
SingleM and Sandpiper: Robust microbial taxonomic profiles 1 

from metagenomic data 2 

 3 

Ben J. Woodcroft1*, Samuel T. N. Aroney1, Rossen Zhao1, Mitchell Cunningham2, 4 

Joshua A. M. Mitchell1, Linda Blackall2, Gene W. Tyson1 5 

 6 

1Centre for Microbiome Research, School of Biomedical Sciences, Queensland 7 

University of Technology (QUT), Translational Research Institute, Woolloongabba, 8 

Australia 9 
2School of BioSciences, The University of Melbourne, Victoria, Australia 10 

* To whom correspondence should be addressed. 11 

Determining the taxonomy and relative abundance of microorganisms in metagenomic 12 

data is a foundational problem in microbial ecology. To address the limitations of 13 

existing approaches, we developed 8SingleM9, which estimates community 14 

composition using conserved regions within universal marker genes. SingleM 15 

accurately profiles complex communities of known microbial species, and is the only 16 

tool that detects species without genomic representation, even those representing 17 

novel phyla. Given SingleM9s computational efficiency, we applied it to 248,559 18 

publicly available metagenomes and show that the vast majority of samples from 19 

marine, freshwater, sediment and soil environments are dominated by novel species 20 

lacking genomic representation (median relative abundance 75.0%). SingleM also 21 

provides a way to identify metagenomes for the recovery of novel metagenome-22 

assembled genomes from lineages of interest, and can incorporate user-recovered 23 

genomes into its reference database to improve profiling resolution. Quantifying the 24 

full diversity of Bacteria and Archaea in metagenomic data shows that microbial 25 

genome databases are far from saturated.  26 
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Introduction 27 

A centrally important question asked about microbial communities is determining 28 

which microorganisms are present, and at what abundance. The most accurate 29 

method for answering these questions involves shotgun metagenomic sequencing of 30 

the sample, which generates reads in proportion to the relative abundance and 31 

genome size of each community member. These reads are analysed with 32 

metagenomic taxonomic profiling software to estimate the relative abundance of each 33 

microbial species in the sample. 34 

Metagenomic taxonomic profiling (herein 8taxonomic profiling9) is typically undertaken 35 

by matching reads to databases derived from reference genomes, usually to sets of 36 

clade-specific marker genes(Milanese et al. 2019; Blanco-Míguez et al. 2023), kmer 37 

matching(Lu et al. 2017; Wood et al. 2019; Irber et al. 2022; Park et al. 2023) or by 38 

read mapping to whole genomes(Sun et al. 2023). The most recent version of 39 

MetaPhlAn (v4) incorporated a large set of metagenome-assembled genomes (MAGs) 40 

into its reference genome database, increasing the fraction of reads it assigned 41 

appreciably(Blanco-Míguez et al. 2023). However, this expanded database only 42 

includes genomes which are currently assembled and of medium-to-high quality, 43 

which means completely new species are missing from the taxonomic profiles 44 

MetaPhlAn generates. Taxonomic profiling can also be carried out by matching reads 45 

to known protein sequences i.e. a 'BLASTX'. The most widely used tool in this space 46 

is Kaiju(Menzel et al. 2016) which classifies reads against all known protein sequences 47 

in NCBI nr, Progenomes(Mende et al. 2020), or other large sequence databases. 48 

Despite the wide variety of profiling tools that have been developed and extensively 49 

benchmarked, accurate estimation of community composition remains a challenging 50 

problem(Meyer et al. 2022; Poussin et al. 2022). Existing taxonomic profiling software 51 

is also largely restricted to characterising the abundance of species with reference 52 

genomes, missing most novel species. This inability to account for novel species has 53 

long been recognized as a central limitation of taxonomic profiling from metagenomic 54 

data(Menzel et al. 2016), one that significantly hinders the study of microbial ecology.  55 

Here we present a fast and accurate species-level profiler of short read metagenomes 56 

(8SingleM9) that is able to identify and enumerate lineages where no complete or draft 57 

genome exists. It achieves these goals by analysing only those reads which cover 58 

highly conserved regions (8windows9) of single copy marker genes. Restricting analysis 59 

in this way structures a metagenomic dataset into a simplified intermediate 60 

representation, an operational taxonomic unit (OTU) table for each marker gene. From 61 

this representation, new algorithmic approaches can be applied which improve 62 

profiling fidelity and open up new possibilities for the interpretation of taxonomic 63 

profiles. 64 
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Results and discussion 65 

