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Abstract1

Probing the architecture of neuronal circuits and the principles that underlie their2

functional organization remains an important challenge of modern neurosciences. This3

holds true, in particular, for the inference of neuronal connectivity from large-scale4

extracellular recordings. Despite the popularity of this approach and a number of5

elaborate methods to reconstruct networks, the degree to which synaptic connections6

can be reconstructed from spike-train recordings alone remains controversial. Here, we7

provide a framework to probe and compare connectivity inference algorithms, using a8

combination of synthetic and empirical ground-truth data sets, obtained from9

simulations and parallel single-cell patch-clamp and high-density microelectrode array10

(HD-MEA) recordings in vitro. We find that reconstruction performance critically11

depends on the regularity of the recorded spontaneous activity, i.e., their dynamical12

regime, the type of connectivity, and the amount of available spike train data. We find13

gross differences between different algorithms, and many algorithms have difficulties in14

detecting inhibitory connections. We therefore introduce an ensemble artificial neural15

network (eANN) to improve connectivity inference. We train the eANN on the validated16

outputs of six established inference algorithms, and show how it improves network17

reconstruction accuracy and robustness. Overall, the eANN was robust across different18

dynamical regimes, with shorter recording time, and ameliorated the identification of19

synaptic connections, in particular inhibitory ones. Results indicated that the eANN20

also improved the topological characterization of neuronal networks. The presented21

methodology contributes to advancing the performance of inference algorithms and22

facilitates our understanding of how neuronal activity relates to synaptic connectivity.23

February 1, 2024 1/54

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.02.01.578336doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578336
http://creativecommons.org/licenses/by-nd/4.0/


Author summary24

This study introduces an ensemble artificial neural network (eANN) to infer neuronal25

connectivity from multi-unit spike time recordings. We compare the eANN to previous26

algorithms and validate it using simulations and HD-MEA/patch-clamp datasets. The27

latter is obtained from three single-cell patch-clamp recordings and high-density28

microelectrode array (HD-MEA) measurements, in parallel. Our results demonstrate29

that the eANN outperforms all other algorithms across different dynamical regimes and30

provides a more accurate description of the underlying topological organization of the31

studied networks. We also provide a SHAP analysis of the trained eANN to understand32

which input features of the eANN contribute most to this superior performance. The33

eANN is a promising approach to improve connectivity inference from spike-train data.34

Introduction35

Inferring the wiring diagram of complex neuronal circuits, their connectomes, has36

remained an important pillar in the quest to understand how individual neurons process37

information and how neuronal networks are organized [1]. Recent years have seen38

significant advances in connectome inference techniques enabling the study of39

fundamental principles of neuronal organization [2], and the intricate structure-function40

relationship of local synaptic connectivity [3, 4]. In particular, methods based on serial41

block-face electron microscopy (EM) [5], and virus-based circuit reconstruction [6], have42

paved the way to mapping out synaptic connections at unprecedented detail and scale.43

These methods significantly furthered our understanding of how circuit architecture44

relates to neuronal communication across scales, i.e., at the level of local connectivity, as45

well as, across different brain regions. The interest in linking connectomics and46

functional readouts has also been fuelled by the ever-increasing capabilities of47

large-scale electrophysiological recording technology for studying neuronal physiology in48

vivo [7] and in vitro [8, 9].49

A large body of studies, including different species and brain regions, has started to50

provide insight into the specific connectivity patterns that individual neurons form to51

communicate. Common organizational motifs of synaptic connectivity include, for52

example, feedforward excitation, feedforward inhibition, as well as, feedback inhibition,53

and lateral inhibition [10]. In addition to these circuit motifs, a range of complex54

topological properties have been described [2], among them, a greater-than-random55

community structure [11, 12], the occurrence of specific triple-motifs among locally56

connected projection neurons [13, 14], a small-world [15] and rich-club organization [16],57

and highly-connected hub neurons [17]. Studies also found that the synaptic strength of58

local circuitry typically follows a heavy-tailed log-normal distribution, with few strong59

connections [18, 19]. Many of these synaptic wiring diagrams have been obtained60

through EM reconstruction in model organisms, such as Caenorhabditis elegans [20],61

drosophila [21], and zebrafish [22,23], and more recently, through reconstruction of small62

tissue samples of mouse [4, 24], macaque, and human cortex [25].63

In addition to dense, EM-based reconstruction of neuronal circuits, which allows for64

the perhaps most comprehensive characterization of synaptic connectivity, important65

alternative circuit-mapping tools exist. The two most widely used techniques are viral66

retrograde and anterograde trans-synaptic labeling of neurons [6, 26], and whole-cell67

patch clamp recordings [27]. Patch-clamp recordings are the gold standard to infer68

synaptic function and have been widely applied to characterize synaptic connections69

among pre- and postsynaptic neurons, including the strength of their excitatory and70

inhibitory postsynaptic potentials (EPSPs/IPSPs), the time course of the postsynaptic71

responses, and the reliability of synaptic transmission. To assess if two neurons are72
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monosynaptically connected, typically, whole-cell recordings in both cells are obtained,73

and spikes are induced via brief repetitive stimuli to measure the evoked EPSP/IPSP74

amplitudes and the direction of the connection(s) [13]. Whole-cell recordings from up to75

twelve simultaneously recorded neurons have also been used to study the organization of76

local connectivity in brain slices [3, 13]. Overall, the data obtained from patch-clamp77

recordings have provided essential information on the mechanisms underlying neuronal78

circuit computation, that, so far, could not be provided by EM-based reconstructions.79

This holds particularly for patch-clamp studies that were performed in vivo [28], which80

do not suffer from potential slicing artifacts [27]. Despite attempts to automate and81

scale-up patch clamping procedures [29], the throughput for connectivity studies has82

remained comparably low.83

Besides inferring synaptic connectivity from intracellular recordings, there has been84

a surge in studies that used the statistical relationship of the activity among neurons as85

an indirect measure of neuronal coupling [30]. Spike train cross-correlograms (CCGs),86

for example, have been applied to estimate spike transmission or effective connectivity87

between defined neurons and/or specific brain regions [31–36]. To improve the88

performance of CCG-based circuit inference, several modifications have been suggested –89

such as, to take into account co-modulating background dynamics [37–39], to apply90

model-based timescale separation techniques [40, 41] or, more recently, to apply deep91

learning methods [42]. Still, inferring synaptic connectivity from the ongoing spiking92

activity of neurons remains highly challenging [43]. This holds true, in particular, if the93

strength of synaptic connectivity is weak [40], if the neuronal networks cannot be fully94

sampled [44], and if the used spike trains exhibit strong temporal periodicity, e.g.,95

caused by correlated network bursts [39, 45]. Such burst activity may lead to high spike96

train synchronicity between two neurons that, however, are not synaptically97

connected [45]. This limits the interpretability of CCG-based methods but also holds for98

other algorithms used to infer interneuronal coupling in neuronal networks, recorded99

with either electrophysiological [30] or optical methods [46,47]. It is important to be100

aware of these caveats when interpreting the topology of neuronal networks obtained101

from such activity-based connectivity-inference methods [48–52].102

In this study, we introduce a workflow to benchmark algorithms that have been used103

to infer neuronal connectivity from large-scale extracellular recordings [36, 40,53–56].104

We, therefore, standardize the output of algorithms and compare statistically inferred105

connectivity estimates on synthetic ground-truth data sets and experimentally obtained106

connectivity labels. The first ground-truth data set was generated by stimulating leaky107

integrate-and-fire (LIF) neurons with empirical spike-train data and statistically defined108

noise [41]. These data allowed probing the effect of varying network dynamics and109

recording lengths on network reconstruction performance. In addition, we assessed the110

performance of connectivity-inference algorithms on in vitro data, where connectivity111

labels, where inferred from parallel whole-cell patch-clamp and high-density112

microelectrode array (HD-MEA) recordings obtained from primary neuronal113

cultures [57, 58]. Finally, we introduce an ensemble artificial neuronal network (eANN)114

and probe whether ensemble learning techniques [59] can improve today’s methodology115

to infer synaptic connectivity. We train the eANN on the standardized output of all116

implemented network-inference methods and demonstrate that knowledge about the117

shared output from these methods does indeed lead to gains in network reconstruction118

performance. To this end, we use a SHapley Additive exPlanations (SHAP) [60] analysis119

to better understand the relative contribution of individual input features to the120

superior eANN performance, and to visualize and interpret which methods were driving121

the eANN model to predict excitatory or inhibitory synaptic connections.122
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Fig 1. An ensemble artificial neural network to improve neuronal

connectivity inference. A Schematic illustrating the developed analysis workflow to
systematically compare statistically derived neuronal connectivity across inference
algorithms and defined network dynamics. Empirical spike train data (i), obtained by
high-density microelectrode array (HD-MEA) recordings from primary cortical cultures,
and different types of white noise (ii) were used as input to a network (iii) of leaky
integrate-and-fire (LIF) neurons (300 neurons, 50:50 excitatory (E) and inhibitory (I)
neurons), adopted from previously reported work [41]. The a priori defined structure
underlying the LIF network served as the first ground truth to compare established and
new connectivity inference methods providing a score (s) and a weight (w) for each
connection (v-vi). Moreover, connectivity-inference performance was also assessed on
ground truth data obtained from parallel HD-MEA/patch-clamp recordings [58]. B
Schematic depicting the architecture of the ensemble artificial neural network (eANN).
The eANN receives as input the connectivity score s and weight w values from multiple
established inference algorithms. Then the feed-forward network is trained. Finally, the
eANN outputs probability values which indicate whether the connection is excitatory,
inhibitory, or if there is no connection at all.

Results123

A framework for the systematic comparison of activity-based124

connectivity inference algorithms125

To compare inference methods and evaluate their performance, we standardized the126

connectivity inference task: Each inference method received the same spike train127

activity, i.e., the spike times and the corresponding unit IDs of a given neuronal network128

recording. These data consisted of either a network simulation (see Sec. S1; Fig. 1A), or129

an HD-MEA extracellular network recording obtained from primary cortical cultures130

(see Sec. S3A). Then, as output, each connectivity inference method provided two131

results: (i) a directed weighted graph, that indicated the connectivity strength between132

all nodes, and (ii), a matrix that contained the connectivity scores (CSs) for all133

connections. We will refer to the first output as the weight graph (W), and to the134

second output matrix as the score graph (S). Each edge of the inferred connectivity135

score graph S represents a CS.136

For a given putative connection between a presynaptic neuron i and postsynaptic137
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neuron j, we defined a CS si→j . The CS indicates the likelihood of a putative138

monosynaptic connection according to the respective inference method. Of note, the139

meaning of the CS depends on the method: For example, the CS could be a (log)140

probability, a negative (log) p-value, or the absolute value of a z-score (see Sec. S5 for141

the definition of CS and Table 1). As for the CS graph S, the interpretation of the142

weight graph W depends on the respective inference method, e.g., it might indicate an143

estimate of synaptic strength or how much information about the spike train j is144

contained in spike train i. For a given connection from neuron i to j, we define a weight145

wi→j .146

We consider a putative connection between neuron i and j as present when the147

respective confidence score si→j is larger than a statistically defined threshold. This148

threshold, however, has to be defined by the experimenter. Connections below this149

defined threshold are regarded as unconnected pairs. As synaptic connectivity is150

generally assumed to be sparse, this task is highly unbalanced, i.e., we would expect151

that the unconnected pairs largely outnumber actual connections. Such imbalance poses152

a problem for accuracy measurements [61]. To compare network reconstruction153

performance across algorithms, and to take this imbalance into account, we here154

considered the averaged precision score (APS). We defined the APS as the integral of155

the precision-recall curve, which attains values between 1 (the best possible outcome)156

and 0 (the worst outcome). Since the APS is an aggregate statistic over all possible157

thresholds and some analytical questions do require thresholded graphs, we also158

considered the Matthews correlation coefficient (MCC) [62] as a second performance159

metric. See Supplementary Information S6 for details.160

Overview on connectivity inference algorithms161

Historically, many studies have applied cross-correlograms (CCGs) to estimate putative162

mono-synaptic connections between neurons [31–33,35–37]. In the present study, we163

considered three CCG-based connectivity inference methods: First, the Coincidence164

Index (CI), which integrates the CCG over a small synaptic window [56] and compares165

it to values obtained from jittered surrogate data (i.e., spike trains for which the166

short-latency synaptic relationships have been destroyed). The second method convolves167

