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Protein structures can provide invaluable information, both for reasoning about
biological processes and for enabling interventions such as structure-based drug
development or targeted mutagenesis. After decades of effort, 17% of the total
residues in human protein sequences are covered by an experimentally determined
structure’. Here we markedly expand the structural coverage of the proteome by
applying the state-of-the-art machine learning method, AlphaFold?, at ascale that
covers almost the entire human proteome (98.5% of human proteins). The resulting
dataset covers 58% of residues with a confident prediction, of which asubset (36% of
all residues) have very high confidence. We introduce several metrics developed by
building on the AlphaFold model and use them to interpret the dataset, identifying
strong multi-domain predictions as well as regions that are likely to be disordered.
Finally, we provide some case studies toillustrate how high-quality predictions could
be used to generate biological hypotheses. We are making our predictions freely
available to the community and anticipate that routine large-scale and high-accuracy
structure prediction willbecome animportant tool that will allow new questions to be
addressed from a structural perspective.

The monumental success of the human genome project revealed new
worlds of protein-coding genes, and many researchers set out to map
these proteins to their structures®*. Thanks to the efforts of individual
laboratories and dedicated structural genomicsinitiatives, more than
50,000 human protein structures have now been deposited, making
Homo sapiens by far the best represented species in the Protein Data
Bank (PDB)°. Despite this intensive study, only 35% of human proteins
map to a PDB entry, and in many cases the structure covers only a
fragment of the sequence®. Experimental structure determination
requires overcoming many time-consuming hurdles: the protein must
be producedinsufficient quantities and purified, appropriate sample
preparation conditions chosen and high-quality datasets collected. A
target may proveintractable atany stage, and depending on the chosen
method, properties such as protein size, the presence of transmem-
braneregions, presence of disorder or susceptibility to conformational
change can be a hindrance”®. As such, full structural coverage of the
proteome remains an outstanding challenge.

Protein structure prediction contributes to closing this gap by pro-
viding actionable structural hypotheses quickly and at scale. Previ-
ous large-scale structure prediction studies have addressed protein
families® ', specific functional classes, domains identified within
whole proteomes® and, in some cases, full chains or complexes'”. In

particular, projects such as the SWISS-MODEL Repository, Genome3D
and ModBase have made valuable contributions by providing access
to large numbers of structures and encouraging their free use by the
community”*, Related protein bioinformatics fields have developed
alongside structure prediction, including protein design?°%, function
annotation??, disorder prediction®, and domain identification and
classification®?%, Although some of our analyses are inspired by these
previous studies, here we focus mainly on structural investigations for
which scale and accuracy are particularly beneficial.

Structure prediction has seen substantial progress in recent years,
as evidenced by the results of the biennial Critical Assessment of pro-
tein Structure Prediction (CASP)?**°. In particular, the latest version of
AlphaFold was entered in CASP14 under the team name ‘AlphaFold2’.
This systemused acompletely different model from our CASP13 entry™,
and demonstrated a considerableimprovement over previous methods
in terms of providing routinely high accuracy®**°. Backbone predic-
tions with sub-Angstrom root mean square deviation (Cot r.m.s.d.)
are now common, and side chains are increasingly accurate?. Good
results can often be achieved even for challenging proteins without a
template structureinthe PDB, or with relatively few related sequences
tobuild a multiple sequence alignment (MSA)?. These improvements
areimportant, because more accurate models permit awider range of
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Fig.1|Model confidence and added coverage. a, Correlationbetween
per-residue pLDDT and IDDT-Ca. Dataare based ona held-out set of recent PDB
chains (Methods) filtered to those with areported resolution of <3.5 A
(n=10,215chainsand 2,756,569 residues). The scatterplot shows asubsample
(1% of residues), with the blue line showing aleast-squares linear fit and the
shaded regiona95% confidenceinterval estimated with1,000 bootstrap
samples. Theblack lineshows x=y, for comparison. The smaller plotisa
magnified region of the larger one. On the full dataset, the Pearson’sr=0.73
and theleast-squareslinear fitis y=(0.967 + 0.001) xx + (1.9 £ 0.1). b, AlphaFold
predictionand experimental structure fora CASP14 target (PDB: 6YJ1)**. The

applications: not only homology search and putative function assign-
ment, but also molecular replacement and druggable pocket detection,
forinstance®>*.Inlight of this, we applied the current state-of-the-art
method—AlphaFold—to the human proteome. All of our predictions
can be accessed freely at https://alphafold.ebi.ac.uk/, hosted by the
European Bioinformatics Institute.

Model confidence and added coverage

We predicted structures for the UniProt human reference proteome
(onerepresentative sequence per gene), with an upper length limit of
2,700 residues®. The final dataset covers 98.5% of human proteins with
afull chain prediction.

For theresulting predictions to be practically useful, they must come
with awell-calibrated and sequence-resolved confidence measure. The
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predictionis coloured by model confidence band, and the N terminusisan
expression tagincludedin CASP but unresolvedin the PDBstructure.

