

Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains

Christian Donner¹, Julian Bartram², Philipp Hornauer², Taehoon Kim², Damian Roqueiro², Andreas Hierlemann², Guillaume Obozinski¹, Manuel Schröter²

1 Swiss Data Science Center, ETH Zürich & EPFL, Zurich & Lausanne, Switzerland
2 ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland

Corresponding authors:

Dr Christian Donner

Email: christian.research@mailbox.org

Dr Manuel Schröter

Email: manuel.schroeter@bsse.ethz.ch

¹ Abstract

2 Probing the architecture of neuronal circuits and the principles that underlie their
3 functional organization remains an important challenge of modern neurosciences. This
4 holds true, in particular, for the inference of neuronal connectivity from large-scale
5 extracellular recordings. Despite the popularity of this approach and a number of
6 elaborate methods to reconstruct networks, the degree to which synaptic connections
7 can be reconstructed from spike-train recordings alone remains controversial. Here, we
8 provide a framework to probe and compare connectivity inference algorithms, using a
9 combination of synthetic and empirical ground-truth data sets, obtained from
10 simulations and parallel single-cell patch-clamp and high-density microelectrode array
11 (HD-MEA) recordings *in vitro*. We find that reconstruction performance critically
12 depends on the regularity of the recorded spontaneous activity, i.e., their dynamical
13 regime, the type of connectivity, and the amount of available spike train data. We find
14 gross differences between different algorithms, and many algorithms have difficulties in
15 detecting inhibitory connections. We therefore introduce an ensemble artificial neural
16 network (eANN) to improve connectivity inference. We train the eANN on the validated
17 outputs of six established inference algorithms, and show how it improves network
18 reconstruction accuracy and robustness. Overall, the eANN was robust across different
19 dynamical regimes, with shorter recording time, and ameliorated the identification of
20 synaptic connections, in particular inhibitory ones. Results indicated that the eANN
21 also improved the topological characterization of neuronal networks. The presented
22 methodology contributes to advancing the performance of inference algorithms and
23 facilitates our understanding of how neuronal activity relates to synaptic connectivity.

24 Author summary

25 This study introduces an ensemble artificial neural network (eANN) to infer neuronal
26 connectivity from multi-unit spike time recordings. We compare the eANN to previous
27 algorithms and validate it using simulations and HD-MEA/patch-clamp datasets. The
28 latter is obtained from three single-cell patch-clamp recordings and high-density
29 microelectrode array (HD-MEA) measurements, in parallel. Our results demonstrate
30 that the eANN outperforms all other algorithms across different dynamical regimes and
31 provides a more accurate description of the underlying topological organization of the
32 studied networks. We also provide a SHAP analysis of the trained eANN to understand
33 which input features of the eANN contribute most to this superior performance. The
34 eANN is a promising approach to improve connectivity inference from spike-train data.

35 Introduction

36 Inferring the wiring diagram of complex neuronal circuits, their *connectomes*, has
37 remained an important pillar in the quest to understand how individual neurons process
38 information and how neuronal networks are organized [1]. Recent years have seen
39 significant advances in connectome inference techniques enabling the study of
40 fundamental principles of neuronal organization [2], and the intricate structure-function
41 relationship of local synaptic connectivity [3, 4]. In particular, methods based on serial
42 block-face electron microscopy (EM) [5], and virus-based circuit reconstruction [6], have
43 paved the way to mapping out synaptic connections at unprecedented detail and scale.
44 These methods significantly furthered our understanding of how circuit architecture
45 relates to neuronal communication across scales, i.e., at the level of local connectivity, as
46 well as, across different brain regions. The interest in linking connectomics and
47 functional readouts has also been fuelled by the ever-increasing capabilities of
48 large-scale electrophysiological recording technology for studying neuronal physiology *in*
49 *vivo* [7] and *in vitro* [8, 9].

50 A large body of studies, including different species and brain regions, has started to
51 provide insight into the specific connectivity patterns that individual neurons form to
52 communicate. Common organizational motifs of synaptic connectivity include, for
53 example, feedforward excitation, feedforward inhibition, as well as, feedback inhibition,
54 and lateral inhibition [10]. In addition to these circuit motifs, a range of complex
55 topological properties have been described [2], among them, a greater-than-random
56 community structure [11, 12], the occurrence of specific triple-motifs among locally
57 connected projection neurons [13, 14], a small-world [15] and rich-club organization [16],
58 and highly-connected hub neurons [17]. Studies also found that the synaptic strength of
59 local circuitry typically follows a heavy-tailed log-normal distribution, with few strong
60 connections [18, 19]. Many of these synaptic wiring diagrams have been obtained
61 through EM reconstruction in model organisms, such as *Caenorhabditis elegans* [20],
62 *drosophila* [21], and *zebrafish* [22, 23], and more recently, through reconstruction of small
63 tissue samples of mouse [4, 24], macaque, and human cortex [25].

64 In addition to dense, EM-based reconstruction of neuronal circuits, which allows for
65 the perhaps most comprehensive characterization of synaptic connectivity, important
66 alternative circuit-mapping tools exist. The two most widely used techniques are viral
67 retrograde and anterograde trans-synaptic labeling of neurons [6, 26], and whole-cell
68 patch clamp recordings [27]. Patch-clamp recordings are the gold standard to infer
69 synaptic function and have been widely applied to characterize synaptic connections
70 among pre- and postsynaptic neurons, including the strength of their excitatory and
71 inhibitory postsynaptic potentials (EPSPs/IPSPs), the time course of the postsynaptic
72 responses, and the reliability of synaptic transmission. To assess if two neurons are

73 monosynaptically connected, typically, whole-cell recordings in both cells are obtained,
74 and spikes are induced via brief repetitive stimuli to measure the evoked EPSP/IPSP
75 amplitudes and the direction of the connection(s) [13]. Whole-cell recordings from up to
76 twelve simultaneously recorded neurons have also been used to study the organization of
77 local connectivity in brain slices [3, 13]. Overall, the data obtained from patch-clamp
78 recordings have provided essential information on the mechanisms underlying neuronal
79 circuit computation, that, so far, could not be provided by EM-based reconstructions.
80 This holds particularly for patch-clamp studies that were performed *in vivo* [28], which
81 do not suffer from potential slicing artifacts [27]. Despite attempts to automate and
82 scale-up patch clamping procedures [29], the throughput for connectivity studies has
83 remained comparably low.

84 Besides inferring synaptic connectivity from intracellular recordings, there has been
85 a surge in studies that used the statistical relationship of the activity among neurons as
86 an indirect measure of neuronal coupling [30]. Spike train cross-correlograms (CCGs),
87 for example, have been applied to estimate spike transmission or effective connectivity
88 between defined neurons and/or specific brain regions [31–36]. To improve the
89 performance of CCG-based circuit inference, several modifications have been suggested –
90 such as, to take into account co-modulating background dynamics [37–39], to apply
91 model-based timescale separation techniques [40, 41] or, more recently, to apply deep
92 learning methods [42]. Still, inferring synaptic connectivity from the ongoing spiking
93 activity of neurons remains highly challenging [43]. This holds true, in particular, if the
94 strength of synaptic connectivity is weak [40], if the neuronal networks cannot be fully
95 sampled [44], and if the used spike trains exhibit strong temporal periodicity, e.g.,
96 caused by correlated network bursts [39, 45]. Such burst activity may lead to high spike
97 train synchronicity between two neurons that, however, are not synaptically
98 connected [45]. This limits the interpretability of CCG-based methods but also holds for
99 other algorithms used to infer interneuronal coupling in neuronal networks, recorded
100 with either electrophysiological [30] or optical methods [46, 47]. It is important to be
101 aware of these caveats when interpreting the topology of neuronal networks obtained
102 from such activity-based connectivity-inference methods [48–52].

103 In this study, we introduce a workflow to benchmark algorithms that have been used
104 to infer neuronal connectivity from large-scale extracellular recordings [36, 40, 53–56].
105 We, therefore, standardize the output of algorithms and compare statistically inferred
106 connectivity estimates on synthetic ground-truth data sets and experimentally obtained
107 connectivity labels. The first ground-truth data set was generated by stimulating *leaky*
108 *integrate-and-fire* (LIF) neurons with empirical spike-train data and statistically defined
109 noise [41]. These data allowed probing the effect of varying network dynamics and
110 recording lengths on network reconstruction performance. In addition, we assessed the
111 performance of connectivity-inference algorithms on *in vitro* data, where connectivity
112 labels, where inferred from parallel whole-cell patch-clamp and *high-density*
113 *microelectrode array* (HD-MEA) recordings obtained from primary neuronal
114 cultures [57, 58]. Finally, we introduce an *ensemble artificial neuronal network* (eANN)
115 and probe whether ensemble learning techniques [59] can improve today's methodology
116 to infer synaptic connectivity. We train the eANN on the standardized output of all
117 implemented network-inference methods and demonstrate that knowledge about the
118 shared output from these methods does indeed lead to gains in network reconstruction
119 performance. To this end, we use a *SHapley Additive exPlanations* (SHAP) [60] analysis
120 to better understand the relative contribution of individual input features to the
121 superior eANN performance, and to visualize and interpret which methods were driving
122 the eANN model to predict excitatory or inhibitory synaptic connections.

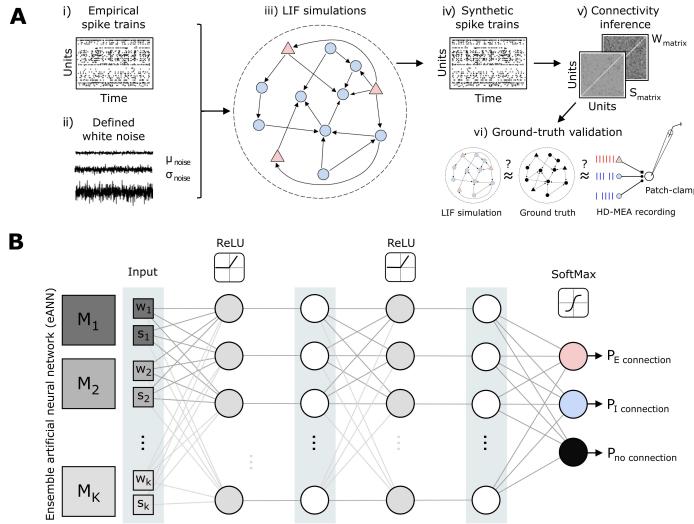


Fig 1. An ensemble artificial neural network to improve neuronal connectivity inference. **A** Schematic illustrating the developed analysis workflow to systematically compare statistically derived neuronal connectivity across inference algorithms and defined network dynamics. Empirical spike train data (i), obtained by high-density microelectrode array (HD-MEA) recordings from primary cortical cultures, and different types of white noise (ii) were used as input to a network (iii) of leaky integrate-and-fire (LIF) neurons (300 neurons, 50:50 excitatory (E) and inhibitory (I) neurons), adopted from previously reported work [41]. The *a priori* defined structure underlying the LIF network served as the first ground truth to compare established and new connectivity inference methods providing a score (s) and a weight (w) for each connection (v-vi). Moreover, connectivity-inference performance was also assessed on ground truth data obtained from parallel HD-MEA/patch-clamp recordings [58]. **B** Schematic depicting the architecture of the ensemble artificial neural network (eANN). The eANN receives as input the connectivity score s and weight w values from multiple established inference algorithms. Then the feed-forward network is trained. Finally, the eANN outputs probability values which indicate whether the connection is excitatory, inhibitory, or if there is no connection at all.

123 Results

124 125 A framework for the systematic comparison of activity-based 126 127 connectivity inference algorithms

128 To compare inference methods and evaluate their performance, we standardized the
129 connectivity inference task: Each inference method received the same spike train
130 activity, i.e., the spike times and the corresponding unit IDs of a given neuronal network
131 recording. These data consisted of either a network simulation (see Sec. S1; Fig. 1A), or
132 an HD-MEA extracellular network recording obtained from primary cortical cultures
133 (see Sec. S3A). Then, as output, each connectivity inference method provided two
134 results: (i) a directed weighted graph, that indicated the connectivity strength between
135 all nodes, and (ii), a matrix that contained the *connectivity scores* (CSs) for all
136 connections. We will refer to the first output as the *weight graph* (W), and to the
second output matrix as the *score graph* (S). Each edge of the inferred connectivity
score graph S represents a CS.

137 For a given putative connection between a presynaptic neuron i and postsynaptic

138 neuron j , we defined a CS $s_{i \rightarrow j}$. The CS indicates the likelihood of a putative
139 monosynaptic connection according to the respective inference method. Of note, the
140 meaning of the CS depends on the method: For example, the CS could be a (log)
141 probability, a negative (log) p-value, or the absolute value of a z-score (see Sec. S5 for
142 the definition of CS and Table 1). As for the CS graph S , the interpretation of the
143 weight graph W depends on the respective inference method, e.g., it might indicate an
144 estimate of synaptic strength or how much information about the spike train j is
145 contained in spike train i . For a given connection from neuron i to j , we define a weight
146 $w_{i \rightarrow j}$.

147 We consider a putative connection between neuron i and j as present when the
148 respective confidence score $s_{i \rightarrow j}$ is larger than a statistically defined threshold. This
149 threshold, however, has to be defined by the experimenter. Connections below this
150 defined threshold are regarded as unconnected pairs. As synaptic connectivity is
151 generally assumed to be sparse, this task is highly unbalanced, i.e., we would expect
152 that the unconnected pairs largely outnumber actual connections. Such imbalance poses
153 a problem for accuracy measurements [61]. To compare network reconstruction
154 performance across algorithms, and to take this imbalance into account, we here
155 considered the averaged precision score (APS). We defined the APS as the integral of
156 the precision-recall curve, which attains values between 1 (the best possible outcome)
157 and 0 (the worst outcome). Since the APS is an aggregate statistic over all possible
158 thresholds and some analytical questions do require thresholded graphs, we also
159 considered the Matthews correlation coefficient (MCC) [62] as a second performance
160 metric. See Supplementary Information S6 for details.

161 Overview on connectivity inference algorithms

162 Historically, many studies have applied cross-correlograms (CCGs) to estimate putative
163 mono-synaptic connections between neurons [31–33, 35–37]. In the present study, we
164 considered three CCG-based connectivity inference methods: First, the *Coincidence
165 Index* (CI), which integrates the CCG over a small synaptic window [56] and compares
166 it to values obtained from jittered surrogate data (i.e., spike trains for which the
167 short-latency synaptic relationships have been destroyed). The second method convolves
168 CCGs with a partially hollow Gaussian kernel [37] and thereby allows separating slower
169 background activity from faster synaptic interactions. We refer to this method as the
170 *smoothed cross-correlograms* (sCCG) algorithm [36]. And finally, a third method, which
171 fits a *generalized linear model* (GLM) to the CCGs [40]. As in the original
172 publication [40], we refer to this method as the GLMCC algorithm. The GLM models
173 the background spiking and the potential synaptic effect as two separate additive
174 functions: The stronger the contribution of the synaptic effect is, the more likely a
175 synaptic connection.

176 Several studies have applied information-theoretic measures to estimate neuronal
177 connectivity and information flow between brain regions and individual cells
178 [51, 52, 54, 63, 64]. Here, we utilized an efficient algorithmic implementation of *transfer
179 entropy* (TE) [65] to infer connectivity from the discretized spike trains. TE has been
180 used as a measure of information flow and quantifies – in this context – if information
181 about the spike activity of neuron j improves the prediction of the activity of neuron i
182 in addition to knowledge about the spiking history of neuron i alone [64].

183 We also implemented a modified, directed variant of the *spike time tiling coefficient*
184 (dSTTC) [53]. Although originally not developed to quantify synaptic connectivity, but
185 rather the synchronicity between pairs of spike-trains, it has recently gained a lot of
186 popularity [66–68]. The dSTTC variant used here quantifies interneuronal coupling by
187 estimating the proportion of spikes of two units that appear within a specific synaptic
188 window. More specifically, dSTTC checks whether there is an access or scarcity of

189 spikes of neuron j following the spikes of neuron i and spikes of neuron i that were
190 elicited before those of neuron j .

191 Finally, the last inference method was based on a *generalized linear model for*
192 *point-processes* (GLMPP) [55]. The GLMPP model allows the integration of multiple
193 covariates, such as the past activity of the entire network, in an explanation of the
194 observed spiking activity of a neuron i . Models of this class have been used in the past
195 for inferring connectivity among partially observed neuronal populations [69].

196 Each inference method was adapted to the previously described analysis framework,
197 i.e., each method provided a *score graph* S and a *weight graph* W . For more details on all
198 implemented algorithms, and the applied modifications to fit them to our workflow, see
199 *Supplementary Information* Sec. S5. An overview of all methods is provided in Tab. 1.

200 **Using an ensemble artificial neural network to improve 201 connectivity inference from spike trains**

202 Due to the great diversity of neuronal cell types and connectivity, and the inherent
203 complexity of neuronal dynamics, it is likely that network-reconstruction algorithms
204 perform better in some scenarios than in others [46, 70]. In this study, we introduce an
205 algorithm that is based on an *ensemble artificial neural network* (eANN), and which can
206 make predictions about synaptic connections after being trained on some training
207 ground-truth simulation with the corresponding output of multiple inference methods
208 (see previous section). Hence, one goal was to probe whether the collective input from
209 traditional inference algorithms – as learned by the eANN – improves network
210 reconstruction accuracy and robustness (Fig. 1).

211 To address this question, we first trained the eANN on connectivity-inference results
212 obtained with the traditional algorithms from *leaky integrate-and-fire* (LIF) network
213 simulations (see Sec. S1). For a putative connection between neurons i and j , the
214 resulting eANN received the weight $w_{i \rightarrow j}$ and connectivity scores $s_{i \rightarrow j}$ of all six
215 inference methods as input. The implemented eANN architecture consists of a
216 feed-forward network [71] with two hidden layers with ten units each and a rectified
217 linear unit (ReLU) non-linearity. The output layer has three units and a softmax
218 non-linearity and indicated either an excitatory (E), an inhibitory (I), or no connection
219 at all (Fig. 1B). Because we hypothesized that excitatory and inhibitory connections
220 might be reflected differently by each method, we chose a multi-class classification
221 setting. The model was then trained on different LIF simulations by minimizing the
222 cross-entropy loss using the ground-truth labels in the training data. The final
223 connectivity score s of the eANN was defined as the maximum softmax output for
224 either an excitatory or inhibitory connection. If the CS for a connectivity pair $i \rightarrow j$
225 exceeded a specific predefined threshold, the connection was deemed significant. The
226 eANN method simply predicts if a connection exists (or not), without assigning a weight
227 w . Predicting actual synaptic strength is expected to be a more challenging task, which
228 we leave to future research. Note, that throughout this paper we train only the network
229 once, and subsequent results are obtained by this network.

230 **Comparing network reconstruction performance across 231 algorithms, network dynamics, cell types, and recording 232 duration**

233 To benchmark connectivity-inference methods, we first turned to LIF simulations (see
234 Sec. S1), which were obtained similarly to an approach outlined in a previous study [41].
235 The spike train output of the LIF simulations resembled the subsequently used *in vitro*
236 HD-MEA recordings. Each LIF network consisted of $N = 300$ neurons, equally split

Method name	Abbreviation	Description
Coincidence index	CI	Measures the excess/deficit of coincidental firing compared to what would be expected by chance (shuffled data). Adopted from [56]
Smoothed cross-correlogram	sCCG	Quantifies the temporal correlation between two spike trains; a smoothing kernel is used to discern background activity from synaptic interactions [37]
Directed spike time tiling coefficient	dSTTC	Quantifies the synchrony between two neurons by considering the temporal overlap and rate of spikes in a defined temporal window [53].
Generalized linear model (GLM) cross-correlogram	GLMCC	Parameterized generalized linear model to facilitate synaptic connectivity inference from cross-correlograms. [40]
Transfer entropy	TE	Measures how knowledge about the spike history of one neuron reduces the uncertainty about the future spiking of another neuron [54, 65]
Generalized linear model (GLM) point process	GLMPP	Generalized linear model to parametrize firing rate according to network history. Modified from [72] and combined with methods from [73].
Ensemble artificial neural network	eANN	Neural network trained on CI, sCCG, dSTTC, GLMCC, TE and GLMPP to predict connectivity, as introduced in this study.

Table 1. Overview on connectivity inference methods and abbreviations.

237 into excitatory and inhibitory neurons, and connected randomly with a probability of
 238 0.05. The LIF network received two types of input: i) spike train data from an
 239 experimental recording to mimic realistic dynamics (connection probability to LIF
 240 neurons 0.1), and ii) white noise input. The white noise was varied, to map out a range
 241 of different dynamical regimes. As benchmarking datasets, we generated three different
 242 simulations: a high-bursting regime (burst rate: 1 Hz, average firing rate: 1.6 Hz,
 243 coefficient of variation: 0.3, see Fig. 2A), an intermediate-bursting regime (0.4 Hz,
 244 1.1 Hz, 0.4), and a low-bursting regime (0.2 Hz, 1.3 Hz, 0.2). To test the robustness of
 245 our algorithms, we grouped each simulated network dataset into three subsets, each
 246 composed of 100 neurons (50 excitatory and 50 inhibitory neurons); each simulated
 247 dataset was 60 min long.

