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Determining the taxonomy and relative abundance of microorganisms in metagenomic
data is a foundational problem in microbial ecology. To address the limitations of
existing approaches, we developed ‘SingleM’, which estimates community
composition using conserved regions within universal marker genes. SingleM
accurately profiles complex communities of known microbial species, and is the only
tool that detects species without genomic representation, even those representing
novel phyla. Given SingleM’s computational efficiency, we applied it to 248,559
publicly available metagenomes and show that the vast majority of samples from
marine, freshwater, sediment and soil environments are dominated by novel species
lacking genomic representation (median relative abundance 75.0%). SingleM also
provides a way to identify metagenomes for the recovery of novel metagenome-
assembled genomes from lineages of interest, and can incorporate user-recovered
genomes into its reference database to improve profiling resolution. Quantifying the
full diversity of Bacteria and Archaea in metagenomic data shows that microbial
genome databases are far from saturated.
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Introduction

A centrally important question asked about microbial communities is determining
which microorganisms are present, and at what abundance. The most accurate
method for answering these questions involves shotgun metagenomic sequencing of
the sample, which generates reads in proportion to the relative abundance and
genome size of each community member. These reads are analysed with
metagenomic taxonomic profiling software to estimate the relative abundance of each
microbial species in the sample.

Metagenomic taxonomic profiling (herein ‘taxonomic profiling’) is typically undertaken
by matching reads to databases derived from reference genomes, usually to sets of
clade-specific marker genes(Milanese et al. 2019; Blanco-Miguez et al. 2023), kmer
matching(Lu et al. 2017; Wood et al. 2019; Irber et al. 2022; Park et al. 2023) or by
read mapping to whole genomes(Sun et al. 2023). The most recent version of
MetaPhlAn (v4) incorporated a large set of metagenome-assembled genomes (MAGs)
into its reference genome database, increasing the fraction of reads it assigned
appreciably(Blanco-Miguez et al. 2023). However, this expanded database only
includes genomes which are currently assembled and of medium-to-high quality,
which means completely new species are missing from the taxonomic profiles
MetaPhlAn generates. Taxonomic profiling can also be carried out by matching reads
to known protein sequences i.e. a 'BLASTX'. The most widely used tool in this space
is Kaiju(Menzel et al. 2016) which classifies reads against all known protein sequences
in NCBI nr, Progenomes(Mende et al. 2020), or other large sequence databases.

Despite the wide variety of profiling tools that have been developed and extensively
benchmarked, accurate estimation of community composition remains a challenging
problem(Meyer et al. 2022; Poussin et al. 2022). Existing taxonomic profiling software
is also largely restricted to characterising the abundance of species with reference
genomes, missing most novel species. This inability to account for novel species has
long been recognized as a central limitation of taxonomic profiling from metagenomic
data(Menzel et al. 2016), one that significantly hinders the study of microbial ecology.

Here we present a fast and accurate species-level profiler of short read metagenomes
(‘SingleM’) that is able to identify and enumerate lineages where no complete or draft
genome exists. It achieves these goals by analysing only those reads which cover
highly conserved regions (‘windows’) of single copy marker genes. Restricting analysis
in this way structures a metagenomic dataset into a simplified intermediate
representation, an operational taxonomic unit (OTU) table for each marker gene. From
this representation, new algorithmic approaches can be applied which improve
profiling fidelity and open up new possibilities for the interpretation of taxonomic
profiles.
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65 Results and discussion
66 Taxonomic profiling through read recruitment to conserved windows

67 SingleM is a software suite which takes short read metagenomic data as input, and
68 estimates the relative abundance and per-base read coverage of Bacteria and
69 Archaea at each taxonomic level from domain to species (Figure 1). SingleM starts
70 by matching reads to highly conserved regions ('windows') of 59 single copy marker
71 genes (22 Bacteria-specific, 24 Archaea-specific, 13 targeting both domains).
72  Importantly, reads are matched to these conserved gene windows by searching in
73 amino acid space, using DIAMOND BLASTX(Buchfink et al. 2021), maximising
74  recruitment of reads from divergent lineages. This is in contrast to other marker-based
75  taxonomic profilers, which map the nucleotide sequences of reads to markers directly
76  (e.g. MetaPhlAn, mOTUs).

77  In SingleM, only those reads which fully cover these 20 amino acid (60 nucleotide)
78 windows are analysed further. The 60bp nucleotide sequences of each read are
79 clustered de novo into operational taxonomic units (OTUs). The result is an
80 intermediate representation of the microbial community, an unannotated OTU table
81 for each marker gene that has been created independent of taxonomy. lis
82 completeness relies only on the BLASTX-based matching approach, which we show
83  below has high fidelity even for novel lineages.

84 To assign taxonomy to each OTU, SingleM uses the Genome Taxonomy Database
85 (GTDB)(Parks et al. 2022) rather than NCBI taxon strings. This decision was motivated
86 by the taxonomic consistency of the GTDB and its use of the 95% average nucleotide
87 identity threshold to delineate species, which helps establish whether each window
88 sequence represents a new species or one known from the reference database.
89 Taxonomic classification is carried out using a custom alignment algorithm 'smafa’
90 which aligns each OTU’s 60bp window sequence against 60bp sequences derived
91 from GTDB species representatives(Parks et al. 2022). Compared to general purpose
92 sequence similarity search algorithms, smafa rapidly identifies the most similar
93 sequences without resorting to algorithmic heuristics. This task is made feasible by
94  observing that the query and subject sequences have already been aligned to the
95 marker window and therefore to each other. If no GTDB species encodes the query
96 window sequence within 96.7% average nucleotide identity (Supplementary Note 1),
97 then a truncated genus-level taxonomy is assigned using a DIAMOND BLASTX best
98 hit approach.

99 In the final step, a summarised taxonomic profile of the metagenome is created by
100 integrating the information available for each marker gene. The composition of both
101 known species and higher level taxons is estimated by applying an expectation-
102  maximisation algorithm(Kim et al. 2016) which considers the abundance and
103 taxonomic assignment made to each OTU. Then, to estimate the abundance of each
104 taxon, the abundance of OTUs assigned to the taxon or its descendents are summed,
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105 for each marker gene. The abundance of each taxon is calculated as a trimmed mean
106 taken across the marker genes, excluding those with total abundance in the lowest
107  and highest 10% to account for taxonomy misassignment and lineages with reduced
108 genomes that do not encode all marker genes. Noise in the taxonomic profile is also
109 reduced by removing all taxons with a total abundance of less than 0.35X, a threshold
110  developed by application of the algorithm to CAMI 1 benchmarks(Sczyrba et al. 2017)
111 and public datasets (data not shown). In these cases the abundance is re-assigned to
112  a higher level taxon with >=0.35X coverage.

1183 Comparing SingleM to other taxonomic profilers

114  The taxonomic profiling accuracy of SingleM was first benchmarked on simulated
115 communities which contained genomes from known species, testing against other
116  tools for which a GTDB R207 reference database was available. Complex microbial
117  communities were modelled after the CAMI 2 'marine' benchmark datasets(Meyer et
118 al. 2022). We found the performance of SingleM was superior, at an average of >0.13
119  better Bray-Curtis dissimilarity than all other tools at the species level (Figure 2A).
120  SingleM was also the top-ranked tool in terms of F1 score, false positive rate, Jaccard
121 index, L1 norm error and purity (Supplementary Data 2), but similar to other marker-
122  based methods was less performant when genomes were present at lower abundance
123  (Supplementary Note 2). We note that for MetaPhlAn and mOTUs, use of an officially
124  supported translation step from NCBI to GTDB taxonomy was required for
125 comparison, which may have adversely affected these tools' accuracy.