Taxonomic profiling through read recruitment to conserved windows 66 

SingleM is a software suite which takes short read metagenomic data as input, and 67 

estimates the relative abundance and per-base read coverage of Bacteria and 68 

Archaea at each taxonomic level from domain to species (Figure 1). SingleM starts 69 

by matching reads to highly conserved regions ('windows') of 59 single copy marker 70 

genes (22 Bacteria-specific, 24 Archaea-specific, 13 targeting both domains). 71 

Importantly, reads are matched to these conserved gene windows by searching in 72 

amino acid space, using DIAMOND BLASTX(Buchfink et al. 2021), maximising 73 

recruitment of reads from divergent lineages. This is in contrast to other marker-based 74 

taxonomic profilers, which map the nucleotide sequences of reads to markers directly 75 

(e.g. MetaPhlAn, mOTUs).  76 

In SingleM, only those reads which fully cover these 20 amino acid (60 nucleotide) 77 

windows are analysed further. The 60bp nucleotide sequences of each read are 78 

clustered de novo into operational taxonomic units (OTUs). The result is an 79 

intermediate representation of the microbial community, an unannotated OTU table 80 

for each marker gene that has been created independent of taxonomy. Its 81 

completeness relies only on the BLASTX-based matching approach, which we show 82 

below has high fidelity even for novel lineages. 83 

To assign taxonomy to each OTU, SingleM uses the Genome Taxonomy Database 84 

(GTDB)(Parks et al. 2022) rather than NCBI taxon strings. This decision was motivated 85 

by the taxonomic consistency of the GTDB and its use of the 95% average nucleotide 86 

identity threshold to delineate species, which helps establish whether each window 87 

sequence represents a new species or one known from the reference database. 88 

Taxonomic classification is carried out using a custom alignment algorithm 'smafa' 89 

which aligns each OTU9s 60bp window sequence against 60bp sequences derived 90 

from GTDB species representatives(Parks et al. 2022). Compared to general purpose 91 

sequence similarity search algorithms, smafa rapidly identifies the most similar 92 

sequences without resorting to algorithmic heuristics. This task is made feasible by 93 

observing that the query and subject sequences have already been aligned to the 94 

marker window and therefore to each other. If no GTDB species encodes the query 95 

window sequence within 96.7% average nucleotide identity (Supplementary Note 1), 96 

then a truncated genus-level taxonomy is assigned using a DIAMOND BLASTX best 97 

hit approach.  98 

In the final step, a summarised taxonomic profile of the metagenome is created by 99 

integrating the information available for each marker gene. The composition of both 100 

known species and higher level taxons is estimated by applying an expectation-101 

maximisation algorithm(Kim et al. 2016) which considers the abundance and 102 

taxonomic assignment made to each OTU. Then, to estimate the abundance of each 103 

taxon, the abundance of OTUs assigned to the taxon or its descendents are summed, 104 
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for each marker gene. The abundance of each taxon is calculated as a trimmed mean 105 

taken across the marker genes, excluding those with total abundance in the lowest 106 

and highest 10% to account for taxonomy misassignment and lineages with reduced 107 

genomes that do not encode all marker genes. Noise in the taxonomic profile is also 108 

reduced by removing all taxons with a total abundance of less than 0.35X, a threshold 109 

developed by application of the algorithm to CAMI 1 benchmarks(Sczyrba et al. 2017) 110 

and public datasets (data not shown). In these cases the abundance is re-assigned to 111 

a higher level taxon with >=0.35X coverage. 112 

Comparing SingleM to other taxonomic profilers 113 

The taxonomic profiling accuracy of SingleM was first benchmarked on simulated 114 

communities which contained genomes from known species, testing against other 115 

tools for which a GTDB R207 reference database was available. Complex microbial 116 

communities were modelled after the CAMI 2 'marine' benchmark datasets(Meyer et 117 

al. 2022). We found the performance of SingleM was superior, at an average of >0.13 118 

better Bray-Curtis dissimilarity than all other tools at the species level (Figure 2A). 119 

SingleM was also the top-ranked tool in terms of F1 score, false positive rate, Jaccard 120 

index, L1 norm error and purity (Supplementary Data 2), but similar to other marker-121 

based methods was less performant when genomes were present at lower abundance 122 

