repair
mechanismin humans. Therapies promoting this transdifferentiation
could open up a new treatment avenue to address this highly unmet
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medical need. However, the cellular identity, as well as the molecular
mechanisms, promoting BEC-to-hepatocyte transdifferentiation dur-
ing thisimportant regenerative process remains elusive.

Here we generated amouse model, in which the fumarylacetoac-
etase (Fah) geneis deleted, causing hepatocyte senescence during liver
regeneration, modeling human hereditary tyrosinemia type I caused
by adeficiency in FAH*® and inducing BEC-to-hepatocyte transdifferen-
tiation. Combining single-cell RNA sequencing (scRNA-seq) with dual
recombinase-mediated lineage tracing and pathway modulations, we
identified a subset of BECs with LPC potential, as well as the mecha-
nisms coordinating stepwise BEC-to-hepatocyte transdifferentiation.

Results

Generation of amodel for BEC-to-hepatocyte conversion

We first generated a Fah-LSL mouse line, which contains a Fah dele-
tion by introducing a LoxP-flanked Stop sequence (LSL) between
exonl and exon2, while allowing for Cre-induced Fah re-expression
whenneeded (Extended DataFig.1a). Homozygous Fah-LSL/LSL mice
lacked FAH expression and did not survive into adulthood without
2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC)
treatment, a drug preventing injury in hepatocytes with FAH dele-
tion”. In contrast, Fah-LSL/+mice and mice with Cre-LoxP-mediated
removal of Stop sequence (ACTB-Cre;Fah-LSL/Fah-LSL mice), expressed
FAH, were healthy and displayed normal growth (Extended Data
Fig. 1b—e). We next analyzed the phenotypes in Fah-LSL/LSL mice
after NTBC withdrawal. Fah-LSL/LSL mice were maintained with
NTBC-containing water until 8 weeks of age. Compared to littermate
Fah-LSL/+ mice, Fah-LSL/LSL mice showed significant body weight
loss at 2 weeks after NTBC withdrawal and were moribund within
8 weeks (Extended Data Fig. 1f,g). Fah-LSL/LSL mouse livers exhibited
abnormal hepatic architecture, widespread injury throughout liver
lobules, disrupted metabolic zonation and hepatocyte senescence
(p21staining) in virtually all hepatocytes (Extended Data Fig. 1h—j).
These data demonstrate that our Fah-LSL mice recapitulate the com-
mon pathological phenotypes of Fah”” mice?®”, characterized by fulmi-
nantliver failure and impaired hepatocyte-mediated regeneration, with
the advantage that our Fah-LSL knockout allele allows for Cre-induced
restoration of Fah expression.

Next, we generated CK19-CreER;Fah-LSL/LSL;R26-tdT mice
(Extended Data Fig. 2a), in which tdTomato (tdT) was induced and
the Fah gene was restored in BECs after tamoxifen (TAM)-induced
Cre-loxP recombination. CK19-CreER specifically targeted BECs but
not hepatocytes®*°. We assessed the potential of BEC-to-hepatocyte
transdifferentiation during liver regeneration in our injury model
(Extended Data Fig. 2b). BECs (-40%) but not hepatocytes were spe-
cifically tdT-labeled before injury (Extended Data Fig. 2c). After the
injury, we observed many round-shaped tdT" clones in TAM-treated
CK19-CreER;Fah-LSL/LSL;R26-tdT livers (Extended Data Fig. 2d), and
tdT was detected in hepatocytes (-25%; Extended Data Fig. 2e,f). Of
note, alltdT" hepatocytes were positive for FAH in TAM-treated mouse

livers (Extended Data Fig. 2g), which substantially reduced the severity
ofliverinjury (Extended DataFig.2h). These tdT* hepatocytes did not
express p21and showed increased proliferation when compared with
tdT hepatocytes (Extended DataFig. 2i,j). Large clones of tdT" hepato-
cytesre-established metabolic zonation by expressing periportal and
pericentralzonation markersinthe respective lobular zones (Extended
DataFig. 2k). Of note, tdT* hepatocytes only occurred in mice treated
with TAM, and these BEC-derived hepatocytes substantially increased
the long-term survival of mice in our injury model (Extended Data
Fig.3a,c-f). While this clearly supports that BEC-to-hepatocyte trans-
differentiation promotes liver regeneration, short-term (5d) NTBC
reintroduction was necessary to ensure survival and enable this regen-
erative process to compensate for the fulminant liver failure in our
model (Extended Data Fig. 3a,b). We did not detect any tdT" hepato-
cytes in TAM-treated CK19-CreER;Fah-LSL/LSL;R26-tdT mice when
NTBC was given throughout the experiment (Extended Data Fig. 2I,m),
excluding potential ectopic activation of CK19-CreER in hepatocytes,
and also suggesting that loss of FAH function and associated liver
injuryisnecessary toinduce BEC-to-hepatocyte transdifferentiation.

Furthermore, we crossed CK19-CreER;Fah-LSL/LSL with multi-
color fluorescence reporter (R26-Confetti mice™) for clonal analy-
sis of single BEC-derived cells during regeneration (Extended Data
Fig.4a). Due to sparse labeling of BECs with one of the four reporters
in CK19-CreER;Fah-LSL/LSL;R26-Confetti mice, a single-color clone
detected at the end of the experiment would be regarded as progeny
from asingle BEC (Extended Data Fig.4a). While TAM treatment selec-
tively labeled single BECs in livers at O weeks, we detected single-color
hepatocyte clones, which were located near the portal veins but not
central veins at 10 weeks (Extended Data Fig. 4b-e). Of note, a subset of
single-color clones contained both BECs and hepatocytes, suggesting
single BECs could give rise to both cell lineages over time (Extended
Data Fig. 4d,f). Together, our Fah-LSL mice provide a new model for
studying BEC-to-hepatocyte transdifferentiation.

Identification of aliver progenitor cell state in severely
injuredlivers

Although BECs can transdifferentiate into hepatocytes follow-
ing chronic liver injury and hepatocyte senescence” ', the cellular
identity of the BEC subset with LPC potential remains unclear. We,
therefore, performed scRNA-seq of EPCAM’ cells under conditions
allowing for BEC-to-hepatocyte transdifferentiation (25 d after NTBC
withdrawal; Fig. 1a and Extended Data Fig. 5a) and compared our
results with scRNA-seq data from EPCAM® cells without conditions
enabling such lineage conversion (short-term 3,5-diethoxycarbonyl-1,4
-dihydrocollidine (DDC) diet-induced ductular reaction®**). Uniform
manifold approximation and projection (UMAP) identified several
distinct clusters of EPCAM’ cells in CK19-CreER;Fah-LSL/LSL mice
(Fig. 1b,c, Extended Data Fig. 5b,c and Supplementary Table 1). One
subset was enriched for CdkI and Mki67 (proliferation markers), con-
sistent with proliferating BECs within a ductular reaction that was

Fig.1|Identification of an LPC state in mouse and human livers. a, Schematic
showing experimental strategy. b, UMAP visualization of the EPCAM" epithelial
cell clusters—BECs, LPCs and proliferating BECs. ¢, UMAP plots show expression
ofindicated genes and cell cycle score. Proportion of proliferating cells in BECs
and LPCsis shownin the right panel. d, Integrated UMAP showing BECs from
Fah-LSL/LSL mice and BECs from mice fed with DDC diet. DDC data are retrieved
from previous studies—DDC-1(ref. 32) and DDC-2 (ref. 33). Proportion of LPCs
inthree groupsis shownin the right panel. e, Immunostaining for HNF4a, CK19,
EPCAM, A6 and OPN on Fah-LSL/LSL liver sections. White arrows indicate LPCs.
f, Immunostaining for CK19 and HNF4« liver sections from mice fed with DDC
for 3 weeks. g, Heatmap showing the differentially expressed genes between
BECs and LPCs. Each column represents a cell and each row represents a gene.

h, Selected GO terms enriched in LPCs cluster. The gene enrichment analysis
was done by Metascape, which uses the well-adopted hypergeometric testand

Benjamini-Hochberg Pvalue correction algorithm to identify all enriched
ontology terms. i, Schematic showing experimental strategy. j, Immunostaining
for p21, CK19 and HNF4« in the indicated human liver biopsies. k,I, Quantifi-
cation of the percentage of hepatocytes with nuclear p21 staining (senescence, k)
or CK19° cells expressing HNF4a (LPCs, I). Data represent mean + s.d. n = patients.
Ink, unpaired two-tailed ¢ tests were used (versus healthy, n = 6): NASH (n = 6),
hepatitis (Hep)B (n = 6), HepC (n = 6), acute liver failure (ALF; n=8), PSC (n =5),
PBC; (n=5),AlH (n=5), ASH cirrhosis (n =5), NASH cirrhosis (n = 6), HepB
cirrhosis (n = 6), HepC cirrhosis (n = 5).In1l, unpaired two-tailed ¢ tests were used
(versus healthy, n=6):NASH (n = 6), HepB (n=5), HepC (n = 6), ALF (n=9), PSC
(n=35),PBC (n=5),AlH (n=>5), ASH cirrhosis (n = 5), NASH cirrhosis (n = 6), HepB
cirrhosis (n = 6), HepC cirrhosis (n = 5).m, Correlation plot of the LPC number
and hepatocyte senescence percentage. Pearson correlation was performed for
statistical analysis. Scale bars in allimmunostaining images, 100 pm.
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also observed following DDC injury®** (Fig. 1d). Interestingly, we also
identified a BEC subset that simultaneously expressed BEC markers
(Epcam and Ck19) and hepatocyte markers (Hnf4a and Ttr; Fig.1b,c
and Extended Data Fig. 5b,c), whichwas not presentin conditions with-
out BEC-to-hepatocyte transdifferentiation (Fig. 1d). Given that this

hybrid BEC-hepatocyte cluster was only present in mice with senes-
cent hepatocytes and BEC-to-hepatocyte transdifferentiation, and
because HNF4a is amaster regulator inducing hepatocyte fate** ¢, we
defined this BEC subset as LPCs. Immunostaining for CK19, EPCAM, A6,

OPN and HNF4a showed the appearance of LPCs in our injury model
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(Fig.1e) but notin DDC-treated mice (Fig. 1f). Consistent with this, LPCs
were also not detectable in uninjured livers of Fah-LSL/LSL mice that
received NTBC (Extended Data Fig. 5d,e).

We next compared gene expression profiles of LPCs and BECs
and found more than 400 genes differentially expressed between the
two clusters (Fig. 1g and Supplementary Table 2). Among the top 30
upregulated genes in LPCs, there were several hepatocyte markers
suchasAlb, Serpinala, Hsd17b13 and Apoh. Moreover, gene set enrich-
ment analysis (GSEA) revealed that most of the top-upregulated GO

Time

terms in LPCs were associated with hepatocyte functions, such as
carboxylic metabolic process, glutathione metabolic process, fatty
acid metabolic process, detoxification and lipid transport (Fig. 1h).
Besides, we observed that several Hippo signaling pathway-related
genes and Notch downstream genes, pathways conferring BEC iden-
tity’*°, were downregulated in the LPC cluster, such as /d2, Id1, Clu,
Onecutl and Sox9 (Fig.1g). Moreover, immunostaining confirmed that
CK19"HNF4«'* LPCs expressed lower YAP/TAZ and SOX9 levels com-
pared with CKI9°"HNF4a™ BECs (Extended Data Fig. 5f,g). Additionally,

Nature Genetics | Volume 55 | April 2023 | 651-664

654


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-023-01335-9

Fig.2|LPCsare a transitional cellular state between BECs and hepatocytes
during transdifferentiation. a, UMAP embedding of RNA velocity of EPCAM*
cells collected from Fah-LSL/LSL mice at day 25 after initial NTBC removal
indicates the transition from BECs to LPCs. b, Schematic showing experimental
strategy. ¢, Immunostaining for tdT, HNF4a, CK19, EPCAM, A6 or OPN on liver
sections collected at days 25 and 33 after NTBC removal from CK19-CreER,Fah-
LSL/LSL;R26-tdT mice. Yellow arrows indicate tdT* LPCs and white arrows indicate
tdT" hepatocytes. Scale bars, 100 pm. d, Immunostaining for tdT, HNF4«,

CK19 and FAH on liver sections collected at days 25 and 33 after NTBC removal.
Scale bars, 50 pm. Yellow arrows indicate LPCs and white arrows indicate tdT*
hepatocytes. e, Immunostaining of tdT, HNF4«, CK19 and Ki67 on liver sections
collected at days 25 and 33 after NTBC removal. Yellow arrows indicate LPCs and
white arrows indicate tdT" hepatocytes. Percentage of Ki67* TLPCs and Ki67tdT*

hepatocytesin tdT" hepatocytes is shown on the right panel. Data represent
mean +s.d.; n =5 mice. Scale bars, 100 pm. f, Immunostaining for tdT, HNF4a and
CK19 onliver sections collected at different time points. Scale bars, 10 um. g, Cell
area quantificationin TLPCs (CK19*HNF4a" and CK19°*HNF4a*) and hepatocytes
(tdT*). Datarepresent mean + s.d.; CKI9"HNF4a': n = 6 mice, CK19"*HNF4a" and
Heps: n=5mice; CK19"*HNF4a* versus CKI9*HNF4a™: *P = 0.02; Heps versus
CK19"*HNF4a'": *P < 0.000L1. Statistical analysis was performed by ANOVA
followed by Tukey’s method for multiple comparisons, and adjustments were
made for multiple comparisons. h, Quantification of the number of TLPCs
(CK19*HNF4a and CK19°*HNF4a*) and hepatocytes (tdT*) per portal region x60
field at different time points. Data represent mean *s.d.; n = 5mice. i, Schematic
showing that TLPCs originate from BECs and differentiate into hepatocytes. Hep,
hepatocyte; w/o, without.

