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Abstract 27 

The ciliate Tetrahymena thermophila is a well-established unicellular model 28 

eukaryote, contributing significantly to foundational biological discoveries. 29 

Despite its acknowledged importance, current Tetrahymena biology studies face 30 

challenges due to gene annotation inaccuracy, particularly the notable absence 31 

of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena 32 

macronuclear genome, we collected extensive transcriptomic data spanning 33 

various cell stages. To ascertain transcript orientation and transcription start/end 34 

sites, we incorporated data of epigenetic marks displaying enrichment towards 35 

the 5’ end of gene bodies, including H3 lysine 4 tri-methylation (H3K4me3), 36 

H2A.Z, nucleosomes, and N6-methyldeoxyadenine (6mA). Additionally, we 37 

integrated Nanopore direct sequencing (DRS), strand-specific RNA-seq, and 38 

ATAC-seq data. Using a newly-developed bioinformatic pipeline, coupled with 39 

manual curation and experimental validation, our work yielded substantial 40 

improvements to the current gene models, including the addition of 2,481 new 41 

genes, updates to 6,257 existing genes, and the incorporation of 5,917 42 

alternatively spliced isoforms. Furthermore, novel UTR information was 43 

annotated for 26,223 high-confidence genes. Intriguingly, 16% of protein-coding 44 

genes were identified to have natural antisense transcripts (NATs) characterized 45 

by high diversity in alternative splicing, thus offering insights into understanding 46 

transcriptional regulation. Our work will enhance the utility of Tetrahymena as a 47 

robust genetic toolkit for advancing biological research.  48 

 49 

Keywords: Tetrahymena, genome annotation, untranslated regions (UTRs), 50 

epigenetic information, natural antisense transcript (NATs)  51 
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INTRODUCTION 52 

Tetrahymena thermophila (hereafter referred to as Tetrahymena) is a well-53 

recognized unicellular model eukaryote and serves as a cornerstone for 54 

numerous scientific discoveries [1-11]. Like other ciliates, Tetrahymena maintains 55 

two functionally distinct nuclei, the diploid micronucleus (MIC) containing five 56 

pairs of chromosomes and the polyploid macronucleus (MAC) comprising 181 57 

chromosomes [3, 12-16]. Notably, the MIC remains transcriptionally inactive until 58 

the occurrence of sexual reproduction (conjugation), while the MAC is active 59 

throughout the vegetative stage to meet the cellular demands [17-19]. The MIC 60 

and MAC are generated from the same zygotic nucleus during conjugation [18]. 61 

The first assembly of the Tetrahymena macronuclear genome was reported 62 

in 2006, employing the shotgun sequencing technique [20, 21]. Subsequent 63 

versions were published in 2008 and 2014, through the application of next-64 

generation sequencing [22, 23]. Most recently, the contiguity of the MAC genome 65 

was substantially improved, ultimately leading to a complete assembly, by using 66 

the PacBio Single-Molecule Real-Time (SMRT) sequencing technology [24]. 67 

Along with advancements in genome assembly, multiple efforts were dedicated 68 

to improving gene annotation, using various datasets from complementary DNA 69 

(cDNA) library [20], EST [23], microarray [25], and RNA-seq [26], as well as 70 

manual curations. All these genome assembly and gene annotation data were 71 

deposited in Tetrahymena Genome Database (TGD; Ciliate.org) [22], including 72 

two major updates TGD2014 [23] and TGD2021 [24]. 73 

However, even the most updated gene model (TGD2021) remained 74 

incomplete in several aspects. We found many instances where intron-exon 75 

boundary junctions were not accurate, annotated protein-coding genes were 76 

fusions of two independent transcription units or needed to be fused with others, 77 

or the putative genes were not supported by any RNA-seq reads. In addition, the 78 

annotation of untranslated regions (UTRs) was strikingly lacking. Few UTRs were 79 

included in the original annotation version when microarray was used for genetic 80 

target selection [27]. With the help of Illumina RNA-seq data, the number of 81 

genes with 5’ UTRs and/or 3’ UTRs increased to 6,676 [26]; these UTRs data, 82 

however, were not integrated into subsequent annotation versions. In TGD2014, 83 

only 1,447 genes were annotated with UTRs, representing merely ~5% of all 84 

protein-coding genes [23]. In TGD2021, scarcely any genes were annotated with 85 

UTR information [24].  86 

In order to optimize the Tetrahymena MAC genome annotation, we 87 

generated RNA-seq data from different cell stages, accumulating an ultra-deep 88 
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sequencing dataset to detect low-expression genes and cell stage-specific genes. 89 

Most importantly, we incorporated the distribution information of multiple 90 

epigenetic marks, including the histone modification H3K4me3 [5, 28], the 91 

histone variant H2A.Z [29], nucleosomes [5, 29], and N6-adenine DNA 92 

methylation (6mA) [28-30]. All these marks displayed the preferential 93 

accumulation towards the 5’ end of the gene body, and were thus helpful in 94 

determining the gene orientation and predicting transcription start sites (TSSs). 95 

We also integrated Nanopore direct sequencing (DRS) data, strand-specific 96 

transcriptomic data, and ATAC-seq data. Based on computational prediction, 97 

manual editing, and experimental verification, we have produced a 98 

comprehensive annotation of protein-coding genes in the MAC genome of 99 

Tetrahymena, offering improved precision in intron-exon boundaries, TSS, 100 

transcription end sites (TESs), and UTRs. We also performed a preliminary 101 

analysis of natural antisense transcripts (NATs), which will help to better resolve 102 

the regulation of transcription in Tetrahymena. 103 

 104 

RESULTS & DISCUSSION 105 

Optimize gene model with transcriptomic data 106 

To validate the TGD2021 gene models and identify potential novel genes in the 107 

Tetrahymena MAC genome, we assembled RNA-seq data from different cell 108 

stages, including growth, multiple timepoints during starvation and conjugation 109 

(Additional File 2: Table S1). We initially employed LoReAn2 [31], an integrated 110 

annotation pipeline, to annotate protein-coding genes. The average lengths of 111 

predicted coding regions (3,900 bp vs. 2,452 bp) and intergenic regions (5,550 112 

bp vs. 1,456 bp) were both considerably longer than those in TGD2021 113 

(Additional File 3: Table S2). However, the number of protein-coding genes was 114 

notably lower (15,355 vs. 26,259) and only 8,351 of these genes contained UTR 115 

information. Moreover, these predicted coding regions covered only 37.61% of 116 

the entire genome (38.87 Mb out of 103.34 Mb), much lower than the coverage in 117 

TGD2021 (64.38 Mb, 62.30%) [24]. The incompleteness of the gene annotation 118 

was further manifested by the lower mapping ratio of RNA-seq reads (56.74% vs. 119 

82.07% in TGD2021), suggesting that a large proportion of genes were not 120 

annotated by LoReAn2. Collectively, the unsuccessful annotation by LoReAn2 121 

[31] prompted us to develop a more efficient approach for the de novo annotation 122 

of the Tetrahymena MAC  genome.  123 

Here, we employed a newly developed pipeline (Fig. 1, Additional File 1: Fig. 124 

S1), which enabled us to identify a total of 27,369 gene candidates (draft v1). 125 
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Many gene candidates (17,170 out of 27,369, 63%) shared identical intron-exon 126 

boundary junctions with TGD2021 and were thus temporarily considered well-127 

annotated genes. For the remaining gene candidates, we further optimized their 128 

annotations using full-length transcripts obtained from Nanopore direct RNA 129 

sequencing (DRS), strand-specific RNA-seq (ssRNA-seq), and the most highly 130 

expressed RNA-seq transcripts among all cell stages. 3,408 new genes were 131 

identified, mostly located within intergenic regions as previously defined in 132 

TGD2021 (Fig. 2A, Additional File 1: Fig. S2A). 133 

Most importantly, we optimized gene annotations for a substantial number of 134 

genes (7,817). These optimizations fell into four major classes. 1) Exon-altered 135 

genes: 4,296 genes had altered intron-exon boundaries (Fig. 2B, Additional File 136 

1: Fig. S2B). 2) Fused genes: 2,858 genes were merged accordingly and 137 

annotated as 1,314 genes. These mergers were supported by RNA-seq reads 138 

and DRS reads spanning two neighboring genes (Fig. 2C, Additional File 1: Fig.  139 