(Supplementary Note 2). We note that for MetaPhlAn and mOTUs, use of an officially 123 

supported translation step from NCBI to GTDB taxonomy was required for 124 

comparison, which may have adversely affected these tools' accuracy. 125 

In analysing these benchmark datasets, SingleM was fast, using ~20% of the runtime 126 

of MetaPhlAn and mOTUs when using a single CPU, analysing 1.3 million reads per 127 

minute (Figure 2B). The only faster workflows tested was Kraken2+Bracken, which 128 

used 42% of the runtime of SingleM respectively. However, Kraken2+Bracken used a 129 

much larger quantity of RAM (295GB). SingleM, in contrast, used the least amount of 130 

RAM (2GB). The lightweight runtime requirements of SingleM are a consequence of 131 

its optimised upfront detection of reads derived from marker gene windows, such that 132 

no further processing of the vast majority of reads is required.  133 

To assess whether SingleM and other profiling tools can accurately represent novel 134 

lineages, we selected 120 species which were new in GTDB R214, analysing them 135 

with a reference database derived from the previous version R207. For each selected 136 

novel genome, reads were simulated at 10X coverage, creating 120 mock 137 

communities. To establish a point of reference in these mock communities, a known 138 

reference genome from the alternate domain was added at equal abundance i.e. a 139 

known bacteria for novel archaea, and a known archaeon for novel bacteria.  140 

The classification accuracy of five profiling tools with available R207 reference 141 

databases were assessed by comparing their estimated profiles to the gold standard 142 

at the highest resolution possible given the constraints of the R207 taxonomy e.g. 143 

class-level Bray-Curtis dissimilarity for genomes from novel orders, order-level 144 
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dissimilarity for novel families, and so on. On this benchmark, a Bray-Curtis 145 

dissimilarity of 0 indicates the gold standard profile was perfectly reconstructed, while 146 

0.5 indicates that the novel lineage was entirely missed by the tool. SingleM showed 147 

superior performance across all novelty levels (average 0.13±0.13, Figure 2D, 148 

Supplementary Figure 1) compared to other tools (average 0.46±0.10).  149 

The specific ability of tools to simply detect novel lineages, rather than both detect and 150 

classify them, was then assessed using the same benchmark data. Each tool9s ability 151 

was assessed by calculating their profile9s Bray-Curtis dissimilarity to the gold 152 

standard as before, but at the least resolved taxonomic level possible, the kingdom 153 

level. SingleM performed very well in detecting the novel lineages within these 120 154 

mock communities (Figure 2E), averaging a Bray-Curtis dissimilarity of 0.04±0.05. In 155 

comparison, most other tools scored an average of >0.45 (MetaPhlAn, mOTUs, 156 

sourmash, MAP2B). The only exceptions were Kraken2+Bracken and Kaiju, which 157 

scored 0.28±0.15 and 0.25±0.14. However, the performance of Kraken2+Bracken and 158 

Kaiju on novel archaea was substantially worse (0.38±0.15 and 0.30±0.14) than on 159 

novel bacteria (0.21±0.11 and 0.22±0.12). This suggests that their performance on 160 

novel bacteria may be partially a consequence of there being more bacterial reference 161 

genomes than a true ability to generalise to novel lineages. The bias of all tools other 162 

than SingleM against detection of novel lineages was pronounced even when the 163 

novel species was contained within a known genus. This was particularly true for 164 

previous marker-based methods. We attribute SingleM9s strong performance on this 165 

benchmark to its use of a sequence similarity search method based on amino acids 166 

rather than nucleotides during read recruitment, which allows divergent marker gene 167 

sequences to be detected.  168 

We conclude that most taxonomic profiling tools fail to adequately weight novel 169 

lineages in their taxonomic profiles, even when the novelty is only at the species level. 170 

In contrast, based on these analyses and others carried out on highly reduced 171 

symbiont genomes (Supplementary Note 3), we found SingleM reliably detects 172 

previously unknown lineages even if they are novel at the phylum level.  173 

Taxonomic profiles of publicly available metagenomes 174 

Having established SingleM as a scalable and accurate taxonomic profiling tool, we 175 

applied it to metagenomes at the NCBI SRA(Kodama et al. 2012) that were publicly 176 

available in December 2021. Community profiles were derived from 248,559 177 

metagenomes in 17,617 projects comprising 1.3 Pbp of sequencing data, an amount 178 

which was ~3X the quantity annotated by previous rRNA-based efforts(Martiny et al. 179 

