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Abstract 28 

Plant growth and development are regulated by many factors, including carbohydrate 29 

availability and signaling. Trehalose 6-phosphate (T6P), which is synthesized by 30 

TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1), is positively correlated with and 31 

functions as a signal that informs the cell about the carbohydrate status. Mutations in TPS1 32 

negatively affect the growth and development of Arabidopsis thaliana and complete 33 

loss-of-function alleles are embryo lethal, which can be overcome using inducible expression 34 

of TPS1 (GVG::TPS1) during embryogenesis. Using EMS mutagenesis in combination with 35 

genome re-sequencing we have identified several alleles in the floral regulator HUA2 that 36 

restore flowering and embryogenesis in tps1-2 GVG::TPS1. Genetic analyses using a HUA2 37 

T-DNA insertion allele, hua2-4, confirmed this finding. RNA-seq analyses demonstrated that 38 

hua2-4 has widespread effects on the tps1-2 GVG::TPS1 transcriptome, including key genes 39 

and pathways involved in regulating flowering. Higher order mutants combining tps1-2 40 

GVG::TPS1 and hua2-4 with alleles in the key flowering time regulators FLOWERING 41 

LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), and 42 

FLOWERING LOCUS C (FLC) were constructed to analyze the role of HUA2 during floral 43 

transition in tps1-2 in more detail. Taken together, our findings demonstrate that loss of 44 

HUA2 can restore flowering and embryogenesis in tps1-2 GVG::TPS1 in part through 45 

activation of FT, with contributions of the upstream regulators SOC1 and FLC. Interestingly, 46 

we found that mutation of FLC is sufficient to induce flowering in tps1-2 GVG::TPS1. 47 

Furthermore, we observed that mutations in HUA2 modulate carbohydrate signaling and that 48 

this regulation might contribute to flowering in hua2-4 tps1-2 GVG::TPS1. 49 

 50 

Keywords: carbohydrate signaling, Trehalose 6-phosphate (T6P), TREHALOSE 51 

PHOSPHATE SYNTHASE1 (TPS1), HUA2, Flowering time, Arabidopsis thaliana 52 
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Introduction 53 

Plants have evolved intricate signaling mechanisms that enable them to monitor a wide range 54 

of environmental and endogenous cues and adjust their physiology, growth, and development 55 

accordingly. Adjustments occur more or less constantly, but developmental phase transitions 56 

such as germination, the switch from juvenile to adult growth, or the induction of flowering 57 

and reproductive development are under particularly stringent control. 58 

In Arabidopsis thaliana, the floral transition is controlled by environmental factors including 59 

exposure to prolonged periods of cold (vernalization), ambient temperature, day length 60 

(photoperiod), light quality, and endogenous signals such as plant age, diverse hormones 61 

including gibberellic acid (GA), and carbohydrate signaling (Srikanth and Schmid, 2011; 62 

Romera-Branchat et al., 2014; Cho et al., 2017). Eventually, these signaling pathways 63 

converge on and regulate the expression of key floral integrator genes such as FLOWERING 64 

LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) 65 

(Kardailsky et al., 1999; Moon et al., 2005; Kobayashi and Weigel, 2007; Turck et al., 2008; 66 

Lee and Lee, 2010; Jung et al., 2012). FT is induced in response to permissive photoperiod in 67 

the leaf vasculature where it is also translated. The FT protein is then transported via the 68 

phloem to the shoot apical meristem (SAM) where it interacts with the bZIP transcription 69 

factor FD and 14-3-3 proteins to form the florigen activation complex (FAC) (Abe et al., 70 

2005; Wigge et al., 2005; Mathieu et al., 2007; Taoka et al., 2011; Collani et al., 2019). In 71 

contrast, SOC1 is induced and acts largely at the SAM, both downstream and in parallel to FT 72 

(Yoo et al., 2005; Lee and Lee, 2010). Eventually, these factors induce flower meristem 73 

identity genes such as LEAFY (LFY) and APETALA1 (AP1) at the SAM, thus completing the 74 

floral transition (Weigel and Nilsson, 1995; Liljegren et al., 1999; Blázquez and Weigel, 75 

2000). 76 

Apart from photoperiod, carbohydrate signaling has been shown to be necessary for FT 77 

expression (Wahl et al., 2013). Sucrose is the major product of photosynthesis and most 78 

common transport-sugar. However, rather than measuring sucrose concentration directly, 79 

plants employ trehalose 6-phosphate (T6P) as a readout and signal of sucrose availability 80 

(Goddijn and van Dun, 1999; Lunn et al., 2006; Martins et al., 2013; Yadav et al., 2014; 81 
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Figueroa and Lunn, 2016). T6P is the intermediate of trehalose synthesis. It is synthesized 82 

from glucose 6-phosphate and uridine diphosphate glucose by TREHALOSE 83 

6-PHOSPHATE SYNTHASE (TPS) and subsequently dephosphorylated by TREHALOSE 84 

6-PHOSPHATE PHOSPHATASE (TPP) (Cabib and Leloir, 1958). 85 

In Arabidopsis thaliana, there are 11 TPS genes (AtTPS1–AtTPS11), which can be divided 86 

into two subclades, class I and class II, and 10 TPP genes (TPPA–TPPJ) (Leyman et al., 2001; 87 

Lunn, 2007; Vandesteene et al., 2012). Of the class I TPS genes (AtTPS1–AtTPS4), only 88 

AtTPS1, AtTPS2, and AtTPS4 have demonstrable catalytic activity, whereas AtTPS3 harbors a 89 

premature translational stop codon and is likely a pseudogene (Blázquez et al., 1998; Van 90 

Dijck et al., 2002; Lunn, 2007; Delorge et al., 2015). Class II TPS genes (AtTPS5–AtTPS11), 91 

for which no TPS activity, has been detected, which have been reported to participate in cell 92 

size regulation, thermotolerance, and cold and salt resistance, but the underlying molecular 93 

mechanisms remain largely unclear (Chary et al., 2008; Ramon et al., 2009; Singh et al., 2011; 94 