S2C). 3) Partitioned genes: 518 genes were separated into 1,036 genes, based 140 

on RNA-seq reads that were interrupted in the middle of these genes, with no 141 

RNA-seq reads spanning the neighboring genes (Fig. 2D, Additional File 1: Fig. 142 

S2D). 4) Orientation-reversed genes: the orientation of 145 single-exon genes 143 

was changed according to the strand-specific reads (Fig. 2E).  144 

1,271 genes in TGD2021 were defined as low-confidence genes (Fig. 2F). 145 

First, there were 86 genes for which no RNA-seq reads were detected among all 146 

our data, suggesting that these genes either have extremely low expression 147 

levels or their expression is highly specific to certain conditions. The prediction of 148 

these genes was more likely attributable to errors in the ab initio annotation, 149 

given the absence of supports from previous datasets, including EST, microarray, 150 

and Illumina RNA-seq data [20, 23, 25, 26]. Second, for 1,185 genes, their 151 

sequenced reads did not align well with the original annotation, especially at 152 

intron-exon boundaries. Despite the presence of RNA seq reads, new transcripts 153 

failed to be assembled owing to its low sequencing depth and occasionally mixed 154 

antisense reads. 155 

At this stage, we identified a total of 28,640 genes (draft v2) (Additional File 156 

1: Fig. S1), encompassing 17,170 well-annotated genes, 3,408 new genes, 4,296 157 

exon-altered genes, 1,314 fused genes, 1,036 partitioned genes, 145 orientation-158 

reversed genes, and 1,271 low-confidence genes.  159 

 160 

Refine gene model using epigenetic marks 161 
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To further enhance the accuracy of gene models optimized by transcriptomic 162 

data, we developed a machine learning algorithm to utilize information from 163 

epigenetic marks (Fig. 1B, 3A). These marks, including H3K4me3, H2A.Z, 6mA, 164 

and nucleosome positioning, all exhibited the preferential enrichment at the 5’ 165 

end of actively transcribed genes [5, 28-30, 32], thus providing valuable guidance 166 

for predicting TSSs. For model training and evaluation, 10,460 long genes (> 1kb) 167 

were selected from a pool of 17,170 well-annotated genes (see more details in 168 

Methods and Materials). Using the trained Random Forest (RF) model (Fig. 3B), 169 

27,840 TSS regions were predicted. 170 

ATAC-seq fragments from the nucleosome-free region (NFR) tended to 171 

enrich on gene promoters around TSS (Additional File 1: Fig. S3A) [33]. From 172 

our ATAC-seq data, we identified 42,469 significant broad peaks at NFR, and the 173 

center of each peak was defined as a candidate TSS. Of these candidate TSSs, 174 

those located within 200 bp of the TSS regions predicted by our RF model were 175 

defined as epigenetic data supported TSSs (eTSSs). Those located within 200 176 

bp of 5’ end of genes, lacking support from our RF model, were defined as 177 

potential TSSs (pTSSs) (Additional File 1: Fig. S3B). 178 

Among 28,640 genes optimized by transcriptomic data (draft v2), 25,617 179 

possessed either eTSS (21,095) or pTSS (4,522) (Additional File 1: Fig. S1). 180 

3,937 genes had multiple eTSSs and they were subsequently subjected to 181 

manual curation (Fig. 5A, B). Interestingly, 885 head-to-head gene pairs (1,670 182 

genes) shared their respective eTSSs, indicating that they utilized a bidirectional 183 

promoter for transcription (Additional File 1: Fig. S3C). We also found 1,752 184 

genes with neither eTSS nor pTSS. These genes were either tandem duplicate 185 

genes (Additional File 1: Fig. S3D) or duplicated genes with multiple short exons 186 

(Additional File 1: Fig. S3E). These duplicated genes were also subsequently 187 

subjected to manual curation (Fig. 5C, D). For the 1,271 low-confidence genes 188 

poorly supported by RNA-seq reads, neither eTSS nor pTSS were found in close 189 

proximity to them (Additional File 1: Fig. S3F), further confirming that they are 190 

either silent genes or error genes [20]. 191 

Based on eTSSs with high confidence, we reexamined the gene model (draft 192 

v2) that has been refined by transcriptomic data (Fig. 1B). 13 genes were 193 

identified as new genes based on the presence of eTSSs (Fig. 3C, Additional File 194 

1: Fig. S4A). These genes were lowly expressed, limited to only one 195 

developmental stage, and were not originally annotated by our pipeline due to 196 

the scarcity of supporting reads in the stage-combined RNA-seq dataset. 197 
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Meanwhile, annotations of multiple genes were optimized based on eTSS, 198 

complemented by transcriptomic data (Fig. 1B). 1) Orientation-reversed genes: 199 

the orientation of 24 single-exon genes was reversed, because their eTSSs were 200 

located within the previously annotated 3’ UTRs (Fig. 3D). Their orientation could 201 

not be determined by ssRNA-seq reads, because they were not expressed 202 

during the growth stage when the ssRNA-seq was conducted. 2) TSS-altered 203 

genes: the TSSs of 65 genes were altered according to the positions of their 204 

eTSSs. The gaps between eTSSs and TSSs predicted by transcriptomic data 205 

were attributed to the limited RNA-seq read coverage. Consequently, their TSSs 206 

were extended to align with eTSSs, supported by limited yet existing RNA-seq 207 

reads (Fig. 3E). 3) Fused genes: 146 genes were merged into 73 genes. These 208 

genes were initially misclassified into two separate genes primarily attributed to 209 

minor gaps between two clusters of RNA-seq reads. However, only one of the 210 

constituent genes contained a well-defined eTSS, while the other lacked any 211 

discernible eTSS or pTSS. The surrounding genes each had respective eTSSs, 212 

thus eliminating their chances to be merged with other genes (Fig. 3F, Additional 213 

File 1: Fig. S4B). 4) Partitioned genes: 67 genes were split into 134 genes. 214 

These genes contained two different eTSSs that were divided into three 215 

subgroups: (a) co-directional, 19 genes had two eTSSs either simultaneously at 216 

the 5’ end and the middle of the previously annotated genes or at the 3' end and 217 

the middle (Fig. 3G, Additional File 1: Fig. S4C), representing two genes 218 

transcribed in the same direction; (b) tail-to-tail, 43 genes had two peaks at both 219 

5’ and 3’ ends, respectively (Fig. 3G, Additional File 1: Fig. S4D), representing 220 

two convergent genes proceeding in opposite directions and towards each other; 221 

and (c) head-to-head, 5 genes had two close yet separated peaks in the middle 222 

of the gene body (Fig. 3G, Additional File 1: Fig. S4E), representing two 223 

divergent genes proceeding in opposite directions and away from each other.  224 

Compared to draft v2, draft v3 (Additional File 1: Fig. S1) contained 13 new 225 

genes and 255 optimized genes including 24 TSS-altered genes, 73 fused genes, 226 

134 partitioned genes, and 24 orientation-reversed genes.  227 

 228 

UTR annotation and regulatory elements analysis 229 

By employing Nanopore DRS data (Additional File 1: Fig. S5A), we identified 230 

TES, defined as the 3’ cleavage/polyadenylation site before the poly-A tail [34] 231 

[35, 36], in 75% (21,660 out of 28,647) genes. 1,915 genes harbored multiple 232 

TESs (Additional File 1: Fig. S5B). For the genes in draft v3 with well-defined 233 

TSS and TES, we predicted coding DNA sequences (CDSs) and open reading 234 
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frames (ORFs) according to the ciliate genetic code [37] for 28,647 genes. 1,153 235 

genes with no predictable ORF were classified as potential non-coding RNA (Fig. 236 

4A). We then defined the regions on both sides of transcripts, excluding the CDS, 237 

as 5’ UTRs and 3’ UTRs respectively (Fig. 1C, Fig. 4A). In total, 25,898 genes 238 

had both 5’ UTRs and 3’ UTRs, 85 genes had only 5’ UTRs, and 240 genes only 239 

had 3’ UTRs. The 1,271 low-confidence genes did not have annotated UTR 240 

information (Fig. 4A). The average lengths of 5’ UTRs and 3’ UTRs were 192.54 241 

bp and 238.61 bp (Fig. 4B), respectively. Moreover, the inclusion of more precise 242 

and reliable UTR information also increased the mapping ratio of RNA-seq reads 243 

