

1 SingleM and Sandpiper: Robust microbial taxonomic profiles
2 from metagenomic data

3

4 Ben J. Woodcroft^{1*}, Samuel T. N. Aroney¹, Rossen Zhao¹, Mitchell Cunningham²,
5 Joshua A. M. Mitchell¹, Linda Blackall², Gene W. Tyson¹

6

7 ¹Centre for Microbiome Research, School of Biomedical Sciences, Queensland
8 University of Technology (QUT), Translational Research Institute, Woolloongabba,
9 Australia

10 ²School of BioSciences, The University of Melbourne, Victoria, Australia

11 * To whom correspondence should be addressed.

12 Determining the taxonomy and relative abundance of microorganisms in metagenomic
13 data is a foundational problem in microbial ecology. To address the limitations of
14 existing approaches, we developed 'SingleM', which estimates community
15 composition using conserved regions within universal marker genes. SingleM
16 accurately profiles complex communities of known microbial species, and is the only
17 tool that detects species without genomic representation, even those representing
18 novel phyla. Given SingleM's computational efficiency, we applied it to 248,559
19 publicly available metagenomes and show that the vast majority of samples from
20 marine, freshwater, sediment and soil environments are dominated by novel species
21 lacking genomic representation (median relative abundance 75.0%). SingleM also
22 provides a way to identify metagenomes for the recovery of novel metagenome-
23 assembled genomes from lineages of interest, and can incorporate user-recovered
24 genomes into its reference database to improve profiling resolution. Quantifying the
25 full diversity of Bacteria and Archaea in metagenomic data shows that microbial
26 genome databases are far from saturated.

27 Introduction

28 A centrally important question asked about microbial communities is determining
29 which microorganisms are present, and at what abundance. The most accurate
30 method for answering these questions involves shotgun metagenomic sequencing of
31 the sample, which generates reads in proportion to the relative abundance and
32 genome size of each community member. These reads are analysed with
33 metagenomic taxonomic profiling software to estimate the relative abundance of each
34 microbial species in the sample.

35 Metagenomic taxonomic profiling (herein ‘taxonomic profiling’) is typically undertaken
36 by matching reads to databases derived from reference genomes, usually to sets of
37 clade-specific marker genes(Milanese et al. 2019; Blanco-Míguez et al. 2023), kmer
38 matching(Lu et al. 2017; Wood et al. 2019; Irber et al. 2022; Park et al. 2023) or by
39 read mapping to whole genomes(Sun et al. 2023). The most recent version of
40 MetaPhlAn (v4) incorporated a large set of metagenome-assembled genomes (MAGs)
41 into its reference genome database, increasing the fraction of reads it assigned
42 appreciably(Blanco-Míguez et al. 2023). However, this expanded database only
43 includes genomes which are currently assembled and of medium-to-high quality,
44 which means completely new species are missing from the taxonomic profiles
45 MetaPhlAn generates. Taxonomic profiling can also be carried out by matching reads
46 to known protein sequences i.e. a 'BLASTX'. The most widely used tool in this space
47 is Kaiju(Menzel et al. 2016) which classifies reads against all known protein sequences
48 in NCBI nr, Progenomes(Mende et al. 2020), or other large sequence databases.

49 Despite the wide variety of profiling tools that have been developed and extensively
50 benchmarked, accurate estimation of community composition remains a challenging
51 problem(Meyer et al. 2022; Poussin et al. 2022). Existing taxonomic profiling software
52 is also largely restricted to characterising the abundance of species with reference
53 genomes, missing most novel species. This inability to account for novel species has
54 long been recognized as a central limitation of taxonomic profiling from metagenomic
55 data(Menzel et al. 2016), one that significantly hinders the study of microbial ecology.

56 Here we present a fast and accurate species-level profiler of short read metagenomes
57 (‘SingleM’) that is able to identify and enumerate lineages where no complete or draft
58 genome exists. It achieves these goals by analysing only those reads which cover
59 highly conserved regions (‘windows’) of single copy marker genes. Restricting analysis
60 in this way structures a metagenomic dataset into a simplified intermediate
61 representation, an operational taxonomic unit (OTU) table for each marker gene. From
62 this representation, new algorithmic approaches can be applied which improve
63 profiling fidelity and open up new possibilities for the interpretation of taxonomic
64 profiles.

65 Results and discussion

66 Taxonomic profiling through read recruitment to conserved windows

67 SingleM is a software suite which takes short read metagenomic data as input, and
68 estimates the relative abundance and per-base read coverage of Bacteria and
69 Archaea at each taxonomic level from domain to species (**Figure 1**). SingleM starts
70 by matching reads to highly conserved regions ('windows') of 59 single copy marker
71 genes (22 Bacteria-specific, 24 Archaea-specific, 13 targeting both domains).
72 Importantly, reads are matched to these conserved gene windows by searching in
73 amino acid space, using DIAMOND BLASTX(Buchfink et al. 2021), maximising
74 recruitment of reads from divergent lineages. This is in contrast to other marker-based
75 taxonomic profilers, which map the nucleotide sequences of reads to markers directly
76 (e.g. MetaPhlAn, mOTUs).

77 In SingleM, only those reads which fully cover these 20 amino acid (60 nucleotide)
78 windows are analysed further. The 60bp nucleotide sequences of each read are
79 clustered *de novo* into operational taxonomic units (OTUs). The result is an
80 intermediate representation of the microbial community, an unannotated OTU table
81 for each marker gene that has been created independent of taxonomy. Its
82 completeness relies only on the BLASTX-based matching approach, which we show
83 below has high fidelity even for novel lineages.

84 To assign taxonomy to each OTU, SingleM uses the Genome Taxonomy Database
85 (GTDB)(Parks et al. 2022) rather than NCBI taxon strings. This decision was motivated
86 by the taxonomic consistency of the GTDB and its use of the 95% average nucleotide
87 identity threshold to delineate species, which helps establish whether each window
88 sequence represents a new species or one known from the reference database.
89 Taxonomic classification is carried out using a custom alignment algorithm 'smafa'
90 which aligns each OTU's 60bp window sequence against 60bp sequences derived
91 from GTDB species representatives(Parks et al. 2022). Compared to general purpose
92 sequence similarity search algorithms, smafa rapidly identifies the most similar
93 sequences without resorting to algorithmic heuristics. This task is made feasible by
94 observing that the query and subject sequences have already been aligned to the
95 marker window and therefore to each other. If no GTDB species encodes the query
96 window sequence within 96.7% average nucleotide identity (**Supplementary Note 1**),
97 then a truncated genus-level taxonomy is assigned using a DIAMOND BLASTX best
98 hit approach.

99 In the final step, a summarised taxonomic profile of the metagenome is created by
100 integrating the information available for each marker gene. The composition of both
101 known species and higher level taxons is estimated by applying an expectation-
102 maximisation algorithm(Kim et al. 2016) which considers the abundance and
103 taxonomic assignment made to each OTU. Then, to estimate the abundance of each
104 taxon, the abundance of OTUs assigned to the taxon or its descendants are summed,

105 for each marker gene. The abundance of each taxon is calculated as a trimmed mean
106 taken across the marker genes, excluding those with total abundance in the lowest
107 and highest 10% to account for taxonomy misassignment and lineages with reduced
108 genomes that do not encode all marker genes. Noise in the taxonomic profile is also
109 reduced by removing all taxons with a total abundance of less than 0.35X, a threshold
110 developed by application of the algorithm to CAMI 1 benchmarks(Sczyrba et al. 2017)
111 and public datasets (data not shown). In these cases the abundance is re-assigned to
112 a higher level taxon with $\geq 0.35X$ coverage.

113 **Comparing SingleM to other taxonomic profilers**

114 The taxonomic profiling accuracy of SingleM was first benchmarked on simulated
115 communities which contained genomes from known species, testing against other
116 tools for which a GTDB R207 reference database was available. Complex microbial
117 communities were modelled after the CAMI 2 'marine' benchmark datasets(Meyer et
118 al. 2022). We found the performance of SingleM was superior, at an average of >0.13
119 better Bray-Curtis dissimilarity than all other tools at the species level (**Figure 2A**).
120 SingleM was also the top-ranked tool in terms of F1 score, false positive rate, Jaccard
121 index, L1 norm error and purity (**Supplementary Data 2**), but similar to other marker-
122 based methods was less performant when genomes were present at lower abundance
123 (**Supplementary Note 2**). We note that for MetaPhlAn and mOTUs, use of an officially
124 supported translation step from NCBI to GTDB taxonomy was required for
125 comparison, which may have adversely affected these tools' accuracy.

126 In analysing these benchmark datasets, SingleM was fast, using $\sim 20\%$ of the runtime
127 of MetaPhlAn and mOTUs when using a single CPU, analysing 1.3 million reads per
128 minute (**Figure 2B**). The only faster workflows tested was Kraken2+Bracken, which
129 used 42% of the runtime of SingleM respectively. However, Kraken2+Bracken used a
130 much larger quantity of RAM (295GB). SingleM, in contrast, used the least amount of
131 RAM (2GB). The lightweight runtime requirements of SingleM are a consequence of
132 its optimised upfront detection of reads derived from marker gene windows, such that
133 no further processing of the vast majority of reads is required.

134 To assess whether SingleM and other profiling tools can accurately represent novel
135 lineages, we selected 120 species which were new in GTDB R214, analysing them
136 with a reference database derived from the previous version R207. For each selected
137 novel genome, reads were simulated at 10X coverage, creating 120 mock
138 communities. To establish a point of reference in these mock communities, a known
139 reference genome from the alternate domain was added at equal abundance i.e. a
140 known bacteria for novel archaea, and a known archaeon for novel bacteria.

141 The classification accuracy of five profiling tools with available R207 reference
142 databases were assessed by comparing their estimated profiles to the gold standard
143 at the highest resolution possible given the constraints of the R207 taxonomy e.g.
144 class-level Bray-Curtis dissimilarity for genomes from novel orders, order-level

145 dissimilarity for novel families, and so on. On this benchmark, a Bray-Curtis
146 dissimilarity of 0 indicates the gold standard profile was perfectly reconstructed, while
147 0.5 indicates that the novel lineage was entirely missed by the tool. SingleM showed
148 superior performance across all novelty levels (average 0.13 ± 0.13 , **Figure 2D**,
149 **Supplementary Figure 1**) compared to other tools (average 0.46 ± 0.10).

150 The specific ability of tools to simply detect novel lineages, rather than both detect and
151 classify them, was then assessed using the same benchmark data. Each tool's ability
152 was assessed by calculating their profile's Bray-Curtis dissimilarity to the gold
153 standard as before, but at the least resolved taxonomic level possible, the kingdom
154 level. SingleM performed very well in detecting the novel lineages within these 120
155 mock communities (**Figure 2E**), averaging a Bray-Curtis dissimilarity of 0.04 ± 0.05 . In
156 comparison, most other tools scored an average of >0.45 (MetaPhlAn, mOTUs,
157 sourmash, MAP2B). The only exceptions were Kraken2+Bracken and Kaiju, which
158 scored 0.28 ± 0.15 and 0.25 ± 0.14 . However, the performance of Kraken2+Bracken and
159 Kaiju on novel archaea was substantially worse (0.38 ± 0.15 and 0.30 ± 0.14) than on
160 novel bacteria (0.21 ± 0.11 and 0.22 ± 0.12). This suggests that their performance on
161 novel bacteria may be partially a consequence of there being more bacterial reference
162 genomes than a true ability to generalise to novel lineages. The bias of all tools other
163 than SingleM against detection of novel lineages was pronounced even when the
164 novel species was contained within a known genus. This was particularly true for
165 previous marker-based methods. We attribute SingleM's strong performance on this
166 benchmark to its use of a sequence similarity search method based on amino acids
167 rather than nucleotides during read recruitment, which allows divergent marker gene
168 sequences to be detected.