2022). Results of this large scale analysis are made available at the 8Sandpiper9 180 

website (https://sandpiper.qut.edu.au) where taxonomic profiles can be searched 181 

based on GTDB R214 taxonomy strings or dataset accession.  182 

This large set of SingleM-derived community profiles allowed us to estimate how much 183 

of the worlds9 metagenomes are represented in reference genome databases, and 184 
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how much is missing (Supplementary Note 4). In light of recent large-scale MAG 185 

mining efforts(Almeida et al. 2021; Nayfach et al. 2021; Paoli et al. 2022; Ma et al. 186 

2023; Schmidt et al. 2023), all community profiles were first reassigned taxonomy 187 

using a GTDB reference database supplemented with newly mined MAGs. Known 188 

species dominated most host-associated datasets, with an average of 78% of each 189 

community assigned a species level taxonomy after weighting by relative abundance 190 

(Figure 3, Supplementary Table 1). A higher average (henceforth 'known species 191 

fraction') was observed in human and mouse metagenomes (80% and 85%), likely 192 

due to their being the subject of more studies (111, 297 and 7,354 metagenomes 193 

respectively, Supplementary Data 3) and comparatively less diverse communities. 194 

Bovine, pig and plant-associated metagenomes are less well represented in reference 195 

databases (46%, 71% and 56%). In contrast, the known species fraction was much 196 

lower in environmental metagenomes. As expected, soils (14%, median 8%) and 197 

sediments (20%, median 12%) had the lowest known species fraction. Marine (41%, 198 

median 40%) and freshwater (45%, median 46%) metagenomes were somewhat 199 

better characterised.  200 

Cultured species made up 47% of host-associated taxonomic profiles on average 201 

(median 48%, Supplementary Table 1). This is consistent with the recent observation 202 

that 29% of the UHGG human gut MAG collection has a cultured species 203 

representative(Almeida et al. 2021) since higher abundance species are more likely 204 

to have been cultured. In contrast, cultured species made up only a very small minority 205 

of profiles from marine, freshwater, aquatic, sediment and soil environments (median 206 

2.6%, mean 8.0%). Uncultured species particularly dominated in soils, where a median 207 

of 0.8% were cultured (mean 3.5%). 208 

Together, the recent MAG mining efforts added 82,619 new species level lineages to 209 

the GTDB R214-based reference database, which was originally composed of 85,205 210 

species. Overall, the median known species fraction in environmental metagenomes 211 

was 25.0% (mean 30.2%). However, environmental metagenomes already had a 212 

19.9% median known species fraction prior to the addition of these new MAGs (mean 213 

25.6%, Supplementary Table 1). Despite almost doubling the set of available 214 

species-level reference genomes, the additional MAGs only improved the median 215 

known species fraction of environmental metagenomes by 5.1%. These results 216 

underscore the utility of using taxonomic profiling approaches that account for novel 217 

lineages and show that a remarkable diversity of organisms are not yet represented in 218 

reference genome databases at the species level. 219 

New metagenomic sequencing often detects new microbial diversity, so we next 220 

provide a historical view of the rate at which new species are encountered in 221 

metagenomic sampling. The average known species fraction of metagenomes 222 

released each year was calculated, counting only those species where a genome was 223 

available at the start of that year (Figure 3). This measure estimates the relative 224 

abundance of novel species in newly sequenced metagenomes given the state of the 225 

reference database available before sequencing. More than 50% of newly sequenced 226 
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host-associated metagenomes were assigned at the species level since ~2012. 227 

Steady progress is being made towards high known species fractions in 'ecological 228 

metagenomes' (an NCBI taxonomy category which includes environmental 229 

metagenomes and biomes such as wastewater), but at current rates the reference 230 

database is much further from saturation.  231 

At the phylum level, Bacteroidota and Bacillota_A (which includes many lineages 232 

previously classified as Firmicutes) comprised the majority of commonly sequenced 233 

animal metagenomes (human, mouse, pig and cow), with a combined average of 73% 234 

(Figure 3). Pseudomonadota (previously known as Proteobacteria(Oren and Garrity 235 

