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Abstract

Probing the architecture of neuronal circuits and the principles that underlie their
functional organization remains an important challenge of modern neurosciences. This
holds true, in particular, for the inference of neuronal connectivity from large-scale
extracellular recordings. Despite the popularity of this approach and a number of
elaborate methods to reconstruct networks, the degree to which synaptic connections
can be reconstructed from spike-train recordings alone remains controversial. Here, we
provide a framework to probe and compare connectivity inference algorithms, using a
combination of synthetic and empirical ground-truth data sets, obtained from
simulations and parallel single-cell patch-clamp and high-density microelectrode array
(HD-MEA) recordings in vitro. We find that reconstruction performance critically
depends on the regularity of the recorded spontaneous activity, i.e., their dynamical
regime, the type of connectivity, and the amount of available spike train data. We find
gross differences between different algorithms, and many algorithms have difficulties in
detecting inhibitory connections. We therefore introduce an ensemble artificial neural
network (eANN) to improve connectivity inference. We train the eANN on the validated
outputs of six established inference algorithms, and show how it improves network
reconstruction accuracy and robustness. Overall, the eANN was robust across different
dynamical regimes, with shorter recording time, and ameliorated the identification of
synaptic connections, in particular inhibitory ones. Results indicated that the eANN
also improved the topological characterization of neuronal networks. The presented
methodology contributes to advancing the performance of inference algorithms and
facilitates our understanding of how neuronal activity relates to synaptic connectivity.
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Author summary

This study introduces an ensemble artificial neural network (eANN) to infer neuronal
connectivity from multi-unit spike time recordings. We compare the eANN to previous
algorithms and validate it using simulations and HD-MEA /patch-clamp datasets. The
latter is obtained from three single-cell patch-clamp recordings and high-density
microelectrode array (HD-MEA) measurements, in parallel. Our results demonstrate
that the eANN outperforms all other algorithms across different dynamical regimes and
provides a more accurate description of the underlying topological organization of the
studied networks. We also provide a SHAP analysis of the trained eANN to understand
which input features of the eANN contribute most to this superior performance. The
eANN is a promising approach to improve connectivity inference from spike-train data.

Introduction

Inferring the wiring diagram of complex neuronal circuits, their connectomes, has
remained an important pillar in the quest to understand how individual neurons process
information and how neuronal networks are organized [1]. Recent years have seen
significant advances in connectome inference techniques enabling the study of
fundamental principles of neuronal organization [2], and the intricate structure-function
relationship of local synaptic connectivity [3,4]. In particular, methods based on serial
block-face electron microscopy (EM) [5], and virus-based circuit reconstruction [6], have
paved the way to mapping out synaptic connections at unprecedented detail and scale.
These methods significantly furthered our understanding of how circuit architecture
relates to neuronal communication across scales, i.e., at the level of local connectivity, as
well as, across different brain regions. The interest in linking connectomics and
functional readouts has also been fuelled by the ever-increasing capabilities of
large-scale electrophysiological recording technology for studying neuronal physiology in
vivo [7] and in vitro [89)].

A large body of studies, including different species and brain regions, has started to
provide insight into the specific connectivity patterns that individual neurons form to
communicate. Common organizational motifs of synaptic connectivity include, for
example, feedforward excitation, feedforward inhibition, as well as, feedback inhibition,
and lateral inhibition [10]. In addition to these circuit motifs, a range of complex
topological properties have been described [2], among them, a greater-than-random
community structure [11,|12], the occurrence of specific triple-motifs among locally
connected projection neurons [13}[14], a small-world [15] and rich-club organization |16,
and highly-connected hub neurons [17]. Studies also found that the synaptic strength of
local circuitry typically follows a heavy-tailed log-normal distribution, with few strong
connections [18[19]. Many of these synaptic wiring diagrams have been obtained
through EM reconstruction in model organisms, such as Caenorhabditis elegans |20],
drosophila |21], and zebrafish [22,23], and more recently, through reconstruction of small
tissue samples of mouse [4.24], macaque, and human cortex [25].

In addition to dense, EM-based reconstruction of neuronal circuits, which allows for
the perhaps most comprehensive characterization of synaptic connectivity, important
alternative circuit-mapping tools exist. The two most widely used techniques are viral
retrograde and anterograde trans-synaptic labeling of neurons [6,26], and whole-cell
patch clamp recordings [27]. Patch-clamp recordings are the gold standard to infer
synaptic function and have been widely applied to characterize synaptic connections
among pre- and postsynaptic neurons, including the strength of their excitatory and
inhibitory postsynaptic potentials (EPSPs/IPSPs), the time course of the postsynaptic
responses, and the reliability of synaptic transmission. To assess if two neurons are
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monosynaptically connected, typically, whole-cell recordings in both cells are obtained,
and spikes are induced via brief repetitive stimuli to measure the evoked EPSP/TPSP
amplitudes and the direction of the connection(s) [13]. Whole-cell recordings from up to
twelve simultaneously recorded neurons have also been used to study the organization of
local connectivity in brain slices [3,/13]. Overall, the data obtained from patch-clamp
recordings have provided essential information on the mechanisms underlying neuronal
circuit computation, that, so far, could not be provided by EM-based reconstructions.
This holds particularly for patch-clamp studies that were performed in vivo [28], which
do not suffer from potential slicing artifacts [27]. Despite attempts to automate and
scale-up patch clamping procedures [29], the throughput for connectivity studies has
remained comparably low.

Besides inferring synaptic connectivity from intracellular recordings, there has been
a surge in studies that used the statistical relationship of the activity among neurons as
an indirect measure of neuronal coupling [30]. Spike train cross-correlograms (CCGs),
for example, have been applied to estimate spike transmission or effective connectivity
between defined neurons and/or specific brain regions [31-36]. To improve the
performance of CCG-based circuit inference, several modifications have been suggested —
such as, to take into account co-modulating background dynamics [37H39], to apply
model-based timescale separation techniques [40L|41] or, more recently, to apply deep
learning methods [42]. Still, inferring synaptic connectivity from the ongoing spiking
activity of neurons remains highly challenging [43]. This holds true, in particular, if the
strength of synaptic connectivity is weak [40|, if the neuronal networks cannot be fully
sampled [44], and if the used spike trains exhibit strong temporal periodicity, e.g.,
caused by correlated network bursts [39L[45]. Such burst activity may lead to high spike
train synchronicity between two neurons that, however, are not synaptically
connected |45]. This limits the interpretability of CCG-based methods but also holds for
other algorithms used to infer interneuronal coupling in neuronal networks, recorded
with either electrophysiological [30] or optical methods |46L[47]. Tt is important to be
aware of these caveats when interpreting the topology of neuronal networks obtained
from such activity-based connectivity-inference methods [48-52].

In this study, we introduce a workflow to benchmark algorithms that have been used
to infer neuronal connectivity from large-scale extracellular recordings [36,40,53H56].
We, therefore, standardize the output of algorithms and compare statistically inferred
connectivity estimates on synthetic ground-truth data sets and experimentally obtained
connectivity labels. The first ground-truth data set was generated by stimulating leaky
integrate-and-fire (LIF) neurons with empirical spike-train data and statistically defined
noise [41]. These data allowed probing the effect of varying network dynamics and
recording lengths on network reconstruction performance. In addition, we assessed the
performance of connectivity-inference algorithms on in vitro data, where connectivity
labels, where inferred from parallel whole-cell patch-clamp and high-density
microelectrode array (HD-MEA) recordings obtained from primary neuronal
cultures [57,58]. Finally, we introduce an ensemble artificial neuronal network (eANN)
and probe whether ensemble learning techniques [59] can improve today’s methodology
to infer synaptic connectivity. We train the eANN on the standardized output of all
implemented network-inference methods and demonstrate that knowledge about the
shared output from these methods does indeed lead to gains in network reconstruction
performance. To this end, we use a SHapley Additive exPlanations (SHAP) [60] analysis
to better understand the relative contribution of individual input features to the
superior eANN performance, and to visualize and interpret which methods were driving
the eANN model to predict excitatory or inhibitory synaptic connections.
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Fig 1. An ensemble artificial neural network to improve neuronal
connectivity inference. A Schematic illustrating the developed analysis workflow to
systematically compare statistically derived neuronal connectivity across inference
algorithms and defined network dynamics. Empirical spike train data (i), obtained by
high-density microelectrode array (HD-MEA) recordings from primary cortical cultures,
and different types of white noise (ii) were used as input to a network (iii) of leaky
integrate-and-fire (LIF') neurons (300 neurons, 50:50 excitatory (E) and inhibitory (I)
neurons), adopted from previously reported work [41]. The a priori defined structure
underlying the LIF network served as the first ground truth to compare established and
new connectivity inference methods providing a score (s) and a weight (w) for each
connection (v-vi). Moreover, connectivity-inference performance was also assessed on
ground truth data obtained from parallel HD-MEA /patch-clamp recordings [58]. B
Schematic depicting the architecture of the ensemble artificial neural network (eANN).
The eANN receives as input the connectivity score s and weight w values from multiple
established inference algorithms. Then the feed-forward network is trained. Finally, the
eANN outputs probability values which indicate whether the connection is excitatory,
inhibitory, or if there is no connection at all.

Results

A framework for the systematic comparison of activity-based
connectivity inference algorithms

To compare inference methods and evaluate their performance, we standardized the
connectivity inference task: Each inference method received the same spike train
activity, i.e., the spike times and the corresponding unit IDs of a given neuronal network
recording. These data consisted of either a network simulation (see Sec. Fig. ), or
an HD-MEA extracellular network recording obtained from primary cortical cultures
(see Sec. . Then, as output, each connectivity inference method provided two
results: (i) a directed weighted graph, that indicated the connectivity strength between
all nodes, and (ii), a matrix that contained the connectivity scores (CSs) for all
connections. We will refer to the first output as the weight graph (W), and to the
second output matrix as the score graph (S). Each edge of the inferred connectivity
score graph S represents a CS.

For a given putative connection between a presynaptic neuron ¢ and postsynaptic
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neuron j, we defined a CS s;_,;. The CS indicates the likelihood of a putative
monosynaptic connection according to the respective inference method. Of note, the
meaning of the CS depends on the method: For example, the CS could be a (log)
probability, a negative (log) p-value, or the absolute value of a z-score (see Sec. |S5| for
the definition of CS and Table . As for the CS graph S, the interpretation of the
weight graph W depends on the respective inference method, e.g., it might indicate an
estimate of synaptic strength or how much information about the spike train j is
contained in spike train ¢. For a given connection from neuron i to j, we define a weight
Wi—j-

We consider a putative connection between neuron ¢ and j as present when the
respective confidence score s;_,; is larger than a statistically defined threshold. This
threshold, however, has to be defined by the experimenter. Connections below this
defined threshold are regarded as unconnected pairs. As synaptic connectivity is
generally assumed to be sparse, this task is highly unbalanced, i.e., we would expect
that the unconnected pairs largely outnumber actual connections. Such imbalance poses
a problem for accuracy measurements [61]. To compare network reconstruction
performance across algorithms, and to take this imbalance into account, we here
considered the averaged precision score (APS). We defined the APS as the integral of
the precision-recall curve, which attains values between 1 (the best possible outcome)
and 0 (the worst outcome). Since the APS is an aggregate statistic over all possible
thresholds and some analytical questions do require thresholded graphs, we also
considered the Matthews correlation coefficient (MCC) [62] as a second performance
metric. See Supplementary Information [S6| for details.