248 In Figure 2, we provide an overview of the benchmarking results for all implemented
 249 inference algorithms, including the eANN, across different activity regimes, excitatory
 250 and inhibitory connectivity types, as well as network inference calculations run on fewer
 251 data (subsets of 10, 15 or 30 min of the data; see subsampling analysis). Example
 252 activity for the simulated high-burst regime is illustrated in Fig. 2A. A network,
 253 reconstructed by two of the best-performing algorithms (GLMCC and eANN), is
 254 depicted in Fig. 2B and C; the average APS and MCC statistics across all methods are
 255 depicted in D-E); the reconstruction performance for excitatory and inhibitory
 256 connectivity is shown in panel Fig. 2F.

257 In line with previous research [43, 46], we found that the network reconstruction from
 258 the spiking activity was altered, if the provided spike train data contained periods of
 259 very synchronous activity. This became also apparent in the results depicted for the
 260 GLMPP and TE algorithm (Fig. 2D and F). While the performance of these algorithms
 261 was good for the low burst regime (e.g., TE: APS=0.74, MCC=0.70; recording duration:
 262 60 min; connectivity thresholded at maximum MCC value), it deteriorated strongly for

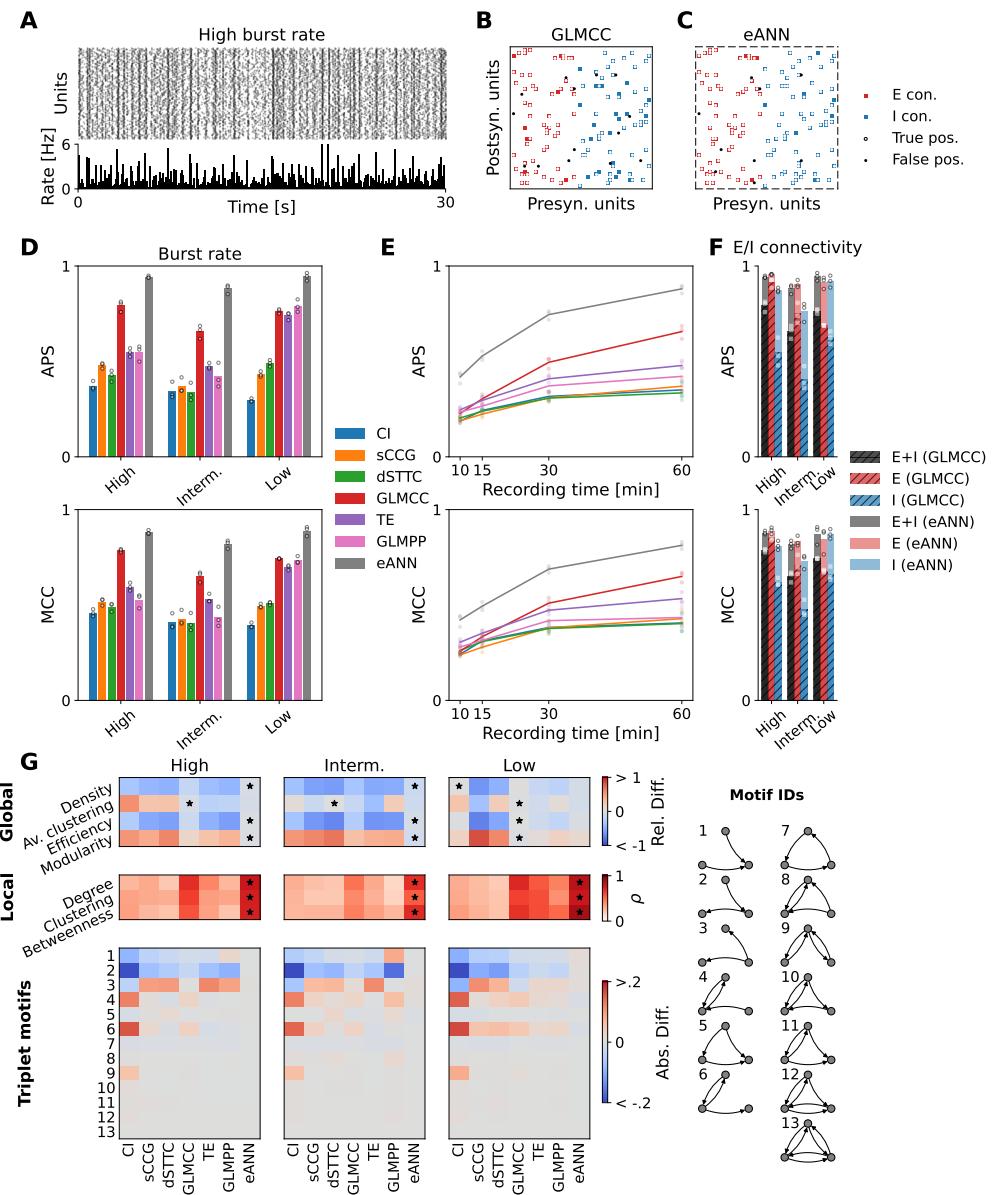


Fig 2. Reconstruction performance across algorithms, dynamics, cell types, and recording length. **A** Example raster plot (upper panel) and traces of binned population activity (lower panel; the number of spikes per second and neuron) of the *high-burst rate* condition. **B** Network reconstruction obtained from a subset of the data shown in **A**, exemplified for the GLMCC method [40]. Red and blue squares correspond to ground-truth excitatory and inhibitory synapses. White and black circles are predicted true positives and false positives. **C** Same as **B**, for the results obtained with the eANN approach, which generally improved the reconstruction performance. **D** The mean average precision score (APS, upper panel) and Matthews correlation coefficient (MCC, lower panel), estimated across all connections, obtained from all inference algorithms and the eANN across three different dynamical regimes. Dots depict the performance obtained on three different subnetworks of the same simulation. **E** Connectivity reconstruction performance (APS, MCC) as a function of recording time. Results indicated an improvement for longer recordings. Results in panel **E** are depicted for the intermediate dynamical regime. **F** E/I connectivity for all algorithms. **G** Global and local metrics and triplet motifs.

Fig 2. (continued) **F** APS and MCC for each type of connectivity, that is, excitatory (E, in red), inhibitory (I, in blue), combined (E+I, in black). Correspondingly, the performance gains achieved by the eANN are plotted in shades of red, blue, and black. **G** Quality of topological feature reconstruction for the inferred network across the three dynamical regimes. In the upper panel, the relative difference between four global features (network density, average clustering, and efficiency) is shown. The panel in the middle shows average Pearson correlation coefficients for the local/nodal metrics, comparing values obtained for the ground truth and inferred networks. Black stars indicate the method that performed best. The lower panels depict the absolute difference of triplet-motif frequencies between the ground truth and the inferred networks.

263 recordings for the high burst regime (TE: APS=0.55, MCC=0.59). Here, the inferred
264 connectivity suffered from many false positives. The performance for the GLMCC
265 method seemed less affected (GLMCC: APS=0.76 (low)/0.79 (high), MCC=0.74/0.79).
266 The performance of the GLMCC algorithm for excitatory connections was fairly good
267 overall (Fig. 2B; excitatory connections in red), but less robust for inhibitory
268 connections (few false positives; Fig. 2B and F; inhibitory connections in blue). For all
269 methods, reconstruction performance decreased for shorter recording lengths (Fig. 2E),
270 again, in agreement with previous reports [40, 74]. Very similar performance profiles
271 were also observed for most of the other inference algorithms (Fig. 2D-E).

272 Next, we probed the network-reconstruction performance of the eANN. Results
273 indicated that the eANN outperformed all other inference methods – both, across all
274 dynamical regimes (Fig. 2D), and when applied to shorter recordings, respectively fewer
275 data (Fig. 2E). The most substantial improvements were observed for the
276 intermediate-burst regime. Here, the average APS for the eANN was 0.88, i.e., a 35%
277 improvement compared to the best-performing model (GLMCC: APS=0.65). Similarly,
278 we found a 24% improvement in the MCC values for the eANN (eANN: MCC=0.81)
279 compared to the GLMCC (eANN: MCC=0.65; see Fig. 2D). The main performance
280 gains for this condition resulted from a reduction in false positive excitatory connections
281 and an increase in true positive inhibitory connections (see Fig. 2B-C). For the
282 temporal subsampling analysis (Fig. 2E), we compared the reconstruction performance
283 of all algorithms on 10, 15, 30, and 60-minute subsets of the data. Although the eANN
284 performance also decayed for shorter data segments, it was still significantly better
285 compared to the other methods. Interestingly, the accuracy values of the
286 best-performing traditional inference method, the GLMCC algorithm, degraded
287 strongest on shorter recordings (lowest ASP/MCC values for spike train data below 30
288 minutes). See Fig. S1 for the precision-recall curves across all datasets and algorithms.

289 Finally, we probed how accurately the different algorithms could infer the global and
290 local topological statistics of the simulated ground-truth networks. For the global
291 metrics, we quantified the dissimilarity between the inferred networks F_{inf} and the
292 ground-truth networks F_{gt} by their relative distance $(F_{\text{inf}} - F_{\text{gt}})/F_{\text{gt}}$. For the local
293 topological metrics, we computed the Pearson correlation ρ between all nodal values of
294 the inferred network and the nodal values of the ground-truth network; the reported
295 values were averaged over three different networks. In Fig. 2 G, we report summary
296 results for reconstructed graphs that were binarized with the best-performing MCC
297 value. We found that many of the inferred connectivity metrics, including basic
298 properties such as the network density, but also nodal features (e.g., the average
299 clustering coefficient), differed substantially between algorithms and dynamical regimes.
300 As expected from the results depicted in Fig. 2 D, most connectivity methods, and in
301 particular the GLMCC algorithm, performed reasonably well in the low-burst regime.
302 Here, we found only little relative differences between the global/local topology of the

303 ground-truth networks and the topology of the inferred networks. For the intermediate
304 and high-burst regimes, however, the estimates became worse. Here, the eANN excelled
305 and outperformed all other methods. The average relative difference in global
306 topological metrics for the eANN was 4%, 10%, and 6% for the low, intermediate, and
307 high-burst regimes, respectively. For the second-best method, the GLMCC algorithm,
308 the relative difference in global topological metrics were 2% (low), 27% (intermediate),
309 and 13% (high-burst regime). For the local features, the eANN performed best on
310 average (Pearson's correlation: 0.74, 0.63, 0.81 for the high, intermediate, and low-burst
311 regime); the performance of the GLMCC algorithm was still good, but lower on average:
312 0.62 (high), 0.44 (intermediate), and 0.65 (low-burst regime). The good reconstruction
313 performance of the eANN algorithm became even more apparent for the inference of
314 triplet motifs [18]. While many algorithms showed similar results in their estimates of
315 the frequency of motifs, the eANN performed overall very well (Fig. 2 **D**). Of note, in
316 Fig. S2, we also report the topological analyses for graphs binarized with a threshold
317 obtained from jittered surrogate data ($\alpha = 0.01$). As for the results presented here, we
318 observed that the eANN showed a very robust performance.

319 While the eANN does not provide a prediction of the synaptic strength, we observe
320 that its CS s is correlated with synaptic strength (see Fig. S8). Furthermore, we
321 investigated the performance on a LIF network simulation with an 80/20 E/I
322 connectivity in Fig S7, where we observed better overall performance of all connectivity
323 inference methods with the eANN being the most performant method.

324 **SHAP analysis of eANN output**

325 Next, we sought to understand in more detail which input features of the eANN
326 contributed most to the improved reconstruction performance. We, therefore,
327 investigated the eANN output with a SHAP analysis [60]. A SHAP analysis allows
328 determining how much each of the connectivity methods (i.e., the input features) adds
329 to the eANN predictions of excitatory or inhibitory synaptic connections. The SHAP
330 values, which are calculated for each of the connectivity methods and each prediction,
331 represent the contribution of the individual methods to the prediction task - and
332 thereby explain party the inner workings of the eANN model. Figure 3 depicts the
333 SHAP values for 1500 putative connections obtained from an eANN analysis performed
334 on simulated spike trains in the intermediate-burst regime. In panel **A**, we depict SHAP
335 values for example inhibitory and excitatory connections. The results indicate that
336 approximately three features contributed most prominently to the decision of the eANN
337 in favor of an excitatory (E) connection (upper panel), namely, the obtained weight of
338 the GLMPP method and the connectivity score (CS) values of the TE and sCCG
339 algorithms. For the inhibitory (I) connection (lower panel) mainly the weights of
340 GLMPP and GLMCC methods contributed to the decision. In the figure, the
341 contribution to the eANN output can be inferred from the length of the arrows, here
342 depicted in green, respectively purple (Fig. 3**A**). While many features seemed to carry
343 information about excitatory connections (Fig. 3 **B**, top panel) only about two features
344 were predictive for inhibitory connections. However, the SHAP values for these features
345 were quite variable. Interestingly, we observed that the features that yielded – on
346 average – the highest SHAP values, were the same for excitatory and inhibitory
347 connections (i.e., the weight estimates inferred by the GLMPP and GLMCC
348 algorithms). However, we also found differences in how features contributed to detecting
349 excitatory and inhibitory connections. For example, while the CS of the sCCG method
350 contributed to the detection of excitatory connections, it contained only little
351 information for the inference of inhibitory connections. To illustrate how single features
352 contribute to the classification of excitatory/inhibitory connections, we depict the exact
353 SHAP values of the two top-ranked metrics (GLMPP and GLMCC) as a function of

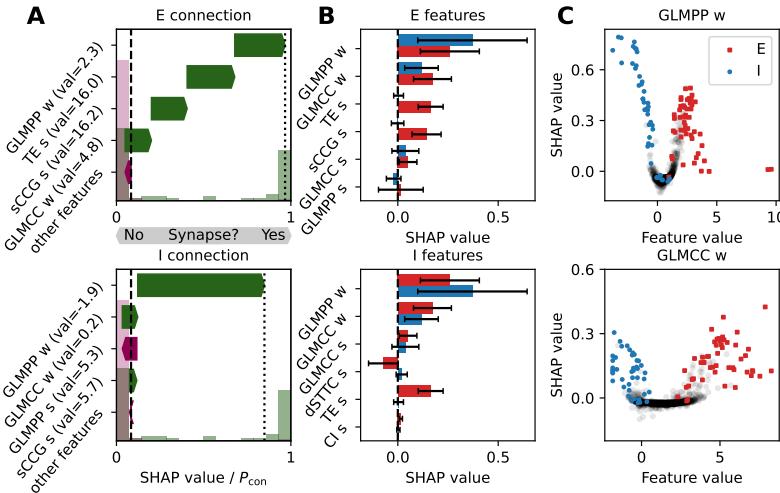


Fig 3. SHAP analysis on eANN output. **A** SHAP values for example an excitatory (E, top panel) and an inhibitory connection (I, bottom panel), ranked according to their importance. The length of the arrows denotes the approximated feature contribution to the eANN output, as estimated by the SHAP method [60]. The y-axis shows the corresponding features with the feature value in brackets. Green arrows pointing to the right indicate that this feature was informative in the process of determining an E/I connection; purple arrows pointing to the left indicate the opposite. Normalized histograms, plotted in light green and purple in the background, show the eANN output for unconnected pairs and connections respectively. The dashed line is the average eANN output for all connections in the dataset. **B** The features with the highest average SHAP values for excitatory (top) and inhibitory connections (bottom). Red and blue bars denote the average SHAP values for excitatory and inhibitory connections, respectively. The error bars denote the standard deviation, calculated over all excitatory/inhibitory connections present in the dataset. **C** SHAP values as a function of feature value for the two top features depicted in panel **B**, namely GLMPP w, and GLMCC w. Black dots indicate unconnected pairs.

354 their feature values (Fig. 3C): Results indicate that the two features were mainly
 355 negative for inhibitory connections (depicted in blue) and positive for excitatory
 356 connections (depicted in red); high SHAP values often correlated with large absolute
 357 feature values. This held, in particular, for the negative weight estimates of the
 358 GLMPP, indicating that this feature may contribute strongly to the identification of
 359 inhibitory connections. It is noteworthy, that none of these features alone was sufficient
 360 to separate actual connections from unconnected pairs. We propose this underscores
 361 that the eANN approach is advantageous for the reliable inference of connectivity from
 362 spike train data. Additionally, we investigate the correlations among input features in
 363 Fig. S11, where we observe that for excitatory connections features are much stronger
 364 correlated than for inhibitory connections. This yields evidence, that different input
 365 methods carry different kinds of information, and that the eANN can leverage this fact
 366 best for inhibitory connections yielding a strong performance boost for these.

367 Application to HD-MEA/patch-clamp data

368 Next, we applied the developed inference pipeline to experimental data, obtained
 369 through parallel HD-MEA network and whole-cell patch-clamp recording in *in vitro*
 370 neuronal cultures (dataset 1; for details on the data see [58]; Fig. 4; n=3 patched cells;

371 culture age: DIV16-18; see Sec S3E for details). Briefly, following a long HD-MEA
372 baseline ~ 3 h long recording for spike-based connectivity inference, we transferred
373 neuronal cultures to a setup that enabled simultaneous HD-MEA/patch-clamp
374 recordings. Here, single neurons were patched on the HD-MEA and, in parallel,
375 recorded extracellularly on the HD-MEA. Two distinct paired recordings were obtained
376 from each patched cell. First, we recorded spontaneous spiking of the patched cell in
377 whole-cell current-clamp mode in addition to simultaneously recording extracellular
378 HD-MEA signals. The obtained data then allowed to perform spike-triggered averaging
379 (Fig. 4 **A-E**) and to infer the *electrical footprint* (EF) of the patched neuron. The EF is
380 the extracellular profile of a neuron on the HD-MEA (Fig. 4 **D** and **E**).

381 To study the synaptic input to the individual postsynaptic cells during ongoing
382 spontaneous activity, we recorded neurons in voltage-clamp mode (Fig. 4 **F**). As
383 previously reported [57, 58], combining the spontaneous/evoked electrical activity of
384 neuronal networks, recorded on the HD-MEA (Fig. 4 **F**), with the measured
385 postsynaptic currents (PSCs) in patched neurons, allowed for reliably reconstructing
386 connectivity to putative presynaptic partner cells. To estimate the effect of
387 extracellularly recorded neurons on the patched cell, and most importantly, to infer
388 synaptic connections between the patched neuron and its putative presynaptic network,
389 we developed a regression-based connectivity inference method (similar to [75], see
390 Sec. S2 for details). The method was first benchmarked on *in silico* data; an overview of
391 the obtained performance results is provided in Fig. S5. Our *in silico* results indicated
392 that the developed method can robustly detect synaptic connections (high recall), with
393 only very few false positives (high precision). Although the performance deteriorated for
394 low-rate conditions and more correlated spiking, the method proved very reliable for a
395 wide range of parameters.

396 Next, we applied the developed intracellular connectivity inference method to three
397 patch-clamp recordings obtained from a previously published dataset [58], and identified
398 26 putative synaptic connections among 131 possible combinations. In Fig. 4**H** we show
399 an example fit with three PSC cutouts of three identified connections in an example
400 recording; Fig. 4**I** depicts the CCGs and PSCs of three connections found in the
401 recording and an unconnected pair. For an overview of all PSCs and corresponding
402 pair-wise CCGs of identified connections, as well as for information on which algorithms
403 succeeded in detecting the connection, please see Fig. S6.