169 We conclude that most taxonomic profiling tools fail to adequately weight novel
170 lineages in their taxonomic profiles, even when the novelty is only at the species level.
171 In contrast, based on these analyses and others carried out on highly reduced
172 symbiont genomes (**Supplementary Note 3**), we found SingleM reliably detects
173 previously unknown lineages even if they are novel at the phylum level.

174 Taxonomic profiles of publicly available metagenomes

175 Having established SingleM as a scalable and accurate taxonomic profiling tool, we
176 applied it to metagenomes at the NCBI SRA(Kodama et al. 2012) that were publicly
177 available in December 2021. Community profiles were derived from 248,559
178 metagenomes in 17,617 projects comprising 1.3 Pbp of sequencing data, an amount
179 which was ~3X the quantity annotated by previous rRNA-based efforts(Martiny et al.
180 2022). Results of this large scale analysis are made available at the 'Sandpiper'
181 website (<https://sandpiper.qut.edu.au>) where taxonomic profiles can be searched
182 based on GTDB R214 taxonomy strings or dataset accession.

183 This large set of SingleM-derived community profiles allowed us to estimate how much
184 of the worlds' metagenomes are represented in reference genome databases, and

185 how much is missing (**Supplementary Note 4**). In light of recent large-scale MAG
186 mining efforts(Almeida et al. 2021; Nayfach et al. 2021; Paoli et al. 2022; Ma et al.
187 2023; Schmidt et al. 2023), all community profiles were first reassigned taxonomy
188 using a GTDB reference database supplemented with newly mined MAGs. Known
189 species dominated most host-associated datasets, with an average of 78% of each
190 community assigned a species level taxonomy after weighting by relative abundance
191 (**Figure 3, Supplementary Table 1**). A higher average (henceforth 'known species
192 fraction') was observed in human and mouse metagenomes (80% and 85%), likely
193 due to their being the subject of more studies (111, 297 and 7,354 metagenomes
194 respectively, **Supplementary Data 3**) and comparatively less diverse communities.
195 Bovine, pig and plant-associated metagenomes are less well represented in reference
196 databases (46%, 71% and 56%). In contrast, the known species fraction was much
197 lower in environmental metagenomes. As expected, soils (14%, median 8%) and
198 sediments (20%, median 12%) had the lowest known species fraction. Marine (41%,
199 median 40%) and freshwater (45%, median 46%) metagenomes were somewhat
200 better characterised.

201 Cultured species made up 47% of host-associated taxonomic profiles on average
202 (median 48%, **Supplementary Table 1**). This is consistent with the recent observation
203 that 29% of the UHGG human gut MAG collection has a cultured species
204 representative(Almeida et al. 2021) since higher abundance species are more likely
205 to have been cultured. In contrast, cultured species made up only a very small minority
206 of profiles from marine, freshwater, aquatic, sediment and soil environments (median
207 2.6%, mean 8.0%). Uncultured species particularly dominated in soils, where a median
208 of 0.8% were cultured (mean 3.5%).

209 Together, the recent MAG mining efforts added 82,619 new species level lineages to
210 the GTDB R214-based reference database, which was originally composed of 85,205
211 species. Overall, the median known species fraction in environmental metagenomes
212 was 25.0% (mean 30.2%). However, environmental metagenomes already had a
213 19.9% median known species fraction prior to the addition of these new MAGs (mean
214 25.6%, **Supplementary Table 1**). Despite almost doubling the set of available
215 species-level reference genomes, the additional MAGs only improved the median
216 known species fraction of environmental metagenomes by 5.1%. These results
217 underscore the utility of using taxonomic profiling approaches that account for novel
218 lineages and show that a remarkable diversity of organisms are not yet represented in
219 reference genome databases at the species level.

220 New metagenomic sequencing often detects new microbial diversity, so we next
221 provide a historical view of the rate at which new species are encountered in
222 metagenomic sampling. The average known species fraction of metagenomes
223 released each year was calculated, counting only those species where a genome was
224 available at the start of that year (**Figure 3**). This measure estimates the relative
225 abundance of novel species in newly sequenced metagenomes given the state of the
226 reference database available before sequencing. More than 50% of newly sequenced

227 host-associated metagenomes were assigned at the species level since ~2012.
228 Steady progress is being made towards high known species fractions in 'ecological
229 metagenomes' (an NCBI taxonomy category which includes environmental
230 metagenomes and biomes such as wastewater), but at current rates the reference
231 database is much further from saturation.

232 At the phylum level, Bacteroidota and Bacillota_A (which includes many lineages
233 previously classified as Firmicutes) comprised the majority of commonly sequenced
234 animal metagenomes (human, mouse, pig and cow), with a combined average of 73%
235 (**Figure 3**). Pseudomonadota (previously known as Proteobacteria(Oren and Garrity
236 2021)) was the most abundant phyla in the 5 most commonly sampled environmental
237 biomes (soil, sediment, marine, freshwater, aquatic), accounting for 36% of average
238 relative abundance. It is also the highest abundance phylum in many less well sampled
239 environments (**Supplementary Data 3**). This phyla also appears frequently in some
240 host-associated metagenomes, dominating plant metagenomes with an average
241 relative abundance of 72%, and ranking in the top five phyla for both pigs and humans.
242 These analyses underline the remarkable ability of Pseudomonadota to adapt to and
243 dominate a wide variety of different environments.

244 We intend for Sandpiper to be a continually updated resource for the community as
245 new metagenomes are sequenced and genomes recovered. SingleM has largely
246 solved the problem of novel lineage detection (**Figure 2**), so the continual efforts to
247 improve reference databases do not necessitate a full reanalysis of previously
248 processed raw metagenomic reads. Only the taxonomic assignment of OTUs and
249 downstream summarisation into taxonomic profiles need to be recomputed,
250 operations which are markedly less resource-intensive. For instance, updating the
251 248,559 Sandpiper profiles to GTDB R214 taxonomy only took 2 days and a total of
252 ~30,000 CPU hours on an in-house compute cluster.

253 Taxonomically targeted MAG recovery from public metagenomes

254 One application of the Sandpiper dataset is to inform genome recovery efforts aimed
255 at specific lineages of interest. The assembly and binning of metagenomic datasets
256 involves computationally intensive techniques, making them challenging to apply
257 wholesale to all public datasets. MAG recovery efforts from both human and
258 environmental samples have only been undertaken at the scale of ~13,000
259 metagenomes per study(Parks et al. 2017; Almeida et al. 2019; Pasolli et al. 2019;
260 Nayfach et al. 2021; Paoli et al. 2022; Ma et al. 2023), with the exception of the recent
261 SPIRE initiative(Schmidt et al. 2023) (~100,000 samples). While impressive, these
262 efforts encompass less than half of the metagenomes currently in Sandpiper. Further,
263 improving MAG quality by reapplication of genome recovery pipelines with updated
264 bioinformatic tools requires significant computation. Application of state of the art
265 genome recovery methods across all public datasets is therefore out of most
266 researchers' reach.

267 For studies wishing to concentrate analysis on specific taxa, we devised a simple
268 procedure to suggest samples likely to yield novel genomes based upon the estimated
269 coverage and relative abundance of the taxa (see methods). To test the procedure,
270 we attempted recovery of MAGs from four related bacterial phyla, the Muirbacteria,
271 Wallbacteria, Riflebacteria and Fusobacteria. These phyla branch together near the
272 root of Bacteria(Coleman et al. 2021) and are underrepresented in reference
273 databases, with 1, 3, 22 and 95 species representatives available at the time of
274 analysis (GTDB R207), respectively. Further taxonomic sampling of these phyla may
275 inform future efforts to confidently place the Bacterial root.

276 In this proof of concept experiment, we analysed 63 metagenomes predicted to
277 contain novel species belonging to these phyla at sufficient abundance to enable
278 genome recovery. Novel genomes were successfully recovered from 55 of these
279 metagenomes (87% of samples, 62 MAGs from these phyla in total) with
280 completeness >70% and contamination <5% (average 93% and 2%) (**Supplementary**
281 **Data 4**). All of these MAGs were novel to at least the species level and include
282 representatives of new genera from each of the four phyla. Genomes from
283 Muirbacteria, Wallbacteria and Riflebacteria phyla were mostly derived from
284 industrial(Yin et al. 2018, 2020; Cheng et al. 2019; Ma et al. 2021) or environmental
285 communities. Recovered Fusobacteria were associated with non-human eukaryotic
286 hosts including insects(Laviad-Shitrit et al. 2020), birds(Cao et al. 2020),
287 monkeys(Rhoades et al. 2021), and fish(Le Doujet et al. 2019; Riiser et al. 2020;
288 Collins et al. 2021; Pratte et al. 2022). We conclude that Sandpiper can be used to
289 expand the diversity of genomes present in reference databases through the targeted
290 application of genome recovery pipelines.

291 **Supplementing reference data with newly recovered genomes**

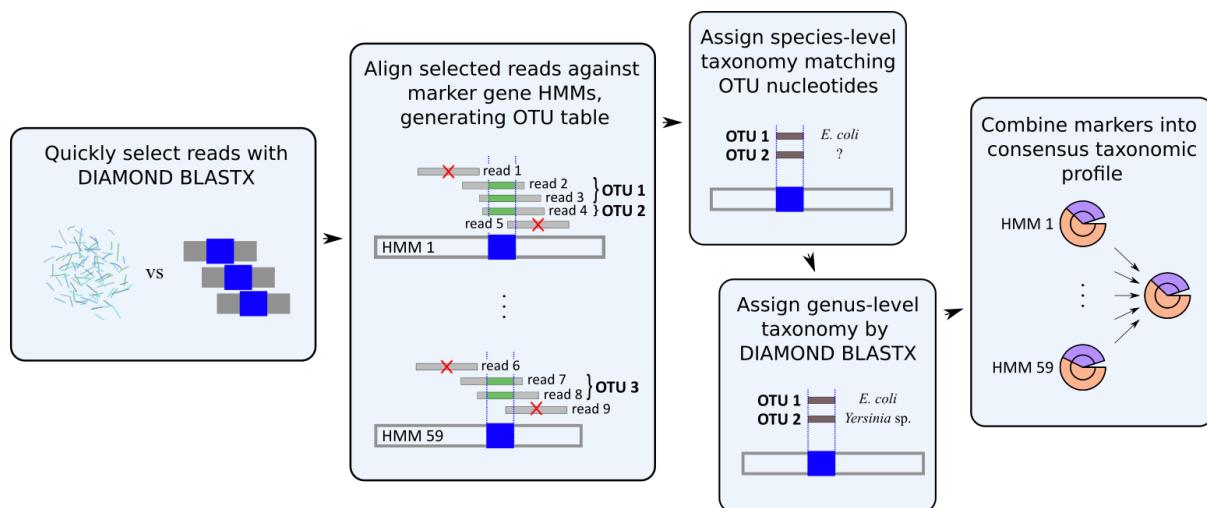
292 Genome-centric workflows have become a mainstay of metagenomic analysis due to
293 their ability to recover genomes from samples *de novo*. However, assembly and
294 binning typically only yield MAGs for a subset of community members due to limited
295 coverage or high strain heterogeneity(Meziti et al. 2021). To estimate relative
296 abundance in their microbial communities, researchers are usually forced to restrict
297 analysis to MAGs they themselves recovered, or to use general reference databases
298 that exclude their MAGs. To enable a more holistic taxonomic profile to be obtained in
299 these scenarios, we provide a 'supplement' mode of SingleM, which adds genomes to
300 the SingleM reference database. Profiling metagenomes with this supplemented
301 reference database enables users to integrate the wealth of data available in reference
302 genome databases with their newly discovered MAGs.