Overview on connectivity inference algorithms

Historically, many studies have applied cross-correlograms (CCGs) to estimate putative
mono-synaptic connections between neurons [31-33,/35-37]. In the present study, we
considered three CCG-based connectivity inference methods: First, the Coincidence
Indez (CI), which integrates the CCG over a small synaptic window [56] and compares
it to values obtained from jittered surrogate data (i.e., spike trains for which the
short-latency synaptic relationships have been destroyed). The second method convolves
CCGs with a partially hollow Gaussian kernel [37] and thereby allows separating slower
background activity from faster synaptic interactions. We refer to this method as the
smoothed cross-correlograms (sCCG) algorithm [36]. And finally, a third method, which
fits a generalized linear model (GLM) to the CCGs [40]. As in the original

publication [40], we refer to this method as the GLMCC algorithm. The GLM models
the background spiking and the potential synaptic effect as two separate additive
functions: The stronger the contribution of the synaptic effect is, the more likely a
synaptic connection.

Several studies have applied information-theoretic measures to estimate neuronal
connectivity and information flow between brain regions and individual cells
[511[52,54,163.64]. Here, we utilized an efficient algorithmic implementation of transfer
entropy (TE) [65] to infer connectivity from the discretized spike trains. TE has been
used as a measure of information flow and quantifies — in this context — if information
about the spike activity of neuron j improves the prediction of the activity of neuron ¢
in addition to knowledge about the spiking history of neuron ¢ alone [64].

We also implemented a modified, directed variant of the spike time tiling coefficient
(dSTTC) [53]. Although originally not developed to quantify synaptic connectivity, but
rather the synchronicity between pairs of spike-trains, it has recently gained a lot of
popularity [66H68]. The dSTTC variant used here quantifies interneuronal coupling by
estimating the proportion of spikes of two units that appear within a specific synaptic
window. More specifically, dSTTC checks whether there is an access or scarcity of
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spikes of neuron j following the spikes of neuron ¢ and spikes of neuron i that were
elicited before those of neuron j.

Finally, the last inference method was based on a generalized linear model for
point-processes (GLMPP) [55]. The GLMPP model allows the integration of multiple
covariates, such as the past activity of the entire network, in an explanation of the
observed spiking activity of a neuron 7. Models of this class have been used in the past
for inferring connectivity among partially observed neuronal populations [69].

Each inference method was adapted to the previously described analysis framework,
i.e., each method provided a score graph S and a weight graph W. For more details on all
implemented algorithms, and the applied modifications to fit them to our workflow, see
Supplementary Information Sec. An overview of all methods is provided in Tab.

Using an ensemble artificial neural network to improve
connectivity inference from spike trains

Due to the great diversity of neuronal cell types and connectivity, and the inherent
complexity of neuronal dynamics, it is likely that network-reconstruction algorithms
perform better in some scenarios than in others [46}70]. In this study, we introduce an
algorithm that is based on an ensemble artificial neural network (eANN), and which can
make predictions about synaptic connections after being trained on some training
ground-truth simulation with the corresponding output of multiple inference methods
(see previous section). Hence, one goal was to probe whether the collective input from
traditional inference algorithms — as learned by the eANN — improves network
reconstruction accuracy and robustness (Fig. [1)).

To address this question, we first trained the eANN on connectivity-inference results
obtained with the traditional algorithms from leaky integrate-and-fire (LIF) network
simulations (see Sec. . For a putative connection between neurons ¢ and j, the
resulting eANN received the weight w;_,; and connectivity scores s;_,; of all six
inference methods as input. The implemented eANN architecture consists of a
feed-forward network |71] with two hidden layers with ten units each and a rectified
linear unit (ReLU) non-linearity. The output layer has three units and a softmax
non-linearity and indicated either an excitatory (E), an inhibitory (I), or no connection
at all (Fig. ) Because we hypothesized that excitatory and inhibitory connections
might be reflected differently by each method, we chose a multi-class classification
setting. The model was then trained on different LIF simulations by minimizing the
cross-entropy loss using the ground-truth labels in the training data. The final
connectivity score s of the eANN was defined as the maximum softmax output for
either an excitatory or inhibitory connection. If the CS for a connectivity pair i — j
exceeded a specific predefined threshold, the connection was deemed significant. The
eANN method simply predicts if a connection exists (or not), without assigning a weight
w. Predicting actual synaptic strength is expected to be a more challenging task, which
we leave to future research. Note, that throughout this paper we train only the network
once, and subsequent results are obtained by this network.

Comparing network reconstruction performance across
algorithms, network dynamics, cell types, and recording
duration

To benchmark connectivity-inference methods, we first turned to LIF simulations (see

Sec. 7 which were obtained similarly to an approach outlined in a previous study [41].
The spike train output of the LIF simulations resembled the subsequently used in wvitro
HD-MEA recordings. Each LIF network consisted of N = 300 neurons, equally split
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Method name Abbreviation Description

Measures the excess/deficit of coincidental firing
Coincidence index CI compared to what would be expected by chance
(shuffled data). Adpoted from [56]

Quantifies the temporal correlation between two

Smoothed cross-correlogram sCCG spike trains; a smoothing kernel is used to discern
background activity from synaptic interactions |37]

Quantifies the synchrony between two neurons
dSTTC by considering the temporal overlap and rate
of spikes in a defined temporal window [53].

Directed spike time tiling
coefficient

Parameterized generalized linear model to
GLMCC facilitate synaptic connectivity inference from
cross-correlograms. [40)

Generalized linear model (GLM)
cross-correlogram

Measures how knowledge about the spike history

Transfer entropy TE of one neuron reduces the uncertainty about the
future spiking of another neuron [54}/65|

Generalized linear model to parametrize firing
GLMPP rate according to network history. Modified
from |72 and combined with methods from [73].

Generalized linear model (GLM)
point process

Ensemble artificial Neural network trained on CI, sCCG, dSTTC,

neural network as introduced in this study.

eANN GLMCC, TE and GLMPP to predict connectivity,

Table 1. Overview on connectivity inference methods and abbreviations.

into excitatory and inhibitory neurons, and connected randomly with a probability of
0.05. The LIF network received two types of input: i) spike train data from an
experimental recording to mimic realistic dynamics (connection probability to LIF
neurons 0.1), and ii) white noise input. The white noise was varied, to map out a range
of different dynamical regimes. As benchmarking datasets, we generated three different
simulations: a high-bursting regime (burst rate: 1 Hz, average firing rate: 1.6 Hz,
coefficient of variation: 0.3, see Fig. ), an intermediate-bursting regime (0.4 Hz,

1.1 Hz, 0.4), and a low-bursting regime (0.2 Hz, 1.3 Hz, 0.2). To test the robustness of
our algorithms, we grouped each simulated network dataset into three subsets, each
composed of 100 neurons (50 excitatory and 50 inhibitory neurons); each simulated
dataset was 60 min long.

In Figure 2] we provide an overview of the benchmarking results for all implemented
inference algorithms, including the eANN, across different activity regimes, excitatory
and inhibitory connectivity types, as well as network inference calculations run on fewer
data (subsets of 10, 15 or 30 min of the data; see subsampling analysis). Example
activity for the simulated high-burst regime is illustrated in Fig. [2JA. A network,
reconstructed by two of the best-performing algorithms (GLMCC and eANN), is
depicted in Fig. and C; the average APS and MCC statistics across all methods are
depicted in D-E); the reconstruction performance for excitatory and inhibitory
connectivity is shown in panel Fig. 2F.

In line with previous research [43}46], we found that the network reconstruction from
the spiking activity was altered, if the provided spike train data contained periods of
very synchronous activity. This became also apparent in the results depicted for the
GLMPP and TE algorithm (Fig. and F). While the performance of these algorithms
was good for the low burst regime (e.g., TE: APS=0.74, MCC=0.70; recording duration:
60 min; connectivity thresholded at maximum MCC value), it deteriorated strongly for
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Fig 2. Reconstruction performance across algorithms, dynamics, cell types,
and recording length. A Example raster plot (upper panel) and traces of binned
population activity (lower panel; the number of spikes per second and neuron) of the
high-burst rate condition. B Network reconstruction obtained from a subset of the data
shown in A, exemplified for the GLMCC method . Red and blue squares correspond
to ground-truth excitatory and inhibitory synapses. White and black circles are
predicted true positives and false positives. C Same as B, for the results obtained with
the eANN approach, which generally improved the reconstruction performance. D The
mean average precision score (APS, upper panel) and Matthews correlation coefficient
(MCC, lower panel), estimated across all connections, obtained from all inference
algorithms and the eANN across three different dynamical regimes. Dots depict the
performance obtained on three different subnetworks of the same simulation. E
Connectivity reconstruction performance (APS, MCC) as a function of recording time.
Results indicated an improvement for longer recordings. Results in panel E are depicted
for the intermediate dynamical regime.
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Fig 2. (continued) F APS and MCC for each type of connectivity, that is, excitatory
(E, in red), inhibitory (I, in blue), combined (E+I, in black). Correspondingly, the
performance gains achieved by the eANN are plotted in shades of red, blue, and black.
G Quality of topological feature reconstruction for the inferred network across the three
dynamical regimes. In the upper panel, the relative difference between four global
features (network density, average clustering, and efficiency) is shown. The panel in the
middle shows average Pearson correlation coefficients for the local/nodal metrics,
comparing values obtained for the ground truth and inferred networks. Black stars
indicate the method that performed best. The lower panels depict the absolute
difference of triplet-motif frequencies between the ground truth and the inferred
networks.

recordings for the high burst regime (TE: APS=0.55, MCC=0.59). Here, the inferred
connectivity suffered from many false positives. The performance for the GLMCC
method seemed less affected (GLMCC: APS=0.76 (low)/0.79 (high), MCC=0.74/0.79).
The performance of the GLMCC algorithm for excitatory connections was fairly good
overall (Fig. ; excitatory connections in red), but less robust for inhibitory
connections (few false positives; Fig. and F; inhibitory connections in blue). For all
methods, reconstruction performance decreased for shorter recording lengths (Fig. )7
again, in agreement with previous reports [40,|74]. Very similar performance profiles
were also observed for most of the other inference algorithms (Fig. 2D-E).

Next, we probed the network-reconstruction performance of the eANN. Results
indicated that the eANN outperformed all other inference methods — both, across all
dynamical regimes (Fig. ), and when applied to shorter recordings, respectively fewer
data (Fig. ) The most substantial improvements were observed for the
intermediate-burst regime. Here, the average APS for the eANN was 0.88, i.e., a 35%
improvement compared to the best-performing model (GLMCC: APS=0.65). Similarly,
we found a 24% improvement in the MCC values for the eANN (eANN: MCC=0.81)
compared to the GLMCC (eANN: MCC=0.65; see Fig. ) The main performance
gains for this condition resulted from a reduction in false positive excitatory connections
and an increase in true positive inhibitory connections (see Fig. [2B-C). For the
temporal subsampling analysis (Fig. ), we compared the reconstruction performance
of all algorithms on 10, 15, 30, and 60-minute subsets of the data. Although the eANN
performance also decayed for shorter data segments, it was still significantly better
compared to the other methods. Interestingly, the accuracy values of the
best-performing traditional inference method, the GLMCC algorithm, degraded
strongest on shorter recordings (lowest ASP/MCC values for spike train data below 30
minutes). See Fig. for the precision-recall curves across all datasets and algorithms.