¢, AlphaFold model confidence onall residues for which a prediction was
produced (n=10,537,122residues). Residues covered by atemplate at the
specifiedidentity level are shownin alighter colour and aheavy dashedline
separatesthese fromresidues without atemplate.d, Added residue-level
coverage of the proteome for high-level GO terms, on top of residues covered
by atemplate with sequence identity of more than 50%. Based on the same
human proteome datasetasinc(n=10,537,122 residues).

latter point is particularly important when predicting full chains, as
we expect to see high confidence on domains but low confidence on
linkers and unstructured regions (Extended Data Fig. 1). To this end,
AlphaFold produces a per-residue confidence metric called predicted
local distance difference test (pLDDT) onascale from 0 to100. pLDDT
estimates how well the prediction would agree with an experimental
structure based on the local distance difference test Ca (IDDT-Cx)*.
It has been shown to be well-calibrated (Fig. 1a, Extended Data Fig. 2
and Extended Data Table 1) and full details on how the pLDDT is pro-
duced are givenin the supplementary information of the companion
AlphaFold paper?.

We consider a prediction highly accurate when—in additionto a
good backbone prediction—the side chains are frequently correctly
oriented. On this basis, pLDDT > 90 is taken as the high accuracy cut-off,
above which AlphaFold y; rotamers are 80% correct for arecent PDB
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Fig.2|Full chainstructure prediction.a, TM-score distribution for AlphaFold
evaluated onaheld-out set of template-filtered, long PDB chains (n=151
chains). Includes recent PDB proteins with more than 800 resolved residues
and best50% coverage template below 30% identity. b, Correlation between
full chain TM-score and pTM on the same set (n=151chains), Pearson’s r=0.84.
Theground truthand predicted structure are shown for the most
over-optimistic outlier (PDB: 60FS, chain A). ¢, pTM distribution on a subset of
the human proteome that we expect to be enriched for structurally novel

test dataset (Extended Data Fig. 3). A lower cut-off of pLDDT > 70 cor-
responds to a generally correct backbone prediction (Extended Data
Table 2). The accuracy of AlphaFold within anumber of pLDDT bands
isillustrated for an example protein in Fig. 1b.

Ofthe human proteome, 35.7% of total residues fall within the high-
est accuracy band (corresponding to 38.6% of residues for which a
prediction was produced) (Fig. 1c). This is double the number of resi-
dues covered by anexperimental structure. Intotal, 58.0% of residues
were predicted confidently (pLDDT >70), indicating that we also add
substantial coverage for sequences without a good template in PDB
(withasequenceidentity below 30%). At the per-protein level, 43.8% of
proteins have aconfident prediction on atleast three quarters of their
sequence, while 1,290 proteins contain a substantial region (more than
200 residues) with pLDDT =70 and no good template.

The dataset adds high-quality structural models across a broad
range of Gene Ontology (GO) terms®*?¥, including pharmaceutically
relevant classes such as enzymes and membrane proteins® (Fig. 1d).
Membrane proteins, in particular, are generally underrepresented in the
PDBbecause they have historically been challenging experimental tar-
gets. This shows that AlphaFold is able to produce confident predictions
even for protein classes that are not abundant within its training set.
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multidomain proteins (n=1,165 chains). Human proteome predictions
comprisemorethan 600 confident residues (more than 50% coverage) and no
proteins with 50% coverage templates. d, Four of the top hits from the set
showninc, filteringby pTM > 0.8 and sorting by number of confident residues.
Proteins are labelled by their UniProt accession. For clarity, regions with
pLDDT <50 are hidden, asareisolated smaller regions that were left after this
cropping.

We note that the accuracy of AlphaFold was validated in CASP14?,
whichfocuses on challenging proteins that are dissimilar to structures
already available in the PDB. By contrast, many human proteins have
templates with high sequence identity. To evaluate the applicability
of AlphaFold to this collection, we predicted structures for 1 year of
targets from the Continuous Automated Model Evaluation (CAMEO)
benchmark***°—a structure-prediction assessment that measures a
wider range of difficulties. We find that AlphaFold adds substantial
accuracy over the BestSingleStructuralTemplate baseline of CAMEO
across a wide range of levels of template identity (Extended Data
Fig. 4).

Prediction of full-length protein chains

Many previous large-scale structure prediction efforts have focused on
domains—regions of the sequence that fold independently® ', Here
we process full-length protein chains. There are several motivations for
this. Restricting the prediction to pre-identified domains risks miss-
ing structured regions that have yet to be annotated. It also discards
contextual information fromthe rest of the sequence, which might be
useful in cases in which two or more domains interact substantially.
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binding pocket for DGAT2, whichis involved in body-fat synthesis. Red and
greenspheres represent the ligandability scores by P2Rank of 1and O,
respectively. Middle, a proposed mechanism for DGAT1% activates the
substrate with Glu416 and His415, which have analogous residues in the DGAT2

Finally, the full chainapproachlets the model attempt aninter-domain
packing prediction.