404 With this labeled experimental data at hand, we then evaluated the performance of
405 the existing activity-based inference methods, and the eANN, on 3-h-long HD-MEA
406 baseline recordings. The eANN is the same as for Fig. 2 and was not re-trained for
407 these analyses. For the *in vitro* data, we see similar performance for the six input
408 methods in terms of APS, but varying performance for MCC (see Fig. 4**J**). The
409 GLMCC algorithm (MCC=0.37), the sCCG (MCC=0.49), and the TE algorithm
410 (MCC=0.36) performed best among the input methods. The superior performance of
411 GLMCC originates rather from higher precision than recall (recall=14 correctly
412 classified connections of 20 connections; precision=14 correctly classified connections
413 among 39 identified synapses). In comparison, the sCCG method (recall=23/26;
414 precision=23/53) and the TE algorithm (recall=16/26; precision=16/38) both yielded
415 similar or higher recall, at the expense of lower precision. As for the analysis of
416 simulated ground truth, we found that the eANN (MCC=0.56) outperformed the other
417 methods in terms of both MCC and APS. Also here the dominating factor was, that the
418 eANN yielded much higher precision at inferior recall (recall=17/26; precision=17/26).
419 Considering these numbers, in particular, for recall and precision, we found that this
420 performance increase was mainly due to more accurate predictions (higher precision), at
421 the cost of not identifying some true connections (lower recall). In summary, our results
422 indicate that connectivity inferred by the eANN method is more precise than the results

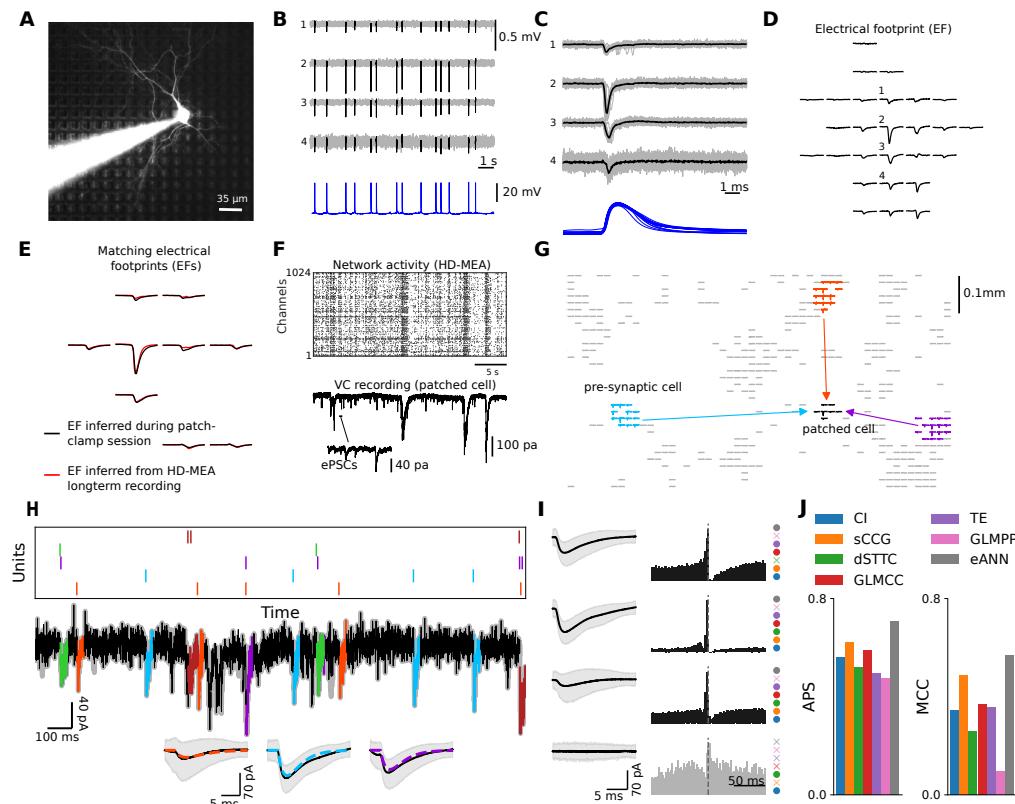


Fig 4. Validating synaptic connectivity inference with parallel HD-MEA and patch-clamp recordings. **A** Panel depicts a single patched neuron on the HD-MEA, including the patch pipette. The neuron was labeled with Alexa Fluor 594 through the patch pipette; HD-MEA electrodes can be seen in the background. **B** Example recording of a patched cell and some of its extracellular signals, obtained with HD-MEA network recordings (spikes are depicted in black) that were conducted in parallel to the patch-clamping (lower panel, in blue; whole-cell patch-clamp mode). HD-MEA and patch-clamp signals were aligned **C**, and allowed for inferring the exact location and electrical footprint (EF) of patched neurons on the HD-MEA **D**. To infer the putative pre-synaptic connectivity of individual (patched) neurons, we first performed long HD-MEA network recordings. Next, we applied a post-processing step to match the EF of the patched cell, with the EF templates obtained via spike sorting of the HD-MEA network recordings. The panel **E** depicts the overlap of the EF obtained during the patch session (in black) and the EF obtained from spike-sorted data (in red). **F** Extracellular network recording (upper panel, raster plot) and simultaneous intracellular current signal (lower panel), obtained from a whole-cell voltage-clamp (VC) recording. VC recordings were used to measure the excitatory/inhibitory postsynaptic currents (ePSCs/iPSCs) in the patched cell, and their occurrence to the activity obtained from spike-sorted HD-MEA data. Panel **G** depicts three example connections of the patched cell (EF in black) to three presynaptic neurons; the EFs of these cells on the HD-MEA are colored in light blue, orange, and purple. **H** IC model fit to patch-clamp recording. Spikes of identified presynaptic neurons are shown on top, aligned with the recorded currents of the patched neuron. PSCs of three units are shown as insets, with the average depicted in black and the fitted model PSC displayed in different colors. The shaded area is the 5 – 95% quantile.

Fig 4. (continued) **I** PSCs of four cells, three connected pre-synaptic neurons, and one unconnected neuron, are shown along with their corresponding CCGs. Note, that a high-chloride internal patch-clamp solution was used to simultaneously measure the synaptic activity of excitatory and inhibitory presynaptic cells [58]. As a result, as depicted, inhibitory input currents also have a negative polarity. On the right side of the CCG, a colored circle indicates whether the respective connectivity method found a connection or not (cross). **J** Panel depicts the performance of the different connectivity methods averaged over the three patched neurons.

423 obtained with any of the other inference methods.

424 **Characterizing in vitro neuronal network connectivity and**
425 **topology**

426 Finally, we applied the eANN pipeline to a second dataset of HD-MEA network
427 recordings, obtained from primary cortical cultures (dataset 2; n=6 cultures; recording
428 duration: 1 h; culture age: DIV14). The main goal of this analysis was to compare how
429 connectivity and topological properties varied across the implemented inference methods
430 (Fig. 5). As before, all network recordings were first spike-sorted and underwent several
431 quality-control steps to ensure that connections were estimated on sufficient activity
432 (Fig. 5A, see Sec. S3D). To reduce between-network variability, we only sampled 100
433 units from each network. Comparing the overall distribution of empirical eANN scores
434 (Fig. 5B, depicted in black) to the corresponding surrogate distribution of eANN output
435 values (depicted in yellow) indicated that the spike-train jittering effectively destroyed
436 short-latency synchronization between individual neurons. The distribution of
437 experimentally inferred values showed a clear peak in the eANN weight distribution that
438 distinguished putative synaptic connections from unconnected pairs (Fig. 5B). Next, we
439 calculated the consensus distribution (Fig. 5C), i.e., the overlap between all significant
440 connections, obtained by the six traditional inference methods and the network inferred
441 by the eANN (threshold value: $\alpha=0.01$). The results indicated that most eANN edges
442 were found by five of the six inference methods (32.6%). Interestingly, some edges were
443 found by the eANN method, but not by the other methods at the selected threshold
444 (edges in zero bin: 18%). This finding indicates that some eANN edges could not
445 exclusively be explained by the overlap across all inference methods, but that there is
446 added value by the eANN algorithm at this threshold. The network density decreased
447 with smaller α -values (Fig. 5B; α -values: 0.05, 0.01, 0.005 and 0.001), and varied
448 significantly as a function of inference algorithms (the repeated measures' analysis of
449 variance (ANOVA) for a α threshold value of 0.01 was: $F(6,30)=189.77$, $p=6.5659e-10$;
450 p-value with Greenhouse-Geisser adjustment); the network density of all graphs was
451 sparse (e.g., for a threshold of $\alpha=0.01$, the network density varied between 1-9%;
452 Fig. 5B and G), in line with previous reports [18, 76]. All implemented algorithms
453 reconstructed networks that showed a clear decay in connection probability as a
454 function of interneuronal distance (Fig. 5F).

455 Furthermore, we found that topological properties of network segregation and
456 integration differed as a function of the inference method (clustering: $F(6,30)=102.16$,
457 $p=1.67e-7$; efficiency: $F(6,30)=222.3$, $p=5.29e-14$; modularity: $F(6,30)=40.245$,
458 $p=3.23e-5$; small-world-index: $F(6,30)=7.28$, $p=0.004$; all p-values with
459 Greenhouse-Geisser adjustment). Despite the reported differences, all algorithms
460 implied that networks possessed a non-random modular, small-world organization
461 (small-world-index > 1); a topological analysis with proportionally thresholded networks
462 is provided in Supplemental Material (Fig. S3).

463 The inferred *in vitro* cortical networks also featured a significant over-representation

464 of some triplet motifs [77] (Fig. 5I). The number of motifs that were significantly
465 over-represented in the empirical networks varied between methods (e.g., four motifs for
466 dSTTC and eight motifs for the GLMCC graphs), but all implemented algorithms
467 suggested that motifs 9, 11, 12, and 13 were over-represented compared to an
468 appropriate surrogate network (threshold: $\alpha=0.01$; motif significance α -value=0.001;
469 p-values were corrected for multiple comparisons across motif IDs and algorithms;
470 Fig. 5I). Despite strong differences in the frequency of specific motifs between inference
471 methods, there was a high resemblance across networks within each method (see
472 Fig. S4). Results obtained from the topology and motif analyses indicated a higher
473 similarity (correlation coefficient) between the output of the eANN and the GLMCC
474 algorithm compared to the other methods (Fig. 5J, lower triangle). On average,
475 topological properties and motif frequency values were more similar for the CI, sCCG,
476 dSTTC, GLMCC, and TE algorithms – as compared to GLMPP and eANN. This trend
477 is reflected in the pairwise Matthews correlation coefficient (MCC; Fig. 5J, upper
478 triangle).

479 Finally, and to further supplement the topological properties, we also assessed the
480 functional connectivity properties of eANN-inferred networks. We, therefore, calculated
481 the *spike transmission probability* (STP) of significant eANN connections (threshold:
482 $\alpha=0.01$) using an STP-variant, that has been adopted and improved to better infer
483 STPs on recurrent/bursty spike activity [39]. A positive STP value was taken as an
484 indicator for an excitatory connection and a negative STP as an indicator for an
485 inhibitory connection. Across all 1794 connections (2.99% overall network density), as
486 inferred by the eANN algorithm (network threshold α -value: 0.01), 63.7% of
487 connections were excitatory and 36.3% were inhibitory (Fig. 5K). Inspection of the
488 CCGs indicated that many of the observed inhibitory connections might participate in
489 inhibitory feedback motifs. Overall, these results underscore that the eANN algorithm
490 was able to pick up connections of both excitatory and inhibitory types, supporting our
491 previous modeling results.

492 Discussion

493 The present study demonstrates that inference of synaptic connectivity from
494 extracellular spike train dynamics can be improved by the application of an *ensemble*
495 *artificial neural network* (eANN). By benchmarking the eANN to more traditional
496 connectivity-inference algorithms in a standardized analytical framework, we report a
497 superior reconstruction performance for the eANN, that persisted across different
498 dynamical regimes and recording durations. We find that the eANN did also provide a
499 more accurate reconstruction of the type of connectivity (excitatory or inhibitory), and
500 better estimates for the global and local topology of networks *in silico*. Results derived
501 from a SHAP analysis allowed for further validation of the specific contributions of
502 algorithms to the eANN performance. Importantly, we found improvements in network
503 reconstruction for both simulated and experimental ground-truth datasets. Such
504 generalizability indicates that the developed method leads to more accurate and robust
505 connectivity inference in datasets for which knowledge of the underlying synaptic
506 connections is not available.

507 The challenge to infer synaptic connectivity from spike trains

508 The extent to which synaptic connectivity and causal relationships between neurons can
509 be studied, based on spike train dynamics alone, remains a matter of active debate.
510 Although there have been attempts with small well-established circuits [78, 79], this
511 endeavor has proven challenging for many reasons [43, 80]. In line with previous

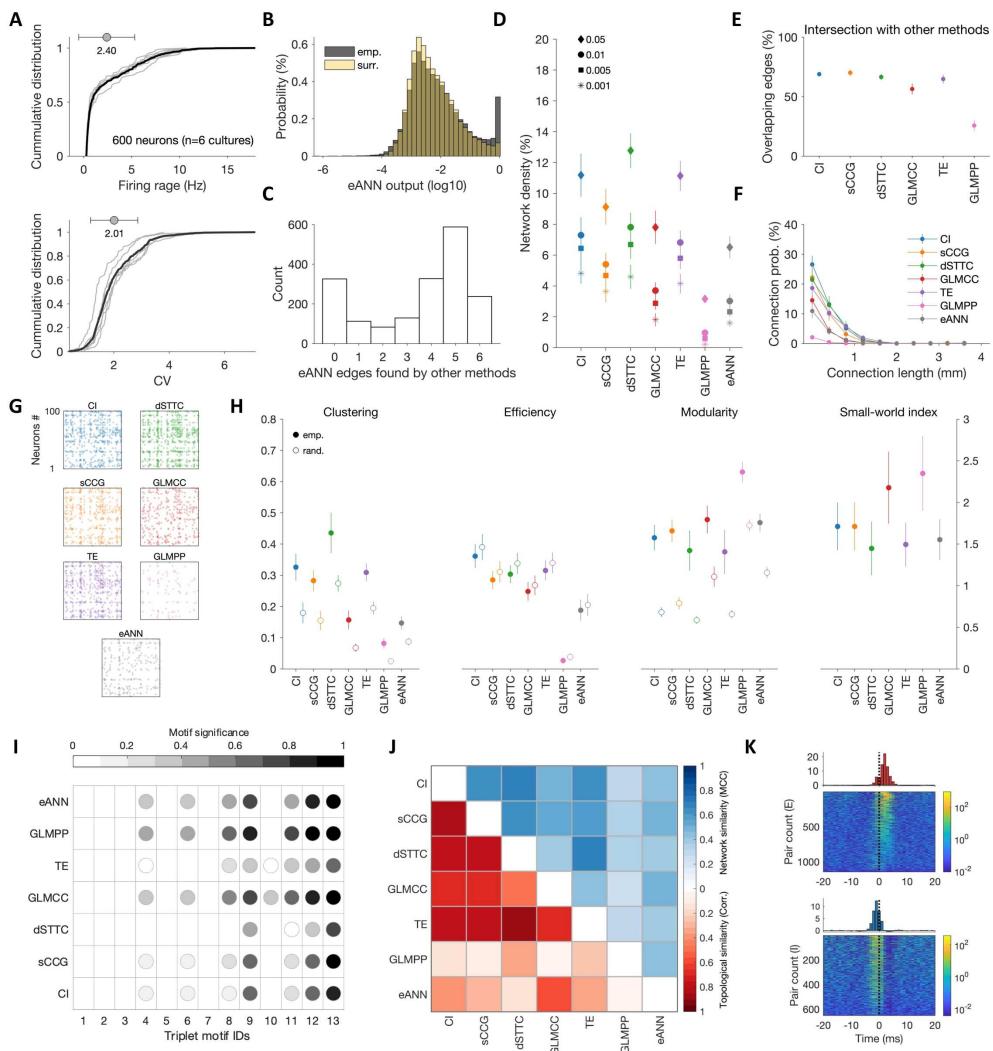


Fig 5. Characterizing the connectivity of in vitro neuronal networks. **A** Firing rate cumulative density function (CDF) of 600 spike-sorted units from HD-MEA recordings obtained from primary cortical cultures (top panel; n=6 cultures; 100 randomly selected units per network; recording duration: 1 h; culture age: DIV14); and CDF of inter-spike interval coefficients of variation (CV) for the same cultures (lower panel). **B** Network density as a function of threshold values (corresponding to α : 0.05, 0.01, 0.005, and 0.001) across all inference methods. α threshold values were derived from surrogate connectivity estimates (temporally jittered spike trains). Network density decreased with smaller α -values, and varied significantly across methods. **C** Overall distribution of eANN weights of empirical networks (in gray; values are depicted in logarithmic space) and overlaid with the corresponding distribution of eANN values inferred from surrogate networks (in yellow). The distribution of experimentally inferred values demonstrates a clear peak in the eANN weight distribution that distinguishes putative synaptic connections from unconnected pairs. **D** Intersection of significant eANN connections with those of all other connectivity inference methods. Panels D-K depict network graphs thresholded with $\alpha = 0.01$.

Fig 5. (continued) **E** Significant eANN edges cannot exclusively be explained by the overlap across all inference methods. Panel E depicts the consensus distribution, i.e., the overlap across the six inference methods for all significant eANN edges; most eANN edges were found by five of the other methods. About 20% of edges were found by the eANN, but not by the other methods at the selected threshold (see zero bin). **F** Inferred connectivity decayed with interneuronal distance ($\alpha = 0.01$), and the likelihood of long-range connections (> 1 mm) was very low. **G** Example connectivity matrices for one culture inferred with all seven inference methods. **H** Topology of inferred in vitro networks differed significantly across inference methods ($\alpha = 0.01$; filled circles: empirical data; empty circles: randomized surrogate networks). **I** All inference methods yielded an over-representation of triplet motifs (see Fig. 2 for motif ID legend) but with slight differences across methods. Dots depict motif IDs that occurred significantly more frequently than re-wired surrogate networks (FDR corrected α of 0.001); the color indicates the relative mean difference in their occurrence. **J** Lower triangle (red color scale): Topological similarity, calculated by pairwise Pearson correlation coefficients across the topological metrics shown in **H** and **I** across all inference methods. Upper triangle (blue color scale): Network similarity, quantified by pairwise MCCs across all adjacency matrices. **K** Display of putative excitatory (E) and inhibitory (I) connectivity for all edges inferred by the eANN. The top panel depicts the baseline corrected CCGs for the eANN edges with positive spike transmission probability (STP), i.e., excitatory connections. The average CCG is depicted in the red bar graph at the top. Correspondingly, the bottom panel depicts the putative inhibitory connectivity among the eANN inferred edges with negative STP. Note, the logarithmic color scale of pair counts. The excitatory and inhibitory connections are sorted according to their positive/negative STP values.

512 work [43, 46], the results reported in this study underscore, that there are indeed limits
513 to activity-based network reconstruction (Fig. 2D). Using simulations to parametrically
514 model a range of dynamical regimes – we found, as expected, significant performance
515 alterations for most traditional algorithms once spike trains showed stronger temporal
516 periodicity. With few notable exceptions, such as the GLMCC algorithm, reconstruction
517 performance, quantified by the averaged precision score (APS) and Matthews
518 correlation coefficient (MCC), worsened significantly for data with more prominent
519 network burst-activity (Fig. 2D).

520 Among the many possible reasons for such performance, alterations are false positive
521 connections generated through, for example, common inputs, poly-synaptic connections,
522 or short-term synaptic dynamics [43, 45]. The accuracy to infer a synaptic connection
523 from activity also crucially depends on the number of available spikes and synaptic
524 strengths [74]. Weak connections and/or availability of only a few spikes drastically
525 increase the likelihood of missing connections [81]. Moreover, insufficient coverage of the
526 network may further alter the reconstruction performance of algorithms [82]. A
527 combination of these factors most likely explains the observed imperfect inference
528 performance, even for simulated recordings with less correlated population activity
529 (Fig. 2D-F). Moreover, it should be noted, that the *a priori* conceptual assumption of
530 what will be considered a connection, the choice of parameters for each method, and the
531 criteria that are applied to falsify the existence of such connections (e.g., via surrogate
532 generation) are likely equally important. Although previous studies have attempted to
533 compare different connectivity reconstruction algorithms [39, 42, 70], most of them were
534 less unified conceptually and are difficult to compare to the present study. Moreover,
535 these studies used a variety of ground-truth data sets, including simulated calcium
536 imaging data, which suffers from low temporal resolution [46, 47].