Finally, we probed how accurately the different algorithms could infer the global and
local topological statistics of the simulated ground-truth networks. For the global
metrics, we quantified the dissimilarity between the inferred networks Fi,s and the
ground-truth networks Fy, by their relative distance (Fins — Fygi)/Fyt. For the local
topological metrics, we computed the Pearson correlation p between all nodal values of
the inferred network and the nodal values of the ground-truth network; the reported
values were averaged over three different networks. In Fig. [2| G, we report summary
results for reconstructed graphs that were binarized with the best-performing MCC
value. We found that many of the inferred connectivity metrics, including basic
properties such as the network density, but also nodal features (e.g., the average
clustering coefficient), differed substantially between algorithms and dynamical regimes.
As expected from the results depicted in Fig. 2| D, most connectivity methods, and in
particular the GLMCC algorithm, performed reasonably well in the low-burst regime.
Here, we found only little relative differences between the global/local topology of the
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ground-truth networks and the topology of the inferred networks. For the intermediate
and high-burst regimes, however, the estimates became worse. Here, the eANN excelled
and outperformed all other methods. The average relative difference in global
topological metrics for the eANN was 4%, 10%, and 6% for the low, intermediate, and
high-burst regimes, respectively. For the second-best method, the GLMCC algorithm,
the relative difference in global topological metrics were 2% (low), 27% (intermediate),
and 13% (high-burst regime). For the local features, the eANN performed best on
average (Pearson’s correlation: 0.74, 0.63, 0.81 for the high, intermediate, and low-burst
regime); the performance of the GLMCC algorithm was still good, but lower on average:
0.62 (high), 0.44 (intermediate), and 0.65 (low-burst regime). The good reconstruction
performance of the eANN algorithm became even more apparent for the inference of
triplet motifs [18]. While many algorithms showed similar results in their estimates of
the frequency of motifs, the eANN performed overall very well (Fig.[2| D). Of note, in
Fig. [S2 we also report the topological analyses for graphs binarized with a threshold
obtained from jittered surrogate data (o = 0.01). As for the results presented here, we
observed that the eANN showed a very robust performance.

While the eANN does not provide a prediction of the synaptic strength, we observe
that its CS s is correlated with synaptic strength (see Fig. [S8). Furthermore, we
investigated the performance on a LIF network simulation with an 80/20 E/I
connectivity in Fig [S7, where we observed better overall performance of all connectivity
inference methods with the eANN being the most performant method.

SHAP analysis of eANN output

Next, we sought to understand in more detail which input features of the eANN
contributed most to the improved reconstruction performance. We, therefore,
investigated the eANN output with a SHAP analysis [60]. A SHAP analysis allows
determining how much each of the connectivity methods (i.e., the input features) adds
to the eANN predictions of excitatory or inhibitory synaptic connections. The SHAP
values, which are calculated for each of the connectivity methods and each prediction,
represent the contribution of the individual methods to the prediction task - and
thereby explain party the inner workings of the eANN model. Figure [3] depicts the
SHAP values for 1500 putative connections obtained from an eANN analysis performed
on simulated spike trains in the intermediate-burst regime. In panel A, we depict SHAP
values for example inhibitory and excitatory connections. The results indicate that
approximately three features contributed most prominently to the decision of the eANN
in favor of an excitatory (E) connection (upper panel), namely, the obtained weight of
the GLMPP method and the connectivity score (CS) values of the TE and sCCG
algorithms. For the inhibitory (I) connection (lower panel) mainly the weights of
GLMPP and GLMCC methods contributed to the decision. In the figure, the
contribution to the eANN output can be inferred from the length of the arrows, here
depicted in green, respectively purple (Fig. ) While many features seemed to carry
information about excitatory connections (Fig. 3| B, top panel) only about two features
were predictive for inhibitory connections. However, the SHAP values for these features
were quite variable. Interestingly, we observed that the features that yielded — on
average — the highest SHAP values, were the same for excitatory and inhibitory
connections (i.e., the weight estimates inferred by the GLMPP and GLMCC
algorithms). However, we also found differences in how features contributed to detecting
excitatory and inhibitory connections. For example, while the CS of the sCCG method
contributed to the detection of excitatory connections, it contained only little
information for the inference of inhibitory connections. To illustrate how single features
contribute to the classification of excitatory/inhibitory connections, we depict the exact
SHAP values of the two top-ranked metrics (GLMPP and GLMCC) as a function of
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Fig 3. SHAP analysis on eANN output. A SHAP values for example an
excitatory (E, top panel) and an inhibitory connection (I, bottom panel), ranked
according to their importance. The length of the arrows denotes the approximated
feature contribution to the eANN output, as estimated by the SHAP method [60]. The
y-axis shows the corresponding features with the feature value in brackets. Green
arrows pointing to the right indicate that this feature was informative in the process of
determining an E/I connection; purple arrows pointing to the left indicate the opposite.
Normalized histograms, plotted in light green and purple in the background, show the
eANN output for unconnected pairs and connections respectively. The dashed line is the
average eANN output for all connections in the dataset. B The features with the
highest average SHAP values for excitatory (top) and inhibitory connections (bottom).
Red and blue bars denote the average SHAP values for excitatory and inhibitory
connections, respectively. The error bars denote the standard deviation, calculated over
all excitatory /inhibitory connections present in the dataset. C SHAP values as a
function of feature value for the two top features depicted in panel B, namely GLMPP
w, and GLMCC w. Black dots indicate unconnected pairs.

their feature values (Fig. [JIC): Results indicate that the two features were mainly
negative for inhibitory connections (depicted in blue) and positive for excitatory
connections (depicted in red); high SHAP values often correlated with large absolute
feature values. This held, in particular, for the negative weight estimates of the
GLMPP, indicating that this feature may contribute strongly to the identification of
inhibitory connections. It is noteworthy, that none of these features alone was sufficient
to separate actual connections from unconnected pairs. We propose this underscores
that the eANN approach is advantageous for the reliable inference of connectivity from
spike train data. Additionally, we investigate the correlations among input features in
Fig. where we observe that for excitatory connections features are much stronger
correlated than for inhibitory connections. This yields evidence, that different input
methods carry different kinds of information, and that the eANN can leverage this fact
best for inhibitory connections yielding a strong performance boost for these.

Application to HD-MEA /patch-clamp data

Next, we applied the developed inference pipeline to experimental data, obtained
through parallel HD-MEA network and whole-cell patch-clamp recording in in vitro
neuronal cultures (dataset 1; for details on the data see [58]; Fig. [4f n=3 patched cells;
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culture age: DIV16-18; see Sec for details). Briefly, following a long HD-MEA
baseline ~ 3 h long recording for spike-based connectivity inference, we transferred
neuronal cultures to a setup that enabled simultaneous HD-MEA /patch-clamp
recordings. Here, single neurons were patched on the HD-MEA and, in parallel,
recorded extracellularly on the HD-MEA. Two distinct paired recordings were obtained
from each patched cell. First, we recorded spontaneous spiking of the patched cell in
whole-cell current-clamp mode in addition to simultaneously recording extracellular
HD-MEA signals. The obtained data then allowed to perform spike-triggered averaging
(Fig. 4] A-E) and to infer the electrical footprint (EF) of the patched neuron. The EF is
the extracellular profile of a neuron on the HD-MEA (Fig. 4| D and E).

To study the synaptic input to the individual postsynaptic cells during ongoing
spontaneous activity, we recorded neurons in voltage-clamp mode (Fig. |4 F). As
previously reported [57,/58], combining the spontaneous/evoked electrical activity of
neuronal networks, recorded on the HD-MEA (Fig. 4| F'), with the measured
postsynaptic currents (PSCs) in patched neurons, allowed for reliably reconstructing
connectivity to putative presynaptic partner cells. To estimate the effect of
extracellularly recorded neurons on the patched cell, and most importantly, to infer
synaptic connections between the patched neuron and its putative presynaptic network,
we developed a regression-based connectivity inference method (similar to |75], see
Sec. |S2| for details). The method was first benchmarked on in silico data; an overview of
the obtained performance results is provided in Fig. Our in silico results indicated
that the developed method can robustly detect synaptic connections (high recall), with
only very few false positives (high precision). Although the performance deteriorated for
low-rate conditions and more correlated spiking, the method proved very reliable for a
wide range of parameters.

Next, we applied the developed intracellular connectivity inference method to three
patch-clamp recordings obtained from a previously published dataset [58], and identified
26 putative synaptic connections among 131 possible combinations. In Fig. {H we show
an example fit with three PSC cutouts of three identified connections in an example
recording; Fig. [l depicts the CCGs and PSCs of three connections found in the
recording and an unconnected pair. For an overview of all PSCs and corresponding
pair-wise CCGs of identified connections, as well as for information on which algorithms
succeeded in detecting the connection, please see Fig. [S6

With this labeled experimental data at hand, we then evaluated the performance of
the existing activity-based inference methods, and the eANN, on 3-h-long HD-MEA
baseline recordings. The eANN is the same as for Fig. [2] and was not re-trained for
these analyses. For the in vitro data, we see similar performance for the six input
methods in terms of APS, but varying performance for MCC (see Fig. ) The
GLMCC algorithm (MCC=0.37), the sCCG (MCC=0.49), and the TE algorithm
(MCC=0.36) performed best among the input methods. The superior performance of
GLMCC originates rather from higher precision than recall (recall=14 correctly
classified connections of 20 connections; precision=14 correctly classified connections
among 39 identified synapses). In comparison, the sCCG method (recall=23/26;
precision=23/53) and the TE algorithm (recall=16/26; precision=16/38) both yielded
similar or higher recall, at the expense of lower precision. As for the analysis of
simulated ground truth, we found that the eANN (MCC=0.56) outperformed the other
methods in terms of both MCC and APS. Also here the dominating factor was, that the
eANN yielded much higher precision at inferior recall (recall=17/26; precision=17/26).
Considering these numbers, in particular, for recall and precision, we found that this
performance increase was mainly due to more accurate predictions (higher precision), at
the cost of not identifying some true connections (lower recall). In summary, our results
indicate that connectivity inferred by the eANN method is more precise than the results
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Fig 4. Validating synaptic connectivity inference with parallel HD-MEA
and patch-clamp recordings. A Panel depicts a single patched neuron on the
HD-MEA, including the patch pipette. The neuron was labeled with Alexa Fluor 594
through the patch pipette; HD-MEA electrodes can be seen in the background. B
Example recording of a patched cell and some of its extracellular signals, obtained with
HD-MEA network recordings (spikes are depicted in black) that were conducted in
parallel to the patch-clamping (lower panel, in blue; whole-cell patch-clamp mode).
HD-MEA and patch-clamp signals were aligned C, and allowed for inferring the exact
location and electrical footprint (EF) of patched neurons on the HD-MEA D. To infer
the putative pre-synaptic connectivity of individual (patched) neurons, we first
performed long HD-MEA network recordings. Next, we applied a post-processing step
to match the EF of the patched cell, with the EF templates obtained via spike sorting
of the HD-MEA network recordings. The panel E depicts the overlap of the EF
obtained during the patch session (in black) and the EF obtained from spike-sorted data
(in red). F Extracellular network recording (upper panel, raster plot) and simultaneous
intracellular current signal (lower panel), obtained from a whole-cell voltage-clamp (VC)
recording. VC recordings were used to measure the excitatory/inhibitory postsynaptic
currents (ePSCs/iPSCs) in the patched cell, and their occurrence to the activity
obtained from spike-sorted HD-MEA data. Panel G depicts three example connections
of the patched cell (EF in black) to three presynaptic neurons; the EFs of these cells on
the HD-MEA are colored in light blue, orange, and purple. H IC model fit to
patch-clamp recording. Spikes of identified presynaptic neurons are shown on top,
aligned with the recorded currents of the patched neuron. PSCs of three units are
shown as insets, with the average depicted in black and the fitted model PSC displayed
in different colors. The shaded area is the 5 — 95% quantile.
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Fig 4. (continued) I PSCs of four cells, three connected pre-synaptic neurons, and
one unconnected neuron, are shown along with their corresponding CCGs. Note, that a
high-chloride internal patch-clamp solution was used to simultaneously measure the
synaptic activity of excitatory and inhibitory presynaptic cells [58]. As a result, as
depicted, inhibitory input currents also have a negative polarity. On the right side of
the CCG, a colored circle indicates whether the respective connectivity method found a
connection or not (cross). J Panel depicts the performance of the different connectivity
methods averaged over the three patched neurons.

obtained with any of the other inference methods.