CCGs with a partially hollow Gaussian kernel [37] and thereby allows separating slower168

background activity from faster synaptic interactions. We refer to this method as the169

smoothed cross-correlograms (sCCG) algorithm [36]. And finally, a third method, which170

fits a generalized linear model (GLM) to the CCGs [40]. As in the original171

publication [40], we refer to this method as the GLMCC algorithm. The GLM models172

the background spiking and the potential synaptic effect as two separate additive173

functions: The stronger the contribution of the synaptic effect is, the more likely a174

synaptic connection.175

Several studies have applied information-theoretic measures to estimate neuronal176

connectivity and information flow between brain regions and individual cells177

[51, 52, 54,63,64]. Here, we utilized an efficient algorithmic implementation of transfer178

entropy (TE) [65] to infer connectivity from the discretized spike trains. TE has been179

used as a measure of information flow and quantifies – in this context – if information180

about the spike activity of neuron j improves the prediction of the activity of neuron i181

in addition to knowledge about the spiking history of neuron i alone [64].182

We also implemented a modified, directed variant of the spike time tiling coefficient183

(dSTTC) [53]. Although originally not developed to quantify synaptic connectivity, but184

rather the synchronicity between pairs of spike-trains, it has recently gained a lot of185

popularity [66–68]. The dSTTC variant used here quantifies interneuronal coupling by186

estimating the proportion of spikes of two units that appear within a specific synaptic187

window. More specifically, dSTTC checks whether there is an access or scarcity of188
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spikes of neuron j following the spikes of neuron i and spikes of neuron i that were189

elicited before those of neuron j.190

Finally, the last inference method was based on a generalized linear model for191

point-processes (GLMPP) [55]. The GLMPP model allows the integration of multiple192

covariates, such as the past activity of the entire network, in an explanation of the193

observed spiking activity of a neuron i. Models of this class have been used in the past194

for inferring connectivity among partially observed neuronal populations [69].195

Each inference method was adapted to the previously described analysis framework,196

i.e., each method provided a score graph S and a weight graph W. For more details on all197

implemented algorithms, and the applied modifications to fit them to our workflow, see198

Supplementary Information Sec. S5. An overview of all methods is provided in Tab. 1.199

Using an ensemble artificial neural network to improve200

connectivity inference from spike trains201

Due to the great diversity of neuronal cell types and connectivity, and the inherent202

complexity of neuronal dynamics, it is likely that network-reconstruction algorithms203

perform better in some scenarios than in others [46,70]. In this study, we introduce an204

algorithm that is based on an ensemble artificial neural network (eANN), and which can205

make predictions about synaptic connections after being trained on some training206

ground-truth simulation with the corresponding output of multiple inference methods207

(see previous section). Hence, one goal was to probe whether the collective input from208

traditional inference algorithms – as learned by the eANN – improves network209

reconstruction accuracy and robustness (Fig. 1).210

To address this question, we first trained the eANN on connectivity-inference results211

obtained with the traditional algorithms from leaky integrate-and-fire (LIF) network212

simulations (see Sec. S1). For a putative connection between neurons i and j, the213

resulting eANN received the weight wi→j and connectivity scores si→j of all six214

inference methods as input. The implemented eANN architecture consists of a215

feed-forward network [71] with two hidden layers with ten units each and a rectified216

linear unit (ReLU) non-linearity. The output layer has three units and a softmax217

non-linearity and indicated either an excitatory (E), an inhibitory (I), or no connection218

at all (Fig. 1B). Because we hypothesized that excitatory and inhibitory connections219

might be reflected differently by each method, we chose a multi-class classification220

setting. The model was then trained on different LIF simulations by minimizing the221

cross-entropy loss using the ground-truth labels in the training data. The final222

connectivity score s of the eANN was defined as the maximum softmax output for223

either an excitatory or inhibitory connection. If the CS for a connectivity pair i → j224

exceeded a specific predefined threshold, the connection was deemed significant. The225

eANN method simply predicts if a connection exists (or not), without assigning a weight226

w. Predicting actual synaptic strength is expected to be a more challenging task, which227

we leave to future research. Note, that throughout this paper we train only the network228

once, and subsequent results are obtained by this network.229

Comparing network reconstruction performance across230

algorithms, network dynamics, cell types, and recording231

duration232

To benchmark connectivity-inference methods, we first turned to LIF simulations (see233

Sec. S1), which were obtained similarly to an approach outlined in a previous study [41].234

The spike train output of the LIF simulations resembled the subsequently used in vitro235

HD-MEA recordings. Each LIF network consisted of N = 300 neurons, equally split236
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Method name Abbreviation Description

Coincidence index CI
Measures the excess/deficit of coincidental firing
compared to what would be expected by chance
(shuffled data). Adpoted from [56]

Smoothed cross-correlogram sCCG
Quantifies the temporal correlation between two
spike trains; a smoothing kernel is used to discern
background activity from synaptic interactions [37]

Directed spike time tiling
coefficient

dSTTC
Quantifies the synchrony between two neurons
by considering the temporal overlap and rate
of spikes in a defined temporal window [53].

Generalized linear model (GLM)
cross-correlogram

GLMCC
Parameterized generalized linear model to
facilitate synaptic connectivity inference from
cross-correlograms. [40]

Transfer entropy TE
Measures how knowledge about the spike history
of one neuron reduces the uncertainty about the
future spiking of another neuron [54,65]

Generalized linear model (GLM)
point process

GLMPP
Generalized linear model to parametrize firing
rate according to network history. Modified
from [72] and combined with methods from [73].

Ensemble artificial
neural network

eANN
Neural network trained on CI, sCCG, dSTTC,
GLMCC, TE and GLMPP to predict connectivity,
as introduced in this study.

Table 1. Overview on connectivity inference methods and abbreviations.

into excitatory and inhibitory neurons, and connected randomly with a probability of237

0.05. The LIF network received two types of input: i) spike train data from an238

experimental recording to mimic realistic dynamics (connection probability to LIF239

neurons 0.1), and ii) white noise input. The white noise was varied, to map out a range240

of different dynamical regimes. As benchmarking datasets, we generated three different241

simulations: a high-bursting regime (burst rate: 1 Hz, average firing rate: 1.6 Hz,242

coefficient of variation: 0.3, see Fig. 2A), an intermediate-bursting regime (0.4 Hz,243

1.1 Hz, 0.4), and a low-bursting regime (0.2 Hz, 1.3 Hz, 0.2). To test the robustness of244

our algorithms, we grouped each simulated network dataset into three subsets, each245

composed of 100 neurons (50 excitatory and 50 inhibitory neurons); each simulated246

dataset was 60 min long.247

In Figure 2, we provide an overview of the benchmarking results for all implemented248

inference algorithms, including the eANN, across different activity regimes, excitatory249

and inhibitory connectivity types, as well as network inference calculations run on fewer250

data (subsets of 10, 15 or 30 min of the data; see subsampling analysis). Example251

activity for the simulated high-burst regime is illustrated in Fig. 2A. A network,252

reconstructed by two of the best-performing algorithms (GLMCC and eANN), is253

depicted in Fig. 2B and C; the average APS and MCC statistics across all methods are254

depicted in D-E); the reconstruction performance for excitatory and inhibitory255

connectivity is shown in panel Fig. 2F.256

In line with previous research [43,46], we found that the network reconstruction from257

the spiking activity was altered, if the provided spike train data contained periods of258

very synchronous activity. This became also apparent in the results depicted for the259

GLMPP and TE algorithm (Fig. 2D and F). While the performance of these algorithms260

was good for the low burst regime (e.g., TE: APS=0.74, MCC=0.70; recording duration:261

60 min; connectivity thresholded at maximum MCC value), it deteriorated strongly for262
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Fig 2. Reconstruction performance across algorithms, dynamics, cell types,
and recording length. A Example raster plot (upper panel) and traces of binned
population activity (lower panel; the number of spikes per second and neuron) of the
high-burst rate condition. B Network reconstruction obtained from a subset of the data
shown in A, exemplified for the GLMCC method [40]. Red and blue squares correspond
to ground-truth excitatory and inhibitory synapses. White and black circles are
predicted true positives and false positives. C Same as B, for the results obtained with
the eANN approach, which generally improved the reconstruction performance. D The
mean average precision score (APS, upper panel) and Matthews correlation coefficient
(MCC, lower panel), estimated across all connections, obtained from all inference
algorithms and the eANN across three different dynamical regimes. Dots depict the
performance obtained on three different subnetworks of the same simulation. E
Connectivity reconstruction performance (APS, MCC) as a function of recording time.
Results indicated an improvement for longer recordings. Results in panel E are depicted
for the intermediate dynamical regime.
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Fig 2. (continued) F APS and MCC for each type of connectivity, that is, excitatory
(E, in red), inhibitory (I, in blue), combined (E+I, in black). Correspondingly, the
performance gains achieved by the eANN are plotted in shades of red, blue, and black.
G Quality of topological feature reconstruction for the inferred network across the three
dynamical regimes. In the upper panel, the relative difference between four global
features (network density, average clustering, and efficiency) is shown. The panel in the
middle shows average Pearson correlation coefficients for the local/nodal metrics,
comparing values obtained for the ground truth and inferred networks. Black stars
indicate the method that performed best. The lower panels depict the absolute
difference of triplet-motif frequencies between the ground truth and the inferred
networks.

recordings for the high burst regime (TE: APS=0.55, MCC=0.59). Here, the inferred263

connectivity suffered from many false positives. The performance for the GLMCC264

method seemed less affected (GLMCC: APS=0.76 (low)/0.79 (high), MCC=0.74/0.79).265

The performance of the GLMCC algorithm for excitatory connections was fairly good266

overall (Fig. 2B; excitatory connections in red), but less robust for inhibitory267

connections (few false positives; Fig. 2B and F; inhibitory connections in blue). For all268

methods, reconstruction performance decreased for shorter recording lengths (Fig. 2E),269

again, in agreement with previous reports [40, 74]. Very similar performance profiles270

were also observed for most of the other inference algorithms (Fig. 2D-E).271

Next, we probed the network-reconstruction performance of the eANN. Results272

indicated that the eANN outperformed all other inference methods – both, across all273

dynamical regimes (Fig. 2D), and when applied to shorter recordings, respectively fewer274

data (Fig. 2E). The most substantial improvements were observed for the275

intermediate-burst regime. Here, the average APS for the eANN was 0.88, i.e., a 35%276

improvement compared to the best-performing model (GLMCC: APS=0.65). Similarly,277

we found a 24% improvement in the MCC values for the eANN (eANN: MCC=0.81)278

compared to the GLMCC (eANN: MCC=0.65; see Fig. 2D). The main performance279

gains for this condition resulted from a reduction in false positive excitatory connections280

and an increase in true positive inhibitory connections (see Fig. 2B-C). For the281

temporal subsampling analysis (Fig. 2E), we compared the reconstruction performance282

of all algorithms on 10, 15, 30, and 60-minute subsets of the data. Although the eANN283

performance also decayed for shorter data segments, it was still significantly better284

compared to the other methods. Interestingly, the accuracy values of the285

best-performing traditional inference method, the GLMCC algorithm, degraded286

strongest on shorter recordings (lowest ASP/MCC values for spike train data below 30287

minutes). See Fig. S1 for the precision-recall curves across all datasets and algorithms.288

Finally, we probed how accurately the different algorithms could infer the global and289

local topological statistics of the simulated ground-truth networks. For the global290

metrics, we quantified the dissimilarity between the inferred networks Finf and the291

ground-truth networks Fgt by their relative distance (Finf − Fgt)/Fgt. For the local292

topological metrics, we computed the Pearson correlation ρ between all nodal values of293

the inferred network and the nodal values of the ground-truth network; the reported294

values were averaged over three different networks. In Fig. 2 G, we report summary295

results for reconstructed graphs that were binarized with the best-performing MCC296

value. We found that many of the inferred connectivity metrics, including basic297

properties such as the network density, but also nodal features (e.g., the average298

clustering coefficient), differed substantially between algorithms and dynamical regimes.299

As expected from the results depicted in Fig. 2 D, most connectivity methods, and in300

particular the GLMCC algorithm, performed reasonably well in the low-burst regime.301

Here, we found only little relative differences between the global/local topology of the302
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ground-truth networks and the topology of the inferred networks. For the intermediate303

and high-burst regimes, however, the estimates became worse. Here, the eANN excelled304

and outperformed all other methods. The average relative difference in global305

topological metrics for the eANN was 4%, 10%, and 6% for the low, intermediate, and306

high-burst regimes, respectively. For the second-best method, the GLMCC algorithm,307

the relative difference in global topological metrics were 2% (low), 27% (intermediate),308

and 13% (high-burst regime). For the local features, the eANN performed best on309

average (Pearson’s correlation: 0.74, 0.63, 0.81 for the high, intermediate, and low-burst310

regime); the performance of the GLMCC algorithm was still good, but lower on average:311

0.62 (high), 0.44 (intermediate), and 0.65 (low-burst regime). The good reconstruction312

performance of the eANN algorithm became even more apparent for the inference of313

triplet motifs [18]. While many algorithms showed similar results in their estimates of314

the frequency of motifs, the eANN performed overall very well (Fig. 2 D). Of note, in315