303 **Conclusion**

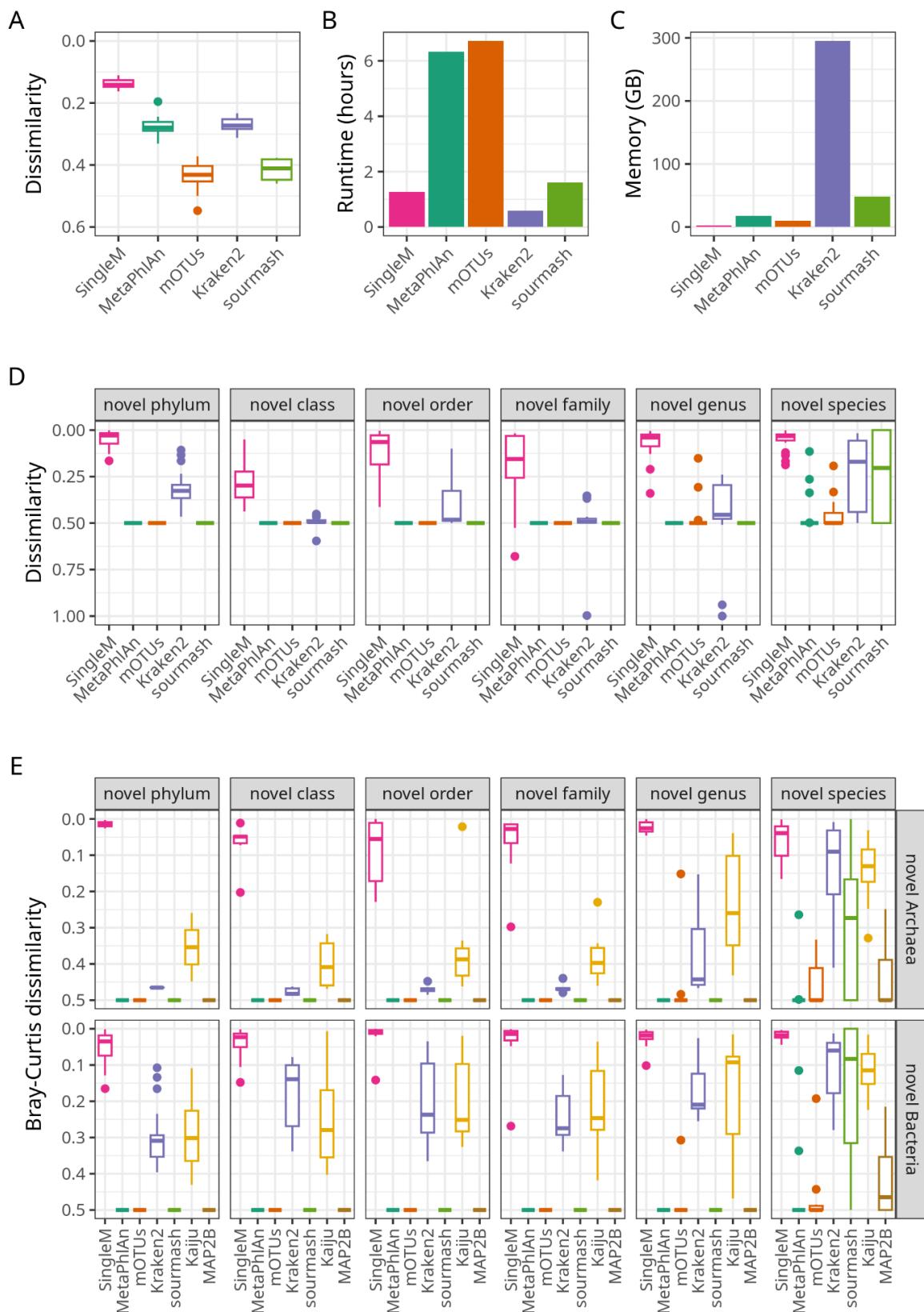
304 Single copy marker genes have long been used in microbial ecology for predicting the
305 quality of assembled genomes(Parks et al. 2015), for phylogenomic inference(Wu and
306 Eisen 2008) and for taxonomic profiling(Milanese et al. 2019). Here we have

307 established that not only are entire genes conserved, but specific motifs are sufficiently
308 conserved to allow unassembled reads from novel genomes to be reliably identified
309 as homologous. Conserved sequence windows can be used to solve a number of
310 bioinformatic problems in microbial ecology beyond those discussed here, and we plan
311 on exploring these in future. Taken together, SingleM and Sandpiper bring together
312 three sub-fields of microbial ecology—taxonomic profiling, public data analysis and
313 genome-centric metagenomics—in a way that we hope will provide better utilisation of
314 public datasets and improved global context for metagenomic analyses.

315 **Figures**



316
317 **Figure 1. Conceptual overview of the SingleM algorithm.** Raw metagenomic reads
318 are first filtered to find those that are homologous to any of the 59 marker genes.
319 Selected reads are translated and aligned to their marker's hidden Markov model
320 (HMM), discarding any which do not fully cover the 20 amino acid window. The
321 remaining reads are clustered into operational taxonomic units (OTUs) using the
322 corresponding 60 nucleotides. Taxonomy is assigned to each OTU either at the
323 species or genus levels by smafa or DIAMOND BLASTX, respectively. In the final step,
324 the assigned taxonomy of each cluster is used to create a taxonomic profile which
325 summarises the read coverage observed across the 59 marker genes.



328 **Figure 2. Metagenomic taxonomic profiling tool benchmarks.** Complex
329 communities of known species were used to benchmark each tool in terms of **(A)**
330 accuracy defined as Bray-Curtis dissimilarity to true community structure at the
331 species level, **(B)** runtime and **(C)** RAM usage. In **(A)**, a dissimilarity of 0 indicates a
332 perfect reconstruction of the mock community. The Kraken2+Backen result is included
333 for context, though this workflow estimates the read count of each species rather than
334 their relative abundance. Kaiju and MAP2B are excluded from the accuracy
335 benchmark as no Genome Taxonomy Database (GTDB) R207 reference database
336 was available. In **(D)**, accuracy of each tool is shown for 120 mock communities, where
337 each community was composed of 1 known species and 1 lineage new in R214, at
338 equal abundance. Accuracy was assessed on the most specific rank possible given
339 the constraints of the R207 taxonomy e.g. class level profile dissimilarity for genomes
340 from novel orders. In **(E)**, accuracy for each tool is shown for the same communities,
341 but assessed at the kingdom level as a measure of how well each tool detects novel
342 lineages. A Bray-Curtis dissimilarity of 0 indicates full detection, where 0.5 indicates
343 that the novel lineage was completely undetected. Kaiju and MAP2B are included in
344 this benchmark only since they do not output GTDB R207-based taxonomy. In **(D)** and
345 **(E)**, the Kraken2+Backen workflow is directly comparable to the other tools since the
346 1:1 ratio of the two simulated species holds sufficiently for both read count and relative
347 abundance.

348



349

350 **Figure 3. Summary of public metagenomes.** Panels **(A)** and **(B)** show the fraction
351 of each metagenome that has been assigned a species-level taxonomy. The
352 remaining fraction currently lacks genomic representation. Plotted is the distribution of
353 these fractions across datasets derived from various eukaryotic host-associated **(A)**
354 and ecological **(B)** environments. In **(C)**, the average fraction of metagenomes
355 released in each year assigned to the species level is shown, counting only those
356 species where a genome was available the year before. The dotted line is a linear
357 model of each environment type, weighted by metagenome count. Less metagenomes
358 were published earlier on, so early known species fractions are more variable, spiking
359 as high as 80%. Panels **(D)** and **(E)** show the relative abundance of the phyla observed
360 in selected eukaryotic host-associated and environmental metagenomes,
361 respectively.

362 **Methods**

363 **Description of the SingleM algorithm**

364 A candidate list of putative single-copy, broad-range marker genes was formed from
365 ribosomal proteins originally derived from PhyloSift(Darling et al. 2014) and GTDB-
366 Tk(Chaumeil et al. 2019) marker gene sets. Some of these genes span both bacterial
367 and archaeal domains, whereas others are restricted to one domain. The set of marker
368 genes was chosen such that each gene is present in either >90% of genomes in
369 Bacteria or >85% of genomes in Archaea, with an average copy number of <1.05. We
370 allowed less than 100% prevalence of these genes in their respective target domains
371 because some reference genomes are incomplete (e.g. MAGs) and some specific
372 lineages have lost certain genes (e.g. Patescibacteria(Méheust et al. 2019)). This
373 heterogeneity is at least partially rescued by robust statistical measures (i.e. trimmed
374 mean) during the 'condense' step, detailed below.

375 The reference database of SingleM (the 'metapackage') is organised as a collection
376 of 'packages'. Each package details one gene and one window is chosen per gene.
377 To create these packages, Pfam and TIGRFam HMMs associated with each gene were
378 used to extract sequences from GTDB species representatives. The resulting set of
379 SingleM packages were then reduced in number by applying 'singlem pipe' to the
380 predicted transcripts from GTDB representative species as well as to simulated reads
381 derived from one representative per phyla. Packages that were single-copy in >85%
382 of a domain's transcripts and simulated reads were included in the metapackage with
383 that domain as a target.

384 To determine a window position for each gene suitable which is highly conserved and
385 suitable for recruitment of metagenomic reads, raw reads from complex peat
386 metagenomes, which are known to contain reads from a broad range of microbial
387 taxa(Woodcroft et al. 2018) (SRA accessions SRR7151621, SRR7151618 and
388 SRR7151620), were aligned against each HMM using GraftM(Boyd et al. 2018) with
389 parameters 'graftM graft --search_and_align_only'. The generated alignments were

390 then used to identify the position of a 20 amino acid length window containing the
391 greatest number of aligned nucleotides to the marker gene's HMM, using 'singlem
392 seqs' with default parameters.

393 Generating marker-wise OTU tables

394 Raw metagenomic reads are assigned to taxonomically annotated OTUs through the
395 application of several steps, described below. These steps are implemented in the
396 'singlem pipe' subcommand. Many of the parameters detailed can be changed by the
397 user, here only the default parameters are shown. Similarly, a number of performance
398 optimisations are omitted for brevity.

399 1. The first step in the SingleM algorithm, referred to in the codebase as the
400 'prefilter step', is to recruit raw reads to marker gene windows. To hasten this
401 procedure, reads are initially selected by DIAMOND blastx against marker gene
402 sequences from the target domains for each marker. Despite the improved
403 speed afforded by the DIAMOND algorithm(Buchfink et al. 2021), selection of
404 raw reads to align against each marker's HMM remains the bottleneck in
405 SingleM's runtime. We take three measures to limit the runtime of this
406 DIAMOND search: (1) use of the DIAMOND 'makeidx' feature for small
407 reference databases(Edgar et al. 2022), (2) trimming of database sequences
408 to the 20 amino acids in the windows plus 30 amino acids on each side, and
409 (3) sequence dereplication at 60% identity using CD-HIT(Fu et al. 2012) with
410 parameters 'cd-hit -n 3 -M 0 -c 0.6'. DIAMOND BLASTX is run with parameters
411 'diamond blastx --outfmt 6 qseqid full_qseq sseqid --top 1 --eval 0.01 --block-
412 size 0.5 --target-indexed -c1 --query-gencode 4'. A single database comprising
413 sequences from all markers is used. The output from this step is a set of read
414 identifiers, read sequences and the marker gene they best match to. We found
415 that specifying translation table 4 worked well in practice, because doing so
416 detects those lineages which use translation table 4, but also because
417 inappropriately translated sequences from genomes which use table 11 (the
418 standard bacterial table) were excluded on the basis of sequence dissimilarity.
419 In this default mode, reads are assigned only to their best matching marker
420 gene, which is appropriate for short reads. Long reads, but contrast, may
421 encode genes from multiple markers colocated on a genome. Therefore we
422 suggest the current direct BLASTX approach used by default in SingleM is
423 inappropriate for long reads.

424 If the input to SingleM is a genome ('--genome-fasta-files'), then a quick, rough
425 transcriptome generated by OrfM(Woodcroft et al. 2016) using a minimum gene
426 length of 100 amino acids. Since many of these predicted transcripts are not
427 true genes and may overlap, a dereplication step is applied after marker HMM
428 alignment such that only the longest open reading frame is kept at each locus.