Characterizing in vitro neuronal network connectivity and
topology

Finally, we applied the eANN pipeline to a second dataset of HD-MEA network
recordings, obtained from primary cortical cultures (dataset 2; n=6 cultures; recording
duration: 1 h; culture age: DIV14). The main goal of this analysis was to compare how
connectivity and topological properties varied across the implemented inference methods
(Fig. . As before, all network recordings were first spike-sorted and underwent several
quality-control steps to ensure that connections were estimated on sufficient activity
(Fig. , see Sec. . To reduce between-network variability, we only sampled 100
units from each network. Comparing the overall distribution of empirical eANN scores
(Fig. , depicted in black) to the corresponding surrogate distribution of eANN output
values (depicted in yellow) indicated that the spike-train jittering effectively destroyed
short-latency synchronization between individual neurons. The distribution of
experimentally inferred values showed a clear peak in the eANN weight distribution that
distinguished putative synaptic connections from unconnected pairs (Fig. ) Next, we
calculated the consensus distribution (Fig. ), i.e., the overlap between all significant
connections, obtained by the six traditional inference methods and the network inferred
by the eANN (threshold value: «=0.01). The results indicated that most eANN edges
were found by five of the six inference methods (32.6%). Interestingly, some edges were
found by the eANN method, but not by the other methods at the selected threshold
(edges in zero bin: 18%). This finding indicates that some eANN edges could not
exclusively be explained by the overlap across all inference methods, but that there is
added value by the eANN algorithm at this threshold. The network density decreased
with smaller a-values (Fig. ; a-values: 0.05, 0.01, 0.005 and 0.001), and varied
significantly as a function of inference algorithms (the repeated measures’ analysis of
variance (ANOVA) for a a threshold value of 0.01 was: F(6,30)=189.77, p=6.5659¢-10;
p-value with Greenhouse-Geisser adjustment); the network density of all graphs was
sparse (e.g., for a threshold of «=0.01, the network density varied between 1-9%;

Fig. and G), in line with previous reports [18,/76]. All implemented algorithms
reconstructed networks that showed a clear decay in connection probability as a
function of interneuronal distance (Fig. [fF).

Furthermore, we found that topological properties of network segregation and
integration differed as a function of the inference method (clustering: F(6,30)=102.16,
p=1.67e-T; efficiency: F(6,30)=222.3, p=5.29e-14; modularity: F(6,30)=40.245,
p=3.23e-5; small-world-index: F(6,30)=7.28, p=0.004; all p-values with
Greenhouse-Geisser adjustment). Despite the reported differences, all algorithms
implied that networks possessed a non-random modular, small-world organization
(small-world-index > 1); a topological analysis with proportionally thresholded networks
is provided in Supplemental Material (Fig. [S3).

The inferred in vitro cortical networks also featured a significant over-representation
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of some triplet motifs [77] (Fig. [l[). The number of motifs that were significantly
over-represented in the empirical networks varied between methods (e.g., four motifs for
dSTTC and eight motifs for the GLMCC graphs), but all implemented algorithms
suggested that motifs 9, 11, 12, and 13 were over-represented compared to an
appropriate surrogate network (threshold: a=0.01; motif significance a-value=0.001;
p-values were corrected for multiple comparisons across motif IDs and algorithms;

Fig. ) Despite strong differences in the frequency of specific motifs between inference
methods, there was a high resemblance across networks within each method (see

Fig. . Results obtained from the topology and motif analyses indicated a higher
similarity (correlation coefficient) between the output of the eANN and the GLMCC
algorithm compared to the other methods (Fig. , lower triangle). On average,
topological properties and motif frequency values were more similar for the CI, sCCG,
dSTTC, GLMCC, and TE algorithms — as compared to GLMPP and eANN. This trend
is reflected in the pairwise Matthews correlation coefficient (MCC; Fig. [51J, upper
triangle).

Finally, and to further supplement the topological properties, we also assessed the
functional connectivity properties of eANN-inferred networks. We, therefore, calculated
the spike transmission probability (STP) of significant eANN connections (threshold:
a=0.01) using an STP-variant, that has been adopted and improved to better infer
STPs on recurrent/bursty spike activity [39]. A positive STP value was taken as an
indicator for an excitatory connection and a negative STP as an indicator for an
inhibitory connection. Across all 1794 connections (2.99% overall network density), as
inferred by the eANN algorithm (network threshold a-value: 0.01), 63.7% of
connections were excitatory and 36.3% were inhibitory (Fig. ) Inspection of the
CCGs indicated that many of the observed inhibitory connections might participate in
inhibitory feedback motifs. Overall, these results underscore that the eANN algorithm
was able to pick up connections of both excitatory and inhibitory types, supporting our
previous modeling results.

Discussion

The present study demonstrates that inference of synaptic connectivity from
extracellular spike train dynamics can be improved by the application of an ensemble
artificial neural network (eANN). By benchmarking the eANN to more traditional
connectivity-inference algorithms in a standardized analytical framework, we report a
superior reconstruction performance for the eANN, that persisted across different
dynamical regimes and recording durations. We find that the eANN did also provide a
more accurate reconstruction of the type of connectivity (excitatory or inhibitory), and
better estimates for the global and local topology of networks in silico. Results derived
from a SHAP analysis allowed for further validation of the specific contributions of
algorithms to the eANN performance. Importantly, we found improvements in network
reconstruction for both simulated and experimental ground-truth datasets. Such
generalizability indicates that the developed method leads to more accurate and robust
connectivity inference in datasets for which knowledge of the underlying synaptic
connections is not available.

The challenge to infer synaptic connectivity from spike trains

The extent to which synaptic connectivity and causal relationships between neurons can
be studied, based on spike train dynamics alone, remains a matter of active debate.
Although there have been attempts with small well-established circuits [78}79], this
endeavor has proven challenging for many reasons [43,80]. In line with previous
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Fig 5. Characterizing the connectivity of in vitro neuronal networks. A
Firing rate cumulative density function (CDF) of 600 spike-sorted units from HD-MEA
recordings obtained from primary cortical cultures (top panel; n=6 cultures; 100
randomly selected units per network; recording duration: 1 h; culture age: DIV14); and
CDF of inter-spike interval coefficients of variation (CV) for the same cultures (lower
panel). B Network density as a function of threshold values (corresponding to a: 0.05,
0.01, 0.05, and 0.001) across all inference methods. « threshold values were derived
from surrogate connectivity estimates (temporally jittered spike trains). Network
density decreased with smaller a-values, and varied significantly across methods. C
Overall distribution of eANN weights of empirical networks (in gray; values are depicted
in logarithmic space) and overlaid with the corresponding distribution of eANN values
inferred from surrogate networks (in yellow). The distribution of experimentally inferred
values demonstrates a clear peak in the eANN weight distribution that distinguishes
putative synaptic connections from unconnected pairs. D Intersection of significant
eANN connections with those of all other connectivity inference methods. Panels D-K
depict network graphs thresholded with @ = 0.01.
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Fig 5. (continued) E Significant eANN edges cannot exclusively be explained by the
overlap across all inference methods. Panel E depicts the consensus distribution, i.e.,
the overlap across the six inference methods for all significant eANN edges; most eANN
edges were found by five of the other methods. About 20% of edges were found by the
eANN, but not by the other methods at the selected threshold (see zero bin). F Inferred
connectivity decayed with interneuronal distance (o = 0.01), and the likelihood of
long-range connections (> 1 mm) was very low. G Example connectivity matrices for
one culture inferred with all seven inference methods. H Topology of inferred in vitro
networks differed significantly across inference methods (o = 0.01; filled circles:
empirical data; empty circles: randomized surrogate networks). I All inference methods
yielded an over-representation of triplet motifs (see Fig. [2| for motif ID legend) but with
slight differences across methods. Dots depict motif IDs that occurred significantly
more frequently than re-wired surrogate networks (FDR corrected « of 0.001); the color
indicates the relative mean difference in their occurrence. J Lower triangle (red color
scale): Topological similarity, calculated by pairwise Pearson correlation coefficients
across the topological metrics shown in H and I across all inference methods. Upper
triangle (blue color scale): Network similarity, quantified by pairwise MCCs across all
adjacency matrices. K Display of putative excitatory (E) and inhibitory (I) connectivity
for all edges inferred by the eANN. The top panel depicts the baseline corrected CCGs
for the eANN edges with positive spike transmission probability (STP), i.e., excitatory
connections. The average CCG is depicted in the red bar graph at the top.
Correspondingly, the bottom panel depicts the putative inhibitory connectivity among
the eANN inferred edges with negative STP. Note, the logarithmic color scale of pair
counts. The excitatory and inhibitory connections are sorted according to their
positive/negative STP values.

work [43,/46], the results reported in this study underscore, that there are indeed limits
to activity-based network reconstruction (Fig. ) Using simulations to parametrically
model a range of dynamical regimes — we found, as expected, significant performance
alterations for most traditional algorithms once spike trains showed stronger temporal
periodicity. With few notable exceptions, such as the GLMCC algorithm, reconstruction
performance, quantified by the averaged precision score (APS) and Matthews
correlation coefficient (MCC), worsened significantly for data with more prominent
network burst-activity (Fig. 2D).

Among the many possible reasons for such performance, alterations are false positive
connections generated through, for example, common inputs, poly-synaptic connections,
or short-term synaptic dynamics [43|45]. The accuracy to infer a synaptic connection
from activity also crucially depends on the number of available spikes and synaptic
strengths [74]. Weak connections and/or availability of only a few spikes drastically
increase the likelihood of missing connections [81]. Moreover, insufficient coverage of the
network may further alter the reconstruction performance of algorithms [82]. A
combination of these factors most likely explains the observed imperfect inference
performance, even for simulated recordings with less correlated population activity
(Fig. -F). Moreover, it should be noted, that the a priori conceptual assumption of
what will be considered a connection, the choice of parameters for each method, and the
criteria that are applied to falsify the existence of such connections (e.g., via surrogate
generation) are likely equally important. Although previous studies have attempted to
compare different connectivity reconstruction algorithms [39,42,/70], most of them were
less unified conceptually and are difficult to compare to the present study. Moreover,
these studies used a variety of ground-truth data sets, including simulated calcium
imaging data, which suffers from low temporal resolution [46}47].
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eANN improves neuronal network reconstruction

Although ensemble methods have been proposed in the past [59], and used for the study
of large-scale brain networks [83},84], to the best of our knowledge, the present study is
the first to demonstrate that such methods can be generalized to cellular spike-train
data. More importantly, our results indicate that applying the eANN to such data
allowed for significant performance improvements in the reconstruction of synaptic
connectivity (Fig. 2t Fig. and . Using a simple feed-forward network
architecture [71], and training the eANN on the standardized output of several existing
connectivity-inference methods [36,/40,/53-56], we demonstrate that excitatory and
inhibitory connectivity, and the topology of neuronal networks, can be reliably inferred
from simulated as well as empirical spike-train data (Fig. 2| and . Overall, the eANN
outperformed all traditional methods (Fig. -G)7 and the performance gains were
relatively invariant to different dynamical regimes (Fig. 2D) and even persisted on fewer
data (Fig. ) Our results also revealed that the eANN integrates aspects of different
inference methods for its connectivity prediction (Fig. )7 and that high eANN output
values were absent, if the millisecond spike-timing information was disrupted, e.g., by
jittering the spike trains (Fig. ) While understanding the performance of neural
networks is typically challenging, insights gained from a SHAP analysis indicated that
the trained eANN assigned varying levels of importance to different input features, i.e.,
some inputs were more informative than others (Fig. . Interestingly, this held
particularly true for the detection of inhibitory connections (Fig. ) Here, the
GLMPP algorithm seemed to convey valuable input (Fig. , lower panel), a method
that performed less well in the detection of excitatory connections. Overall, results for
different connectivity types, network topology, and different network dynamics, as
calculated with eANN-inferred graphs, were robust across different threshold definitions
(Fig. [2 Fig. and Fig. . We hypothesize, that the observed robustness could be
attributed to the initial inference methods being designed to be somewhat invariant to
differences in firing rates or baseline neuronal activity. Applied to HD-MEA network
recordings, eANN-derived connectivity was most similar to graphs inferred by the
GLMCC algorithm (Fig. [pJ and Fig. [S10]). Despite these positive results, it should be
noted, that the eANN did not result in perfect reconstruction performance. Thus,
future studies should probe, whether considering additional features, more completely
sampled recordings, or longer recordings could improve network reconstruction even
further. Moreover, it would be interesting to probe, if inference performance improves,
if data-driven features obtained from other neural network methods, such as the
CoNNECT method [42], are integrated into the eANN.