Inter-domainaccuracy was assessed at CASP14, and AlphaFold out-
performed other methods*. However, the assessment wasbasedona
small target set. To further evaluate AlphaFold on long multi-domain
proteins, we compiled a test dataset of recent PDB chains that were
not in the training set of the model. Only chains with more than 800
resolved residues were included, and a template filter was applied
(Methods). Performance on this set was evaluated using the template
modelling score (TM-score*?), which should better reflect global, as
opposed to per-domain, accuracy. The results were encouraging, with
70% of predictions having a TM-score > 0.7 (Fig. 2a).

The supplementary information of the companion AlphaFold paper?
describes how a variety of useful predictors can be built on top of the
main model. In particular, we can predict the residues that are likely
to be experimentally resolved, and use them to produce a predicted
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pocket. The docked inhibitoris well placed for polar interactions with His163
and Thr194 (right). The chemical structure (middle) is adapted fromref. %',
c,Predicted structure of wolframin, mutations in which cause Wolfram
syndrome. Although there are regions in wolframin with low pLDDT (left), we
couldidentify an OB-fold region (green/yellow), withacomparable coretoa
prototypical OB-fold (grey; middle). However, the most similar PDB chain
(magenta; right) lacks the conserved cysteine-rich region (yellow) of our
prediction. This region forms the characteristic 1strand and an extended L12
loop, and is predicted to contain three disulfide bridges (yellow mesh).

TM-score (pTM), in which the contribution of each residue is weighted
by the probability of it being resolved (Supplementary Methods 1).
The motivation for the weighting is to downweight unstructured
parts of the prediction, producing a metric that better reflects the
confidence of the model about the packing of the structured domains
thatare present. Onthe same recent PDB test dataset, pTM correlates
well with the actual TM-score (Pearson’s r = 0.84) (Fig. 2b). Notably,
although some outliers in this plot are genuine failure cases, others
appear to be plausible alternate conformations (for example, 60FS
chain A®inFig.2b).

We computed pTM scores for the human proteome, in an effort to
identify multi-domain predictions that could feature novel domain
packings. The criteria applied were a pLDDT > 70 on at least 600 resi-
dues constituting over half the sequence, with no template hit cover-
ing more than half the sequence. The distribution of pTM scores after
applying the above filters is shown in Fig. 2c. Note that we would not
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residues). b, Performance of pLDDT and the experimentally resolved head of
AlphaFold as disorder predictors on the CAID Disprot-PDB benchmark dataset
(n=178,124 residues). c, An example low-confidence prediction aligned to the
corresponding PDB submission (7KPX chain C)**. The globular domainiis

expect uniformly high TM-scores to be achievable for this set, as some
proteins will contain domains that are mobile relative to each other,
with no fixed packing. Of the set, 187 proteins have pTM > 0.8 and 343
have pTM > 0.7. Although we expect the inter-domain accuracy of
AlphaFold to belower thanits within-domain accuracy, this set should
nonetheless be enriched for interesting multi-domain predictions,
suggesting that the dataset provides on the order of hundreds of these.
Four examples—the predictions with the highest number of confident
residues subject to pTM > 0.8—are shown in Fig. 2d.

Highlighted predictions

We next discuss some case study predictions and the insights that they
may provide. All predictions presented are de novo, lacking any tem-
plate with25% sequence identity or more covering 20% of the sequence.
Our discussion concerns biological hypotheses, which would ultimately
need to be confirmed by experimental studies.
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recent PDB dataset, restricted to proteins with fewer than40% of residues with
templateidentity above 30% (n=3,007 chains) (Methods). The ratio of
heterotypic contactsis defined as: heterotypic/(intra-chain + homomeric +
heterotypic).

Glucose-6-phosphatase

Gé6Pase-a (UniProt P35575) isamembrane-bound enzyme that catalyses
thefinal stepinglucose synthesis; it is therefore of criticalimportance
to maintaining blood sugar levels. To our knowledge, no experimental
structure exists, but previous studies have attempted to characterize
the transmembrane topology** and active site*. Our prediction has
very high confidence (median pLDDT of 95.5) and gives a nine-helix
topology with the putative active site accessible via an entry tunnel
thatis roughly in line with the surface of the endoplasmic reticulum
(Fig.3aand Supplementary Video 1). Positively charged residuesin our
prediction (median pLDDT of 96.6) align closely with the previously
identified active sitehomologueinafungal vanadium chloroperoxidase
(PDB1IDQ; r.m.s.d. of 0.56 A; 49 out of 51 aligned atoms)*°. As these
enzymes have distinct functions, we investigated our prediction for
clues about substrate specificity. Inthe G6Pase-a binding pocket face,
opposite the residues shared with the chloroperoxidase, we predict
a conserved glutamate (Glul10) that is also present in our G6Pase-f3



prediction (Glul05) but notin the chloroperoxidase (Fig. 3a). The glu-
tamate could stabilize the binding pocket in a closed conformation,
formingsalt bridges with positively charged residuesthere. Itis also the
most solvent-exposed residue of the putative active site, suggesting a
possible gating function. To our knowledge, this residue has not been
discussed previously and illustrates the novel mechanistic hypotheses
that can be obtained from high-quality structure predictions.