2021)) was the most abundant phyla in the 5 most commonly sampled environmental 236 

biomes (soil, sediment, marine, freshwater, aquatic), accounting for 36% of average 237 

relative abundance. It is also the highest abundance phylum in many less well sampled 238 

environments (Supplementary Data 3). This phyla also appears frequently in some 239 

host-associated metagenomes, dominating plant metagenomes with an average 240 

relative abundance of 72%, and ranking in the top five phyla for both pigs and humans. 241 

These analyses underline the remarkable ability of Pseudomonadota to adapt to and 242 

dominate a wide variety of different environments. 243 

We intend for Sandpiper to be a continually updated resource for the community as 244 

new metagenomes are sequenced and genomes recovered. SingleM has largely 245 

solved the problem of novel lineage detection (Figure 2), so the continual efforts to 246 

improve reference databases do not necessitate a full reanalysis of previously 247 

processed raw metagenomic reads. Only the taxonomic assignment of OTUs and 248 

downstream summarisation into taxonomic profiles need to be recomputed, 249 

operations which are markedly less resource-intensive. For instance, updating the 250 

248,559 Sandpiper profiles to GTDB R214 taxonomy only took 2 days and a total of 251 

~30,000 CPU hours on an in-house compute cluster.  252 

Taxonomically targeted MAG recovery from public metagenomes 253 

One application of the Sandpiper dataset is to inform genome recovery efforts aimed 254 

at specific lineages of interest. The assembly and binning of metagenomic datasets 255 

involves computationally intensive techniques, making them challenging to apply 256 

wholesale to all public datasets. MAG recovery efforts from both human and 257 

environmental samples have only been undertaken at the scale of ~13,000 258 

metagenomes per study(Parks et al. 2017; Almeida et al. 2019; Pasolli et al. 2019; 259 

Nayfach et al. 2021; Paoli et al. 2022; Ma et al. 2023), with the exception of the recent 260 

SPIRE initiative(Schmidt et al. 2023) (~100,000 samples). While impressive, these 261 

efforts encompass less than half of the metagenomes currently in Sandpiper. Further, 262 

improving MAG quality by reapplication of genome recovery pipelines with updated 263 

bioinformatic tools requires significant computation. Application of state of the art 264 

genome recovery methods across all public datasets is therefore out of most 265 

researchers9 reach.  266 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.30.578060doi: bioRxiv preprint 

https://paperpile.com/c/RgTu4Y/5wUj
https://paperpile.com/c/RgTu4Y/5wUj
https://paperpile.com/c/RgTu4Y/R4fX+n5xK+srE5+TceC+7Twy+vnks
https://paperpile.com/c/RgTu4Y/R4fX+n5xK+srE5+TceC+7Twy+vnks
https://paperpile.com/c/RgTu4Y/MZw1
https://doi.org/10.1101/2024.01.30.578060
http://creativecommons.org/licenses/by/4.0/


For studies wishing to concentrate analysis on specific taxa, we devised a simple 267 

procedure to suggest samples likely to yield novel genomes based upon the estimated 268 

coverage and relative abundance of the taxa (see methods). To test the procedure, 269 

we attempted recovery of MAGs from four related bacterial phyla, the Muirbacteria, 270 

Wallbacteria, Riflebacteria and Fusobacteria. These phyla branch together near the 271 

root of Bacteria(Coleman et al. 2021) and are underrepresented in reference 272 

databases, with 1, 3, 22 and 95 species representatives available at the time of 273 

analysis (GTDB R207), respectively. Further taxonomic sampling of these phyla may 274 

inform future efforts to confidently place the Bacterial root.  275 

In this proof of concept experiment, we analysed 63 metagenomes predicted to 276 

contain novel species belonging to these phyla at sufficient abundance to enable 277 

genome recovery. Novel genomes were successfully recovered from 55 of these 278 

metagenomes (87% of samples, 62 MAGs from these phyla in total) with 279 

completeness >70% and contamination <5% (average 93% and 2%) (Supplementary 280 

Data 4). All of these MAGs were novel to at least the species level and include 281 

representatives of new genera from each of the four phyla. Genomes from 282 

Muirbacteria, Wallbacteria and Riflebacteria phyla were mostly derived from 283 

industrial(Yin et al. 2018, 2020; Cheng et al. 2019; Ma et al. 2021) or environmental 284 

communities. Recovered Fusobacteria were associated with non-human eukaryotic 285 

hosts including insects(Laviad-Shitrit et al. 2020), birds(Cao et al. 2020), 286 

monkeys(Rhoades et al. 2021), and fish(Le Doujet et al. 2019; Riiser et al. 2020; 287 