126  In analysing these benchmark datasets, SingleM was fast, using ~20% of the runtime
127  of MetaPhlAn and mOTUs when using a single CPU, analysing 1.3 million reads per
128 minute (Figure 2B). The only faster workflows tested was Kraken2+Bracken, which
129  used 42% of the runtime of SingleM respectively. However, Kraken2+Bracken used a
130  much larger quantity of RAM (295GB). SingleM, in contrast, used the least amount of
131 RAM (2GB). The lightweight runtime requirements of SingleM are a consequence of
132 its optimised upfront detection of reads derived from marker gene windows, such that
133  no further processing of the vast majority of reads is required.

134 To assess whether SingleM and other profiling tools can accurately represent novel
135 lineages, we selected 120 species which were new in GTDB R214, analysing them
136  with a reference database derived from the previous version R207. For each selected
137 novel genome, reads were simulated at 10X coverage, creating 120 mock
138 communities. To establish a point of reference in these mock communities, a known
139 reference genome from the alternate domain was added at equal abundance i.e. a
140  known bacteria for novel archaea, and a known archaeon for novel bacteria.

141  The classification accuracy of five profiling tools with available R207 reference
142 databases were assessed by comparing their estimated profiles to the gold standard
143  at the highest resolution possible given the constraints of the R207 taxonomy e.g.
144  class-level Bray-Curtis dissimilarity for genomes from novel orders, order-level
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145  dissimilarity for novel families, and so on. On this benchmark, a Bray-Curtis
146  dissimilarity of 0 indicates the gold standard profile was perfectly reconstructed, while
147 0.5 indicates that the novel lineage was entirely missed by the tool. SingleM showed
148  superior performance across all novelty levels (average 0.13+0.13, Figure 2D,
149  Supplementary Figure 1) compared to other tools (average 0.46+0.10).

150  The specific ability of tools to simply detect novel lineages, rather than both detect and
151  classify them, was then assessed using the same benchmark data. Each tool’s ability
152 was assessed by calculating their profile’s Bray-Curtis dissimilarity to the gold
153 standard as before, but at the least resolved taxonomic level possible, the kingdom
154  level. SingleM performed very well in detecting the novel lineages within these 120
155 mock communities (Figure 2E), averaging a Bray-Curtis dissimilarity of 0.04£0.05. In
156 comparison, most other tools scored an average of >0.45 (MetaPhlAn, mOTUs,
157  sourmash, MAP2B). The only exceptions were Kraken2+Bracken and Kaiju, which
158  scored 0.28+0.15 and 0.25+0.14. However, the performance of Kraken2+Bracken and
159  Kaiju on novel archaea was substantially worse (0.38£0.15 and 0.30+0.14) than on
160 novel bacteria (0.21+£0.11 and 0.22+0.12). This suggests that their performance on
161  novel bacteria may be partially a consequence of there being more bacterial reference
162 genomes than a true ability to generalise to novel lineages. The bias of all tools other
163 than SingleM against detection of novel lineages was pronounced even when the
164  novel species was contained within a known genus. This was particularly true for
165 previous marker-based methods. We attribute SingleM’s strong performance on this
166  benchmark to its use of a sequence similarity search method based on amino acids
167  rather than nucleotides during read recruitment, which allows divergent marker gene
168 sequences to be detected.

169 We conclude that most taxonomic profiling tools fail to adequately weight novel
170 lineages in their taxonomic profiles, even when the novelty is only at the species level.
171 In contrast, based on these analyses and others carried out on highly reduced
172  symbiont genomes (Supplementary Note 3), we found SingleM reliably detects
173  previously unknown lineages even if they are novel at the phylum level.

174 Taxonomic profiles of publicly available metagenomes

175  Having established SingleM as a scalable and accurate taxonomic profiling tool, we
176  applied it to metagenomes at the NCBI SRA(Kodama et al. 2012) that were publicly
177 available in December 2021. Community profiles were derived from 248,559
178 metagenomes in 17,617 projects comprising 1.3 Pbp of sequencing data, an amount
179  which was ~3X the quantity annotated by previous rRNA-based efforts(Martiny et al.
180 2022). Results of this large scale analysis are made available at the ‘Sandpiper’
181  website (https://sandpiper.qut.edu.au) where taxonomic profiles can be searched
182 based on GTDB R214 taxonomy strings or dataset accession.

183  This large set of SingleM-derived community profiles allowed us to estimate how much
184  of the worlds’ metagenomes are represented in reference genome databases, and
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185 how much is missing (Supplementary Note 4). In light of recent large-scale MAG
186 mining efforts(Almeida et al. 2021; Nayfach et al. 2021; Paoli et al. 2022; Ma et al.
187  2023; Schmidt et al. 2023), all community profiles were first reassigned taxonomy
188 using a GTDB reference database supplemented with newly mined MAGs. Known
189 species dominated most host-associated datasets, with an average of 78% of each
190 community assigned a species level taxonomy after weighting by relative abundance
191  (Figure 3, Supplementary Table 1). A higher average (henceforth 'known species
192  fraction') was observed in human and mouse metagenomes (80% and 85%), likely
193 due to their being the subject of more studies (111, 297 and 7,354 metagenomes
194  respectively, Supplementary Data 3) and comparatively less diverse communities.
195 Bovine, pig and plant-associated metagenomes are less well represented in reference
196 databases (46%, 71% and 56%). In contrast, the known species fraction was much
197 lower in environmental metagenomes. As expected, soils (14%, median 8%) and
198 sediments (20%, median 12%) had the lowest known species fraction. Marine (41%,
199 median 40%) and freshwater (45%, median 46%) metagenomes were somewhat
200 better characterised.

201  Cultured species made up 47% of host-associated taxonomic profiles on average
202 (median 48%, Supplementary Table 1). This is consistent with the recent observation
203 that 29% of the UHGG human gut MAG collection has a cultured species
204  representative(Almeida et al. 2021) since higher abundance species are more likely
205 to have been cultured. In contrast, cultured species made up only a very small minority
206  of profiles from marine, freshwater, aquatic, sediment and soil environments (median
207  2.6%, mean 8.0%). Uncultured species particularly dominated in soils, where a median
208 of 0.8% were cultured (mean 3.5%).

209 Together, the recent MAG mining efforts added 82,619 new species level lineages to
210 the GTDB R214-based reference database, which was originally composed of 85,205
211 species. Overall, the median known species fraction in environmental metagenomes
212  was 25.0% (mean 30.2%). However, environmental metagenomes already had a
213  19.9% median known species fraction prior to the addition of these new MAGs (mean
214  25.6%, Supplementary Table 1). Despite almost doubling the set of available
215  species-level reference genomes, the additional MAGs only improved the median
216  known species fraction of environmental metagenomes by 5.1%. These results
217  underscore the utility of using taxonomic profiling approaches that account for novel
218 lineages and show that a remarkable diversity of organisms are not yet represented in
219  reference genome databases at the species level.

220 New metagenomic sequencing often detects new microbial diversity, so we next
221 provide a historical view of the rate at which new species are encountered in
222 metagenomic sampling. The average known species fraction of metagenomes
223 released each year was calculated, counting only those species where a genome was
224  available at the start of that year (Figure 3). This measure estimates the relative
225 abundance of novel species in newly sequenced metagenomes given the state of the
226 reference database available before sequencing. More than 50% of newly sequenced
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227 host-associated metagenomes were assigned at the species level since ~2012.
228  Steady progress is being made towards high known species fractions in 'ecological
229 metagenomes' (an NCBI taxonomy category which includes environmental
230 metagenomes and biomes such as wastewater), but at current rates the reference
231 database is much further from saturation.