Tian et al., 2019; Van Leene et al., 2022). The main T6P synthase in Arabidopsis thaliana is 95 

TPS1. TPS1 loss-of-function mutants are embryonic lethal (Eastmond et al., 2002), but 96 

homozygous tps1-2 mutants could be established by dexamethasone-inducible expression of 97 

TPS1 (GVG::TPS1) during embryogenesis (van Dijken et al., 2004). Interestingly, the 98 

resulting homozygous tps1-2 GVG:TPS1 plants flower extremely late compared to wild type 99 

under both short- and long-day conditions. At the molecular level, late flowering of tps1-2 100 

GVG::TPS1 has been attributed to the combined misregulation of key flowering time genes. 101 

In particular, tps1-2 GVG::TPS1 mutant plants fail to induce FT in leaves even under 102 

permissive photoperiod. In addition, MIR156 and its targets, the SQUAMOSA PROMOTER 103 

BINDING PROTEIN LIKE (SPL) genes, which together constitute the age pathway, are also 104 

misregulated in tps1-2 GVG::TPS1 (Wahl et al., 2013). Nevertheless, many questions 105 

regarding the regulation of plant growth and development by the T6P pathway remain open. 106 

In an EMS suppressor screen, we have recently reported dozens of mutations that partially 107 

restored flowering and seed set in tps1-2 GVG::TPS1, including several alleles in SNF1 108 

KINASE HOMOLOG 10 (KIN10) and HOMOLOG OF YEAST SUCROSE 109 

NONFERMENTING 4 (SNF4), two subunits of Arabidopsis thaliana SNF1-Related Kinase 1 110 
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(SnRK1) (Jung et al., 2012; Zacharaki et al., 2022), an evolutionary conserved regulator of 111 

cellular energy homeostasis. 112 

Here, we identified several new alleles in HUA2 (At5g23150) that partially rescue the tps1-2 113 

GVG::TPS1 phenotype. Mutations in HUA2 were originally identified in a genetic screen as 114 

enhancers of the AGAMOUS (AG) allele ag-4 (Chen and Meyerowitz, 1999). In addition, 115 

HUA2 has also been reported to affect shoot morphology and function as a repressor of 116 

flowering (Doyle et al., 2005; Wang et al., 2007). At the molecular level, HUA2 has been 117 

suggested to function as a putative transcription factor but has also been implicated in RNA 118 

processing (Cheng et al., 2003). We show that three different EMS-induced point mutations 119 

in HUA2 restore flowering in tps1-2 GVG::TPS1 and verify this finding using a previously 120 

described T-DNA insertion allele, hua2-4. RNA-seq analyses revealed widespread effects of 121 

hua2-4 on the tps1 GVG::TPS1 transcriptome, including activation of flower integrator genes 122 

such as SOC1 and AGAMOUS-LIKE 24 (AGL24). Genetic analyses demonstrated that 123 

induction of flowering in tps1-2 GVG::TPS1 required functional FT. Furthermore, we 124 

observed that loss of FLOWERING LOCUS C (FLC) is sufficient to induce flowering in 125 

tps1-2 GVG::TPS1. Interestingly, hua2-4 also attenuated the induction of known SnRK1 126 

target genes in response to carbon starvation. Taken together, our results identify mutations in 127 

HUA2 as suppressors of the non-flowering phenotype of tps1-2 GVG::TPS1 and provide 128 

insights into the underlying genetic and molecular pathways. 129 

 130 

Results 131 

Mutations in hua2 restore flowering in tps1-2 GVG::TPS1 132 

To identify novel components of the T6P pathway, we recently conducted a suppressor screen 133 

in which the non-flowering tps1-2 GVG::TPS1 mutant was subjected to ethyl methane 134 

sulfonate (EMS) mutagenesis. In total, 106 M2 mutant plants in which flowering and seed set 135 

was at least partially restored were isolated, and EMS-induced SNPs were identified by 136 

whole genome sequencing in a subset of 65 mutants (Zacharaki et al., 2022). To identify 137 
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additional candidate suppressor genes in which SNPs were overrepresented, we expanded this 138 

list to 92 by sequencing the genomes of another 27 mutants (Table S1). 139 

Analysis of these 92 genome sequences for genes with multiple independent EMS-induced 140 

mutations identified three SNPs in the coding sequence of HUA2 (AT5G23150) (Table S2, 141 

S3). The three alleles result in non-synonymous amino acid substitutions, namely A983T, 142 

P455S, and R902C. We refer to these new EMS-induced suppressor lines as hua2-11 (line 143 

#8-1-1), hua2-12 (line #233-14-1), and hua2-13 (line #164-9-1), respectively (Fig. 1A). The 144 

polymorphism R902C resides at the C-terminal end of the HUA2 CID motif (RNA Pol-II 145 

C-terminal domain (CTD) interaction domain). The hua2-11 (line #8-1-1) allele was also 146 

detected in two additional suppressor lines, #57-2-1 and #30-34 (Table S2, S3). As these 147 

three lines share most EMS-induced SNPs genome-wide, we assume these lines originate 148 

from the same parental plant. 149 

Importantly, flowering was restored in all three hua2 alleles, even though all three mutant 150 

lines produced substantially more leaves before making the transition to flowering than Col-0 151 

control plants (Fig. 1B, C). The flowering time of hua2-11 was 32.15 days, whereas hua2-12 152 

and hua2-13 flowered after 46.5 and 50.9 days, respectively, compared to Col-0, which 153 

flowered after 25.2 days. Thus, the three mutants form an allelic series with hua2-11 being 154 

the strongest and hua2-13 being the weakest allele. As HUA2 has previously been implicated 155 

in flowering time regulation and has been shown to regulate the expression of a group of 156 

MADS-box transcription factors known to form a floral repressive complex in Arabidopsis 157 

thaliana (Doyle et al., 2005; Wang et al., 2007; Lee et al., 2013; Posé et al., 2013; Jali et al., 158 