MET and EGFR pathway genes were upregulated in BECs from mice with
injured livers compared with control mice (Extended DataFig. Sh), con-
sistent with previous work*. In the injured liver, there was a higher MET
pathway score in LPCs than BECs, while there was no difference in the
EGFR pathway score between LPCs and BECs (Extended Data Fig. 5i,j).

Toassesswhether CKI9"HNF4a' cells were also presentin patients
withsevere liver injury, we analyzed biopsies from healthy liversand 11
different liver disease indications (Supplementary Table 3), including
NASH and viral hepatitis with and without cirrhosis, primary biliary
cirrhosis (PBC), primary sclerosing cholangitis (PSC), acute liver fail-
ure, autoimmune hepatitis (AIH) and alcoholic steatohepatitis (ASH)
with cirrhosis (ASH cirrhosis). We observed significant numbers of
p21" hepatocytes in patients with ASH cirrhosis (Fig. 1i-k) and in the
majority of other liver disease indications (Extended Data Fig. 6a),
indicating substantial senescence, similar to what we observed in our
animal model. In contrast to healthy livers, ASH cirrhosis patients
(Fig. 1j,1) and most other patients with severe liver disease (Extended
DataFig. 6a) showed CK19" cells with nuclear HNF4« staining. Interest-
ingly, we found a positive correlation between hepatocyte senescence
and CK19"HNF4a' LPCs across 11 liver disease indications, with consist-
ently higher percentages of both p21*hepatocytes and LPCsin patients
with cirrhosis compared to those with a non-cirrhotic milder form of
the respective disease (Fig. 1j-m and Extended Data Fig. 6a). This sug-
gests that LPCs are common in patients with senescent hepatocytes
across multiple liver disease indications. Notably, the majority of BECs
incirrhoticlivers did not express p21, supporting their potential to pro-
liferate duringa ductular reactionand to convertinto functional hepato-
cytes via LPCs (Extended Data Fig. 6b,c). Interestingly, CKI9*HNF4a*
BECswerenotrestricted to ductular reactions, but wealso found themin
canalsof Hering and bile ducts of cirrhoticlivers (Extended Data Fig. 6d).

LPCs are atransitional cellular state between BECs and
hepatocytes

To further characterize LPCs and their dynamics in liver regenera-
tion, we first analyzed scRNA-seq data using UMAP embedding of

RNA velocity fromisolated EPCAM’ cells in mice with injury-induced
BEC-to-hepatocyte transdifferentiation (Fah-LSL/LSL mice 25 d after
NTBC removal). The dynamic trajectories indicated a transition from
BECs to LPCs (Fig. 2a). Using CK19-CreER;Fah-LSL/LSL;R26-tdT mouse
model, we labeled BECs before injury and collected livers for analysis
at25and 33 d after NTBC withdrawal (Fig. 2b). At day 25, we observed
lineage-labeled (tdT") LPCs expressing both BEC markers (CK19, EPCAM,
A6 and OPN) and hepatocyte marker HNF4« (Fig. 2¢), indicating that
LPCs originated from BECs. At day 33, we barely found LPCs anymore
butinstead detected tdT" hepatocytes (Fig. 2c), suggesting that LPCs
were in a transient or transitional state during transdifferentiation.
Therefore, we considered this LPC population to be transitional liver
progenitor cells (TLPCs). CKI9"HNF4a* TLPCs did not acquire mature
hepatocyte markers such as FAH at day 25, whereas tdT" hepatocytes
became positive for FAH at day 33 while no longer expressing CK19
(Fig. 2d). TLPCs were quiescent (Ki67-negative) at day 25 (Fig. 2e),
whichis consistent with our scRNA-seq data (Fig.1b,c). In contrast, we
found pronounced proliferation of tdT" hepatocytes at day 33 (Fig. 2e),
suggesting that transdifferentiated hepatocytes contributed to liver
regeneration. Collectively, our dataindicate that TLPCs transitionally
emerged during BEC-to-hepatocyte transdifferentiation.

To further characterize this process, we analyzed gene expression
profiles and numbers of lineage-labeled BECs, TLPCs and hepato-
cytes atdifferent time points during transdifferentiation. We observed
thatlineage-labeled cells had distinct patterns of marker expression,
CK19"HNF4a ™ (BECs), CK19"HNF4a* (TLPC, stage 1), CK19"*HNF4a"
(TLPC, stage 2) and CK19"HNF4a" (hepatocytes; Fig. 2f), suggesting
continuous sequential transdifferentiation. Moreover, cell size gradu-
ally increased as TLPCs converted into hepatocytes (Fig. 2g). When
quantifying cells of differentlineages for their CK19/HNF4a expression,
we found a substantial enrichment of CKI9*HNF4a* TLPCs on day 25,
CK19""HNF4a* TLPCs on day 28 and CK19"tdT* hepatocytes on day 33
after NTBC withdrawal (Fig. 2h). Together, these data suggest a gradual
BEC-to-hepatocyte transdifferentiation viaa TLPC state, characterized
by dynamic changes in lineage marker gene expression (Fig. 2i).

Fig.3|Bipotent TLPCs generate hepatocytes or adopt BEC fate during liver
repair. a, Schematic showing the strategy for TLPC lineage tracing. b, Schematic
showing experimental strategy. ¢, Immunostaining for tdT, HNF4a and CK19
onliver sections collected at day 25 from CK19-CreER;HNF4a-DreER;Fah-LSL/
LSL;R26-RL-tdT mice.Scale bars, 50 pm. Right panel shows the percentage of
BECs, TLPCs and hepatocytes intdT* cells. Datarepresent mean+s.d.;n=>5
mice; total 289 tdT" cells were counted (BECs: 25; TLPCs: 258; hepatocyte: 6).

d, Percentage of Ki67" cellsin tdT* TLPCs. Data represent mean + s.d.; n = 5 mice.
e, Immunostaining for tdT, HNF4o and CK19 on liver sections collected at

day 25 from CK19-CreER; Fah-LSL/LSL;R26-RL-tdT or HNF4a-DreER;Fah-LSL/
LSL;R26-RL-tdT mice. Scale bars, 50 pm. f, Whole-mount tdT fluorescent liver
images from indicated mice at 7 weeks after the first NTBC removal. Bright field
images are shown as inserts. Arrows indicate tdT* clones. Scale bars, 1 mm.

g, Immunostaining for tdT, HNF4« and CK19 on serial sections (20 um) of livers
collected at week 7 from CK19-CreER;HNF4a-DreER;Fah-LSL/LSL;R26-RL-tdT
mice. Scale bars, 50 um. h, Immunostaining of tdT, and CK19 on serial liver

sections (20 um) collected at week 7 from CK19-CreER;HNF4a-DreER;Fah-LSL/
LSL;R26-RL-tdT mice. Scale bars, 50 pm. White arrows indicate tdT* BECs.

i, Immunostaining for tdT, HNF4a and CK19 on liver sections collected from
CK19-CreER;Fah-LSL/LSL;R26-RL-tdT or HNF4a-DreER;Fah-LSL/LSL;R26-RL-tdT
mice. Scale bars,1 mm.j, Percentage of tdT" clones containing BECs, TLPCs and
hepatocytes. Schematic on the right panel showing that TLPCs could give rise
to hepatocytes and revert back to BECs. Data represent mean + s.d.; n =5 mice;
total 480 tdT" clones were counted. k, Percentage of hybrid clone that consists
of BECs and hepatocytes. Schematic showing that TLPCs could not give rise to
hepatocytes and BEC simultaneously. Data represent mean + s.d.; n =5 mice.
I-n, Immunostaining for tdT, FAH, p21 and Ki67 on tissue sections. Right panels
are quantifications for percentage of hepatocytes expressing these markers.
Scalebars,100 pm. Data represent mean + s.d.; n = 5mice; m,*P< 0.0001;

n, *P < 0.000L1. Statistical analysis was performed by two-tailed unpaired
Student’s t testinmand n. w, weeks.
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gRT-PCR. Relative expression levels of Rbpj mRNA in BECs from indicated mice.
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HNF4a and CK19 on liver sections collected at day 25 after NTBC removal from
indicated mice. Scale bars, 50 um. Quantification of the number of TLPCs per
portalregion x60 field is shown on the right panel. Data represent mean £ s.d.;
n=>5mice; *P=0.0002. Total count of TLPCs in control: 717; in mutant: 1,159.
White arrowheads indicate TLPCs. d, Schematic showing that inhibition of Notch
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signaling promotes BEC-to-TLPC transition. e, Whole-mount GFP fluorescent
liverimages collected at week 7 after NTBC removal. Scale bars, 2 mm.

f, Immunostaining for GFP, HNF4a and CK19 on the liver sections collected at
week 7 after NTBC removal. Scale bars, 500 um. g, Percentage of GFP* hepatocytes
and GFP* BECs. Datarepresent mean + s.d.; n=5mice; GFP* Heps (%): *P=0.0016;
GFP*BECs (%): *P=0.7691. h,Immunostaining for GFP, HNF4a and Ki67 on liver
sections collected at week 7 after NTBC removal. Quantification of proliferation
(Ki67) in GFP" hepatocytes is shown on the right panel. Datarepresent mean + s.d.;
n=>5mice. Scale bars, 100 pm. Statistical analysis was performed by two-tailed
unpaired Student’s t testinb, ¢, gand h. NS, not significant; w, weeks.