429 2. Candidate sequences are aligned to the HMMs of their respective marker
430 genes. Translated open reading frames are identified with OrfM using a

- 431 minimum open reading from size of 24 amino acids ('orfm -m 72') and then
432 aligned using the hmmalign tool in the HMMER suite(Eddy 2011).
- 433 3. Aligned amino acid sequences are filtered to remove any sequences which do
434 not cover the window. Specifically, any sequences which do not align to both
435 the first and last positions of the window are excluded from further analysis.
- 436 4. Sequences are translated from aligned amino acid sequences back into aligned
437 nucleotide sequences, using the matching read sequence. This 60bp
438 nucleotide sequence is then the 'OTU' sequence. The redundancy of the
439 genetic code means that these 60bp are a richer source of information than the
440 20 amino acid sequence when differentiating closely related OTUs and when
441 attempting to apply taxonomic assignment to the species level. This sequence
442 may include gaps, but any inserts are removed so that all OTU sequences are
443 60bp in length. This consistency of length facilitates efficient comparison of
444 OTU sequences and taxonomic assignment. Sequences containing insertions
445 were also found to be rare in practice.
- 446 5. Sequences with the same OTU sequence are aggregated together by exact
447 sequence clustering of the 60bp windows, creating an OTU table. This OTU
448 table can be dereplicated by inexact sequence clustering using the 'singlem
449 summarise' subcommand, if desired, though the 'condense' algorithm includes
450 correction mechanisms for sequencing error (see below).
- 451 6. The 'coverage' of each OTU is calculated using the established relationship
452 between kmer coverage and read coverage as set out by Velvet(Zerbino and
453 Birney 2008):

$$coverage = \frac{nL}{L - k + 1}$$

- 454 Where n is the number of reads with the OTU sequence, L is the length of the
455 read and k is the length of the OTU sequence including inserts but excluding
456 gaps (usually 60 bp). In practice, each read may have a different length and/or
457 aligned length within the 20 amino acids, so the coverage contribution of each
458 read is calculated separately according to the formula above. The coverage
459 assigned to an OTU is the sum of each read's contribution.
- 460 7. OTUs are assigned taxonomic annotations by matching their nucleotide OTU
461 sequences to a database of species representatives from the GTDB(Parks et
462 al. 2022), using the 'query' procedure (see below). Sequences are assigned to
463 their closest matching species with a maximum difference of 3bp, since 3 out
464 of 60bp corresponds to 95%, the ANI threshold used for species delineation in
465 the GTDB(Parks et al. 2020). Sequences are matched using the 'naive' method
466 of the 'singlem query' machinery, described below. When several species have
467 equivalent best hits, the taxonomic assignment of the OTU is then the last
468

469 common ancestor of these species. The 'condense' algorithm incorporates
470 these equal best hits directly to disambiguate taxonomy in these cases (see
471 below).

472 8. OTUs which are not assigned taxonomy in the previous step are assigned
473 taxonomy via DIAMOND BLASTX. The raw, unaligned and untrimmed read
474 sequences of each OTU are used as input, searching against a database of
475 sequences derived from the OTU's assigned marker gene. Like the initial read
476 recruitment (prefilter) step, this database consists of protein sequences
477 trimmed to the ~20 amino acids which align to the HMM window plus 30 amino
478 acids on either side using translation table 4, but unlike the prefilter step the
479 database is not dereplicated. The database also includes protein sequences
480 derived from 'off-target' species e.g. archaeal sequences from bacterial-only
481 markers. Eukaryotic sequences are also included as off-target, as derived from
482 UniProt truncating the taxonomy to the kingdom level. DIAMOND is run with
483 parameters 'diamond blastx --outfmt 6 qseqid sseqid bitscore --top 1 --eval
484 0.01 --block-size 0.5 --target-indexed -c1 --query-gencode 4'. The taxonomic
485 annotations of these hits are processed in a similar way to the previous step:
486 equal best hits are recorded for later use by 'condense'. Within an OTU table,
487 the taxonomy of each OTU is calculated by gathering a taxon string for each
488 read in the OTU, which is the last common ancestor of taxons which hit best for
489 each read. Then the taxonomy of the OTU is the most specific taxonomic
490 annotation such that 50% of the reads' last common ancestors agree.

491 In the generated OTU table and condensed taxonomic profile (see below), no
492 assignment is made to the species level for entries that are assigned taxonomy
493 through DIAMOND BLASTX. Taxonomic annotation made to the genus level at
494 most, since there is insufficient identity on the nucleotide level to be assigned
495 to a specific species. For species where no representative is known to the
496 genus level (novel genera, novel families, etc.), a genus level annotation will be
497 incorrect. In the current implementation, we do not attempt to remedy this and
498 as such interpret genus level assignments as being either correct or
499 representing lineages that are novel at the genus level or higher.

500 9. The OTU tables generated are optionally output as an 'OTU table', which is a
501 tab-separated file containing one OTU per line, or an 'archive OTU table', which
502 is a JSON format file containing more detailed information about each OTU.
503 10. The OTU table is optionally subject to the 'condense' procedure (see below),
504 and output as a 'taxonomic profile' and/or Krona HTML(Ondov et al. 2011).

505 Query: assigning taxonomy by comparison of OTU window sequences

506 An OTU window sequence is a 60bp sequence which has been aligned to a marker's
507 HMM. Unlike a traditional sequence similarity search, which might use a more general
508 local alignment algorithm such as Smith-Waterman to find an optimal alignment
509 between two sequences, comparison between window sequences is a simpler

510 problem. This is because the two sequences are aligned before comparison, since
511 they have both been aligned to the same HMM. Comparing window sequences can
512 therefore be achieved through simple pairwise comparison of the pair of bases at each
513 position in the window.

514 This simpler problem can further be reframed as a vector similarity search problem,
515 by one-hot binary encoding the base at each position. We represent A with [1,0,0,0,0],
516 T with [0,1,0,0,0], C with [0,0,1,0,0], G with [0,0,0,1,0], and other characters (Ns, gaps
517 or IUPAC codes) with [0,0,0,0,1]. Each position of the 60bp is represented by one of
518 these, and concatenating these across the 60 positions, we generate a binary vector
519 of length $60 \times 5 = 300$ for each sequence. For sequences containing only A, T, G and
520 C, the number of positions that differ between two sequences is the Manhattan
521 distance between their vector representations divided by 2. It is divided by 2 since at
522 a mismatching base position, 2 columns will differ.

523 Calculating these distances can be quickly computed particularly since modern
524 compilers utilise CPU instructions which operate on vectors of bits. If we have one
525 60bp sequence as a query and a comparatively small number sequences in a
526 database, such as the current number of species in GTDB R214 (85,205 species, each
527 containing ~1 unique single copy marker gene sequence), then we can compute the
528 most similar set of sequences by brute force, comparing the query sequence against
529 each database sequence. We term this approach the 'naive' method.

530 For larger scale comparison of sequences, the search time can become prohibitive.
531 To speed this search up, the problem can be solved inexactly. The inexact version is
532 known as approximate k-nearest neighbours (approximate kNN), here in 300
533 dimensional space. Approximate kNN is a well studied problem, particularly since it
534 has many applications in machine learning(Aumüller et al. 2020). However, most
535 implementations assume each dimension is not binary but instead a float value. This
536 likely means that the implementations are not computationally optimised as they might
537 be, but nonetheless provide accurate results. One exception to this is
538 NMSLIB(Boytsov and Naidan 2013), which does provide a binary space
539 implementation. We tested a number of binary and floating point implementations,
540 finding that SCANN(Guo et al. 13--18 Jul 2020) was the most accurate and fast,
541 though ANNOY (<https://github.com/spotify/annoy>) required less RAM and had a
542 smaller start-up time since it is an on-disk implementation.

543 Due to the merely approximate results and slightly ill-suited implementations available,
544 we implemented an exact brute force search program, 'smafa', and use it as the default
545 window search method ('smafa-naive' in the SingleM codebase). Implemented in the
546 Rust programming language using needletail
547 (<https://github.com/onecodex/needletail>), smafa efficiently and exactly finds similar
548 window sequences. It uses the postcard format
549 (<https://github.com/jamesmunns/postcard>) to store its sequence database with the

550 primary aim of fast database load times. For GTDB 08-RS214, the average marker's
551 sequences require only a ~20MB sequence database file.

552 Condense: combining OTU tables from each marker gene into a single taxonomic profile
553 On their own, the set of OTUs from each marker can be considered a taxonomic
554 profile. However, we provide a method to combine ('condense') these into a single
555 taxonomic profile which is advantageous for several reasons. Holistically using the
556 information contained across marker genes is more sensitive, because lower
557 abundance community members may not be represented in each marker's OTU table.
558 It also allows more specificity in taxonomic annotations, because sequences shared
559 by multiple taxa in one marker's table may be disambiguated by the sequences
560 observed in another. For instance, if one marker's OTU table contains a sequence that
561 matches 2 species in one genus (species A and species B), but another marker only
562 contains sequences that match species B, then it is most likely that species B is
563 present in the sample while species A is not. Finally, inspecting one taxonomic profile
564 is simply more convenient than inspecting all 59 individually.

565 There are some important disadvantages of condensing each markers' OTU table into
566 a single taxonomic profile, though. In the current implementation, information about
567 the diversity of sequences is not incorporated directly, only their taxonomic affiliation(s)
568 are. For instance, consider a situation where there are two window sequences from
569 different species assigned to a genus G in each of the marker OTU tables, but neither
570 of these species are contained in the reference database (GTDB). The final taxonomic
571 profile will show only coverage of the genus G, with no delineation of lineages at the
572 species level within this genus. In this case, community structure at the species level
573 will not be evident in the condensed taxonomic profile, even though the marker OTU
574 tables show two separate species from the genus are present.

575 The condense algorithm works in several steps:

- 576 1. Any OTUs which have 'off-target' taxonomic annotations are removed. These
577 might be Eukaryotic OTUs, or bacterial OTUs which matched archaeal markers,
578 or OTUs not assigned domain-level taxonomy, for instance.
- 579 2. Species-wise expectation-maximisation is used to disambiguate the taxonomic
580 affiliation of OTUs that have been assigned to multiple species when matching
581 their nucleotide window sequences to GTDB species nucleotide window
582 sequences. In some cases, window sequences derived from multiple species
583 are identical, and novel strains may map with identical imperfect identity to
584 multiple species. To address these situations, information from other marker
585 gene OTUs is used. Specifically, in this iterative expectation-maximisation
586 procedure, each species is initially assigned equal abundance. Then for each
587 OTU, the coverage is partitioned according to the abundance ratio of species
588 that the OTU matches. The abundance of each species is then re-calculated as
589 the average abundance across the markers (counting only markers targeting
590 the domain to which the species belongs), and the procedure repeated until no

591 species changes in abundance by >0.001 coverage units. A simplified example
592 of this procedure is provided in **Supplementary Note 5**.

593 3. In order to suppress false positive species that might otherwise be predicted to
594 be present in low abundance by window sequences derived from reads that
595 contain sequencing errors, a 'shadow abundance' threshold is applied after
596 calculating the average abundance in the iterative algorithm above. Any
597 species which is present at <10% of its genus' total abundance, and which is
598 not associated with 10 or more different markers to the exclusion of all other
599 species, is removed.

600 After the expectation maximisation has converged, in rare cases it may still not
601 be possible to disambiguate some sets of species. For these sets, the OTU
602 coverages associated with them are assigned a taxonomy that is the last
603 common ancestor of the species in the set.

604 4. Genus-wise expectation maximisation is used to disambiguate the taxonomic
605 affiliation of OTUs that have been assigned to multiple taxons through
606 DIAMOND BLASTX. It is unlikely that reads assigned through this method are
607 from species that exist in the reference database since their nucleotide window
608 sequences did not closely match any in the database, so this step seeks only
609 to assign taxonomy down to the genus level, but no further. The procedure is
610 similar to the expectation maximisation used above, except that it assigns
611 taxonomy to genera rather than species. The 'shadow abundance' thresholding
612 is also not applied. Coverages from OTUs that have been assigned by
613 nucleotide sequence are included in the calculation of genus-wise coverage,
614 but the taxonomic assignment of these lineages is not modified in the second
615 step.