2014; Yan et al., 2016), we considered mutations in this gene as likely to be causal for the 159 

restoration of flowering in the tps1-2 GVG::TPS1 suppressor lines. 160 

Since the three hua2 alleles described above were generated through EMS mutagenesis, it is 161 

possible that other independent mutations not linked to HUA2 could be involved in partially 162 

rescuing the tps1-2 GVG::TPS1 phenotype. To confirm that mutations in HUA2 are causal for 163 

the suppression of the tps1-2 non-flowering phenotype, we crossed tps1-2 GVG::TPS1 with 164 

hua2-4, a previously described hua2 loss-of-function mutant that carries a T-DNA insertion 165 

in the 2nd intron (Fig. 2A) (Doyle et al., 2005). Of the F2 plants homozygous for the tps1-2 166 
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mutations, only those approx. 25% that were homozygous for the hua2-4 T-DNA insertion 167 

flowered without application of dexamethasone. Similar to hua2-11 tps1-2 GVG::TPS1 (Fig. 168 

1B,C), hua2-4 tps1-2 GVG::TPS1 double mutants displayed a bushy shoot phenotype and 169 

were moderately late flowering (Fig. 2B,C). Taken together, our findings confirm that 170 

recessive mutations in HUA2 are responsible for the induction of flowering in tps1-2 171 

GVG::TPS1. Our findings also suggest that HUA2 normally functions by repressing 172 

flowering either directly or indirectly through the promotion of floral repressors. 173 

hua2-4 has widespread effects on the tps1-2 GVG::TPS1 transcriptome 174 

To identify possible downstream targets of HUA2 whose misexpression might explain the 175 

induction of flowering in the suppressor mutant, we performed RNA-seq analysis in leaves of 176 

21-d-old tps1-2 GVG::TPS1 plants, tps1-2 GVG::TPS1 plants treated with dexamethasone, 177 

and the hua2-4 tps1-2 GVG::TPS1 double mutant. Plants were grown under long days (16 h 178 

light, 8 h dark) in the presence or absence of dexamethasone and samples were collected at 179 

ZT4 (Zeitgeber time 4, means 4 h after lights on). Genes that were differentially expressed in 180 

three independent replicates per genotype and treatment were identified using Cuffdiff. 181 

We observed that dexamethasone treatment significantly affected the expression of 9600 182 

genes in tps1-2 GVG::TPS1. Of these, 4830 and 4770 genes were upregulated and 183 

downregulated, respectively (Fig. 3A). In contrast, mutation of hua2 affected the expression 184 

of only 2066 genes, of which 988 and 1078 genes were upregulated and downregulated in 185 

hua2-4 tps1-2 GVG::TPS1, respectively (Fig. 3A). In total our RNA-seq analysis identified 186 

1437 genes that are differentially expressed in tps1-2 GVG::TPS1 in response to 187 

dexamethasone application and the hua2-4 mutation. Importantly, HUA2 expression is not 188 

changed in tps1-2 GVG::TPS1 in response to dexamethasone application, suggesting that 189 

hua2 might induce flowering largely by activating a pathway not normally regulated by the 190 

T6P pathway (Fig. S1). 191 

Since both, dexamethasone application and mutations in hua2 can induce flowering in tps1-2 192 

GVG::TPS1, we next searched for genes that were repressed or induced in response to either 193 

treatment. We identified 412 genes that were downregulated in tps1-2 GVG::TPS1 in 194 
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response to dexamethasone application and mutations in hua2 (Fig. 3A). Gene ontology (GO) 195 

analysis revealed that among others, processes such as flavonoid metabolism (GO:0009812), 196 

carbohydrate transport (GO:0008643), and starvation response (GO:0009267) were 197 

significantly enriched, which is in line with the well-established role of TPS1 in remodeling 198 

carbohydrate metabolism (Fig. 3B; Table S4). 199 

In addition, we identified 243 genes that were induced in response to dexamethasone and in 200 

hua2-4 tps1-2 GVG::TPS1. Among these genes, GO categories related to the response to 201 

gibberellin (GO:0009739) and the regulation of timing of meristematic phase transition 202 

(GO:0048506) are of particular interest as they are directly linked to the transition to 203 

flowering (Fig. 3C; Table S5). Importantly, among the genes induced in tps1-2 GVG::TPS1 204 

by dexamethasone and hua2 were SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 205 

(SOC1) and AGAMOUS-LIKE 24 (AGL24), two MADS-domain transcription factors known 206 

to promote the transition to flowering (Fig. 3D; Table S6). In contrast, other known flowering 207 

time regulators such as CONSTANS (CO), FT, and TWIN SISTER OF FT (TSF) are either 208 

hardly detectable (Fig. S2A), possibly because of the collection time of the RNA-seq samples 209 

at ZT 4 or did not change significantly in hua2 and in response to dexamethasone treatment 210 

(Fig. S2B). In summary, our transcriptome analysis identified several downstream genes and 211 

pathways whose misregulation could contribute to the induction of flowering in tps1-2 212 

GVG::TPS1 in response to dexamethasone application or loss of hua2 (Fig. S2; Table S6). 213 

Induction of flowering of tps1-2 GVG::TPS1 by hua2-4 requires FT 214 

To test whether SOC1, which we found to be differentially expressed in response to 215 

dexamethasone application or in hua2-4 tps1-2 GVG::TPS1, is a major target of HUA2 in the 216 

regulation of flowering time in tps1-2 GVG::TPS1 we constructed the soc1-2 hua2-4 tps1-2 217 

GVG::TPS1 triple mutant. We observed that the triple mutant flowered only moderately later 218 

than the hua2-4 tps1-2 GVG::TPS1 double mutant (Fig. 4A,B). This indicates that even 219 

though SOC1 is significantly induced in our RNA-seq experiment in hua2-4 tps1-2 220 

GVG::TPS1 (Fig. 3D; Table S6) and in RT-qPCR experiments (Fig. 4C), SOC1 is largely 221 

dispensable for the induction of flowering in tps1-2 GVG::TPS1 by loss of hua2. 222 
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SOC1 is known to act partially upstream of the flowering time integrator gene and florigen 223 