Diacylglycerol O-acyltransferase 2

Triacylglycerol synthesis is responsible for storing excess metabolic
energy as fat in adipose tissue. DGAT2 (UniProt Q96PD7) is one of
two essential acyltransferases catalysing the final acyl addition in
this pathway, and inhibiting DGAT2 has been shown to improve liver
functionin mouse models of liver disease*. With our highly confident
predicted structure (median pLDDT of 95.9), we set out to identify
the binding pocket for a known inhibitor, PF-06424439 (ref. *5). We
identified a pocket (median pLDDT of 93.7) in which we were able to
docktheinhibitor and observe specificinteractions (Fig. 3b) that were
not recapitulated in a negative example*® (Extended Data Fig. 5 and
Supplementary Methods 2). DGAT2 has an evolutionarily divergent
but biochemically similar analogue, diacylglycerol O-acyltransferase
1(DGAT1)*°, Within the binding pocket of DGAT2, we identified residues
(Glu243 and His163) (Fig. 3b) that are analogous to the proposed cata-
lytic residues in DGAT1 (His415 and Glu416)*, although we note that
the nearby Ser244 in DGAT2 may present an alternative mechanism
throughanacyl-enzyme intermediate. Previous experimental research
with DGAT2 has shown that mutating His163 has a stronger deleterious
effect than mutating a histidine that is two residues away*>. Addition-
ally, Glu243 and His163 are conserved across species®®, supporting this
hypothesized catalytic geometry.

Wolframin

Wolframin (UniProt 076024) is a transmembrane protein localized
to the endoplasmic reticulum. Mutations in the WFSI gene are asso-
ciated with Wolfram syndrome 1, a neurodegenerative disease char-
acterized by early onset diabetes, gradual visual and hearing loss,
and early death®*, Given the lower confidence in our full prediction
(median pLDDT of 81.7) (Fig. 3c), we proposed identifying regions that
areuniquetothis structure. Arecent evolutionary analysis suggested
domains for wolframin, which our prediction largely supports™. An
interesting distinction is the incorporation of a cysteine-rich domain
(Fig.3c, yellow) to the oligonucleotide binding (OB) fold (Fig. 3¢, green
and yellow) as the characteristic Bl strand®. The cysteine-rich region
thenforms an extended L12 loop with two predicted disulfide bridges,
beforeloopingback to the prototypical B2 strand. Comparing our pre-
diction for this region (median pLDDT of 86.0) to existing PDB chains
using TM-align*>* identified 3F1Z°® as the most similar known chain
(TM-score of 0.472) (Fig. 3¢, magenta). Despite being the most similar
chain, 3F1Z lacks the cysteines that are present in wolframin, which
could form disulfide cross-links in the endoplasmic reticulum®. As
thisregionis hypothesized to recruit other proteins®, these structural
insights are probably important to understanding its partners.

Regions without a confident prediction

Aswe are applying AlphaFold to the entire human proteome, we would
expectaconsiderable percentage of residues to be containedin regions
thatare always or sometimes disordered in solution. Disorder is com-
mon in the proteomes of eukaryotes®®®!, and one previous study®
estimated that the percentage of disordered residues in the human
proteomeisbetween 37% and 50%. Thus disorder will have alarge role
when we consider a comprehensive set of predictions that covers an
entire proteome.

Furthermore, we observed a large difference in the pLDDT distri-
bution between resolved and unresolved residues in PDB sequences

(Fig. 4a). Toinvestigate this connection, we evaluated pLDDT as a dis-
order predictor onthe Critical Assessment of protein Intrinsic Disorder
prediction (CAID) benchmark dataset®. The results showed pLDDT to
beacompetitive disorder predictor compared with the current state of
theart (SPOT-Disorder2®), withanarea under the curve (AUC) 0f 0.897
(Fig.4b). Moreover, the supplementary information of the companion
AlphaFold paper? describes an ‘experimentally resolved head’, which
is specifically trained for the task of predicting whether a residue will
beresolvedinanexperimental structure. The experimentally resolved
head performed even better on the CAID benchmark, with an AUC of
0.921.

These disorder prediction results suggest that a considerable per-
centage of low-confidence residues may be explained by some form
of disorder, but we caution that this could encompass both regions
thatareintrinsically disordered and regions thatare structured only in
complex. A potential example of the latter scenario drawn fromarecent
PDB structureis showninFig.4c; chain Cinteracts extensively with the
rest of the complex, such that the interface region would be unlikely
to adopt the same structure outside of this context. In a systematic
analysis of recent PDB chains, we observed that AlphaFold has much
lower accuracy for regions in which the chain has a high percentage of
heterotypic, cross-chain contacts (Fig. 4d).

Insummary, our current interpretation of regionsin which AlphaFold
exhibits low pLDDT is that they have high likelihood of being unstruc-
turedinisolation. Inthe current dataset, long regions with pLDDT <50
adoptareadilyidentifiable ribbon-like appearance, and should notbe
interpreted as structures but rather as a prediction of disorder.

Discussion

Inthis study, we generated comprehensive, state-of-the-art structure
predictions for the human proteome. The resulting dataset makes a
large contribution to the structural coverage of the proteome; particu-
larly for tasksinwhich highaccuracyisadvantageous, such as molecular
replacement or the characterization of binding sites. We also applied
several metrics produced by building on the AlphaFold architecture—
pLDDT, pTM and the experimentally resolved head—to demonstrate
how they can be used to interpret our predictions.