232 At the phylum level, Bacteroidota and Bacillota_A (which includes many lineages
233 previously classified as Firmicutes) comprised the majority of commonly sequenced
234  animal metagenomes (human, mouse, pig and cow), with a combined average of 73%
235 (Figure 3). Pseudomonadota (previously known as Proteobacteria(Oren and Garrity
236 2021)) was the most abundant phyla in the 5 most commonly sampled environmental
237 biomes (soil, sediment, marine, freshwater, aquatic), accounting for 36% of average
238 relative abundance. ltis also the highest abundance phylum in many less well sampled
239 environments (Supplementary Data 3). This phyla also appears frequently in some
240 host-associated metagenomes, dominating plant metagenomes with an average
241  relative abundance of 72%, and ranking in the top five phyla for both pigs and humans.
242  These analyses underline the remarkable ability of Pseudomonadota to adapt to and
243  dominate a wide variety of different environments.

244  We intend for Sandpiper to be a continually updated resource for the community as
245 new metagenomes are sequenced and genomes recovered. SingleM has largely
246  solved the problem of novel lineage detection (Figure 2), so the continual efforts to
247 improve reference databases do not necessitate a full reanalysis of previously
248 processed raw metagenomic reads. Only the taxonomic assignment of OTUs and
249 downstream summarisation into taxonomic profiles need to be recomputed,
250 operations which are markedly less resource-intensive. For instance, updating the
251 248,559 Sandpiper profiles to GTDB R214 taxonomy only took 2 days and a total of
252  ~30,000 CPU hours on an in-house compute cluster.

253 Taxonomically targeted MAG recovery from public metagenomes

254  One application of the Sandpiper dataset is to inform genome recovery efforts aimed
255  at specific lineages of interest. The assembly and binning of metagenomic datasets
256 involves computationally intensive techniques, making them challenging to apply
257 wholesale to all public datasets. MAG recovery efforts from both human and
258 environmental samples have only been undertaken at the scale of ~13,000
259 metagenomes per study(Parks et al. 2017; Almeida et al. 2019; Pasolli et al. 2019;
260 Nayfach et al. 2021; Paoli et al. 2022; Ma et al. 2023), with the exception of the recent
261  SPIRE initiative(Schmidt et al. 2023) (~100,000 samples). While impressive, these
262 efforts encompass less than half of the metagenomes currently in Sandpiper. Further,
263 improving MAG quality by reapplication of genome recovery pipelines with updated
264  Dbioinformatic tools requires significant computation. Application of state of the art
265 genome recovery methods across all public datasets is therefore out of most
266 researchers’ reach.
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267  For studies wishing to concentrate analysis on specific taxa, we devised a simple
268  procedure to suggest samples likely to yield novel genomes based upon the estimated
269 coverage and relative abundance of the taxa (see methods). To test the procedure,
270 we attempted recovery of MAGs from four related bacterial phyla, the Muirbacteria,
271  Wallbacteria, Riflebacteria and Fusobacteria. These phyla branch together near the
272 root of Bacteria(Coleman et al. 2021) and are underrepresented in reference
273 databases, with 1, 3, 22 and 95 species representatives available at the time of
274  analysis (GTDB R207), respectively. Further taxonomic sampling of these phyla may
275 inform future efforts to confidently place the Bacterial root.

276 In this proof of concept experiment, we analysed 63 metagenomes predicted to
277 contain novel species belonging to these phyla at sufficient abundance to enable
278 genome recovery. Novel genomes were successfully recovered from 55 of these
279 metagenomes (87% of samples, 62 MAGs from these phyla in total) with
280 completeness >70% and contamination <5% (average 93% and 2%) (Supplementary
281 Data 4). All of these MAGs were novel to at least the species level and include
282 representatives of new genera from each of the four phyla. Genomes from
283 Muirbacteria, Wallbacteria and Riflebacteria phyla were mostly derived from
284  industrial(Yin et al. 2018, 2020; Cheng et al. 2019; Ma et al. 2021) or environmental
285 communities. Recovered Fusobacteria were associated with non-human eukaryotic
286 hosts including insects(Laviad-Shitrit et al. 2020), birds(Cao et al. 2020),
287 monkeys(Rhoades et al. 2021), and fish(Le Doujet et al. 2019; Riiser et al. 2020;
288 Collins et al. 2021; Pratte et al. 2022). We conclude that Sandpiper can be used to
289 expand the diversity of genomes present in reference databases through the targeted
290 application of genome recovery pipelines.

291  Supplementing reference data with newly recovered genomes

292  Genome-centric workflows have become a mainstay of metagenomic analysis due to
293 their ability to recover genomes from samples de novo. However, assembly and
294  binning typically only yield MAGs for a subset of community members due to limited
295 coverage or high strain heterogeneity(Meziti et al. 2021). To estimate relative
296 abundance in their microbial communities, researchers are usually forced to restrict
297 analysis to MAGs they themselves recovered, or to use general reference databases
298 that exclude their MAGs. To enable a more holistic taxonomic profile to be obtained in
299 these scenarios, we provide a 'supplement' mode of SingleM, which adds genomes to
300 the SingleM reference database. Profiling metagenomes with this supplemented
301 reference database enables users to integrate the wealth of data available in reference
302 genome databases with their newly discovered MAGs.

303 Conclusion

304 Single copy marker genes have long been used in microbial ecology for predicting the
305 quality of assembled genomes(Parks et al. 2015), for phylogenomic inference(Wu and
306 Eisen 2008) and for taxonomic profiling(Milanese et al. 2019). Here we have
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307 established that not only are entire genes conserved, but specific motifs are sufficiently
308 conserved to allow unassembled reads from novel genomes to be reliably identified
309 as homologous. Conserved sequence windows can be used to solve a number of
310 bioinformatic problems in microbial ecology beyond those discussed here, and we plan
311  on exploring these in future. Taken together, SingleM and Sandpiper bring together
312  three sub-fields of microbial ecology—taxonomic profiling, public data analysis and
313 genome-centric metagenomics—in a way that we hope will provide better utilisation of
314  public datasets and improved global context for metagenomic analyses.
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317  Figure 1. Conceptual overview of the SingleM algorithm. Raw metagenomic reads
318 are first filtered to find those that are homologous to any of the 59 marker genes.
319  Selected reads are translated and aligned to their marker's hidden Markov model
320 (HMM), discarding any which do not fully cover the 20 amino acid window. The
321 remaining reads are clustered into operational taxonomic units (OTUs) using the
322  corresponding 60 nucleotides. Taxonomy is assigned to each OTU either at the
323  species or genus levels by smafa or DIAMOND BLASTX, respectively. In the final step,
324 the assigned taxonomy of each cluster is used to create a taxonomic profile which
325 summarises the read coverage observed across the 59 marker genes.
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328 Figure 2. Metagenomic taxonomic profiling tool benchmarks. Complex
329 communities of known species were used to benchmark each tool in terms of (A)
330 accuracy defined as Bray-Curtis dissimilarity to true community structure at the
331  species level, (B) runtime and (C) RAM usage. In (A), a dissimilarity of 0 indicates a
332 perfect reconstruction of the mock community. The Kraken2+Backen result is included
333  for context, though this workflow estimates the read count of each species rather than
334 their relative abundance. Kaiju and MAP2B are excluded from the accuracy
335 benchmark as no Genome Taxonomy Database (GTDB) R207 reference database
336 was available. In (D), accuracy of each tool is shown for 120 mock communities, where
337 each community was composed of 1 known species and 1 lineage new in R214, at
338 equal abundance. Accuracy was assessed on the most specific rank possible given
339 the constraints of the R207 taxonomy e.g. class level profile dissimilarity for genomes
340 from novel orders. In (E), accuracy for each tool is shown for the same communities,
341  but assessed at the kingdom level as a measure of how well each tool detects novel
342 lineages. A Bray-Curtis dissimilarity of 0 indicates full detection, where 0.5 indicates
343 that the novel lineage was completely undetected. Kaiju and MAP2B are included in
344  this benchmark only since they do not output GTDB R207-based taxonomy. In (D) and
345 (E), the Kraken2+Backen workflow is directly comparable to the other tools since the
346  1:1 ratio of the two simulated species holds sufficiently for both read count and relative
347  abundance.
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350 Figure 3. Summary of public metagenomes. Panels (A) and (B) show the fraction
351 of each metagenome that has been assigned a species-level taxonomy. The
352 remaining fraction currently lacks genomic representation. Plotted is the distribution of
353 these fractions across datasets derived from various eukaryotic host-associated (A)
354 and ecological (B) environments. In (C), the average fraction of metagenomes
355 released in each year assigned to the species level is shown, counting only those
356 species where a genome was available the year before. The dotted line is a linear
357 model of each environment type, weighted by metagenome count. Less metagenomes
358 were published earlier on, so early known species fractions are more variable, spiking
359 as high as 80%. Panels (D) and (E) show the relative abundance of the phyla observed
360 in selected eukaryotic host-associated and environmental metagenomes,
361  respectively.