Fig. S2, we also report the topological analyses for graphs binarized with a threshold316

obtained from jittered surrogate data (α = 0.01). As for the results presented here, we317

observed that the eANN showed a very robust performance.318

While the eANN does not provide a prediction of the synaptic strength, we observe319

that its CS s is correlated with synaptic strength (see Fig. S8). Furthermore, we320

investigated the performance on a LIF network simulation with an 80/20 E/I321

connectivity in Fig S7, where we observed better overall performance of all connectivity322

inference methods with the eANN being the most performant method.323

SHAP analysis of eANN output324

Next, we sought to understand in more detail which input features of the eANN325

contributed most to the improved reconstruction performance. We, therefore,326

investigated the eANN output with a SHAP analysis [60]. A SHAP analysis allows327

determining how much each of the connectivity methods (i.e., the input features) adds328

to the eANN predictions of excitatory or inhibitory synaptic connections. The SHAP329

values, which are calculated for each of the connectivity methods and each prediction,330

represent the contribution of the individual methods to the prediction task - and331

thereby explain party the inner workings of the eANN model. Figure 3 depicts the332

SHAP values for 1500 putative connections obtained from an eANN analysis performed333

on simulated spike trains in the intermediate-burst regime. In panel A, we depict SHAP334

values for example inhibitory and excitatory connections. The results indicate that335

approximately three features contributed most prominently to the decision of the eANN336

in favor of an excitatory (E) connection (upper panel), namely, the obtained weight of337

the GLMPP method and the connectivity score (CS) values of the TE and sCCG338

algorithms. For the inhibitory (I) connection (lower panel) mainly the weights of339

GLMPP and GLMCC methods contributed to the decision. In the figure, the340

contribution to the eANN output can be inferred from the length of the arrows, here341

depicted in green, respectively purple (Fig. 3A). While many features seemed to carry342

information about excitatory connections (Fig. 3 B, top panel) only about two features343

were predictive for inhibitory connections. However, the SHAP values for these features344

were quite variable. Interestingly, we observed that the features that yielded – on345

average – the highest SHAP values, were the same for excitatory and inhibitory346

connections (i.e., the weight estimates inferred by the GLMPP and GLMCC347

algorithms). However, we also found differences in how features contributed to detecting348

excitatory and inhibitory connections. For example, while the CS of the sCCG method349

contributed to the detection of excitatory connections, it contained only little350

information for the inference of inhibitory connections. To illustrate how single features351

contribute to the classification of excitatory/inhibitory connections, we depict the exact352

SHAP values of the two top-ranked metrics (GLMPP and GLMCC) as a function of353
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Fig 3. SHAP analysis on eANN output. A SHAP values for example an
excitatory (E, top panel) and an inhibitory connection (I, bottom panel), ranked
according to their importance. The length of the arrows denotes the approximated
feature contribution to the eANN output, as estimated by the SHAP method [60]. The
y-axis shows the corresponding features with the feature value in brackets. Green
arrows pointing to the right indicate that this feature was informative in the process of
determining an E/I connection; purple arrows pointing to the left indicate the opposite.
Normalized histograms, plotted in light green and purple in the background, show the
eANN output for unconnected pairs and connections respectively. The dashed line is the
average eANN output for all connections in the dataset. B The features with the
highest average SHAP values for excitatory (top) and inhibitory connections (bottom).
Red and blue bars denote the average SHAP values for excitatory and inhibitory
connections, respectively. The error bars denote the standard deviation, calculated over
all excitatory/inhibitory connections present in the dataset. C SHAP values as a
function of feature value for the two top features depicted in panel B, namely GLMPP
w, and GLMCC w. Black dots indicate unconnected pairs.

their feature values (Fig. 3C): Results indicate that the two features were mainly354

negative for inhibitory connections (depicted in blue) and positive for excitatory355

connections (depicted in red); high SHAP values often correlated with large absolute356

feature values. This held, in particular, for the negative weight estimates of the357

GLMPP, indicating that this feature may contribute strongly to the identification of358

inhibitory connections. It is noteworthy, that none of these features alone was sufficient359

to separate actual connections from unconnected pairs. We propose this underscores360

that the eANN approach is advantageous for the reliable inference of connectivity from361

spike train data. Additionally, we investigate the correlations among input features in362

Fig. S11, where we observe that for excitatory connections features are much stronger363

correlated than for inhibitory connections. This yields evidence, that different input364

methods carry different kinds of information, and that the eANN can leverage this fact365

best for inhibitory connections yielding a strong performance boost for these.366

Application to HD-MEA/patch-clamp data367

Next, we applied the developed inference pipeline to experimental data, obtained368

through parallel HD-MEA network and whole-cell patch-clamp recording in in vitro369

neuronal cultures (dataset 1; for details on the data see [58]; Fig. 4; n=3 patched cells;370
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culture age: DIV16-18; see Sec S3E for details). Briefly, following a long HD-MEA371

baseline ∼ 3 h long recording for spike-based connectivity inference, we transferred372

neuronal cultures to a setup that enabled simultaneous HD-MEA/patch-clamp373

recordings. Here, single neurons were patched on the HD-MEA and, in parallel,374

recorded extracellularly on the HD-MEA. Two distinct paired recordings were obtained375

from each patched cell. First, we recorded spontaneous spiking of the patched cell in376

whole-cell current-clamp mode in addition to simultaneously recording extracellular377

HD-MEA signals. The obtained data then allowed to perform spike-triggered averaging378

(Fig. 4 A-E) and to infer the electrical footprint (EF) of the patched neuron. The EF is379

the extracellular profile of a neuron on the HD-MEA (Fig. 4 D and E).380

To study the synaptic input to the individual postsynaptic cells during ongoing381

spontaneous activity, we recorded neurons in voltage-clamp mode (Fig. 4 F). As382

previously reported [57,58], combining the spontaneous/evoked electrical activity of383

neuronal networks, recorded on the HD-MEA (Fig. 4 F), with the measured384

postsynaptic currents (PSCs) in patched neurons, allowed for reliably reconstructing385

connectivity to putative presynaptic partner cells. To estimate the effect of386

extracellularly recorded neurons on the patched cell, and most importantly, to infer387

synaptic connections between the patched neuron and its putative presynaptic network,388

we developed a regression-based connectivity inference method (similar to [75], see389

Sec. S2 for details). The method was first benchmarked on in silico data; an overview of390

the obtained performance results is provided in Fig. S5. Our in silico results indicated391

that the developed method can robustly detect synaptic connections (high recall), with392

only very few false positives (high precision). Although the performance deteriorated for393

low-rate conditions and more correlated spiking, the method proved very reliable for a394

wide range of parameters.395

Next, we applied the developed intracellular connectivity inference method to three396

patch-clamp recordings obtained from a previously published dataset [58], and identified397

26 putative synaptic connections among 131 possible combinations. In Fig. 4H we show398

an example fit with three PSC cutouts of three identified connections in an example399

recording; Fig. 4I depicts the CCGs and PSCs of three connections found in the400

recording and an unconnected pair. For an overview of all PSCs and corresponding401

pair-wise CCGs of identified connections, as well as for information on which algorithms402

succeeded in detecting the connection, please see Fig. S6.403

With this labeled experimental data at hand, we then evaluated the performance of404

the existing activity-based inference methods, and the eANN, on 3-h-long HD-MEA405

baseline recordings. The eANN is the same as for Fig. 2 and was not re-trained for406

these analyses. For the in vitro data, we see similar performance for the six input407

methods in terms of APS, but varying performance for MCC (see Fig. 4J). The408

GLMCC algorithm (MCC=0.37), the sCCG (MCC=0.49), and the TE algorithm409

(MCC=0.36) performed best among the input methods. The superior performance of410

GLMCC originates rather from higher precision than recall (recall=14 correctly411

classified connections of 20 connections; precision=14 correctly classified connections412

among 39 identified synapses). In comparison, the sCCG method (recall=23/26;413

precision=23/53) and the TE algorithm (recall=16/26; precision=16/38) both yielded414

similar or higher recall, at the expense of lower precision. As for the analysis of415

simulated ground truth, we found that the eANN (MCC=0.56) outperformed the other416

methods in terms of both MCC and APS. Also here the dominating factor was, that the417

eANN yielded much higher precision at inferior recall (recall=17/26; precision=17/26).418

Considering these numbers, in particular, for recall and precision, we found that this419

performance increase was mainly due to more accurate predictions (higher precision), at420

the cost of not identifying some true connections (lower recall). In summary, our results421

indicate that connectivity inferred by the eANN method is more precise than the results422
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Fig 4. Validating synaptic connectivity inference with parallel HD-MEA
and patch-clamp recordings. A Panel depicts a single patched neuron on the
HD-MEA, including the patch pipette. The neuron was labeled with Alexa Fluor 594
through the patch pipette; HD-MEA electrodes can be seen in the background. B
Example recording of a patched cell and some of its extracellular signals, obtained with
HD-MEA network recordings (spikes are depicted in black) that were conducted in
parallel to the patch-clamping (lower panel, in blue; whole-cell patch-clamp mode).
HD-MEA and patch-clamp signals were aligned C, and allowed for inferring the exact
location and electrical footprint (EF) of patched neurons on the HD-MEA D. To infer
the putative pre-synaptic connectivity of individual (patched) neurons, we first
performed long HD-MEA network recordings. Next, we applied a post-processing step
to match the EF of the patched cell, with the EF templates obtained via spike sorting
of the HD-MEA network recordings. The panel E depicts the overlap of the EF
obtained during the patch session (in black) and the EF obtained from spike-sorted data
(in red). F Extracellular network recording (upper panel, raster plot) and simultaneous
intracellular current signal (lower panel), obtained from a whole-cell voltage-clamp (VC)
recording. VC recordings were used to measure the excitatory/inhibitory postsynaptic
currents (ePSCs/iPSCs) in the patched cell, and their occurrence to the activity
obtained from spike-sorted HD-MEA data. Panel G depicts three example connections
of the patched cell (EF in black) to three presynaptic neurons; the EFs of these cells on
the HD-MEA are colored in light blue, orange, and purple. H IC model fit to
patch-clamp recording. Spikes of identified presynaptic neurons are shown on top,
aligned with the recorded currents of the patched neuron. PSCs of three units are
shown as insets, with the average depicted in black and the fitted model PSC displayed
in different colors. The shaded area is the 5− 95% quantile.
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Fig 4. (continued) I PSCs of four cells, three connected pre-synaptic neurons, and
one unconnected neuron, are shown along with their corresponding CCGs. Note, that a
high-chloride internal patch-clamp solution was used to simultaneously measure the
synaptic activity of excitatory and inhibitory presynaptic cells [58]. As a result, as
depicted, inhibitory input currents also have a negative polarity. On the right side of
the CCG, a colored circle indicates whether the respective connectivity method found a
connection or not (cross). J Panel depicts the performance of the different connectivity
methods averaged over the three patched neurons.

obtained with any of the other inference methods.423

Characterizing in vitro neuronal network connectivity and424

topology425

Finally, we applied the eANN pipeline to a second dataset of HD-MEA network426

recordings, obtained from primary cortical cultures (dataset 2; n=6 cultures; recording427

duration: 1 h; culture age: DIV14). The main goal of this analysis was to compare how428

connectivity and topological properties varied across the implemented inference methods429

(Fig. 5). As before, all network recordings were first spike-sorted and underwent several430

quality-control steps to ensure that connections were estimated on sufficient activity431

(Fig. 5A, see Sec. S3D). To reduce between-network variability, we only sampled 100432

units from each network. Comparing the overall distribution of empirical eANN scores433

(Fig. 5B, depicted in black) to the corresponding surrogate distribution of eANN output434

values (depicted in yellow) indicated that the spike-train jittering effectively destroyed435

short-latency synchronization between individual neurons. The distribution of436

experimentally inferred values showed a clear peak in the eANN weight distribution that437

distinguished putative synaptic connections from unconnected pairs (Fig. 5B). Next, we438

calculated the consensus distribution (Fig. 5C), i.e., the overlap between all significant439

connections, obtained by the six traditional inference methods and the network inferred440

by the eANN (threshold value: α=0.01). The results indicated that most eANN edges441

were found by five of the six inference methods (32.6%). Interestingly, some edges were442

found by the eANN method, but not by the other methods at the selected threshold443

(edges in zero bin: 18%). This finding indicates that some eANN edges could not444

exclusively be explained by the overlap across all inference methods, but that there is445

added value by the eANN algorithm at this threshold. The network density decreased446

with smaller α-values (Fig. 5B; α-values: 0.05, 0.01, 0.005 and 0.001), and varied447

significantly as a function of inference algorithms (the repeated measures’ analysis of448

variance (ANOVA) for a α threshold value of 0.01 was: F(6,30)=189.77, p=6.5659e-10;449

p-value with Greenhouse-Geisser adjustment); the network density of all graphs was450

sparse (e.g., for a threshold of α=0.01, the network density varied between 1-9%;451