Although we present several case studies to illustrate the type of
insights that may be gained from these data, we recognize that there
is still much more to uncover. By making our predictions available to
the community via https://alphafold.ebi.ac.uk/, we hope to enable
exploration of new directions in structural bioinformatics.

The parts of the human proteome that are still without a confident
predictionrepresent directions for future research. Some proportion
of these will be genuine failures, in which a fixed structure exists but
the current version of AlphaFold does not predict it. In many other
cases, inwhich thesequenceis unstructuredinisolation, the problem
arguably falls outside the scope of single-chain structure prediction. It
will be crucial to develop new methods that can address the biology of
theseregions—for example, by predicting the structure in complex or
by predicting adistribution over possible statesin the cellular milieu.

Finally, we note that the importance of the human proteome for
healthand medicine hasled toit beingintensively studied fromastruc-
tural perspective. Other organisms are much less well represented
in the PDB, including biologically important, medically relevant or
economically important species. Structure prediction may have a
more profound effect on the study of these organisms, for which fewer
experimental structures are available. Looking beyond the proteome
scale, the UniProt database contains hundreds of millions of proteins
that have so far been addressed mainly by sequence-based methods,
and for which the easy availability of structures could open up entirely
new avenues of investigation. By providing scalable structure predic-
tion with very high accuracy, AlphaFold could enable an exciting shift
towards structural bioinformatics, further illuminating protein space.
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Methods

Structure prediction (human proteome)

Sequences for the human reference proteome were obtained from
UniProt release 2021_02°. Structure prediction was attempted for all
sequences with 16-2,700 amino acids; sequences with residue codes
B,J, 0, U, Z or X were excluded. The length ceiling of 2,700 residues
does not represent an absolute limit for the method, but was chosen
to keep run times manageable. The structure prediction process was
largely as described in the AlphaFold paper?, consisting of five steps:
MSA construction, template search, inference with five models, model
ranking based on mean pLDDT and constrained relaxation of the pre-
dicted structures. The following differences were introduced for the
proteome-scale pipeline. First, the search against the metagenom-
ics database Big Fantastic Database (BFD) was replaced with a search
against ‘Reduced BFD’ using Jackhmmer from HMMER3%, Reduced
BFD consists of amultiline FASTA file containing the first non-consensus
sequence from each BFD a3m alignment. Second, the amount of ensem-
bling was reduced by a factor of eight. At least four relaxed full chain
models were successfully produced for 20,296 sequences out of 20,614
FASTA entries, covering 98.5% of proteins. Sequences with more than
2,700 residues account for the majority of exclusions. This amounts
t010,537,122 residues (92.5% of residues).

Structure prediction (recent PDB dataset)

For structure predictions of recent PDB sequences, we used a copy of
the PDB downloaded on 15 February 2021. Structures were filtered to
those with arelease date after 30 April 2018 (the date limit for inclu-
sionin the training set). Chains were then further filtered to remove
sequences that consisted of a single amino acid, sequences with an
ambiguous chemical component at any residue position and sequences
withouta PDB 40% sequence clustering. Exact duplicates were removed
by choosingthe chainwith the most resolved Caatoms asthe represent-
ative sequence. Then, structures with fewer than16 resolved residues,
with unknown residues and structures solved by NMR methods were
filtered out. Structure prediction then followed the same procedure
as for the human proteome with the same length and residue limits,
except that templates with arelease date after 30 April 2018 were dis-
allowed. Finally, the dataset was redundancy reduced, by taking the
chain with the best non-zero resolution from each cluster in the PDB
40% sequence clustering, producing a dataset of 12,494 chains. This
isreferred to as the recent PDB dataset.

Computational resources

Inference was runon V100 graphics processing units (GPUs), with each
sequenceinferenced five timesto produce five inputs to model selec-
tion. To prevent out-of-memory errors, long sequences were assigned
to multi-GPU workers. Specifically, sequences of length 1,401-2,000
residues were processed by workers with two GPUs, and those of length
2,001-2,700 residues by workers with four GPUs (further details of
unified memory on longer proteins are provided in the companion
paper?; it is possible higher memory workers could be used without
additional GPUs).

Thetotal resources used for inference were logged and amounted to
930 GPU days. This accounts for generating five models per protein;
around 190 GPU days would be sufficient to inference each protein
once. Long sequences had a disproportionate effect owing to the
multi-GPU workers described above. Approximately 250 GPU days
would have been sufficient to produce five models for all proteins
shorterthan1,400residues. For reference, Extended DataFig. 6 shows
the relationship between sequence length and inference time.

Allother stages of the pipeline (MSA search, template search and con-
strained relaxation) ranon the central processing unit (CPU) and used
standard tools. Our human proteome run made use of some cached
intermediates (for example, stored MSA search results). However, we

estimate the total cost of running these stages from scratch at 510 core
days. This estimate is based on taking asample 0of 240 human proteins
stratified by length, timing each stage when run with empty caches,
fitting a quadratic relationship between sequence length and run
time, then applying that relationship to the sequences in the human
proteome. Extended Data Figure 7 shows the data used to make this
estimate.