616 5. Combination of OTU coverages into a single taxonomic profile. The final profile
617 is created in a step-down approach, where the coverage of each domain is
618 calculated, then the coverage of each phylum, and so on, down to species level.
619 The coverage for each domain is calculated as the trimmed mean of marker-
620 wise coverages, excluding the highest and lowest 10% of values. The coverage
621 of each phylum is then calculated in the same way, but to make it consistent
622 with the domain-wise coverages, the coverage of each phylum in a domain is
623 calculated as a proportion of the overall domain's coverage. These proportions
624 are the percentage of coverage values assigned either to a phylum (including
625 its taxonomic descendants) or to the domain without further taxonomic
626 specificity, including coverage that has not been assigned to any phylum. This
627 process is then repeated down to species level.

628 6. The rate of taxonomic assignment to the species level is increased to account
629 for sequencing error. To account for sequencing read error that reduces the
630 level of resolution of an OTU taxonomic assignment from the species to the

genus level for known species, 10% of the coverage of each genus is partitioned out to each species, in proportion to their coverage before this step. If <10% of the genus' coverage is unassigned before application of this step, all of the unassigned coverage is partitioned out instead.

7. The resulting taxonomic profiles are output in a simple tab-separated format and/or KRONA plot(Ondov et al. 2011).

Supplement: Adding new genomes to the SingleM reference database

The SingleM 'supplement' mode takes in a list of genomes in FASTA format, and a reference package (a SingleM 'metapackage') to be supplemented according to the following procedure:

1. Genomes are filtered for quality using as input a CheckM2(Chklovski et al. 2022) quality file, with the default cutoff of minimum completeness 70% and maximum contamination 10%. This step is optional.

2. Genomes are dereplicated using Galah(Aroney et al. 2024) at 95% average nucleotide identity, so as to only include one representative per species cluster such that the 95%/3bp threshold used in the 'singlem pipe' is appropriate. Galah is used to choose genomes of highest quality according to the following formula, greedily selecting genomes to include in the supplemented package. The quality formula used to rank genomes is similar to that used in GTDB for species clustering, but only including those scoring criteria that can be calculated from the sequence without homology search. Completeness and contamination values used are those provided in the CheckM2 quality file.

$$completeness - 5 * contamination - \frac{5 * num\ contigs}{100} - 5 * \frac{num\ ambiguous\ bases}{10,000}$$

3. Transcripts and protein sequences for each genome are generated using Prodigal(Hyatt et al. 2010). As with GTDB-Tk(Chaumeil et al. 2022), the genome is determined to use the non-standard translation table 4 if both of the following conditions hold, otherwise translation table 11 is used:

translation table 4 coding density – translation table 11 coding density > 0.05

translation table 4 coding density > 0.7

4. Genomes are assigned taxonomy using GTDB-Tk, the database version of which must be equal to that used to generate the original metapackage. Genomes which are assigned a species level taxonomy are excluded since they do not add new species.

5. Protein sequences from remaining genomes are searched with HMMSEARCH using the HMMs of each SingleM marker gene with a default e-value of 1e-20. Each protein is assigned to at most one marker gene.

- 667 6. SingleM 'pipe' is run on the transcripts of hit proteins to gather 60bp sequences
668 for use with 'smafa-naive'.
669 7. Further bookkeeping procedures are carried out and a final supplemented
670 metapackage output.

671 **Reduced genome marker searching**

672 To determine the number of markers contained within extremely reduced bacterial
673 genomes (**Supplementary Data 1**), SingleM 'pipe' was run using default parameters
674 with the genome sequence as input, outputting an OTU table. The number of markers
675 was the number of unique markers which remained after removing 'off-target' markers
676 (i.e. archaeal markers which are not in the bacterial set, but may nonetheless be
677 encoded in some bacteria) using SingleM 'summarise --exclude-off-target-hits'. We
678 note that many of the tested genomes use translation table 4, but we report the number
679 of markers found by SingleM, which currently assumes translation table 11 during
680 'pipe' mode.

681 **Benchmarking**

682 Benchmarking was carried out within Snakemake(Köster and Rahmann 2012)
683 pipelines, which are available at <https://github.com/wwood/singlem-benchmarking>.

684 Novel lineage detection

685 To benchmark detection of novel lineages, a pipeline was created which simulated
686 read sequences which were from lineages present in GTDB R214 but not GTDB R207.
687 Specifically, 120 genomes were chosen where the GTDB R214 taxonomy contained
688 no species representatives that were in GTDB R207 (regardless of their assigned
689 taxonomy). At each level of novelty (from species to phylum), 20 of the highest quality
690 genomes (calculated as CheckM1(Parks et al. 2015) completeness - 5 x
691 contamination) were chosen, with as close to 10 Archaea as possible. The chosen
692 genomes were sometimes from the same novel lineage. To enable direct comparison
693 with profiling tools such as Bracken which estimate the number of reads from each
694 lineage, rather than the relative abundance of each lineage(Sun et al. 2021), the
695 known and novel genomes were chosen to have genome sizes as similar as possible.

696 To run each benchmark, reads were simulated from 120 communities each containing
697 a novel genome and a known genome (either *Staphylococcus aureus* assembly
698 GCF_001027105.1 or *Methanobrevibacter ruminantium* assembly
699 GCF_000024185.1), at equal read coverage of 10X. Paired-end 150bp reads were
700 simulated using ART version 2.5.8(Huang et al. 2012) with parameters '-ss HSXt -p -l
701 150 -f 10 -m 400 -s 10'. To test against the gold standard, the output of each tool was
702 first converted to the 'condensed profile' format, the default SingleM taxonomic profile
703 output format using custom scripts available in the benchmarking codebase, and then
704 further converted to biobox format(Belmann et al. 2015) and compared to gold
705 standards using OPAL(Meyer et al. 2019) v1.0.11. To test detection (**Figure 2**),

706 communities were compared at the kingdom level. To benchmark classification of
707 novel lineages lower ranks were used (excepting Kaiju and MAP2B for which no GTDB
708 R207 reference database was available). Reference databases were transferred to
709 local scratch space to minimise the effect of IO wait on runtimes.

710 SingleM 'pipe' v0.15.0 was run with default parameters. MetaPhlAn v4.0.6 was run by
711 first concatenating paired-end reads into a single gzip compressed FASTQ format.
712 Taxonomy assignments were converted to GTDB using
713 mpa_vOct22_CHOCOPhIAnSGB_202212.pkl with the supplied
714 sgb_to_gtdb_profile.py script. mOTUs v3.1.0 'profile' was run using default
715 parameters and converted to condensed format using the provided
716 'mOTUs_3.0.0_GTDB_tax.tsv' mapping file. Sourmash 4.8.2 was run using the GTDB
717 07-RS207 reference database using 'sourmash sketch dna -p
718 k=21,k=31,k=51,scaled=1000,abund', and using the median_abund as the abundance
719 measure. The Kraken2+Bracken workflow used the GTDB database built by
720 Struo2(Youngblut and Ley 2021). Kraken2 v2.1.2(Wood et al. 2019) was used with
721 'kraken2 --report .. --paired ..' followed by Bracken git commit 88b7738 using '-t 10' and
722 '-l' for each taxonomic level. This produced a report for each taxonomic level, which
723 was then converted to condensed format. To compare classification accuracy, the
724 taxonomic annotation of the novel genome in GTDB 07-R207 was estimated using
725 GTDB-Tk(Chaumeil et al. 2022) version v2.1.0.

726 The taxonomy assignments of Kaiju and MAP2B are not based on GTDB R207
727 taxonomy, so these tools could not be fully benchmarked against the rest of the tools.
728 To assess their ability to detect novel lineages, we converted taxonomy assignments
729 to the kingdom level (i.e. Bacteria or Archaea) and compared them on this level only.
730 Kaiju 1.9.2 was run using the progenomes 2021-03-02 database, as we are unaware
731 of any GTDB-based reference database. Paired-end reads were concatenated
732 together and provided to the 'kaiju' executable followed by 'kaiju2table -r phylum'.
733 Kingdom level taxonomies were derived using pytaxonkit(Shen and Ren 2021)
734 (<https://github.com/bioforensics/pytaxonkit>). MAP2b(Sun et al. 2023) v1.5 was run
735 using the data specified in its 'config/GTDB.CjePI.database.list' file, a database
736 generated from GTDB R202.

737 Profiling of communities of known species

738 To benchmark profiling tools against communities of species present in the reference
739 database, a similar set of procedures and reference databases were used. Reads
740 were simulated according to the abundance profiles in the 10 CAMI 2(Meyer et al.
741 2022) 'marine' communities. All entries in the coverage definition file ('OTU' or
742 otherwise) were simulated as microbial genomes, for an average of 469 simulated
743 genomes per sample. To emulate a more realistic community, genomes which were
744 not species representatives were chosen for simulation. To reduce bias in the chosen
745 species towards highly sequenced species, for each species, only those genomes in
746 the top 20 genomes ordered by completeness - 5*contamination were included in the
747 set to choose from. Genomes were chosen at random from the remaining set of

748 genomes to include in the profiling benchmark. Runtime and RAM usage stats were
749 collected using the 's' and 'max_rss' columns output by the Snakemake benchmark
750 directive. Figures were generated using R(Ihaka and Gentleman 1996),
751 ggplot2(Wickham 2016) and patchwork(Pedersen 2014).

752 **Generation of Sandpiper dataset**

753 A set of metagenomes to be analysed were collected according to the following
754 criteria, querying Google BigQuery via SQL where each of the following conditions
755 was true: (1) The 'librarysource' was 'metagenomic', or the 'organism' was a
756 descendent of the 'metagenome' taxonomy, (2) The 'platform' was 'ILLUMINA', (3)
757 'consent' was 'public', (4) 'mbases' was >1000 or 'libraryselection' was 'RANDOM' and
758 'mbases' was > 100, (5) 'mbases' was <= 200,000, (6) 'librarysource' was not 'VIRAL
759 RNA' or 'METATRANSCRIPTOMIC' or 'TRANSCRIPTOMIC'.

760 Metagenomes were analysed using kubernetes on Google GCP or Amazon AWS.
761 Metagenomes were copied from AWS in .sra format and streamed to SingleM 'pipe'
762 using Kingfisher(Woodcroft et al. 2024). The git commit of SingleM used was e97d171
763 and the reference database used was 'S3.metapackage_20211101.smpkg' (DOI
764 10.5281/zenodo.5739612), based on GTDB 06-RS202. We note that this version of
765 SingleM did not specify '--query-gencode 4' in its initial DIAMOND BLASTX, as the
766 current version does, so lineages which use translation table 4 are likely
767 underrepresented in these profiles. Outputs were generated in 'archive OTU table'
768 format and later processed using 'singlem renew' to update the taxonomy annotations
769 of each genome to GTDB R214 version (DOI 10.5281/zenodo.7955518) using
770 SingleM v0.16.0. Taxonomic profiles are available at DOI 10.5281/zenodo.10547494.

771 The Sandpiper website was built using Flask (<https://flask.palletsprojects.com>) and
772 Vue (<https://vuejs.org/>). The source code is available at
773 <https://github.com/wwood/sandpiper/> and incorporates a list of manually curated
774 corrections to NCBI-derived project and sample metadata available at
775 https://github.com/wwood/public_sequencing_metadata_corrections.

776 Biome-wise breakdowns of taxonomic profiles

777 The biome each metagenome was derived from was mostly derived from the
778 'organism' field stored in the biosample associated with each metagenome at NCBI.
779 However, given the large number of metagenomes assigned to an undifferentiated
780 organism 'metagenome', we trained a machine learning classifier to predict whether a
781 metagenome is either eukaryotic host-associated or ecological based upon its
782 taxonomic profile. Using metagenomes annotated as 'organismal metagenomes' as
783 host-associated and 'ecological metagenomes' as ecological as the gold standard, an
784 XGBoost(Chen and Guestrin 2016) model was trained, using five-fold cross validation.
785 To minimise overtraining, we grouped metagenomes by their BioProject such that
786 metagenomes from one BioProject were never included in both the training and test
787 sets at the same time, using the GroupKFold function of sci-kit learn(Pedregosa et al.).
788 Taxonomic profiles were input using the relative abundance of phylum, class or orders.