TAM-induced removal of two Stop sequences by both Dre-rox (HNF4«*)
and Cre-loxP (CK19") recombinations (Fig. 3a). We treated mice with
a low dosage of TAM at day 20 after NTBC removal and collected
livers at day 25 and week 7. CK19-CreER;Fah-LSL/LSL;R26-RL-tdT or
HNF4a-DreER;Fah-LSL/LSL;R26-RL-tdT mice were used as controls
(Fig. 3b). Consistent with the small subset of CKI9'"HNF4a" TLPCs we
previously observed among BECs (Fig. 1b), we found a few tdT" cells
scattered in the portal tract region at day 25. We found 88.61 + 3.80%

of tdT* cellswere TLPCs (CK19"HNF4a*), 8.91 £ 2.19% of tdT" cells were
BECs (CK19"HNF4a") and 2.48 + 3.48% of tdT" cells were hepatocytes
(CK197/HNF4a*) in CK19-CreER;HNF4a-DreER;Fah-LSL/LSL;R26-RL-tdT
mouse livers (Fig. 3c). Of note, none of tdT" TLPCs were Ki67*
(Fig. 3d), confirming TLPC quiescence. We did not detect any tdT"
cellsin CK19-CreER;Fah-LSL/LSL;R26-RL-tdT or HNF4a-DreER;Fah-LSL/
LSL;R26-RL-tdT control mouse livers at day 25 (Fig. 3e), confirming that
R26-RL-tdT could only be activated by dual recombination.
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We next assessed the lineage conversion potential of indi-
vidual TLPCs over time at 7 weeks post low-dose TAM, enabling
clonal analysis. We observed sporadic tdT" clones in TAM-treated
CK19-CreER;HNF4a-DreER;Fah-LSL/LSL;R26-RL-tdT mouse livers, but
not in control mouse livers (Fig. 3f). tdT* clones consisted of either
hepatocytes (CK19'HNF4a") or BECs (CK19'HNF4a"), whereas we did
not find tdT* TLPCs (CK19*HNF4«a*) anymore (Fig. 3g,h). No tdT* cells
were detected in control liver sections (Fig. 3i). 60.14 + 10.80% of the
tdT* clones were BEC clones and 39.86 +10.80% of the tdT* clones were
hepatocyte clones (Fig. 3j), suggesting that TLPCs contribute to BEC or
hepatocyte lineages during liver regeneration. While TLPCs are bipo-
tent, none of theindividual tdT* clones consisted of both hepatocytes
and BECs (Fig. 3k), further suggesting that TLPCs did not proliferate
in their bipotential state. Of note, all tdT" hepatocytes were positive
for FAH (Fig. 31). tdT*" hepatocytes did not express p21and showed sig-
nificantly higher proliferation rates than tdT hepatocytes (Fig.3m,n),
suggesting their potential to repopulate the injured liver. Collectively,
these dataindicate that bipotent TLPCs can either transdifferentiate
into hepatocytes or redifferentiate into BECs during liver regeneration.

Notch signaling suppresses the differentiation of BECs

into TLPCs

GO term analysis of scRNA-seq data and immunostaining data from
CK19-CreER;Fah-LSL/LSL mice showed that Notch target genes, such
as Onecutl and Sox9, were substantially reduced in TLPCs compared
with BECs (Fig. 1g and Extended Data Fig. 5g), suggesting reduced Notch
activity may promote the activation of TLPCs. To test this hypothesis,
we blocked Notch signaling via Rbpj deletion in BECs and simultane-
ously traced these cellsin our liver injury model, using CK19-2A-CreER
mice that provide high recombination efficiency in BECs (Extended
Data Fig. 7a-d). CK19-2A-CreER;Fah-LSL-LSL:R26-GFP:Rbpj™" (Rbp/™")
mice enabled TAM-induced Rbpj deletion and GFP reporter expression
in BECs, whereas CK19-2A-CreER;Fah-LSL-LSL;R26-GFP;Rbpj"* (Rbpj"*)
mice (enabling GFP expression in BECs while leaving one Rbpj allele
intact) were used as controls (Fig. 4a). Rbpj expression was substantially
reduced in BECs of Rbp/”" mice when compared with littermate Rbp;/"*
control mice (Fig. 4b). We only observed an insignificant decrease in
ductular reaction and comparable serum total bilirubin in BEC-specific
Rbpjknockout mice compared with littermate controls (Extended Data
Fig. 7e-1). This suggests that the inducible Rbpj deletion, in only the
subset of BECs we traced, did notimpair bile duct integrity as reported
during developmental Rbpj deletion*’. A comparable percentage of
GFP* BECs between the Rbp/"" and Rbp/”* groups (Fig. 4g) indicates
functional ductular reaction in mice with liver-specific Rbpj dele-
tion*>. TLPC numbers were significantly increased at day 25 (Fig. 4c,d),
followed by increased numbers of GFP* BEC-derived hepatocytes at
week 7 post-NTBC removal in Rbp/"”" mice compared with Rbp/”* mice
(Fig.4e-g). Proliferation of GFP* hepatocytes was comparable between
Rbpj™ and Rbp/”* mice (Fig. 4h). Similarly, mice treated with Notch
inhibitor DBZ showed increased numbers of TLPCs and hepatocyte
clonesin CK19-CreER;Fah-LSL/LSL;R26-tdT mice (Extended DataFig. 8).

These datasuggest that loss of Notch signaling promotes BEC-to-TLPC
activation, therefore increasing BEC-to-hepatocyte conversion.

To assess whether activation of Notch signaling would inhibit
BEC-to-TLPC activation, we generated R26-N/CD-GFP mice, in
which Cre recombinase leads to the co-expression of the dominant
active Notch intracellular domain (NICD) and GFP (Extended Data
Fig. 9a,b). After crossing with CK19-2A-CreER mice, TAM treatment
induced simultaneous GFP expression and Notch pathway activa-
tion in BECs (Extended Data Fig. 9c-f). Next, we generated CK19-
2A-CreER;Fah-LSL-LSL;R26-NICD-GFP (NICD overexpression, NICD-OE)
mice and CK19-2A-CreER;Fah-LSL-LSL;R26-tdT control mice, and col-
lected livers at day 25 after NTBC removal for analysis (Fig. 5a). The
number of TLPCs was significantly reduced following NICD overex-
pression, whereas BEC density and proliferation was dramatically
increased (Fig. 5b—h and Supplementary Table 1). EPCAM" cells sorted
from NICD-OE livers revealed substantial enrichment for genes rep-
resentative of Notch signaling and gene signatures indicating cell
proliferation, and substantially decreased expression of hepatocyte
genes, compared with EPCAM® cells sorted from control mice (Fig. 5f
and Supplementary Table 4). We did not detect any GFP* hepatocytes
at 7 weeks after NTBC removal in NICD-OE mice, compared with a
considerable number of tdT* hepatocytesinthe control mice (Fig. 5g).
Takentogether, activation of Notch signaling suppresses BEC-to-TLPC
induction and promotes BEC proliferationininjured livers (Fig. 5i).

WNT/B-catenin signaling promotes TLPC-to-hepatocyte
conversion

scRNA-seq profiling of tdT"BECs, TLPCs and TLPC-derived hepatocytes
from CK19-CreER;Fah-LSL/LSL;R26-tdT mice at 28 days after NTBC with-
drawal showed WNT/B-catenin signaling target genes, such as Lect2,
Cyp2el and Cypla2, highly enriched in TLPC-derived hepatocytes as
wellasinasubset of TLPCs (Fig. 6a-d). Immunostaining confirmed the
expression of WNT/B-catenin-regulated CYP2E1in newly formed hepat-
ocytes from TLPCs at day 28 (Fig. 6e). Considering the higher expres-
sion of WNT/pB-catenin-regulated genes in TLPC-derived hepatocytes
(Fig. 6d,e), Axin2 expression in BECs from mice with impaired hepat-
ocyte regeneration**, and the role of WNT/B-catenin signaling in
promoting hepatocyte fate*’, we hypothesized that WNT/B-catenin
signaling may promote transdifferentiation into hepatocytes dur-
ing liver regeneration. To test this hypothesis, we first generated
CK19-2A-CreER;Fah-LSL/LSL;CtnnbP"";R26-Confetti (mutant) mice,
in which TAM induced deletion of 3-catenin (resulting in loss of
WNT/B-catenin signaling) and the simultaneous expression of a Con-
fettireporter® in BECs (Fig. 6f). Littermate CK19-2A-CreER;Fah-LSL/LSL;
Ctnnb"*;R26-Confetti mice were used as controls (Fig. 6f). We col-
lected livers from the mutant and control mice at day 25 and ~7
weeks after NTBC removal for analysis of TLPCs and hepatocytes
(Fig. 6f) and confirmed deletion of 3-catenin in a subset of BECs
(Fig. 6g). Comparable numbers of CKI9'"HNF4o" TLPCs between the
mutant and control groups (Fig. 6h) suggest that WNT/f3-catenin sign-
alingis not required for BEC-to-TLPC induction. However, it is likely

Fig. 5|Notch activation inhibits BEC-to-TLPC activation. a, Schematic
showing experimental strategy. Control, CKI9-2A-CreER;Fah-LSL/LSL;R26-tdT.
NICD-OFE, CK19-2A-CreER;Fah-LSL/LSL;R26-NICD-GFP.b, Immunostaining for
HNF4a and CK19 on liver sections collected at day 25 after NTBC removal. Scale
bars, 50 um. ¢, Quantification of the number of TLPCs and GFP* TLPCs per
portalregion x60 field from the indicated mice. Data represent mean + s.d.;
n=>5mice; *P=0.0004; Total count of TLPCs in control: 789, in NICD group: 92.
d, Immunostaining for tdT or GFP, Ki67 and CK19 on liver sections collected at
day 25 after NTBC removal. Percentage of Ki67" BECs is shown on the right
panel. Datarepresent mean * s.d.; n = 5 mice; *P < 0.0001. Scale bars, 50 pm.

e, UMAP visualization of EPCAM" cells collected from control and NICD-OE mice
atday 25 after NTBC removal. The percentage of TLPCs and proliferating BECs
isshown on the right. f, Upper panel is sScRNA-seq heatmap for EPCAM" cells

from control and NICD-OE mice showing expression of selected genes per cell.
Middle panel shows violin plot of cell cycle score of genes related to G2M and S
phases. Lower panel shows UMAP plot of gene set score of S, G2M and cell cycle.
g, Immunostaining for tdT or GFP, HNF4«, and CK19 on liver sections collected
atweek 7 after NTBC removal. Quantification of the ductular reaction per x10
field and the percentage of tdT* or GFP* hepatocytes is shown on the right panel.
Datarepresent mean +s.d.; n = 5mice; CK19 density (10x): *P < 0.0001; Reporter*
Heps: *P < 0.0001. Scale bars, 100 pum. h, Immunostaining for tdT or GFP, Ki67
and CK19 on liver sections collected at week 7 after NTBC removal. Percentage
of Ki67* BECs is shown on the right panel Data represent mean + s.d.; n = 5Smice;
*P<0.0001.Scale bars, 100 um. i, Schematic showing that Notch signaling
inhibited BEC-to-TLPCS activation. Statistical analysis was performed by two-
tailed unpaired Student’s t testin ¢, d, gand h. w, weeks.

Nature Genetics | Volume 55 | April 2023 | 651-664

658


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-023-01335-9

that Ctnnbl1 deletion was not complete in all BECs, which may under-
estimate the role of WNT/B-catenin signaling in BEC-to-TLPC conver-
sion. The number of BEC-derived hepatocyte clones was significantly
reduced in mutant compared with control mice (Fig. 6i). Abundance of
CK19’ cells remained similar between the mutant and control groups
(Fig. 6j), suggesting that WNT/B-catenin signaling is dispensable for a
ductular reaction as previously reported*®*. These data suggest that
WNT/B-cateninsignalingis required for efficient hepatocyte transdif-
ferentiation during liver regeneration (Fig. 6k).
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We next asked whether activation of WNT/B-catenin signal-
ing promotes hepatocyte transdifferentiation during liver regen-
eration. Therefore, we generated CK19-2A-CreER;Fah-LSL/LSL;Ctnn
b1/ -R26-Confetti (Ctnnb1°*** group) mice (Fig. 7a), in which
TAM-induced deletion of B-catenin exon3 resulted in stable (domi-
nant active) B-catenin expression*® and the simultaneous expres-
sion of the Confetti reporter in BECs. CK19-2A-CreER;Fah-LSL/
LSL;CtnnbI"*;R26-Confetti (CtnnbI"* group) littermates were used
as controls. As expected, increased activated (nuclear) B-catenin
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Fig. 7| Activation of WNT signaling promotes the activation of TLPCs

and their transdifferentiation into hepatocytes. a, Schematic showing
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time points. b, Immunostaining for 3-catenin and CK19 on liver sections.
Percentage of nuclear -catenin is shown on the right panel. Data represent
mean +s.d.; n=5mice; *P < 0.0001. Scale bars, 10 pm. White arrowheads indicate
nuclear B-catenin® BECs. ¢, Immunostaining for HNF4a and CK19 on liver
sections collected at day 21 after NTBC removal. Quantification of the number

of TLPCs per portal region x60 field is shown on the right panel. Data represent
mean +s.d.; n=5mice; *P=0.0003. Scale bars, 100 um. Yellow arrowheads
indicate TLPCs. d, UMAP visualization of the EPCAM"* populations collected at