In vitro neuronal networks show complex topologies

Our results on the putative synaptic connectivity of in vitro developing primary
neuronal networks, obtained by HD-MEA network recordings, and inferred by the
eANN and traditional inference methods, are largely in line with previous

reports [48,/49(51}/52,/63L[74]. All algorithms indicated that connectivity was locally
clustered, overall sparse (connection probability below 15%; Fig. )7 and that the
probability of connections decreased as a function of interneuronal distance (Fig. )
These results are also in agreement with previous patch-clamp work [13}/76]. Yet, it
should be noted, that the effect of the inference method on connectivity and topology
was considerable (Fig. ) For some topological measures, such as the clustering
coefficient (Fig. ), the between-method differences exceeded the differences observed
between the empirical and the randomized surrogate networks. For example, the
clustering results, calculated on graphs inferred by the eANN and GLMPP methods,
were significantly lower than the values of the randomized surrogate networks of some
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other methods (e.g., CI, TE, and dSTTC). Still, all networks comprised a modular
small-world structure (Fig. [FJH). Some subtle differences in the triplet-motif statistics
(Fig. |5) were observed in comparison to previous reports [63], but overall, these were
not pronounced, and many of the over-represented motif structures have been reported
by whole-cell recordings in slices [13}18].

Limitations

Several important limitations should be considered when interpreting the results
presented in our study:

First, the analyzed spike-train data were obtained from dissociated primary rodent
cortices cultured in vitro. Although such model systems have been used extensively to
study neuronal physiology at the cellular level 8,/10], and have, thereby, provided
fundamental insights into the mechanisms of underlying synapse formation and function,
there are limits as to how insights obtained from in wvitro connectivity can be translated
to in vivo [85]. Future studies should, therefore, train and apply the developed eANN
pipeline also to in vivo spike-train data — ideally, recorded in well-defined brain
subsystems, where inferred connectivity can be linked to structural connections
established with other methods [86].

The results presented in Fig. |5| were estimated on DIV14 neuronal networks, a time
point where GABAergic signaling may be still immature [87,/88]. Although early during
development, our results indicated the presence of some inhibitory connections among
the recorded neurons (Fig. ) The relatively young age of these cultures, however,
should be considered when interpreting the inferred network density. Likely, a
significant proportion of synapses is still ’silent’ at that time, and that some relevant
receptors are not yet fully expressed [89]. Also, the cell-plating density of neuronal
cultures, respectively the size of networks, affect overall synaptic strengths [76], and
hence will impact the ability to infer synaptic connections from activity [90].

A common limitation, shared by all methods in this study, is, that they approximate
connectivity from a network that is incompletely sampled. Such subsampling has been
shown to lead to altered network reconstruction performance [43}82,/90]. This holds also
true for more complex inference algorithms that can take into account the past activity
of the sampled network [54,/69]. Hence, the inferred connectivity may exhibit spurious
false positives due to common unobserved input that cannot be explained away [43}91].
This is also true for the experimental ground-truth data in our study. Live-cell imaging
with calcium or voltage sensors could be applied to improve coverage [46,[70,92], and
future studies should compare how network statistics change as a function of network
coverage.

We note, that also the empirical ground-truth data used in this study could be
further improved [58]. Applying targeted, electrical stimulation to defined pre-synaptic
neurons would allow for stronger claims about the found connections and their
interneuronal causal effects [57]. Moreover, it would help to have access to the neuritic
morphology of some parallel recorded neurons on the HD-MEA to better link the
inferred connections to axonal/dendritic morphology and neuritic overlap. Such
additional structural insights could also help to remove false positive connections.

Conclusion

In sum, this study presents an analysis workflow to systematically assess algorithms
that have been applied to the inference of neuronal connectivity from large-scale
extracellular recordings. To this end, we utilized simulated and experimental
ground-truth data, and compared statistically inferred connectivity across a range of
different conditions in a standardized manner. Moreover, we introduced an ensemble
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artificial neural network (eANN), that can integrate the output of multiple inference
algorithms, and probed whether this would lead to improved network-reconstruction
performance. Our results demonstrate that inference performance can be significantly
improved by the eANN, and that the obtained network reconstruction represents more
than just the sum of all methods.

Methods and Materials

Here, we describe the architecture and training scheme of the introduced ensemble
artificial neural network eANN. All methodological details on the HD-MEA and
patch-clamp experiments, the LIF simulations, the developed model to infer synaptic
connections from parallel recordings, details on spike-time based connectivity inference
methods, the in vitro culturing, the data preprocessing, as well as the performed
topological analyses can be found in the Supplemental Information.

Architecture of the ensemble artificial neural network

The introduced ensemble artificial neural network (eANN) is a feed-forward network,
that takes the weight W and the CS S matrices of the six implemented connectivity
methods (CI, sCCG, GLMCC, TE, dSTTC, and GLMPP) as input and provides as
output the probabilities of whether the input belongs to an excitatory or an inhibitory
connection, or whether the neurons are not connected at all (no connection). The eANN
consists of two hidden layers with 10 units each and rectified linear units (ReLU) as
non-linearity. The last layer is passed through a soft-max function, to normalize the
output. We trained the model on several LIF neuronal network simulations subject to
different inputs (see below). The trained network is the final eANN, which provides
predictions based on the aggregated outputs of the other connectivity inference methods.
The CS of the eANN was calculated as s;_,; = max(pg, pr), where pg and p; were the
eANN’s predicted likelihoods for an excitatory or inhibitory connection, respectively.

Training the ensemble artificial neural network

We simulated 25 different LIF networks to generate training data for the eANN. To
obtain the activity of distinct neuronal network dynamics, we used five different noise
configurations pineise; Tnoise (see Table and generated five networks with random
connectivity for each configuration (connection probability: 0.05). Next, we simulated
1h of LIF spiking activity as previously described (see Sec. . The experimental
spiking input to the LIF network was always the same for the different training
simulations. However, different input activity was used for testing the eANN (i.e., the
data reported in Fig. . To train the network, we first obtained the connectivity output
of all methods (CI, sCCG, GLMCC, TE, dSTTC, and GLMPP). Then, we took all
synaptic connections, which make up 10% of the training set. For the remaining 90% of
connections, we selected randomly unconnected pairs as negative examples. The CS and
weight provided by the traditional methods constituted the input variables. The
training labels were set to 0 (no connection), 1 (excitatory connection), and 2
(inhibitory connection), and the eANN was trained by minimizing the cross-entropy loss
on these data. For the predicting connections on a new dataset, we again first applied
the original inference methods and then provided their aggregated result as input to the
eANN. We noted that the compact network architecture prevented from overfitting and
ensured rapid convergence during training [S9}
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Data, Materials, and Software Availability

The PYTHON code for all connectivity inference methods and the spike train datasets will
be available at https://github.com/christiando/spycon. Raw data are available
from the corresponding authors upon reasonable request due to their large size.
Connectivity inference algorithms all ran on a cluster node, with 30 CPU cores (AMD
EPYC) and 8-12GB RAM.

S1 In silico simulations of neuronal networks

S1A Leaky integrate-and-fire simulations

To test and compare network reconstruction performance across different algorithms, we
adopted and modified the leaky integrate-and-fire (IF') network model approach
proposed by Ren et al. [41]. The LIF simulations of the present study were performed
with Brian2 [93]. The simulated network consisted of 300 neurons, balanced with 150
excitatory neurons and 150 inhibitory neurons. The differential equations of the IF
model are

Cm% = — Gieak(V — Viest) — ganp[Ca®T](V — Vanp)
+ Lnoise + Inoise + Lsyn
d[Ca®*]  [Ca’']
dt T TCa
dlnoise  Inoise
TER— + Onoisets

where & describes a white noise process. While Ren et al. [41] have modeled the
spontaneous Ijise as pink noise, here we approximate its dynamics as an
Ornstein-Uhlenbeck process, which represents another common model for neuronal
input [94, Chapter 8]. This approximation allowed simulating different dynamical
regimes more systematically by changing the mean input pinoise and the noise amplitude
Tnoise (see Fig. A-B). The parameters describing the membrane potential dynamics
were the membrane time constant C,,, = 500 pF, the leak conductance 0.25 uS, and the
resting potential Viess = —65 mV. For the after-hyperpolarizing (AHP) current, the

conductance gagp = 0.15 %, and the reversal potential Vagp = —80 mV. The
dynamics of the [Ca®*] were determined by the time-constant 7c, = 100 ms. When the
membrane potential V' surpassed the spiking threshold Vipesn = —50 mV, a spike was

registered, and the potential was reset to Vs, and [Ca%] was increased by 0.2 ubM.

The synaptic input Iy, was composed of two sources: the intrinsic spiking activity
of the network and the externally applied spiking activity. As an external spiking
activity, we used spike-trains that were obtained from in vitro HD-MEA networks
recording, which mimicked the studied experimental conditions. As in the study by Ren
et al. [41], the synaptic effect of spikes at time 7; = {t],... 7t3\/7} neuron j connected to
neuron ¢ was modelled as

L L t—ty — Aty t—ty — Aty
It =wliyt Y H(t—t, - Atij)g exp (1 - (TJ)> ,
€T, syn syn

where H(-) was the Heaviside function. The total synaptic input to a neuron ¢ was then
given by the sum of all synaptic currents in Eq. the neuron was connected to. The

connection probability among simulated LIF neurons was set to 5% and HD-MEA input
neurons were connected to LIF neurons with a probability of 10%. The synaptic weights
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were drawn randomly from a log-normal distribution |wf;}| ~ lognormal(-2.5,0.5) nA,
and the weight was positive when j was an excitatory neuron and negative for
inhibitory neurons. If the synaptic weight exceeded the interval [0.05 nA, 0.4 nA], it was
set to the limits of this interval. At;; was the synaptic time delay, which was given by
distance;; /conductionvelocity. The distance between neurons distance;; was the
Euclidean distance between the positions of neuron ¢ and j. The positions were drawn
at random and uniformly from the rectangular area of the units from the HD-MEA
input recording. The conduction velocity for each neuron was drawn uniformly from the
interval [0.5%, 1%2]. For the in silico benchmarking analysis across different inference
algorithms (see Fig.2), we used 1 h-long simulations.

S1B Simulations to validate connectivity inference from
parallel HD-MEA /path-clamp recordings

The LIF framework described in the previous section was further adopted to also
validate the methods applied to uncover synaptic connectivity from parallel

HD-MEA /patch-clamp recordings (see Section [S2| and Fig,. . For a detailed
description of the HD-MEA /patch-clamp setup and the performed voltage-clamp (VC)
measurements, we refer the reader to Sec. [S3B] [S3C] and [S3E} To simulate the
patch-clamp recordings at a control voltage V, = —55mV, we constructed smaller
subnetworks (LIF networks composed of n=10 neurons) with membrane currents of

Im = *gleak(‘/c - ‘/rest) — JAHP [Caz+](‘/c - VAHP) + Hnoise + Inoise + Isyn-

These neurons got input similar to all other neurons in the network, but since they were
in VC-clamp mode, they could not spike. Next, we simulated 10 min of these combined
data, i.e., registering spike times of the 300 LIF neurons as described in the previous
paragraph and the currents of 10 VC-clamped neurons. The analytical results obtained
from this analysis are shown Fig. C-D.