(82.07% in TGD2021 vs. 91.87% in the updated gene model). 244 

In the proximal promoter sequences surrounding TSS, we identified several 245 

core promoter motifs that may play a role as cis-elements (Fig. 4C, Additional 246 

File 5: Table S4). They contained key motifs involved in transcription activation, 247 

such as CCAAT box [38], TATA box [39], and CRE (cAMP response element) 248 

(TGACGTCA) [40], and  involved in nucleosome positioning (Reb1: CGGGTAA) 249 

[41, 42].  250 

In metazoans, a predominant polyadenylation signal (PAS) was observed 251 

within the region spanning 0 and 50 bp upstream of the RNA cleavage site [43-252 

45]. In Tetrahymena, PAS also consisted of a primary dominant AATAAA motif, 253 

along with six variant motifs ATTAAA, AATGAA, AATAGA, CATAAA, GATAAA, 254 

and AAAAAG (Fig. 4D) [43]. However, there was a pronounced AT motif in 255 

Tetrahymena (Fig. 4E), in contrast to the CA motif at the cleavage site in 256 

mammals [46]. In metazoans, GT-rich elements (GTGT) were observed both 257 

upstream and downstream of the cleavage site [47]. In Tetrahymena, however, 258 

T-rich sequences were observed within 20 bp downstream and AT-rich beyond 259 

30 bp upstream (Fig. 4E, Additional File 1: Fig. S5C). This suggests that 260 

Tetrahymena may have distinct mRNA cleavage and polyadenylation 261 

mechanisms compared to metazoans. 262 

Additionally, we found that the length of poly-A tails peaked at approximately 263 

18 nt in Tetrahymena, similar to Arabidopsis (~19 nt), soybean (~19 nt), maize 264 

(~18 nt) and rice (~18 nt) [48] (Fig. 4F). When analyzing the longest poly-A 265 

sequences of each gene, it was observed that their poly-A length of genes 266 

exhibited two prominent peaks at 13-30 nt and 95-100 nt, respectively (Fig. 4G). 267 

To investigate whether functional classes of genes are associated with the length 268 

of poly-A tails, we sorted all genes by the length of their longest poly-A tails from 269 

shortest to longest and divided them into three groups: 1) the first 25% of genes, 270 

defined as short-tailed genes, with poly-A lengths ranging from 5-19 nt; 2) the 271 

middle 25%-75% of genes, defined as medium-tailed genes, with poly-A lengths 272 
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between 19-239 nt; and 3) the remaining 25% of genes, defined as long-tailed 273 

genes, with poly-A lengths exceeding 239 nt (Fig. 4H). Gene ontology (GO) 274 

analysis revealed that short-tailed genes were highly enriched in the pathway of 275 

membrane and ion transport, while long-tailed genes were more prominently 276 

enriched in functions related to mitochondria, translation, RNA processing, and 277 

ribosome (Fig. 4H, I, Additional File 6: Table S5). This was in strong contrast to 278 

Caenorhabditis elegans and mammals, wherein short-tailed genes were highly 279 

enriched for genes involved in translation, nucleosome, and ribosome [49].  280 

Additionally, we identified a positive correlation between lengths of gene poly-A 281 

tails and their expression levels (rho =0.72, P <2.2e-16) (Fig. 4J) in Tetrahymena, 282 

suggesting that long poly-A tails stabilize mRNA [50, 51]. This contrasted with the 283 

previous finding in Caenorhabditis elegans, where highly expressed mRNAs 284 

were observed to have shorter poly-A tails, explained by enhanced translation 285 

efficiency and the maintenance of an optimal tail length [49]. No correlation was 286 

observed between gene poly-A length and gene length (rho= -0.089, P <2.2e-16) 287 

(Additional File 1: Fig. S5D). The discrepancy between Tetrahymena and other 288 

eukaryotes suggested functional diversification of poly-A tails across different 289 

species. 290 

In this version of gene models (draft v4) (Additional File 1: Fig. S1), 25,898 291 

genes had both 5’ UTRs and 3’ UTRs, 85 genes had only 5’ UTRs, 240 genes 292 

only had 3’ UTRs, and 1,271 genes had no UTR. 293 

 294 

Manual curation, genome polish, and protein annotation 295 

Subsequently, we performed manual curation in IGV-sRNA [52], conducting two 296 

rounds of evaluations across the 180 non-rDNA chromosomes (Fig. 1D, 5A). 297 

Firstly, we checked the 3,937 genes with multiple eTSSs. Among the 3,935 298 

genes with two eTSSs, 3,908 were capable of transcribing antisense transcripts, 299 

with one eTSS belonging to a protein-coding gene and the other eTSS 300 

corresponding to an antisense transcript (Fig. 5A, 7D-F). The remaining 27 301 

genes contained two eTSSs, with one of them serving as an alternative TSS for 302 

the protein-coding gene (Fig. 5A, B). Additionally, two genes contained three 303 

eTSSs, signifying three alternative TSSs. Secondly, we checked 1,752 304 

duplicated genes with neither eTSS nor pTSS (Fig. 4A). These genes could be 305 

categorized into two groups. One group consisted of 1,174 repetitive genes with 306 

multiple short exons (mostly <100 bp) distributed across distinct chromosomes 307 

(Fig. 5A, 5E). They tended to be misaligned due to the default Smith-Waterman 308 

algorithm for Nanopore DRS data analysis [53]. Most of these multi-short-exon 309 
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genes belonged to the leucine-rich repeat (LRR) superfamily, which has recently 310 

evolved and lacks the transcription activation marks including 6mA [54]. The 311 

other group comprised 578 tandem duplicate genes with multiple copies 312 

arranged in a linear fashion at a single genomic locus (Fig. 5A, C). Thirdly, there 313 

were 15 genes exhibiting super high splicing diversity, with nearly every 314 

noncoding exon being subject to alternatively splicing (near-universal AS) (Fig. 315 

5D). This phenomenon was also observed in humans, wherein 69% of human 316 

protein-coding exons were classified as alternative, and some functional long-317 

noncoding RNAs (lncRNAs) such as XIST, HOTAIR, GOMAFU, and H19 were 318 

observed to be near-universally alternatively spliced at each locus [55]. We 319 

annotated these 15 genes with their most dominant isoforms. 320 

While conducting manual curation, we observed sequence errors in certain 321 

regions. Therefore, we polished the genome sequence using Illumina sequencing 322 

data (Figure 1D, 5A), correcting a total of 3,759 insertions, 135 deletions, 43 323 

transitions, and 48 transversions. The corrections were validated by Sanger 324 

sequencing at representative sites (Additional File 1: Fig. S6A, Additional File 7: 325 

Table S6). Among these corrected sites, 1,696 were located in genic regions, 326 

with 645 in exons and 1,051 in introns (Figure 5A). Errors in gene exons could 327 

lead to inaccuracies in the predicted CDS (Figure 5F). Using the polished 328 

genome, we re-predicted CDS for 645 genes with errors in their exons, resulting 329 

in 438 genes acquiring more accurate and extended CDS. 330 

To update the functional annotation, predicted proteins were blasted against 331 

multiple public protein databases (Figure 1D, Additional File 1: Fig. S7A). In total, 332 

we annotated 25,846 functional genes, featuring an additional 1,732 functional 333 

genes compared to TGD2021 (Additional File 1: Fig. S7A, B). In the case of 334 

these newly annotated genes, protein functional annotation revealed their 335 

distribution across distinct structural domain families, with a higher prevalence 336 

observed in certain families, such as the leucine-rich repeat domain, the cyclic 337 

nucleotide-binding domain, and the WD40/YVTN repeat-like-containing domain 338 

(Additional File 1: Fig. S7C). Three newly annotated proteins were associated 339 

with epigenetic regulation (Additional File 1: Fig. S7D). Two featured a histone 340 

H3 K4-specific methyltransferase SET domain homologous to MLL5 (KMT2E) 341 

that are critical for gene transcription regulation, cell cycle regulation (G1/S 342 

transition), and myoblast differentiation [56-59]. Another exhibited homology to 343 

the 16S rRNA m5C methyltransferase NSUN4, characterized by the presence of 344 

a RsmB domain [60]. 345 

In this version (draft v5) (Additional File 1: Fig. S1), we optimized TSS 346 

annotation for 3,937 genes with multiple eTSSs, manually re-annotated 1,752 347 
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duplicated genes and 15 universally alternatively spliced genes, and re-predicted 348 