FT. We, therefore, decided to test if induction of flowering in tps1-2 GVG::TPS1 by hua2-4 224 

required functional FT. Interestingly, mutation of FT completely abolished the effect of 225 

hua2-4 on flowering of tps1-2 GVG::TPS1 and the ft-10 hua2-4 tps1-2 GVG::TPS1 triple 226 

mutant failed to flower even after four months of growth in inductive long-day conditions 227 

(Fig. 4D,E). In line with this observation, we detected increased expression of FT at the end 228 

of the long day (ZT 16) in the hua2-4 tps1-2 GVG::TPS1 double mutant when compared to 229 

tps1-2 GVG::TPS1 (Fig. 4F). It is interesting to note that FT expression was barely detectable 230 

at ZT 4 according to our RNA-seq analysis (Fig. S2A), which is in agreement with the 231 

diurnal expression pattern reported for FT (Kobayashi et al., 1999). Taken together, our 232 

genetic and molecular analyses indicate that hua2-4 induces flowering of tps1-2 GVG::TPS1 233 

in part through activation of FT, with minor contributions of the upstream regulators SOC1. 234 

Loss of FLC induces flowering in tps1-2 GVG::TPS1 235 

HUA2 has previously been reported to regulate flowering at least in part by regulating the 236 

expression of floral repressors of the MADS-domain transcription factor family, including 237 

FLOWERING LOCUS C (FLC) and FLOWERING LOCUS M (FLM) (Doyle et al., 2005). To 238 

test if hua2-4 induces flowering in tps-2 GVG::TPS1 through these repressors we constructed 239 

the flc-3 hua2-4 tps1-2 GVG::TPS1 triple mutant. We found that this triple mutant flowered 240 

moderately earlier than hua2-4 tps1-2 GVG::TPS1 (Fig. 4G,H). In agreement with these 241 

findings, RT-qPCR analysis failed to detect FLC expression in the hua2-4 tps1-2 GVG::TPS1 242 

mutant, whereas FLC expression was readily detectable by RT-qPCR in tps1-2 GVG::TPS1 243 

(Fig. 4I). 244 

Furthermore, we found that the expression of FLC was significantly upregulated in 245 

18-day-old tps1-2 GVG::TPS1 seedlings when compared to Col-0 in publicly available 246 

RNA-seq data (Zacharaki et al., 2022) (Fig. 5A). This prompted us to test loss off FLC on its 247 

own might be sufficient to suppress the non-flowering phenotype of tps1-2 GVG::TPS1. 248 

Indeed, we observed that flc-3 alone is capable of inducing flowering in the otherwise 249 

non-flowering tps1-2 GVG::TPS1 mutant background, even though the flc-3 tps1-2 250 

GVG::TPS1 double mutant flowered significantly later than wild-type and flc-3 (Fig. 5B,C). 251 
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These findings suggest that the failure of tps1-2 GVG::TPS1 to flower could in part be due to 252 

FLC, possibly in conjunction with other MADS-box repressors such as MADS AFFECTING 253 

FLOWERING 5 (MAF5), the expression of which was also elevated in tps1-2 GVG::TPS1 254 

(Fig. 5A). In contrast, expression of HUA2 was not changed in tps1-2 GVG::TPS1 when 255 

compared to Col-0 according to publicly available RNA-seq data (Fig. S3). 256 

hua2-4 attenuates carbon starvation responses 257 

The above data indicate that mutations in HUA2 bypass the requirement for TPS1 to induce 258 

flowering by reducing expression of MADS-box floral repressors and ultimately inducing 259 

floral integrator genes such as FT and SOC1. However, carbohydrate signaling has been 260 

shown to also indirectly regulate phase transitions, including flowering, in A. thaliana 261 

(Corbesier et al., 1998; Gibson, 2005; Xing et al., 2015; Wang et al., 2020). In part, this 262 

response is mediated by SnRK1, which in response to stress conditions such as extended 263 

darkness phosphorylates a range of proteins, including several C- and S1-class bZIP 264 

transcription factors. Activation of these transcription factors by SnRK1 induces expression 265 

of stress response genes, including SENESCENCE5 (SEN5) and DARK 266 

INDUCED6/ASPARAGINE SYNTHASE1 (DIN6/ASN1), which can be used as a proxy for 267 

SnRK1 activity (Delatte et al., 2011; Dietrich et al., 2011; Mair et al., 2015). To test if loss of 268 

HUA2 might affect flowering also more indirectly by modulating cellular energy responses, 269 

we analyzed the expression of SEN5 and DIN6. Interestingly, we found that induction of 270 

SEN5 and DIN6 in response to extended night was strongly attenuated in hua2-4 (Fig. 6A, B) 271 

similar to what we had previously observed in mutants affected in SnRK1 subunits 272 

(Zacharaki et al., 2022). This finding indicates that mutations in HUA2 might modulate 273 

carbohydrate signaling more directly and that this regulation might contribute to the induction 274 

of flowering in hua2-4 tps1-2 GVG::TPS1. In agreement with this hypothesis, we found that 275 

expression of SEN5 and DIN6 was even further attenuated in three independent hua2-4 tps1-2 276 

GVG::TPS1 lines (Fig. 6A,B). 277 

 278 

Discussion 279 
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Arabidopsis thaliana HUA2 has been reported to play a crucial role in various aspects of 280 

plant growth and development. HUA2 was initially identified as an enhancer of the 281 

AGAMOUS (AG) allele ag-4 (Chen and Meyerowitz, 1999). Later, HUA2 was found to also 282 

play a role as a repressor of flowering (Doyle et al., 2005; Wang et al., 2007). At the 283 

molecular level, HUA2 has been suggested to function as a putative transcription factor but 284 

has also been implicated in RNA processing (Cheng et al., 2003). HUA2 is expressed 285 

throughout the whole plant growth period (Chen and Meyerowitz, 1999), indicating the 286 

importance and widespread effects on plant growth. Here, our study showed that loss of 287 