S2 Inferring synaptic connectivity from parallel
HD-MEA /patch-clamp recordings

Next, we describe the modeling approach to derive synaptic connectivity statistically
from parallel HD-MEA /patch-clamp recordings. Our model was inspired by previous
work [75], with some notable modifications, in order to have only one statistical test per
potential connection.

S2A A regression analysis approach to estimate synaptic
connectivity

In our model, we assumed that the recorded intracellular signal y; is a linear
superposition of two signals: i) a synaptic signal ¥ originating from synaptic signals
from the extracellularly recorded presynaptic neurons, and ii), a residual signal ¢, that
accounts for all intrinsic, and extrinsic fluctuations, such as synaptic signals from
neurons that could not be sampled. Hence, the full signal was given by

v =y + e

The modeled synaptic signal 3;>" depends on the extracellularly recorded spiking
activity of the presynaptic candidate neurons. Formally, the spike trains were a matrix
with entries s,; = 1, if unit ¢ elicited a spike at any time [tA, (¢ + 1)A); it was zero, if
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there was no spike. The synaptic signal y*¥" was then modeled as a weighted sum of
presynaptic signals x

syn T _.syn
Y = Ty,
with coupling parameters o = (a1, ...,ay)'. The presynaptic signals % were

modeled the spike trains convolved with a response kernel k(1)

Ly

syn __

Tyi = E kT,iSt—T,i-
T=1

The response kernel k had the parametric form of an alpha function, which has been
previously used for modeling the form of postsynaptic potentials (PSPs) [95, Chapter 5].
It was given by

k‘ri: ¢

)

(TA%éi)exp (7%;61-) if TA > 0,
0 otherwise ’

where 7; the time constant, and §; the delay of the PSP. The latter is the main
difference to Zhang et al. [75], which assumed a non-parametric footprint of the
extracellularly recorded neurons on the intracellular signal. While the original model is
likely more flexible, it requires multiple tests for each connection. In our model,
however, we will subsequently only have one test per connection, i.e., whether the
coupling parameter «,, # 0. Everything, that could not be explained by the synaptic
signal, such as transient fluctuations of the signal or the synaptic signals of unsampled
neurons, we model by the following autoregressive process

Lh
€t = hO -+ Z hu,—Et_q—A + gt = ét + gtv (Sl)

T=1

where £; was a Gaussian noise with standard deviation o,. Alternatively, e; can be
written as ¢, = y; — y;°". The former definition in Eq. only depends on the filter h
and not on the couplings . The alternative definition of ¢; is a function of e, but not
of h. This fact allowed us to define the alternating optimization scheme described in the
following section.

S2B Fitting procedure

Given a recorded intracellular signal y;.7 and extracellular spike trains si.71.n, we then
sought to estimate the model parameters, i.e., the autoregressive filter h, the synaptic
coupling strengths c, the kernel parameters T = (71,...,75)", 8 = (61,...,0x5) ", and
finally, the noise parameters o, by the maximum likelihood principle. The previously
described model defined the following (log) likelihood for the observed data

T
lh,o,04,7,0;)\) =In Hp(yi\yo;t_l, SN, by o, 0y, T, 0)
(S2)

t=1

1 T

== 5> @+ ™)’ ~ Tlno, + const.
Y t=1

To avoid overfitting of the autoregressive filter h, we included a regularizing term
lreg(h) to penalize non-smooth filters. Formally, the regularization term is the second
derivative of h, i.e.,

1
Les(h) = —5 | AR,
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with A being the discrete Laplace operator. The optimal model parameters are given by

T
] . syn T
(h,a,0,,7,0) = argmin Q ;:1 (yr — (& +y¥ ))2 + Aplreg(R) + 2 lnai

While there is no closed-form solution for this problem, we can derive analytic updates
for the sub-problems by solving for h, a, and o, separately. We, therefore, invoked an
alternating optimization scheme. First, in order to find the optimal h, we solved a linear
problem. This problem is defined by computing the gradient of Eq. with respect to
h and setting it equal to 0. In the same way, we then got the optimal couplings a. oy,
can be similarly derived analytically. What remained was to find the parameters T and
&, which were computed by gradient ascent maximization of Eq. ) We then
alternated the optimization procedure until the likelihood converged.

Finally, we sought to determine, which extracellular neurons (respectively their
recorded spikes, s1.7,;) were de facto connected to the neuron for which we had modeled
the intracellular signal y. In other words, we asked which couplings were significantly
non-zero (our null hypothesis was, that neurons are not connected, formally
Hy : a; = 0). To test for this hypothesis, we approximated the covariance of our
estimate by the inverse Hessian matrix of the regularized log-likelihood (see Eq. )
and used the absolute z-score z; = |;|/0; as test-statistics. For the latter, o2 is the
diagonal entry of the inverse Hessian matrix for couplings «;. For all couplings, where
z; > 0, the null hypothesis was rejected, i.e., these neurons were considered to be
presynaptically connected to the patched neuron. The parameter 6, was a threshold
value that we derived by fitting the same model to jittered surrogate data (generated by
adding Gaussian noise with a standard deviation of 5ms as jitter to the extracellular
detected spike times). We took the 95% quantile of the z-scores z;, obtained by fitting
the linear model to the jittered spike-train data, as a threshold.

S3 HD-MEA recordings

S3A High-density microelectrode arrays

To probe and record from in vitro developing primary cortical networks, we used
complementary-metal-oxide-semiconductor (CMOS) based high-density microelectrode
arrays (HD-MEAs). These chips comprise 26,400 platinum microelectrodes (size of
electrode: 9.3 x 5.3 um?), with a 17.5 um pitch and a total sensing area of 3.85 x 2.10
mm?. HD-MEAs, as used in this study, allow for recordings from up to 1024 readout
electrodes at the same time. The used custom HD-MEAs were bonded to printed circuit
boards (PCBs), and a biocompatible epoxy (Epo-Tek 353ND, 35ND-T, Epoxy
Technology Inc., USA) was used to encapsulate the bond wires and protect them from
the medium. To decrease the impedance and to improve the signal-to-noise ratio (SNR),
electrodes were coated with platinum black — deposited from a solution of
hexachloroplatinic acid (7 mM, Sigma-Aldrich) and lead (2) acetate anhydrous (0.3 mM,
Sigma-Aldrich) in distilled water, as described previously [96].

Two different types of HD-MEA systems, with comparable technical specifications,
were used in this study: For the parallel HD-MEA /patch-clamp recordings, we used a
custom single-well HD-MEA chip [97]. For the data and analysis presented in Fig. |5 we
used a commercially available 6-well HD-MEA plate by MaxWell Biosystems (Zurich,
Switzerland). The extracellular signals were acquired at a sampling rate of 20 kHz, for
the single HD-MEA, and at 10 kHz, for the 6-well HD-MEA plate. Before the cell
plating, we sterilized HD-MEA chips for at least 30 min in 70% ethanol and washed
them 3 x with sterile deionized water; the electrode array was then treated with 0.05%
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(v/v) poly(ethyleneimine) (Sigma-Aldrich) in borate buffer (Thermo Fisher Scientific,
Waltham, Massachusetts, United States) at 8.5 pH for 40 min and then washed 3 x
with sterile deionized water.

S3B Primary neuronal culture preparation

Rodent primary cortical neurons were prepared as previously described [96]: Cortices of
embryonic day (E) 18/19 Wistar rats were dissociated in trypsin with 0.25 percent
EDTA (Gibco), washed after 20 min of digestion in plating medium (see below), and
finally gently triturated. Following cell counting with a hemocytometer, we seeded
15.000-20.000 cells (dataset 1: parallel HD-MEA /patch-clamp recordings ground-truth
data; part of this data has been published in [58]), or 50.000 cells (dataset 2: HD-MEA
network recordings; part of this data has been published in [98]) on each array, and
placed it in a cell culture incubator for 30 min at 37°C/5% CO2. Then we added more
plating medium carefully to each well (up until 1.5 mL). The plating medium was
composed of: 450 mL Neurobasal (Invitrogen, Carlsbad, CA, United States), 50 mL
horse serum (HyClone, Thermo Fisher Scientific), 1.25 mL Glutamax (Invitrogen), and
10 mL B-27 (Invitrogen). After two days, half of the plating medium was exchanged
with maintenance medium. For the maintenance medium, we added 50 mL Horse Serum
(HyClone), 1.25 mL Glutamax (Invitrogen), and 5 mL sodium pyruvate (Invitrogen) to
450 mL of D-MEM (Invitrogen). The maintenance medium was exchanged twice a week
and at least one day before the recording sessions. All animal experiments were
approved by the veterinary office of the Kanton Basel-Stadt and carried out according
to Swiss federal laws on animal welfare. For dataset 1 (parallel HD-MEA /patch-clamp
recordings), the experiments were performed on days in vitro (DIV) DIV16-18; for
dataset 2 (1h-long HD-MEA network recordings), data were recorded at DIV14.

S3C High-density microelectrode array recordings

In order to select active recording sites on the HD-MEA for long-term network
recordings, we first recorded the multi-unit activity for each electrode across the whole
chip using a series of dense-block configurations. Activity during this pre-processing
step ("activity scan’) was assessed with an online sliding window threshold-crossing
spike detection algorithm. The details for selecting the final recording electrodes are
provided in the work by Bartram et al. [58] (dataset 1) and Akarca et al. [98] (dataset
2). Briefly, selecting a suitable network configuration involved, a ranking of the online
detected mean spike amplitudes (per channel) and that channels showed a minimum of
spike activity. Each HD-MEA network configuration consisted of approx. 1024
electrodes. The baseline recording for dataset 1 was composed of multiple network
recordings on the day before the parallel HD-MEA /patch-clamp experiment (see

Sec. , yielding long network recordings of > 3 h duration. The network recording
for the replication dataset (dataset 2) consisted of 1 h-long HD-MEA network
recordings (n=6 cultures); here the network configuration was composed of up to 90
high-density electrode blocks (each block contained 4x4 electrodes).

S3D Spike-sorting of HD-MEA network recordings

HD-MEA network recordings were spike-sorted using a semi-automated processing
pipeline. For dataset 1 (HD-MEA /patch-clamp recordings), we combined the baseline
recordings with the data obtained during the patch-clamp session. For dataset 2, we
used the 1 h-long network recording. To spike sort HD-MEA network recordings, we
applied the publicly available software package Kilosort 2 (KS2) [99], using parameters
adapted to our data. Following spike-sorting with KS2, we manually reviewed all
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neuronal units deemed ’good’ using the general user interface (GUI) of phy?2
(https://github.com/cortex-lab/phy). We excluded units that showed aberrant spike
waveforms, and that did not meet some standard quality criteria (e.g., less than 5%
refractory period violations), or that had too few spikes (less than 1000 spikes). From
the accepted 'good’ units, we inferred whole-array spike-triggered electrical footprints
and calculated all-to-all cross- and Pearson’s correlations to exclude potential duplicates.
Split units, i.e., neuronal units for which the algorithm found more than one template,
were also excluded from the data.