CDS for 438 genes. 349 

 350 

Annotate transcript isoforms generated by alternative splicing  351 

It has been reported that 1,286 Tetrahymena genes generate alternative splicing 352 

(AS) isoforms [26], but this information was not integrated into previous gene 353 

models and TGD2021 contained only 459 AS genes. With the gene model being 354 

highly optimized in this study, we identified all six types of alternative splicing, 355 

namely exon skipping, alternative last exon, intron retention, mutually exclusive 356 

exons, alternative 5’ splice site, and alternative 3’ splice site, in a total of 3,041 357 

genes, generating 5,917 isoforms (Fig. 1E, 6B). Consistent with the previous 358 

report [26], intron retention was the dominant form of AS (Fig. 6B). The numbers 359 

of AS genes and isoforms in our annotation were much higher than those in 360 

TGD2021 (gene: 5,041 vs. 459, isoform: 5,917 vs. 516) (Fig. 6B). Of these, 876 361 

genes exhibited no less than two AS isoforms. Each AS event was supported by 362 

DRS full-length reads spanning the intron-exon junctions (Fig. 6A). Gene loci 363 

representing each of the six different AS types were selected for RT-PCR 364 

analysis, validating the existence and structure of AS isoforms (Additional File 1: 365 

Fig. S8A-F, Additional File 8: Table S7). 366 

To further investigate whether the generation of AS isoforms was stage-367 

specific, we compared AS isoforms in growth, starvation, and different timepoints 368 

of conjugation. The results showed that 2,131 out of 5,917 AS isoforms were 369 

generated across all periods, while others exhibited a tendency to be highly 370 

expressed during specific stages. Specifically, 114 AS isoforms were generated 371 

exclusively during growth, 326 during starvation, and 1,146 during conjugation 372 

(Fig. 6C). For example, in the case of the starvation- and conjugation-specific 373 

gene TTHERM_001026363, its AS isoforms showed a stage-specific pattern, 374 

with a gradual increase of the ratio of retained introns and intron-containing reads 375 

observed as conjugation progressed (Fig. 6D). In support, GO analysis of the 376 

overall functions of AS isoforms revealed a predominant enrichment in processes 377 

related to cell cycle and meiosis (Additional File 1: Fig. S8G, Additional File 9: 378 

Table S8). 379 

 380 

Identify natural antisense transcripts (NATs) 381 

We observed that many gene loci could be transcribed from both sense and 382 

antisense strands (Fig. 7D-F). Intriguingly, transcripts originating from the 383 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.31.578305doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.31.578305
http://creativecommons.org/licenses/by-nd/4.0/


 12

antisense strand, which were typically shorter in length, were located within or in 384 

close proximity to the sense-coding transcripts, characteristic of natural antisense 385 

transcripts (NATs) [61]. In total, 4,389 NATs were identified (Fig. 7A). The 386 

presence of DRS and RNA-seq reads provided strong support for these NATs, 387 

confirming that they were bona fide transcripts rather than transcriptional noise. 388 

14% of protein-coding genes (3,908/27,494) showed evidence of antisense 389 

transcription. Most NATs lacked a discernable ORF (>100 aa), but 11 NATs were 390 

annotated as potential functional protein and 112 displayed high protein-coding 391 

potentials (Additional File 1: Fig. S9A). 392 

The resulting set of NATs was categorized into three groups according to 393 

their positional relationship with the corresponding sense transcript (protein-394 

coding genes). 1) Intergenic NATs. These NATs did not overlap with other sense 395 

transcripts and were further subdivided into: a) 107 promoter NATs originated 396 

from shared bidirectional promoters (Fig. 7B), and b) 583 intergenic NATs 397 

possessing their own independent promoters (Fig. 7C). 2) Exonic NATs. These 398 

NATs were transcribed from loci with sense transcripts and were categorized into: 399 

a) 3,460 type 1 exonic NATs located within 1 kb downstream of the TSS of the 400 

respective sense transcription unit and shared the epigenetic marks with the 401 

latter (Fig. 7D), and b) 417 type 2 exonic NATs located more than 1 kb 402 

downstream of the TSS of the sense transcript and possessed the epigenetic 403 

marks downstream of their own TSS independently (Fig. 7E). It is worth 404 

mentioning that these NATs are not the reverse transcription or replication 405 

byproducts of sense transcripts. Instead, their exon-intron boundaries slightly 406 

deviate from those of their sense transcripts and they themselves contain 407 

canonical GU-AG sites for intron splicing (Additional File 1: Fig. S9B, C). 3) 408 

Intronic NATs. There were 31 NATs transcribed within the intronic regions of 409 

sense transcripts (Fig. 7F). The distinct genomic locations of NATs and their 410 

positional proximity to the sense transcripts may determine their roles in various 411 

aspects of gene expression. 412 

Compared to sense transcripts, NATs were generally characterized by 413 

shorter lengths (Additional File 1: Fig. S9D) and lower expression levels 414 

(Additional File 1: Fig. S9E), while no difference in GC content was observed 415 

(Additional File 1: Fig. S9D). Interestingly, the majority of antisense transcripts 416 

also carried epigenetic marks (H3K4me3, H2A.Z, 6mA and well-positioned 417 

nucleosome) in their transcription units (Figure 7G, Additional File 1: Fig. S9F), 418 

similar to the report in Arabidopsis thaliana wherein NATs were enriched with 419 

H3K4me3 [62]. Most of these epigenetic marks were shared with their 420 
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corresponding sense transcripts (Fig. 7D), but they were also possibly involved in 421 

regulating NATs expression. 422 

Most importantly, these NATs exhibited temporal-specific expression 423 

patterns that were opposite to their corresponding sense coding genes, mirroring 424 

the findings in Arabidopsis thaliana where sense and antisense transcripts 425 

exhibited mutual exclusivity at individual loci [63]. In the instance of the gene 426 

TTHERM_00412050 in Tetrahymena, the expression of its NATs gradually 427 

decreased while the expression of its sense transcripts increased, during the 428 

transition from growth to starvation and subsequently to conjugation (Fig. 7H). 429 

This phenomenon might induce gene silencing of the corresponding sense genes 430 

by degrading the sense mRNA or interfering with its translation, a role that has 431 

been reported for NATs in plants [62, 64].  432 

We then assessed the alternative splicing diversity (ASD), defined as the 433 

proportion of different types of introns for each NAT loci and its sense gene in 434 

DRS data. Intriguingly, the ASD of NATs significantly exceeded that of their 435 

sense counterparts (0.96 vs. 0.28, P <0.001) (Fig. 7I) or total sense coding 436 

transcripts (0.96 vs. 0.15, P <0.001) (Additional File 1: Fig. S9G). We speculate 437 

that, akin to non-coding RNA, NATs appear to be exempt from the evolutionary 438 

constraints imposed on protein-coding genes by the preservation of a functional 439 

ORF. This exemption might allow their exons to function as modular sections and 440 

act as independent units that can be shuffled and rearranged with great flexibility 441 

[55].  442 

 443 

CONCLUSION 444 

In this study, we established a novel workflow to optimize the genome 445 

annotation of Tetrahymena that integrated large scale transcriptomic data, 446 

including RNA-seq data from different cell stages, strand-specific RNA-seq data, 447 

and Nanopore DRS data. Most importantly, epigenetic data including H3K4me3, 448 

H2A.Z, 6mA, and nucleosome along with ATAC-seq data were incorporated. This 449 

comprehensive dataset enabled the optimization of gene models, the accurate 450 

identification of TSS and TES, the augmentation of UTR information, the updated 451 

annotation of protein functions, and the addition of alternatively spliced isoforms.  452 