Template coverage

Exceptwhere otherwise noted, template coverage was estimated ona
per-residue basis as follows. Hmmsearch was run against a copy of the
PDB SEQRES (downloaded on 15 February 2021) using default flags®”.
The prior template coverage at residue i is the maximum percentage
sequence identity of all hits covering residue i, regardless of whether
the hitresidueis experimentally resolved. For the recent PDB analysis,
only template hits corresponding to astructure released before 30 April
2018 were accepted.

In the section on full chain prediction, template filtering is based
on the highest sequence identity of any single Hmmsearch hit with
more than 50% coverage. This is because high-coverage templates are
particularly relevant when considering whether a predicted domain
packingis novel.

GO termbreakdown

GO annotations were taken from the XML metadata for the UniProt
humanreference proteome and were matched to the Gene Ontology in
obo format®**, One erroneousis_arelationship was manually removed
(GO:0071702is_a GO:0006820, see change log https://www.ebi.ac.uk/
QuickGO/term/G0:0071702). The ontology file was used to propagate
the GO annotations using is_a and part_of relations to assign parent-
child relationships, and accounting for alternative IDs.

GO terms were then filtered to a manageable number for display,
first by filtering for terms with more than 3,000 annotations, and from
those selecting only moderately specific terms (a term cannot have a
child with more than 3,000 annotations). The remaining terms in the
‘molecular function’ and ‘cellular component’ ontologies are shown
inFig.1d.

Structure analysis

Structure images were created in PyMOL®’, and PyMOL align was used
to compute r.m.s.d.s (outlier rejection is described in the text where
applicable).

For docking against DGAT2, P2Rank® was used to identify
ligand-binding pockets in the AlphaFold structure. AutoDockTools™
was used to convert the AlphaFold prediction to PDBQT format. For
theligands, DGAT2-specificinhibitor (CAS number 1469284-79-4) and
DGATI-specificinhibitor (CAS number 942999-61-3) were also prepared
in PDBQT format using AutoDockTools. AutoDock Vina” was run with
an exhaustiveness parameter of 32, a seed of 0 and a docking search
space of 25 x 25 x 25 A% centred at the point identified by P2Rank.

For identifying the most similar structure to wolframin, TM-align*
was used to compare against all PDB chains (downloaded 15 February
2021) with our prediction as the reference. This returned 3F1Z with a
TM-score of 0.472.

Additional metrics

Theimplementation of pTMis described in supplementary information
section 1.9.7 of the companion AlphaFold paper?and the implementa-
tion of the experimentally resolved head is described in supplementary
information section 1.9.10 of the companion AlphaFold paper?. The
weighted version of pTMis described in Supplementary Methods 1.

Analysis of low-confidence regions
For evaluation on CAID, the target sequences and ground-truth labels
for the Disprot-PDB dataset were downloaded from https://idpcentral.
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org/. Structure prediction was performed as described above for the
recent PDB dataset, with atemplate cut-off of 30 April 2018. To enable
complete coverage, two sequences containing non-standard residues
(X,U) had theseremapped to G (glycine).Sequenceslonger than2,000
residues were splitinto two segments:1-2,000 and 2,000-end, and the
pLDDT and experimentally resolved head arrays were concatenated
for evaluation. The two evaluated disorder predictors were taken to
be1-0.01x pLDDT and1- predicted resolvability for Ca atoms.

To obtain the ratio of heterotypic contacts to all contacts (Fig. 4d),
two residues are considered in contact if their Cp atoms (or Ca for
glycine) are within 8 A and if they are separated in primary sequence
by atleast three other residues (to exclude contacts within an a-helix).
Heteromers areidentified as protein entities with a different entity_id
in the structure mmCIF file.