362 Methods
363 Description of the SingleM algorithm

364 A candidate list of putative single-copy, broad-range marker genes was formed from
365 ribosomal proteins originally derived from PhyloSift(Darling et al. 2014) and GTDB-
366 Tk(Chaumeil et al. 2019) marker gene sets. Some of these genes span both bacterial
367 and archaeal domains, whereas others are restricted to one domain. The set of marker
368 genes was chosen such that each gene is present in either >90% of genomes in
369 Bacteria or >85% of genomes in Archaea, with an average copy number of <1.05. We
370 allowed less than 100% prevalence of these genes in their respective target domains
371 because some reference genomes are incomplete (e.g. MAGs) and some specific
372 lineages have lost certain genes (e.g. Patescibacteria(Méheust et al. 2019)). This
373 heterogeneity is at least partially rescued by robust statistical measures (i.e. timmed
374 mean) during the ‘condense’ step, detailed below.

375 The reference database of SingleM (the 'metapackage’) is organised as a collection
376 of 'packages'. Each package details one gene and one window is chosen per gene.
377 Tocreate these packages, Pfam and TIGRfam HMMs associated with each gene were
378 used to extract sequences from GTDB species representatives. The resulting set of
379 SingleM packages were then reduced in number by applying 'singlem pipe' to the
380 predicted transcripts from GTDB representative species as well as to simulated reads
381  derived from one representative per phyla. Packages that were single-copy in >85%
382 of adomain's transcripts and simulated reads were included in the metapackage with
383 that domain as a target.

384 To determine a window position for each gene suitable which is highly conserved and
385 suitable for recruitment of metagenomic reads, raw reads from complex peat
386 metagenomes, which are known to contain reads from a broad range of microbial
387 taxa(Woodcroft et al. 2018) (SRA accessions SRR7151621, SRR7151618 and
388 SRR7151620), were aligned against each HMM using GraftM(Boyd et al. 2018) with
389 parameters 'graftM graft --search_and_align_only'. The generated alignments were
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then used to identify the position of a 20 amino acid length window containing the
greatest number of aligned nucleotides to the marker gene’s HMM, using 'singlem
seqs' with default parameters.

Generating marker-wise OTU tables

Raw metagenomic reads are assigned to taxonomically annotated OTUs through the
application of several steps, described below. These steps are implemented in the
‘singlem pipe’ subcommand. Many of the parameters detailed can be changed by the
user, here only the default parameters are shown. Similarly, a number of performance
optimisations are omitted for brevity.

1. The first step in the SingleM algorithm, referred to in the codebase as the
'prefilter step’, is to recruit raw reads to marker gene windows. To hasten this
procedure, reads are initially selected by DIAMOND blastx against marker gene
sequences from the target domains for each marker. Despite the improved
speed afforded by the DIAMOND algorithm(Buchfink et al. 2021), selection of
raw reads to align against each marker's HMM remains the bottleneck in
SingleM’s runtime. We take three measures to limit the runtime of this
DIAMOND search: (1) use of the DIAMOND 'makeidx' feature for small
reference databases(Edgar et al. 2022), (2) trimming of database sequences
to the 20 amino acids in the windows plus 30 amino acids on each side, and
(3) sequence dereplication at 60% identity using CD-HIT(Fu et al. 2012) with
parameters ‘cd-hit-n 3 -M 0 -c 0.6’. DIAMOND BLASTX is run with parameters
‘diamond blastx --outfmt 6 gseqid full_qgseq sseqid --top 1 --evalue 0.01 --block-
size 0.5 --target-indexed -c1 --query-gencode 4’. A single database comprising
sequences from all markers is used. The output from this step is a set of read
identifiers, read sequences and the marker gene they best match to. We found
that specifying translation table 4 worked well in practice, because doing so
detects those lineages which use translation table 4, but also because
inappropriately translated sequences from genomes which use table 11 (the
standard bacterial table) were excluded on the basis of sequence dissimilarity.
In this default mode, reads are assigned only to their best matching marker
gene, which is appropriate for short reads. Long reads, but contrast, may
encode genes from multiple markers colocated on a genome. Therefore we
suggest the current direct BLASTX approach used by default in SingleM is
inappropriate for long reads.

If the input to SingleM is a genome ('--genome-fasta-files'), then a quick, rough
transcriptome generated by OrfM(Woodcroft et al. 2016) using a minimum gene
length of 100 amino acids. Since many of these predicted transcripts are not
true genes and may overlap, a dereplication step is applied after marker HMM
alignment such that only the longest open reading frame is kept at each locus.

2. Candidate sequences are aligned to the HMMs of their respective marker
genes. Translated open reading frames are identified with OrfM using a
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431 minimum open reading from size of 24 amino acids (‘orfm -m 72’) and then
432 aligned using the hmmalign tool in the HMMER suite(Eddy 2011).
433 3. Aligned amino acid sequences are filtered to remove any sequences which do
434 not cover the window. Specifically, any sequences which do not align to both
435 the first and last positions of the window are excluded from further analysis.
436 4. Sequences are translated from aligned amino acid sequences back into aligned
437 nucleotide sequences, using the matching read sequence. This 60bp
438 nucleotide sequence is then the ‘OTU’ sequence. The redundancy of the
439 genetic code means that these 60bp are a richer source of information than the
440 20 amino acid sequence when differentiating closely related OTUs and when
441 attempting to apply taxonomic assignment to the species level. This sequence
442 may include gaps, but any inserts are removed so that all OTU sequences are
443 60bp in length. This consistency of length facilitates efficient comparison of
444 OTU sequences and taxonomic assignment. Sequences containing insertions
445 were also found to be rare in practice.
446 5. Sequences with the same OTU sequence are aggregated together by exact
447 sequence clustering of the 60bp windows, creating an OTU table. This OTU
448 table can be dereplicated by inexact sequence clustering using the ‘singlem
449 summarise’ subcommand, if desired, though the ‘condense’ algorithm includes
450 correction mechanisms for sequencing error (see below).
451 6. The 'coverage' of each OTU is calculated using the established relationship
452 between kmer coverage and read coverage as set out by Velvet(Zerbino and
453 Birney 2008):

nL
454 coverage = )
455 Where n is the number of reads with the OTU sequence, L is the length of the
456 read and k is the length of the OTU sequence including inserts but excluding
457 gaps (usually 60 bp). In practice, each read may have a different length and/or
458 aligned length within the 20 amino acids, so the coverage contribution of each
459 read is calculated separately according to the formula above. The coverage
460 assigned to an OTU is the sum of each read’s contribution.
461 7. OTUs are assigned taxonomic annotations by matching their nucleotide OTU
462 sequences to a database of species representatives from the GTDB(Parks et
463 al. 2022), using the 'query' procedure (see below). Sequences are assigned to
464 their closest matching species with a maximum difference of 3bp, since 3 out
465 of 60bp corresponds to 95%, the ANI threshold used for species delineation in
466 the GTDB(Parks et al. 2020). Sequences are matched using the ‘naive’ method
467 of the ‘singlem query’ machinery, described below. When several species have

468 equivalent best hits, the taxonomic assignment of the OTU is then the last
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common ancestor of these species. The ‘condense’ algorithm incorporates
these equal best hits directly to disambiguate taxonomy in these cases (see
below).