Our updated gene model (TGD2024) (Additional File 1: Fig. S1) comprised a 453 

total of 27,494 genes, including 26,223 well-annotated and 1,271 low-confidence 454 

genes. Compared to TGD2021, we annotated 2,481 new genes, and optimized 455 

6,428 genes including 3,878 exon-altered genes, 169 orientation-reversed genes, 456 
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65 TSS-altered genes, 1,379 fused genes, and 1,136 partitioned genes. We also 457 

increased the number of alternatively spliced isoforms to a total of 5,917 and 458 

annotated an additional 1,732 functional genes. Furthermore, we identified a 459 

large pool of NATs that might generate a diverse and extensive repertoire of 460 

potential regulatory RNAs.  461 

Our work will largely facilitate Tetrahymena biology studies and the 462 

conceptual framework employed here holds substantial promise for facilitating 463 

genome annotation in other eukaryotes. Moving forward, we aim to enrich our 464 

analysis by incorporating additional epigenic data such as H3K27me1 that is 465 

predominantly enriched at the 3’ end of gene bodies (unpublished data) and 466 

Nanopore DRS data from conjugating cells. We also plan to generate data using 467 

QTI-seq and Cap-seq that will help to better determine the transcription start 468 

sites and translation start sites [65, 66].  469 

 470 
MATERIALS AND METHODS 471 

Cell growth, RNA extraction, and library construction 472 

Tetrahymena wild-type strains (SB210 and CU428) were obtained from the 473 

Tetrahymena Stock Center (http://tetrahymena.vet.cornell.edu). Cells were grown 474 

in SPP medium at 30°C. For conjugation, starved SB210 and CU428 cells were 475 

resuspended in 10 mM Tris (pH 7.5) at 2 × 105 cells/ml, mixed in equal volumes, 476 

and samples were collected at 4h, 5h, 6h, 8h, 10h after mixing. Total RNA was 477 

collected using the RNeasy Plus Mini kit (Qiagen, 74134). The quality and 478 

concentration of RNA samples were analyzed by 1% agarose gel electrophoresis 479 

and Qubit®3.0 Fluorometer (Thermo Fisher Scientific). Strand-specific RNA 480 

sequencing libraries and Illumina sequencing libraries of SB210 were 481 

constructed according to manufacturer-recommended protocols and sequenced 482 

by Novogene Co. Ltd (Beijing, China). For ATAC-seq libraries, transposase Tn5 483 

from the Nextera DNA Library Preparation Kit (#FC-121-1030, Illumina, USA) 484 

was employed to treat 105 macronuclei for 1h at 37°C. The DNA from the 485 

samples was subsequently recovered using the MinElute Recovery Kit (#28004, 486 

Qiagen, Germany). Amplification and library construction of the sample DNA 487 

were performed for 13 PCR cycles, with library adapter primers sourced from the 488 

Nextera XT Index Kit (#FC-121-1011, Illumina, USA). The DNA from the 489 

constructed library was recovered once more using the MinElute Recovery Kit 490 

(#28004, Qiagen, Germany). 491 

 492 
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Gene loci identification based on RNA-seq and strand-specific RNA-seq 493 

data 494 

The latest published MAC genome of Tetrahymena thermophila downloaded 495 

from TGD (http://ciliate.org) was used as the reference for reads mapping. 496 

Adapters and low-quality reads were removed using Trim Galore 497 

(http://www.bioinformat-ics.babraham.ac.uk/projects/trim_galore/). Paired-end 498 

reads generated by RNA-seq and strand-specific RNA-seq were mapped back to 499 

the genome for transcript assembly using Hisat2 [67] with default parameters (--500 

rna-strandness R/RF for strand-specific RNA-seq). Picard Tools 501 

(https://broadinstitute.github.io/picard/) were used to remove duplicate reads from 502 

PCR. RNA-seq and strand-specific RNA-seq data were divided into three groups 503 

(growth, conjugation, starvation) according to the different cell cycle stages of 504 

Tetrahymena. The RNA-seq reads in each group were assembled and merged 505 

into the stage-combined transcripts by Stringtie with default parameters [68]. For 506 

each gene locus, only transcripts with the highest expression level (FPKM>1) 507 

across three groups were used for gene model optimization. 508 

 509 

Gene prediction and UTRs annotation using LoReAn2  510 

The latest published MAC genome of Tetrahymena downloaded from TGD 511 

(http://ciliate.org) was used as the reference genome for reads mapping [24]. 512 

Gene prediction was performed using the LoReAn2 annotation pipeline [31]. In 513 

detail, the transcriptomic data were aligned to the genome using the Program to 514 

Assemble Spliced Alignments (PASA) [69] and the Genomic Mapping and 515 

Alignment Program (GMAP) [70]. For protein alignment, the analysis and 516 

annotation tool (AAT) [71] was used to align protein sequence to the genome. 517 

Reference genome-guided transcripts were assembled using Trinity [72]. SNAP 518 

[73], Augustus [74], and GeneMark-ET [75] were used to generate de novo gene 519 

annotation individually, which were then combined using EVM [69]. PASA was 520 

used to annotate UTRs. 521 

 522 

Reverse transcription polymerase chain reaction (RT-PCR) 523 

Total RNA after Dnase treatment (Invitrogen, AM1907) was reverse-transcribed 524 

using an oligo-dT primer and M-MLV Reverse Transcriptase (Invitrogen, 525 

28025013) and cDNA was used as a template. RT-PCR was performed using 526 

Premix Taq (TaKaRa, RR901A). All PCR primers are listed in Supplementary 527 

Data.  528 
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 529 

ChIP-seq, MNase-seq, SMRT-seq data processing 530 

The preprocessing steps for the epigenetic data (H3K4me3 ChIP-seq, H2A.Z 531 

ChIP-seq, MNase-seq) were consistent with those employed for RNA-seq. Only 532 

the mono-nucleosome sized fragments (120-260 bp) were analyzed. The unique 533 

mapping results (bam files) and the 6mApT sites (SMRT-seq 6mA data) were 534 

calculated by custom Perl scripts and plotted by deepTools [76] (bin = 10 bp).  535 

 536 

ATAC-seq and data processing 537 

ATAC-seq was performed as previously described [77]. Libraries were 538 

sequenced (PE150) on an Illumina HiSeq sequencer. Mapped reads without 539 

PCR duplicates were used to retrieve short open chromatin regions (shorter than 540 

100 bp) using deepTools [76], as defined by the Greenleaf research team [78, 541 

79]. Peak calling was performed using MACS2 (v2.1.0) [80] The open chromatin 542 

profile distribution around TSS was plotted by deepTools [76]. The human 543 

precise TSSs from the RefTSS database [81] were mapped to corresponding 544 

genes using custom Perl scripts. 545 

 546 

Gene model optimization by a machine learning approach based on 547 

epigenetic information 548 

To optimize the gene model predicted by transcriptomic data, a Random Forest 549 

(RF) model was developed to further identify TSS based on epigenetic 550 

information (H3K4me3, H2A.Z, 6mA, and well-positioned nucleosome). RF 551 

classification algorithm was implemented with the randomForest R package [82]. 552 

The model training was performed using a dataset containing abundant 553 

information of epigenetic marks in regions of 1,000 bp downstream of TSS 554 

(positive training set) and in regions of 1,000 bp centered by TES (negative 555 

training set). 10,460 well-annotated and longer than 1kb genes were selected, 70% 556 

of which were used for model training and the rest were for testing. 557 

The error rate of the RF model was computed based on the out-of-bag (OOB) 558 

error, which is the mean prediction error over all Random Forest trees. The 559 

importance of each feature was computed as “mean decrease in accuracy” 560 

(MDA). Feature importance (MDA) and classification performance (OOB error) 561 

measures were further averaged over a collection of five hundred Random 562 

Forests to obtain stable results. The genome-wide regions were clustered and 563 

divided into different categories regions based on comprehensive consideration 564 
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of chromatin states (H3K4me3, H2A.Z, 6mA, and nucleosome) using the 565 

DBSCAN cluster algorithm in fpc R package (eps=150, MinPts=3) 566 

(https://www.unibo.it/sitoweb/christian.hennig/en/). Subsequently, epigenetic 567 

mark signals on regions from clustered categories (scaled to 1kb) was feature 568 

engineered to predict TSS-regions using the pre-trained RF model. 569 

 570 

CDS prediction, UTR annotation and protein function annotation 571 

Longest ORFs on each strand were predicted from the stage-combined 572 

transcripts using ORFfinder [83]. A putative ORF was defined as amino acid 573 

sequences exceeding 100 aa in length. The orientation of strand-specific RNA-574 

seq transcripts was used to determine CDSs from longest predicted ORFs. The 575 

regions beyond CDSs on transcripts were defined as 5’ UTRs and 3’ UTRs, 576 

respectively. Putative protein coding regions were annotated using EggNOG [84], 577 