Fig. 5B and G), in line with previous reports [18, 76]. All implemented algorithms452

reconstructed networks that showed a clear decay in connection probability as a453

function of interneuronal distance (Fig. 5F).454

Furthermore, we found that topological properties of network segregation and455

integration differed as a function of the inference method (clustering: F(6,30)=102.16,456

p=1.67e-7; efficiency: F(6,30)=222.3, p=5.29e-14; modularity: F(6,30)=40.245,457

p=3.23e-5; small-world-index: F(6,30)=7.28, p=0.004; all p-values with458

Greenhouse-Geisser adjustment). Despite the reported differences, all algorithms459

implied that networks possessed a non-random modular, small-world organization460

(small-world-index > 1); a topological analysis with proportionally thresholded networks461

is provided in Supplemental Material (Fig. S3).462

The inferred in vitro cortical networks also featured a significant over-representation463

February 1, 2024 14/54

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.02.01.578336doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578336
http://creativecommons.org/licenses/by-nd/4.0/


of some triplet motifs [77] (Fig. 5I). The number of motifs that were significantly464

over-represented in the empirical networks varied between methods (e.g., four motifs for465

dSTTC and eight motifs for the GLMCC graphs), but all implemented algorithms466

suggested that motifs 9, 11, 12, and 13 were over-represented compared to an467

appropriate surrogate network (threshold: α=0.01; motif significance α-value=0.001;468

p-values were corrected for multiple comparisons across motif IDs and algorithms;469

Fig. 5I). Despite strong differences in the frequency of specific motifs between inference470

methods, there was a high resemblance across networks within each method (see471

Fig. S4). Results obtained from the topology and motif analyses indicated a higher472

similarity (correlation coefficient) between the output of the eANN and the GLMCC473

algorithm compared to the other methods (Fig. 5J, lower triangle). On average,474

topological properties and motif frequency values were more similar for the CI, sCCG,475

dSTTC, GLMCC, and TE algorithms – as compared to GLMPP and eANN. This trend476

is reflected in the pairwise Matthews correlation coefficient (MCC; Fig. 5J, upper477

triangle).478

Finally, and to further supplement the topological properties, we also assessed the479

functional connectivity properties of eANN-inferred networks. We, therefore, calculated480

the spike transmission probability (STP) of significant eANN connections (threshold:481

α=0.01) using an STP-variant, that has been adopted and improved to better infer482

STPs on recurrent/bursty spike activity [39]. A positive STP value was taken as an483

indicator for an excitatory connection and a negative STP as an indicator for an484

inhibitory connection. Across all 1794 connections (2.99% overall network density), as485

inferred by the eANN algorithm (network threshold α-value: 0.01), 63.7% of486

connections were excitatory and 36.3% were inhibitory (Fig. 5K). Inspection of the487

CCGs indicated that many of the observed inhibitory connections might participate in488

inhibitory feedback motifs. Overall, these results underscore that the eANN algorithm489

was able to pick up connections of both excitatory and inhibitory types, supporting our490

previous modeling results.491

Discussion492

The present study demonstrates that inference of synaptic connectivity from493

extracellular spike train dynamics can be improved by the application of an ensemble494

artificial neural network (eANN). By benchmarking the eANN to more traditional495

connectivity-inference algorithms in a standardized analytical framework, we report a496

superior reconstruction performance for the eANN, that persisted across different497

dynamical regimes and recording durations. We find that the eANN did also provide a498

more accurate reconstruction of the type of connectivity (excitatory or inhibitory), and499

better estimates for the global and local topology of networks in silico. Results derived500

from a SHAP analysis allowed for further validation of the specific contributions of501

algorithms to the eANN performance. Importantly, we found improvements in network502

reconstruction for both simulated and experimental ground-truth datasets. Such503

generalizability indicates that the developed method leads to more accurate and robust504

connectivity inference in datasets for which knowledge of the underlying synaptic505

connections is not available.506

The challenge to infer synaptic connectivity from spike trains507

The extent to which synaptic connectivity and causal relationships between neurons can508

be studied, based on spike train dynamics alone, remains a matter of active debate.509

Although there have been attempts with small well-established circuits [78,79], this510

endeavor has proven challenging for many reasons [43, 80]. In line with previous511
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Fig 5. Characterizing the connectivity of in vitro neuronal networks. A
Firing rate cumulative density function (CDF) of 600 spike-sorted units from HD-MEA
recordings obtained from primary cortical cultures (top panel; n=6 cultures; 100
randomly selected units per network; recording duration: 1 h; culture age: DIV14); and
CDF of inter-spike interval coefficients of variation (CV) for the same cultures (lower
panel). B Network density as a function of threshold values (corresponding to α: 0.05,
0.01, 0.05, and 0.001) across all inference methods. α threshold values were derived
from surrogate connectivity estimates (temporally jittered spike trains). Network
density decreased with smaller α-values, and varied significantly across methods. C
Overall distribution of eANN weights of empirical networks (in gray; values are depicted
in logarithmic space) and overlaid with the corresponding distribution of eANN values
inferred from surrogate networks (in yellow). The distribution of experimentally inferred
values demonstrates a clear peak in the eANN weight distribution that distinguishes
putative synaptic connections from unconnected pairs. D Intersection of significant
eANN connections with those of all other connectivity inference methods. Panels D-K
depict network graphs thresholded with α = 0.01.
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Fig 5. (continued) E Significant eANN edges cannot exclusively be explained by the
overlap across all inference methods. Panel E depicts the consensus distribution, i.e.,
the overlap across the six inference methods for all significant eANN edges; most eANN
edges were found by five of the other methods. About 20% of edges were found by the
eANN, but not by the other methods at the selected threshold (see zero bin). F Inferred
connectivity decayed with interneuronal distance (α = 0.01), and the likelihood of
long-range connections (> 1 mm) was very low. G Example connectivity matrices for
one culture inferred with all seven inference methods. H Topology of inferred in vitro
networks differed significantly across inference methods (α = 0.01; filled circles:
empirical data; empty circles: randomized surrogate networks). I All inference methods
yielded an over-representation of triplet motifs (see Fig. 2 for motif ID legend) but with
slight differences across methods. Dots depict motif IDs that occurred significantly
more frequently than re-wired surrogate networks (FDR corrected α of 0.001); the color
indicates the relative mean difference in their occurrence. J Lower triangle (red color
scale): Topological similarity, calculated by pairwise Pearson correlation coefficients
across the topological metrics shown in H and I across all inference methods. Upper
triangle (blue color scale): Network similarity, quantified by pairwise MCCs across all
adjacency matrices. K Display of putative excitatory (E) and inhibitory (I) connectivity
for all edges inferred by the eANN. The top panel depicts the baseline corrected CCGs
for the eANN edges with positive spike transmission probability (STP), i.e., excitatory
connections. The average CCG is depicted in the red bar graph at the top.
Correspondingly, the bottom panel depicts the putative inhibitory connectivity among
the eANN inferred edges with negative STP. Note, the logarithmic color scale of pair
counts. The excitatory and inhibitory connections are sorted according to their
positive/negative STP values.

work [43, 46], the results reported in this study underscore, that there are indeed limits512

to activity-based network reconstruction (Fig. 2D). Using simulations to parametrically513

model a range of dynamical regimes – we found, as expected, significant performance514

alterations for most traditional algorithms once spike trains showed stronger temporal515

periodicity. With few notable exceptions, such as the GLMCC algorithm, reconstruction516

performance, quantified by the averaged precision score (APS) and Matthews517

correlation coefficient (MCC), worsened significantly for data with more prominent518

network burst-activity (Fig. 2D).519

Among the many possible reasons for such performance, alterations are false positive520

connections generated through, for example, common inputs, poly-synaptic connections,521

or short-term synaptic dynamics [43, 45]. The accuracy to infer a synaptic connection522

from activity also crucially depends on the number of available spikes and synaptic523

strengths [74]. Weak connections and/or availability of only a few spikes drastically524

increase the likelihood of missing connections [81]. Moreover, insufficient coverage of the525

network may further alter the reconstruction performance of algorithms [82]. A526

combination of these factors most likely explains the observed imperfect inference527

performance, even for simulated recordings with less correlated population activity528

(Fig. 2D-F). Moreover, it should be noted, that the a priori conceptual assumption of529

what will be considered a connection, the choice of parameters for each method, and the530

criteria that are applied to falsify the existence of such connections (e.g., via surrogate531

generation) are likely equally important. Although previous studies have attempted to532

compare different connectivity reconstruction algorithms [39,42,70], most of them were533

less unified conceptually and are difficult to compare to the present study. Moreover,534

these studies used a variety of ground-truth data sets, including simulated calcium535

imaging data, which suffers from low temporal resolution [46,47].536
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eANN improves neuronal network reconstruction537

Although ensemble methods have been proposed in the past [59], and used for the study538

of large-scale brain networks [83,84], to the best of our knowledge, the present study is539

the first to demonstrate that such methods can be generalized to cellular spike-train540

data. More importantly, our results indicate that applying the eANN to such data541

allowed for significant performance improvements in the reconstruction of synaptic542

connectivity (Fig. 2; Fig. S1 and S2). Using a simple feed-forward network543

architecture [71], and training the eANN on the standardized output of several existing544

connectivity-inference methods [36,40,53–56], we demonstrate that excitatory and545

inhibitory connectivity, and the topology of neuronal networks, can be reliably inferred546

from simulated as well as empirical spike-train data (Fig. 2 and 4). Overall, the eANN547

outperformed all traditional methods (Fig. 2D-G), and the performance gains were548

relatively invariant to different dynamical regimes (Fig. 2D) and even persisted on fewer549

data (Fig. 2E). Our results also revealed that the eANN integrates aspects of different550

inference methods for its connectivity prediction (Fig. 5C), and that high eANN output551

values were absent, if the millisecond spike-timing information was disrupted, e.g., by552

jittering the spike trains (Fig. 5B). While understanding the performance of neural553

networks is typically challenging, insights gained from a SHAP analysis indicated that554

the trained eANN assigned varying levels of importance to different input features, i.e.,555

some inputs were more informative than others (Fig. 3). Interestingly, this held556

particularly true for the detection of inhibitory connections (Fig. 2F). Here, the557

GLMPP algorithm seemed to convey valuable input (Fig. 3B, lower panel), a method558

that performed less well in the detection of excitatory connections. Overall, results for559

different connectivity types, network topology, and different network dynamics, as560

calculated with eANN-inferred graphs, were robust across different threshold definitions561

(Fig. 2, Fig. S1, and Fig. S2). We hypothesize, that the observed robustness could be562

attributed to the initial inference methods being designed to be somewhat invariant to563

differences in firing rates or baseline neuronal activity. Applied to HD-MEA network564

recordings, eANN-derived connectivity was most similar to graphs inferred by the565

GLMCC algorithm (Fig. 5J and Fig. S10). Despite these positive results, it should be566

noted, that the eANN did not result in perfect reconstruction performance. Thus,567

future studies should probe, whether considering additional features, more completely568

sampled recordings, or longer recordings could improve network reconstruction even569

further. Moreover, it would be interesting to probe, if inference performance improves,570

if data-driven features obtained from other neural network methods, such as the571

CoNNECT method [42], are integrated into the eANN.572

In vitro neuronal networks show complex topologies573

Our results on the putative synaptic connectivity of in vitro developing primary574

neuronal networks, obtained by HD-MEA network recordings, and inferred by the575

eANN and traditional inference methods, are largely in line with previous576

reports [48, 49,51,52,63,74]. All algorithms indicated that connectivity was locally577

clustered, overall sparse (connection probability below 15%; Fig. 5D), and that the578

probability of connections decreased as a function of interneuronal distance (Fig. 5F).579

These results are also in agreement with previous patch-clamp work [13,76]. Yet, it580

should be noted, that the effect of the inference method on connectivity and topology581

was considerable (Fig. 5D). For some topological measures, such as the clustering582

coefficient (Fig. 5H), the between-method differences exceeded the differences observed583

between the empirical and the randomized surrogate networks. For example, the584

clustering results, calculated on graphs inferred by the eANN and GLMPP methods,585

were significantly lower than the values of the randomized surrogate networks of some586
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other methods (e.g., CI, TE, and dSTTC). Still, all networks comprised a modular587

small-world structure (Fig. 5H). Some subtle differences in the triplet-motif statistics588