S3E  Whole cell patch-clamp electrophysiology

The parallel HD-MEA /patch-clamp experiments were performed using methodology
introduced previously [57,58]. To record from single neurons on the HD-MEA, we
transferred the chips to a custom patch-clamp rig and perfused them with warmed
(32-34 °C) BrainPhys (BP). Patch-clamp recordings from cells located on the HD-MEA
were obtained with borosilicate glass micropipettes (4-5 M, Sutter Instruments, USA)
containing (in mM): 85 caesium-gluconate, 60 CsCl, 10 Hepes, 4 Nas ATP, 0.3 GTP, 2
MgCly, 0.1 EGTA, (pH 7.2-7.3; 280-290 mOsmol/1). Brief current-clamp recordings of
spontaneous spiking were obtained, while synaptic activity was measured in voltage
clamp mode at -70 mV holding potential. The high-chloride internal solution caused a
shift in the GABA-A receptor reversal potential, which allowed us to record the
synaptic activity of both GABAergic and glutamatergic synapses in one single recording.
During the patch-clamp experiment, the same HD-MEA network configuration, as for
the baseline recording, was used. This allowed to localize the patched cell on the
HD-MEA, and to relate the intracellular obtained signals to the spike activity of the
network. Patch-clamp recordings were carried out using an Axon Multiclamp 700B
amplifier (Molecular Devices, USA), with digitization performed using an Axon
Digidata 1440A (Axon Instruments). The recorded signals were low-pass filtered at 5
kHz and acquired with at least 20 kHz. Alexa 594 (20uM, Thermo Fisher Scientific)
was added to the internal solution to allow an assessment of the cell morphology. For
details on the data, please see Bartram et al. [58].

S4 Topological characterization of networks

Here we provide more details on the procedures on how we inferred connectivity from
experimental HD-MEA derived spike trains, and how we analyzed this data using graph
theoretical metrics (for details on the connectivity inference algorithms see Methods and
Materials Sec. and Fig. in the main manuscript).

To assure reliable connectivity inference from the spike-sorted HD-MEA network
data, we applied several filtering steps. First, we restricted our analysis to randomly
selected units (100) that had at least 1000 spikes over the course of the recording.
Second, we only estimated connectivity for edges that had a spike-sorting index > 0.5,
as suggested by Ren et al. [41], and that had at least 200 spikes in the pairwise CCG of
units — in a time window relevant for fast synaptic interactions (+/- 20 ms). To generate
jittered spike trains for units that passed the previously outlined quality criteria, and to
be compatible with jittering code provided by [100], we removed any spikes occurencing
at the zero-lag of the unit’s autocorrelation. Again, the aim of applying these arguably
strict thresholds was to make sure that connectivity was estimated on a sufficient
amount of activity and to reduce the likelihood of false positive connections.

Next, we selected several common topological metrics and compared them across
network inference methods (see results presented in Fig. [2/ and Fig. . We categorize
these metrics broadly into global and local topological features. The global features
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describe average statistics for the given networks, while the local metrics describe
topological values resolved per individual node. The global metrics included the overall
network density, the network global efficiency, the average clustering coefficient, the
modularity [101] and the small-world index [15] of the network and the occurrence of
triplet-motifs in the data [77]. All topological features were calculated using algorithms
provided by the Brain connectivity toolbox [102]. We briefly explain each metric
below:

Degree. As the obtained binary graphs of the inferred networks were directed, the
degree (k) denotes the sum of in- and outgoing edges of the observed network.

Network density. The network density was defined as the number of significant edges
divided by the number of all possible edges in the respective network.

Global efficiency. The global efficiency (E) is calculated as the average of the inverse
shortest path length (L). It is a measure of the global integration of a graph [103].

Clustering coefficient. The clustering coefficient (C) measures the clustering of
connections/nodes in the network. C for directed networks is calculated as the fraction
of realized directed triangles around a node, i.e., the observed number of triangles
divided by the number of all possible triangles [104].

Betweenness centrality. The betweenness centrality (B) was defined as the fraction of all
shortest paths in the network that contain a given node. Nodes with high values of
betweenness centrality therefore participate in a large number of shortest paths [105].

Modularity index. The modularity index, Q, indicates how well a network can be
partitioned into subgroups. We calculated it as proposed by [106].

Small-word indezx. The small-world index (S) of a binary network is usually defined by
estimating two parameters: the characteristic path length of the network (L) and its
average clustering coefficient (C). Both measures are normalized to appropriately
randomized surrogate networks with the same number of nodes and edges [107]. Since
some inferred networks contained disconnected nodes at the applied adoptive thresholds,
and S is defined for connected networks, we used a variant of the small-world

index [103]. We calculated S by dividing the normalized clustering coefficient (Chorm.)
by the inverse of the normalized global efficiency (1/Epnorm.)-

Motifs. The frequency of triplet motifs was analyzed as proposed in previous work [77].
As for the small-world index, we generated appropriately randomized surrogate
networks with the same number of nodes - and compared the empirical motif statistics
to these randomized values. We compared a total of 13 different motifs.

To compare local topological features between the inferred networks and the LIF
ground truth networks (see Figure , we computed Pearson’s p between the set of
values of the true network and the estimated network. For quantifying the difference
between global connectivity features, we calculated the relative difference
(Yest — Ytrue)/Ytrue, where Yest, and yerue are the feature of the estimated and true
network, respectively.
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S5 Connectivity inference methods

In the following, we describe the connectivity inference algorithms implemented in this
study. The considered algorithms include cross-correlogram (CCG)-based methods,
methods based on information theory, neuronal synchrony, and finally, generalized linear
model point processes. CCG-based methods have been widely applied to estimate
synaptic connectivity from parallel recorded spike trains [33[108]. Essentially, a CCG is
a histogram of spike-time differences between two neurons i and j. We used the
normalized CCG [30], defined as

o~ (5t = 1) (v — 1)
CCGisy(r) = Y —ei—hroun [,

t=1 910

where s; ; is the binary spike train of neuron ¢ discretized in time bins with width A. s;;
is 1 if neuron ¢ spiked between ¢ and ¢ + A, and 0 otherwise. T is the number of time
bins; p; and o; are the mean and standard deviation of the spike trains, respectively. To
compute CCGs, we applied algorithms provided by the Elephant toolbox [109)].

Coincidence index The first CCG-based method, implemented in this study, is
termed coincidence index (CI, [56]). The CI was defined as

2 r—0 CCGin(7)

Cl_, =
7T CCGiL,(7)

where r = Ty /A, and Ty, represents a time window in which synaptic effects are
effective. Here we set A = 0.4ms and Ty, = 6ms. High CI values indicate an excess of
spiking activity of neuron j after spikes of neuron i. As connectivity score, CS, we took
the absolute z-score |CI;,; — pi—;|/0i—;, where p;,; and o;_,; are the mean and
standard deviation of CI values obtained from surrogate spike trains of the
corresponding neuron pair (50 iterations). The surrogate spike trains were generated by
jittering the spike times of neuron ¢ with uniform noise U(—1.5rA, 1.5rA). The jittering
strongly decreased the pairwise correlations observed for interactions in the synaptic
time window. As putative synaptic weight, W, we simply took the value CI;_,;.

Smoothed CCG While the CI relies on the generation of jittered surrogate
spike-train data, Stark et al. [37] proposed a simple smoothing procedure in
combination with a statistical test to assess whether the CCG deviates from the H
hypothesis, i.e., that two neurons are synaptically not connected. Using this approach,
the CCG is convolved with a Gaussian kernel, which is considered to have a similar
effect on the CCG as obtaining a threshold value through spike-train jittering. Avoiding
the jittering operation makes this approach computationally more efficient. We took the
negative logarithm of the p-value as CS, and as weights W the synaptic strength, as
described previously [36]. Throughout the manuscript, we referred to this algorithm as
the smoothed CGG (sCCG) method.

Generalized linear model CCG An alternative method, combining the CCG
approach with generalized linear models (GLMs), was proposed by Kobayashi et al. [40].
This approach decomposes CCGs into a slow and a fast fluctuating component. The
model assumes that slow fluctuations, as observed in a pairwise CCG, can be regarded
as the background activity within the network. Only fast short-latency fluctuations,
that is, prominent peaks and troughs in the pairwise CCG that exceed the background
activity, and that happen within the synaptic time window, should be considered as
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putative excitatory and inhibitory connections. Hence, Kobayashi et al. [40] proposed a
parametric model, namely a GLM, to fit empirical CCGs. Formally, the GLM was given
by

c(t) = exp |a(t) + Ji;f(t) + Jf (1) |,

where ¢(t) is the co-firing rate for a timeshift bin ¢. a(t) models the slow fluctuation
that encodes the background activity. f(¢) models the synaptic interaction, which is
given in the form of decaying exponential function f(t) = exp(fg) (for t > d, f(t) =
0 otherwise), where d is the synaptic delay and 7 is the time constant of the decay. The
parameters J;; and Jj; are the coupling strengths from neuron 7 to j and j to ¢
respectively. Given a CCG from observed data, the maximum a posterior (MAP)
estimate for parameters § = {J;;, Jj;, a(t)} is then obtained by numerical optimization.
For details, the reader is referred to the original publication [40]. A similar approach
has also been suggested by Ren et al. |[41]. As CS, we take the z-score derived in [40, Eq.
14] given by s;_; = |Jij]/7¢(0)/1.57. For the synaptic weight, Kobayashi et al. [40]
proposed to transform the parameter J;; heuristically to the size of a post-synaptic
potential by the following formula w;_,; = J;;/a, where the factor a = 0.39, if there is a
putative excitatory connection, i.e., J;; > 0. On the other hand, for inhibitory
connections, i.e., J;; < 0, they used a = 1.57.

Transfer entropy Another important class of methods that has been widely applied
to probe neuronal interactions, and to reconstruct neuronal networks, relies on
information theory. The present study focussed on transfer entropy (TE) [54] and uses
algorithms by the ID Tzl toolbox [65] to estimate the functional connectivity between
neurons. TE quantifies the “amount of predictive information” [110], between two
processes — respectively, here, the spike trains of a source neuron i and a target neuron
4. In brief, TE measures if including information on the spiking activity of neuron i,
adds to the prediction of the future activity of neuron j, which goes beyond the
information that is contained in the past activity of j alone. In the present study, we
computed the TE on discretized spike train data with bins of size A = 5ms. As for the
CI method, we used the absolute z-score s;,; = |TE;_,; — p;—;|/0i—; as CS. Again,
li—sj, 0i—j are the mean and standard deviation of the TE values computed from
jittered spike trains (50 iterations). The jitter noise was Uniform(—3.5A,3.5A). As the
weight of a connection, we considered the value TE;_,;. Compared to the other
implemented methods, the TE value is unsigned, i.e., it is always positive and, in that
regard, could not distinguish between excitatory and inhibitory connections.

There are considerable limitations associated with the use of TE as a direct measure
of coupling strength, as it may be confounded by the firing rate of neurons, the
dynamical state of the network, the used embedding dimensions, and several other
factors [110]. Future studies should implement and probe more recent TE variants that
have been specifically developed for spike-train data |79] and that have addressed some
of the limitations of current TE algorithms.

Directed spike tiling coefficient Cutts et al. [53] introduced the spike time tiling
coefficient (STTC) to quantify synchronicity between spike trains. This method is
computationally fast and has recently gained a lot of popularity. While the original
method provided a measure of undirected pariwise correlation or functional connectivity,
we modified the approach by Cutts et al. to a directed variant, which we call the
directed STTC (dSTTC). In the following, we outline the dSTTC between the spike
trains of neuron 7 and j. As in the original method, we defined a synaptic time window
Agyn = Tms. TP™ is the proportion of the total recording time, which is covered by time
windows A before the spikes of neuron i. We note, that the times of overlapping
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windows are just considered once. Similarly, we define T;’O“ for the proportion of

recording time, which is covered by windows Agyy, following spikes of neuron j.