Interproscan [85], and Pannzer2 [86] by mapping to known proteins, protein 578 

domains and signal peptides collected in UniProtKB database [87], Pfam 579 

databases [88], and InterPro database [89].  580 

 581 

Motif enrichment analysis 582 

For the motif enrichment analysis of open chromatin region upstream of the TSS, 583 

only fragments shorter than the mono-nucleosome size (100 bp) were analyzed 584 

after mapping to the genome. Peaks were identified using MACS2 (v2.1.0) [80]. 585 

Motif enrichment analysis was performed in called peaks using HOMER (v4.8) 586 

[90].  587 

For the motif analysis around the TES, sequences spanning 50 bp upstream 588 

and downstream of RNA cleavage sites/TES were extracted using bedtools [91]. 589 

Subsequently, the extracted fasta sequences were renamed utilizing SeqKit [92]. 590 

Motif analysis was conducted on these sequences using MEME-Suite’s simple 591 

enrichment analysis (SEA) [93]. 592 

 593 

Nanopore direct RNA sequencing data generation and analysis 594 

Oxford PromethION 2D amplicon libraries for full-length transcriptome 595 

sequencing were generated according to the Nanopore community protocol 596 

using library preparation kit SQK-LSK109 and were sequenced on R9 flowcells to 597 

generate fast5 files. Fastq files were derived from fast5 reads by basecalling 598 

using guppy v3.2.10 (default parameters, 599 
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https://github.com/metagenomics/denbi-nanopore-600 

training/blob/master/docs/basecalling/basecalling.rst). Reads were filtered using 601 

Nanofilt v2.5.0 [94]. Nanopore direct RNA sequencing (DRS) reads were aligned 602 

to the genome using minimap2 v2.16 [95]. The alternatively spliced isoforms 603 

were identified by customized Perl scripts followed by manual curation. The 604 

RNA-seq data (growth, starvation 24h, and conjugation at 4h, 5h, 6h, 8h, and 605 

10h), each with two or three biological replicates, were used to calculate the 606 

expression level during different cell stages. The heatmap plot and gene ontology 607 

(GO) analysis were plotted by Tbtools [96]. For the poly-A tail analysis, 608 

nanopolish-polya version 0.10.2 (https://github.com/jts/nanopolish) was used to 609 

estimate polyadenylated tail lengths from Nanopore DRS raw reads. 610 

 611 

Identification and classification of natural antisense transcripts 612 

Natural antisense transcripts (NATs) were identified by fulfilling the following 613 

criteria: 1) transcribed from the antisense strand of protein-coding genes as 614 

evidenced by DRS data, and 2) localized upstream or within protein-coding 615 

genes, encompassing intronic or exonic regions. Classification of each transcript 616 

as either coding or noncoding was determined using a stepwise filtering pipeline. 617 

First, all candidates were scored with LGC [97] to determine their coding 618 

potential. All transcripts that were named “non-coding” were retained as potential 619 

noncoding candidates. Second, all candidate transcripts were subjected to blastp 620 

[98] and HMMER (versus Pfam-A and Pfam-B) [99]. For blastp and HMMER, 621 

transcripts were translated in all three sense frames. Transcripts with an E-value 622 

less than 1e-4 in any of the three search algorithms were considered as 623 

functional-coding; transcripts that were predicted to contain ORF exceeding 200 624 

bp in length, yet lacked identifiable homologous proteins or functional domain, 625 

were defined as potential-coding; and the remaining were classified as non-626 

coding. The alternative splicing diversity (ASD) was quantified as the ratio 627 

between the number of distinct splice sites and the total reads number captured 628 

by Nanopore DRS data for a particular gene. The comparison of ASD for sense 629 

protein-coding genes and NATs could be approached in two ways: 1) comparing 630 

all NATs (4,398) to protein-coding genes with NATs (4,398); and 2) comparing all 631 

NATs (4,398) to all protein-coding genes (27,494). 632 

 633 

Supplementary information 634 

Additional file 1: Figure S1. The flowchart for genome annotation. Figure S2. 635 

RT-PCR validation of gene models optimized by the transcriptomic data. Figure 636 
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S3. The eTSSs/pTSSs prediction and gene optimization using epigenetic data. 637 

Figure S4. RT-PCR validation of gene models optimized by eTSSs. Figure S5. 638 

The regulatory elements of untranslated regions analysis in Tetrahymena. Figure 639 

S6. Four types of error sites polished by Illumina and Sanger sequencing data. 640 

Figure S7. Protein function annotation on draft v4. Figure S8. The experimental 641 

validation and functional analysis for alternative splicing (AS) isoforms. Figure 642 

S9. Identification and characterization of natural antisense transcripts (NATs). 643 

Additional file 2: Table S1. The Information of the sequencing data. 644 

Additional file 3: Table S2. The comparison between TGD2014, TGD2021, and 645 

the LoReAn2 annotated gene model.  646 

Additional file 4: Table S3. PCR primers for gene optimization. 647 

Additional file 5: Table S4. Homology protein of the promoter binding protein in 648 

Tetrahymena. 649 

Additional file 6: Table S5. Results of GO enrichment analysis for gene with 650 

poly-A. 651 

Additional file 7: Table S6. PCR primers for genome polish. 652 

Additional file 8: Table S7. PCR primers for alternative splicing. 653 

Additional file 9: Table S8. Results of GO enrichment analysis for alternative 654 

splicing. 655 

 656 

Data availability 657 

Scripts to generate data and to perform the above analysis are available in github: 658 
https://github.com/yefei521/UTR-annotation. Public RNA-seq datasets were 659 
available on the Gene Expression Omnibus (GEO) under accession number 660 
GSE27971: https://www.ncbi.nlm.nih.gov/gds/?term=GSE27971 [26]. Our SMRT-661 
seq 6mA data was available at the NCBI database (BioProject accession number: 662 
PRJNA932808) [30], MNase-seq nucleosome data was available at 663 
https://www.ncbi.nlm.nih.gov/sra/SRX5146438[accn] [28]. ChIP-seq data 664 
(H3K4me3 and H2A.Z), RNA-seq, strand-specific RNA-seq, Nanopore direct 665 
RNA sequencing, and ATAC-seq data from the current work were deposited at 666 
the NCBI database (BioProject accession number: PRJNA1048844).  667 
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Figure legends  974 

 975 

Figure 1. Schematic overview of gene model optimization by integrating 976 

transcriptomic and epigenetic data. 977 

A. Transcripts at different stages of growth, starvation, and conjugation were 978 

assembled into draft v1. By comparing newly assembled transcripts with those 979 

from TGD2021, well-annotated genes were retained, and error genes were 980 

optimized with the assistance of Nanopore DRS and strand-specific RNA-seq 981 

(ssRNA-seq) data, resulting in draft v2.  982 

B. Epigenetic data were integrated to predict transcription start sites (TSSs) 983 

using a random forest (RF) model, and TSSs were further categorized into 984 

eTSSs and pTSSs with the addition of ATAC-seq data. Further optimization of 985 

the gene model was achieved using eTSSs, resulting in draft v3.  986 

C. Transcripts in draft v3 were subjected to open reading frame (ORF) prediction, 987 

and UTR information was provided based on information of CDS, TSSs and 988 

transcription end sites (TESs), resulting in draft v4. Features of regulatory 989 

elements including promoters, poly-A sequences, and poly-A signals were 990 

analyzed.  991 

D. The draft gene model v4 underwent two rounds of manual curation, followed 992 

by additional genome polish and protein function annotation, resulting in the 993 

generation of an improved gene model, draft v5. 994 

E. Annotation of alternatively spliced (AS) isoforms was performed by integrating 995 

RNA-seq and Nanopore DRS data, resulting in TGD2024 (updated). Natural 996 

antisense transcripts (NATs) were annotated based on the updated gene model. 997 

TGD: Tetrahymena genome database; NFR: nucleosome free region; PAS: poly-998 

A signal. 999 

 1000 

Figure 2. IGV snapshots showing five categories of gene models optimized by 1001 
transcriptomic data, including new gene (A), exon-altered gene (B), fused gene 1002 
(C), partitioned gene (D), and orientation-reversed gene (E). Low-confidence 1003 
genes (F) were not supported by RNA-seq data, thus retaining their annotations 1004 
in draft v2 as in TGD2021. Tracks from top to bottom were RNA-seq (growth, 1005 
starvation 24h, and conjugation at 4h, 5h, 6h, 8h, and 10h), Nanopore DRS 1006 
coverage and reads alignment, and the gene models of draft v2 and TGD2021. 1007 
Reads and gene models in pink represented transcription on the sense strand, 1008 
and those in purple on the antisense strand. 1009 
 1010 
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Figure 3. Gene model optimization using epigenetic information.  1011 