HUA2 can partially restore flowering and embryogenesis in tps1-2 GVG::TPS1. 288 

It is interesting to note that in our EMS suppressor screen, we did not identify mutations in 289 

any of the HUA2-like genes, HULK1, HULK2, and HUL3, present in A. thaliana (Jali et al., 290 

2014). One possible explanation is that our genetic screen might not have been saturated or 291 

that HUA2-like genes were missed due to the relatively low sequencing coverage. However, 292 

we believe this to be rather unlikely given that our approach has recovered multiple alleles in 293 

HUA2 (this study) as well as two SnRK1 subunits (Zacharaki et al., 2022). Furthermore, 294 

flowering time is unaffected in the hua2-like single mutants and hulk2 hulk3 double mutants 295 

have been shown to be late flowering (Jali et al., 2014). Thus, it seems unlikely that mutation 296 

in any of the HUA2-like genes would suppress the non-flowering phenotype of tps1-2 297 

GVG::TPS1. 298 

HUA2 has been reported to exert its function in part by regulating the expression of 299 

MADS-box transcription factors (Doyle et al., 2005), named after MINICHROMOSOME 300 

MAINTENANCE 1 (MCM1) in yeast, AGAMOUS (AG) in Arabidopsis, DEFICIENS (DEF) 301 

in Antirrhinum, and serum response factor (SRF) in humans. MADS-BOX domain 302 

transcription factors contribute to all major aspects of the life of land plants, such as female 303 

gametophyte, floral organ identity, seed development, and flowering time control (Portereiko 304 

et al., 2006; Colombo et al., 2008; Koo et al., 2010; Lee et al., 2013; Posé et al., 2013). In this 305 

context, it is interesting to note that our transcriptome and genetic analysis identified several 306 

MADS-box transcription factors to be misregulated in tps1-2 GVG::TPS1. In particular, the 307 

well-known floral repressors FLOWERING LOCUS C (FLC) and MADS AFFECTING 308 
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FLOWERING5 (MAF5) were found to be induced in tps1-2 GVG::TPS1 compared to Col-0 309 

(Fig. 5A). Moreover, loss of FLC was sufficient to induce flowering in tps1-2 GVG::TPS1 310 

(Fig. 5B,C), suggesting that these floral repressors are partially responsible for the 311 

non-flowering phenotype of tps1-2 GVG::TPS1. Our transcriptome analyses further identified 312 

two MADS-box transcription factors, SUPPRESSOR OF OVEREXPRESSION OF 313 

CONSTANS 1 (SOC1) and AGAMOUS-LIKE 24 (AGL24), both known to promote flowering 314 

in Arabidopsis, to be upregulated in hua2-4 tps1-2 GVG::TPS1.  315 

The molecular mechanism by which HUA2 regulates the expression of these MADS-box 316 

flowering time regulators is currently unclear. However, since HUA2 localizes to the nucleus, 317 

it seems possible that HUA2 is directly involved in regulating the expression of these genes. 318 

For example, HUA2 could (directly) promote the expression of FLC, which has previously 319 

been shown to directly bind to and repress the expression of FT and SOC1 (Chen and 320 

Meyerowitz, 1999; Doyle et al., 2005; Deng et al., 2011). In such a scenario, the increased 321 

expression of FT, SOC1, and AGL24 in hua2-4 tps1-2 GVG::TPS1 would be the result of 322 

reduced expression of floral repressors such as FLC and MAF5. However, the regulation of 323 

flowering is a very complex process full of intricate feedback loops and HUA2 might regulate 324 

SOC1 and AGL24 directly, rather than indirectly. In this context, it is interesting to note that a 325 

nonfunctional hua2 allele may compensate for the loss of FLC in Ler accession (Lemus et al., 326 

2023). Alternatively, HUA2 might affect the expression of these important flowering time 327 

genes through interaction with RNA Pol-II via its CID domain, which is affected by the 328 

hua2-13 alleles (R902C). Interestingly, polymorphisms resulting in amino acid substitutions 329 

in natural accessions of A. thaliana have been reported for R902 and A983, but not for P455 330 

(The 1001 Genomes Consortium, 2016). Even though the molecular mechanisms underlying 331 

HUA2 function remain elusive, our results confirm HUA2 as a central regulator of flowering 332 

time in Arabidopsis thaliana. 333 

We have previously identified mutations in two subunits of SNF1-Related Kinase 1 (SnRK1), 334 

KIN10 and SNF4, that partially restore flowering and seed set in tps1-2 GVG::TPS1 335 

(Zacharaki et al., 2022). Identification of these suppressor mutations was in line with the role 336 

of SnRK1 as a downstream regulator of the T6P pathway and other stresses. Antagonizing 337 
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SnRK1 in the regulation of energy homeostasis in plants is target of rapamycin (TOR), the 338 

activity of which is inhibited under energy-limiting conditions (Baena-González and Hanson, 339 

2017; Belda-Palazón et al., 2022). In contrast to mutations in KIN10 and SNF4, mutations in 340 

HUA2 appear, at first glance, to be bypass mutations that induce flowering independently of 341 

T6P signaling. However, and rather unexpectedly, we did observe that mutation of HUA2 342 

attenuated the induction of the carbon starvation markers SEN5 and DIN6 in response to 343 

extended night treatments (Fig. 6A, B), indicating that mutations in HUA2 might modulate 344 

carbohydrate signaling more directly than anticipated. How exactly HUA2 modulates carbon 345 

responses in Arabidopsis remains to be established. It is well-known that T6P signaling 346 

through SnRK1 affects processes such as carbon starvation response, germination, flowering, 347 

and senescence in opposition to the TOR (target of rapamycin) pathway (Figueroa and Lunn, 348 

2016; Baena-González and Lunn, 2020). The regulatory network controlling this central 349 

metabolic hub is still not fully understood and new players are constantly added. For example, 350 

it has recently been shown that class II TPS proteins are important negative regulators of 351 