8. OTUs which are not assigned taxonomy in the previous step are assigned
taxonomy via DIAMOND BLASTX. The raw, unaligned and untrimmed read
sequences of each OTU are used as input, searching against a database of
sequences derived from the OTU’s assigned marker gene. Like the initial read
recruitment (prefilter) step, this database consists of protein sequences
trimmed to the ~20 amino acids which align to the HMM window plus 30 amino
acids on either side using translation table 4, but unlike the prefilter step the
database is not dereplicated. The database also includes protein sequences
derived from 'off-target' species e.g. archaeal sequences from bacterial-only
markers. Eukaryotic sequences are also included as off-target, as derived from
UniProt truncating the taxonomy to the kingdom level. DIAMOND is run with
parameters ‘diamond blastx --outfmt 6 gseqid sseqid bitscore --top 1 --evalue
0.01 --block-size 0.5 --target-indexed -c1 --query-gencode 4’. The taxonomic
annotations of these hits are processed in a similar way to the previous step:
equal best hits are recorded for later use by ‘condense’. Within an OTU table,
the taxonomy of each OTU is calculated by gathering a taxon string for each
read in the OTU, which is the last common ancestor of taxons which hit best for
each read. Then the taxonomy of the OTU is the most specific taxonomic
annotation such that 50% of the reads’ last common ancestors agree.

In the generated OTU table and condensed taxonomic profile (see below), no
assignment is made to the species level for entries that are assigned taxonomy
through DIAMOND BLASTX. Taxonomic annotation made to the genus level at
most, since there is insufficient identity on the nucleotide level to be assigned
to a specific species. For species where no representative is known to the
genus level (novel genera, novel families, etc.), a genus level annotation will be
incorrect. In the current implementation, we do not attempt to remedy this and
as such interpret genus level assignments as being either correct or
representing lineages that are novel at the genus level or higher.

9. The OTU tables generated are optionally output as an 'OTU table', which is a
tab-separated file containing one OTU per line, or an 'archive OTU table', which
is a JSON format file containing more detailed information about each OTU.

10.The OTU table is optionally subject to the ‘condense’ procedure (see below),
and output as a 'taxonomic profile' and/or Krona HTML(Ondov et al. 2011).

Query: assigning taxonomy by comparison of OTU window sequences

An OTU window sequence is a 60bp sequence which has been aligned to a marker’s
HMM. Unlike a traditional sequence similarity search, which might use a more general
local alignment algorithm such as Smith-Waterman to find an optimal alignment
between two sequences, comparison between window sequences is a simpler
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510 problem. This is because the two sequences are aligned before comparison, since
511  they have both been aligned to the same HMM. Comparing window sequences can
512 therefore be achieved through simple pairwise comparison of the pair of bases at each
513 position in the window.

514  This simpler problem can further be reframed as a vector similarity search problem,
515 by one-hot binary encoding the base at each position. We represent A with [1,0,0,0,0],
516 T with [0,1,0,0,0], C with [0,0,1,0,0], G with [0,0,0,1,0], and other characters (Ns, gaps
517 or IUPAC codes) with [0,0,0,0,1]. Each position of the 60bp is represented by one of
518 these, and concatenating these across the 60 positions, we generate a binary vector
519 of length 60*5 = 300 for each sequence. For sequences containing only A, T, G and
520 C, the number of positions that differ between two sequences is the Manhattan
521 distance between their vector representations divided by 2. It is divided by 2 since at
522  a mismatching base position, 2 columns will differ.

523 Calculating these distances can be quickly computed particularly since modern
524  compilers utilise CPU instructions which operate on vectors of bits. If we have one
525 60bp sequence as a query and a comparatively small number sequences in a
526  database, such as the current number of species in GTDB R214 (85,205 species, each
527  containing ~1 unique single copy marker gene sequence), then we can compute the
528 most similar set of sequences by brute force, comparing the query sequence against
529 each database sequence. We term this approach the ‘naive’ method.

530 For larger scale comparison of sequences, the search time can become prohibitive.
531  To speed this search up, the problem can be solved inexactly. The inexact version is
532 known as approximate k-nearest neighbours (approximate kNN), here in 300
533 dimensional space. Approximate kNN is a well studied problem, particularly since it
534 has many applications in machine learning(Aumiller et al. 2020). However, most
535 implementations assume each dimension is not binary but instead a float value. This
536 likely means that the implementations are not computationally optimised as they might
537 be, but nonetheless provide accurate results. One exception to this is
538 NMSLIB(Boytsov and Naidan 2013), which does provide a binary space
539 implementation. We tested a number of binary and floating point implementations,
540 finding that SCANN(Guo et al. 13--18 Jul 2020) was the most accurate and fast,
541  though ANNOY (https://github.com/spotify/annoy) required less RAM and had a
542  smaller start-up time since it is an on-disk implementation.

543  Due to the merely approximate results and slightly ill-suited implementations available,
544  we implemented an exact brute force search program, ‘'smafa’, and use it as the default
545  window search method ('smafa-naive' in the SingleM codebase). Implemented in the

546  Rust programming language using needletail
547  (https://github.com/onecodex/needletail), smafa efficiently and exactly finds similar
548  window sequences. It uses the postcard format

549  (https://github.com/jamesmunns/postcard) to store its sequence database with the
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550 primary aim of fast database load times. For GTDB 08-RS214, the average marker’s
551  sequences require only a ~20MB sequence database file.

552 Condense: combining OTU tables from each marker gene into a single taxonomic profile
553  On their own, the set of OTUs from each marker can be considered a taxonomic
554  profile. However, we provide a method to combine (‘condense’) these into a single
555 taxonomic profile which is advantageous for several reasons. Holistically using the
556 information contained across marker genes is more sensitive, because lower
557  abundance community members may not be represented in each marker’'s OTU table.
558 It also allows more specificity in taxonomic annotations, because sequences shared
559 by multiple taxa in one marker's table may be disambiguated by the sequences
560 observed in another. Forinstance, if one marker’'s OTU table contains a sequence that
561 matches 2 species in one genus (species A and species B), but another marker only
562 contains sequences that match species B, then it is most likely that species B is
563 presentin the sample while species A is not. Finally, inspecting one taxonomic profile
564 is simply more convenient than inspecting all 59 individually.

565 There are some important disadvantages of condensing each markers’ OTU table into
566 a single taxonomic profile, though. In the current implementation, information about
567 the diversity of sequences is not incorporated directly, only their taxonomic affiliation(s)
568 are. For instance, consider a situation where there are two window sequences from
569 different species assigned to a genus G in each of the marker OTU tables, but neither
570 of these species are contained in the reference database (GTDB). The final taxonomic
571  profile will show only coverage of the genus G, with no delineation of lineages at the
572  species level within this genus. In this case, community structure at the species level
573  will not be evident in the condensed taxonomic profile, even though the marker OTU
574  tables show two separate species from the genus are present.

575 The condense algorithm works in several steps:

576 1. Any OTUs which have ‘off-target’ taxonomic annotations are removed. These
577 might be Eukaryotic OTUs, or bacterial OTUs which matched archaeal markers,
578 or OTUs not assigned domain-level taxonomy, for instance.

579 2. Species-wise expectation-maximisation is used to disambiguate the taxonomic
580 affiliation of OTUs that have been assigned to multiple species when matching
581 their nucleotide window sequences to GTDB species nucleotide window
582 sequences. In some cases, window sequences derived from multiple species
583 are identical, and novel strains may map with identical imperfect identity to
584 multiple species. To address these situations, information from other marker
585 gene OTUs is used. Specifically, in this iterative expectation-maximisation
586 procedure, each species is initially assigned equal abundance. Then for each
587 OTU, the coverage is partitioned according to the abundance ratio of species
588 that the OTU matches. The abundance of each species is then re-calculated as
589 the average abundance across the markers (counting only markers targeting

590 the domain to which the species belongs), and the procedure repeated until no
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591 species changes in abundance by >0.001 coverage units. A simplified example
592 of this procedure is provided in Supplementary Note 5.