Collins et al. 2021; Pratte et al. 2022). We conclude that Sandpiper can be used to 288 

expand the diversity of genomes present in reference databases through the targeted 289 

application of genome recovery pipelines. 290 

Supplementing reference data with newly recovered genomes 291 

Genome-centric workflows have become a mainstay of metagenomic analysis due to 292 

their ability to recover genomes from samples de novo. However, assembly and 293 

binning typically only yield MAGs for a subset of community members due to limited 294 

coverage or high strain heterogeneity(Meziti et al. 2021). To estimate relative 295 

abundance in their microbial communities, researchers are usually forced to restrict 296 

analysis to MAGs they themselves recovered, or to use general reference databases 297 

that exclude their MAGs. To enable a more holistic taxonomic profile to be obtained in 298 

these scenarios, we provide a 'supplement' mode of SingleM, which adds genomes to 299 

the SingleM reference database. Profiling metagenomes with this supplemented 300 

reference database enables users to integrate the wealth of data available in reference 301 

genome databases with their newly discovered MAGs.  302 

Conclusion 303 

Single copy marker genes have long been used in microbial ecology for predicting the 304 

quality of assembled genomes(Parks et al. 2015), for phylogenomic inference(Wu and 305 

Eisen 2008) and for taxonomic profiling(Milanese et al. 2019). Here we have 306 
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established that not only are entire genes conserved, but specific motifs are sufficiently 307 

conserved to allow unassembled reads from novel genomes to be reliably identified 308 

as homologous. Conserved sequence windows can be used to solve a number of 309 

bioinformatic problems in microbial ecology beyond those discussed here, and we plan 310 

on exploring these in future. Taken together, SingleM and Sandpiper bring together 311 

three sub-fields of microbial ecology4taxonomic profiling, public data analysis and 312 

genome-centric metagenomics4in a way that we hope will provide better utilisation of 313 

public datasets and improved global context for metagenomic analyses.  314 

Figures 315 

 316 
Figure 1. Conceptual overview of the SingleM algorithm. Raw metagenomic reads 317 

are first filtered to find those that are homologous to any of the 59 marker genes. 318 

Selected reads are translated and aligned to their marker9s hidden Markov model 319 

(HMM), discarding any which do not fully cover the 20 amino acid window. The 320 

remaining reads are clustered into operational taxonomic units (OTUs) using the 321 

corresponding 60 nucleotides. Taxonomy is assigned to each OTU either at the 322 

species or genus levels by smafa or DIAMOND BLASTX, respectively. In the final step, 323 

the assigned taxonomy of each cluster is used to create a taxonomic profile which 324 

summarises the read coverage observed across the 59 marker genes. 325 
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Figure 2. Metagenomic taxonomic profiling tool benchmarks. Complex 328 

communities of known species were used to benchmark each tool in terms of  (A) 329 

accuracy defined as Bray-Curtis dissimilarity to true community structure at the 330 

species level, (B) runtime and (C) RAM usage. In (A), a dissimilarity of 0 indicates a 331 

perfect reconstruction of the mock community. The Kraken2+Backen result is included 332 

for context, though this workflow estimates the read count of each species rather than 333 

their relative abundance. Kaiju and MAP2B are excluded from the accuracy 334 

benchmark as no Genome Taxonomy Database (GTDB) R207 reference database 335 

was available. In (D), accuracy of each tool is shown for 120 mock communities, where 336 

each community was composed of 1 known species and 1 lineage new in R214, at 337 

equal abundance. Accuracy was assessed on the most specific rank possible given 338 

the constraints of the R207 taxonomy e.g. class level profile dissimilarity for genomes 339 

from novel orders. In (E), accuracy for each tool is shown for the same communities, 340 

but assessed at the kingdom level as a measure of how well each tool detects novel 341 

lineages. A Bray-Curtis dissimilarity of 0 indicates full detection, where 0.5 indicates 342 

that the novel lineage was completely undetected. Kaiju and MAP2B are included in 343 

this benchmark only since they do not output GTDB R207-based taxonomy. In (D) and 344 