Number of clones

day 21after NTBC removal. The percentage of TLPCs is shown on the right panel.
e, scRNA-seq heatmap for EPCAM’ cells showing expression of selected genes
per cellin CtnnbI”* and Ctnnb1®¥"* mice. Right panel shows cell cycle score.

f, Relative expression of metabolic genesin cell clusters identified by scRNA-seq.
Circle size represents the within-cluster probability of gene detection and fill
colors represent normalized mean expression levels. g, Violin plots showing
expression levels for selected hepatocyte genes per single cellin TLPC clusters
in CtnnbI"* and Ctnnb1*®¥"* mice. h, Immunostaining of tdT, nGFP or YFP and
CK19 onliver sections collected at week 7 after NTBC removal. The number of
reporter’ clones per left liver lobe is shown on the right panel. Data represent
mean +s.d.; n=5mice; *P=0.0001. Scale bars, 100 pm. Statistical analysis was
performed by two-tailed unpaired Student’s ¢ testinb, cand h. w, weeks.
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Fig. 8| Bipotent TLPCs contribute to liver regeneration. a, A cartoonimage
showing that TLPCs originate from BECs and differentiate into hepatocytes
duringliver regeneration. TLPCs are bipotent, contributing to either hepatocyte
or BEC clones. b, Inhibition of Notch signaling promotes BEC-to-TLPC conversion,
while activation of Notch signaling inhibits this process while promoting BEC
proliferation. ¢, Inhibition of WNT signaling reduces TLPC-to-hepatocyte
conversion but does not influence BEC-to-TLPC activation. WNT signaling
activation promotes BEC-to-TPLC activation and TLPC-to-hepatocyte conversion.

was detected in Ctnnb1"*®3"* BECs, whereas CtnnbI”* control BECs
showed no activated -catenin (Fig. 7b). The number of TLPCs sig-
nificantly increased in Ctnnb1°**>* mice compared with Ctnnb1**
mice at day 21 after NTBC removal (Fig. 7c). Next, we performed
scRNA-seq on EPCAM" cellsisolated from Ctnnb1**¥"* and CtnnbI"*
mice at day 21 after NTBC removal. WNT/-catenin target genes
(Axin2, LgrS, Lect2 and NkdI) were substantially upregulated in
Ctnnb1*®3* BECs (Extended Data Fig.10a,b). UMAP identified mul-
tiple BEC clusters, among which we found a significant increase in
TLPCs in the Ctnnb1°**¥"* group compared with the Ctnnb1"* group
(7.57% versus 3.74%; Fig. 7d, Extended Data Fig. 10c and Supplemen-
tary Table 1). Although WNT/B-catenin signaling is a well-known
pro-proliferative signal**~!, cell cycle gene signatures were not
increased in Ctnnb1*®*3"* BECs (Fig. 7e). Instead, the expression of
metabolic enzymes and other hepatocyte genes was substantially
increased in Ctnnb1*®¥"* compared with Ctnnb1*"* BECs (Fig. 7¢).
In CtnnbI1°*** cells, UMAP identified anew emerging BEC cluster
(BECs-2),aswellasanew TLPC cluster (TLPCs-2), both with significant
enrichment for the expression of metabolic genes (Cyp2el, Rnase4,
Glul, Gulo, Gstm1, Gsta3, Por, Abcc2 and Sord) (Fig. 7f), which could be
due to constitutively active WNT/B-catenin pathway activation. Con-
sidering that the expression of hepatocyte genes was upregulated in
nonmutant TLPCs compared with BECs following liver injury (Fig. 1c),
we next examined hepatocyte gene expression among TLPC clusters
inthe CtnnbI” and Ctnnb1*®%* groups. TLPC clusters in Ctnnb1"®/
mice showed higher expression levels of hepatocyte genes than the
TLPC cluster in CtnnbI”* mice (Fig. 7g). TLPCs-2 acquired an even higher
level of hepatocyte gene expression than TLPCs in the Ctnnb1'<®*
group (Fig. 7g). These data indicated that increased WNT/[3-catenin
signaling activity correlates with the expression of metabolic genes
in TLPCs, which likely promote subsequent hepatocyte generation.

Proliferation of BECs was unchanged between the Ctnnb1®%* and
CtnnbI"" groups (Extended Data Fig. 10d). At week 7, we observed a
significant increase in the number of BEC-derived hepatocyte clones
(Fig. 7h and Extended Data Fig. 10e). Additionally, GSEA analysis in
isolated BECsrevealed a trend for downregulation (yet not significant)
of Notch signaling in Ctnnb1*** mice compared with CtnnbI”* mice
(Extended DataFig. 10f). Likewise, treatment of CK19-CreER,;Fah-LSL/
LSL;R26-tdT mice with the WNT/B-catenin pathway activator RSPO1
significantly increased the number of BEC-derived hepatocyte clones
(Extended Data Fig. 10g-i). Collectively, our data suggest that activa-
tion of WNT/B-cateninsignaling promotes BEC-to-TLPC transition and
transdifferentiation into hepatocytes.

Discussion

While it is established that hepatocytes can re-enter the cell cycle to
proliferate and restore a functional hepatocyte pool in response to
various injuries, the contribution of facultative LPCs to this process
has been controversial”® 35255 The discovery of BEC-to-hepatocyte
transdifferentiationin conditions where hepatocyte-mediated regen-
erationisimpaired provided animportant new concept enabling liver
regeneration”®, Unfortunately, the cellular identity of the BECs with
such facultative LPC potential, as well as the molecular mechanisms
enabling their transdifferentiation, remained unclear.

We now identified quiescent TLPCs, which are characterized by
a hybrid BEC/hepatocyte gene expression signature and represent a
transitional LPC state that situatesin-between BECs and hepatocytes.
Whether all BECs or just a subset of them have the potential to become
TLPCsremains unclear. Additional lineage tracing and profiling studies
inrats will be necessary to clarify whether oval cells, previously identi-
fied in pioneering studies showing hepatocyte transdifferentiation®® %,
are similar to the TLPCs we identified in mice. It is also possible that
additional HNF4a-negative LPCs, identified by other markers, con-
tribute to liver regeneration by restoring hepatocytes. Several other
markers have been used to identify putative BEC-associated LPCs,
including CD24/CD133 (ref. 59), FoxI1 (refs. 14,54,55) and Tweak/Fn14
(ref. 60). However, validation of TLPCs and uncovering their full dif-
ferentiation potential requires lineage tracing studies with improved
genetic approaches. Using dual genetic lineage tracing to specifically
label HNF4a*CK19* TLPCs, we now prove that these are a source of
newly generated hepatocytes in conditions where hepatocyte regen-
erationisimpaired.

Co-expression of BEC and hepatocyte markers has also been
reported in human livers. While classical immunostaining did not
identify such mixed populations in healthy adult human livers®,
tissue-tethered cytometric analyses found CK19* BECs with faint
HNF4a expression®, possibly representing primed BECs that can
upregulate HNF4a to acquire LPC potential when needed. Notably,
patients with acute liver failure or cirrhotic livers in patients with
viral hepatitis or AIH" showed strong HNF4a expression in BECs. We
now identified HNF4a"CK19* BECs in 11 different liver disease indica-
tions, whereas we only found negligible amounts in healthy patients.
We further found that the induction of these TLPCs correlates with
the amounts of senescent hepatocytes and severity of the disease. In
cirrhoticlivers, generation of hepatocytes by BECs has been proposed
to be amajor mechanism for parenchymal regeneration®***. Together,
this suggests that TLPC induction may be a common mechanism in
human liver disease. However, lack of lineage tracing possibilities in
patients does not allow for proving their transdifferentiation potential.

Mechanistically, we show that WNT/B-catenin and Notch sign-
aling pathways orchestrate the stepwise BEC-TLPC-hepatocyte
transdifferentiation process (Fig. 8). Notch signaling is crucial for
determining cell lineages in theliver, regulating the differentiation of
hepatoblasts to cholangiocytes®?***7°, We found that inhibition of
Notch signaling enhanced BEC-to-TLPC conversion, while increased
Notch signaling blocked this process. We further show that activated
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WNT/B-catenin signaling promoted TLPC-to-hepatocyte conversion
and also enhanced the conversion of BECs into TLPCs, consistent with
WNT/B-catenin-induced BEC-to-hepatocyte conversion in hepatic
organoids*, and mice with biliary injury®. Conversely, abrogation
of WNT/[B-catenin signaling blocked TLPC-to-hepatocyte conversion
and newly generated hepatocytes express WNT-regulated metabolic
enzymes, suggesting that the pathway is key to the transdifferen-
tiation process. Because our genetic tool only allows us to activate
WNT/B-catenin signaling in BECs, but not in TLPCs specifically, we
could not directly distinguish whether WNT/B-catenin pathway acti-
vation affects TLPC-to-hepatocyte or TLPC-to-BEC conversion. Nota-
bly, extended survival in injured mice following BEC-to-hepatocyte
transdifferentiation, and the potential of the Notchinhibitor DBZ and
WNT/B-catenin pathway agonist RSPO1in enhancing transdifferentia-
tion, suggest possibilities to therapeutically exploit this regenerative
mechanism. However, Notchblockadein the liver may impair the biliary
system*? and RSPO1 treatment impaired metabolic zonation®’, sug-
gesting amoretargeted therapy would be required to benefit patients
withliver disease. Together, our data provide the cellular identity and
mechanistic cues for transdifferentiation-mediated liver regenera-
tion, establishing a rational basis for potentially therapeutic concepts
leveraging this fundamental regenerative process.
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Methods

Mice

Allmice experiments were performedinaccordance with the guidelines
of the Institutional Animal Care and Use Committee (IACUC) at the
Center for Excellence in Molecular Cell Science, Shanghai Institutes
of Biological Sciences, Chinese Academy of Science. The approved
animal protocol number is SIBCB-S374-1702-001-C1. The CK19-CreER,
HNF4a-DreER, R26-tdTomato (R26-tdT), R26-RL-tdTomato (R26-RL-tdT),
R26-GFP, R26-Confetti, CtnnbI"*, CtnnbI1'*®** and Rbp/"* mouse lines
were reported previously®**"*$717¢_ Fah-1 SL /+, CK19-2A-CreER and
R26-NICD-GFP mouse lines were generated by homologous recom-
bination using CRISPR-Cas9 as previously described”’. These new
mouse lines were generated by Shanghai Model Organisms Center,
Inc. (SMOC). For Fah-LSL/+, the cDNA encoding loxp-stop-loxp was
inserted into the intron between exonl and exon2 of the Fah gene,
followed by polyadenylation sequence. For CK19-2A-CreER, the cDNA
encoding CreER™ recombinase was inserted into the translation stop
codon of the CK19 gene. A P2A peptide sequence was used to link
CK19 coding region and CreER cDNA, ensuring both transcriptions.
For R26-NICD-GFP mouse line, the CAG-loxp-stop-loxp-NICD-2A-GFP
cDNA was generated and inserted into Rosa26 locus as R26-NICD-GFP.
Allmiceinvolvedinthe study were maintained on129/C57BL6 and ICR
mixed background. All Fah-LSL/LSL mice were kept with 7.5 pg ml™
NTBC (2-(2-nitro-4-trifluoro-methylbenzoyl)-1,3-cyclohexanedione)
dissolvedindrinking water. Adult mice received 0.2 mg TAM per gram
mouse body weight by oral gavage for indicated times and at indi-
cated times. Of note, CK19-2A-CreER;R26-NICD-GFP mice and CK19-
2A-CreER;R26-tdT mice used as control were treated with 0.05 mg TAM
per gram mouse body weight; CK19-CreER;HNF4a-DreER;Fah-LSL/
LSL;R26-RL-tdT, CK19-CreER;Fah-LSL/LSL;R26-RL-tdT and
HNF4a-DreER;Fah-LSL/LSL;R26-RL-tdT mice were treated with 0.1 mg
TAM per gram mouse body weight. To avoid mice dying from intesti-
nalinfections, we supplied CK19-2A-CreER;Fah-LSL/LSL;Ctnnb¥"* and
CK19-2A-CreER;Fah-LSL/LSL;Ctnnb ™ mice with 0.005% enrofloxacin
indrinking water during experiments. Mice, both males and females,
atthe age of 8-20 weeks were used for experiments with similar-aged
mice for both control and experimental groups. All mice were housed at
thelaboratory Animal center of the Center for Excellence in Molecular
CellScienceinaSpecific Pathogen Free (SPF) facility withindividually
ventilated cages. The room has controlled temperature (20-25°C),
humidity (30-70%) and light (12 hours light-dark cycle). For mouse
survival study (Extended DataFigs.1g and 3b), we did not analyze mice
after they died in these experiments. No data in mice experiments
were excluded.