SnRK1 (Van Leene et al., 2022). 352 

Regarding a possible role of HUA2 in integrating carbon responses, it is worth noting that 353 

flavonoid-related genes (GO:0009812) were downregulated in tps1-2 GVG::TPS1 in 354 

response to dexamethasone application and the hua2 mutant (Fig. 3B). This is interesting as 355 

HUA2 is known to promote anthocyanin accumulation (Ilk et al., 2015), whereas SnRK1 has 356 

been shown to repress sucrose-induced anthocyanin production (Li et al., 2014; Meng et al., 357 

2018; Brouke et al., 2023). Thus, HUA2 might constitute an important hub in coordinating 358 

metabolic responses. However, as expression of SnRK1 subunits is not affected in hua2-4 359 

tps1-2 GVG::TPS1 when compared to tps1-2 GVG::TPS1 (Fig. S4), such a role would likely 360 

be indirect. 361 

Understanding the interplay between energy metabolism, in particular SnRK1, TOR, and T6P 362 

signaling, and plant growth and development is of utmost importance for developing plants 363 

capable of withstanding future challenges. The suppressor mutants generated in the tps1-2 364 

GVG::TPS1 background comprise an important resource in our hunt for additional factors 365 

that, like HUA2, link energy metabolism to plant development. 366 
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 367 

Material and methods 368 

Plant materials and growth conditions 369 

All T-DNA insertion mutants and transgenic lines used in this work are in the Col-0 370 

background. The tps1-2 GVG::TPS1 line used in this work is referred to as ind-TPS1 #201 in 371 

the original publication (Dijken et al., 2004). The hua2-4 (SALK_032281C) was obtained 372 

from NASC and the presence of the T-DNA insertion was confirmed by PCR (Table S5). 373 

ft-10 (GABI-Kat: 290E08) was provided by Dr. Yi Zhang, Southern University of Science 374 

and Technology, flc-3 (Kim et al., 2006) by Dr. Liangyu Liu, Capital Normal University, and 375 

soc1-2 (Lee et al., 2000) by Dr. Jie Luo, Chinese Academy of Sciences. tps1-2 GVG::TPS1 376 

hua2-4 plants were generated by crossing and double homozygous mutants were identified by 377 

phenotyping and genotyping of F2 individuals. Higher order mutants were obtained by 378 

crossing soc1-2, flc-3, and ft-10 mutants with the tps1-2 GVG::TPS1 hua2-4 double mutant 379 

and homozygous triple mutants were identified in the F2 and F3 generation. All mutant 380 

genotypes were confirmed by PCR, see Table S7 for details. Plants were planted onto nutrient 381 

soil with normal water supply and grown under either long days (LD) with a photoperiod of 382 

16 hours light at 22°C and 8 hours darkness at 20°C or in short days (SD) with a photoperiod 383 

of 8 hours light at 22°C and 16 hours darkness at 20°C. Flowering time are presented as 384 

average rosette leaf number, cauline leaf number, and total leaf number. 385 

Genome sequencing and analysis 386 

Young leaves were used for DNA extraction for sequencing using the NovaSeq 6000 387 

Sequencing platform (Novogene). Adapters and low-quality sequences of raw reads were 388 

trimmed using Trimmomatic (Bolger et al., 2014), and the clean reads were mapped to the 389 

reference genome of Col-0 using BWA-MEM (v0.7.15) (Cingolani et al., 2012). SNP calling 390 

was performed using Genome Analysis Toolkit 4 (GATK4; 391 

https://gatk.broadinstitute.org/hc/en-us) with default parameters. Variants were annotated 392 

using snpEff 4.3 (Li and Durbin, 2009) based on TAIR 10 annotation. Next, we identified the 393 

protein-coding genes with multiple non-redundant mutations and found three mutant lines 394 
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harboring unique non-synonymous mutations in the HUA2 gene. The method was inspired by 395 

our previous study that multiple EMS-induced mutants with unique mutation sites in the 396 

coding regions of SnRK1 alpha subunit rescued the non-flowering phenotype of tps1 397 

(Zacharaki et al., 2022). 398 

Gene expression analysis by RNA-seq 399 

For RNA-seq analyses, plants were grown on soil for 3 weeks in LD conditions. Leaves from 400 

21-day-old Arabidopsis thaliana were collected, immediately snap-frozen and stored at 401 

−80 °C. Total RNA was extracted using RNAprep Pure Plant Plus Kit (Tiangen, China, 402 

DP441). RNA integrity was assessed using the RNA Nano 6000 Assay Kit on the 403 

Bioanalyzer 2100 system (Agilent Technologies, CA, USA). RNA-seq libraries were 404 

generated with three independent biological replicates and sequenced on the Illumina 405 

NovaSeq platform by Annoroad Gene Technology. The raw RNA-seq reads were quality 406 

trimmed by Trimmomatic (v 0.11.9) (Bolger et al., 2014). The qualified reads were mapped 407 

to TAIR10 version genome guided by gene annotation model using HISAT2 (v2.1.0) (Kim et 408 

al., 2015). The expression level for each gene was determined by StringTie (v1.3.4) (Pertea et 409 

al., 2016). The differential expressed genes were identified by DESeq2 (Love et al., 2014). 410 

RNA isolation and RT-qPCR data analysis 411 

Total RNA was extracted from Arabidopsis seedlings using the RNA Isolation Kit (Tiangen, 412 

China, DP441) according to the manufacturer’s instructions. cDNA was synthesized from 3 413 

µg total RNA in a 10 µl reaction volume using the RevertAid Premium First Strand cDNA 414 

Synthesis Kit (Fermentas, Thermo Fisher Scientific, Rochester, NY). Quantitative real-time 415 

PCR (qRT-PCR) was performed using TB Green™ Premix Ex Taq™ II (Takara, Dalian, 416 

China). Relative gene expression was calculated using the 2−ΔΔCt method (Rao et al., 2013). 417 

All analyses were repeated three times. The primer used for qRT-PCR are listed in 418 