537 eANN improves neuronal network reconstruction

538 Although ensemble methods have been proposed in the past [59], and used for the study
539 of large-scale brain networks [83,84], to the best of our knowledge, the present study is
540 the first to demonstrate that such methods can be generalized to cellular spike-train
541 data. More importantly, our results indicate that applying the eANN to such data
542 allowed for significant performance improvements in the reconstruction of synaptic
543 connectivity (Fig. 2; Fig. S1 and S2). Using a simple feed-forward network
544 architecture [71], and training the eANN on the standardized output of several existing
545 connectivity-inference methods [36,40,53–56], we demonstrate that excitatory and
546 inhibitory connectivity, and the topology of neuronal networks, can be reliably inferred
547 from simulated as well as empirical spike-train data (Fig. 2 and 4). Overall, the eANN
548 outperformed all traditional methods (Fig. 2D–G), and the performance gains were
549 relatively invariant to different dynamical regimes (Fig. 2D) and even persisted on fewer
550 data (Fig. 2E). Our results also revealed that the eANN integrates aspects of different
551 inference methods for its connectivity prediction (Fig. 5C), and that high eANN output
552 values were absent, if the millisecond spike-timing information was disrupted, e.g., by
553 jittering the spike trains (Fig. 5B). While understanding the performance of neural
554 networks is typically challenging, insights gained from a SHAP analysis indicated that
555 the trained eANN assigned varying levels of importance to different input features, i.e.,
556 some inputs were more informative than others (Fig. 3). Interestingly, this held
557 particularly true for the detection of inhibitory connections (Fig. 2F). Here, the
558 GLMPP algorithm seemed to convey valuable input (Fig. 3B, lower panel), a method
559 that performed less well in the detection of excitatory connections. Overall, results for
560 different connectivity types, network topology, and different network dynamics, as
561 calculated with eANN-inferred graphs, were robust across different threshold definitions
562 (Fig. 2, Fig. S1, and Fig. S2). We hypothesize, that the observed robustness could be
563 attributed to the initial inference methods being designed to be somewhat invariant to
564 differences in firing rates or baseline neuronal activity. Applied to HD-MEA network
565 recordings, eANN-derived connectivity was most similar to graphs inferred by the
566 GLMCC algorithm (Fig. 5J and Fig. S10). Despite these positive results, it should be
567 noted, that the eANN did not result in perfect reconstruction performance. Thus,
568 future studies should probe, whether considering additional features, more completely
569 sampled recordings, or longer recordings could improve network reconstruction even
570 further. Moreover, it would be interesting to probe, if inference performance improves,
571 if data-driven features obtained from other neural network methods, such as the
572 CoNNECT method [42], are integrated into the eANN.

573 In vitro neuronal networks show complex topologies

574 Our results on the putative synaptic connectivity of *in vitro* developing primary
575 neuronal networks, obtained by HD-MEA network recordings, and inferred by the
576 eANN and traditional inference methods, are largely in line with previous
577 reports [48,49,51,52,63,74]. All algorithms indicated that connectivity was locally
578 clustered, overall sparse (connection probability below 15%; Fig. 5D), and that the
579 probability of connections decreased as a function of interneuronal distance (Fig. 5F).
580 These results are also in agreement with previous patch-clamp work [13,76]. Yet, it
581 should be noted, that the effect of the inference method on connectivity and topology
582 was considerable (Fig. 5D). For some topological measures, such as the clustering
583 coefficient (Fig. 5H), the between-method differences exceeded the differences observed
584 between the empirical and the randomized surrogate networks. For example, the
585 clustering results, calculated on graphs inferred by the eANN and GLMPP methods,
586 were significantly lower than the values of the randomized surrogate networks of some

587 other methods (e.g., CI, TE, and dSTTC). Still, all networks comprised a modular
588 small-world structure (Fig. 5H). Some subtle differences in the triplet-motif statistics
589 (Fig. 5I) were observed in comparison to previous reports [63], but overall, these were
590 not pronounced, and many of the over-represented motif structures have been reported
591 by whole-cell recordings in slices [13, 18].

592 **Limitations**

593 Several important limitations should be considered when interpreting the results
594 presented in our study:

595 First, the analyzed spike-train data were obtained from dissociated primary rodent
596 cortices cultured *in vitro*. Although such model systems have been used extensively to
597 study neuronal physiology at the cellular level [8, 10], and have, thereby, provided
598 fundamental insights into the mechanisms of underlying synapse formation and function,
599 there are limits as to how insights obtained from *in vitro* connectivity can be translated
600 to *in vivo* [85]. Future studies should, therefore, train and apply the developed eANN
601 pipeline also to *in vivo* spike-train data – ideally, recorded in well-defined brain
602 subsystems, where inferred connectivity can be linked to structural connections
603 established with other methods [86].

604 The results presented in Fig. 5 were estimated on DIV14 neuronal networks, a time
605 point where GABAergic signaling may be still immature [87, 88]. Although early during
606 development, our results indicated the presence of some inhibitory connections among
607 the recorded neurons (Fig. 5K). The relatively young age of these cultures, however,
608 should be considered when interpreting the inferred network density. Likely, a
609 significant proportion of synapses is still 'silent' at that time, and that some relevant
610 receptors are not yet fully expressed [89]. Also, the cell-plating density of neuronal
611 cultures, respectively the size of networks, affect overall synaptic strengths [76], and
612 hence will impact the ability to infer synaptic connections from activity [90].

613 A common limitation, shared by all methods in this study, is, that they approximate
614 connectivity from a network that is incompletely sampled. Such subsampling has been
615 shown to lead to altered network reconstruction performance [43, 82, 90]. This holds also
616 true for more complex inference algorithms that can take into account the past activity
617 of the sampled network [54, 69]. Hence, the inferred connectivity may exhibit spurious
618 false positives due to common unobserved input that cannot be explained away [43, 91].
619 This is also true for the experimental ground-truth data in our study. Live-cell imaging
620 with calcium or voltage sensors could be applied to improve coverage [46, 70, 92], and
621 future studies should compare how network statistics change as a function of network
622 coverage.

623 We note, that also the empirical ground-truth data used in this study could be
624 further improved [58]. Applying targeted, electrical stimulation to defined pre-synaptic
625 neurons would allow for stronger claims about the found connections and their
626 interneuronal causal effects [57]. Moreover, it would help to have access to the neuritic
627 morphology of some parallel recorded neurons on the HD-MEA to better link the
628 inferred connections to axonal/dendritic morphology and neuritic overlap. Such
629 additional structural insights could also help to remove false positive connections.

630 **Conclusion**

631 In sum, this study presents an analysis workflow to systematically assess algorithms
632 that have been applied to the inference of neuronal connectivity from large-scale
633 extracellular recordings. To this end, we utilized simulated and experimental
634 ground-truth data, and compared statistically inferred connectivity across a range of
635 different conditions in a standardized manner. Moreover, we introduced an *ensemble*

636 *artificial neural network* (eANN), that can integrate the output of multiple inference
637 algorithms, and probed whether this would lead to improved network-reconstruction
638 performance. Our results demonstrate that inference performance can be significantly
639 improved by the eANN, and that the obtained network reconstruction represents more
640 than just the sum of all methods.

641 Methods and Materials

642 Here, we describe the architecture and training scheme of the introduced *ensemble*
643 *artificial neural network* eANN. All methodological details on the HD-MEA and
644 patch-clamp experiments, the LIF simulations, the developed model to infer synaptic
645 connections from parallel recordings, details on spike-time based connectivity inference
646 methods, the *in vitro* culturing, the data preprocessing, as well as the performed
647 topological analyses can be found in the *Supplemental Information*.

648 Architecture of the ensemble artificial neural network

649 The introduced *ensemble artificial neural network* (eANN) is a feed-forward network,
650 that takes the weight W and the CS S matrices of the six implemented connectivity
651 methods (CI, sCCG, GLMCC, TE, dSTTC, and GLMPP) as input and provides as
652 output the probabilities of whether the input belongs to an excitatory or an inhibitory
653 connection, or whether the neurons are not connected at all (no connection). The eANN
654 consists of two hidden layers with 10 units each and rectified linear units (ReLU) as
655 non-linearity. The last layer is passed through a soft-max function, to normalize the
656 output. We trained the model on several LIF neuronal network simulations subject to
657 different inputs (see below). The trained network is the final eANN, which provides
658 predictions based on the aggregated outputs of the other connectivity inference methods.
659 The CS of the eANN was calculated as $s_{i \rightarrow j} = \max(p_E, p_I)$, where p_E and p_I were the
660 eANN's predicted likelihoods for an excitatory or inhibitory connection, respectively.

661 Training the ensemble artificial neural network

662 We simulated 25 different LIF networks to generate training data for the eANN. To
663 obtain the activity of distinct neuronal network dynamics, we used five different noise
664 configurations $\mu_{\text{noise}}, \sigma_{\text{noise}}$ (see Table S1) and generated five networks with random
665 connectivity for each configuration (connection probability: 0.05). Next, we simulated
666 1h of LIF spiking activity as previously described (see Sec. S1A). The experimental
667 spiking input to the LIF network was always the same for the different training
668 simulations. However, different input activity was used for testing the eANN (i.e., the
669 data reported in Fig. 2). To train the network, we first obtained the connectivity output
670 of all methods (CI, sCCG, GLMCC, TE, dSTTC, and GLMPP). Then, we took all
671 synaptic connections, which make up 10% of the training set. For the remaining 90% of
672 connections, we selected randomly unconnected pairs as negative examples. The CS and
673 weight provided by the traditional methods constituted the input variables. The
674 training labels were set to 0 (no connection), 1 (excitatory connection), and 2
675 (inhibitory connection), and the eANN was trained by minimizing the cross-entropy loss
676 on these data. For the predicting connections on a new dataset, we again first applied
677 the original inference methods and then provided their aggregated result as input to the
678 eANN. We noted that the compact network architecture prevented from overfitting and
679 ensured rapid convergence during training S9.

680 Data, Materials, and Software Availability

681 The PYTHON code for all connectivity inference methods and the spike train datasets will
682 be available at <https://github.com/christiando/spycon>. Raw data are available
683 from the corresponding authors upon reasonable request due to their large size.
684 Connectivity inference algorithms all ran on a cluster node, with 30 CPU cores (AMD
685 EPYC) and 8-12GB RAM.

686 S1 In silico simulations of neuronal networks

687 S1A Leaky integrate-and-fire simulations

To test and compare network reconstruction performance across different algorithms, we adopted and modified the leaky integrate-and-fire (IF) network model approach proposed by Ren et al. [41]. The LIF simulations of the present study were performed with Brian2 [93]. The simulated network consisted of 300 neurons, balanced with 150 excitatory neurons and 150 inhibitory neurons. The differential equations of the IF model are

$$\begin{aligned} C_m \frac{dV}{dt} &= -g_{\text{leak}}(V - V_{\text{rest}}) - g_{\text{AHP}}[\text{Ca}^{2+}](V - V_{\text{AHP}}) \\ &\quad + \mu_{\text{noise}} + I_{\text{noise}} + I_{\text{syn}} \\ \frac{d[\text{Ca}^{2+}]}{dt} &= -\frac{[\text{Ca}^{2+}]}{\tau_{\text{Ca}}} \\ \frac{dI_{\text{noise}}}{dt} &= -\frac{I_{\text{noise}}}{\tau_{\text{noise}}} + \sigma_{\text{noise}}\xi_t, \end{aligned}$$

688 where ξ_t describes a white noise process. While Ren et al. [41] have modeled the
689 spontaneous I_{noise} as pink noise, here we approximate its dynamics as an
690 Ornstein-Uhlenbeck process, which represents another common model for neuronal
691 input [94, Chapter 8]. This approximation allowed simulating different dynamical
692 regimes more systematically by changing the mean input μ_{noise} and the noise amplitude
693 σ_{noise} (see Fig. S5 A-B). The parameters describing the membrane potential dynamics
694 were the membrane time constant $C_m = 500$ pF, the leak conductance 0.25 μ S, and the
695 resting potential $V_{\text{rest}} = -65$ mV. For the after-hyperpolarizing (AHP) current, the
696 conductance $g_{\text{AHP}} = 0.15$ $\frac{\text{S}}{\text{m}^2}$, and the reversal potential $V_{\text{AHP}} = -80$ mV. The
697 dynamics of the $[\text{Ca}^{2+}]$ were determined by the time-constant $\tau_{\text{Ca}} = 100$ ms. When the
698 membrane potential V surpassed the spiking threshold $V_{\text{thresh}} = -50$ mV, a spike was
699 registered, and the potential was reset to V_{rest} , and $[\text{Ca}^{2+}]$ was increased by 0.2 μ M.

The synaptic input I_{syn} was composed of two sources: the intrinsic spiking activity of the network and the externally applied spiking activity. As an external spiking activity, we used spike-trains that were obtained from *in vitro* HD-MEA networks recording, which mimicked the studied experimental conditions. As in the study by Ren et al. [41], the synaptic effect of spikes at time $\mathcal{T}_j = \{t_1^j, \dots, t_{N_j}^j\}$ neuron j connected to neuron i was modelled as

$$I_{\text{syn}}^{j \rightarrow i}(t) = w_{\text{syn}}^{j \rightarrow i} \sum_{t_s \in \mathcal{T}_j} H(t - t_s - \Delta t_{ij}) \frac{(t - t_s - \Delta t_{ij})}{\tau_{\text{syn}}} \exp \left(1 - \frac{(t - t_s - \Delta t_{ij})}{\tau_{\text{syn}}} \right),$$

700 where $H(\cdot)$ was the Heaviside function. The total synaptic input to a neuron i was then
701 given by the sum of all synaptic currents in Eq. S1A the neuron was connected to. The
702 connection probability among simulated LIF neurons was set to 5% and HD-MEA input
703 neurons were connected to LIF neurons with a probability of 10%. The synaptic weights

704 were drawn randomly from a log-normal distribution $|w_{\text{syn}}^{j \rightarrow i}| \sim \text{lognormal}(-2.5, 0.5)$ nA,
705 and the weight was positive when j was an excitatory neuron and negative for
706 inhibitory neurons. If the synaptic weight exceeded the interval [0.05 nA, 0.4 nA], it was
707 set to the limits of this interval. Δt_{ij} was the synaptic time delay, which was given by
708 $\text{distance}_{ij}/\text{conductionvelocity}$. The distance between neurons distance_{ij} was the
709 Euclidean distance between the positions of neuron i and j . The positions were drawn
710 at random and uniformly from the rectangular area of the units from the HD-MEA
711 input recording. The conduction velocity for each neuron was drawn uniformly from the
712 interval $[0.5 \frac{\text{m}}{\text{s}}, 1 \frac{\text{m}}{\text{s}}]$. For the *in silico* benchmarking analysis across different inference
713 algorithms (see Fig.2), we used 1 h-long simulations.

714 **S1B Simulations to validate connectivity inference from**
715 **parallel HD-MEA/path-clamp recordings**

The LIF framework described in the previous section was further adopted to also validate the methods applied to uncover synaptic connectivity from parallel HD-MEA/patch-clamp recordings (see Section S2 and Fig. S5). For a detailed description of the HD-MEA/patch-clamp setup and the performed voltage-clamp (VC) measurements, we refer the reader to Sec. S3B, S3C, and S3E. To simulate the patch-clamp recordings at a control voltage $V_c = -55$ mV, we constructed smaller subnetworks (LIF networks composed of n=10 neurons) with membrane currents of

$$I_m = -g_{\text{leak}}(V_c - V_{\text{rest}}) - g_{\text{AHP}}[\text{Ca}^{2+}](V_c - V_{\text{AHP}}) + \mu_{\text{noise}} + I_{\text{noise}} + I_{\text{syn}}.$$

716 These neurons got input similar to all other neurons in the network, but since they were
717 in VC-clamp mode, they could not spike. Next, we simulated 10 min of these combined
718 data, i.e., registering spike times of the 300 LIF neurons as described in the previous
719 paragraph and the currents of 10 VC-clamped neurons. The analytical results obtained
720 from this analysis are shown Fig. S5 **C-D**.

721 **S2 Inferring synaptic connectivity from parallel**
722 **HD-MEA/patch-clamp recordings**

723 Next, we describe the modeling approach to derive synaptic connectivity statistically
724 from parallel HD-MEA/patch-clamp recordings. Our model was inspired by previous
725 work [75], with some notable modifications, in order to have only one statistical test per
726 potential connection.

727 **S2A A regression analysis approach to estimate synaptic**
728 **connectivity**

In our model, we assumed that the recorded intracellular signal y_t is a linear superposition of two signals: i) a synaptic signal y_t^{syn} originating from synaptic signals from the extracellularly recorded presynaptic neurons, and ii), a residual signal ϵ_t , that accounts for all intrinsic, and extrinsic fluctuations, such as synaptic signals from neurons that could not be sampled. Hence, the full signal was given by

$$y_t = y_t^{\text{syn}} + \epsilon_t.$$

The modeled synaptic signal y_t^{syn} depends on the extracellularly recorded spiking activity of the presynaptic candidate neurons. Formally, the spike trains were a matrix with entries $s_{t,i} = 1$, if unit i elicited a spike at any time $[t\Delta, (t+1)\Delta)$; it was zero, if

there was no spike. The synaptic signal y_t^{syn} was then modeled as a weighted sum of presynaptic signals \mathbf{x}

$$y_t^{\text{syn}} = \boldsymbol{\alpha}^\top \mathbf{x}_t^{\text{syn}},$$

with coupling parameters $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_N)^\top$. The presynaptic signals \mathbf{x}^{syn} were modeled the spike trains convolved with a response kernel $k_n(\tau)$

$$x_{t,i}^{\text{syn}} = \sum_{\tau=1}^{L_k} k_{\tau,i} s_{t-\tau,i}.$$

The response kernel k had the parametric form of an alpha function, which has been previously used for modeling the form of postsynaptic potentials (PSPs) [95, Chapter 5]. It was given by

$$k_{\tau,i} = \begin{cases} \frac{(\tau\Delta - \delta_i)}{\tau_i} \exp\left(-\frac{\tau\Delta - \delta_i}{\tau_i}\right) & \text{if } \tau\Delta \geq \delta_i \\ 0 & \text{otherwise} \end{cases},$$

where τ_i the time constant, and δ_i the delay of the PSP. The latter is the main difference to Zhang et al. [75], which assumed a non-parametric footprint of the extracellularly recorded neurons on the intracellular signal. While the original model is likely more flexible, it requires multiple tests for each connection. In our model, however, we will subsequently only have one test per connection, i.e., whether the coupling parameter $\alpha_n \neq 0$. Everything, that could not be explained by the synaptic signal, such as transient fluctuations of the signal or the synaptic signals of unsampled neurons, we model by the following autoregressive process

$$\epsilon_t = h_0 + \sum_{\tau=1}^{L_h} h_\tau \epsilon_{t-\tau} \Delta + \xi_t = \hat{\epsilon}_t + \xi_t, \quad (\text{S1})$$

729 where ξ_t was a Gaussian noise with standard deviation σ_y . Alternatively, ϵ_t can be
 730 written as $\epsilon_t = y_t - y_t^{\text{syn}}$. The former definition in Eq. (S1) only depends on the filter \mathbf{h}
 731 and not on the couplings $\boldsymbol{\alpha}$. The alternative definition of ϵ_t is a function of $\boldsymbol{\alpha}$, but not
 732 of \mathbf{h} . This fact allowed us to define the alternating optimization scheme described in the
 733 following section.

734 S2B Fitting procedure

Given a recorded intracellular signal $y_{1:T}$ and extracellular spike trains $s_{1:T,1:N}$, we then sought to estimate the model parameters, i.e., the autoregressive filter \mathbf{h} , the synaptic coupling strengths $\boldsymbol{\alpha}$, the kernel parameters $\boldsymbol{\tau} = (\tau_1, \dots, \tau_N)^\top$, $\boldsymbol{\delta} = (\delta_1, \dots, \delta_N)^\top$, and finally, the noise parameters σ_y by the maximum likelihood principle. The previously described model defined the following (log) likelihood for the observed data

$$\begin{aligned} \ell(\mathbf{h}, \boldsymbol{\alpha}, \sigma_y, \boldsymbol{\tau}, \boldsymbol{\delta}; \lambda) &= \ln \prod_{t=1}^T p(y_t | \mathbf{y}_{0:t-1}, s_{1:t,1:N}, \mathbf{h}, \boldsymbol{\alpha}, \sigma_y, \boldsymbol{\tau}, \boldsymbol{\delta}) \\ &= -\frac{1}{2\sigma_y^2} \sum_{t=1}^T (y_t - (\hat{\epsilon}_t + y_t^{\text{syn}}))^2 - T \ln \sigma_y + \text{const.} \end{aligned} \quad (\text{S2})$$

To avoid overfitting of the autoregressive filter \mathbf{h} , we included a regularizing term $\ell_{\text{reg}}(\mathbf{h})$ to penalize non-smooth filters. Formally, the regularization term is the second derivative of \mathbf{h} , i.e.,

$$\ell_{\text{reg}}(\mathbf{h}) = -\frac{1}{2} \|\Delta \mathbf{h}\|_2^2,$$

with Δ being the discrete Laplace operator. The optimal model parameters are given by

$$(\mathbf{h}, \boldsymbol{\alpha}, \sigma_y, \boldsymbol{\tau}, \boldsymbol{\delta}) = \operatorname{argmin} \left[\frac{1}{2\sigma_y^2} \sum_{t=1}^T (y_t - (\hat{e}_t + y_t^{\text{syn}}))^2 + \lambda_h \ell_{\text{reg}}(\mathbf{h}) + \frac{T}{2} \ln \sigma_y^2 \right].$$

735 While there is no closed-form solution for this problem, we can derive analytic updates
736 for the sub-problems by solving for \mathbf{h} , $\boldsymbol{\alpha}$, and σ_y separately. We, therefore, invoked an
737 alternating optimization scheme. First, in order to find the optimal \mathbf{h} , we solved a linear
738 problem. This problem is defined by computing the gradient of Eq. (S2) with respect to
739 \mathbf{h} and setting it equal to 0. In the same way, we then got the optimal couplings $\boldsymbol{\alpha}$. σ_y
740 can be similarly derived analytically. What remained was to find the parameters $\boldsymbol{\tau}$ and
741 $\boldsymbol{\delta}$, which were computed by gradient ascent maximization of Eq. (S2)). We then
742 alternated the optimization procedure until the likelihood converged.