Comparison with BestSingleStructuralTemplate

CAMEO datafor the period 21 March 2020 to 13 March 2021 were down-
loaded from the CAMEO website. AlphaFold predictions were produced
for all sequences in the target.fastafiles, using the same procedure
detailed above but with a maximum template date of 1March 2020. Pre-
dictions were scored against the CAMEO ground truth using IDDT-Ca.
For BestSingleStructuralTemplate, IDDT-Ca scores were taken from the
CAMEO JavaScript Object Notation (JSON) files provided. Structures
solved by solution NMR and solid-state NMR were filtered out at the
analysis stage. To determine the template identity, templates were
drawn froma copy of the PDB downloaded on 15 February 2021 witha
template search performed using Hmmsearch. Templates were filtered
tothose with atleast 70% coverage of the sequence and arelease date
before the query. The template with the highest e-value after filter-
ing was used to compute the template identity. Targets were binned
according to template identity, with width 10 bins ranging from 30 to
90.Extended Data Figure 4 shows the distribution of IDDT-Ca for each
modelwithineach binasabox plot (horizontal line at the median, box
spanning from the lower to the upper quartile, whiskers extending to
the minimum and maximum. In total 428 targets were included in the
analysis.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Structure predictions by AlphaFold for the human proteome are avail-
ableundera CC-BY-4.0 license at https://alphafold.ebi.ac.uk/. Allinput
data are freely available from public sources. The human reference
proteome together with its XML annotations was obtained from Uni-
Prot v.2021_02 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previ-
ous_releases/release-2021_02/knowledgebase/). At prediction time,
MSA search was performed against UniRef90 v.2020_03 (https://ftp.
ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2020_03/
uniref/), MGnify clusters v.2018_12 (https://ftp.ebi.ac.uk/pub/data-
bases/metagenomics/peptide_database/2018_12/) and a reduced
version of BFD (produced as outlined in the Methods using the BFD
(https://bfd.mmseqs.com/)). Template structures, the SEQRES fasta
file and the 40% sequence clustering were taken from a copy of the
PDB downloaded on 15 February 2021 (https://www.wwpdb.org/ftp/
pdb-ftp-sites; see also https://ftp.wwpdb.org/pub/pdb/derived_data/
and https://cdn.rcsb.org/resources/sequence/clusters/bc-40.out for
sequence data). Experimental structures were drawn from the same
copy of the PDB; we show structures with accessions 6YJ1¢, 60FS*,
1IDQ*, 1PRT?, 3F1Z°8, 7KPX® and 6VPO®". The template search used
PDB70, downloaded on 10 February 2021 (http://wwwuser.gwdg.
de/~compbiol/data/hhsuite/databases/hhsuite_dbs/). The CAID
dataset was downloaded from https://idpcentral.org/caid/data/1/

reference/disprot-disorder-pdb-atleast.txt. CAMEO data was accessed
on 17 March 2021 at https://www.cameo3d.org/static/downloads/
modeling/1-year/raw_targets-1-year.public.tar.gz. A copy of the cur-
rent Gene Ontology database was downloaded on 29 April 2021 from
http://current.geneontology.org/ontology/go.obo. Source data are
provided with this paper.

Code availability

Source code for the AlphaFold model, trained weights and aninference
script are available under an open-source license at https://github.
com/deepmind/alphafold. Neural networks were developed with Ten-
sorFlow v.1 (https://github.com/tensorflow/tensorflow), Sonnet v.1
(https://github.com/deepmind/sonnet), JAX v.0.1.69 (https://github.
com/google/jax/) and Haiku v.0.0.4 (https://github.com/deepmind/
dm-haiku).

For MSA search on UniRef90, MGnify clusters and the reduced BFD,
we used jackhmmer and for the template search on the PDB SEQRES
we used hmmsearch, both from HMMER v.3.3 (http://eddylab.org/
software/hmmer/). For the template search against PDB70, we used
HHsearch from HH-suite v.3.0-beta.314/07/2017 (https://github.com/
soedinglab/hh-suite). For constrained relaxation of structures, we
used OpenMM v.7.3.1 (https://github.com/openmm/openmm) with
the Amber99sb force field.

Docking analysis on DGAT used P2Rank v.2.1 (https://github.com/
rdk/p2rank), MGLTools v.1.5.6 (https://ccsb.scripps.edu/mgltools/) and
AutoDockVinav.1.1.2 (http://vina.scripps.edu/download/) on a work-
station running Debian GNU/Linux rodete 5.10.40-1rodetel-amd64
x86_64.

Data analysis used Python v.3.6 (https://www.python.org/), NumPy
v.1.16.4 (https://github.com/numpy/numpy), SciPy v.1.2.1 (https://www.
scipy.org/), seabornv.0.11.1 (https://github.com/mwaskom/seaborn),
scikit-learn v.0.24.0 (https://github.com/scikit-learn/), Matplotlib
v.3.3.4 (https://github.com/matplotlib/matplotlib), pandas v.1.1.5
(https://github.com/pandas-dev/pandas) and Colab (https://research.
google.com/colaboratory). TM-align v.20190822 (https://zhanglab.
dcmb.med.umich.edu/TM-align) was used for computing TM-scores.
Structure analysis used Pymol v.2.3.0 (https://github.com/schrodinger/
pymol-open-source).
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Extended DataFig.1| Example full chain outputs containingboth high-and  disordered outside the experimentally determined regions by MobiDB.
low-confidenceregions. Q06787 (synaptic functional regulator FMR1) and Q92664 (transcription factor I11A) hasbeen described as ‘beadson astring’,
P54725 (UV excision repair protein RAD23 homologue A) are predicted to be consisting of zinc-finger domains joined by flexible linkers™.
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Extended DataFig.2|Distribution of per-residue IDDT-Ca within eight
pLDDT bins. Thisrepresents an alternative visualization to Fig. 1a that does
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Extended DataFig.5|Docking poses foraDGAT1-specificinhibitorin binding pocket for the DGAT2-specific inhibitor, but does not contain
DGAT?2. a, Top binding pose from Autodock Vina for aDGAT1-specificinhibitor =~ components that satisfy the polar side chains His163 and Thr194. c, Relative
in DGAT2, which does not match the predicted binding pocket for a positions of both binding poses.