A. Distribution profiles of H3K4me3, H2A.Z, 6mA, and nucleosome on the gene 1012 

body. Genes were scaled to unit length and was extended to each side by 1kb 1013 

length. Note that all four marks were accumulated downstream of TSS, towards 1014 

the 5’ end of the gene body.  1015 

B. The ROC-AUC curve (ROC: Receiver Operating Characteristics, AUC: Area 1016 

Under the Curve) measuring the performance of our random forest (RF) model. 1017 

The ROC was a probability curve and AUC represented the degree or measure 1018 

of separability. The higher the AUC, the better the model was at predicting “TSS-1019 

region” classes as “TSS-region” classes or “not-TSS-region” classes. The AUC 1020 

for both the training data and the testing data was close to 1, indicating excellent 1021 

performance of our RF model in predicting TSS-region. 1022 

C-G. IGV snapshots of seven types of gene models optimized by epigenetic data 1023 

with the complementation of transcriptomic data, including new gene (C), 1024 

orientation-reversed gene (D), TSS-altered gene (E), fused gene (F), and 1025 

partitioned gene (G). Partitioned gene was further subcategorized as co-1026 

directional (a), tail-to-tail (b), and head-to-head (c). The tracks from top to bottom 1027 

were epigenetic information including nucleosome free region (NFR) deduced 1028 

from ATAC-seq, H3K4me3, H2A.Z, 6mA, and nucleosome, and RNA-seq 1029 

transcripts of different cell stages. The most highly expressed transcripts in 1030 

conjugation were selected. Reads and gene models in pink represented 1031 

transcription on the sense strand, and those in purple on the antisense strand.  1032 

 1033 

Figure 4. UTR annotation and regulatory elements analysis. 1034 

A. Schematics for UTR annotation. ORF prediction was conducted on top of draft 1035 

v3, resulting in a total of 27,494 protein-coding genes. 1,153 genes lacking ORF 1036 

were defined as potential non-coding RNA. A putative ORF was defined as 1037 

amino acids sequence longer than 100 aa. UTR information was further 1038 

supplemented based on predicted TSSs and TESs. 1,271 low-confidence genes 1039 

defined in Figure 2F lacked UTR annotations. Draft v3 after ORF prediction and 1040 

UTR annotation generated draft v4.  1041 

B. UTR comparisons between draft v4 and TGD2014, the latter of which 1042 

contained UTR information for 1,477 genes. Student’s t-test was performed. **** 1043 

P<0.0001. 1044 

C. Enriched core promoter motifs in promoter proximal sequences around TSS、1045 

were identified by Homer [90]. P-values represented the statistical significance of 1046 
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motif enrichment, indicating the likelihood that the observed frequency of each 1047 

motif in the specified genomic region was greater than what would be expected 1048 

by chance. 1049 

D. Venn diagram showing the composition of sequence motifs around poly-A 1050 

signals (PAS). AATAAA was identified as the most predominant motif. 1051 

E. Summary of nucleotide frequencies and main regulatory elements around 1052 

cleavage sites. Cleavage sites were significantly associated with the AT motif. 1053 

The dashed black line represented positions of cleavage sites. 1054 

F. Length distribution of poly-A tails identified in Nanopore DRS (minimum 1055 

reads >5). The median length was 18nt, illustrated by a dashed black line. 1056 

G. Distribution of the maximal poly-A tail length for each gene (number of gene 1057 

with poly-A = 21,660). All genes were sorted by the length of their longest poly-A 1058 

tails from shortest to longest and divided into three groups: 1) the first 25% of 1059 

genes, defined as short-tailed genes, with poly-A tail length ranging from 5-19 nt; 1060 

2) the middle 25%-75% of genes, defined as medium-tailed genes, with poly-A 1061 

tail length between 19-239 nt; 3) the remaining 25% of genes, defined as long-1062 

tailed genes, with poly-A tail length exceeding 239 nt. 1063 

H. Gene ontology (GO) analysis revealed that short-tailed and long-tailed genes 1064 

were enriched in distinct functional groups. The colored bars represented the 1065 

percentage of genes in each tail-length category. 1066 

I. Distribution of poly-A tail length in different functional groups. Student’s t-test 1067 

was performed. ** P <0.01, *** P <0.001, and ns P >0.05. 1068 

J. The Spearman’s correlation between poly-A tail length and gene expression 1069 

level (rho=0.72, P <2.2e-16). The longest poly-A tail was selected as the 1070 

representative for each gene. Gene expression levels were quantified using the 1071 

number of Nanopore DRS reads, with the removal of interference from antisense 1072 

RNA. Both axes were plotted on a logarithmic scale. 1073 

 1074 

Figure 5. Manual curation, genome polish, and protein function annotation.  1075 

A. Illustration of manual curation and genome polish on draft v4, resulting in draft 1076 

v5. Two rounds of manual curation were conducted for all 180 non-rDNA 1077 

chromosomes, focusing on genes with more than one eTSS, as well as those 1078 

with neither eTSS nor pTSS. Genome polish was conducted by correcting error 1079 

sites identified through manual curation using Illumina sequencing data. 1080 
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B. An IGV snapshot showing the manual curation of a multi-eTSS gene, based 1081 

on epigenetic and transcriptomic data. The tracks from top to bottom were 1082 

nucleosome free region (NFR), H3K4me3, H2A.Z, 6mA, nucleosome, RNA-seq 1083 

transcripts from different cell stages, and Nanopore DRS transcripts. The arrows 1084 

and dashed lines indicated positions of eTSSs. 1085 

C. An IGV snapshot showing the manual curation of a tandem duplicate gene, by 1086 

incorporating RNA-seq transcripts of different cell stages with its corresponding 1087 

reads alignment and Nanopore DRS reads. The arrows indicated the chimeric 1088 

alignment of RNA-seq transcripts. 1089 

D. An IGV snapshot showing the manual curation of a universally alternatively 1090 

spliced gene, by incorporating RNA-seq transcripts of different cell stages with its 1091 

corresponding reads alignment and Nanopore DRS reads. In the magnified box 1092 

on the right, arrows indicated the universal alternatively spliced site. These 1093 

universally alternatively spliced genes were annotated with their most dominant 1094 

isoforms. 1095 

E. An IGV snapshot showing that multi-short-exon genes were always error-1096 

assembled when using Nanopore DRS data. This manual curation was 1097 

performed with the aid of RNA-seq data from multiple stages. In the magnified 1098 

box on the bottom, arrows indicated error-assembled sites. 1099 

F. An IGV snapshot showing an insertion site located in the exon resulted in 1100 

erroneous CDS predictions. This manual curation was supported by both Illumina 1101 

and transcriptomic data. The arrow and box indicated the insertion site. 1102 

 1103 

Figure 6. Annotation of alternatively spliced (AS) isoforms in Tetrahymena.  1104 

A. The representative display of gene models and IGV snapshots of Nanopore 1105 

DRS reads for six different AS types.  1106 

B. Comparative summary of gene and isoform numbers in each of the six 1107 

different AS types in TGD02021 and TGD2024 (updated). 1108 

C. A heatmap depicting the expression profiles of AS transcripts across different 1109 

stages: growth, starvation for 24h, and conjugation at 4h, 5h, 6h, 8h, and 10h. 1110 