Genomic PCR

Genomic DNA was extracted from the mouse tail. Tissues were lysed
with Proteinase K overnight at 55 °C, followed by centrifugation at
maximum speed for 8 min. DNA was deposited with isopropanol and
washedin70% ethanol. All mice were genotyped with specific PCR prim-
ersthat distinguish knock-in alleles fromwild-type alleles. Sequences
of all primers were included in Supplementary Table 5.

Immunostaining

Immunostaining was performed as previously described’®. In detail,
livers were fixedin4%PFA at 4 °Cfor1h, thenwashed in PBS and dehy-
dratedin30%sucrose overnight at4 °Cand embeddedin OCT (Sakura).
For staining, the cryosections were washed in PBS, incubated in block-
ingbuffer (5% normal donkey serum (Jackson Immunoresearch), 0.1%
Triton X-100in PBS) for 30 min at room temperature then stained with
the primary antibodies overnight at 4 °C. Signals were developed with
Alexa fluorescence antibodies (Invitrogen). HRP-conjugated antibod-
ies with tyramide signal amplification kit (PerkinEImer) were used
to amplify weak signals. HRP-conjugated antibodies with InmPACT
DAB kit (Vector lab, SK-4105) were used to show CK19 density. Nuclei

were counterstained with 4'6-diamidino-2-phenylindole (DAPI, Vector
lab). The following antibodies were used: tdT (tdTomato, Rockland,
600-401-379, 1:500; or Rockland, 200-101-379, 1:500), GFP (Inv-
itrogen, A11122; 1:500), GFP (Rockland, 600-101-215M; 1:500), GFP
(nacalai tesque, 04404-84; 1:500), p21 (Abcam, ab188224; 1:500),
Ki67 (Abcam, ab15580; 1:200), CK19 (Developmental Studies Hybri-
doma Bank, TROMA-III, 1:500), CK19 (Abbomax, 602-670; 1:500),
HNF4« (CellSignalling, 3113s;1:500), HNF4a (Abcam, ab41898;1:100),
FAH (Abclonal, A13492; 1:500), S-catenin (BD Pharmingenp; 1:100),
anti-active-g-catenin (Millipore, Upstate, 05-665; 1:100), GS (Abcam,
Ab49873;1:1,000), E-cadherin (E-cad, Cell signaling, 3195; 1:100),
CYP2E1 (Abcam, ab28146; 1:100), Sox9 (Millipore, AB5535; 1:1,000),
YAP/TAZ (Cell signaling, 8418; 1:100), Mucin2 (Santa Cruz, sc-15334;
1:400), Epcam (Abcam, ab92382;1:400), OPN (R&D, AF808-SP; 1:500),
A6 (a gift from Valentina Factor; 1:100). CK19 density was calculated
based on measuring the percentage of CK19 area in each field. Immu-
nostaining images were acquired by Zeiss confocal microscope
(LSM710) or Nikon Al confocal microscope. For quantification of the
hepatocytes clone number per left lobe, serial liver sections (20 pm)
were used for staining. For TLPC number quantification, we collected
tentissue sections (20 tissue sections in Ctnnbl gene knockout experi-
ment) from each mouse liver and took five random fields from each
liver section for quantification. Immunostainings for CK19 and HNF4«
were performed on both mutantand control liver sections at the same
time to avoid potential batch differences during staining. Imaging of
allimmunostained slides was performed under the same exposure and
contrast conditions using the same confocal microscope.

DBZ and RSPO1 treatment

To study the effect of dibenzazepine (DBZ; MedChemExpress,
HY-13526) that inhibits Notch cleavage and blocks activated Notch sign-
aling on the conversion of BECs to hepatocytes, CK19-CreER;Fah-LSL/
LSL;R26-tdT mice were treated with tamoxifen for four times at indi-
cated time and then treated with either DBZ (0.01 mg g™) or oil (control)
by oral gavage according to the schematic figure shownin the Extended
DataFig. 8a. To study the effect of RSPO1(MedChemExpress, HY-13526
or Peprotech, 120-38) induced WNT/B-catenin activation on the con-
version of BECs to hepatocytes, CK19-CreER;Fah-LSL/LSL;R26-tdT mice
were treated with tamoxifen for four times atindicated time and then
injected intraperitoneally with either 20 mg kg™ RSPO1 or PBS (control)
accordingto the schematic figure showninthe Extended Data Fig.10g.

H&E staining. Cryosections were washed in PBS for 5 min to remove
OCT, then incubated in hematoxylin A for 10 min, followed by wash-
ing in water. Then, cryosections were incubated in 1% concentrated
hydrochloricacid diluted in 70% ethanol for 1 min and washed in water.
Afterward, the sections wereincubated in 1% ammonia water for 1 min,
followed by washing in water. The sections were stained with Eosin-Y
solution for10 sand dehydrated in ethanol and xylene. Finally, sections
were mounted with resinous medium. Images were acquired using an
Olympus microscope (Olympus, BX53).

Cell isolation and fluorescence-activated cell sorting. Liver cells
wereisolated by standard two-step collagenase perfusion as described
previously®. Briefly, mice were anesthetized and the liver was exposed
through anincisionin the lower abdomen. A needle was inserted into
the inferior vena cava and secured with a hemostatic clamp around
the needle. Portal vein was cutimmediately when the mouse liver was
perfused with perfusion medium using a peristaltic pump. Then, the
liver was next perfused with medium containing collagenase type |
(150 U ml™; Invitrogen) for 10 min to adequately digest the liver. After
removing the gallbladder, the liver was dissected with cold resuspen-
sion buffer (0.5% BSA and 2 mM EDTA in PBS) to free the hepatic cells.
Then the cell suspension was passed through a 70-pm cell strainer
(BD Biosciences, 352350) and centrifuged at 50g for 3 min at 4 °C.
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The non-parenchymal cells that remained in supernatant were col-
lected and passed through a 40 pm cell strainer (BD Biosciences,
352340), then centrifuged at 400g for 5 min at 4 °C. The cell pellet
was resuspended in red blood cell lysis buffer (eBioscience, 00-4333-
57) for 5 minatroom temperature and washed with cold resuspension
bufferand centrifuged at 400g for 5 min at4 °C. The washing step was
repeated once again. Subsequently, cells were stained with the positive
selection antibody (anti-mouse EPCAM-APC; eBioscience, 17-5791-82)
dilutedinresuspensionbuffer for 30 mininthe dark at4 °C. After stain-
ing, cells were washed with resuspension buffer and centrifuged at
400gfor 5 min. EPCAM’ cells were enriched by using APC microbeads
(130-090-855, MiltnyiBiotec) according to the manufacturer’s proto-
cols before sorting with Sony MA900 equipped with a100 pum nozzle
inpurity mode. Cell viability was assessed with DAPI staining. EPCAM"*
cells were isolated for further scRNA-seq of BECs or bulk RNA-seq or
qRT-PCR. For scRNA-seq of tdT* cells (Fig. 6a—c), cells were not stained
with anti-mouse EPCAM-APC antibody. Cells were sorted based on the
expression of tdT.

Human samples and IHC analysis

Glass slides with formalin-fixed and paraffin-embedded (FFPE) sec-
tions from patient livers (healthy n= 6, ASH cirrhosis n =5, acute liver
failure n =9, nonalcoholic steatohepatitis (NASH) noncirrhosis n=6,
NASH cirrhosis n = 6, hepatitis B (HepB) noncirrhosis n =6, HepB cir-
rhosis n = 6, Hepatitis C (HepC) noncirrhosisn = 6, HepC cirrhosisn =5,
AlH n=5,PSC n=5 and PBC n=5) were obtained from the University
Hospital Basel Tissue Bank. Healthy livers were classified by normal
morphology during histopathological assessment. The biopsies were
originally acquired for routine diagnostic and patients signed a gen-
eral informed consent for the use of remaining tissue for research
purposes in accordance with the Swiss Federal Human Research Act
(HRA). Patients did not receive compensation. The study was approved
by the ethics committee of Northwest and Central Switzerland (EKNZ)
as part of the EKNZ. FFPE blocks were cut in 3-um thickness and sec-
tions were placed on silanized/charged slides. Slides were dried for
15-20 min at 37 °C. Immunohistochemistry for p21 was performed
using a Ventana Benchmark XT (Ventana). Antigen retrieval was per-
formed with CC1 (Ventana, 950-500) for 16 min, prediluted primary
antibody for anti-p21 (Ventana, 760-4453; mouse monoclonal) was
incubated for 24 min thenvisualized with the OptiView-DAB detection
kit (Ventana). HNF4a/CK19 costaining was conducted on a Ventana
Discovery Ultra (Roche Diagnostics). Antigen retrieval was performed
with CC1 (Ventana, 950-500) for 40 min. Anti-HNF4« (Cell Signaling
Technology, 3113S; rabbit monoclonal) was incubated for 56 min,
detected with OmniMap anti-Rb HRP (Ventana, 760-4311) and visual-
ized with Discovery Purple HRPKit (Ventana, 760-229). Subsequently,
anit-CK19 (Ventana, 760-4281; mouse monoclonal) was applied for
52 min, detected with UltraMap anti-Ms Alk Phos (Ventana, 760-4312)
and visualized with Discovery Yellow APKit (Ventana, 760-239). Stained
slides were scanned with an Aperio ScanScopeXT and visualized using
Aperio Image Scope software (Leica Biosystems). Two samples were
excluded fromanalyses due to staining quality challenges (1ALF patient
sample for p21assessment and1patient sample for CK19/HNF4a assess-
ment). The percentage of CK19° cells expressing HNF4q, as well as the
percentage of hepatocytes with nuclear p21 staining, were counted
manually, respectively. Statistical analyses were performed using
GraphPad Prism software.

scRNA-seq and bioinformatics analysis

scRNA-seq. Isolated cell suspension was loaded to the 10X Chro-
mium and ~8,000 cells were expected to be captured when Gel
Beads-in-emulsions were generated. The library was prepared fol-
lowed by the instruction manual of Single Cell 3’ Gene Expression
kit (v3.1) or Single Cell 5" Gene Expression kit (v2). Briefly, the Gel
Beads-in-emulsions were first incubated and reverse transcripted to

first-strand cDNA. The single-strand cDNA was purified by Dynabeads
and amplified using 12 cycles to generate the double strands cDNA.
Next, dsDNA was fragmented, end-repaired and further ligated with
adaptor. Lastly, index PCR was performed before sequencing. The
library was sequenced on the lllumina Hiseq X ten PE150 platform.

Single-cell transcriptomic analysis. Sequencing reads were aligned,
annotated and demultiplexed using CellRanger (v4.0.0) with the mm10-
2020-A reference provided by 10X Genomics. Further downstream
analyseswere carried out using the Seurat R package (v4.0.5)”. Quality
control was performed using the subset function using the threshold
of nFeature_RNA larger than 2,000 and less than 8,000, nCount_RNA
larger than 8,000 and less than 50,000, as well as percentage of
expressed mitochondrial gene less than 10% to filter out low-quality
cells and potential doublets. PCA was calculated using the scaled
expression data of 3,000 most variable genes, which were selected by
‘vst’ method using FindVariableFeatures function. Dimension reduc-
tionand clustering were further performed. Different dims of PCAand
different values of resolution parameters were tested®. We set the final
resolution to 0.2 (testing a range from 0.1to 0.5) and dims to 15 (test-
ing a range from 10 to 20) first in the sample of CK19-CreER;Fah-LSL/
LSL mice. Given that the obtained clustering sensitivity for a given
resolutionis dependent on the number of cells of that subpopulation
ineachrespective sample, we swept over the same range of resolutions
forthe other samplesto assure the proportion of TLPCsis comparable
with the statistics result.