743 Finally, we sought to determine, which extracellular neurons (respectively their
744 recorded spikes, $s_{1:T,i}$) were *de facto* connected to the neuron for which we had modeled
745 the intracellular signal y . In other words, we asked which couplings were significantly
746 non-zero (our null hypothesis was, that neurons are not connected, formally
747 $H_0 : \alpha_i = 0$). To test for this hypothesis, we approximated the covariance of our
748 estimate by the inverse Hessian matrix of the regularized log-likelihood (see Eq. (S2))
749 and used the absolute z-score $z_i = |\alpha_i|/\sigma_i$ as test-statistics. For the latter, σ_i^2 is the
750 diagonal entry of the inverse Hessian matrix for couplings α_i . For all couplings, where
751 $z_i \geq \theta_\alpha$ the null hypothesis was rejected, i.e., these neurons were considered to be
752 presynaptically connected to the patched neuron. The parameter θ_α was a threshold
753 value that we derived by fitting the same model to jittered surrogate data (generated by
754 adding Gaussian noise with a standard deviation of 5ms as jitter to the extracellular
755 detected spike times). We took the 95% quantile of the z-scores z_i , obtained by fitting
756 the linear model to the jittered spike-train data, as a threshold.

757 S3 HD-MEA recordings

758 S3A High-density microelectrode arrays

759 To probe and record from *in vitro* developing primary cortical networks, we used
760 complementary-metal-oxide-semiconductor (CMOS) based high-density microelectrode
761 arrays (HD-MEAs). These chips comprise 26,400 platinum microelectrodes (size of
762 electrode: $9.3 \times 5.3 \mu\text{m}^2$), with a $17.5 \mu\text{m}$ pitch and a total sensing area of 3.85×2.10
763 mm^2 . HD-MEAs, as used in this study, allow for recordings from up to 1024 readout
764 electrodes at the same time. The used custom HD-MEAs were bonded to printed circuit
765 boards (PCBs), and a biocompatible epoxy (Epo-Tek 353ND, 35ND-T, Epoxy
766 Technology Inc., USA) was used to encapsulate the bond wires and protect them from
767 the medium. To decrease the impedance and to improve the signal-to-noise ratio (SNR),
768 electrodes were coated with platinum black – deposited from a solution of
769 hexachloroplatinic acid (7 mM, Sigma-Aldrich) and lead (2) acetate anhydrous (0.3 mM,
770 Sigma-Aldrich) in distilled water, as described previously [96].

771 Two different types of HD-MEA systems, with comparable technical specifications,
772 were used in this study: For the parallel HD-MEA/patch-clamp recordings, we used a
773 custom single-well HD-MEA chip [97]. For the data and analysis presented in Fig. 5, we
774 used a commercially available 6-well HD-MEA plate by MaxWell Biosystems (Zurich,
775 Switzerland). The extracellular signals were acquired at a sampling rate of 20 kHz, for
776 the single HD-MEA, and at 10 kHz, for the 6-well HD-MEA plate. Before the cell
777 plating, we sterilized HD-MEA chips for at least 30 min in 70% ethanol and washed
778 them 3 \times with sterile deionized water; the electrode array was then treated with 0.05%

779 (v/v) poly(ethyleneimine) (Sigma-Aldrich) in borate buffer (Thermo Fisher Scientific,
780 Waltham, Massachusetts, United States) at 8.5 pH for 40 min and then washed 3 ×
781 with sterile deionized water.

782 **S3B Primary neuronal culture preparation**

783 Rodent primary cortical neurons were prepared as previously described [96]: Cortices of
784 embryonic day (E) 18/19 Wistar rats were dissociated in trypsin with 0.25 percent
785 EDTA (Gibco), washed after 20 min of digestion in plating medium (see below), and
786 finally gently triturated. Following cell counting with a hemocytometer, we seeded
787 15.000-20.000 cells (dataset 1: parallel HD-MEA/patch-clamp recordings ground-truth
788 data; part of this data has been published in [58]), or 50.000 cells (dataset 2: HD-MEA
789 network recordings; part of this data has been published in [98]) on each array, and
790 placed it in a cell culture incubator for 30 min at 37°C/5% CO₂. Then we added more
791 plating medium carefully to each well (up until 1.5 mL). The plating medium was
792 composed of: 450 mL Neurobasal (Invitrogen, Carlsbad, CA, United States), 50 mL
793 horse serum (HyClone, Thermo Fisher Scientific), 1.25 mL Glutamax (Invitrogen), and
794 10 mL B-27 (Invitrogen). After two days, half of the plating medium was exchanged
795 with maintenance medium. For the maintenance medium, we added 50 mL Horse Serum
796 (HyClone), 1.25 mL Glutamax (Invitrogen), and 5 mL sodium pyruvate (Invitrogen) to
797 450 mL of D-MEM (Invitrogen). The maintenance medium was exchanged twice a week
798 and at least one day before the recording sessions. All animal experiments were
799 approved by the veterinary office of the Kanton Basel-Stadt and carried out according
800 to Swiss federal laws on animal welfare. For dataset 1 (parallel HD-MEA/patch-clamp
801 recordings), the experiments were performed on days in vitro (DIV) DIV16-18; for
802 dataset 2 (1h-long HD-MEA network recordings), data were recorded at DIV14.

803 **S3C High-density microelectrode array recordings**

804 In order to select active recording sites on the HD-MEA for long-term network
805 recordings, we first recorded the multi-unit activity for each electrode across the whole
806 chip using a series of dense-block configurations. Activity during this pre-processing
807 step ('activity scan') was assessed with an online sliding window threshold-crossing
808 spike detection algorithm. The details for selecting the final recording electrodes are
809 provided in the work by Bartram et al. [58] (dataset 1) and Akarca et al. [98] (dataset
810 2). Briefly, selecting a suitable network configuration involved, a ranking of the online
811 detected mean spike amplitudes (per channel) and that channels showed a minimum of
812 spike activity. Each HD-MEA network configuration consisted of approx. 1024
813 electrodes. The baseline recording for dataset 1 was composed of multiple network
814 recordings on the day before the parallel HD-MEA/patch-clamp experiment (see
815 Sec. S3D), yielding long network recordings of > 3 h duration. The network recording
816 for the replication dataset (dataset 2) consisted of 1 h-long HD-MEA network
817 recordings (n=6 cultures); here the network configuration was composed of up to 90
818 high-density electrode blocks (each block contained 4×4 electrodes).

819 **S3D Spike-sorting of HD-MEA network recordings**

820 HD-MEA network recordings were spike-sorted using a semi-automated processing
821 pipeline. For dataset 1 (HD-MEA/patch-clamp recordings), we combined the baseline
822 recordings with the data obtained during the patch-clamp session. For dataset 2, we
823 used the 1 h-long network recording. To spike sort HD-MEA network recordings, we
824 applied the publicly available software package Kilosort 2 (KS2) [99], using parameters
825 adapted to our data. Following spike-sorting with KS2, we manually reviewed all

826 neuronal units deemed 'good' using the general user interface (GUI) of phy2
827 (<https://github.com/cortex-lab/phy>). We excluded units that showed aberrant spike
828 waveforms, and that did not meet some standard quality criteria (e.g., less than 5%
829 refractory period violations), or that had too few spikes (less than 1000 spikes). From
830 the accepted 'good' units, we inferred whole-array spike-triggered electrical footprints
831 and calculated all-to-all cross- and Pearson's correlations to exclude potential duplicates.
832 Split units, i.e., neuronal units for which the algorithm found more than one template,
833 were also excluded from the data.

834 **S3E Whole cell patch-clamp electrophysiology**

835 The parallel HD-MEA/patch-clamp experiments were performed using methodology
836 introduced previously [57, 58]. To record from single neurons on the HD-MEA, we
837 transferred the chips to a custom patch-clamp rig and perfused them with warmed
838 (32-34 °C) BrainPhys (BP). Patch-clamp recordings from cells located on the HD-MEA
839 were obtained with borosilicate glass micropipettes (4-5 MΩ, Sutter Instruments, USA)
840 containing (in mM): 85 caesium-gluconate, 60 CsCl, 10 Hepes, 4 Na₂ATP, 0.3 GTP, 2
841 MgCl₂, 0.1 EGTA, (pH 7.2-7.3; 280-290 mOsmol/l). Brief current-clamp recordings of
842 spontaneous spiking were obtained, while synaptic activity was measured in voltage
843 clamp mode at -70 mV holding potential. The high-chloride internal solution caused a
844 shift in the GABA-A receptor reversal potential, which allowed us to record the
845 synaptic activity of both GABAergic and glutamatergic synapses in one single recording.
846 During the patch-clamp experiment, the same HD-MEA network configuration, as for
847 the baseline recording, was used. This allowed to localize the patched cell on the
848 HD-MEA, and to relate the intracellular obtained signals to the spike activity of the
849 network. Patch-clamp recordings were carried out using an Axon Multiclamp 700B
850 amplifier (Molecular Devices, USA), with digitization performed using an Axon
851 Digidata 1440A (Axon Instruments). The recorded signals were low-pass filtered at 5
852 kHz and acquired with at least 20 kHz. Alexa 594 (20 μM, Thermo Fisher Scientific)
853 was added to the internal solution to allow an assessment of the cell morphology. For
854 details on the data, please see Bartram et al. [58].

855 **S4 Topological characterization of networks**

856 Here we provide more details on the procedures on how we inferred connectivity from
857 experimental HD-MEA derived spike trains, and how we analyzed this data using graph
858 theoretical metrics (for details on the connectivity inference algorithms see *Methods and*
859 *Materials* Sec. S5, and Fig. 2&5 in the main manuscript).

860 To assure reliable connectivity inference from the spike-sorted HD-MEA network
861 data, we applied several filtering steps. First, we restricted our analysis to randomly
862 selected units (100) that had at least 1000 spikes over the course of the recording.
863 Second, we only estimated connectivity for edges that had a spike-sorting index > 0.5,
864 as suggested by Ren et al. [41], and that had at least 200 spikes in the pairwise CCG of
865 units – in a time window relevant for fast synaptic interactions (+/- 20 ms). To generate
866 jittered spike trains for units that passed the previously outlined quality criteria, and to
867 be compatible with jittering code provided by [100], we removed any spikes occurring
868 at the zero-lag of the unit's autocorrelation. Again, the aim of applying these arguably
869 strict thresholds was to make sure that connectivity was estimated on a sufficient
870 amount of activity and to reduce the likelihood of false positive connections.

871 Next, we selected several common topological metrics and compared them across
872 network inference methods (see results presented in Fig. 2 and Fig. 5). We categorize
873 these metrics broadly into global and local topological features. The global features

874 describe average statistics for the given networks, while the local metrics describe
875 topological values resolved per individual node. The global metrics included the overall
876 *network density*, the network *global efficiency*, the average *clustering coefficient*, the
877 *modularity* [101] and the *small-world index* [15] of the network and the occurrence of
878 *triplet-motifs* in the data [77]. All topological features were calculated using algorithms
879 provided by the **Brain connectivity toolbox** [102]. We briefly explain each metric
880 below:

881

882 *Degree*. As the obtained binary graphs of the inferred networks were directed, the
883 degree (k) denotes the sum of in- and outgoing edges of the observed network.

884

885 *Network density*. The network density was defined as the number of significant edges
886 divided by the number of all possible edges in the respective network.

887

888 *Global efficiency*. The global efficiency (E) is calculated as the average of the inverse
889 shortest path length (L). It is a measure of the global integration of a graph [103].

890

891 *Clustering coefficient*. The clustering coefficient (C) measures the clustering of
892 connections/nodes in the network. C for directed networks is calculated as the fraction
893 of realized directed triangles around a node, i.e., the observed number of triangles
894 divided by the number of all possible triangles [104].

895

896 *Betweenness centrality*. The betweenness centrality (B) was defined as the fraction of all
897 shortest paths in the network that contain a given node. Nodes with high values of
898 betweenness centrality therefore participate in a large number of shortest paths [105].

899

900 *Modularity index*. The modularity index, Q , indicates how well a network can be
901 partitioned into subgroups. We calculated it as proposed by [106].

902

903 *Small-world index*. The small-world index (S) of a binary network is usually defined by
904 estimating two parameters: the characteristic path length of the network (L) and its
905 average clustering coefficient (C). Both measures are normalized to appropriately
906 randomized surrogate networks with the same number of nodes and edges [107]. Since
907 some inferred networks contained disconnected nodes at the applied adoptive thresholds,
908 and S is defined for connected networks, we used a variant of the small-world
909 index [103]. We calculated S by dividing the normalized clustering coefficient ($C_{\text{norm.}}$)
910 by the inverse of the normalized global efficiency ($1/E_{\text{norm.}}$).

911

912 *Motifs*. The frequency of triplet motifs was analyzed as proposed in previous work [77].
913 As for the small-world index, we generated appropriately randomized surrogate
914 networks with the same number of nodes - and compared the empirical motif statistics
915 to these randomized values. We compared a total of 13 different motifs.

916

917 To compare local topological features between the inferred networks and the LIF
918 ground truth networks (see Figure 2), we computed Pearson's ρ between the set of
919 values of the true network and the estimated network. For quantifying the difference
920 between global connectivity features, we calculated the relative difference
921 $(y_{\text{est}} - y_{\text{true}})/y_{\text{true}}$, where y_{est} , and y_{true} are the feature of the estimated and true
922 network, respectively.

923 S5 Connectivity inference methods

924 In the following, we describe the connectivity inference algorithms implemented in this
925 study. The considered algorithms include cross-correlogram (CCG)-based methods,
926 methods based on information theory, neuronal synchrony, and finally, generalized linear
927 model point processes. CCG-based methods have been widely applied to estimate
928 synaptic connectivity from parallel recorded spike trains [33, 108]. Essentially, a CCG is
929 a histogram of spike-time differences between two neurons i and j . We used the
930 normalized CCG [30], defined as

$$CCG_{i \rightarrow j}(\tau) = \sum_{t=1}^T \frac{(s_{t,i} - \mu_i)(s_{t+\tau,j} - \mu_j)}{\sigma_i \sigma_j},$$

931 where $s_{t,i}$ is the binary spike train of neuron i discretized in time bins with width Δ . $s_{t,i}$
932 is 1 if neuron i spiked between t and $t + \Delta$, and 0 otherwise. T is the number of time
933 bins; μ_i and σ_i are the mean and standard deviation of the spike trains, respectively. To
934 compute CCGs, we applied algorithms provided by the Elephant toolbox [109].

935 **Coincidence index** The first CCG-based method, implemented in this study, is
936 termed *coincidence index* (CI, [56]). The CI was defined as

$$CI_{i \rightarrow j} = \frac{\sum_{\tau=0}^r CCG_{i \rightarrow j}(\tau)}{\sum_{\tau=0}^T CCG_{i \rightarrow j}(\tau)}$$

937 where $r = T_{\text{syn}}/\Delta$, and T_{syn} represents a time window in which synaptic effects are
938 effective. Here we set $\Delta = 0.4\text{ms}$ and $T_{\text{syn}} = 6\text{ms}$. High CI values indicate an excess of
939 spiking activity of neuron j after spikes of neuron i . As connectivity score, CS , we took
940 the absolute z-score $|CI_{i \rightarrow j} - \mu_{i \rightarrow j}|/\sigma_{i \rightarrow j}$, where $\mu_{i \rightarrow j}$ and $\sigma_{i \rightarrow j}$ are the mean and
941 standard deviation of CI values obtained from surrogate spike trains of the
942 corresponding neuron pair (50 iterations). The surrogate spike trains were generated by
943 jittering the spike times of neuron i with uniform noise $U(-1.5r\Delta, 1.5r\Delta)$. The jittering
944 strongly decreased the pairwise correlations observed for interactions in the synaptic
945 time window. As putative synaptic weight, W , we simply took the value $CI_{i \rightarrow j}$.

946 **Smoothed CCG** While the CI relies on the generation of jittered surrogate
947 spike-train data, Stark et al. [37] proposed a simple smoothing procedure in
948 combination with a statistical test to assess whether the CCG deviates from the H_0
949 hypothesis, i.e., that two neurons are synaptically not connected. Using this approach,
950 the CCG is convolved with a Gaussian kernel, which is considered to have a similar
951 effect on the CCG as obtaining a threshold value through spike-train jittering. Avoiding
952 the jittering operation makes this approach computationally more efficient. We took the
953 negative logarithm of the p-value as CS , and as weights W the synaptic strength, as
954 described previously [36]. Throughout the manuscript, we referred to this algorithm as
955 the *smoothed CCG* (sCCG) method.

956 **Generalized linear model CCG** An alternative method, combining the CCG
957 approach with generalized linear models (GLMs), was proposed by Kobayashi et al. [40].
958 This approach decomposes CCGs into a slow and a fast fluctuating component. The
959 model assumes that slow fluctuations, as observed in a pairwise CCG, can be regarded
960 as the background activity within the network. Only fast short-latency fluctuations,
961 that is, prominent peaks and troughs in the pairwise CCG that exceed the background
962 activity, and that happen within the synaptic time window, should be considered as

963 putative excitatory and inhibitory connections. Hence, Kobayashi et al. [40] proposed a
964 parametric model, namely a GLM, to fit empirical CCGs. Formally, the GLM was given
965 by

$$c(t) = \exp \left[a(t) + J_{ij}f(t) + J_{ji}f(-t) \right],$$

966 where $c(t)$ is the co-firing rate for a timeshift bin t . $a(t)$ models the slow fluctuation
967 that encodes the background activity. $f(t)$ models the synaptic interaction, which is
968 given in the form of decaying exponential function $f(t) = \exp(-\frac{t-d}{\tau})$ (for $t > d$, $f(t) =$
969 0 otherwise), where d is the synaptic delay and τ is the time constant of the decay. The
970 parameters J_{ij} and J_{ji} are the coupling strengths from neuron i to j and j to i
971 respectively. Given a CCG from observed data, the maximum a posterior (MAP)
972 estimate for parameters $\theta = \{J_{ij}, J_{ji}, a(t)\}$ is then obtained by numerical optimization.
973 For details, the reader is referred to the original publication [40]. A similar approach
974 has also been suggested by Ren et al. [41]. As CS, we take the z-score derived in [40, Eq.
975 14] given by $s_{i \rightarrow j} = |J_{ij}| \sqrt{\tau c(0)}/1.57$. For the synaptic weight, Kobayashi et al. [40]
976 proposed to transform the parameter J_{ij} heuristically to the size of a post-synaptic
977 potential by the following formula $w_{i \rightarrow j} = J_{ij}/a$, where the factor $a = 0.39$, if there is a
978 putative excitatory connection, i.e., $J_{ij} > 0$. On the other hand, for inhibitory
979 connections, i.e., $J_{ij} < 0$, they used $a = 1.57$.

980 **Transfer entropy** Another important class of methods that has been widely applied
981 to probe neuronal interactions, and to reconstruct neuronal networks, relies on
982 information theory. The present study focussed on *transfer entropy* (TE) [54] and uses
983 algorithms by the *IDTxl* toolbox [65] to estimate the functional connectivity between
984 neurons. TE quantifies the “amount of predictive information” [110], between two
985 processes – respectively, here, the spike trains of a source neuron i and a target neuron
986 j . In brief, TE measures if including information on the spiking activity of neuron i ,
987 adds to the prediction of the future activity of neuron j , which goes beyond the
988 information that is contained in the past activity of j alone. In the present study, we
989 computed the TE on discretized spike train data with bins of size $\Delta = 5\text{ms}$. As for the
990 CI method, we used the absolute z-score $s_{i \rightarrow j} = |\text{TE}_{i \rightarrow j} - \mu_{i \rightarrow j}|/\sigma_{i \rightarrow j}$ as CS. Again,
991 $\mu_{i \rightarrow j}$, $\sigma_{i \rightarrow j}$ are the mean and standard deviation of the TE values computed from
992 jittered spike trains (50 iterations). The jitter noise was Uniform($-3.5\Delta, 3.5\Delta$). As the
993 weight of a connection, we considered the value $\text{TE}_{i \rightarrow j}$. Compared to the other
994 implemented methods, the TE value is unsigned, i.e., it is always positive and, in that
995 regard, could not distinguish between excitatory and inhibitory connections.

996 There are considerable limitations associated with the use of TE as a direct measure
997 of coupling strength, as it may be confounded by the firing rate of neurons, the
998 dynamical state of the network, the used embedding dimensions, and several other
999 factors [110]. Future studies should implement and probe more recent TE variants that
1000 have been specifically developed for spike-train data [79] and that have addressed some
1001 of the limitations of current TE algorithms.