D. A representative gene exhibiting a stage-specific tendency for intron retention, 1111 

supported by transcriptomic data (left), as well as the ratio of retained intron and 1112 

the ratio of the intron-containing reads (right). The ratio of retained intron was 1113 

defined as the retained intron number divided by the total sequenced intron 1114 
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number of the gene. The ratio of the intron-containing reads was defined as the 1115 

reads aligned to the intron divided by the total reads aligned to the gene. 1116 

 1117 

Figure 7. Identification and characterization of five types of natural antisense 1118 

transcripts (NATs) in Tetrahymena. 1119 

A. Schematics for NATs annotation. NATs were identified on the updated gene 1120 

model (TGD2024) using both transcriptomic and epigenetic data. Identified NATs 1121 

were further categorized based on their relative positions to corresponding sense 1122 

transcripts. 1123 

B-F. IGV snapshots showing five types of NATs. They included promoter NATs 1124 

(B), originating from shared bidirectional promoters of the sense transcripts; 1125 

intergenic NATs (C), transcribed from the upstream or downstream of the sense 1126 

transcripts and possessing their own promoters; type 1 exonic NATs (D), located 1127 

within 1 kb downstream of the TSSs of the sense transcripts and sharing 1128 

epigenetic marks with their sense transcripts; type 2 exonic NATs (E), located 1129 

more than 1 kb downstream of the TSSs of the sense transcripts; and intronic 1130 

NATs (F), transcribed from the intronic regions of sense transcripts. 1131 

G. Distribution profiles of H3K4me3, H2A.Z, 6mA, and well-positioned 1132 

nucleosomes on the transcript body of NATs. Transcripts were scaled to unit 1133 

length and was extended to each side by 1kb length. 1134 

H. An IGV snapshot showing the anti-correlation of temporal expression patterns 1135 

between a NAT and its corresponding sense transcript (left). The line chart (right) 1136 

depicted the proportion of expression level for sense and antisense transcripts at 1137 

different time points. The error bar represented the standard deviation (SD). 1138 

I. The box plot showing that the alternative splicing diversity (ASD) of NATs 1139 

exceeded that of their sense transcripts (the median of NATs and sense 1140 

transcripts were 0.96 and 0.28, respectively). Student’s t-test was performed. *** 1141 

P <0.001. ASD was defined as the number of different types of splice sites 1142 

divided by the total reads aligned to the NATs or sense transcripts. 1143 

 1144 

Figure S1. The flowchart for genome annotation. 1145 

 1146 

Figure S2. RT-PCR validation of gene models optimized by the transcriptomic 1147 

data, including new genes (A), exon-altered genes (B), fused genes (C), and 1148 

partitioned genes (D). For each representative gene, gene model in draft v2 and 1149 
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TGD2021 (top), primers flanking the target region and the expected size of RT-1150 

PCR products (bottom left), and the gel electrophoresis image of RT-PCR 1151 

products (bottom right) were displayed. Orange and green stars indicated 1152 

corresponding RT-PCR products. 1153 

 1154 

Figure S3. The eTSSs/pTSSs prediction and gene optimization using epigenetic 1155 

data. 1156 

A. Peaks corresponding to nucleosome free regions (NFRs) were identified using 1157 

Homo sapiens ATAC-seq data and were subsequently integrated with TSS data 1158 

from RefTSS for analysis. The results indicated that ATAC-seq fragments from 1159 

NFRs tended to be enriched around TSS. 1160 

B. The prediction of eTSSs and pTSSs using epigenetic data. Genes were 1161 

classified into different groups according to the presence or absence of eTSSs 1162 

and pTSSs. 1163 

C-F. IGV snapshots of different types of genes optimized by epigenetic data, 1164 

complemented by transcriptomic data, including gene pairs sharing their 1165 

promoters (C), genes with multiple short exons (D), and tandem duplicate genes 1166 

(E). Low-confidence genes (F) were neither supported by epigenetic marks nor 1167 

Nanopore DRS reads.  1168 

 1169 

Figure S4. RT-PCR validation of gene models optimized by eTSSs, including 1170 

new genes (A), fused genes (B), and co-directional partitioned genes (C), tail-to-1171 

tail partitioned genes (D), and head-to-head partitioned genes (E). For each 1172 

representative gene, gene models in draft v2 and draft v3 (top), primers flanking 1173 

the target region and the expected size of RT-PCR products (bottom left), and 1174 

the gel electrophoresis image of RT-PCR products (bottom right) were displayed. 1175 

Orange and green stars indicated corresponding RT-PCR products. 1176 

 1177 

Figure S5. The regulatory elements of untranslated regions analysis in 1178 

Tetrahymena. 1179 

A. The workflow of Nanopore sequencing and the prediction of poly-A tails. 1180 

B. An IGV snapshot of a gene with multiple TESs, identified according to the 1181 

position of poly-A tails in DRS reads. 1182 

C. Distribution frequency of main regulatory motifs around cleavage sites. The 1183 

dominant motifs of PASs (AATAAA and ATTAAA) were enriched within 20 bp 1184 
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upstream of cleavage sites. The regulatory elements such as GTGT (GT-rich 1185 

elements) and TGTA (AT-rich elements) were enriched more than 30 bp 1186 

upstream of cleavage sites. 1187 

D. The Spearman’s correlation showed no correlation between poly-A tail length 1188 

and gene length (rho= -0.089, P <2.2e-16). The longest poly-A tail was selected 1189 

as the representative for each gene. Both axes were plotted on a logarithmic 1190 

scale. 1191 

 1192 

Figure S6. Four types of error sites polished by Illumina and Sanger sequencing 1193 

data, including two examples each for insertion, deletion, transition, and 1194 

transversion.  1195 

 1196 

Figure S7. Protein function annotation on draft v4. 1197 

A. Protein sequences of TGD2021 and draft v4 were blasted against multiple 1198 

public protein databases, featuring an additional 1,732 functional genes 1199 

compared to TGD2021. 1200 

B. The number of functional genes annotated by different databases for 1201 

TGD2021 and draft v5. 1202 

C. Top 25 functional gene groups for genes with new functions. 1203 

D. Domain structure of four newly annotated proteins possibly related to 1204 

epigenetic regulations, homologous to MLL5 and NSUN4, respectively. 1205 

 1206 

Figure S8. The experimental validation and functional analysis for alternative 1207 

splicing (AS) isoforms. 1208 

A-F. RT-PCR validation of the presence of AS transcripts, including exon 1209 

skipping (A), alternative last exon (B), intron retention (C), mutually exclusive 1210 

exons (D), alternative 5’ splice site (E), and alternative 3’ splice site (F). For each 1211 

representative gene, gene model in TGD2024 (updated) and isoform, primers 1212 

flanking the target region and the expected size of RT-PCR products (bottom left), 1213 

and the gel electrophoresis image of RT-PCR products (bottom right) were 1214 

displayed. Orange and green stars indicated corresponding RT-PCR products. 1215 

G. GO analysis of total AS isoforms revealed that genes possessing AS isoforms 1216 

were primarily enriched in processes related to cell cycle regulation. 1217 

 1218 
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Figure S9. Identification and characterization of natural antisense transcripts 1219 

(NATs). 1220 

A. NATs were divided into non-coding, potential-coding and functional-coding, 1221 

according to their significantly different coding potential scores. ****, P<0.0001. 1222 

B. An IGV snapshot showing the splice sites of a NAT (red) and its 1223 

corresponding sense transcript (purple). Note that this NAT possessed its own 1224 

canonical GU-AG site for intron splicing and its exon-intron boundary slightly 1225 

deviated from that of its sense transcript. 1226 

C. Distribution of intron-exon boundaries of NATs in relation to those of sense 1227 

transcripts. The red dashed line at position 0 marked the location of the sense 1228 

intron-exon boundaries. 1229 

D. The heatmap showing the GC content and length of sense transcripts and 1230 

antisense transcripts. NATs had shorter length but had no difference in GC 1231 

content comparing to sense transcripts. 1232 

E. The box plot showing that NATs had lower expression level comparing to 1233 

sense transcripts. The expression level was defined as DRS reads counts of 1234 

NATs and its corresponding sense transcripts. ***, P<0.001. 1235 

F. Composite distribution profiles of H3K4me3, H2A.Z, 6mA, and nucleosome 1236 

near the TSS of NATs. The distribution profiles showing that all four marks were 1237 

accumulated downstream of TSS. 1238 

G. The box plot showing that the alternative splicing diversity (ASD) of total NATs 1239 

exceeded the total sense transcripts (the median of NATs and sense transcripts 1240 

were 0.96 and 0.15, respectively). Student’s t-test was performed. ***, P <0.001. 1241 

ASD was defined as the number of different splice sites divided by the total reads 1242 

aligned to the NATs or sense transcripts. 1243 

 1244 
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