Supplemental Tables S5. 419 

Accession numbers 420 
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Identifiers of key genes used in this study: TPS1 (At1g78580), HUA2 (AT5G23150), SOC1 421 

(AT2G45660), FLC (AT5G10140), FT (AT1G65480). RNA-seq data generated in this study 422 

have been deposited with NCBI under the BioProject PRJNA1005425. 423 
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The data and material that support the findings of this study are available from the 425 
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Figure legends 654 

Figure 1. EMS-induced mutations in HUA2 induce flowering in tps1-2 GVG::TPS1 655 

background. A) Schematic drawing of HUA2 indicating the position and the amino acid 656 

changes caused by the EMS-induced mutations hua2-11 (P455S), hua2-12 (R902C), and 657 

hua2-13 (A983T). B) Phenotype of 9-week-old tps1-2 GVG::TPS1, hua2-11 tps1-2 658 

GVG::TPS1, hua2-12 tps1-2 GVG::TPS1, hua2-13 tps1-2 GVG::TPS1 and wild-type Col-0 659 

plants grown in LD at 23°C. C) Flowering time of genotypes is given as total leaf number 660 

(rosette (grey); cauline leaves (white)) determined after bolting. Error bars represent the 661 

standard deviation. ANOVA Tukey’s multiple comparisons test was applied, and letters 662 

represent the statistical differences among genotypes (P < 0.001). 663 

 664 

Figure 2. A T-DNA insertion in HUA2 partially rescues the flowering time phenotype of 665 

tps1-2 GVG::TPS1. A) Schematic drawing of the HUA2 locus indicating the position of the 666 

T-DNA insertion (SALK_032281C) in the 2nd intron in hua2-4. B-C) Phenotypic analysis (B) 667 

and flowering time(C) of 9-week-old wild-type Col-0, tps1-2 GVG::TPS1, hua2-4 tps1-2 668 

GVG::TPS1 and hua2-4 plants grown in LD at 23°C. Flowering time was scored as total leaf 669 

number (rosette (grey) and cauline leaves (white)) after bolting. Error bars represent the 670 

standard deviation. ANOVA Tukey’s multiple comparisons test was applied, and letters 671 

represent the statistical differences among genotypes (P < 0.001). 672 

 673 

Figure 3. Characterization of hua2-4 tps1-2 GVG::TPS1 transcriptome. A) 4-way Venn 674 

diagram of genes that are differentially expressed in tps1-2 GVG::TPS1 in response to 675 

dexamethasone treatment and/or differentially expressed in hua2-4 tps1-2 GVG::TPS1 when 676 

compared to tps1-2 GVG::TPS1. B) GO analysis of 412 genes downregulated in tps1-2 677 

GVG::TPS1 in response to dexamethasone treatment and in hua2-4 tps1-2 GVG::TPS1. C) 678 

GO analysis of 243 genes upregulated in tps1-2 GVG::TPS1 in response to dexamethasone 679 

treatment and in hua2-4 tps1-2 GVG::TPS1. D) Relative expression of AGL24 and SOC1 in 680 

tps1-2 GVG::TPS1 (white), tps1-2 GVG::TPS1 treated with dexamethasone (black), and 681 

hua2-4 tps1-2 GVG::TPS1 (grey). AGL24 and SOC1 are significantly differentially expressed. 682 
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Error bars indicate the standard deviation. ANOVA Tukey’s multiple comparisons test was 683 

applied, and letters represent the statistical differences among genotypes (P < 0.001). 684 

 685 

Figure 4. Genetic interactions between tps1-2, hua2-4, and floral regulators SOC1, FT, 686 

and FLC. A-B) Phenotypes (A) and flowering time (B) of Col-0, hua2-4, tps-2 GVG::TPS1, 687 

and soc1-2 mutant combinations. D-E) Phenotypes (D) and flowering time (E) of Col-0, 688 

hua2-4, tps-2 GVG::TPS1, and ft-10 mutant combinations. G-H) Phenotypes (G) and 689 

flowering time (H) of Col-0, hua2-4, tps-2 GVG::TPS1, and flc-3 mutant combinations. 690 

Flowering time (B, E, H) was scored as total leaf number (rosette (grey) and cauline leaves 691 

(white)) after bolting. C, F, I) Relative expression of SOC1 (C), FT (F), and FLC (I) in 692 

tps1-2 GVG::TPS1 and hua2-4 tps-2 GVG::TPS1. Gene expression was determined by 693 

RT-qPCR at the end of the long day (ZT 16). Error bars represent the standard deviation. 694 

ANOVA Tukey’s multiple comparisons test was applied, and letters represent the statistical 695 

differences among genotypes (P < 0.001). 696 

 697 

Figure 5. Loss of FLC rescues the non-flowering phenotype of tps1-2 GVG::TPS1. A) 698 

VST expression estimates for MADS-box floral repressors in 18-day-old plants. RNA-seq 699 

expression data retrieved from Zacharaki et al., 2022. Columns indicate mean VST 700 

expression estimates as implemented in DEseq2 calculated from three individual biological 701 

replicates per genotype. Circles indicate expression estimates for individual biological 702 

replicates. Asterisks indicate differential gene expression with a statistical significance of 703 

Padj < 0.01. B-C) Phenotypes (B) and total leaf number (C) of Col-0, tps1-2 GVG::TPS1, 704 

flc-3, and flc-3 tps1-2 GVG::TPS1 double mutant. Flowering time was scored as total leaf 705 

number (rosette (grey) and cauline leaves (white)) after bolting. Error bars represent the 706 

standard deviation. ANOVA Tukey’s multiple comparisons test was applied, and letters 707 

represent the statistical differences among genotypes (P < 0.001). 708 

 709 

Figure 6. Expression of SnRK1 target genes SEN5 and DIN6 in hua2-4 and hua2-4 710 

tps1-2 GVG::TPS1 double mutant. A-B) Induction of SEN5 (A) and DIN6 (B) in response 711 

to extended night is attenuated in 14-day-old of hua2-4 single mutant and three independent 712 
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lines of the hua2-4 tps1-2 GVG::TPS1 double mutant. Plants were grown for 14 days in LD 713 