1002 **Directed spike tiling coefficient** Cutts et al. [53] introduced the *spike time tiling*
1003 *coefficient* (STTC) to quantify synchronicity between spike trains. This method is
1004 computationally fast and has recently gained a lot of popularity. While the original
1005 method provided a measure of undirected pairwise correlation or functional connectivity,
1006 we modified the approach by Cutts et al. to a directed variant, which we call the
1007 *directed STTC* (dSTTC). In the following, we outline the dSTTC between the spike
1008 trains of neuron i and j . As in the original method, we defined a synaptic time window
1009 $\Delta_{\text{syn}} = 7\text{ms}$. T_i^{pre} is the proportion of the total recording time, which is covered by time
1010 windows Δ before the spikes of neuron i . We note, that the times of overlapping

1011 windows are just considered once. Similarly, we define T_j^{post} for the proportion of
 1012 recording time, which is covered by windows Δ_{syn} following spikes of neuron j .
 1013 Furthermore, we define $P_{j \rightarrow i}^{\text{pre}}$ as the proportion of spikes of neuron j , that lies in the
 1014 time windows Δ_{syn} preceding the spikes of neuron i . Similarly, $P_{j \rightarrow i}^{\text{post}}$ is the proportion
 1015 of spikes of neuron i following the spikes of neuron j . Finally, we defined the dSTTC as

$$\text{dSTTC}_{j \rightarrow i} = \frac{1}{2} \left(\frac{P_{j \rightarrow i}^{\text{pre}} - T_i^{\text{pre}}}{1 - P_{j \rightarrow i}^{\text{pre}} T_i^{\text{pre}}} + \frac{P_{j \rightarrow i}^{\text{post}} - T_j^{\text{post}}}{1 - P_{j \rightarrow i}^{\text{post}} T_j^{\text{post}}} \right),$$

1016 which can result in values in the range $[-1, 1]$, as for the undirected original
 1017 implementation by Cutts et al. [53]. The intuition behind the presented statistic is, that
 1018 an excess of spiking of neuron i , that follows the spiking of neuron j , should indicate an
 1019 excitatory connection. In this case, the dSTTC attains positive values. On the contrary,
 1020 for inhibitory connections, we would expect a scarcity, or reduction, of spiking instead.
 1021 In the latter case, the dSTTC would then result in more negative values. If the spikes of
 1022 neurons i and j are occurring randomly, the dSTTC is expected to be close to 0. It
 1023 should be noted, however, that these statements are based on the assumption, that the
 1024 recorded data is stationary, i.e., there are no gross fluctuations in the firing rates. In the
 1025 experiments at hand, however, this is rarely the case, due to transients in the firing rate
 1026 and/or network burst dynamics. To mitigate such effects due to violations of the
 1027 stationarity assumption, we resorted again to absolute z-score values for CS and
 1028 calculate $s_{j \rightarrow i} = \frac{|\text{dSTTC}_{j \rightarrow i} - \mu_{j \rightarrow i}|}{\sigma_{j \rightarrow i}}$, where $\mu_{j \rightarrow i}$ and $\sigma_{j \rightarrow i}$ are the mean and standard
 1029 deviation of the dSTTC values obtained from jittered spike trains. As in Cutts et
 1030 al. [53], we used jitter noise Uniform($-3.5\Delta_{\text{syn}}, 3.5\Delta_{\text{syn}}$). As weight $w_{j \rightarrow i}$ of a putative
 1031 connection between two neurons, we took the raw $\text{dSTTC}_{j \rightarrow i}$ value.

1032 **Point process generalized linear model** All presented algorithms so far were
 1033 pairwise connectivity-inference methods. That is, they considered only two neurons at a
 1034 time and neglected the potentially contributing effect of the activity of other neurons in
 1035 their calculation. The *Generalized Linear Model Point Processes* (GLMPP) approach,
 1036 however, is a framework that does consider such network interrelation – and has been
 1037 previously used to probe connectivity [55]. This approach models the spiking of neuron
 1038 i by a point process with rate $\lambda_i(t|\mathcal{H}_t)$, where \mathcal{H}_t is the recorded spiking history up to
 1039 time t . Here, we will assume that the rate model is

$$\lambda_i(t|\mathcal{H}_t) = f_i \left(\theta_i + \sum_{j=1}^N J_{j \rightarrow i} \phi_j(t) \right), \quad (\text{S3})$$

1040 where the feature $\phi_j(t)$ is the spike train of neuron j convolved with a causal
 1041 exponential function with decay $\tau = 5\text{ms}$. f is a monotonically increasing non-negative
 1042 function. In this model, the parameters of interest are the coupling $J_{j \rightarrow i}$ for $i \neq j$; note
 1043 that $J_{i \rightarrow i}$ models how the neuron's activity influences itself, such as, for example, the
 1044 refractory period following a spike. For an excitatory connection $i \rightarrow j$, we expected,
 1045 that the rate $\lambda_i(t|\mathcal{H}_t)$ increases after spikes of neurons j , and hence $J_{j \rightarrow i}$ should be
 1046 positive. The contrary holds for inhibitory connections. If $J_{j \rightarrow i}$ was close to 0, this
 1047 should indicate that no connection is present. We assumed a Gaussian prior distribution
 1048 $J_{j \rightarrow i} \sim \mathcal{N}(0, \sigma_J^2)$ and $\theta_i \sim \mathcal{N}(\mu_\theta, \sigma_\theta^2)$. We intended to obtain the posterior distribution
 1049 of the model parameters given the recorded spike trains. In general, this is not
 1050 straightforward for a model defined by Eq. (S3). However, by choosing the $f(\cdot)$ to be a
 1051 scaled sigmoid as in [72, 111], efficient variational algorithms have been developed to
 1052 obtain an approximate Gaussian posterior distribution [73, 112] over the parameters θ_i ,
 1053 and $J_{j \rightarrow i}$ via variational inference. Hence, once we have the approximate posterior

1054 density over parameters θ, J , we define the CS for a given connection as
 1055 $s_{j \rightarrow i} = |\mu_{j \rightarrow i}|/\sigma_{j \rightarrow i}$, where $\mu_{j \rightarrow i}, \sigma_{j \rightarrow i}$ are the mean and standard deviation of the
 1056 posterior estimate for $J_{j \rightarrow i}$. As connection weight, we used the coupling value $J_{j \rightarrow i}$.
Model specification and inference Given the spike trains of several neurons, we can readily compute the features at any time

$$\phi_j(t) = \sum_{t_j \in \text{spikes of } j} \int k(\tau) \delta(t - \tau - t_j) d\tau$$

where $k(\tau) = \frac{1}{\tau_k} \exp(-\frac{\tau}{\tau_k})$ and $\tau_k = 5\text{ms}$. In the following, we used the methodology of [73, 112] to fit the point process. In order to do so we needed to define the non-linearity f_i in rate in Eq. S3 as scaled sigmoid

$$\lambda_i(t) = \bar{\lambda}_i \sigma(\mathbf{J}_i^\top \boldsymbol{\theta}(t)),$$

where $\bar{\lambda}_i > 0$, $\mathbf{J}_i^\top = (\theta_i, J_{1 \rightarrow i}, \dots, J_{N \rightarrow i})^\top$ and $\boldsymbol{\theta}(t) = (1, \phi_1(t), \dots, \phi_N(t))^\top$. For notational convenience, we dropped the conditioning on the history \mathcal{H}_t . The likelihood of a point process [113] for spikes of neuron i $\mathcal{T}_i = \{t_1^i, \dots, t_{N_i}^i\}$ is

$$p(\mathcal{T}_i | \mathbf{J}_i) = \prod_{t_i \in \mathcal{T}_i} \lambda_i(t) \exp \left(- \int_0^T \lambda_i(t) dt \right).$$

1057 We assumed a Gaussian prior over the parameters \mathbf{J}_i and a Gamma distribution prior
 1058 over $\bar{\lambda}_i$. With this setting, we can utilize the augmentation scheme and the variational
 1059 approach described in [112] to obtain an approximate Gaussian posterior over the \mathbf{J}_i ,
 1060 which we then used for the final connectivity.

1061 S6 Statistical thresholding of connectivity and 1062 evaluation of reconstruction performance

1063 **Threshold selection** After inferring connectivity from either simulated or
 1064 experimentally obtained spike-train data, several downstream analyses of this work
 1065 required binary graphs. Hence, the connectivity matrices had to be thresholded.
 1066 Selecting an appropriate threshold is a delicate task since it can affect the interpretation
 1067 of the graph structure and its organizational properties. In the present study, we
 1068 applied three different strategies. For the comparison of different inference methods on
 1069 the LIF network data (see Fig. 2), we performed a search for the threshold that yielded
 1070 the maximal Matthews correlation coefficient (MCC, see Sec. S6, i.e., the highest
 1071 similarity to the underlying ground-truth graph. Such an approach has been previously
 1072 applied in the literature [40], and does allow for a fair performance comparison across
 1073 inference methods. However, since such a threshold optimization is not applicable to
 1074 experimental data, we also report results using a second approach, that relied on a
 1075 global adaptive thresholding logic (see Fig. 5 and S2). We, therefore, recalculated
 1076 connectivity on jittered surrogate data (Gaussian jitter with a standard deviation of
 1077 10ms), and defined an absolute global threshold as the $(1 - \alpha) * 100\%$ quantile of the
 1078 resulting CS distribution. Here α can be interpreted as an expected false positive rate.
 1079 The aim of this procedure was to destroy all short-latency synchronization by temporal
 1080 jittering while keeping the firing rate dynamics intact. The jittered distribution of the
 1081 CS values then reflected the null hypothesis, i.e., that there were no connections. For
 1082 the HD-MEA recordings, we varied α -values from 0.05 to 0.001 (see Fig. 5). The data
 1083 was only jittered once, which made this approach computationally fast. Finally, to show
 1084 that topological results were stable across the selected statistical thresholds, we also

1085 applied proportional thresholds (see Fig. S4). With these thresholds, we probed graph
1086 metrics at a specific network density (e.g., 5%) and compared the topological properties
1087 of networks at a defined percentage of the strongest connections.

1088 **Performance measures** To quantify the network-reconstruction performance across
1089 all inference algorithms, we applied standard validation measures, commonly used for
1090 classification tasks. The first metric is the *average precision score* (APS), which is
1091 threshold-free, i.e., there is no need to specify a threshold. The APS is calculated from
1092 the area under the *precision-recall* curve and is formally defined as
1093 $APS = \sum_n (R_n - R_{n-1})P_n$. R_n , P_n are recall and precision if the n^{th} smallest CS
1094 would be selected as threshold. The APS provides values between 1 (perfect
1095 classification possible) and 0 (no connection is correctly classified without misclassifying
1096 all unconnected pairs). As a second performance measure, we implemented the
1097 *Matthews correlation coefficient* (MCC). The MCC requires a binarized connectivity
1098 matrix, respectively matrices, to compare networks. It is defined as

$$MCC = \frac{n_{TP}n_{TN} - n_{FP}n_{FN}}{\sqrt{n_Pn_Nn_{PP}n_{PN}}},$$

1099 where n_{TP} , n_{TN} are the number of true positives and false negatives, respectively, i.e., it
1100 is a measure of whether the algorithm classified the putative connections correctly.
1101 n_{FP} , n_{FN} denote the numbers of false positives and false negatives. n_P , n_N are the total
1102 number of connections and unconnected pairs of the ground-truth data. n_{PP} , n_{PN} are
1103 the number of predicted positives (connection) and predicted negatives
1104 (non-connections), respectively. The MCC gives values between 1, for perfect
1105 classification, and -1 for the worst outcome.

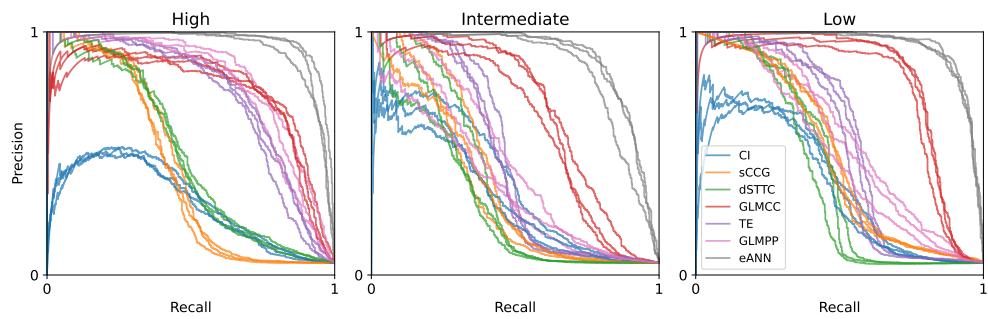


Fig S1. Precision-recall curves on simulated data. Curves for all methods on the data for Fig 2 (three lines per method for three networks ($N = 100$) that we fitted per High, Intermed., and Low condition.). The more these curves extend to the upper right corner, the better classifications can be achieved. The eANN is the most robust method across all three conditions. The APS in Fig 2D is the area under these curves.

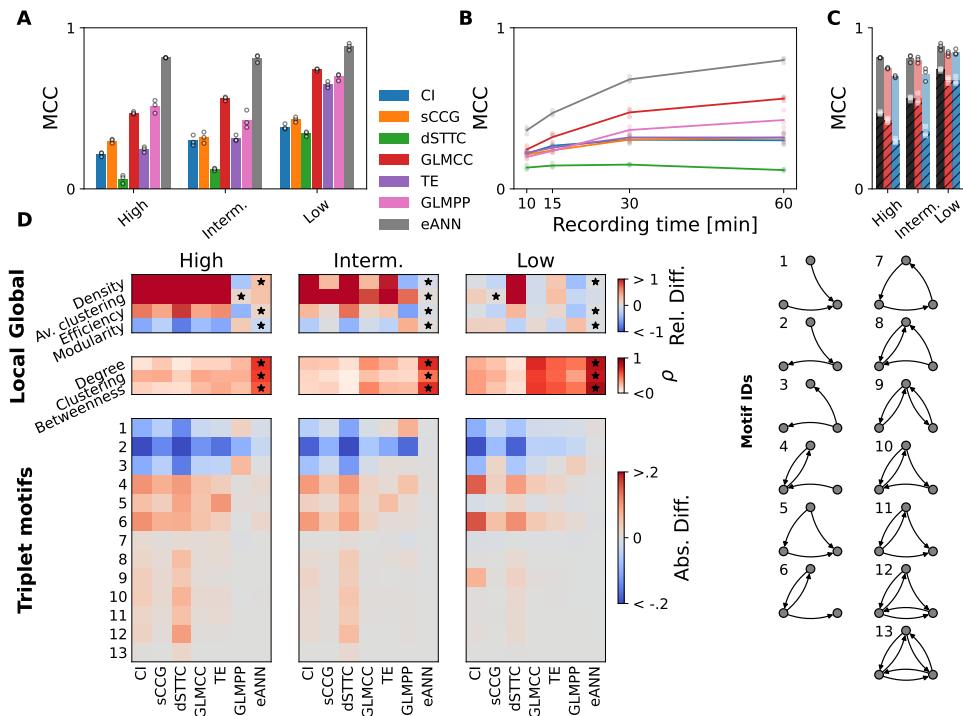


Fig S2. Network-reconstruction performance with global adaptive threshold. Results corresponding to Fig. 2 achieved with adaptive-threshold-selection (see Methods). **A** The MCC of different connectivity methods. Dots depict the performance obtained from fits on three different subnetworks of the same simulation. **B** Classification performance (MCC) as a function of recording time. **C** MCC for each type of connectivity, that is, excitatory (E, in red), inhibitory (I, in blue), combined (E+I, in black). Correspondingly, the performance gains achieved by the eANN are plotted in shades of red, blue, and black. **D** Quality of topological feature reconstruction for the inferred network across the three dynamical regimes. In the upper panel, the relative difference between four global features (network density, av. clustering, and efficiency) is shown. In the center panels, the Pearson correlation coefficient for local (per node of the network) features between the true and the inferred network is shown. Black stars indicate the method that performs best. In the lower panels, the absolute difference of triplet-motif frequencies between ground truth and the different estimated networks is shown.

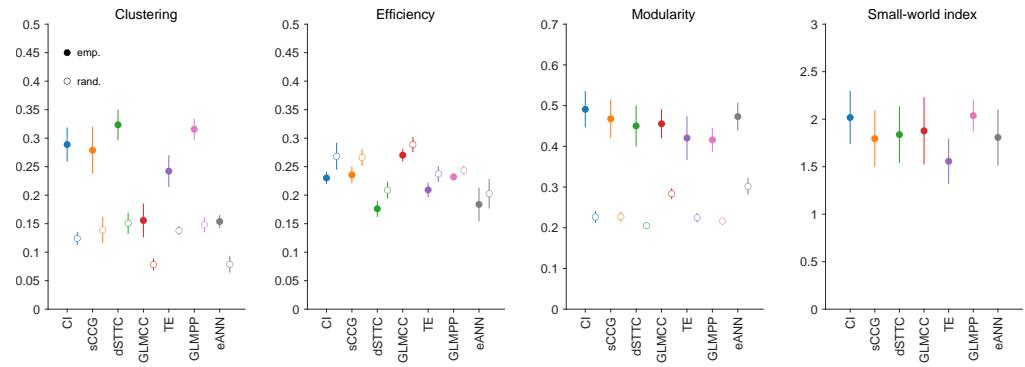


Fig S3. Comparison of *in vitro* neuronal network topology across inference methods. Four topological metrics (average clustering, efficiency, modularity, and small-world index) inferred from *in vitro* neuronal networks thresholded for the strongest 5% of connections in the network (proportional thresholding). Each panel depicts one topological measure; the colors correspond to the seven inference algorithms; colored circles correspond to the values obtained from the empirical data; the white-filled circles correspond to the surrogate networks (randomly rewired networks). In contrast to the analysis in Fig. 5H, this figure depicts all networks with the same number of edges.

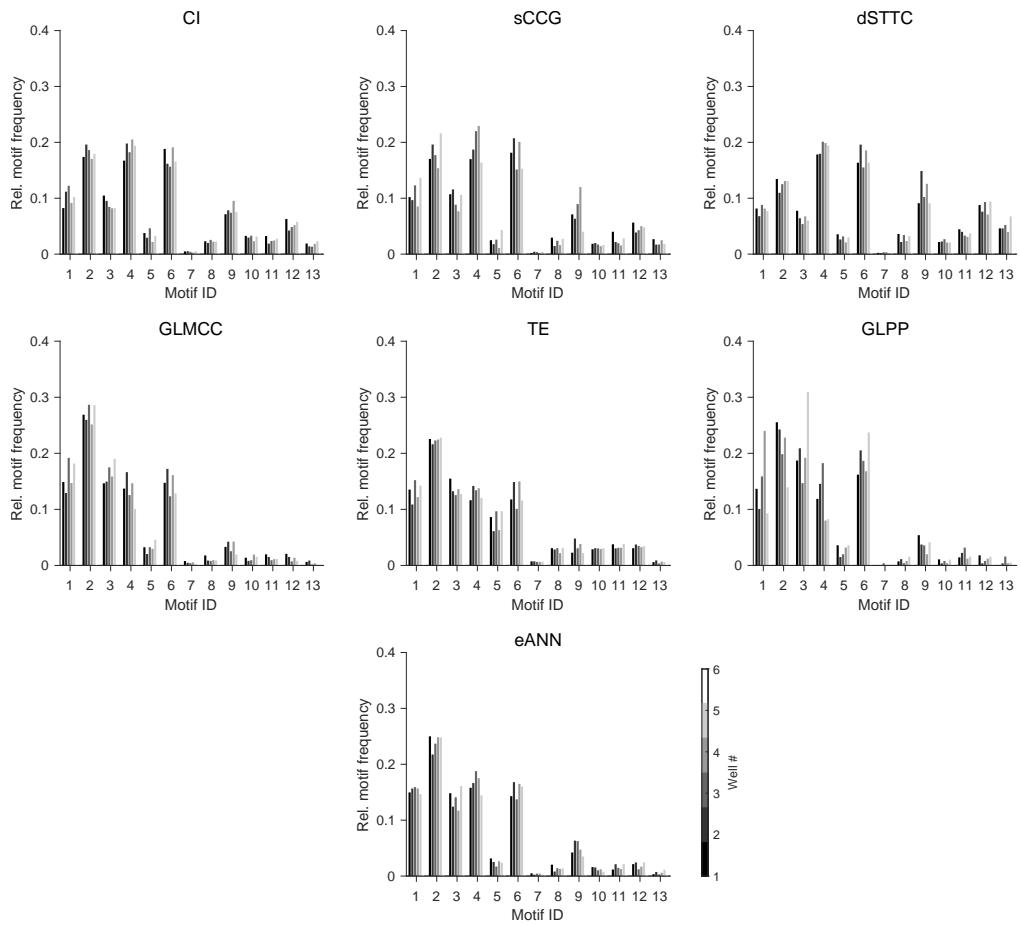


Fig S4. Triplet-motif frequency across inference methods and in vitro neuronal networks. The triplet-motif frequency, observed in DIV14 *in vitro* developing neuronal networks (dataset 2), was very similar within each method class but differed considerably between some inference methods (see Fig 5I and J). Depicted motif frequencies were normalized, for each culture, by the total amount of observed motifs (α threshold: 0.01; network size: 100 units/network; 1 h recording duration).