593 3. In order to suppress false positive species that might otherwise be predicted to
594 be present in low abundance by window sequences derived from reads that
595 contain sequencing errors, a ‘shadow abundance’ threshold is applied after
596 calculating the average abundance in the iterative algorithm above. Any
597 species which is present at <10% of its genus’ total abundance, and which is
598 not associated with 10 or more different markers to the exclusion of all other
599 species, is removed.

600 After the expectation maximisation has converged, in rare cases it may still not
601 be possible to disambiguate some sets of species. For these sets, the OTU
602 coverages associated with them are assigned a taxonomy that is the last
603 common ancestor of the species in the set.

604 4. Genus-wise expectation maximisation is used to disambiguate the taxonomic
605 affiliation of OTUs that have been assigned to multiple taxons through
606 DIAMOND BLASTX. It is unlikely that reads assigned through this method are
607 from species that exist in the reference database since their nucleotide window
608 sequences did not closely match any in the database, so this step seeks only
609 to assign taxonomy down to the genus level, but no further. The procedure is
610 similar to the expectation maximisation used above, except that it assigns
611 taxonomy to genera rather than species. The ‘shadow abundance’ thresholding
612 is also not applied. Coverages from OTUs that have been assigned by
613 nucleotide sequence are included in the calculation of genus-wise coverage,
614 but the taxonomic assignment of these lineages is not modified in the second
615 step.

616 5. Combination of OTU coverages into a single taxonomic profile. The final profile
617 is created in a step-down approach, where the coverage of each domain is
618 calculated, then the coverage of each phylum, and so on, down to species level.
619 The coverage for each domain is calculated as the trimmed mean of marker-
620 wise coverages, excluding the highest and lowest 10% of values. The coverage
621 of each phylum is then calculated in the same way, but to make it consistent
622 with the domain-wise coverages, the coverage of each phylum in a domain is
623 calculated as a proportion of the overall domain’s coverage. These proportions
624 are the percentage of coverage values assigned either to a phylum (including
625 its taxonomic descendents) or to the domain without further taxonomic
626 specificity, including coverage that has not been assigned to any phylum. This
627 process is then repeated down to species level.

628 6. The rate of taxonomic assignment to the species level is increased to account
629 for sequencing error. To account for sequencing read error that reduces the

630 level of resolution of an OTU taxonomic assignment from the species to the
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genus level for known species, 10% of the coverage of each genus is
partitioned out to each species, in proportion to their coverage before this step.
If <10% of the genus’ coverage is unassigned before application of this step, all
of the unassigned coverage is partitioned out instead.

7. The resulting taxonomic profiles are output in a simple tab-separated format
and/or KRONA plot(Ondov et al. 2011).

Supplement: Adding new genomes to the SingleM reference database

The SingleM 'supplement’ mode takes in a list of genomes in FASTA format, and a
reference package (a SingleM 'metapackage’) to be supplemented according to the
following procedure:

1. Genomes are filtered for quality using as input a CheckM2(Chklovski et al.
2022) quality file, with the default cutoff of minimum completeness 70% and
maximum contamination 10%. This step is optional.

2. Genomes are dereplicated using Galah(Aroney et al. 2024) at 95% average
nucleotide identity, so as to only include one representative per species cluster
such that the 95%/3bp threshold used in the 'singlem pipe' is appropriate. Galah
is used to choose genomes of highest quality according to the following formula,
greedily selecting genomes to include in the supplemented package. The
quality formula used to rank genomes is similar to that used in GTDB for species
clustering, but only including those scoring criteria that can be calculated from
the sequence without homology search. Completeness and contamination
values used are those provided in the CheckM2 quality file.

5 * num contigs . num ambiguous bases

completeness — 5 x contamination — 100 —ox 10,000

3. Transcripts and protein sequences for each genome are generated using
Prodigal(Hyatt et al. 2010). As with GTDB-Tk(Chaumeil et al. 2022), the
genome is determined to use the non-standard translation table 4 if both of the
following conditions hold, otherwise translation table 11 is used:

translation table 4 coding density — translation table 11 coding density > 0.05
translation table 4 coding density > 0.7

4. Genomes are assigned taxonomy using GTDB-Tk, the database version of
which must be equal to that used to generate the original metapackage.
Genomes which are assigned a species level taxonomy are excluded since
they do not add new species.

5. Protein sequences from remaining genomes are searched with HMMSEARCH
using the HMMs of each SingleM marker gene with a default e-value of 1e-20.
Each protein is assigned to at most one marker gene.
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667 6. SingleM 'pipe' is run on the transcripts of hit proteins to gather 60bp sequences
668 for use with 'smafa-naive'.

669 7. Further bookkeeping procedures are carried out and a final supplemented
670 metapackage output.

671 Reduced genome marker searching

672 To determine the number of markers contained within extremely reduced bacterial
673 genomes (Supplementary Data 1), SingleM 'pipe' was run using default parameters
674  with the genome sequence as input, outputting an OTU table. The number of markers
675 was the number of unique markers which remained after removing 'off-target' markers
676 (i.e. archaeal markers which are not in the bacterial set, but may nonetheless be
677 encoded in some bacteria) using SingleM 'summarise --exclude-off-target-hits’. We
678 note that many of the tested genomes use translation table 4, but we report the number
679 of markers found by SingleM, which currently assumes translation table 11 during
680 'pipe' mode.

681 Benchmarking

682 Benchmarking was carried out within Snakemake(Kdster and Rahmann 2012)
683 pipelines, which are available at https:/github.com/wwood/singlem-benchmarking.

684 Novel lineage detection

685 To benchmark detection of novel lineages, a pipeline was created which simulated
686 read sequences which were from lineages present in GTDB R214 but not GTDB R207.
687  Specifically, 120 genomes were chosen where the GTDB R214 taxonomy contained
688 no species representatives that were in GTDB R207 (regardless of their assigned
689 taxonomy). At each level of novelty (from species to phylum), 20 of the highest quality
690 genomes (calculated as CheckM1(Parks et al. 2015) completeness - 5 x
691  contamination) were chosen, with as close to 10 Archaea as possible. The chosen
692 genomes were sometimes from the same novel lineage. To enable direct comparison
693  with profiling tools such as Bracken which estimate the number of reads from each
694 lineage, rather than the relative abundance of each lineage(Sun et al. 2021), the
695 known and novel genomes were chosen to have genome sizes as similar as possible.

696  To run each benchmark, reads were simulated from 120 communities each containing
697 a novel genome and a known genome (either Staphylococcus aureus assembly
698 GCF_001027105.1 or Methanobrevibacter ruminantium assembly
699 GCF_000024185.1), at equal read coverage of 10X. Paired-end 150bp reads were
700 simulated using ART version 2.5.8(Huang et al. 2012) with parameters '-ss HSXt -p -
701 150 -f 10 -m 400 -s 10'. To test against the gold standard, the output of each tool was
702 first converted to the 'condensed profile' format, the default SingleM taxonomic profile
703  output format using custom scripts available in the benchmarking codebase, and then
704  further converted to biobox format(Belmann et al. 2015) and compared to gold
705 standards using OPAL(Meyer et al. 2019) v1.0.11. To test detection (Figure 2),
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706 communities were compared at the kingdom level. To benchmark classification of
707  novellineages lower ranks were used (excepting Kaiju and MAP2B for which no GTDB
708 R207 reference database was available). Reference databases were transferred to
709 local scratch space to minimise the effect of 10 wait on runtimes.