(Fig. 5I) were observed in comparison to previous reports [63], but overall, these were589

not pronounced, and many of the over-represented motif structures have been reported590

by whole-cell recordings in slices [13, 18].591

Limitations592

Several important limitations should be considered when interpreting the results593

presented in our study:594

First, the analyzed spike-train data were obtained from dissociated primary rodent595

cortices cultured in vitro. Although such model systems have been used extensively to596

study neuronal physiology at the cellular level [8, 10], and have, thereby, provided597

fundamental insights into the mechanisms of underlying synapse formation and function,598

there are limits as to how insights obtained from in vitro connectivity can be translated599

to in vivo [85]. Future studies should, therefore, train and apply the developed eANN600

pipeline also to in vivo spike-train data – ideally, recorded in well-defined brain601

subsystems, where inferred connectivity can be linked to structural connections602

established with other methods [86].603

The results presented in Fig. 5 were estimated on DIV14 neuronal networks, a time604

point where GABAergic signaling may be still immature [87, 88]. Although early during605

development, our results indicated the presence of some inhibitory connections among606

the recorded neurons (Fig. 5K). The relatively young age of these cultures, however,607

should be considered when interpreting the inferred network density. Likely, a608

significant proportion of synapses is still ’silent’ at that time, and that some relevant609

receptors are not yet fully expressed [89]. Also, the cell-plating density of neuronal610

cultures, respectively the size of networks, affect overall synaptic strengths [76], and611

hence will impact the ability to infer synaptic connections from activity [90].612

A common limitation, shared by all methods in this study, is, that they approximate613

connectivity from a network that is incompletely sampled. Such subsampling has been614

shown to lead to altered network reconstruction performance [43,82,90]. This holds also615

true for more complex inference algorithms that can take into account the past activity616

of the sampled network [54,69]. Hence, the inferred connectivity may exhibit spurious617

false positives due to common unobserved input that cannot be explained away [43, 91].618

This is also true for the experimental ground-truth data in our study. Live-cell imaging619

with calcium or voltage sensors could be applied to improve coverage [46,70,92], and620

future studies should compare how network statistics change as a function of network621

coverage.622

We note, that also the empirical ground-truth data used in this study could be623

further improved [58]. Applying targeted, electrical stimulation to defined pre-synaptic624

neurons would allow for stronger claims about the found connections and their625

interneuronal causal effects [57]. Moreover, it would help to have access to the neuritic626

morphology of some parallel recorded neurons on the HD-MEA to better link the627

inferred connections to axonal/dendritic morphology and neuritic overlap. Such628

additional structural insights could also help to remove false positive connections.629

Conclusion630

In sum, this study presents an analysis workflow to systematically assess algorithms631

that have been applied to the inference of neuronal connectivity from large-scale632

extracellular recordings. To this end, we utilized simulated and experimental633

ground-truth data, and compared statistically inferred connectivity across a range of634

different conditions in a standardized manner. Moreover, we introduced an ensemble635
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artificial neural network (eANN), that can integrate the output of multiple inference636

algorithms, and probed whether this would lead to improved network-reconstruction637

performance. Our results demonstrate that inference performance can be significantly638

improved by the eANN, and that the obtained network reconstruction represents more639

than just the sum of all methods.640

Methods and Materials641

Here, we describe the architecture and training scheme of the introduced ensemble642

artificial neural network eANN. All methodological details on the HD-MEA and643

patch-clamp experiments, the LIF simulations, the developed model to infer synaptic644

connections from parallel recordings, details on spike-time based connectivity inference645

methods, the in vitro culturing, the data preprocessing, as well as the performed646

topological analyses can be found in the Supplemental Information.647

Architecture of the ensemble artificial neural network648

The introduced ensemble artificial neural network (eANN) is a feed-forward network,649

that takes the weight W and the CS S matrices of the six implemented connectivity650

methods (CI, sCCG, GLMCC, TE, dSTTC, and GLMPP) as input and provides as651

output the probabilities of whether the input belongs to an excitatory or an inhibitory652

connection, or whether the neurons are not connected at all (no connection). The eANN653

consists of two hidden layers with 10 units each and rectified linear units (ReLU) as654

non-linearity. The last layer is passed through a soft-max function, to normalize the655

output. We trained the model on several LIF neuronal network simulations subject to656

different inputs (see below). The trained network is the final eANN, which provides657

predictions based on the aggregated outputs of the other connectivity inference methods.658

The CS of the eANN was calculated as si→j = max(pE, pI), where pE and pI were the659

eANN’s predicted likelihoods for an excitatory or inhibitory connection, respectively.660

Training the ensemble artificial neural network661

We simulated 25 different LIF networks to generate training data for the eANN. To662

obtain the activity of distinct neuronal network dynamics, we used five different noise663

configurations µnoise, σnoise (see Table S1) and generated five networks with random664

connectivity for each configuration (connection probability: 0.05). Next, we simulated665

1h of LIF spiking activity as previously described (see Sec. S1A). The experimental666

spiking input to the LIF network was always the same for the different training667

simulations. However, different input activity was used for testing the eANN (i.e., the668

data reported in Fig. 2). To train the network, we first obtained the connectivity output669

of all methods (CI, sCCG, GLMCC, TE, dSTTC, and GLMPP). Then, we took all670

synaptic connections, which make up 10% of the training set. For the remaining 90% of671

connections, we selected randomly unconnected pairs as negative examples. The CS and672

weight provided by the traditional methods constituted the input variables. The673

training labels were set to 0 (no connection), 1 (excitatory connection), and 2674

(inhibitory connection), and the eANN was trained by minimizing the cross-entropy loss675

on these data. For the predicting connections on a new dataset, we again first applied676

the original inference methods and then provided their aggregated result as input to the677

eANN. We noted that the compact network architecture prevented from overfitting and678

ensured rapid convergence during training S9.679
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Data, Materials, and Software Availability680

The PYTHON code for all connectivity inference methods and the spike train datasets will681

be available at https://github.com/christiando/spycon. Raw data are available682

from the corresponding authors upon reasonable request due to their large size.683

Connectivity inference algorithms all ran on a cluster node, with 30 CPU cores (AMD684

EPYC) and 8-12GB RAM.685

S1 In silico simulations of neuronal networks686

S1A Leaky integrate-and-fire simulations687

To test and compare network reconstruction performance across different algorithms, we
adopted and modified the leaky integrate-and-fire (IF) network model approach
proposed by Ren et al. [41]. The LIF simulations of the present study were performed
with Brian2 [93]. The simulated network consisted of 300 neurons, balanced with 150
excitatory neurons and 150 inhibitory neurons. The differential equations of the IF
model are

Cm

dV

dt
=− gleak(V − Vrest)− gAHP[Ca

2+](V − VAHP)

+ µnoise + Inoise + Isyn

d[Ca2+]

dt
=− [Ca2+]

τCa

dInoise
dt

=− Inoise
τnoise

+ σnoiseξt,

where ξt describes a white noise process. While Ren et al. [41] have modeled the688

spontaneous Inoise as pink noise, here we approximate its dynamics as an689

Ornstein-Uhlenbeck process, which represents another common model for neuronal690

input [94, Chapter 8]. This approximation allowed simulating different dynamical691

regimes more systematically by changing the mean input µnoise and the noise amplitude692

σnoise (see Fig. S5 A-B). The parameters describing the membrane potential dynamics693

were the membrane time constant Cm = 500 pF, the leak conductance 0.25 µS, and the694

resting potential Vrest = −65 mV. For the after-hyperpolarizing (AHP) current, the695

conductance gAHP = 0.15 S
m2 , and the reversal potential VAHP = −80 mV. The696

dynamics of the [Ca2+] were determined by the time-constant τCa = 100 ms. When the697

membrane potential V surpassed the spiking threshold Vthresh = −50 mV, a spike was698

registered, and the potential was reset to Vrest, and [Ca2+] was increased by 0.2 µM .699

The synaptic input Isyn was composed of two sources: the intrinsic spiking activity
of the network and the externally applied spiking activity. As an external spiking
activity, we used spike-trains that were obtained from in vitro HD-MEA networks
recording, which mimicked the studied experimental conditions. As in the study by Ren
et al. [41], the synaptic effect of spikes at time Tj = {tj1, . . . , tjNj

} neuron j connected to
neuron i was modelled as

Ij→i
syn (t) = wj→i

syn

∑

ts∈Tj

H(t− ts −∆tij)
(t− ts −∆tij)

τsyn
exp

(

1− (t− ts −∆tij)

τsyn

)

,

where H(·) was the Heaviside function. The total synaptic input to a neuron i was then700

given by the sum of all synaptic currents in Eq. S1A the neuron was connected to. The701

connection probability among simulated LIF neurons was set to 5% and HD-MEA input702

neurons were connected to LIF neurons with a probability of 10%. The synaptic weights703
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were drawn randomly from a log-normal distribution |wj→i
syn | ∼ lognormal(-2.5,0.5) nA,704

and the weight was positive when j was an excitatory neuron and negative for705

inhibitory neurons. If the synaptic weight exceeded the interval [0.05 nA, 0.4 nA], it was706

set to the limits of this interval. ∆tij was the synaptic time delay, which was given by707

distanceij/conductionvelocity. The distance between neurons distanceij was the708

Euclidean distance between the positions of neuron i and j. The positions were drawn709

at random and uniformly from the rectangular area of the units from the HD-MEA710

input recording. The conduction velocity for each neuron was drawn uniformly from the711

interval [0.5m
s , 1

m
s ]. For the in silico benchmarking analysis across different inference712

algorithms (see Fig.2), we used 1 h-long simulations.713

S1B Simulations to validate connectivity inference from714

parallel HD-MEA/path-clamp recordings715

The LIF framework described in the previous section was further adopted to also
validate the methods applied to uncover synaptic connectivity from parallel
HD-MEA/patch-clamp recordings (see Section S2 and Fig. S5). For a detailed
description of the HD-MEA/patch-clamp setup and the performed voltage-clamp (VC)
measurements, we refer the reader to Sec. S3B, S3C, and S3E. To simulate the
patch-clamp recordings at a control voltage Vc = −55mV, we constructed smaller
subnetworks (LIF networks composed of n=10 neurons) with membrane currents of

Im = −gleak(Vc − Vrest)− gAHP[Ca
2+](Vc − VAHP) + µnoise + Inoise + Isyn.

These neurons got input similar to all other neurons in the network, but since they were716

in VC-clamp mode, they could not spike. Next, we simulated 10 min of these combined717

data, i.e., registering spike times of the 300 LIF neurons as described in the previous718

paragraph and the currents of 10 VC-clamped neurons. The analytical results obtained719

from this analysis are shown Fig. S5 C-D.720

S2 Inferring synaptic connectivity from parallel721

HD-MEA/patch-clamp recordings722

Next, we describe the modeling approach to derive synaptic connectivity statistically723

from parallel HD-MEA/patch-clamp recordings. Our model was inspired by previous724

work [75], with some notable modifications, in order to have only one statistical test per725

potential connection.726

S2A A regression analysis approach to estimate synaptic727

connectivity728

In our model, we assumed that the recorded intracellular signal yt is a linear
superposition of two signals: i) a synaptic signal ysyn originating from synaptic signals
from the extracellularly recorded presynaptic neurons, and ii), a residual signal ε, that
accounts for all intrinsic, and extrinsic fluctuations, such as synaptic signals from
neurons that could not be sampled. Hence, the full signal was given by

yt = ysynt + εt.

The modeled synaptic signal ysynt depends on the extracellularly recorded spiking
activity of the presynaptic candidate neurons. Formally, the spike trains were a matrix
with entries st,i = 1, if unit i elicited a spike at any time [t∆, (t+ 1)∆); it was zero, if
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there was no spike. The synaptic signal ysyn was then modeled as a weighted sum of
presynaptic signals x

ysynt = α>x
syn
t ,

with coupling parameters α = (α1, . . . , αN )>. The presynaptic signals xsyn were
modeled the spike trains convolved with a response kernel kn(τ)

xsyn
t,i =

Lk
∑

τ=1

kτ,ist−τ,i.

The response kernel k had the parametric form of an alpha function, which has been
previously used for modeling the form of postsynaptic potentials (PSPs) [95, Chapter 5].
It was given by

kτ,i =

{

(τ∆−δi)
τi

exp
(

− τ∆−δi
τi

)

if τ∆ ≥ δi

0 otherwise
,

where τi the time constant, and δi the delay of the PSP. The latter is the main
difference to Zhang et al. [75], which assumed a non-parametric footprint of the
extracellularly recorded neurons on the intracellular signal. While the original model is
likely more flexible, it requires multiple tests for each connection. In our model,
however, we will subsequently only have one test per connection, i.e., whether the
coupling parameter αn 6= 0. Everything, that could not be explained by the synaptic
signal, such as transient fluctuations of the signal or the synaptic signals of unsampled
neurons, we model by the following autoregressive process

εt = h0 +

Lh
∑

τ=1

hτ εt−τ∆+ ξt = ε̂t + ξt, (S1)

where ξt was a Gaussian noise with standard deviation σy. Alternatively, εt can be729

written as εt = yt − ysynt . The former definition in Eq. (S1) only depends on the filter h730

and not on the couplings α. The alternative definition of εt is a function of α, but not731

of h. This fact allowed us to define the alternating optimization scheme described in the732

following section.733

S2B Fitting procedure734

Given a recorded intracellular signal y1:T and extracellular spike trains s1:T,1:N , we then
sought to estimate the model parameters, i.e., the autoregressive filter h, the synaptic
coupling strengths α, the kernel parameters τ = (τ1, . . . , τN )>, δ = (δ1, . . . , δN )>, and
finally, the noise parameters σy by the maximum likelihood principle. The previously
described model defined the following (log) likelihood for the observed data

`(h,α, σy, τ , δ;λ) = ln
T
∏

t=1

p(yi|y0:t−1, s1:t,1:N ,h,α, σy, τ , δ)

=− 1

2σ2
y

T
∑

t=1

(yt − (ε̂t + ysyni ))
2 − T lnσy + const.