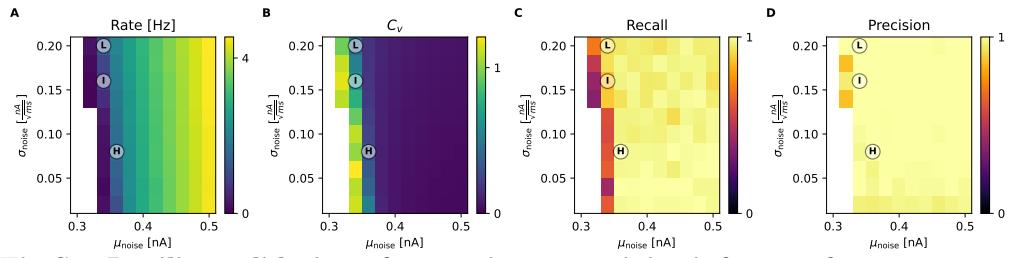


Fig S5. In silico validation of synaptic connectivity inference from simultaneous extra- and intracellular recordings. **A-B** An overview of the modeled dynamic range to validate the PSC connectivity inference method. The average spiking rate and Fano factor are shown for different simulations. Simulations with a rate < 0.5 Hz were excluded. Circles correspond to simulations with **L**, **I**, and **H** burst rate in Fig 2. **D-E** Display of recall and precision values for the IC connectivity inference method. Performance was averaged across VC recordings from 10 different neurons.

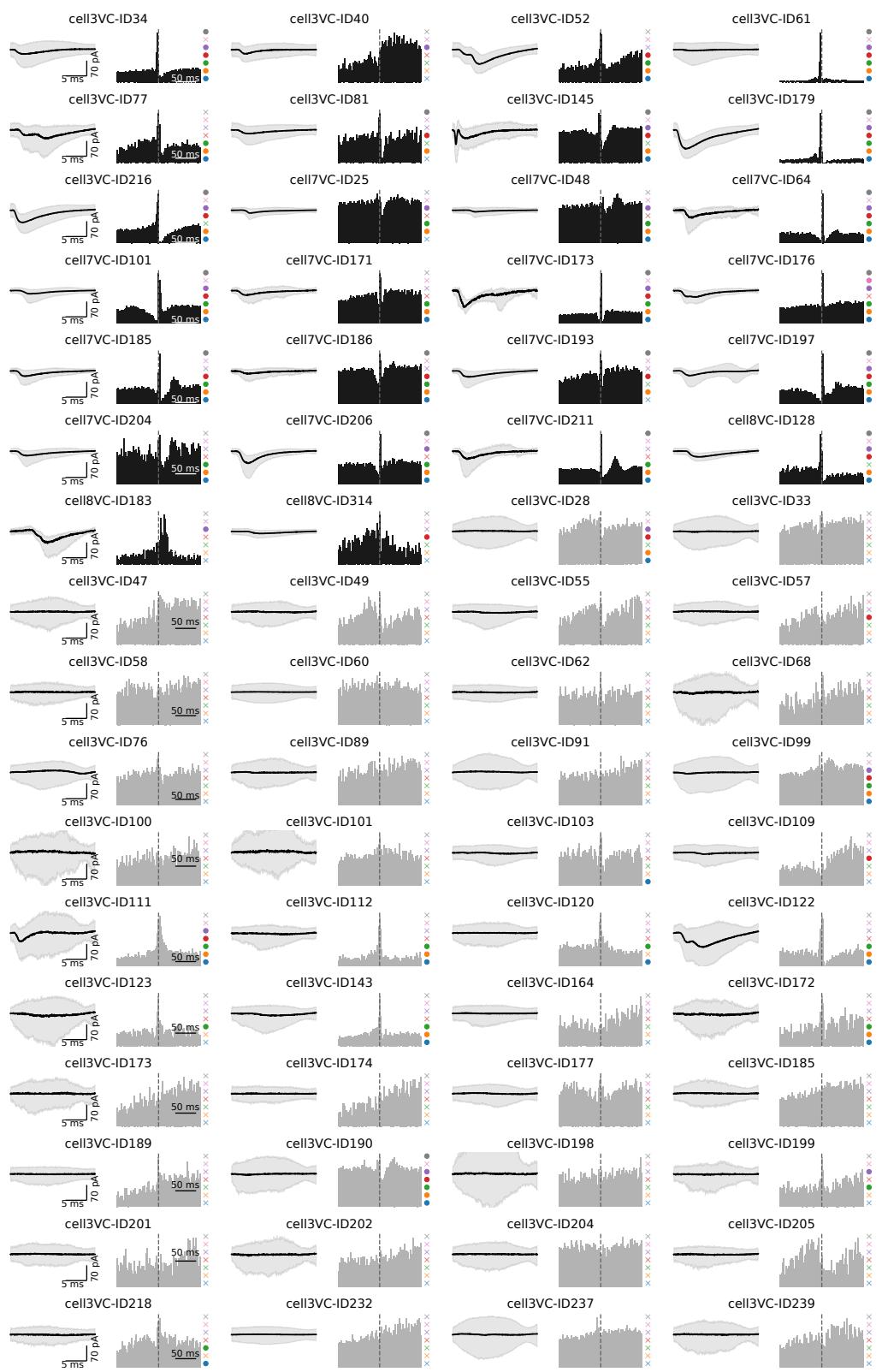


Fig S6. Connections in experimental ground-truth dataset Here, we show all 26 experimental ground-truth connections found in the whole-cell patch recordings, together with all cell pairs, where no connection was found. We show the PSCs, the Spike-CCG, and the classification of the different connectivity methods similar to Fig. 4.

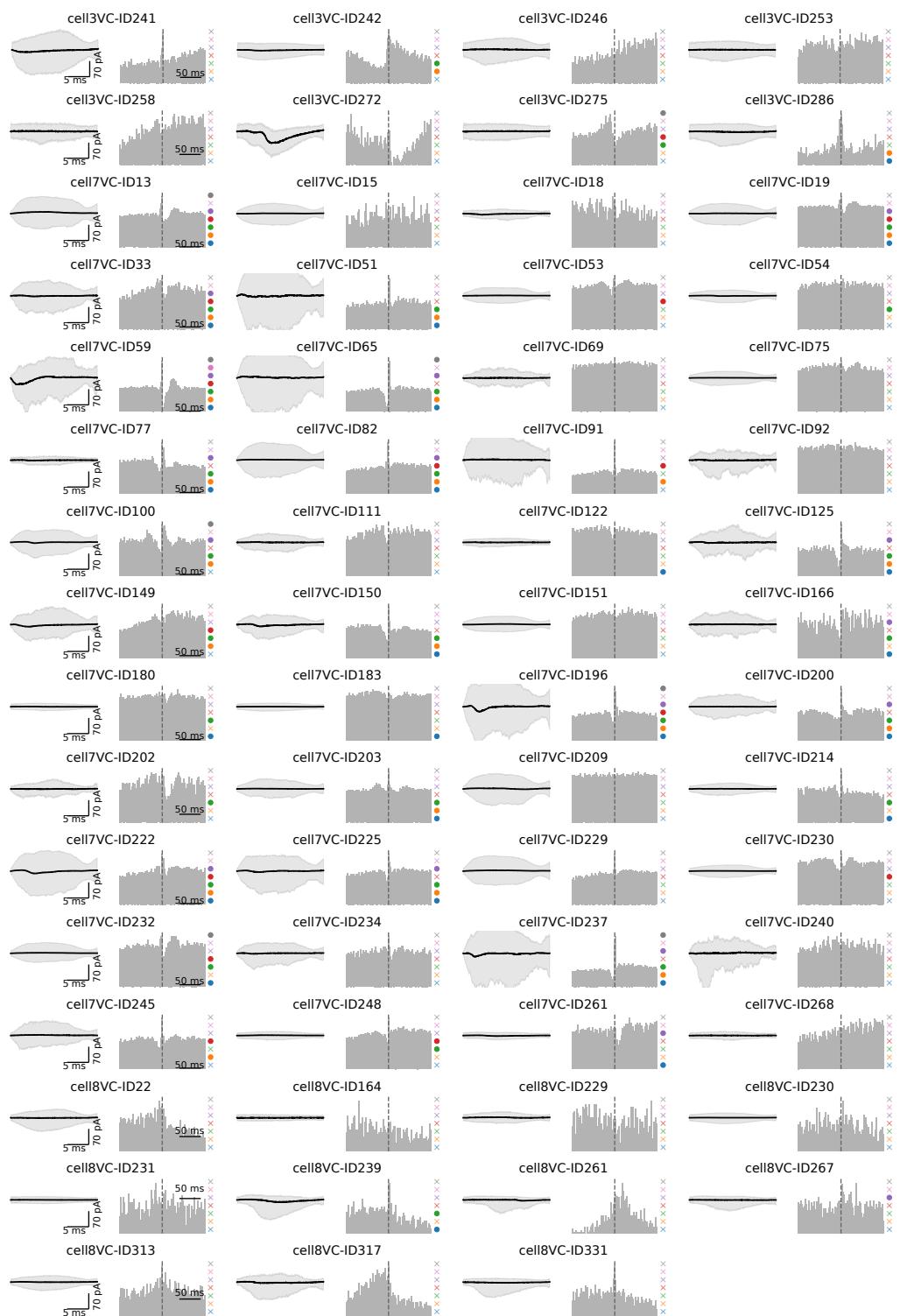


Fig S6. (continued) Connections in experimental ground-truth dataset
Remaining cell pairs identified as non-connection.

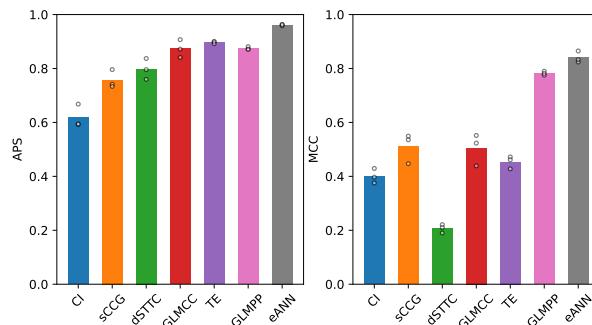


Fig S7. Performance on a dataset with different connectivity rule Here, we show the results of the different connectivity inference methods on data simulated with 80/20 excitatory/inhibitory neurons. Population rate = 1.65Hz, Burst Rate=0.33Hz.

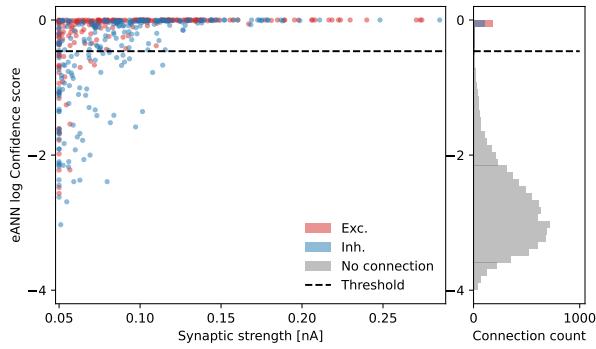


Fig S8. eANN confidence score. In the left panel the synaptic strength from the LIF simulations is plotted against the log confidence score of the eANN. We see lower confidence scores are more likely for weaker synaptic connections. Right panel shows a histogram of the log confidence score. This plot is done for data from Fig. 2 for the intermediate burst regime.

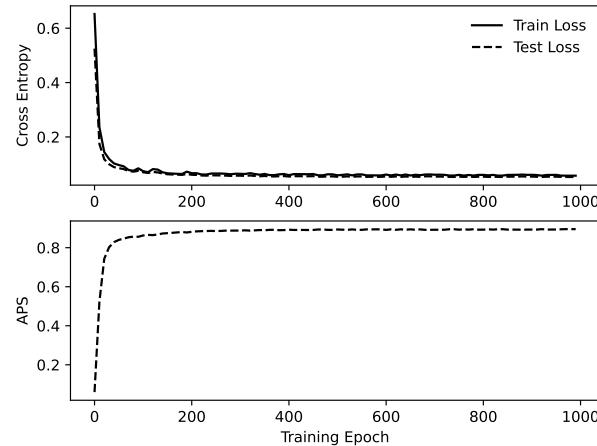


Fig S9. Training and test loss during eANN training. In the top panel, the cross-entropy loss is shown for the training set and a test set (intermediate burst regime). In the lower panel, the APS is shown on the test set during training.

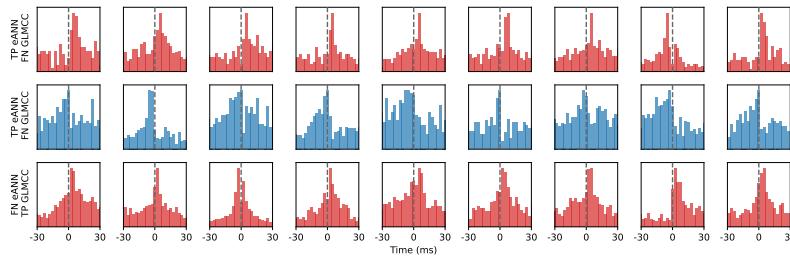


Fig S10. Comparison of eANN and GLMCC inference on synthetic data.
Example cross-correlograms to compare connectivity inference of the eANN and the GLMCC method on some selected pairs (TP = true positive, NF = false negative). The bar color indicates if the ground truth connection was excitatory (red) or inhibitor (blue).

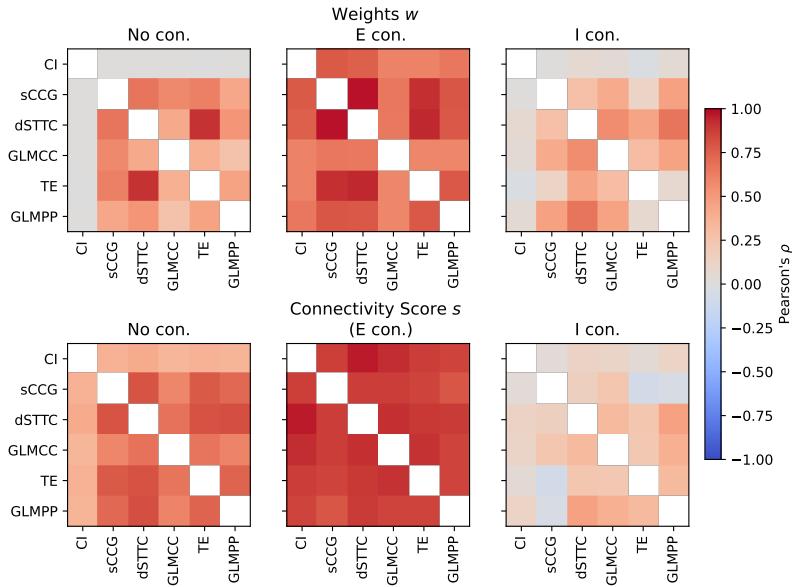


Fig S11. Pearson correlation of weights and connectivity score between different input methods. Left, middle, and right panel show the correlation for pairs of no, excitatory, and inhibitory connection, respectively. The data for the intermediate burst regime from Fig. 2 were used.

μ_{noise} [nA]	σ_{noise} [$\frac{\text{nA}}{\sqrt{\text{ms}}}$]	Spike rate [$\frac{\text{spikes}}{\text{s} \cdot \text{neuron}}$]	C_v	Burst rate [$\frac{\text{Bursts}}{\text{s}}$]
0.34	0.2	1.4	0.8	0.1
0.34	0.16	1.2	1.1	0.1
0.36	0.08	1.7	0.6	0.8
0.42	0.08	3.2	0.2	5.6
0.4	0.18	2.8	0.3	3.6

Table S1. Training simulations for the eANN.

1106 Acknowledgments

1107 This work was funded by a Swiss Data Science Center project grant (C18-10), by the
1108 two Cantons of Basel through a Personalized Medicine project (PMB-01-18) granted by
1109 ETH Zurich, and the European Research Council Advanced Grant 694829
1110 ‘neuroXscales’.

References

1. Luo L. Architectures of neuronal circuits. *Science*. 2021;373(6559). doi:10.1126/SCIENCE.ABG7285/ASSET/59D561D9-7D95-456D-97E5-1B811C05023F/ASSETS/IMAGES/LARGE/SCIENCE.ABG7285-F5.JPG.
2. Schröter M, Paulsen O, Bullmore ET. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. *Nature Reviews Neuroscience* 2017 18:3. 2017;18(3):131–146. doi:10.1038/nrn.2016.182.
3. Ko H, Cossell L, Baragli C, Antolik J, Clopath C, Hofer SB, et al. The emergence of functional microcircuits in visual cortex. *Nature* 2013 496:7443. 2013;496(7443):96–100. doi:10.1038/nature12015.
4. Lee WCA, Bonin V, Reed M, Graham BJ, Hood G, Glattfelder K, et al. Anatomy and function of an excitatory network in the visual cortex. *Nature* 2016 532:7599. 2016;532(7599):370–374. doi:10.1038/nature17192.
5. Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. *PLoS Biology*. 2004;2(11). doi:10.1371/JOURNAL.PBIO.0020329.
6. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, et al. A mesoscale connectome of the mouse brain. *Nature* 2014 508:7495. 2014;508(7495):207–214. doi:10.1038/nature13186.
7. Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. *Science*. 2021;372(6539). doi:10.1126/SCIENCE.ABF4588/SUPPL_FILE/ABF4888_MDAR_REPRODUCIBILITY.
8. Obien MEJ, Deligkaris K, Bullmann T, Bakkum DJ, Frey U. Revealing neuronal function through microelectrode array recordings. *Frontiers in Neuroscience*. 2015;9(JAN):423. doi:10.3389/FNINS.2014.00423/BIBTEX.
9. Yuan X, Schröter M, Obien MEJ, Fiscella M, Gong W, Kikuchi T, et al. Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level. *Nature Communications* 2020 11:1. 2020;11(1):1–14. doi:10.1038/s41467-020-18620-4.
10. Luo L. Principles of Neurobiology. *Principles of Neurobiology*. 2020;doi:10.1201/9781003053972.
11. Sporns O, Betzel RF. Modular Brain Networks. *Annual review of psychology*. 2016;67:613. doi:10.1146/ANNUREV-PSYCH-122414-033634.
12. Witvliet D, Mulcahy B, Mitchell JK, Meirovitch Y, Berger DR, Wu Y, et al. Connectomes across development reveal principles of brain maturation. *Nature* 2021 596:7871. 2021;596(7871):257–261. doi:10.1038/s41586-021-03778-8.
13. Perin R, Berger TK, Markram H. A synaptic organizing principle for cortical neuronal groups. *Proceedings of the National Academy of Sciences of the United States of America*. 2011;108(13):5419–5424. doi:10.1073/PNAS.1016051108/SUPPL_FILE/PNAS.201016051SI.PDF.

14. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB. Structural Properties of the *Caenorhabditis elegans* Neuronal Network. *PLOS Computational Biology*. 2011;7(2):e1001066. doi:10.1371/JOURNAL.PCBI.1001066.
15. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. *Nature* 1998 393:6684. 1998;393(6684):440–442. doi:10.1038/30918.
16. Towlson EK, Vértes PE, Ahnert SE, Schafer WR, Bullmore ET. The rich club of the *C. elegans* neuronal connectome. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2013;33(15):6380–6387. doi:10.1523/JNEUROSCI.3784-12.2013.
17. Arnatkeviciūtė A, Fulcher BD, Pocock R, Fornito A. Hub connectivity, neuronal diversity, and gene expression in the *Caenorhabditis elegans* connectome. *PLOS Computational Biology*. 2018;14(2):e1005989. doi:10.1371/JOURNAL.PCBI.1005989.
18. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB. Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. *PLOS Biology*. 2005;3(3):e68. doi:10.1371/JOURNAL.PBIO.0030068.
19. Lefort S, Tomm C, Floyd Sarria JC, Petersen CCH. The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex. *Neuron*. 2009;61(2):301–316. doi:10.1016/J.NEURON.2008.12.020.
20. White J G, Southgate E, Thomson J N, Brenner S. The structure of the nervous system of the nematode *Caenorhabditis elegans*. *Philosophical Transactions of the Royal Society of London B, Biological Sciences*. 1986;314(1165):1–340. doi:10.1098/RSTB.1986.0056.
21. Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, et al. A visual motion detection circuit suggested by *Drosophila* connectomics. *Nature* 2013 500:7461. 2013;500(7461):175–181. doi:10.1038/nature12450.
22. Hildebrand DGC, Cicconet M, Torres RM, Choi W, Quan TM, Moon J, et al. Whole-brain serial-section electron microscopy in larval zebrafish. *Nature* 2017 545:7654. 2017;545(7654):345–349. doi:10.1038/nature22356.
23. Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, et al. A connectome and analysis of the adult *drosophila* central brain. *eLife*. 2020;9:1–74. doi:10.7554/ELIFE.57443.
24. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. Connectomic reconstruction of the inner plexiform layer in the mouse retina. *Nature* 2013 500:7461. 2013;500(7461):168–174. doi:10.1038/nature12346.
25. Loomba S, Straehle J, Gangadharan V, Heike N, Khalifa A, Motta A, et al. Connectomic comparison of mouse and human cortex. *Science*. 2022;377(6602). doi:10.1126/SCIENCE.ABO0924/SUPPL_FILE/SCIENCE.ABO0924.MDAR_REPRODU
26. Wickersham IR, Lyon DC, Barnard RJO, Mori T, Finke S, Conzelmann KK, et al. Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons. *Neuron*. 2007;53(5):639–647. doi:10.1016/J.NEURON.2007.01.033.