(grey) before being exposed to a single extended night (12h additional darkness; black). LD, 714 

long days. Error bars represent the standard deviation. ANOVA Tukey’s multiple comparisons 715 

test was applied, and letters represent the statistical differences among genotypes (P < 0.001). 716 
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Figure 1. EMS-induced mutations in HUA2 induce flowering in tps1-2 GVG::TPS1 

background. A) Schematic drawing of HUA2 indicating the position and the amino acid 

changes caused by the EMS-induced mutations hua2-11 (P455S), hua2-12 (R902C), and hua2-

13 (A983T). B) Phenotype of 9-week-old tps1-2 GVG::TPS1, hua2-11 tps1-2 GVG::TPS1, 

hua2-12 tps1-2 GVG::TPS1, hua2-13 tps1-2 GVG::TPS1 and wild-type Col-0 plants grown in 

LD at 23°C. C) Flowering time of genotypes is given as total leaf number (rosette (grey); 

cauline leaves (white)) determined after bolting. Error bars represent the standard deviation. 

ANOVA Tukey9s multiple comparisons test was applied, and letters represent the statistical 

differences among genotypes (P < 0.001). 
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Figure 2. A T-DNA insertion in HUA2 partially rescues the flowering time phenotype of 

tps1-2 GVG::TPS1. A) Schematic drawing of the HUA2 locus indicating the position of the T-

DNA insertion (SALK_032281C) in the 2nd intron in hua2-4. B-C) Phenotypic analysis (B) 

and flowering time(C) of 9-week-old wild-type Col-0, tps1-2 GVG::TPS1, hua2-4 tps1-2 

GVG::TPS1 and hua2-4 plants grown in LD at 23°C. Flowering time was scored as total leaf 

number (rosette (grey) and cauline leaves (white)) after bolting. Error bars represent the 

standard deviation. ANOVA Tukey9s multiple comparisons test was applied, and letters 

represent the statistical differences among genotypes (P < 0.001). 
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Figure 3. Characterization of hua2-4 tps1-2 GVG::TPS1 transcriptome. A) 4-way Venn 

diagram of genes that are differentially expressed in tps1-2 GVG::TPS1 in response to 

dexamethasone treatment and/or differentially expressed in hua2-4 tps1-2 GVG::TPS1 when 

compared to tps1-2 GVG::TPS1. B) GO analysis of 412 genes downregulated in tps1-2 

GVG::TPS1 in response to dexamethasone treatment and in hua2-4 tps1-2 GVG::TPS1. C) GO 

analysis of 243 genes upregulated in tps1-2 GVG::TPS1 in response to dexamethasone 

treatment and in hua2-4 tps1-2 GVG::TPS1. D) Relative expression of AGL24 and SOC1 in 

tps1-2 GVG::TPS1 (white), tps1-2 GVG::TPS1 treated with dexamethasone (black), and hua2-

4 tps1-2 GVG::TPS1 (grey). AGL24 and SOC1 are significantly differentially expressed. Error 

bars indicate the standard deviation. ANOVA Tukey9s multiple comparisons test was applied, 

and letters represent the statistical differences among genotypes (P < 0.001). 
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Figure 4. Genetic interactions between tps1-2, hua2-4, and floral regulators SOC1, FT, 

and FLC. A-B) Phenotypes (A) and flowering time (B) of Col-0, hua2-4, tps-2 GVG::TPS1, 

and soc1-2 mutant combinations. D-E) Phenotypes (D) and flowering time (E) of Col-0, hua2-

4, tps-2 GVG::TPS1, and ft-10 mutant combinations. G-H) Phenotypes (G) and flowering time 

(H) of Col-0, hua2-4, tps-2 GVG::TPS1, and flc-3 mutant combinations. Flowering time (B, 

E, H) was scored as total leaf number (rosette (grey) and cauline leaves (white)) after bolting. 

C, F, I) Relative expression of SOC1 (C), FT (F), and FLC (I) in tps1-2 GVG::TPS1 and hua2-

4 tps-2 GVG::TPS1. Gene expression was determined by RT-qPCR at the end of the long day 

(ZT 16). Error bars represent the standard deviation. ANOVA Tukey9s multiple comparisons 

test was applied, and letters represent the statistical differences among genotypes (P < 0.001). 
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Figure 5. Loss of FLC rescues the non-flowering phenotype of tps1-2 GVG::TPS1. A) VST 

expression estimates for MADS-box floral repressors in 18-day-old plants. RNA-seq 

expression data retrieved from Zacharaki et al., 2022. Columns indicate mean VST expression 

estimates as implemented in DEseq2 calculated from three individual biological replicates per 

genotype. Circles indicate expression estimates for individual biological replicates. Asterisks 

indicate differential gene expression with a statistical significance of Padj < 0.01. B-C) 

Phenotypes (B) and total leaf number (C) of Col-0, tps1-2 GVG::TPS1, flc-3, and flc-3 tps1-2 

GVG::TPS1 double mutant. Flowering time was scored as total leaf number (rosette (grey) and 

cauline leaves (white)) after bolting. Error bars represent the standard deviation. ANOVA 

Tukey9s multiple comparisons test was applied, and letters represent the statistical differences 

among genotypes (P < 0.001). 
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Figure 6. Expression of SnRK1 target genes SEN5 and DIN6 in hua2-4 and hua2-4 tps1-

2 GVG::TPS1 double mutant. A-B) Induction of SEN5 (A) and DIN6 (B) in response to 

extended night is attenuated in 14-day-old of hua2-4 single mutant and three independent lines 

of the hua2-4 tps1-2 GVG::TPS1 double mutant. Plants were grown for 14 days in LD (grey) 

before being exposed to a single extended night (12h additional darkness; black). LD, long 

days. Error bars represent the standard deviation. ANOVA Tukey9s multiple comparisons test 

was applied, and letters represent the statistical differences among genotypes (P < 0.001). 
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