789 Models trained at each of these taxonomic levels showed similar performance during
790 cross-validation (~93% accuracy). The final predictor was trained on all of the gold
791 standard data with order-level taxonomic profiles as input. When a metagenome was
792 assigned an organism which is eukaryotic host associated or ecological in its
793 metadata, that annotation was used for analysis here and on the Sandpiper website.
794 Biomes more specific (e.g. soil metagenome) were taken directly from biosample
795 metadata. The predictor is made available at
796 https://github.com/wwood/singlem_host_or_ecological_predictor.

797 Fractions of metagenomes assigned to the species level
798 To establish the fractions of available communities classified at the species level at
799 the current time, the default GTDB R214-based SingleM reference database
800 (metapackage) was supplemented with genomes from the 'UHGG' version 2(Almeida
801 et al. 2021), 'SPIRE' (excluding "specI" isolate genomes)(Schmidt et al. 2023),
802 'SMAG'(Ma et al. 2023), 'GEM'(Nayfach et al. 2021) MAG collections, as well as those
803 from derived from Oceans by Paoli et. al.(Paoli et al. 2022). SPIRE species
804 representative MAGs were downloaded from <https://spire.embl.de/downloads>, SMAG
805 from <https://zenodo.org/records/8223844>, GEM from
806 <https://portal.nersc.gov/GEM/genomes/fna>, and Ocean MAGs from
807 https://sunagawalab.ethz.ch/share/microbiomics/ocean/suppl_data/representative-genomes-fasta.tar.gz. All genomes were quality controlled using CheckM2
808 v1.0.2(Chklovski et al. 2022), assigned taxonomy using GTDB-Tk v2.3.0(Chaumeil et
809 al. 2022) 'classify_wf'. Any genomes <50% complete, >10% contaminated or assigned
810 to a species level taxonomy by GTDB-Tk were excluded. Genes were called using
811 "prodigal-runner" to run prodigal choosing translation table 4 or 11 as appropriate
812 (<https://github.com/wwood/prodigal-runner> git commit c5f7713) based on the process
813 established by GTDB-Tk(Chaumeil et al. 2022). The total set of MAGs was
814 dereplicated at 95% ANI using Galah(Aroney et al. 2024) git commit f199654 which
815 used skani(Shaw and Yu 2023). These data were input into "singlem supplement" to
816 generate a new metapackage, which is available at DOI 10.5281/zenodo.10360136.
817 The profiles generated are available at DOI 10.5281/zenodo.10547501.

819 This new metapackage was used with 'singlem renew' to reannotate the taxonomy of
820 OTU sequences in SRA metagenomes, and to regenerate condensed profiles. We
821 note that while this approach was used to provide an estimation of the known species
822 fraction inclusive of these MAG data, and for high level taxonomic overviews, it is
823 unsuitable for general purpose community profiling because taxonomic assignment of
824 genomes was made without proper estimation of the taxonomic structure between the
825 species level and the highest level of taxonomy provided by GTDB-Tk. As a concrete
826 example, if two novel species are assigned to the same taxonomic family (and not to
827 any genus), then 'singlem supplement' currently assumes they are from distinct
828 genera, even if they are actually congeneric.

829 The known species fraction for each metagenome was calculated simply as the sum
830 of coverage values reported in the SingleM profile divided by the total of coverages

831 assigned to all taxonomic levels. To address potential biases arising from
832 metagenomes with limited sequencing depth, reported mean and median values are
833 amongst those metagenomes with >50 total coverage in the SingleM taxonomic profile
834 and total sequence depth >1 Gbp. Biome-wise breakdown of known species fractions
835 and phylum-wise relative abundance (**Supplementary Data 3**) were taken from the
836 NCBI 'organism' metadata entry. Human samples were those with 'human' as a
837 substring of their organism entry, or had organism 'gut metagenome', 'feces
838 metagenome' or 'oral metagenome'. Mouse, pig, bovine metagenomes were found by
839 searching for organisms containing each as a substring. Marine samples were those
840 with 'seawater metagenome' or 'marine metagenome' as their organism. Plant, soil,
841 sediment, freshwater and aquatic metagenomes were identified based on exact
842 matching of their organism e.g. "plant metagenome" to identify plant metagenomes.

843 The default GTDB R214 SingleM metapackage was used for the following analyses.
844 To ascertain the fraction of available communities classified at the species level over
845 time, the NCBI datasets tool (<https://github.com/ncbi/datasets>) was used to download
846 the genome summary in JSON format for each species (whether a species
847 representative or not) in GTDB R214, and the submission date for each genome found
848 using `jq -rc '.reports[] | [.accession,.assembly_info.submission_date]`
849 `|@tsv'.`(<https://jqlang.github.io/jq/>). The earliest submitted genome from each GTDB
850 species was then calculated as the first year in which any genome in the species
851 cluster was submitted. The set of metagenomes included in the analysis also had to
852 pass these criteria: (1) The total sample coverage had to be >50 to ensure adequate
853 microbial sequencing depth, (2) the coverage assigned to any one genus could not
854 exceed 90% of the total coverage to exclude single cell genomes. The date of the
855 metagenome was the 'releasedate' in the metadata, collected using 'kingfisher
856 annotate'(Woodcroft et al. 2024). To determine the fractions of metagenomes which
857 not only have genomic representation but are also present in isolate culture
858 collections, the GTDB auxiliary file 'hq_mimag_genomes_r214.tsv'
859 (https://data.gtdb.ecogenomic.org/releases/release214/214.0/auxillary_files/) was
860 used to gather a list of GTDB species representatives that are known to be isolated.

861 Targeted genome recovery

862 For genome recovery targeted at Muirbacteria, Wallbacteria, Riflebacteria and
863 Fusobacteria, the set of samples which contained coverage of each of these phyla
864 was extracted from Sandpiper, when it was annotated with GTDB R207. For each of
865 these samples, the total coverage of taxons which were (1) assigned a taxonomy to
866 one of the target phyla and (2) not assigned to the species level (the 'non-species'
867 coverage) was tabulated for each phyla. The set of chosen samples for targeted
868 genome recovery were those which had a high non-species coverage (>10X
869 coverage) and high ratio of non-species coverage to coverage assigned to the species
870 level in the phyla (>90%). Corresponding metagenomic data was downloaded with
871 Kingfisher(Woodcroft et al. 2024). MAGs were recovered with Aviary (git commit
872 da0efd0)(Creators Newell, Rhys J. P. Aroney, Samuel T. N. Zaugg, Julian Sternes,

873 Peter Tyson, Gene W. Woodcroft, Ben J.), assembling with metaSPADES(Nurk et al.
874 2017) and binning with CONCOCT(Alneberg et al. 2014), MaxBin2(Wu et al. 2016),
875 MetaBAT(Kang et al. 2015, 2019), SemiBin(Pan et al. 2022) and VAMB(Nissen et al.
876 2021). Bins from each were combined using DAS Tool(Sieber et al. 2018). Some
877 samples were manually assembled outside of Aviary using megahit v1.2.9(Li et al.
878 2015) since metaSPADEs(Nurk et al. 2017) (the Aviary default) cannot use single-
879 ended metagenomic data as input. Only one metagenome was used to inform binning
880 via differential coverage, the metagenome used for assembly. Genome quality was
881 assessed with CheckM2(Chklovski et al. 2022). The reported success rate (87%) is
882 only amongst those metagenomes where the assembly and binning steps successfully
883 finished (**Supplementary Data 4**).

884 **Data availability**

885 SingleM reference databases corresponding to GTDB R207 and R214 are available
886 at DOI 10.5281/zenodo.7582579 and 10.5281/zenodo.7955518 respectively. The
887 reference database used for the initial screen of public metagenomes is available at
888 DOI 10.5281/zenodo.5739612 and the reference database supplemented with
889 genomes not yet in GTDB is available at DOI 10.5281/zenodo.10360136. GTDB-
890 based profiles of public metagenomes are available at DOI
891 10.5281/zenodo.10547494, and reference-supplemented profiles at
892 10.5281/zenodo.10547501. Metagenome-assembled genomes from Muirbacteria,
893 Wallbacteria, Riflebacteria and Fusobacteria have been deposited at Zenodo under
894 DOI 10.5281/zenodo.10162715.

895 **Code availability**

896 SingleM, sandpiper and smafa software are made available under a free software
897 licence at <https://github.com/wwood/singlem>, <https://github.com/wwood/sandpiper/>
898 and <https://github.com/wwood/smafa>, respectively. SingleM and smafa are available
899 through BioConda (<https://anaconda.org/bioconda/singlem>), and distributed through
900 PyPI (<https://pypi.org/project/singlem/>) and crates.io (<https://crates.io/crates/smafa>)
901 respectively. SingleM is also available through DockerHub
902 (<https://hub.docker.com/r/wwood/singlem>). Workflows used for benchmarking are
903 available at <https://github.com/wwood/singlem-benchmarking> and the predictor of
904 sample eukaryotic host-association at
905 https://github.com/wwood/singlem_host_or_ecological_predictor.

906 **References**

- 907 Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new
908 genomic blueprint of the human gut microbiota. *Nature* [Internet]. 2019
909 Apr;568(7753):499–504. Available from: <http://dx.doi.org/10.1038/s41586-019-0965-1>
- 910 Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of
911 204,938 reference genomes from the human gut microbiome. *Nat Biotechnol* [Internet].
912 2021 Jan;39(1):105–14. Available from: <http://dx.doi.org/10.1038/s41587-020-0603-3>

- 913 Alneberg J, Bjarnason BS, de Brujin I, Schirmer M, Quick J, Ijaz UZ, et al. Binning
914 metagenomic contigs by coverage and composition. *Nat Methods* [Internet]. 2014
915 Nov;11(11):1144–6. Available from: <http://dx.doi.org/10.1038/nmeth.3103>
- 916 Aroney STN, Camargo AP, Tyson GW, Woodcroft BJ. Galah: More scalable dereplication for
917 metagenome assembled genomes [Internet]. Zenodo; 2024. Available from:
918 <https://zenodo.org/doi/10.5281/zenodo.10526085>
- 919 Aumüller M, Bernhardsson E, Faithfull A. ANN-Benchmarks: A benchmarking tool for
920 approximate nearest neighbor algorithms. *Inf Syst* [Internet]. 2020 Jan 1;87:101374.
921 Available from: <https://www.sciencedirect.com/science/article/pii/S0306437918303685>
- 922 Belmann P, Dröge J, Bremges A, McHardy AC, Sczyrba A, Barton MD. Bioboxes:
923 standardised containers for interchangeable bioinformatics software. *Gigascience*
924 [Internet]. 2015 Oct 15;4:47. Available from: <http://dx.doi.org/10.1186/s13742-015-0087-0>
- 926 Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, et al. Extending
927 and improving metagenomic taxonomic profiling with uncharacterized species using
928 MetaPhiAn 4. *Nat Biotechnol* [Internet]. 2023 Feb 23; Available from:
929 <http://dx.doi.org/10.1038/s41587-023-01688-w>
- 930 Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed
931 classification of genes within metagenomes. *Nucleic Acids Res* [Internet]. 2018 [cited
932 2020 Sep 22];46(10):e59–e59. Available from: <https://doi.org/10.1093/nar/gky174>
- 933 Boytsov L, Naidan B. Engineering Efficient and Effective Non-metric Space Library. In:
934 Similarity Search and Applications [Internet]. Springer Berlin Heidelberg; 2013. p. 280–
935 93. Available from: http://dx.doi.org/10.1007/978-3-642-41062-8_28
- 936 Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using
937 DIAMOND. *Nat Methods* [Internet]. 2021 Apr;18(4):366–8. Available from:
938 <http://dx.doi.org/10.1038/s41592-021-01101-x>
- 939 Cao J, Hu Y, Liu F, Wang Y, Bi Y, Lv N, et al. Metagenomic analysis reveals the microbiome
940 and resistome in migratory birds. *Microbiome* [Internet]. 2020 Mar 2;8(1):26. Available
941 from: <http://dx.doi.org/10.1186/s40168-019-0781-8>
- 942 Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes
943 with the Genome Taxonomy Database. *Bioinformatics* [Internet]. 2019 Nov
944 15;36(6):1925–7. Available from: <http://dx.doi.org/10.1093/bioinformatics/btz848>
- 945 Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly
946 classification with the genome taxonomy database. *Bioinformatics* [Internet]. 2022 Nov
947 30;38(23):5315–6. Available from: <http://dx.doi.org/10.1093/bioinformatics/btac672>
- 948 Cheng H, Guan Q, Villalobos LF, Peinemann KV, Pain A, Hong PY. Understanding the
949 antifouling mechanisms related to copper oxide and zinc oxide nanoparticles in
950 anaerobic membrane bioreactors. *Environmental Science: Nano* [Internet]. 2019 [cited
951 2023 May 17];6(11):3467–79. Available from:
952 <https://pubs.rsc.org/en/content/articlehtml/2019/en/c9en00872a>
- 953 Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: *Proceedings of the*
954 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*
955 [Internet]. New York, NY, USA: Association for Computing Machinery; 2016 [cited 2023
956 Jun 16]. p. 785–94. (KDD '16). Available from: <https://doi.org/10.1145/2939672.2939785>