DGAT2-specificinhibitor. b, Next best binding pose, which matches the
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Extended Data Table 1| IDDT-Ca distribution in various
pLDDT bins

IDDT-Ca

Mean Median Q1 Q3 IQR <lower bin edge -5

pLDDT in (50-70] 62.5 63.8 486 77.8 29.2

20%
pLDDTin (70-90] 82.3 865 76.1 929 16.7 12%
pLDDT in (90-100] 95.0 974 938 993 5.6 7%

Data are based on the per-residue LDDT-Ca and per-residue pLDDT of resolved regions. This
table uses the recent PDB dataset (Methods), which is restricted to structures with a reported
resolution of <3.5 A. The total number of chains included is 10,215.
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Extended Data Table 2 | Relationship between pLDDT and
TM-score

TM-score

Mean  Median Q1 Q3 IQR =20.5

pLDDT in (50-70] 0.44 0.43 0.29 0.58 0.29 37%
pLDDT in (70-90] 0.75 0.83 0.63 0.92 0.29 86%
pLDDT in (90-100]  0.93 0.97 0.92 0.98 0.06 99%

Binning is based on the mean pLDDT over each chain, weighted by the output of the experi-
mentally resolved head. This table uses the recent PDB dataset (Methods), which restricted to
structures with a reported resolution of <3.5 A. The total number of chains included is 10,215.
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Data collection  Source code for the AlphaFold model, trained weights, and an inference script are available under an open-source license at https://
github.com/deepmind/alphafold. Neural networks were developed with TensorFlow v1 (https://github.com/tensorflow/tensorflow), Sonnet
v1 (https://github.com/deepmind/sonnet), JaX v0.1.69 (https://github.com/google/jax/), and Haiku v0.0.4 (https://github.com/deepmind/dm-
haiku).

For MSA search on UniRef90, MGnify clusters, and reduced BFD we used jackhmmer and for template search on the PDB seqres we used
hmmesearch, both from HMMER v3.3 (http://eddylab.org/software/hmmer/). For template search against PDB70, we used HHsearch from HH-
suite v3.0-beta.3 14/07/2017 (https://github.com/soedinglab/hh-suite). For constrained relaxation of structures, we used OpenMM v7.3.1
(https://github.com/openmm/openmm) with the Amber99sb force field.

Docking analysis on DGAT used P2Rank v2.1 (https://github.com/rdk/p2rank), MGLTools v1.5.6 (https://ccsb.scripps.edu/mgltools/) and
AutoDockVina v1.1.2 (http://vina.scripps.edu/download/) on a workstation running Debian GNU/Linux rodete 5.10.40-1rodetel-amd64
x86_64.

Data analysis Data analysis used Python v3.6 (https://www.python.org/), NumPy v1.16.4 (https://github.com/numpy/numpy), SciPy v1.2.1 (https://
www.scipy.org/), seaborn v0.11.1 (https://github.com/mwaskom/seaborn), scikit-learn v0.24.0 (https://github.com/scikit-learn/), Matplotlib
v3.3.4 (https://github.com/matplotlib/matplotlib), pandas v1.1.5 (https://github.com/pandas-dev/pandas), and Colab (https://
research.google.com/colaboratory). TM-align v20190822 (https://zhanglab.dcmb.med.umich.edu/TM-align) was used for computing TM-
scores. Structure analysis used Pymol v2.3.0 (https://github.com/schrodinger/pymol-open-source).
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

>
Q
—
=
=
D
=
(D
wn
D
Q
=
@)
o
=
D
o
©)
=
=3
2
(@]
w
=
3
Q
=
S




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

AlphaFold structure predictions for the human proteome are available under a CC-BY-4.0 license at https://alphafold.ebi.ac.uk/.

All input data are freely available from public sources. The human reference proteome together with its xml annotations was obtained from UniProt 2021_02
(https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2021_02/knowledgebase/).

At prediction time, MSA search was performed against UniRef90 2020_03 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2020_03/
uniref/), MGnify clusters 2018 _12 (https://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2018_12/), and a reduced version of BFD (produced from
as outlined in the Methods from BFD https://bfd.mmseqgs.com/). Template structures, the SEQRES fasta file, and the 40% sequence clustering were taken from a
copy of the PDB downloaded 15/2/2021 (https://www.wwpdb.org/ftp/pdb-ftp-sites; see also https://ftp.wwpdb.org/pub/pdb/derived_data/ and https://
cdn.resb.org/resources/sequence/clusters/bc-40.out for sequence data). Experimental structures are drawn from the same copy of the PDB; we show structures
with accessions 6YJ1, 60FS, 11DQ, 1PRT, 3F1Z, 7KPX and 6VPO. Template search used PDB70, downloaded 10/02/2021 (http://wwwuser.gwdg.de/~compbiol/data/
hhsuite/databases/hhsuite_dbs/). The CAID dataset was downloaded from (https://idpcentral.org/caid/data/1/reference/disprot-disorder-pdb-atleast.txt). CAMEO
data was accessed 17/03/2021 from (https://www.cameo3d.org/static/downloads/modeling/1-year/raw_targets-1-year.public.tar.gz). A copy of the current Gene
Ontology was downloaded 29/04/2021 from (http://current.geneontology.org/ontology/go.obo).
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