(S2)

To avoid overfitting of the autoregressive filter h, we included a regularizing term
`reg(h) to penalize non-smooth filters. Formally, the regularization term is the second
derivative of h, i.e.,

`reg(h) = −1

2
‖∆h‖22,
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with ∆ being the discrete Laplace operator. The optimal model parameters are given by

(h,α, σy, τ , δ) = argmin

[

1

2σ2
y

T
∑

t=1

(yt − (ε̂t + ysynt ))
2
+ λh`reg(h) +

T

2
lnσ2

y

]

.

While there is no closed-form solution for this problem, we can derive analytic updates735

for the sub-problems by solving for h, α, and σy separately. We, therefore, invoked an736

alternating optimization scheme. First, in order to find the optimal h, we solved a linear737

problem. This problem is defined by computing the gradient of Eq. (S2) with respect to738

h and setting it equal to 0. In the same way, we then got the optimal couplings α. σy739

can be similarly derived analytically. What remained was to find the parameters τ and740

δ, which were computed by gradient ascent maximization of Eq. (S2)). We then741

alternated the optimization procedure until the likelihood converged.742

Finally, we sought to determine, which extracellular neurons (respectively their743

recorded spikes, s1:T,i) were de facto connected to the neuron for which we had modeled744

the intracellular signal y. In other words, we asked which couplings were significantly745

non-zero (our null hypothesis was, that neurons are not connected, formally746

H0 : αi = 0). To test for this hypothesis, we approximated the covariance of our747

estimate by the inverse Hessian matrix of the regularized log-likelihood (see Eq. (S2))748

and used the absolute z-score zi = |αi|/σi as test-statistics. For the latter, σ2
i is the749

diagonal entry of the inverse Hessian matrix for couplings αi. For all couplings, where750

zi ≥ θα the null hypothesis was rejected, i.e., these neurons were considered to be751

presynaptically connected to the patched neuron. The parameter θα was a threshold752

value that we derived by fitting the same model to jittered surrogate data (generated by753

adding Gaussian noise with a standard deviation of 5ms as jitter to the extracellular754

detected spike times). We took the 95% quantile of the z-scores zi, obtained by fitting755

the linear model to the jittered spike-train data, as a threshold.756

S3 HD-MEA recordings757

S3A High-density microelectrode arrays758

To probe and record from in vitro developing primary cortical networks, we used759

complementary-metal-oxide-semiconductor (CMOS) based high-density microelectrode760

arrays (HD-MEAs). These chips comprise 26,400 platinum microelectrodes (size of761

electrode: 9.3 × 5.3 µm2), with a 17.5 µm pitch and a total sensing area of 3.85 × 2.10762

mm2. HD-MEAs, as used in this study, allow for recordings from up to 1024 readout763

electrodes at the same time. The used custom HD-MEAs were bonded to printed circuit764

boards (PCBs), and a biocompatible epoxy (Epo-Tek 353ND, 35ND-T, Epoxy765

Technology Inc., USA) was used to encapsulate the bond wires and protect them from766

the medium. To decrease the impedance and to improve the signal-to-noise ratio (SNR),767

electrodes were coated with platinum black – deposited from a solution of768

hexachloroplatinic acid (7 mM, Sigma-Aldrich) and lead (2) acetate anhydrous (0.3 mM,769

Sigma-Aldrich) in distilled water, as described previously [96].770

Two different types of HD-MEA systems, with comparable technical specifications,771

were used in this study: For the parallel HD-MEA/patch-clamp recordings, we used a772

custom single-well HD-MEA chip [97]. For the data and analysis presented in Fig. 5, we773

used a commercially available 6-well HD-MEA plate by MaxWell Biosystems (Zurich,774

Switzerland). The extracellular signals were acquired at a sampling rate of 20 kHz, for775

the single HD-MEA, and at 10 kHz, for the 6-well HD-MEA plate. Before the cell776

plating, we sterilized HD-MEA chips for at least 30 min in 70% ethanol and washed777

them 3 × with sterile deionized water; the electrode array was then treated with 0.05%778
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(v/v) poly(ethyleneimine) (Sigma-Aldrich) in borate buffer (Thermo Fisher Scientific,779

Waltham, Massachusetts, United States) at 8.5 pH for 40 min and then washed 3 ×780

with sterile deionized water.781

S3B Primary neuronal culture preparation782

Rodent primary cortical neurons were prepared as previously described [96]: Cortices of783

embryonic day (E) 18/19 Wistar rats were dissociated in trypsin with 0.25 percent784

EDTA (Gibco), washed after 20 min of digestion in plating medium (see below), and785

finally gently triturated. Following cell counting with a hemocytometer, we seeded786

15.000-20.000 cells (dataset 1: parallel HD-MEA/patch-clamp recordings ground-truth787

data; part of this data has been published in [58]), or 50.000 cells (dataset 2: HD-MEA788

network recordings; part of this data has been published in [98]) on each array, and789

placed it in a cell culture incubator for 30 min at 37◦C/5% CO2. Then we added more790

plating medium carefully to each well (up until 1.5 mL). The plating medium was791

composed of: 450 mL Neurobasal (Invitrogen, Carlsbad, CA, United States), 50 mL792

horse serum (HyClone, Thermo Fisher Scientific), 1.25 mL Glutamax (Invitrogen), and793

10 mL B-27 (Invitrogen). After two days, half of the plating medium was exchanged794

with maintenance medium. For the maintenance medium, we added 50 mL Horse Serum795

(HyClone), 1.25 mL Glutamax (Invitrogen), and 5 mL sodium pyruvate (Invitrogen) to796

450 mL of D-MEM (Invitrogen). The maintenance medium was exchanged twice a week797

and at least one day before the recording sessions. All animal experiments were798

approved by the veterinary office of the Kanton Basel-Stadt and carried out according799

to Swiss federal laws on animal welfare. For dataset 1 (parallel HD-MEA/patch-clamp800

recordings), the experiments were performed on days in vitro (DIV) DIV16-18; for801

dataset 2 (1h-long HD-MEA network recordings), data were recorded at DIV14.802

S3C High-density microelectrode array recordings803

In order to select active recording sites on the HD-MEA for long-term network804

recordings, we first recorded the multi-unit activity for each electrode across the whole805

chip using a series of dense-block configurations. Activity during this pre-processing806

step (’activity scan’) was assessed with an online sliding window threshold-crossing807

spike detection algorithm. The details for selecting the final recording electrodes are808

provided in the work by Bartram et al. [58] (dataset 1) and Akarca et al. [98] (dataset809

2). Briefly, selecting a suitable network configuration involved, a ranking of the online810

detected mean spike amplitudes (per channel) and that channels showed a minimum of811

spike activity. Each HD-MEA network configuration consisted of approx. 1024812

electrodes. The baseline recording for dataset 1 was composed of multiple network813

recordings on the day before the parallel HD-MEA/patch-clamp experiment (see814

Sec. S3D), yielding long network recordings of > 3 h duration. The network recording815

for the replication dataset (dataset 2) consisted of 1 h-long HD-MEA network816

recordings (n=6 cultures); here the network configuration was composed of up to 90817

high-density electrode blocks (each block contained 4×4 electrodes).818

S3D Spike-sorting of HD-MEA network recordings819

HD-MEA network recordings were spike-sorted using a semi-automated processing820

pipeline. For dataset 1 (HD-MEA/patch-clamp recordings), we combined the baseline821

recordings with the data obtained during the patch-clamp session. For dataset 2, we822

used the 1 h-long network recording. To spike sort HD-MEA network recordings, we823

applied the publicly available software package Kilosort 2 (KS2) [99], using parameters824

adapted to our data. Following spike-sorting with KS2, we manually reviewed all825
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neuronal units deemed ’good’ using the general user interface (GUI) of phy2826

(https://github.com/cortex-lab/phy). We excluded units that showed aberrant spike827

waveforms, and that did not meet some standard quality criteria (e.g., less than 5%828

refractory period violations), or that had too few spikes (less than 1000 spikes). From829

the accepted ’good’ units, we inferred whole-array spike-triggered electrical footprints830

and calculated all-to-all cross- and Pearson’s correlations to exclude potential duplicates.831

Split units, i.e., neuronal units for which the algorithm found more than one template,832

were also excluded from the data.833

S3E Whole cell patch-clamp electrophysiology834

The parallel HD-MEA/patch-clamp experiments were performed using methodology835

introduced previously [57, 58]. To record from single neurons on the HD-MEA, we836

transferred the chips to a custom patch-clamp rig and perfused them with warmed837

(32-34 ◦C) BrainPhys (BP). Patch-clamp recordings from cells located on the HD-MEA838

were obtained with borosilicate glass micropipettes (4-5 MΩ, Sutter Instruments, USA)839

containing (in mM): 85 caesium-gluconate, 60 CsCl, 10 Hepes, 4 Na2ATP, 0.3 GTP, 2840

MgCl2, 0.1 EGTA, (pH 7.2-7.3; 280–290 mOsmol/l). Brief current-clamp recordings of841

spontaneous spiking were obtained, while synaptic activity was measured in voltage842

clamp mode at -70 mV holding potential. The high-chloride internal solution caused a843

shift in the GABA-A receptor reversal potential, which allowed us to record the844

synaptic activity of both GABAergic and glutamatergic synapses in one single recording.845

During the patch-clamp experiment, the same HD-MEA network configuration, as for846

the baseline recording, was used. This allowed to localize the patched cell on the847

HD-MEA, and to relate the intracellular obtained signals to the spike activity of the848

network. Patch-clamp recordings were carried out using an Axon Multiclamp 700B849

amplifier (Molecular Devices, USA), with digitization performed using an Axon850

Digidata 1440A (Axon Instruments). The recorded signals were low-pass filtered at 5851

kHz and acquired with at least 20 kHz. Alexa 594 (20µM, Thermo Fisher Scientific)852

was added to the internal solution to allow an assessment of the cell morphology. For853

details on the data, please see Bartram et al. [58].854

S4 Topological characterization of networks855

Here we provide more details on the procedures on how we inferred connectivity from856

experimental HD-MEA derived spike trains, and how we analyzed this data using graph857

theoretical metrics (for details on the connectivity inference algorithms see Methods and858

Materials Sec. S5, and Fig. 2&5 in the main manuscript).859

To assure reliable connectivity inference from the spike-sorted HD-MEA network860

data, we applied several filtering steps. First, we restricted our analysis to randomly861

selected units (100) that had at least 1000 spikes over the course of the recording.862

Second, we only estimated connectivity for edges that had a spike-sorting index > 0.5,863

as suggested by Ren et al. [41], and that had at least 200 spikes in the pairwise CCG of864

units – in a time window relevant for fast synaptic interactions (+/- 20 ms). To generate865

jittered spike trains for units that passed the previously outlined quality criteria, and to866

be compatible with jittering code provided by [100], we removed any spikes occurencing867

at the zero-lag of the unit’s autocorrelation. Again, the aim of applying these arguably868

strict thresholds was to make sure that connectivity was estimated on a sufficient869

amount of activity and to reduce the likelihood of false positive connections.870

Next, we selected several common topological metrics and compared them across871

network inference methods (see results presented in Fig. 2 and Fig. 5). We categorize872

these metrics broadly into global and local topological features. The global features873
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describe average statistics for the given networks, while the local metrics describe874

topological values resolved per individual node. The global metrics included the overall875

network density, the network global efficiency, the average clustering coefficient, the876

modularity [101] and the small-world index [15] of the network and the occurrence of877

triplet-motifs in the data [77]. All topological features were calculated using algorithms878

provided by the Brain connectivity toolbox [102]. We briefly explain each metric879

below:880

881

Degree. As the obtained binary graphs of the inferred networks were directed, the882

degree (k) denotes the sum of in- and outgoing edges of the observed network.883

884

Network density. The network density was defined as the number of significant edges885

divided by the number of all possible edges in the respective network.886

887

Global efficiency. The global efficiency (E) is calculated as the average of the inverse888

shortest path length (L). It is a measure of the global integration of a graph [103].889