DEGs and pathway enrichment. Two-sided Wilcoxon rank-sum test
was used to define marker genes for clusters and samples using the
FindMarkers functionin Seurat and Pvalues were Benjamin-Hochberg
FDR correctionfor the total number of comparisons. The GO BP path-
way enrichment analyses of DEGs calculated above are performed
using Metascape webtool®’,

Data integration. To compare the scRNA-seq data from the sample of
CK19-CreER;Fah-LSL/LSL mice and two published samples of mice with
DDC-induced injury, data integration was performed using the MNN
algorithm®. In detail, QC filter and preprocessing were performed
as described in the original articles®**. The RunFastMNN function in
SeuratWrappers package was used to integrate these three datasets.
The highest 2,000 variable features were selected to correct the batch
effects between samples. The dimensions of the first 199 MNNs and
resolution of 0.22 were used to unsupervised cluster all cells. The first
19 MNNs were used to reduce dimensions by RunUMAP function. Other
datasets were also integrated by the RunFastMNN function. The same
number of MNN dimensions but different resolutions were used for
clustering and dimension reduction.

Trajectory. To map the differentiation trajectory directions, scVelo was
used to calculate the RNA velocity®. In brief, the cell filter mentioned
above was used to re-UMAP using the spliced assay data. Genes less
than 20 counts were filtered out and 1,500 highly variable genes were
retained and log-normalized. 30 PCs and 30 neighbors were used to
compute moments based on connectivity, and then calculate veloci-
ties for each individual cell. The velocity embedding stream plot was
drawn and colored by Seurat clusters.

Cell cycle scoring for scRNA-seq. To evaluate the potential ability of
proliferation for eachcell, wefirst calculate the S.score and G2M.score
for each single-cell data using the CellCycleScoring functionin Seurat
package. Also, we used enrichlt functionin escape® package to perform
ssGSEA analysis to calculate the cell cycle score using the union gene
set of S phage gene set and G2M phage gene set. These scores of BECs
were all upregulated in CK19-2A-CreER;Fah-LSL/LSL;R26-NICD-GFP
mice compared to CK19-2A-CreER;Fah-LSL/LSL;R26-tdT mice.
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Thechangesinthesescores wereinconsistentinthe comparison of CK19-
2A-CreER:Fah-LSL/LSL,;Ctnnb1°*®3* mice and CK19-2A-CreER;Fah-LSL/
LSL;CtnnbI”* mice. G2M.score was slightly higher in BECs of CK19-
2A-CreER:Fah-LSL/LSL;CtnnbI*"* mice, while cell cycle score was slightly
higher in CK19-2A-CreER;Fah-LSL/LSL;Ctnnb1°*®%" mice. All gene sets
used in this paper are listed in Supplementary Table 4.

Bulk RNA-seq and data analysis. Total RNA was extracted from BECs
isolated from TAM-treated CK19-2A-CreER;Fah-LSL/LSL;CtnnbI*"* and
CK19-2A-CreER;Fah-LSL/LSL,;Ctnnb1°**** mice at day 21 after NTBC
removal. The cDNA library samples were sequenced by BGISEQ
platform using PE150. The fastq files were then trimmed by Trim
Galore with parameter ‘-q 20 --phred33 --stringency 3 --length 20
-e 0.1’. The trimmed fastq files were further mapped to mouse ref-
erence genome GRCm38 (mm10) using STAR® with parameter
‘--outStd SAM --outSAMattributes NH HIAS nM MD --outSJfilterReads
Unique --runThreadN 12 --outFilterMismatchNoverLmax 0.04
--outFilterMismatchNmax 999 --sjdbOverhang 149’. The generated
SAM files were converted and sorted to BAM files by samtools, which
were calculated by featureCounts from the Subread package®® and
generated count matrix for each gene. The count matrix was input
to DESeq2 (V1.6.3)*" for differential gene expression analysis, based
on a model using negative binomial distribution. The DEseq2 result
was taken to assess the enrichment of hallmark pathways using fgsea
package for preranked GSEA.

GSEA analysis. The GSEA analysis of hallmark pathways between
CK19-2A-CreER;Fah-LSL/LSL;CtnnbI"* and CK19-2A-CreER;Fah-LSL/
LSL;Ctnnb1**¥"* mice was done by fgesa package, which used the
Kolmogorov-Smirnov (KS) test to evaluate the enrichment of a gene
setinaranked list of genes. To perform the KS test, the fgsea package
first ranks the genes in the gene set and the genes outside of the gene
set by their statistical significance (for example, Pvalues). The cumula-
tive distribution functions of the ranked genes in the gene set and the
ranked genes outside of the gene set are then calculated. The maximum
difference between these two cumulative distribution functionsis then
calculated and used as the test statistic.

RNA isolation and quantitative RT-PCR. Total RNA was extracted from
theliver ofindicated mice or BECsisolated fromindicated mice treated
with TAM or oil. Cells were lysed with Trizol (Invitrogen, 15596018), and
total RNA was extracted according to the manufacturer’sinstructions.
Then, RNAwasreverse-transcribed into cDNA using Prime Script RT kit
(Takara, RRO47A). The SYBR Green qPCR master mix (Thermo Fisher
Scientific,4367659) was used and quantitative RT-PCR was performed
on QuantStudio 6 Real-Time PCR System (Thermo Fisher Scientific).
Gapdhwas used asinternal control. For qPCR of Fah gene, the forward
primer for qPCRislocated inexon7 and the reverse primerislocatedin
exon8, and their PCR produced s 74 bp overlapping part of exon7 and
exon8.Sequences of all primers areincluded in Supplementary Table S.

Western blot. Liver tissues were collected at the indicated stages. All
samples were lysed in RIPA lysis buffer (Beyotime, PO013B) containing
protease inhibitors (Roche, 11836153001) for 30 min onice, and then
centrifuged at 13,500g for 5 min to collect the supernatant. All sam-
ples were mixed with loading buffer (Beyotime, p0015L) and boiled
for 10 min. Because the molecular weights between FAH (46 kDa) and
GAPDH (36 kDa) are close, we loaded the same amount of proteininto
two gels to detect FAH and GAPDG, respectively. Western blot analy-
ses were performed with precast gradient gels (Beyotime, P0469M)
and transferred onto polyvinyli denefluoride membranes (Millipore,
IPVH00010). After blocking in PBST containing 5% BSA, the membranes
were incubated with primary antibodies overnightat4 °C, thenwashed
three times and incubated with HRP-conjugated secondary antibod-
ies. Signals were detected by incubating with chemiluminescent HRP

substrate (Thermo Fisher Scientific, WBKLS0500). The following
antibodies were used: FAH (Abclonal, A13492;1:500), GAPDH (Protein-
tech, 60004-1-1G; 1:2,000), Peroxidase AffiniPure Goat Anti-Rabbit
IgG (Jackson ImmunoResearch, 111-035-047;1:4,000) and Peroxidase
AffiniPure Donkey Anti-Mouse IgG (Jackson ImmunoResearch, 715-
035-150;1:4,000).

Serum biochemical analysis. The blood was collected from indi-
cated mice and centrifuged at 850g for 15 min at 4 °C. The serum that
remained in the supernatant was collected for biochemical analyses.
ALT and AST were measured by 7600 clinical analyzer (Hitachi) or 4600
fully automatic biochemical analyzer (VITROS). TBIL was measured by
4600 fully automatic biochemical analyzer (VITROS).

Statistics. Forimage acquisition, as well as analyses such as quantifi-
cation by IF and IHC of cell number or CK19 density, the investigators
were blinded. Investigators were not blinded to mouse treatment and
sacrifice because mouse treatment and sacrifice were performed by
the same people. Investigators were not blinded for scRNA-seq analysis
studies as there were no separate groups and the samples were anno-
tated. For western and qPCR, theinvestigators were not blinded to the
loading samples. Within an experimental condition, the allocation
of mice was random. Data were presented as means * s.d. Statistical
analysis was performed by two-tailed unpaired Student’s ¢ test for com-
parison of differences between two groups, and by ANOVA followed by
Tukey’s method for multiple comparisons. P < 0.05was considered to
be statistically significant. The Pvalue was added in the figure legend
for each comparison, with statistical method included. Eachimagein
Fig.leisrepresentative of fiveindividual mice samples. Eachimagein
Fig. 1fis representative of five individual mice samples. Eachimage in
Fig. 2cisrepresentative of five individual mice samples. Eachimagein
Fig.2d isrepresentative of five individual mice samples. Eachimagein
Fig.3eisrepresentative of five individual mice samples. Eachimage in
Fig.3fisrepresentative of five individual mice samples. Eachimagein
Fig.3gisrepresentative of five individual mice samples. Eachimage in
Fig.3hisrepresentative of five individual mice samples. Eachimagein
Fig.3iisrepresentative of five individual mice samples. Eachimage in
Fig.4eisrepresentative of fiveindividual mice samples. Eachimagein
Fig.4fisrepresentative of fiveindividual mice samples. Eachimagein
Extended dataFig. liis representative of five individual mice samples.
Eachimagein Extended DataFig. 1jis representative of five individual
mice samples. Each image in Extended Data Fig. 3c is representative
of five individual mice samples. Eachimage in Extended DataFig. 3eis
representative of fiveindividual mice samples. Eachimage in Extended
Data Fig. 3f is representative of five individual mice samples. Each
image in Extended Data Fig. 6d is representative of four individual
humansamples. Eachimage in Extended Data Fig. 8bisrepresentative
of five individual mice samples. Eachimage in Extended DataFig. 8cis
representative of five individual mice samples. Eachimage in Extended
Data Fig. 9d is representative of five individual mice samples. Each
image in Extended DataFig. 9eis representative of five individual mice
samples. Eachimage in Extended DataFig.10eis representative of five
individual mice samples.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All of the data generated or analyzed during this study are included
in Figs. 1-8, Extended Data Figs. 1-10 and Supplementary Tables 1-5.
scRNA-seq data that support this study have been deposited in the
Gene Expression Omnibus (GEO; BioProject ID: PRJNA812361). Bulk
RNA-seq data have been deposited in the GEO (NCBI BioProject ID:
PRJNA871936). Two published DDC-induced liver injury datasets used
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inthis paper are accessible under accession number GEO: GSE125688
(ref. 32) and SRA: PRJNA384008 (ref. 33). Source data are provided
with this paper.