Furthermore, we define Pjpjl as the proportion of spikes of neuron j, that lies in the

time windows Agy, preceding the spikes of neuron 4. Similarly, Ppiszt is the proportion

of spikes of neuron ¢ following the spikes of neuron j. Finally, we deflned the dSTTC as

dSTTC 1 ( Rl N S )

L= — +

j—)l pre pre st st )
1 — PYT; 1— PPN, Tpo

which can result in values in the range [—1, 1], as for the undirected original
implementation by Cutts et al. [53]. The intuition behind the presented statistic is, that
an excess of spiking of neuron ¢, that follows the spiking of neuron j, should indicate an
excitatory connection. In this case, the dSTTC attains positive values. On the contrary,
for inhibitory connections, we would expect a scarcity, or reduction, of spiking instead.
In the latter case, the dSTTC would then result in more negative values. If the spikes of
neurons ¢ and j are occurring randomly, the dSTTC is expected to be close to 0. It
should be noted, however, that these statements are based on the assumption, that the
recorded data is stationary, i.e., there are no gross fluctuations in the firing rates. In the
experiments at hand, however, this is rarely the case, due to transients in the firing rate
and/or network burst dynamics. To mitigate such effects due to violations of the
stationarity assumption, we resorted again to absolute z-score values for C'S and
calculate s;_,; = w , where p;_,; and o;_,; are the mean and standard
deviation of the dST TC values obtamed from jittered spike trains. As in Cutts et
al. [53], we used jitter noise Uniform(—3.5Asymn, 3.5Agym). As weight w;_,; of a putative
connection between two neurons, we took the raw dSTTC;_,; value.

Point process generalized linear model All presented algorithms so far were
pairwise connectivity-inference methods. That is, they considered only two neurons at a
time and neglected the potentially contributing effect of the activity of other neurons in
their calculation. The Generalized Linear Model Point Processes (GLMPP) approach,
however, is a framework that does consider such network interrelation — and has been
previously used to probe connectivity [55]. This approach models the spiking of neuron
i by a point process with rate \;(t|H:), where H; is the recorded spiking history up to
time ¢. Here, we will assume that the rate model is

N
Ni(t|/He) = fi | 0: + Z Jiipi(t) |, (S3)

Jj=1

where the feature ¢;(t) is the spike train of neuron j convolved with a causal
exponential function with decay 7 = bms. f is a monotonically increasing non-negative
function. In this model, the parameters of interest are the coupling J;_,; for ¢ # j; note
thatJ;_,; models how the neuron’s activity influences itself, such as, for example, the
refractory period following a spike. For an excitatory connection ¢ — j, we expected,
that the rate \;(t|H;) increases after spikes of neurons j, and hence Jj— should be
positive. The contrary holds for inhibitory connections. If J;_,; was close to 0, this
should indicate that no connection is present. We assumed a Gaussian prior distribution
Jj—i ~N(0,0%) and 6; ~ N (ug,03). We intended to obtain the posterior distribution
of the model parameters given the recorded spike trains. In general, this is not
straightforward for a model defined by Eq. . However, by choosing the f(-) to be a
scaled sigmoid as in [72,/111], efficient variational algorithms have been developed to
obtain an approximate Gaussian posterior distribution [73,/112] over the parameters 6;,
and J;_,; via variational inference. Hence, once we have the approximate posterior
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density over parameters 6, J, we define the CS for a given connection as

Sj—i = |lj—i|/0j—i, where p;_;, 0;; are the mean and standard deviation of the
posterior estimate for J;_,;. As connection weight, we used the coupling value J;_;.
Model specification and inference Given the spike trains of several neurons, we
can readily compute the features at any time

o)=Y /k(T)a(thftj)dT
t;Espikes of j

where k(1) = % exp(—7-) and 7, = bms. In the following, we used the methodology
of [73}/112] to fit the point process. In order to do so we needed to define the
non-linearity f; in rate in Eq. as scaled sigmoid

Ai(t) = Xio (3] 0(1)),

where X; >0, J] = (05, J154,- -+, Insa) T and 0(t) = (1,41(t), -+, ¢n(t)) . For
notational convenience, we dropped the conditioning on the history H;. The likelihood

of a point process [113] for spikes of neuron i 7; = {t{,...,t}y } is
T
p(Til3:) = ] Xt exp 7/ Xi(t)dt | .
ti€T; 0

We assumed a Gaussian prior over the parameters J; and a Gamma distribution prior
over \;. With this setting, we can utilize the augmentation scheme and the variational
approach described in [112] to obtain an approximate Gaussian posterior over the J;,
which we then used for the final connectivity.

S6 Statistical thresholding of connectivity and
evaluation of reconstruction performance

Threshold selection After inferring connectivity from either simulated or
experimentally obtained spike-train data, several downstream analyses of this work
required binary graphs. Hence, the connectivity matrices had to be thresholded.
Selecting an appropriate threshold is a delicate task since it can affect the interpretation
of the graph structure and its organizational properties. In the present study, we
applied three different strategies. For the comparison of different inference methods on
the LIF network data (see Fig. [2)), we performed a search for the threshold that yielded
the maximal Matthews correlation coefficient (MCC, see Sec. i.e., the highest
similarity to the underlying ground-truth graph. Such an approach has been previously
applied in the literature [40], and does allow for a fair performance comparison across
inference methods. However, since such a threshold optimization is not applicable to
experimental data, we also report results using a second approach, that relied on a
global adaptive thresholding logic (see Fig. [5| and . We, therefore, recalculated
connectivity on jittered surrogate data (Gaussian jitter with a standard deviation of
10ms), and defined an absolute global threshold as the (1 — &) * 100% quantile of the
resulting CS distribution. Here o can be interpreted as an expected false positive rate.
The aim of this procedure was to destroy all short-latency synchronization by temporal
jittering while keeping the firing rate dynamics intact. The jittered distribution of the
CS values then reflected the null hypothesis, i.e., that there were no connections. For
the HD-MEA recordings, we varied a-values from 0.05 to 0.001 (see Fig. [5). The data
was only jittered once, which made this approach computationally fast. Finally, to show
that topological results were stable across the selected statistical thresholds, we also
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applied proportional thresholds (see Fig. . With these thresholds, we probed graph
metrics at a specific network density (e.g., 5%) and compared the topological properties
of networks at a defined percentage of the strongest connections.

Performance measures To quantify the network-reconstruction performance across
all inference algorithms, we applied standard validation measures, commonly used for
classification tasks. The first metric is the average precision score (APS), which is
threshold-free, i.e., there is no need to specify a threshold. The APS is calculated from
the area under the precision-recall curve and is formally defined as

APS =3 (R, — Rn—1)P,. R,, P, are recall and precision if the n'? smallest CS
would be selected as threshold. The APS provides values between 1 (perfect
classification possible) and 0 (no connection is correctly classified without misclassifying
all unconnected pairs). As a second performance measure, we implemented the
Matthews correlation coefficient (MCC). The MCC requires a binarized connectivity
matrix, respectively matrices, to compare networks. It is defined as

NTpNTN — NFPNFN

VIPINTIPPTIPN

where nrp,nryn are the number of true positives and false negatives, respectively, i.e., it
is a measure of whether the algorithm classified the putative connections correctly.
ngp, nrpN denote the numbers of false positives and false negatives. np,nyx are the total
number of connections and unconnected pairs of the ground-truth data. npp,npn are
the number of predicted positives (connection) and predicted negatives
(non-connections), respectively. The MCC gives values between 1, for perfect
classification, and —1 for the worst outcome.

MCC =
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Intermediate Low

Precision

Recall Recall Recall

Fig S1. Precision-recall curves on simulated data. Curves for all methods on
the data for Fig[2 (three lines per method for three networks (N = 100) that we fitted
per High, Interm., and Low condition.). The more these curves extend to the upper
right corner, the better classifications can be achieved. The eANN is the most robust
method across all three conditions. The APS in Fig is the area under these curves.
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Fig S2. Network-reconstruction performance with global adaptive
threshold. Results corresponding to Fig. |2 achieved with adaptive-threshold-selection
(see Methods). A The MCC of different connectivity methods. Dots depict the
performance obtained from fits on three different subnetworks of the same simulation.
B Classification performance (MCC) as a function of recording time. C MCC for each
type of connectivity, that is, excitatory (E, in red), inhibitory (I, in blue), combined
(E+1, in black). Correspondingly, the performance gains achieved by the eANN are
plotted in shades of red, blue, and black. D Quality of topological feature
reconstruction for the inferred network across the three dynamical regimes. In the
upper panel, the relative difference between four global features (network density, av.
clustering, and efficiency) is shown. In the center panels, the Pearson correlation
coefficient for local (per node of the network) features between the true and the inferred
network is shown. Black stars indicate the method that performs best. In the lower
panels, the absolute difference of triplet-motif frequencies between ground truth and the
different estimated networks is shown.
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neuronal network topology across inference

methods. Four topological metrics (average clustering, efficiency, modularity, and
small-world index) inferred from in vitro neuronal networks thresholded for the strongest
5% of connections in the network (proportional thresholding). Each panel depicts one
topological measure; the colors correspond to the seven inference algorithms; colored
circles correspond to the values obtained from the empirical data; the white-filled circles
correspond to the surrogate networks (randomly rewired networks). In contrast to the
analysis in Fig. , this figure depicts all networks with the same number of edges.
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Fig S4. Triplet-motif frequency across inference methods and in vitro
neuronal networks. The triple-motif frequency, observed in DIV14 in wvitro
developing neuronal networks (dataset 2), was very similar within each method class
but differed considerably between some inference methods (see Fig [5[l and J). Depicted
motif frequencies were normalized, for each culture, by the total amount of observed
motifs (o threshold: 0.01; network size: 100 units/network; 1 h recording duration).

February 1, 2024 36


https://doi.org/10.1101/2024.02.01.578336
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.01.578336; this version posted February 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Rate [Hz]

Recall Precision
0.20 ! 020{ © !
I 4
0.15 I® 0.15 ®
e = e
£ 0.10 = $ 010
) 0 "l ©
0.05 0.05
0 0 T T T 0
0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5
Hnoise [NA] Hnoise [NA] Hnoise [NA]

Fig S5. In silico validation of synaptic connectivity inference from
simultaneous extra- and intracellular recordings. A-B An overview of the
modeled dynamic range to validate the PSC connectivity inference method. The
average spiking rate and Fano factor are shown for different simulations. Simulations
with a rate < 0.5 Hz Hz were excluded. Circles correspond to simulations with Low,
Intermediate, and High burst rate in Fig[2] D-E Display of recall and precision values
for the IC connectivity inference method. Performance was averaged across VC
recordings from 10 different neurons.
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Fig S6. Connections in experimental ground-truth dataset Here, we show all
26 experimental ground-truth connections found in the whole-cell patch recordings,
together with all cell pairs, where no connection was found. We show the PSCs, the
Spike-CCG, and the classification of the different connectivity methods similar to Fig.
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Fig S6. (continued) Connections in experimental ground-truth dataset
Remaining cell pairs identified as non-connection.
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Fig S7. Performance on a dataset with different connectivity rule Here, we
show the results of the different connectivity inference methods on data simulated with
80/20 excitatory/inhibitory neurons. Population rate = 1.65Hz, Burst Rate=0.33Hz.
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Fig S8 eANN confidence score. In the left panel the synaptic strength from the
LIF simulations is plotted against the log confidence score of the eANN. We see lower
confidence scores are more likely for weaker synaptic connections. Right panel shows a
histogram of the log confidence score. This plot is done for data from Fig. [2] for the
intermediate burst regime.
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Fig S10. Comparison of eANN and GLMCC inference on synthetic data.
Example cross-correlograms to compare connectivity inference of the eANN and the
GLMCC method on some selected pairs (TP = true positive, NF = false negative). The

bar color indicates if the ground truth connection was excitatory (red) or inhibitor
(blue).
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Fig S11. Pearson correlation of weights and connectivity score between
different input methods. Left, middle, and right panel show the correlation for pairs
of no, excitatory, and inhibitory connection, respectively. The data for the intermediate
burst regime from Fig. 2] were used.
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1106

1107

1108

1109

1110

tnoise [NA] | Tnoise [;%] Spike rate [%] C, | Burst rate [%]
0.34 0.2 1.4 0.8 0.1
0.34 0.16 1.2 1.1 0.1
0.36 0.08 1.7 0.6 0.8
0.42 0.08 3.2 0.2 5.6
0.4 0.18 2.8 0.3 3.6

Table S1. Training simulations for the e ANN.
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