27. Qi G, Yang D, Ding C, Feldmeyer D. Unveiling the Synaptic Function and Structure Using Paired Recordings From Synaptically Coupled Neurons. *Frontiers in Synaptic Neuroscience*. 2020;12:5. doi:10.3389/FNSYN.2020.00005/BIBTEX.
28. Petersen CCH. Whole-Cell Recording of Neuronal Membrane Potential during Behavior. *Neuron*. 2017;95(6):1266–1281. doi:10.1016/J.NEURON.2017.06.049.
29. Holst GL, Stoy W, Yang B, Kolb I, Kodandaramaiah SB, Li L, et al. Autonomous patch-clamp robot for functional characterization of neurons in vivo: Development and application to mouse visual cortex. *Journal of Neurophysiology*. 2019;121(6):2341–2357. doi:10.1152/JN.00738.2018/ASSET/IMAGES/MEDIUM/Z9K0061950750009.GIF.
30. Magrans de Abril I, Yoshimoto J, Doya K. Connectivity inference from neural recording data: Challenges, mathematical bases and research directions. *Neural Networks*. 2018;102:120–137. doi:10.1016/J.NEUNET.2018.02.016.
31. Perkel DH, Gerstein GL, Moore GP. Neuronal Spike Trains and Stochastic Point Processes: II. Simultaneous Spike Trains. *Biophysical Journal*. 1967;7(4):419–440. doi:10.1016/S0006-3495(67)86597-4.
32. Toyama K, Kimura M, Tanaka K. Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. <https://doi.org/10.1152/jn.1981.46.2.191>. 1981;46(2):191–201. doi:10.1152/JN.1981.46.2.191.
33. Aertsen AMHJ, Gerstein GL, Habib MK, Palm G. Dynamics of neuronal firing correlation: modulation of "effective connectivity". <https://doi.org/10.1152/jn.1989.61.5.900>. 1989;61(5). doi:10.1152/JN.1989.61.5.900.
34. Reid RC, Alonso JM. Specificity of monosynaptic connections from thalamus to visual cortex. *Nature* 1995 378:6554. 1995;378(6554):281–284. doi:10.1038/378281a0.
35. Fujisawa S, Amarasingham A, Harrison MT, Buzsáki G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. *Nature Neuroscience* 2008 11:7. 2008;11(7):823–833. doi:10.1038/nn.2134.
36. English DF, McKenzie S, Evans T, Kim K, Yoon E, Buzsáki G. Pyramidal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Networks. *Neuron*. 2017;96(2):505–520. doi:10.1016/J.NEURON.2017.09.033.
37. Stark E, Abeles M. Unbiased estimation of precise temporal correlations between spike trains. *Journal of Neuroscience Methods*. 2009;179(1):90–100. doi:10.1016/J.JNEUMETH.2008.12.029.
38. Amarasingham A, Harrison MT, Hatsopoulos NG, Geman S. Conditional modeling and the jitter method of spike resampling. *Journal of Neurophysiology*. 2012;107(2):517–531. doi:10.1152/JN.00633.2011/ASSET/IMAGES/LARGE/Z9K0021211360008.JPG.
39. Spivak L, Levi A, Sloin HE, Someck S, Stark E. Deconvolution improves the detection and quantification of spike transmission gain from spike trains. *Communications Biology* 2022 5:1. 2022;5(1):1–17. doi:10.1038/s42003-022-03450-5.

40. Kobayashi R, Kurita S, Kurth A, Kitano K, Mizuseki K, Diesmann M, et al. Reconstructing neuronal circuitry from parallel spike trains. *Nature Communications* 2019 10:1. 2019;10(1):1–13. doi:10.1038/s41467-019-12225-2.
41. Ren N, Ito S, Hafizi H, Beggs JM, Stevenson IH. Model-based detection of putative synaptic connections from spike recordings with latency and type constraints. *Journal of Neurophysiology*. 2020;124(6):1588–1604. doi:10.1152/JN.00066.2020.
42. Endo D, Kobayashi R, Bartolo R, Averbeck BB, Sugase-Miyamoto Y, Hayashi K, et al. A convolutional neural network for estimating synaptic connectivity from spike trains. *Scientific Reports* 2021 11:1. 2021;11(1):1–18. doi:10.1038/s41598-021-91244-w.
43. Das A, Fiete IR. Systematic errors in connectivity inferred from activity in strongly recurrent networks. *Nature Neuroscience* 2020 23:10. 2020;23(10):1286–1296. doi:10.1038/s41593-020-0699-2.
44. Pillow JW, Latham P. Neural characterization in partially observed populations of spiking neurons. *Advances in Neural Information Processing Systems*. 2007;20.
45. Ostojic S, Brunel N, Hakim V. How Connectivity, Background Activity, and Synaptic Properties Shape the Cross-Correlation between Spike Trains. *Journal of Neuroscience*. 2009;29(33):10234–10253. doi:10.1523/JNEUROSCI.1275-09.2009.
46. Stetter O, Battaglia D, Soriano J, Geisel T. Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals. *PLOS Computational Biology*. 2012;8(8):e1002653. doi:10.1371/JOURNAL.PCBI.1002653.
47. Orlandi JG, Stetter O, Soriano J, Geisel T, Battaglia D. Transfer Entropy Reconstruction and Labeling of Neuronal Connections from Simulated Calcium Imaging. *PLOS ONE*. 2014;9(6):e98842. doi:10.1371/JOURNAL.PONE.0098842.
48. Downes JH, Hammond MW, Xydas D, Spencer MC, Becerra VM, Warwick K, et al. Emergence of a Small-World Functional Network in Cultured Neurons. *PLOS Computational Biology*. 2012;8(5):e1002522. doi:10.1371/JOURNAL.PCBI.1002522.
49. Schroeter MS, Charlesworth P, Kitzbichler MG, Paulsen O, Bullmore ET. Emergence of Rich-Club Topology and Coordinated Dynamics in Development of Hippocampal Functional Networks In Vitro. *Journal of Neuroscience*. 2015;35(14):5459–5470. doi:10.1523/JNEUROSCI.4259-14.2015.
50. Shimono M, Beggs JM. Functional clusters, hubs, and communities in the cortical microconnectome. *Cerebral Cortex*. 2015;25(10):3743–3757. doi:10.1093/CERCOR/BHU252.
51. Timme NM, Ito S, Myroshnychenko M, Nigam S, Shimono M, Yeh FC, et al. High-Degree Neurons Feed Cortical Computations. *PLOS Computational Biology*. 2016;12(5):e1004858. doi:10.1371/JOURNAL.PCBI.1004858.
52. Nigam S, Shimono M, Ito S, Yeh FC, Timme N, Myroshnychenko M, et al. Rich-club organization in effective connectivity among cortical neurons. *Journal of Neuroscience*. 2016;36(3):655–669. doi:10.1523/JNEUROSCI.2177-15.2016.

53. Cutts CS, Eglen SJ. Detecting pairwise correlations in spike trains: an objective comparison of methods and application to the study of retinal waves. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2014;34(43):14288–303. doi:10.1523/JNEUROSCI.2767-14.2014.
54. Schreiber T. Measuring Information Transfer. *Physical Review Letters*. 2000;85(2):461. doi:10.1103/PhysRevLett.85.461.
55. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. *Journal of Neurophysiology*. 2005;93(2):1074–1089. doi:10.1152/JN.00697.2004/ASSET/IMAGES/LARGE/Z9K0010543401010.jpeg.
56. Chiappalone M, Vato A, Berdondini L, Koudelka-Hep M, Martinoia S. NETWORK DYNAMICS AND SYNCHRONOUS ACTIVITY IN CULTURED CORTICAL NEURONS. <https://doi.org/10.1142/S0129065707000968>. 2011;17(2):87–103. doi:10.1142/S0129065707000968.
57. Jäckel D, Bakkum DJ, Russell TL, Müller J, Radivojevic M, Frey U, et al. Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration. *Scientific Reports* 2017 7:1. 2017;7(1):1–17. doi:10.1038/s41598-017-00981-4.
58. Bartram J, Franke F, Kumar SS, Buccino AP, Xue X, Gänswein T, et al. Parallel reconstruction of the excitatory and inhibitory inputs received by single neurons reveals the synaptic basis of recurrent spiking. *bioRxiv*. 2023; p. 2023.01.06.523018. doi:10.1101/2023.01.06.523018.
59. Hansen LK, Salamon P. Neural Network Ensembles. *IEEE Transactions on Pattern Analysis and Machine Intelligence*. 1990;12(10):993–1001. doi:10.1109/34.58871.
60. Lundberg SM, Allen PG, Lee SI. A Unified Approach to Interpreting Model Predictions. *Advances in Neural Information Processing Systems*. 2017;30.
61. Schryinemakers M, Küffner R, Geurts P. On protocols and measures for the validation of supervised methods for the inference of biological networks. *Frontiers in Genetics*. 2013;4(DEC):262. doi:10.3389/FGENE.2013.00262/ABSTRACT.
62. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. *Biochimica et Biophysica Acta (BBA) - Protein Structure*. 1975;405(2):442–451. doi:10.1016/0005-2795(75)90109-9.
63. Antonello PC, Varley TF, Beggs J, Porcionatto M, Sporns O, Faber J. Self-organization of in vitro neuronal assemblies drives to complex network topology. *eLife*. 2022;11. doi:10.7554/ELIFE.74921.
64. Ito S, Hansen ME, Heiland R, Lumsdaine A, Litke AM, Beggs JM. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. *PLoS ONE*. 2011;6(11). doi:10.1371/journal.pone.0027431.
65. Wollstadt P, Lizier JT, Vicente R, Finn C, Martínez-Zarzuela M, Mediano P, et al. IDTxl: The Information Dynamics Toolkit xl: a Python package for the efficient analysis of multivariate information dynamics in networks. *Journal of Open Source Software*. 2018;4(34):1081. doi:10.21105/joss.01081.

66. Hyvärinen T, Hyysalo A, Kapucu FE, Aarnos L, Vinogradov A, Eglen SJ, et al. Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures. *Scientific Reports* 2019 9:1. 2019;9(1):1–15. doi:10.1038/s41598-019-53647-8.
67. Pelkonen A, Mzezewa R, Sukki L, Ryynänen T, Kreutzer J, Hyvärinen T, et al. A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks. *Biosensors and Bioelectronics*. 2020;168:112553. doi:10.1016/J.BIOS.2020.112553.
68. Székely K, Wenger LMD, Sun Y, Dunn AWE, Limegrover CA, Gibbons GM, et al. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. *Nature Neuroscience* 2021 24:11. 2021;24(11):1542–1554. doi:10.1038/s41593-021-00923-4.
69. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. *Nature* 2008 454:7207. 2008;454(7207):995–999. doi:10.1038/nature07140.
70. Orlandi J, Ray B, Battaglia D, Guyon I, Lemaire V, Saeed M, et al. First Connectomics Challenge: From Imaging to Connectivity. 2017; p. 1–22. doi:10.1007/978-3-319-53070-3_1.
71. Bengio Y, Goodfellow I, Courville A. Deep learning; 2017. Available from: https://www.academia.edu/download/62266271/Deep_Learning20200303-80130-1s42zvt.pdf.
72. Apostolopoulou I, Linderman S, Miller K, Dubrawski A. Mutually Regressive Point Processes. *Advances in Neural Information Processing Systems*. 2019;32.
73. Donner C, Opper M. Inverse Ising problem in continuous time: A latent variable approach. *Physical Review E*. 2017;96(6):062104. doi:10.1103/PhysRevE.96.062104.
74. Pajevic S, Plenz D. Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches. *PLOS Computational Biology*. 2009;5(1):e1000271. doi:10.1371/JOURNAL.PCBI.1000271.
75. Zhang Y, Xiao Y, Zhou D, Cai D. Spike-triggered regression for synaptic connectivity reconstruction in neuronal networks. *Frontiers in Computational Neuroscience*. 2017;11:101. doi:10.3389/FNCOM.2017.00101/BIBTEX.
76. Barral J, D'Reyes A. Synaptic scaling rule preserves excitatory–inhibitory balance and salient neuronal network dynamics. *Nature Neuroscience* 2016 19:12. 2016;19(12):1690–1696. doi:10.1038/nn.4415.
77. Sporns O, Kötter R. Motifs in Brain Networks. *PLoS Biology*. 2004;2(11). doi:10.1371/JOURNAL.PBIO.0020369.
78. Gerhard F, Kispersky T, Gutierrez GJ, Marder E, Kramer M, Eden U. Successful Reconstruction of a Physiological Circuit with Known Connectivity from Spiking Activity Alone. *PLOS Computational Biology*. 2013;9(7):e1003138. doi:10.1371/JOURNAL.PCBI.1003138.

79. Shorten DP, Spinney RE, Lizier JT. Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains or Other Event-Based Data. *PLOS Computational Biology*. 2021;17(4):e1008054. doi:10.1371/journal.pcbi.1008054.
80. Marc D, Mehler A, Kording KP. The lure of misleading causal statements in functional connectivity research. 2018;.
81. Stevenson IH. Circumstantial evidence and explanatory models for synapses in large-scale spike recordings;.
82. Soudry D, Keshri S, Stinson P, Oh MH, Iyengar G, Paninski L. Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data. *PLOS Computational Biology*. 2015;11(10):e1004464. doi:10.1371/JOURNAL.PCBI.1004464.
83. Chambers B, Levy M, Dechery JB, Maclean JN. Ensemble stacking mitigates biases in inference of synaptic connectivity. *Network Neuroscience*. 2018;2(1):60–85. doi:10.1162/NETN_A_00032.
84. Wang HE, Friston KJ, Bénar CG, Woodman MM, Chauvel P, Jirsa V, et al. MULAN: Evaluation and ensemble statistical inference for functional connectivity. *NeuroImage*. 2018;166:167–184. doi:10.1016/J.NEUROIMAGE.2017.10.036.
85. Suzuki IK, Vanderhaeghen P. Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. *Development*. 2015;142(18):3138–3150. doi:10.1242/DEV.120568.
86. Sibille J, Gehr C, Benichov JI, Balasubramanian H, Teh KL, Lupashina T, et al. High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons. *Nature Communications* 2022 13:1. 2022;13(1):1–18. doi:10.1038/s41467-022-32775-2.
87. Ben-Ari Y, Khazipov R, Leinekugel X, ... OCTi, 1997 u. GABA_A, NMDA and AMPA receptors: a developmentally regulatedmenage a trois'. Elsevier;.
88. Baltz T, de Lima AD, Voigt T. Contribution of GABAergic interneurons to the development of spontaneous activity patterns in cultured neocortical networks. *Frontiers in Cellular Neuroscience*. 2010;4(JUN):15. doi:10.3389/FNCEL.2010.00015/BIBTEX.
89. Kerchner GA, Nicoll RA. Silent synapses and the emergence of a postsynaptic mechanism for LTP. *Nature Reviews Neuroscience* 2008 9:11. 2008;9(11):813–825. doi:10.1038/nrn2501.
90. Volgushev M, Ilin V, Stevenson IH. Identifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro Experiments. *PLOS Computational Biology*. 2015;11(3):e1004167. doi:10.1371/JOURNAL.PCBI.1004167.
91. Stevenson IH. Circumstantial evidence and explanatory models for synapses in large-scale spike recordings. 2023;.
92. Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. *Science*. 2015;350(6266):1361–1366. doi:10.1126/SCIENCE.AAB0810/SUPPL_FILE/GONG-SM.PDF.

93. Stimberg M, Brette R, Goodman DFM. Brian 2, an intuitive and efficient neural simulator. *eLife*. 2019;8. doi:10.7554/ELIFE.47314.
94. Gerstner W, Kistler WM, Naud R, Paninski L. *Neuronal dynamics: From single neurons to networks and models of cognition*. 2014;.
95. Dayan P, Abbott L. *Theoretical neuroscience: computational and mathematical modeling of neural systems*; 2005. Available from: <https://books.google.de/books?hl=en&lr=&id=fLT4DwAAQBAJ&oi=fnd&pg=PR13&dq=theoretical+neuroscience&ots=-WkoyZ72Sx&sig=RZDOiNFWInJ8mktfYGGFvLB-yaw>.
96. Bakkum D, Frey U, Radivojevic M, ... TRN, 2013 u. Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. *naturecom*. 2013;doi:10.1038/ncomms3181.
97. Müller J, Ballini M, Livi P, Chen Y, Radivojevic M, Shadmani A, et al. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. *Lab on a Chip*. 2015;15(13):2767–2780. doi:10.1039/C5LC00133A.
98. Akarca D, Dunn AWE, Hornauer PJ, Ronchi S, Fiscella M, Wang C, et al. Homophilic wiring principles underpin neuronal network topology in vitro. *bioRxiv*. 2022; p. 2022.03.09.483605. doi:10.1101/2022.03.09.483605.
99. Pachitariu M, Steinmetz NA, Kadir SN, Carandini M, Harris KD. Fast and accurate spike sorting of high-channel count probes with KiloSort. *Advances in Neural Information Processing Systems*. 2016;29.
100. Marshall N, Timme NM, Bennett N, Ripp M, Lautzenhiser E, Beggs JM. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox. *Frontiers in Physiology*. 2016;7:191703. doi:10.3389/FPHYS.2016.00250/BIBTEX.
101. Newman MEJ. Spectral methods for network community detection and graph partitioning. *Physical Review E - Statistical, Nonlinear, and Soft Matter Physics*. 2013;88(4). doi:10.1103/PhysRevE.88.042822.
102. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. *NeuroImage*. 2010;52(3):1059–1069. doi:10.1016/J.NEUROIMAGE.2009.10.003.
103. Latora V, Marchiori M. Efficient Behavior of Small-World Networks. *Physical Review Letters*. 2001;87(19):198701. doi:10.1103/PhysRevLett.87.198701.
104. Fagiolo G. Clustering in complex directed networks. *Physical Review E - Statistical, Nonlinear, and Soft Matter Physics*. 2007;76(2):026107. doi:10.1103/PHYSREVE.76.026107/FIGURES/9/MEDIUM.
105. Kintali S. Betweenness Centrality : Algorithms and Lower Bounds. 2008;.
106. Newman MEJ. Fast algorithm for detecting community structure in networks. *Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics*. 2004;69(6):5. doi:10.1103/PHYSREVE.69.066133.
107. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. *Science*. 2002;296(5569):910–913. doi:10.1126/SCIENCE.1065103/ASSET/C5A93A84-FAD7-4B06-A02C-1ABDC4984326/ASSETS/GRAPHIC/SE1720437003.jpeg.

108. Gilbert CD, Wiesel TN. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. *Nature* 1979;280:5718. 1979;280(5718):120–125. doi:10.1038/280120a0.
109. Denker M, Köhler C, Jurkus R, Kramer M, Kern M, Kurth AC, et al. Elephant 0.12.0. 2023;doi:10.5281/ZENODO.7673930.
110. Wibral M, Vicente R, Lindner M. Transfer entropy in neuroscience. *Understanding Complex Systems*. 2014; p. 3–36. doi:10.1007/978-3-642-54474-3_1/COVER.
111. Linderman S, Adams RP, Pillow JW. Bayesian latent structure discovery from multi-neuron recordings. *Advances in Neural Information Processing Systems*. 2016;29.
112. Donner C, Opper M. Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes. *Journal of Machine Learning Research*. 2018;19:1–34.
113. Daley DJ, Vere-Jones D. *An Introduction to the Theory of Point Processes*. 2008;doi:10.1007/978-0-387-49835-5.