Code availability

This study did not generate any unique code or algorithm. The algo-
rithms used for the analysis during this study are all publicly available.
The code of single cell data processing and analysis in this study have
beendepositedinZenodo (https://doi.org/10.5281/zenod0.7576366).
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Extended Data Fig. 1| Generation and characterization of Fah-LSL mice.

a, Schematic diagram showing the strategy for generation of Fah-LSL knock-in
allele by homologous recombination using CRISPR/Cas9. b, Schematic diagram
showing re-expression of Fah after LSL removal by crossing of Fah-LSL mice with
ACTB-Cremice. c, Relative mRNA expression levels of Fah in the livers of adult
Fah-LSL/+, Fah-LSL/LSL and Fah-LSL/LSL;ACTB-Cre mice treated with NTBC.
Data are the mean + SD; n =5 mice; *P < 0.0001, *P < 0.0001. d, Western blotting
for FAH in the livers of adult Fah-LSL/+ , Fah-LSL/LSL and Fah-LSL/LSL;ACTB-
Cremice treated with NTBC. Quantification of the relative protein levels of

FAH was shown on the right. Data are the mean + SD; n =3 mice; *P < 0.0001,

*P < 0.0001. Statistical analysis in cand d was performed by ANOVA followed

by Bonferroni test for multiple comparisons and adjustments were made for
multiple comparisons. e, Immunostaining for FAH and CK19 on the liver sections

fromadult Fah-LSL/+, Fah-LSL/LSL, and Fah-LSL/LSL;ACTB-Cre mice treated with
NTBC. Arrowheads, CK19°FAH BECs. Scale bar, 100 pm. f, Schematic showing
the experimental strategy for NTBC withdrawal (w/o NTBC) and tissue analysis at
indicated time points. g, Weekly body weight measurements for Fah-LSL/+ and
Fah-LSL/LSL mice after NTBC withdrawal (w/o NTBC). The data are normalized

to the body weights at week 0. Data represent mean + SD; n =5 mice; week2:
*P<0.0004; week3-wek6: *P < 0.000L1. Statistical analysis was performed by
multiple t test. Each row was analyzed individually without assuming a consistent
SD. h, Hematoxylin and eosin (H&E) staining of liver sections. Scale bar, 100 um.
ij, Immunostaining of GS and E-cad (i) and p21(j) on liver sections from adult
Fah-LSL/+ ,Fah-LSL/LSL and Fah-LSL/LSL;ACTB-Cre mice treated with NTBC
(w/NTBC) or at 8 weeks after NTBC removal (w/o NTBC). Scale bar, 100 pm.
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Extended Data Fig. 2| BEC-derived hepatocytes contribute to liver
regeneration. a, Schematic diagram showing the experimental design for
recovery of Fah gene in BECs and lineage tracing. b, Schematic diagram showing
the experimental strategy of lineage tracing in CK19-CreER;Fah-LSL/LSL;R26-tdT
mice. ¢, Immunostaining for tdT, CK19, and HNF4a on liver sections collected
atday 0. Scale bar,1 mm. Right panel shows quantification of cell labeling
efficiency. Data represent mean + SD; n = 5 mice. d, Whole-mount fluorescence
liverimages. Scale bars,1 mm. e, Immunostaining for tdT on liver sections from
mice treated with TAM or oil. Scale bars, 1 mm. f, Immunostaining for tdT, HNF4q,
and CK19 on the liver sections from mice treated with TAM or oil. Quantification
of percentage of tdT"BECs and tdT* Heps is shown in the adjacent graph. Data
represent mean + SD; n =5 mice. Scale bars, 100 um. g, Immunostaining for

tdT and FAH on the liver sections from mice treated with TAM or oil. Scale
bars,100 pm. h, Serum ALT and AST of mice treated with TAM or oil. Data are

the mean + SD; n = Smice. *P < 0.0001; *P < 0.0001. i,j, Immunostaining for

tdT, HNF4a and p21 (i) or Ki67 (j) on liver sections. Inserts show green and red
fluorescence channels. Quantification of Ki67 or p21stainingintdT  and tdT
hepatocytesis shownin the adjacent graph. Datarepresent mean + SD; n = Smice.
*P<0.0001; Statistical analysis in h and j was performed by two-tailed unpaired
Student’s t test. k, Immunostaining for tdT with E-CAD or CYP2E1 on the liver
sections from mice treated with TAM or Oil. Scale bars, 100 pm. I, Schematic
figure showing the experimental strategy. m, Inmunostaining for tdT, CK19, and
HNF4a ontheliver sections. Data represent mean + SD; n = 5 mice. Scale bars,
100 pm. W/o NTBC, without NTBC.
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Extended Data Fig. 3| BECs-derived hepatocytes contribute to liver
regeneration. a, Schematic showing experimental strategies. b, Kaplan-Meier
plot showing survival of CK19-CreER;Fah-LSL/LSL;R26-tdT mice in different
strategies. ¢, Immunostaining for tdT, CK19, and HNF4a on liver sections of
indicated mice collected at week 7. Scale bars, 100 um. d, Schematic showing

experimental strategies. e, Whole-mount tdT fluorescent liver images from
indicated mice at 6 months after the first NTBC removal. Scale bars, 2 mm.

f, Immunostaining for tdT, CK19, and HNF4a on liver sections of indicated mice
collected at month 6 (+6 m). Scale bars, 100 pm. W/o NTBC, without NTBC.
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Extended Data Fig. 5| Analysis of gene expression in BECs and TLPCs.

a, Schematic figure showing the experimental strategy and representative gating
for FACS of EPCAM® cells utilized for scRNA-seq. b, UMAP visualization of cells
obtained from FACS sorting. ¢, Violin plots showing the marker gene expression
levels per single cell in each cluster. d, Integrated UMAP showing BECs from
CK19-CreER;Fah-LSL/LSL;R26-tdT mice kept with NTBC (w/ NTBC) and kept off
NTBC for 25 days (w/o NTBC). Proportion of TLPCs in the two groups is shown.

e, UMAP plots showing the expression of the indicated genes. f, Immunostaining
for YAP/TAZ, CK19, and HNF4a on sections of liver collected at day 25 from

CK19-CreER;Fah-LSL/LSL;R26-tdT mice. Scale bars, 50 pm. g, Immunostaining

for SOX9, CK19, and HNF4a on sections of liver collected at day 25 from CK19-
CreER;Fah-LSL/LSL;R26-tdT mice. Scale bars, 50 pm. Yellow arrowheads, BECs;
white arrowheads, TLPCs. Eachimmunostaining image is representative of 5
mice. h, MET and EGFR pathway analysis by ssGSEA of EPCAM" cells fromd. i, MET
and EGFR pathway analysis of BECs and TLPCs from mice (w/o NTBC) by ssGSEA.
Mann-Whitney test was used to indentify the significant of the pathway scores
between BECs and TLPCs. *p < 0.0001; NS, non-significant. j, List of genes with
gene sets for MET and EGFR pathways.
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Extended DataFig. 6 | Presence of TLPCs and hepatocyte senescencein
human livers. a, Immunostaining for p21 or HNF4a and CK19 in patient biopsies
from the indicated human liver disease indications. Quantifications for p21*
hepatocytes and HNF4a"CK19* TLPCs are shown in Fig. 1. Scale bars, 100 pm.

b, Immunostaining for p21and CK19 in the indicated human liver biopsies. Scale
bars, 50 um. ¢, Quantification of p21* BECs in the indicated liver biopsies. Data
represent mean + SD. n = patients. Unpaired two-tailed ¢ tests were used (vs.

healthy, n = 4): alcoholic steatohepatitis (ASH) cirrhosis (n =4, *P = 0.0495)):
non-alcoholic steatohepatitis (NASH) cirrhosis (n = 4, P=0.2207), Hepatitis
(Hep)Bcirrhosis (n =4, **P=0.0009), HepC cirrhosis (n =4, **P=0.0031).
d, Immunostaining showing HNF4a*CK19* TLPCs within different BEC
populationsin the indicated biopsies (BD, bile duct; DR, ductular reaction:
CoH, canals of Hering). Scale bars, 50 pm.
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Extended Data Fig. 7 | Generation of CK19-2A-CreER mouse line and Rbpj
knockoutin BECs. a, Schematic figure showing knock-in strategy for generation
of'the CK19-2A-CreER allele by homologous recombination. b, Genetic lineage
tracing for CK19* BECs by Cre-loxp recombination. ¢, Schematic figure showing
the experimental strategy (left panel). Immunostaining for tdT and CK19 on liver
section (middle panel). Quantification of percentage of BECs expressing tdT is
shownin the adjacent graph. Data are the mean + SD; n = 5 mice. d, Schematic
figure showing the experimental strategy. Inmunostaining for nGFP/YFP, tdT,

and CK19 on liver sections. Quantification of percentage of reporter* BECs is
showninthe adjacent graph. Data represent mean + SD; n = 5 mice. e,i, Schematic
figures showing the experiment strategy. f,j, Inmunostaining for CK19 on

liver sections. gk, Quantification of CK19 density per 10x field. Data represent
mean + SD; n =5 mice; NS, non-significant. h,I, Quantification of serum total
bilirubin (TBIL) from indicated mice. Statistical analysis was performed by two-
tailed unpaired Student’s t testin g, h, k, I. Datarepresent mean + SD; n = 5 mice;
NS, non-significant. Scale bars, 100 pm.
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Extended Data Fig. 8 | Inhibition of Notch signaling increases generation of
TLPCs. a, Schematic figure showing the experimental strategy. Dibenzazepine
(DBZ)is apharmacologic Notch inhibitor, which inhibits Notch cleavage and
blocks its activation. b, Immunostaining for Ki67 on intestine sections collected
atday 25. Scale bars, 100 pm. ¢, Immunostaining for Mucin2 and E-CAD on small
intestine sections collected at day 25. Scale bars, 100 um. d, Immunostaining for
CK19 and HNF4a on liver sections collected at day 25. Arrowheads, CKI9"HNF4a*
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig.10 | WNT activation increases BEC-to-hepatocyte
formation but not BEC proliferation. a, Schematic figure showing the
experimental strategy for CK19-2A-CreER;Fah-LSL/LSL,;CtnnbI"*R26-Confetti
mice (CtnnbI"*) or CK19-2A-CreER;Fah-LSL/LSL;Ctnnb1°**/*;R26-Confetti mice
(Ctnnb1*"*) b, Violin plots showing selected gene expression levels per single
cellin BECs collected from CtnnbI** and Ctnnb1°“®¥* mice at day 21. ¢, UMAP
plots showing the expression of the indicated genes in each cluster collected
from Ctnnb1"**"* mice at day 21. d, Inmunostaining for CK19 and Ki67 on liver
sections collected at day 21 and week 7 from the indicated mice. The percentage
of proliferating BECs (Ki67") is shown on the right panel. Data represent

mean + SD; n =5mice; NS, no significance. Scale bars, 50 pm. e, Immunostaining

for fluorescent markers, CK19, and HNF4a on liver sections from the indicated
mice. Scale bars, 100 pm. f, GSEA analysis in the left panel shows differentially
expressed hallmark pathways between the Ctnnb1°*®®* group and Ctnnb1"*
group. Right panel shows heat map of Notch pathway leading edge genes.

g, Schematic figure showing the experimental strategy. h, Inmunostaining for
tdT, HNF4«, and CK19 on sections of liver collected at day 40. Scale bars, 500 pm.
i, Quantification of the number of tdT* hepatocyte clusters per 10x field in vehicle
or RSPO1-treated mice livers. Arrowheads, tdT"HNF4a" hepatocyte clones. Data
arethe mean + SD; n = 4 (RSPO1group) and 5 (vehicle group) mice; *P=0.0107.
Statistical analysis was performed by two-tailed unpaired Student’s t testind,

i; Kolmogorov-Smirnov (KS) test was usedinf.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
/N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

L1

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX O O XX [OOOS

NN

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Zeiss stereoscope (Axio Zoom. V16) were used for whole-mount bright-field and fluorescence image collection. Olympus fluorescence
microscope (B53) were used for H&E picture collection. Zeiss LSM880 confocal and Nikon A1 confocal were used for immunofluorescence
data collection. Sony MA9S00 Flow Cytometer were used for FACS data collection. QuantStudio 6 Real-Time PCR System (Thermo Fisher
Scientific) was used for quantitative RT-PCR data collection. Aperio AT2 scanner version 102.0.7.5 and Aperio Image Scope software
v12.4.0.5043 (Leica Biosystems) were used for immunostaining data of human tissue samples.