710  SingleM 'pipe' v0.15.0 was run with default parameters. MetaPhlAn v4.0.6 was run by
711 first concatenating paired-end reads into a single gzip compressed FASTQ format.
712 Taxonomy assignments were converted to GTDB using
713  mpa_vOct22_CHOCOPhIANSGB_202212.pkI with the supplied
714  sgb_to_gtdb_profile.py script. mOTUs v3.1.0 'profile’ was run using default
715 parameters and converted to condensed format using the provided
716 'mOTUs_3.0.0_GTDB_tax.tsv' mapping file. Sourmash 4.8.2 was run using the GTDB
717 07-RS207  reference  database  using 'sourmash  sketch dna -p
718  k=21,k=31,k=51,scaled=1000,abund', and using the median_abund as the abundance
719 measure. The Kraken2+Bracken workflow used the GTDB database built by
720  Struo2(Youngblut and Ley 2021). Kraken2 v2.1.2(Wood et al. 2019) was used with
721 'kraken2 —report .. —paired ..' followed by Braken git commit 88b7738 using '-t 10" and
722 '-I' for each taxonomic level. This produced a report for each taxonomic level, which
723 was then converted to condensed format. To compare classification accuracy, the
724  taxonomic annotation of the novel genome in GTDB 07-R207 was estimated using
725 GTDB-Tk(Chaumeil et al. 2022) version v2.1.0.

726  The taxonomy assignments of Kaiju and MAP2B are not based on GTDB R207
727  taxonomy, so these tools could not be fully benchmarked against the rest of the tools.
728 To assess their ability to detect novel lineages, we converted taxonomy assignments
729  to the kingdom level (i.e. Bacteria or Archaea) and compared them on this level only.
730  Kaiju 1.9.2 was run using the progenomes 2021-03-02 database, as we are unaware
731 of any GTDB-based reference database. Paired-end reads were concatenated
732  together and provided to the 'kaiju' executable followed by 'kaiju2table -r phylum'.
733  Kingdom level taxonomies were derived using pytaxonkit(Shen and Ren 2021)
734  (https://github.com/bioforensics/pytaxonkit). MAP2b(Sun et al. 2023) v1.5 was run
735 using the data specified in its ‘config/GTDB.CjePl.database.list’ file, a database
736 generated from GTDB R202.

737  Profiling of communities of known species

738  To benchmark profiling tools against communities of species present in the reference
739 database, a similar set of procedures and reference databases were used. Reads
740  were simulated according to the abundance profiles in the 10 CAMI 2(Meyer et al.
741 2022) 'marine' communities. All entries in the coverage definition file (‘OTU’ or
742  otherwise) were simulated as microbial genomes, for an average of 469 simulated
743  genomes per sample. To emulate a more realistic community, genomes which were
744  not species representatives were chosen for simulation. To reduce bias in the chosen
745  species towards highly sequenced species, for each species, only those genomes in
746  the top 20 genomes ordered by completeness - 5*contamination were included in the
747 set to choose from. Genomes were chosen at random from the remaining set of



https://paperpile.com/c/RgTu4Y/66yS
https://paperpile.com/c/RgTu4Y/45AR
https://paperpile.com/c/RgTu4Y/Cazj
https://paperpile.com/c/RgTu4Y/00Ot
https://paperpile.com/c/RgTu4Y/Om9w
https://paperpile.com/c/RgTu4Y/HhL6
https://paperpile.com/c/RgTu4Y/HhL6
https://doi.org/10.1101/2024.01.30.578060
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.30.578060; this version posted January 31, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

748 genomes to include in the profiling benchmark. Runtime and RAM usage stats were
749  collected using the ‘s’ and ‘max_rss' columns output by the Snakemake benchmark
750 directive. Figures were generated using R(lhaka and Gentleman 1996),
751 ggplot2(Wickham 2016) and patchwork(Pedersen 2014).

752  Generation of Sandpiper dataset

753 A set of metagenomes to be analysed were collected according to the following
754  criteria, querying Google BigQuery via SQL where each of the following conditions
755 was true: (1) The 'librarysource' was 'metagenomic', or the 'organism' was a
756  descendent of the 'metagenome’ taxonomy, (2) The 'platform' was 'ILLUMINA', (3)
757  'consent' was 'public', (4) 'mbases' was >1000 or 'libraryselection' was 'RANDOM' and
758 mbases was > 100, (5) mbases was <= 200,000, (6) liorarysource was not 'VIRAL
759  RNA'or ' METATRANSCRIPTOMIC' or ' TRANSCRIPTOMIC'.

760 Metagenomes were analysed using kubernetes on Google GCP or Amazon AWS.
761  Metagenomes were copied from AWS in .sra format and streamed to SingleM 'pipe’
762  using Kingfisher(Woodcroft et al. 2024). The git commit of SingleM used was €97d171
763 and the reference database used was 'S3.metapackage_20211101.smpkg" (DOI
764 10.5281/zen0do.5739612), based on GTDB 06-RS202. We note that this version of
765  SingleM did not specify '--query-gencode 4' in its initial DIAMOND BLASTX, as the
766 current version does, so lineages which use ftranslation table 4 are likely
767 underrepresented in these profiles. Outputs were generated in 'archive OTU table'
768 format and later processed using 'singlem renew' to update the taxonomy annotations
769 of each genome to GTDB R214 version (DOl 10.5281/zenodo.7955518) using
770  SingleM v0.16.0. Taxonomic profiles are available at DOI 10.5281/zenodo.10547494.

771  The Sandpiper website was built using Flask (https://flask.palletsprojects.com) and
772  Vue (https://vuejs.org/). The source code is available at
773  https://github.com/wwood/sandpiper/ and incorporates a list of manually curated
774 corrections to NCBIl-derived project and sample metadata available at
775  https://qgithub.com/wwood/public_sequencing metadata corrections.

776  Biome-wise breakdowns of taxonomic profiles

777 The biome each metagenome was derived from was mostly derived from the
778 'organism' field stored in the biosample associated with each metagenome at NCBI.
779  However, given the large number of metagenomes assigned to an undifferentiated
780 organism 'metagenome’, we trained a machine learning classifier to predict whether a
781 metagenome is either eukaryotic host-associated or ecological based upon its
782  taxonomic profile. Using metagenomes annotated as 'organismal metagenomes' as
783  host-associated and 'ecological metagenomes' as ecological as the gold standard, an
784  XGBoost(Chen and Guestrin 2016) model was trained, using five-fold cross validation.
785 To minimise overtraining, we grouped metagenomes by their BioProject such that
786  metagenomes from one BioProject were never included in both the training and test
787  sets at the same time, using the GroupKFold function of sci-kit learn(Pedregosa et al.).
788  Taxonomic profiles were input using the relative abundance of phylum, class or orders.
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789  Models trained at each of these taxonomic levels showed similar performance during
790 cross-validation (~93% accuracy). The final predictor was trained on all of the gold
791  standard data with order-level taxonomic profiles as input. When a metagenome was
792 assigned an organism which is eukaryotic host associated or ecological in its
793 metadata, that annotation was used for analysis here and on the Sandpiper website.
794  Biomes more specific (e.g. soil metagenome) were taken directly from biosample
795 metadata. The predictor is made available at
796  https://github.com/wwood/singlem host or ecological predictor.