890

Clustering coefficient. The clustering coefficient (C) measures the clustering of891

connections/nodes in the network. C for directed networks is calculated as the fraction892

of realized directed triangles around a node, i.e., the observed number of triangles893

divided by the number of all possible triangles [104].894

895

Betweenness centrality. The betweenness centrality (B) was defined as the fraction of all896

shortest paths in the network that contain a given node. Nodes with high values of897

betweenness centrality therefore participate in a large number of shortest paths [105].898

899

Modularity index. The modularity index, Q, indicates how well a network can be900

partitioned into subgroups. We calculated it as proposed by [106].901

902

Small-word index. The small-world index (S) of a binary network is usually defined by903

estimating two parameters: the characteristic path length of the network (L) and its904

average clustering coefficient (C). Both measures are normalized to appropriately905

randomized surrogate networks with the same number of nodes and edges [107]. Since906

some inferred networks contained disconnected nodes at the applied adoptive thresholds,907

and S is defined for connected networks, we used a variant of the small-world908

index [103]. We calculated S by dividing the normalized clustering coefficient (Cnorm.)909

by the inverse of the normalized global efficiency (1/Enorm.).910

911

Motifs. The frequency of triplet motifs was analyzed as proposed in previous work [77].912

As for the small-world index, we generated appropriately randomized surrogate913

networks with the same number of nodes - and compared the empirical motif statistics914

to these randomized values. We compared a total of 13 different motifs.915

916

To compare local topological features between the inferred networks and the LIF917

ground truth networks (see Figure 2), we computed Pearson’s ρ between the set of918

values of the true network and the estimated network. For quantifying the difference919

between global connectivity features, we calculated the relative difference920

(yest − ytrue)/ytrue, where yest, and ytrue are the feature of the estimated and true921

network, respectively.922
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S5 Connectivity inference methods923

In the following, we describe the connectivity inference algorithms implemented in this924

study. The considered algorithms include cross-correlogram (CCG)-based methods,925

methods based on information theory, neuronal synchrony, and finally, generalized linear926

model point processes. CCG-based methods have been widely applied to estimate927

synaptic connectivity from parallel recorded spike trains [33, 108]. Essentially, a CCG is928

a histogram of spike-time differences between two neurons i and j. We used the929

normalized CCG [30], defined as930

CCGi→j(τ) =
T
∑

t=1

(st,i − µi)(st+τ,j − µj)

σiσj
,

where st,i is the binary spike train of neuron i discretized in time bins with width ∆. st,i931

is 1 if neuron i spiked between t and t+∆, and 0 otherwise. T is the number of time932

bins; µi and σi are the mean and standard deviation of the spike trains, respectively. To933

compute CCGs, we applied algorithms provided by the Elephant toolbox [109].934

Coincidence index The first CCG-based method, implemented in this study, is935

termed coincidence index (CI, [56]). The CI was defined as936

CIi→j =

∑r
τ=0 CCGi→j(τ)

∑T
τ=0 CCGi→j(τ)

where r = Tsyn/∆, and Tsyn represents a time window in which synaptic effects are937

effective. Here we set ∆ = 0.4ms and Tsyn = 6ms. High CI values indicate an excess of938

spiking activity of neuron j after spikes of neuron i. As connectivity score, CS, we took939

the absolute z-score |CIi→j − µi→j |/σi→j , where µi→j and σi→j are the mean and940

standard deviation of CI values obtained from surrogate spike trains of the941

corresponding neuron pair (50 iterations). The surrogate spike trains were generated by942

jittering the spike times of neuron i with uniform noise U(−1.5r∆, 1.5r∆). The jittering943

strongly decreased the pairwise correlations observed for interactions in the synaptic944

time window. As putative synaptic weight, W , we simply took the value CIi→j .945

Smoothed CCG While the CI relies on the generation of jittered surrogate946

spike-train data, Stark et al. [37] proposed a simple smoothing procedure in947

combination with a statistical test to assess whether the CCG deviates from the H0948

hypothesis, i.e., that two neurons are synaptically not connected. Using this approach,949

the CCG is convolved with a Gaussian kernel, which is considered to have a similar950

effect on the CCG as obtaining a threshold value through spike-train jittering. Avoiding951

the jittering operation makes this approach computationally more efficient. We took the952

negative logarithm of the p-value as CS, and as weights W the synaptic strength, as953

described previously [36]. Throughout the manuscript, we referred to this algorithm as954

the smoothed CGG (sCCG) method.955

Generalized linear model CCG An alternative method, combining the CCG956

approach with generalized linear models (GLMs), was proposed by Kobayashi et al. [40].957

This approach decomposes CCGs into a slow and a fast fluctuating component. The958

model assumes that slow fluctuations, as observed in a pairwise CCG, can be regarded959

as the background activity within the network. Only fast short-latency fluctuations,960

that is, prominent peaks and troughs in the pairwise CCG that exceed the background961

activity, and that happen within the synaptic time window, should be considered as962
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putative excitatory and inhibitory connections. Hence, Kobayashi et al. [40] proposed a963

parametric model, namely a GLM, to fit empirical CCGs. Formally, the GLM was given964

by965

c(t) = exp

[

a(t) + Jijf (t) + Jji f (−t)

]

,

where c(t) is the co-firing rate for a timeshift bin t. a(t) models the slow fluctuation966

that encodes the background activity. f (t) models the synaptic interaction, which is967

given in the form of decaying exponential function f (t) = exp(− t−d
τ

) (for t > d, f (t) =968

0 otherwise), where d is the synaptic delay and τ is the time constant of the decay. The969

parameters Jij and Jji are the coupling strengths from neuron i to j and j to i970

respectively. Given a CCG from observed data, the maximum a posterior (MAP)971

estimate for parameters θ = {Jij , Jji, a(t)} is then obtained by numerical optimization.972

For details, the reader is referred to the original publication [40]. A similar approach973

has also been suggested by Ren et al. [41]. As CS, we take the z-score derived in [40, Eq.974

14] given by si→j = |Jij |
√

τc(0)/1.57. For the synaptic weight, Kobayashi et al. [40]975

proposed to transform the parameter Jij heuristically to the size of a post-synaptic976

potential by the following formula wi→j = Jij/a, where the factor a = 0.39, if there is a977

putative excitatory connection, i.e., Jij > 0. On the other hand, for inhibitory978

connections, i.e., Jij < 0, they used a = 1.57.979

Transfer entropy Another important class of methods that has been widely applied980

to probe neuronal interactions, and to reconstruct neuronal networks, relies on981

information theory. The present study focussed on transfer entropy (TE) [54] and uses982

algorithms by the IDTxl toolbox [65] to estimate the functional connectivity between983

neurons. TE quantifies the “amount of predictive information” [110], between two984

processes – respectively, here, the spike trains of a source neuron i and a target neuron985

j. In brief, TE measures if including information on the spiking activity of neuron i,986

adds to the prediction of the future activity of neuron j, which goes beyond the987

information that is contained in the past activity of j alone. In the present study, we988

computed the TE on discretized spike train data with bins of size ∆ = 5ms. As for the989

CI method, we used the absolute z-score si→j = |TEi→j − µi→j |/σi→j as CS. Again,990

µi→j , σi→j are the mean and standard deviation of the TE values computed from991

jittered spike trains (50 iterations). The jitter noise was Uniform(−3.5∆, 3.5∆). As the992

weight of a connection, we considered the value TEi→j . Compared to the other993

implemented methods, the TE value is unsigned, i.e., it is always positive and, in that994

regard, could not distinguish between excitatory and inhibitory connections.995

There are considerable limitations associated with the use of TE as a direct measure996

of coupling strength, as it may be confounded by the firing rate of neurons, the997

dynamical state of the network, the used embedding dimensions, and several other998

factors [110]. Future studies should implement and probe more recent TE variants that999

have been specifically developed for spike-train data [79] and that have addressed some1000

of the limitations of current TE algorithms.1001

Directed spike tiling coefficient Cutts et al. [53] introduced the spike time tiling1002

coefficient (STTC) to quantify synchronicity between spike trains. This method is1003

computationally fast and has recently gained a lot of popularity. While the original1004

method provided a measure of undirected pariwise correlation or functional connectivity,1005

we modified the approach by Cutts et al. to a directed variant, which we call the1006

directed STTC (dSTTC). In the following, we outline the dSTTC between the spike1007

trains of neuron i and j. As in the original method, we defined a synaptic time window1008

∆syn = 7ms. T pre
i is the proportion of the total recording time, which is covered by time1009

windows ∆ before the spikes of neuron i. We note, that the times of overlapping1010
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windows are just considered once. Similarly, we define T post
j for the proportion of1011

recording time, which is covered by windows ∆syn following spikes of neuron j.1012

Furthermore, we define P pre
j→i as the proportion of spikes of neuron j, that lies in the1013

time windows ∆syn preceding the spikes of neuron i. Similarly, P post
j→i is the proportion1014

of spikes of neuron i following the spikes of neuron j. Finally, we defined the dSTTC as1015

dSTTCj→i =
1

2

(

P pre
j→i − T pre

i

1− P pre
j→iT

pre
i

+
P post
j→i − T post

j

1− P post
j→i T

post
j

)

,

which can result in values in the range [−1, 1], as for the undirected original1016

implementation by Cutts et al. [53]. The intuition behind the presented statistic is, that1017

an excess of spiking of neuron i, that follows the spiking of neuron j, should indicate an1018

excitatory connection. In this case, the dSTTC attains positive values. On the contrary,1019

for inhibitory connections, we would expect a scarcity, or reduction, of spiking instead.1020

In the latter case, the dSTTC would then result in more negative values. If the spikes of1021

neurons i and j are occurring randomly, the dSTTC is expected to be close to 0. It1022

should be noted, however, that these statements are based on the assumption, that the1023

recorded data is stationary, i.e., there are no gross fluctuations in the firing rates. In the1024

experiments at hand, however, this is rarely the case, due to transients in the firing rate1025

and/or network burst dynamics. To mitigate such effects due to violations of the1026

stationarity assumption, we resorted again to absolute z-score values for CS and1027

calculate sj→i =
|dSTTCj→i−µj→i|

σj→i
, where µj→i and σj→i are the mean and standard1028

deviation of the dSTTC values obtained from jittered spike trains. As in Cutts et1029

al. [53], we used jitter noise Uniform(−3.5∆syn, 3.5∆syn). As weight wj→j of a putative1030

connection between two neurons, we took the raw dSTTCj→i value.1031

Point process generalized linear model All presented algorithms so far were1032

pairwise connectivity-inference methods. That is, they considered only two neurons at a1033

time and neglected the potentially contributing effect of the activity of other neurons in1034

their calculation. The Generalized Linear Model Point Processes (GLMPP) approach,1035

however, is a framework that does consider such network interrelation – and has been1036

previously used to probe connectivity [55]. This approach models the spiking of neuron1037

i by a point process with rate λi(t|Ht), where Ht is the recorded spiking history up to1038

time t. Here, we will assume that the rate model is1039

λi(t|Ht) = fi



θi +
N
∑

j=1

Jj→iφj(t)



 , (S3)

where the feature φj(t) is the spike train of neuron j convolved with a causal1040

exponential function with decay τ = 5ms. f is a monotonically increasing non-negative1041

function. In this model, the parameters of interest are the coupling Jj→i for i 6= j; note1042

thatJi→i models how the neuron’s activity influences itself, such as, for example, the1043

refractory period following a spike. For an excitatory connection i → j, we expected,1044

that the rate λi(t|Ht) increases after spikes of neurons j, and hence Jj→i should be1045

positive. The contrary holds for inhibitory connections. If Jj→i was close to 0, this1046

should indicate that no connection is present. We assumed a Gaussian prior distribution1047

Jj→i ∼ N (0, σ2
J) and θi ∼ N (µθ, σ

2
θ). We intended to obtain the posterior distribution1048

of the model parameters given the recorded spike trains. In general, this is not1049

straightforward for a model defined by Eq. (S3). However, by choosing the f(·) to be a1050

scaled sigmoid as in [72, 111], efficient variational algorithms have been developed to1051

obtain an approximate Gaussian posterior distribution [73,112] over the parameters θi,1052

and Jj→i via variational inference. Hence, once we have the approximate posterior1053
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density over parameters θ, J , we define the CS for a given connection as1054

sj→i = |µj→i|/σj→i, where µj→i, σj→i are the mean and standard deviation of the1055

posterior estimate for Jj→i. As connection weight, we used the coupling value Jj→i.1056

Model specification and inference Given the spike trains of several neurons, we
can readily compute the features at any time

φj(t) =
∑

tj∈spikes of j

∫

k(τ)δ(t− τ − tj)dτ

where k(τ) = 1
τk

exp(− τ
τk
) and τk = 5ms. In the following, we used the methodology

of [73, 112] to fit the point process. In order to do so we needed to define the
non-linearity fi in rate in Eq. S3 as scaled sigmoid

λi(t) = λ̄iσ(J
>
i θ(t)),

where λ̄i > 0, J>
i = (θi, J1→i, · · · , JN→i)

> and θ(t) = (1, φ1(t), · · · , φN (t))>. For
notational convenience, we dropped the conditioning on the history Ht. The likelihood
of a point process [113] for spikes of neuron i Ti = {ti1, . . . , tiNi

} is

p(Ti|Ji) =
∏

ti∈Ti

λi(t) exp

(

−
∫ T

0

λi(t)dt

)

.