Data analysis Image J (2.0.0-rc-30/1.49t) and Photoline (18.5.1) were used for immunofluorescence and bright-filed images analysis. FlowJo (X 10.07r2)
were used for FACS data analysis. GraphPad Prism 6.2 was used for data analysis. Cellranger (v4.0.0), Seurat R package (v4.3.0),
SeuratWrappers(v0.3.0), scVelo (v0.2.3), escape R package (v1.8.0), Metascape were used for scRNA-seq analysis. Trim Galore (v0.6.7), STAR
(v2.7.9a), samtools (v1.13), Subread (v2.0.1), DEseq2 R package (v1.32.0), fgsea R package (v1.18.0) were used for bulk RNA-seq analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data generated by this study are included in this article and it's supplementary materials. Source data are provided with this paper. scRNA-seq data that support
this study have been deposited in the Gene Expression Omnibus (GEO) (BioProject ID: PRINA812361). Bulk RNA-seq data have been deposited in the Gene
Expression Omnibus (GEO) (NCBI BioProject ID: PRINA871936). Two published DDC-induced liver injury dataset used in this paper are accessible under accession
number GEO: GSE125688 and SRA: PRINA384008.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences | | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All experiments were repeated at least three times with similar results, except for single cell RNAseq. Each sample size were described in
detail in each figure legend. No statistical methods were used to predetermine the sample size. A minimun number of animals were used
according to standard scientific conventions. For sample of scRNA-seq, we reported 7853 single cells (Figure 1b), 11301 single cells in Control
group and 6315 single cells in NICE-OE group (Figure 5e), 6140 single cells (Figure 6c¢),7492 single cells in Ctnnb1 +/+ group and 6326 single
cells in Ctnnb1 lox(ex3)/+ group (Figure 7d), 4076 single cells in w/ NTBC group and 7853 single cells in w/o NTBC group (Extended Data Fig
3d). The final single cell numbers were used for scRNA-seq analyses corresponded to each sample size after discarding cells due to bad quality
or contanminant population during sorting.

Data exclusions  Two human samples were excluded from analyses due to staining quality challenges (1 ALF patient sample for p21 assessment, 1 patient
sample for CK19/HNF4a assessment). For mice survival study (Extended Data Fig. 1g,3b), we did not analyze mice after they died in these
experiments. No data in mice experiments was excluded.

Replication For each animal experiment, at least 3 repeats were done to confirm the reproducibility of the findings. Stainings on patient samples were
performed once but at least on 5 patients liver biopsies (each on individual glass slides) per disease indication. n means biological replicates
(number of mice or patients) and is indicated in the manuscript. Replicated experiments yielded reproducible results.

Randomization  For all animal experiments, experimental and control animals were randomly allocated from the appropriated genotype. Sample were
allocated randomly to different experimental groups. Patient biopsies were selected by the pathologists based on availability and assigned to
the different groups by disease pathology without considering covariates.

Blinding For image acquisition as well as analyses such as quantificaiton by IF and IHC of cell number or CK19 density, the investigators were blinded.
Investigators were not blinded to mouse treatment and sacrifice because mouse treatment and sacrifice were performed by same people.
Investigators were not blinded for single cell RNA-seq analyses studies as there were not separate groups or the sample were annotated. For
western and qPCR, the investigators were not blinding when loading the sample to display the results in a logical way.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
™ Antibodies X[ ] chip-seq
Eukaryotic cell lines |:| Flow cytometry
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Animals and other organisms
Human research participants
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Antibodies used tdTomato (Rockland, 600-401-379, 1:500), manufacturer validated by IF for mouse tissue.
tdTomato (Rockland, 200-101-379, 1:500), manufacturer validated by IF for mouse tissue.
GFP (Invitrogen, A11122, 1:500), manufacturer validated by ICC/IF for HEK-293 cells transfected with H3-GFP construct.
GFP (Rockland, 600-101-215M, 1:500), manufacturer validated by IF for mouse tissue.
GFP (GFO90R, nacalai tesque, 04404-84, 1:500), manufacturer validated by IF for mouse tissue.
p21 (Abcam, ab188224, 1:500), manufacturer validated by IHC for mouse tissue.
p21 (Ventana, 760-4453), manufacturer validated by IHC for human tissue.
Ki67 (Abcam, ab15580, 1:200), manufacturer validated by ICC for Mef1 cells.
CK19 (Developmental Studies Hybridoma Bank, TROMA-III, 1:500), manufacturer validated by IHC for mosue tissue.
CK19 (Abbomax, 602-670, 1:500), manufacturer validated by IHC for mosue tissue.
CK19 (Ventana, 760-4281), Zhang Y et al. (2021) validated for human tissue by IHC.
HNF4a (Cell Signalling, 3113s, 1:500), manufacturer validated by IHC for human tissue.
HNF4a (Abcam, ab41898, 1:100), manufacturer validated by IHC for human tissue.
Fah (Abclonal, A13492, 1:500), manufacturer validated for mouse tissue by Western.
B-catenin (BD Pharmingenp, 610153, 1:100), manufacturer validated for A431 cell line by IF.
anti-active-B-catenin (Millipore, Upstate, 05-665, 1:100), manufacturer validated for human tissue line by IHC.
GS (Abcam, Ab49873, 1:1000), Ma R et al. (2020) validated for human tissue by IHC.
E-cadherin (E-cad, 24E10, Cell signaling, 3195, 1:100), manufacturer validated for human tissue line by IHC.
Epcam (Abcam, ab92382, 1:400), Matsumori T et al. (2020) validated for mouse tissue by IF.
Anti-Cytochrome P450 2E1 antibody (CYP2E1, Abcam, ab28146,1:100), manufacturer validated for human cell line by ICC/IF.
OPN (R & D, AF808-SP, 1:500), manufacturer validated for mouse cell line by IF.
A6 (a gift from Valentina Factor, 1:100), Suzuki Y et al (2016) validated for mouse cell line by IF.
Mucin2 (Santa Cruz, sc-15334, 1:400), Kosinsky, RL et al (2015) validated for mouse cell line by IHC.
YAP/TAZ (Cell Signaling, 8418, 1:100), manufacturer validated for human cell line by western.
Sox9 (Millipore, AB5535, 1:1000), manufacturer validated for human tissue by IHC.
GAPDH (Proteintech, 60004-1-lg, 1:2000), manufacturer validated for human cell line by western.
Donkey anti-rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa FluorTM 555 (Thermo fisher scientific, A31572,
1:500), manufacturer validated for detection of rabbit 1gG on human cell line by ICC/IF.
Donkey anti-rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa FluorTM 488 (Thermo fisher scientific, A21206,
1:500), manufacturer validated for detection of rabbit 1gG on human cell line by ICC/IF.
Donkey anti-rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa FluorTM 647 (Thermo fisher scientific, A31573,
1:500), manufacturer validated for detection of rabbit 1gG on human cell line by ICC/IF.
Donkey anti-Goat IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa FluorTM 555 (Thermo fisher scientific, A21432, 1:500),
manufacturer validated for detection of goat IgG on human cell line by ICC/IF.
Donkey anti-Goat IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa FluorTM 488 (Thermo fisher scientific, A11055, 1:500),
manufacturer validated for detection of goat IgG on human cell line by ICC/IF.
Donkey anti-Goat IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa FluorTM 647 (Thermo fisher scientific, A21447, 1:500),
manufacturer validated for detection of goat IgG on human cell line by ICC/IF.
Donkey anti-Rat 1gG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa FluorTM 488 (Thermo fisher scientific, A21208, 1:500),
manufacturer validated for detection of rat IgG on human cell line by ICC/IF.
Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa FluorTM 647 (Thermo fisher scientific, A31571,
1:500), manufacturer validated for detection of mouse 1gG on human cell line by ICC/IF.
Immpress HRP horse anti-rabbit IgG Polymer Detection Kit, Peroxidase (Vector laboratories, MP-7401, 1:1), manufacturer validated
for mouse tissue by IHC.
Peroxidase AffiniPure Goat Anti-Rabbit 1gG (Jackson ImmunoResearch, 111-035-047, 1:4000), Speckmann T et al (2016) validated for
mouse cells by western.
Peroxidase AffiniPure Donkey Anti-Mouse IgG (Jackson ImmunoResearch, 715-035-150, 1:4000), Usman W et al (2018) validated for
mouse cells by western.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mice of both male and female at the age of 8-20 weeks were used for experiments with similar aged mice for both control and
experimental groups. All mice were maintained on a 129, C57BL6 and ICR mixed background. CK19-CreER, Fah-LSL, R26-tdT, HNF4a-
DreER, R26-RL-tdT, CK19-2A-CreER, Rbpjfl/+, R26-NICD-GFP, R26-GFP, R26-Confetti, Ctnnb1fl/+, Ctnnbllox(ex3)/+ mouse lines were
used in this study. All mice were housed at the laboratory Animal center of the Center for Excellence in Molecular Cell Science in a
Specific Pathogen Free (SPF) facility with individually ventilated cages. The room has controlled temperature (20-25°C), humidity
(30%-70%) and light (12 hour light-dark cycle). Mice were provided ad libitum access to a regular rodent chow diet.

Wild animals No wild animals were included in this study.
Field-collected samples  No field-collected samples were included in this study.

Ethics oversight All mice were used in accordance with the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Shanghai
Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. The animal protocol number is SIBCB-S374-1702-001-C1.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Glass slides with Formalin-fixed paraffin-embedded (FFPE) sections from 70 patient livers were obtained from the University
Hospital Basel Tissue Bank in Switzerland. (6 healthy livers, 6 NASH, 6 Hepatitis B, 6 Hepatitis C, 9 Acute Liver Failure, 5
Primary Biliary Cirrhosis (PBC), 5 Primary Sclerosing Cholangitis (PSC), 5 Autoimmune Hepatitis (AIH), 5 ASH Cirrhosis, 6 NASH
cirrhosis, 6 Hepatitis B Cirrhosis, 5 Hepatitis C Cirrhosis). All samples were leftover routine diagnostic material and not
associated with or derived from a clinical study. Disease indications were diagnosed by 2 pathologists and a hepatologist,
who are co-authors of this study. Healthy livers were classified by normal morphology during histopathological assessment.
Covariate-relevant population characteristics of the human patients (gender, age) are included in a supplementary table.

Recruitment The biopsies were originally acquired for routine diagnostic and patients signed a general informed consent for the use of
remaining tissue for research purposes in accordance with the Swiss Federal Human Research Act (HRA). Patients did not
receive compensation. There was no recruitment for this study and therefore no associated bias since we exclusively used
leftover diagnostic material. Samples were selected only by disease pathology and not by any other factors. Further
separation of disease groups into subgroups considering age and gender was not performed due to limited numbers of
available samples (e.g. since some diseases are more prevalent in males, some more in females). Variability in the data may
be associated with differences in covariates or could be due to differences in tissue quality. However, consistent data across
different diseases when compared to healthy patients indicates that this did not impact our study.

Ethics oversight The study was approved by the ethics committee of Northwest and Central Switzerland (EKNZ) as part of the EKNZ (former
EKBB:361/12).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z| All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Liver cells were isolated by standard two-step collagenase perfusion as described previously. The liver was perfused with
perfusion medium using a peristaltic pump. Then, the liver was next perfused with medium containing collagenase type |
(150U/ml; Invitrogen) for 10 min to adequately digest the liver. After removing the gallbladder, the liver was dissected with
cold re-suspension buffer (0.5% BSA and 2mM EDTA in PBS) to free the hepatic cells. Then the cell suspension was passed
through a 70 um cell strainer (BD Biosciences, 352350) and centrifuged at 50 g for 3 min at 4°C. The non-parenchymal cells
remained in supernatant were collected and passed through a 40 um cell strainer (BD Biosciences, 352340) then centrifuged
at 400 g for 5 min at 4°C. The cell pellet was re-suspended in red blood cell lysis buffer (eBioscience, 00-4333-57) for 5 min at
room temperature and washed with cold re-suspension buffer and centrifuged at 400 g for 5 min. The washing step was
repeated once again. Subsequently, cells were stained with the positive selection antibody (anti-mouse Epcam-APC,
eBioscience, 17-5791-82) diluted in re-suspension buffer for 30 min in the dark at 4°C. After staining, cells were washed with
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re-suspension buffer and centrifuged at 400 g for 5 min. Epcam+ cells were enriched by using APC microbeads (130-090-855,
Miltnyi Biotec) according to the manufacturer’s protocols.

Instrument Sony MA900 Flow Cytometer.

Software FlowJo software (Tree star).

Cell population abundance About 1X1076 non-parenchymal cells were analysis. BECs comprise about 10% of the single cell suspension.

Gating strategy First, remove small debris in FSC-A verse SSC-A gating. And then doublets were excluded in SSC-A verse SSC-H gating. Dead

cells were excluded on DAPI staining. Then BECs population was collected in gates determined on Epcam antibody staining.
Gating strategies are shown in Extended Data Fig. 4a.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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