- 957 Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate
958 tool for assessing microbial genome quality using machine learning [Internet]. bioRxiv.
959 2022 [cited 2023 Jun 18]. p. 2022.07.11.499243. Available from:
960 <https://www.biorxiv.org/content/10.1101/2022.07.11.499243v1>
- 961 Coleman GA, Davín AA, Mahendarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. A
962 rooted phylogeny resolves early bacterial evolution. Science [Internet]. 2021 May
963 7;372(6542). Available from: <http://dx.doi.org/10.1126/science.abe0511>
- 964 Collins FWJ, Walsh CJ, Gomez-Sala B, Guijarro-García E, Stokes D, Jakobsdóttir KB, et al.
965 The microbiome of deep-sea fish reveals new microbial species and a sparsity of
966 antibiotic resistance genes. Gut Microbes [Internet]. 2021 Jan-Dec;13(1):1–13. Available
967 from: <http://dx.doi.org/10.1080/19490976.2021.1921924>
- 968 Creators Newell, Rhys J. P. Aroney, Samuel T. N. Zaugg, Julian Sternes, Peter Tyson, Gene
969 W. Woodcroft, Ben J. Aviary: Hybrid assembly and genome recovery from
970 metagenomes with Aviary [Internet]. Available from:
971 <https://zenodo.org/doi/10.5281/zenodo.10158087>
- 972 Darling AE, Jospin G, Lowe E, Matsen FA 4th, Bik HM, Eisen JA. PhyloSift: phylogenetic
973 analysis of genomes and metagenomes. PeerJ [Internet]. 2014 Jan 9;2:e243. Available
974 from: <http://dx.doi.org/10.7717/peerj.243>
- 975 Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol [Internet]. 2011 Oct 20
976 [cited 2020 Mar 13];7(10):e1002195. Available from:
977 <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002195>
- 978 Edgar RC, Taylor J, Lin V, Altman T, Barbera P, Meleshko D, et al. Petabase-scale
979 sequence alignment catalyses viral discovery. Nature [Internet]. 2022
980 Feb;602(7895):142–7. Available from: <http://dx.doi.org/10.1038/s41586-021-04332-2>
- 981 Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
982 sequencing data. Bioinformatics [Internet]. 2012 Dec 1;28(23):3150–2. Available from:
983 <http://dx.doi.org/10.1093/bioinformatics/bts565>
- 984 Guo R, Sun P, Lindgren E, Geng Q, Simcha D, Chern F, et al. Accelerating Large-Scale
985 Inference with Anisotropic Vector Quantization. In: lii HD, Singh A, editors. Proceedings
986 of the 37th International Conference on Machine Learning [Internet]. PMLR; 13–18 Jul
987 2020. p. 3887–96. (Proceedings of Machine Learning Research; vol. 119). Available
988 from: <https://proceedings.mlr.press/v119/guo20h.html>
- 989 Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator.
990 Bioinformatics [Internet]. 2012 Feb 15;28(4):593–4. Available from:
991 <http://dx.doi.org/10.1093/bioinformatics/btr708>
- 992 Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic
993 gene recognition and translation initiation site identification. BMC Bioinformatics
994 [Internet]. 2010 Mar 8;11:119. Available from: <http://dx.doi.org/10.1186/1471-2105-11-119>
- 996 Ihaka R, Gentleman R. R: A Language for Data Analysis and Graphics. J Comput Graph
997 Stat [Internet]. 1996 Sep 1;5(3):299–314. Available from:
998 <https://www.tandfonline.com/doi/abs/10.1080/10618600.1996.10474713>
- 999 Irber L, Brooks PT, Reiter T, Tessa Pierce-Ward N, Hera MR, Koslicki D, et al. Lightweight
1000 compositional analysis of metagenomes with FracMinHash and minimum metagenome

- 1001 covers [Internet]. bioRxiv. 2022 [cited 2022 Apr 18]. p. 2022.01.11.475838. Available
1002 from: <https://www.biorxiv.org/content/10.1101/2022.01.11.475838v2.abstract>
- 1003 Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing
1004 single genomes from complex microbial communities. PeerJ [Internet]. 2015 Aug 27
1005 [cited 2018 Dec 18];3:e1165. Available from: <https://peerj.com/articles/1165>
- 1006 Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning
1007 algorithm for robust and efficient genome reconstruction from metagenome assemblies.
1008 PeerJ [Internet]. 2019 Jul 26;7:e7359. Available from:
1009 <http://dx.doi.org/10.7717/peerj.7359>
- 1010 Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of
1011 metagenomic sequences. Genome Res [Internet]. 2016 Dec;26(12):1721–9. Available
1012 from: <http://dx.doi.org/10.1101/gr.210641.116>
- 1013 Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence Database
1014 Collaboration. The Sequence Read Archive: explosive growth of sequencing data.
1015 Nucleic Acids Res [Internet]. 2012 Jan;40(Database issue):D54–6. Available from:
1016 <http://dx.doi.org/10.1093/nar/gkr854>
- 1017 Köster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine.
1018 Bioinformatics [Internet]. 2012 Oct 1;28(19):2520–2. Available from:
1019 <http://dx.doi.org/10.1093/bioinformatics/bts480>
- 1020 Laviad-Shitrit S, Sela R, Thorat L, Sharaby Y, Izhaki I, Nath BB, et al. Identification of
1021 chironomid species as natural reservoirs of toxigenic *Vibrio cholerae* strains with
1022 pandemic potential. PLoS Negl Trop Dis [Internet]. 2020 Dec;14(12):e0008959.
1023 Available from: <http://dx.doi.org/10.1371/journal.pntd.0008959>
- 1024 Le Doujet T, De Santi C, Klemetsen T, Hjerde E, Willlassen NP, Haugen P. Closely-related
1025 Photobacterium strains comprise the majority of bacteria in the gut of migrating Atlantic
1026 cod (*Gadus morhua*). Microbiome [Internet]. 2019 Apr 17;7(1):64. Available from:
1027 <http://dx.doi.org/10.1186/s40168-019-0681-y>
- 1028 Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for
1029 large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics
1030 [Internet]. 2015 May 15;31(10):1674–6. Available from:
1031 <http://dx.doi.org/10.1093/bioinformatics/btv033>
- 1032 Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in
1033 metagenomics data. PeerJ Comput Sci [Internet]. 2017 Jan 2 [cited 2023 May
1034 16];3:e104. Available from: <https://peerj.com/articles/cs-104/>
- 1035 Ma B, Lu C, Wang Y, Yu J, Zhao K, Xue R, et al. A genomic catalogue of soil microbiomes
1036 boosts mining of biodiversity and genetic resources. Nat Commun [Internet]. 2023 Nov
1037 11;14(1):7318. Available from: <http://dx.doi.org/10.1038/s41467-023-43000-z>
- 1038 Martiny HM, Munk P, Brinch C, Aarestrup FM, Petersen TN. A curated data resource of
1039 214K metagenomes for characterization of the global antimicrobial resistome. PLoS Biol
1040 [Internet]. 2022 Sep;20(9):e3001792. Available from:
1041 <http://dx.doi.org/10.1371/journal.pbio.3001792>
- 1042 Ma S, Jiang F, Huang Y, Zhang Y, Wang S, Fan H, et al. A microbial gene catalog of
1043 anaerobic digestion from full-scale biogas plants. Gigascience [Internet]. 2021 Jan
1044 27;10(1). Available from: <http://dx.doi.org/10.1093/gigascience/giaa164>

- 1045 Méheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other
1046 bacteria based on protein family content. *Nat Commun* [Internet]. 2019 Sep
1047 13;10(1):4173. Available from: <http://dx.doi.org/10.1038/s41467-019-12171-z>
- 1048 Mende DR, Letunic I, Maistrenko OM, Schmidt TSB, Milanese A, Paoli L, et al.
1049 proGenomes2: an improved database for accurate and consistent habitat, taxonomic
1050 and functional annotations of prokaryotic genomes. *Nucleic Acids Res* [Internet]. 2020
1051 Jan 8;48(D1):D621–5. Available from: <http://dx.doi.org/10.1093/nar/gkz1002>
- 1052 Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics
1053 with Kaiju. *Nat Commun* [Internet]. 2016 Apr 13;7:11257. Available from:
1054 <http://dx.doi.org/10.1038/ncomms11257>
- 1055 Meyer F, Bremges A, Belmann P, Janssen S, McHardy AC, Koslicki D. Assessing taxonomic
1056 metagenome profilers with OPAL. *Genome Biol* [Internet]. 2019 Mar 4;20(1):51.
1057 Available from: <http://dx.doi.org/10.1186/s13059-019-1646-y>
- 1058 Meyer F, Fritz A, Deng ZL, Koslicki D, Lesker TR, Gurevich A, et al. Critical Assessment of
1059 Metagenome Interpretation: the second round of challenges. *Nat Methods* [Internet].
1060 2022 Apr;19(4):429–40. Available from: <http://dx.doi.org/10.1038/s41592-022-01431-4>
- 1061 Meziti A, Rodriguez-R LM, Hatt JK, Peña-Gonzalez A, Levy K, Konstantinidis KT. The
1062 Reliability of Metagenome-Assembled Genomes (MAGs) in Representing Natural
1063 Populations: Insights from Comparing MAGs against Isolate Genomes Derived from the
1064 Same Fecal Sample. *Appl Environ Microbiol* [Internet]. 2021 Feb 26;87(6). Available
1065 from: <http://dx.doi.org/10.1128/AEM.02593-20>
- 1066 Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh HJ, Cuenca M, et al. Microbial
1067 abundance, activity and population genomic profiling with mOTUs2. *Nat Commun*
1068 [Internet]. 2019 Mar 4;10(1):1014. Available from: <http://dx.doi.org/10.1038/s41467-019-08844-4>
- 1070 Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog
1071 of Earth's microbiomes. *Nat Biotechnol* [Internet]. 2021 Apr;39(4):499–509. Available
1072 from: <http://dx.doi.org/10.1038/s41587-020-0718-6>
- 1073 Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, et al.
1074 Improved metagenome binning and assembly using deep variational autoencoders. *Nat
1075 Biotechnol* [Internet]. 2021 May;39(5):555–60. Available from:
1076 <http://dx.doi.org/10.1038/s41587-020-00777-4>
- 1077 Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile
1078 metagenomic assembler. *Genome Res* [Internet]. 2017 May;27(5):824–34. Available
1079 from: <http://dx.doi.org/10.1101/gr.213959.116>
- 1080 Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web
1081 browser. *BMC Bioinformatics* [Internet]. 2011 Sep 30;12:385. Available from:
1082 <http://dx.doi.org/10.1186/1471-2105-12-385>
- 1083 Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. *Int J
1084 Syst Evol Microbiol* [Internet]. 2021 Oct;71(10). Available from:
1085 <http://dx.doi.org/10.1099/ijsem.0.005056>
- 1086 Pan S, Zhu C, Zhao XM, Coelho LP. A deep siamese neural network improves
1087 metagenome-assembled genomes in microbiome datasets across different
1088 environments. *Nat Commun* [Internet]. 2022 Apr 28;13(1):2326. Available from:

- 1089 <http://dx.doi.org/10.1038/s41467-022-29843-y>
- 1090 Paoli L, Ruscheweyh HJ, Forneris CC, Hubrich F, Kautsar S, Bhushan A, et al. Biosynthetic
1091 potential of the global ocean microbiome. *Nature* [Internet]. 2022 Jul;607(7917):111–8.
1092 Available from: <http://dx.doi.org/10.1038/s41586-022-04862-3>
- 1093 Park H, Lim SJ, Cosme J, O'Connell K, Sandeep J, Gayanilo F, et al. Investigation of
1094 machine learning algorithms for taxonomic classification of marine metagenomes.
1095 *Microbiol Spectr* [Internet]. 2023 Sep 11;e0523722. Available from:
1096 <http://dx.doi.org/10.1128/spectrum.05237-22>
- 1097 Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete
1098 domain-to-species taxonomy for Bacteria and Archaea. *Nat Biotechnol* [Internet]. 2020
1099 Sep;38(9):1079–86. Available from: <http://dx.doi.org/10.1038/s41587-020-0501-8>
- 1100 Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA, Hugenholtz P. GTDB: an
1101 ongoing census of bacterial and archaeal diversity through a phylogenetically
1102 consistent, rank normalized and complete genome-based taxonomy. *Nucleic Acids Res*
1103 [Internet]. 2022 Jan 7;50(D1):D785–94. Available from:
1104 <http://dx.doi.org/10.1093/nar/gkab776>
- 1105 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the
1106 quality of microbial genomes recovered from isolates, single cells, and metagenomes.
1107 *Genome Res* [Internet]. 2015 Jul;25(7):1043–55. Available from:
1108 <http://dx.doi.org/10.1101/gr.186072.114>
- 1109 Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery
1110 of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life.
1111 *Nat Microbiol* [Internet]. 2017 Nov;2(11):1533–42. Available from:
1112 <http://dx.doi.org/10.1038/s41564-017-0012-7>
- 1113 Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive Unexplored
1114 Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes
1115 Spanning Age, Geography, and Lifestyle. *Cell* [Internet]. 2019 Jan 24;176(3):649–
1116 62.e20. Available from: <http://dx.doi.org/10.1016/j.cell.2019.01.001>
- 1117 Pedersen TL. patchwork: The Composer of Plots [Internet]. 2014 [cited 2024 Jan 16].
1118 Available from: <https://patchwork.data-imaginist.com>
- 1119 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
1120 Machine Learning in Python. *J Mach Learn Res*.
- 1121 Poussin C, Khachatryan L, Sierro N, Narsapuram VK, Meyer F, Kaikala V, et al.
1122 Crowdsourced benchmarking of taxonomic metagenome profilers: lessons learned from
1123 the sbv IMPROVER Microbiomics challenge. *BMC Genomics* [Internet]. 2022 Aug
1124 30;23(1):624. Available from: <http://dx.doi.org/10.1186/s12864-022-08803-2>
- 1125 Pratte ZA, Perry C, Dove ADM, Hoopes LA, Ritchie KB, Hueter RE, et al. Microbiome
1126 structure in large pelagic sharks with distinct feeding ecologies. *Anim Microbiome*
1127 [Internet]. 2022 Mar 4;4(1):17. Available from: <http://dx.doi.org/10.1186/s42523-022-00168-x>
- 1129 Rhoades NS, Hendrickson SM, Gerken DR, Martinez K, Slayden OD, Slifka MK, et al.
1130 Longitudinal Profiling of the Macaque Vaginal Microbiome Reveals Similarities to
1131 Diverse Human Vaginal Communities. *mSystems* [Internet]. 2021 Apr 27;6(2). Available
1132 from: <http://dx.doi.org/10.1128/mSystems.01322-20>

- 1133 Riiser ES, Haverkamp THA, Varadharajan S, Borgaen Ø, Jakobsen KS, Jentoft S, et al.
1134 Metagenomic Shotgun Analyses Reveal Complex Patterns of Intra- and Interspecific
1135 Variation in the Intestinal Microbiomes of Codfishes. *Appl Environ Microbiol* [Internet].
1136 2020 Mar 2;86(6). Available from: <http://dx.doi.org/10.1128/AEM.02788-19>
- 1137 Schmidt TSB, Fullam A, Ferretti P, Orakov A, Maistrenko OM, Ruscheweyh HJ, et al.
1138 SPIRE: a Searchable, Planetary-scale mIcrobiome REsource. *Nucleic Acids Res*
1139 [Internet]. 2023 Oct 28; Available from: <http://dx.doi.org/10.1093/nar/gkad943>
- 1140 Sczryba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al. Critical
1141 Assessment of Metagenome Interpretation-a benchmark of metagenomics software. *Nat*
1142 *Methods* [Internet]. 2017 Nov;14(11):1063–71. Available from:
1143 <http://dx.doi.org/10.1038/nmeth.4458>
- 1144 Shaw J, Yu YW. Fast and robust metagenomic sequence comparison through sparse
1145 chaining with skani. *Nat Methods* [Internet]. 2023 Nov;20(11):1661–5. Available from:
1146 <http://dx.doi.org/10.1038/s41592-023-02018-3>
- 1147 Shen W, Ren H. TaxonKit: A practical and efficient NCBI taxonomy toolkit. *J Genet*
1148 *Genomics* [Internet]. 2021 Sep 20;48(9):844–50. Available from:
1149 <http://dx.doi.org/10.1016/j.jgg.2021.03.006>
- 1150 Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of
1151 genomes from metagenomes via a dereplication, aggregation and scoring strategy. *Nat*
1152 *Microbiol* [Internet]. 2018 Jul;3(7):836–43. Available from:
1153 <http://dx.doi.org/10.1038/s41564-018-0171-1>
- 1154 Sun Z, Huang S, Zhang M, Zhu Q, Haiminen N, Carrieri AP, et al. Challenges in
1155 benchmarking metagenomic profilers. *Nat Methods* [Internet]. 2021 Jun;18(6):618–26.
1156 Available from: <http://dx.doi.org/10.1038/s41592-021-01141-3>
- 1157 Sun Z, Liu J, Zhang M, Wang T, Huang S, Weiss ST, et al. Removal of false positives in
1158 metagenomics-based taxonomy profiling via targeting Type IIB restriction sites. *Nat*
1159 *Commun* [Internet]. 2023 Sep 1;14(1):5321. Available from:
1160 <http://dx.doi.org/10.1038/s41467-023-41099-8>
- 1161 Wickham H. *ggplot2: Elegant Graphics for Data Analysis* [Internet]. Springer International
1162 Publishing; 2016. Available from:
1163 <https://play.google.com/store/books/details?id=RTMFswEACAAJ>
- 1164 Woodcroft BJ, Boyd JA, Tyson GW. OrfM: a fast open reading frame predictor for
1165 metagenomic data. *Bioinformatics* [Internet]. 2016 Sep 1;32(17):2702–3. Available from:
1166 <http://dx.doi.org/10.1093/bioinformatics/btw241>
- 1167 Woodcroft BJ, Cunningham M, Gans JD, Bolduc BB, Hodgkins SB. Kingfisher: A utility for
1168 procurement of public sequencing data [Internet]. Zenodo; 2024. Available from:
1169 <https://zenodo.org/doi/10.5281/zenodo.10525085>
- 1170 Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-
1171 centric view of carbon processing in thawing permafrost. *Nature* [Internet]. 2018
1172 Aug;560(7716):49–54. Available from: <http://dx.doi.org/10.1038/s41586-018-0338-1>
- 1173 Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. *Genome Biol*
1174 [Internet]. 2019 Nov 28;20(1):257. Available from: <http://dx.doi.org/10.1186/s13059-019-1891-0>

- 1176 Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. *Genome*
1177 *Biol* [Internet]. 2008 Oct 13;9(10):R151. Available from: <http://dx.doi.org/10.1186/gb-2008-9-10-r151>
- 1179 Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover
1180 genomes from multiple metagenomic datasets. *Bioinformatics* [Internet]. 2016 Feb
1181 15;32(4):605–7. Available from: <http://dx.doi.org/10.1093/bioinformatics/btv638>
- 1182 Yin Q, Gu M, Hermanowicz SW, Hu H, Wu G. Potential interactions between syntrophic
1183 bacteria and methanogens via type IV pili and quorum-sensing systems. *Environ Int*
1184 [Internet]. 2020 May;138:105650. Available from:
1185 <http://dx.doi.org/10.1016/j.envint.2020.105650>
- 1186 Yin Q, Yang S, Wang Z, Xing L, Wu G. Clarifying electron transfer and metagenomic
1187 analysis of microbial community in the methane production process with the addition of
1188 ferroferric oxide. *Chem Eng J* [Internet]. 2018 Feb 1;333:216–25. Available from:
1189 <https://www.sciencedirect.com/science/article/pii/S1385894717316595>
- 1190 Youngblut ND, Ley RE. Struo2: efficient metagenome profiling database construction for
1191 ever-expanding microbial genome datasets. *PeerJ* [Internet]. 2021 Sep 16;9:e12198.
1192 Available from: <http://dx.doi.org/10.7717/peerj.12198>
- 1193 Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn
1194 graphs. *Genome Res* [Internet]. 2008 May;18(5):821–9. Available from:
1195 <http://dx.doi.org/10.1101/gr.074492.107>

1196 Acknowledgements

1197 B.J.W. was supported by Australian Research Council grants (#DE160100248,
1198 #DP230101171, #FT210100521). The project was supported by the EMERGE
1199 National Science Foundation (NSF) Biology Integration Institute (#2022070) and
1200 Genomic Science Program of the United States Department of Energy (DOE) Office
1201 of Biological and Environmental Research (BER), grants DE-SC0004632, DE-
1202 SC0010580 and DE-SC0016440. Cloud computing was generously contributed by
1203 Amazon Web Services (AWS) and Google Cloud (GCP). We thank the many who
1204 have provided helpful comments including Timothy Lamberton, Pierre-Alain Chauneil,
1205 Donovan Parks, David Wood, Phil Hugenholtz, Raphael Eisenhofer, Christian Rinke,
1206 Jiarul Sun, Apoorva Prabhu, Julian Zaugg, Steve Robbins, Andy Leu, Virginia Rich,
1207 Luis Pedro Coelho, Yu Yang, Caitlin Singleton and beta testers of the software. We
1208 thank high performance computing system administrators Brian Kemish, Chris
1209 Williams and Hamish McDonald. We gratefully acknowledge the large collective effort
1210 expended in administering, gathering, sequencing and uploading metagenomic
1211 datasets into the public domain.

1212 Author Information

1213 Contributions

1214 B.J.W., S.T.N.A., and R.Z. developed the SingleM algorithm, in part under the
1215 supervision of G.W.T. B.J.W. and M.C. applied it to public datasets under the
1216 supervision of L.B. B.J.W., S.T.N.A. and J.A.M.M. analysed the Sandpiper data.
1217 B.J.W. and J.A.M.M. developed the host-association machine learning algorithm.

1218 B.J.W., S.T.N.A., R.Z. and J.A.M.M. wrote the manuscript with input from G.W.T. All
1219 authors reviewed and approved the final version of the manuscript.