We assumed a Gaussian prior over the parameters Ji and a Gamma distribution prior1057

over λ̄i. With this setting, we can utilize the augmentation scheme and the variational1058

approach described in [112] to obtain an approximate Gaussian posterior over the Ji,1059

which we then used for the final connectivity.1060

S6 Statistical thresholding of connectivity and1061

evaluation of reconstruction performance1062

Threshold selection After inferring connectivity from either simulated or1063

experimentally obtained spike-train data, several downstream analyses of this work1064

required binary graphs. Hence, the connectivity matrices had to be thresholded.1065

Selecting an appropriate threshold is a delicate task since it can affect the interpretation1066

of the graph structure and its organizational properties. In the present study, we1067

applied three different strategies. For the comparison of different inference methods on1068

the LIF network data (see Fig. 2), we performed a search for the threshold that yielded1069

the maximal Matthews correlation coefficient (MCC, see Sec. S6, i.e., the highest1070

similarity to the underlying ground-truth graph. Such an approach has been previously1071

applied in the literature [40], and does allow for a fair performance comparison across1072

inference methods. However, since such a threshold optimization is not applicable to1073

experimental data, we also report results using a second approach, that relied on a1074

global adaptive thresholding logic (see Fig. 5 and S2). We, therefore, recalculated1075

connectivity on jittered surrogate data (Gaussian jitter with a standard deviation of1076

10ms), and defined an absolute global threshold as the (1− α) ∗ 100% quantile of the1077

resulting CS distribution. Here α can be interpreted as an expected false positive rate.1078

The aim of this procedure was to destroy all short-latency synchronization by temporal1079

jittering while keeping the firing rate dynamics intact. The jittered distribution of the1080

CS values then reflected the null hypothesis, i.e., that there were no connections. For1081

the HD-MEA recordings, we varied α-values from 0.05 to 0.001 (see Fig. 5). The data1082

was only jittered once, which made this approach computationally fast. Finally, to show1083

that topological results were stable across the selected statistical thresholds, we also1084
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applied proportional thresholds (see Fig. S4). With these thresholds, we probed graph1085

metrics at a specific network density (e.g., 5%) and compared the topological properties1086

of networks at a defined percentage of the strongest connections.1087

Performance measures To quantify the network-reconstruction performance across1088

all inference algorithms, we applied standard validation measures, commonly used for1089

classification tasks. The first metric is the average precision score (APS), which is1090

threshold-free, i.e., there is no need to specify a threshold. The APS is calculated from1091

the area under the precision-recall curve and is formally defined as1092

APS =
∑

n(Rn −Rn−1)Pn. Rn, Pn are recall and precision if the nth smallest CS1093

would be selected as threshold. The APS provides values between 1 (perfect1094

classification possible) and 0 (no connection is correctly classified without misclassifying1095

all unconnected pairs). As a second performance measure, we implemented the1096

Matthews correlation coefficient (MCC). The MCC requires a binarized connectivity1097

matrix, respectively matrices, to compare networks. It is defined as1098

MCC =
nTPnTN − nFPnFN√

nPnNnPPnPN
,

where nTP, nTN are the number of true positives and false negatives, respectively, i.e., it1099

is a measure of whether the algorithm classified the putative connections correctly.1100

nFP, nFN denote the numbers of false positives and false negatives. nP, nN are the total1101

number of connections and unconnected pairs of the ground-truth data. nPP, nPN are1102

the number of predicted positives (connection) and predicted negatives1103

(non-connections), respectively. The MCC gives values between 1, for perfect1104

classification, and −1 for the worst outcome.1105
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Fig S1. Precision-recall curves on simulated data. Curves for all methods on
the data for Fig 2 (three lines per method for three networks (N = 100) that we fitted
per High, Interm., and Low condition.). The more these curves extend to the upper
right corner, the better classifications can be achieved. The eANN is the most robust
method across all three conditions. The APS in Fig 2D is the area under these curves.
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Fig S2. Network-reconstruction performance with global adaptive
threshold. Results corresponding to Fig. 2 achieved with adaptive-threshold-selection
(see Methods). A The MCC of different connectivity methods. Dots depict the
performance obtained from fits on three different subnetworks of the same simulation.
B Classification performance (MCC) as a function of recording time. C MCC for each
type of connectivity, that is, excitatory (E, in red), inhibitory (I, in blue), combined
(E+I, in black). Correspondingly, the performance gains achieved by the eANN are
plotted in shades of red, blue, and black. D Quality of topological feature
reconstruction for the inferred network across the three dynamical regimes. In the
upper panel, the relative difference between four global features (network density, av.
clustering, and efficiency) is shown. In the center panels, the Pearson correlation
coefficient for local (per node of the network) features between the true and the inferred
network is shown. Black stars indicate the method that performs best. In the lower
panels, the absolute difference of triplet-motif frequencies between ground truth and the
different estimated networks is shown.
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Fig S3. Comparison of in vitro neuronal network topology across inference
methods. Four topological metrics (average clustering, efficiency, modularity, and
small-world index) inferred from in vitro neuronal networks thresholded for the strongest
5% of connections in the network (proportional thresholding). Each panel depicts one
topological measure; the colors correspond to the seven inference algorithms; colored
circles correspond to the values obtained from the empirical data; the white-filled circles
correspond to the surrogate networks (randomly rewired networks). In contrast to the
analysis in Fig. 5H, this figure depicts all networks with the same number of edges.

February 1, 2024 35/54

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.02.01.578336doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578336
http://creativecommons.org/licenses/by-nd/4.0/


CI

1 2 3 4 5 6 7 8 9 10 11 12 13

Motif ID

0

0.1

0.2

0.3

0.4

R
el

. m
ot

if 
fr

eq
ue

nc
y

sCCG

1 2 3 4 5 6 7 8 9 10 11 12 13

Motif ID

0

0.1

0.2

0.3

0.4

R
el

. m
ot

if 
fr

eq
ue

nc
y

dSTTC

1 2 3 4 5 6 7 8 9 10 11 12 13

Motif ID

0

0.1

0.2

0.3

0.4

R
el

. m
ot

if 
fr

eq
ue

nc
y

GLMCC

1 2 3 4 5 6 7 8 9 10 11 12 13

Motif ID

0

0.1

0.2

0.3

0.4

R
el

. m
ot

if 
fr

eq
ue

nc
y

TE

1 2 3 4 5 6 7 8 9 10 11 12 13

Motif ID

0

0.1

0.2

0.3

0.4

R
el

. m
ot

if 
fr

eq
ue

nc
y

GLPP

1 2 3 4 5 6 7 8 9 10 11 12 13

Motif ID

0

0.1

0.2

0.3

0.4

R
el

. m
ot

if 
fr

eq
ue

nc
y

eANN

1 2 3 4 5 6 7 8 9 10 11 12 13

Motif ID

0

0.1

0.2

0.3

0.4

R
el

. m
ot

if 
fr

eq
ue

nc
y

1

2

3

4

5

6

W
el

l #

Fig S4. Triplet-motif frequency across inference methods and in vitro
neuronal networks. The triple-motif frequency, observed in DIV14 in vitro

developing neuronal networks (dataset 2), was very similar within each method class
but differed considerably between some inference methods (see Fig 5I and J). Depicted
motif frequencies were normalized, for each culture, by the total amount of observed
motifs (α threshold: 0.01; network size: 100 units/network; 1 h recording duration).
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Fig S5. In silico validation of synaptic connectivity inference from
simultaneous extra- and intracellular recordings. A-B An overview of the
modeled dynamic range to validate the PSC connectivity inference method. The
average spiking rate and Fano factor are shown for different simulations. Simulations
with a rate < 0.5 Hz Hz were excluded. Circles correspond to simulations with Low,
Intermediate, and High burst rate in Fig 2. D-E Display of recall and precision values
for the IC connectivity inference method. Performance was averaged across VC
recordings from 10 different neurons.

February 1, 2024 37/54

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.02.01.578336doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578336
http://creativecommons.org/licenses/by-nd/4.0/


5 ms

7
0
 p

A

cell3VC-ID34

50 ms

cell3VC-ID40 cell3VC-ID52 cell3VC-ID61

5 ms

7
0
 p

A

cell3VC-ID77

50 ms

cell3VC-ID81 cell3VC-ID145 cell3VC-ID179

5 ms

7
0
 p

A

cell3VC-ID216

50 ms

cell7VC-ID25 cell7VC-ID48 cell7VC-ID64

5 ms

7
0
 p

A

cell7VC-ID101

50 ms

cell7VC-ID171 cell7VC-ID173 cell7VC-ID176

5 ms
7
0
 p

A

cell7VC-ID185

50 ms

cell7VC-ID186 cell7VC-ID193 cell7VC-ID197

5 ms

7
0
 p

A
cell7VC-ID204

50 ms

cell7VC-ID206 cell7VC-ID211 cell8VC-ID128

5 ms

7
0
 p

A

cell8VC-ID183

50 ms

cell8VC-ID314 cell3VC-ID28 cell3VC-ID33

5 ms

7
0
 p

A

cell3VC-ID47

50 ms

cell3VC-ID49 cell3VC-ID55 cell3VC-ID57

5 ms

7
0
 p

A

cell3VC-ID58

50 ms

cell3VC-ID60 cell3VC-ID62 cell3VC-ID68

5 ms

7
0
 p

A

cell3VC-ID76

50 ms

cell3VC-ID89 cell3VC-ID91 cell3VC-ID99

5 ms

7
0
 p

A

cell3VC-ID100

50 ms

cell3VC-ID101 cell3VC-ID103 cell3VC-ID109

5 ms

7
0
 p

A

cell3VC-ID111

50 ms

cell3VC-ID112 cell3VC-ID120 cell3VC-ID122

5 ms

7
0
 p

A

cell3VC-ID123

50 ms

cell3VC-ID143 cell3VC-ID164 cell3VC-ID172

5 ms

7
0
 p

A

cell3VC-ID173

50 ms

cell3VC-ID174 cell3VC-ID177 cell3VC-ID185

5 ms

7
0
 p

A

cell3VC-ID189

50 ms

cell3VC-ID190 cell3VC-ID198 cell3VC-ID199

5 ms

7
0
 p

A

cell3VC-ID201

50 ms

cell3VC-ID202 cell3VC-ID204 cell3VC-ID205

5 ms

7
0
 p

A

cell3VC-ID218

50 ms

cell3VC-ID232 cell3VC-ID237 cell3VC-ID239

Fig S6. Connections in experimental ground-truth dataset Here, we show all
26 experimental ground-truth connections found in the whole-cell patch recordings,
together with all cell pairs, where no connection was found. We show the PSCs, the
Spike-CCG, and the classification of the different connectivity methods similar to Fig. 4.
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Fig S6. (continued) Connections in experimental ground-truth dataset
Remaining cell pairs identified as non-connection.
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Fig S7. Performance on a dataset with different connectivity rule Here, we
show the results of the different connectivity inference methods on data simulated with
80/20 excitatory/inhibitory neurons. Population rate = 1.65Hz, Burst Rate=0.33Hz.
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Fig S8. eANN confidence score. In the left panel the synaptic strength from the
LIF simulations is plotted against the log confidence score of the eANN. We see lower
confidence scores are more likely for weaker synaptic connections. Right panel shows a
histogram of the log confidence score. This plot is done for data from Fig. 2 for the
intermediate burst regime.
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Fig S9. Training and test loss during eANN training. In the top panel, the
cross-entropy loss is shown for the training set and a test set (intermediate burst
regime). In the lower panel, the APS is shown on the test set during training.
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Fig S10. Comparison of eANN and GLMCC inference on synthetic data.
Example cross-correlograms to compare connectivity inference of the eANN and the
GLMCC method on some selected pairs (TP = true positive, NF = false negative). The
bar color indicates if the ground truth connection was excitatory (red) or inhibitor
(blue).
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Fig S11. Pearson correlation of weights and connectivity score between
different input methods. Left, middle, and right panel show the correlation for pairs
of no, excitatory, and inhibitory connection, respectively. The data for the intermediate
burst regime from Fig. 2 were used.
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µnoise [nA] σnoise [ nA
√
ms

] Spike rate [ spikes
s·neuron

] Cv Burst rate [Bursts
s

]

0.34 0.2 1.4 0.8 0.1
0.34 0.16 1.2 1.1 0.1
0.36 0.08 1.7 0.6 0.8
0.42 0.08 3.2 0.2 5.6
0.4 0.18 2.8 0.3 3.6

Table S1. Training simulations for the eANN.
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