797 Fractions of metagenomes assigned to the species level

798 To establish the fractions of available communities classified at the species level at
799 the current time, the default GTDB R214-based SingleM reference database
800 (metapackage) was supplemented with genomes from the ‘UHGG’ version 2(Almeida
801 et al. 2021), 'SPIRE' (excluding “specl” isolate genomes)(Schmidt et al. 2023),
802 'SMAG'(Ma et al. 2023), 'GEM'(Nayfach et al. 2021) MAG collections, as well as those
803 from derived from Oceans by Paoli et. al.(Paoli et al. 2022). SPIRE species
804 representative MAGs were downloaded from https://spire.embl.de/downloads, SMAG
805 from https://zenodo.org/records/8223844, GEM from
806 https://portal.nersc.gov/GEM/genomes/fna, and Ocean MAGs from
807  https://sunagawalab.ethz.ch/share/microbiomics/ocean/suppl data/representative-
808 genomes-fasta.tar.gz. All genomes were quality controlled using CheckM2
809 v1.0.2(Chklovski et al. 2022), assigned taxonomy using GTDB-Tk v2.3.0(Chaumeil et
810 al. 2022) ‘classify_wf’. Any genomes <50% complete, >10% contaminated or assigned
811 to a species level taxonomy by GTDB-Tk were excluded. Genes were called using
812  “prodigal-runner” to run prodigal choosing translation table 4 or 11 as appropriate
813  (https:/github.com/wwood/prodigal-runner git commit c5f7713) based on the process
814 established by GTDB-Tk(Chaumeil et al. 2022). The total set of MAGs was
815 dereplicated at 95% ANI using Galah(Aroney et al. 2024) git commit 199654 which
816  used skani(Shaw and Yu 2023). These data were input into “singlem supplement” to
817  generate a new metapackage, which is available at DOI 10.5281/zenodo.10360136.
818 The profiles generated are available at DOI 10.5281/zenodo.10547501.

819  This new metapackage was used with ‘singlem renew’ to reannotate the taxonomy of
820 OTU sequences in SRA metagenomes, and to regenerate condensed profiles. We
821  note that while this approach was used to provide an estimation of the known species
822 fraction inclusive of these MAG data, and for high level taxonomic overviews, it is
823 unsuitable for general purpose community profiling because taxonomic assignment of
824 genomes was made without proper estimation of the taxonomic structure between the
825 species level and the highest level of taxonomy provided by GTDB-Tk. As a concrete
826 example, if two novel species are assigned to the same taxonomic family (and not to
827 any genus), then ‘singlem supplement’ currently assumes they are from distinct
828 genera, even if they are actually congeneric.

829 The known species fraction for each metagenome was calculated simply as the sum
830 of coverage values reported in the SingleM profile divided by the total of coverages
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831 assigned to all taxonomic levels. To address potential biases arising from
832 metagenomes with limited sequencing depth, reported mean and median values are
833 amongst those metagenomes with >50 total coverage in the SingleM taxonomic profile
834 and total sequence depth >1 Gbp. Biome-wise breakdown of known species fractions
835 and phylum-wise relative abundance (Supplementary Data 3) were taken from the
836 NCBI ‘organism’ metadata entry. Human samples were those with ‘human’ as a
837 substring of their organism entry, or had organism ‘gut metagenome’, ‘feces
838 metagenome’ or ‘oral metagenome’. Mouse, pig, bovine metagenomes were found by
839 searching for organisms containing each as a substring. Marine samples were those
840 with 'seawater metagenome' or 'marine metagenome' as their organism. Plant, soil,
841 sediment, freshwater and aquatic metagenomes were identified based on exact
842 matching of their organism e.g. “plant metagenome” to identify plant metagenomes.

843 The default GTDB R214 SingleM metapackage was used for the following analyses.
844  To ascertain the fraction of available communities classified at the species level over
845 time, the NCBI datasets tool (https:/github.com/ncbi/datasets) was used to download
846 the genome summary in JSON format for each species (whether a species
847  representative or not) in GTDB R214, and the submission date for each genome found
848 using jg -rc  ‘reports|] | [.accession,.assembly_info.submission_date]
849 |@tsv'.(https://jalang.qgithub.io/ja/). The earliest submitted genome from each GTDB
850 species was then calculated as the first year in which any genome in the species
851 cluster was submitted. The set of metagenomes included in the analysis also had to
852 pass these criteria: (1) The total sample coverage had to be >50 to ensure adequate
853 microbial sequencing depth, (2) the coverage assigned to any one genus could not
854 exceed 90% of the total coverage to exclude single cell genomes. The date of the
855 metagenome was the 'releasedate’ in the metadata, collected using 'kingfisher
856 annotate'(Woodcroft et al. 2024). To determine the fractions of metagenomes which
857 not only have genomic representation but are also present in isolate culture
858 collections, the GTDB auxiliary file 'hg_mimag_genomes_r214.tsv'
859 (https://data.gtdb.ecogenomic.org/releases/release214/214.0/auxillary files/) was
860 used to gather a list of GTDB species representatives that are known to be isolated.

861 Targeted genome recovery

862 For genome recovery targeted at Muirbacteria, Wallbacteria, Riflebacteria and
863 Fusobacteria, the set of samples which contained coverage of each of these phyla
864 was extracted from Sandpiper, when it was annotated with GTDB R207. For each of
865 these samples, the total coverage of taxons which were (1) assigned a taxonomy to
866 one of the target phyla and (2) not assigned to the species level (the 'non-species’
867 coverage) was tabulated for each phyla. The set of chosen samples for targeted
868 genome recovery were those which had a high non-species coverage (>10X
869 coverage) and high ratio of non-species coverage to coverage assigned to the species
870 level in the phyla (>90%). Corresponding metagenomic data was downloaded with
871  Kingfisher(Woodcroft et al. 2024). MAGs were recovered with Aviary (git commit
872  daOefd0)(Creators Newell, Rhys J. P. Aroney, Samuel T. N. Zaugg, Julian Sternes,
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873 Peter Tyson, Gene W. Woodcroft, Ben J.), assembling with metaSPADES(Nurk et al.
874  2017) and binning with CONCOCT (Alneberg et al. 2014), MaxBin2(Wu et al. 2016),
875 MetaBAT(Kang et al. 2015, 2019), SemiBin(Pan et al. 2022) and VAMB(Nissen et al.
876  2021). Bins from each were combined using DAS Tool(Sieber et al. 2018). Some
877 samples were manually assembled outside of Aviary using megahit v1.2.9(Li et al.
878 2015) since metaSPAdes(Nurk et al. 2017) (the Aviary default) cannot use single-
879 ended metagenomic data as input. Only one metagenome was used to inform binning
880 via differential coverage, the metagenome used for assembly. Genome quality was
881 assessed with CheckM2(Chklovski et al. 2022). The reported success rate (87%) is
882  only amongst those metagenomes where the assembly and binning steps successfully
883 finished (Supplementary Data 4).

884 Data availability

885 SingleM reference databases corresponding to GTDB R207 and R214 are available
886 at DOI 10.5281/zenodo.7582579 and 10.5281/zenodo.7955518 respectively. The
887 reference database used for the initial screen of public metagenomes is available at
888 DOI 10.5281/zenodo.5739612 and the reference database supplemented with
889 genomes not yet in GTDB is available at DOl 10.5281/zenodo.10360136. GTDB-
890 based profiles of public metagenomes are available at DOI
891  10.5281/zen0do.10547494, and reference-supplemented profiles at
892 10.5281/zen0do.10547501. Metagenome-assembled genomes from Muirbacteria,
893 Wallbacteria, Riflebacteria and Fusobacteria have been deposited at Zenodo under
894 DOI 10.5281/zenodo.10162715.

895 Code availability

896 SingleM, sandpiper and smafa software are made available under a free software
897 licence at https://github.com/wwood/singlem, https://github.com/wwood/sandpiper/
898 and htips://github.com/wwood/smafa, respectively. SingleM and smafa are available
899 through BioConda (https://anaconda.org/bioconda/singlem), and distributed through
900 PyPI (htips://pypi.org/project/singlem/) and crates.io (https:/crates.io/crates/smafa)
901  respectively. SingleM is also available through DockerHub
902 (https://hub.docker.com/r/wwood/singlem). Workflows used for benchmarking are
903 available at https:/github.com/wwood/singlem-benchmarking and the predictor of
904 sample eukaryotic host-association at
905 https:/github.com/wwood/singlem host or_ecological predictor.
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