(E), the Kraken2+Backen workflow is directly comparable to the other tools since the 345 

1:1 ratio of the two simulated species holds sufficiently for both read count and relative 346 

abundance.  347 
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Figure 3. Summary of public metagenomes. Panels (A) and (B) show the fraction 350 

of each metagenome that has been assigned a species-level taxonomy. The 351 

remaining fraction currently lacks genomic representation. Plotted is the distribution of 352 

these fractions across datasets derived from various eukaryotic host-associated (A) 353 

and ecological (B) environments. In (C), the average fraction of metagenomes 354 

released in each year assigned to the species level is shown, counting only those 355 

species where a genome was available the year before. The dotted line is a linear 356 

model of each environment type, weighted by metagenome count. Less metagenomes 357 

were published earlier on, so early known species fractions are more variable, spiking 358 

as high as 80%. Panels (D) and (E) show the relative abundance of the phyla observed 359 

in selected eukaryotic host-associated and environmental metagenomes, 360 

respectively.  361 

Methods 362 

Description of the SingleM algorithm 363 

A candidate list of putative single-copy, broad-range marker genes was formed from 364 

ribosomal proteins originally derived from PhyloSift(Darling et al. 2014) and GTDB-365 

Tk(Chaumeil et al. 2019) marker gene sets. Some of these genes span both bacterial 366 

and archaeal domains, whereas others are restricted to one domain. The set of marker 367 

genes was chosen such that each gene is present in either >90% of genomes in 368 

Bacteria or >85% of genomes in Archaea, with an average copy number of <1.05. We 369 

allowed less than 100% prevalence of these genes in their respective target domains 370 

because some reference genomes are incomplete (e.g. MAGs) and some specific 371 

lineages have lost certain genes (e.g. Patescibacteria(Méheust et al. 2019)). This 372 

heterogeneity is at least partially rescued by robust statistical measures (i.e. trimmed 373 

mean) during the 8condense9 step, detailed below. 374 

The reference database of SingleM (the 'metapackage') is organised as a collection 375 

of 'packages'. Each package details one gene and one window is chosen per gene. 376 

To create these packages, Pfam and TIGRfam HMMs associated with each gene were 377 

used to extract sequences from GTDB species representatives. The resulting set of 378 

SingleM packages were then reduced in number by applying 'singlem pipe' to the 379 

predicted transcripts from GTDB representative species as well as to simulated reads 380 

derived from one representative per phyla. Packages that were single-copy in >85% 381 

of a domain's transcripts and simulated reads were included in the metapackage with 382 

that domain as a target. 383 

To determine a window position for each gene suitable which is highly conserved and 384 

suitable for recruitment of metagenomic reads, raw reads from complex peat 385 

metagenomes, which are known to contain reads from a broad range of microbial 386 

taxa(Woodcroft et al. 2018) (SRA accessions SRR7151621, SRR7151618 and 387 

SRR7151620), were aligned against each HMM using GraftM(Boyd et al. 2018) with 388 

parameters 'graftM graft --search_and_align_only'. The generated alignments were 389 
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then used to identify the position of a 20 amino acid length window containing the 390 

greatest number of aligned nucleotides to the marker gene9s HMM, using 'singlem 391 

seqs' with default parameters.  392 

Generating marker-wise OTU tables 393 

Raw metagenomic reads are assigned to taxonomically annotated OTUs through the 394 

application of several steps, described below. These steps are implemented in the 395 

8singlem pipe9 subcommand. Many of the parameters detailed can be changed by the 396 

user, here only the default parameters are shown. Similarly, a number of performance 397 

optimisations are omitted for brevity. 398 

1. The first step in the SingleM algorithm, referred to in the codebase as the 399 

'prefilter step', is to recruit raw reads to marker gene windows. To hasten this 400 

procedure, reads are initially selected by DIAMOND blastx against marker gene 401 

sequences from the target domains for each marker. Despite the improved 402 

speed afforded by the DIAMOND algorithm(Buchfink et al. 2021), selection of 403 

raw reads to align against each marker9s HMM remains the bottleneck in 404 

SingleM9s runtime. We take three measures to limit the runtime of this 405 

DIAMOND search: (1) use of the DIAMOND 'makeidx' feature for small 406 

reference databases(Edgar et al. 2022), (2) trimming of database sequences 407 

to the 20 amino acids in the windows plus 30 amino acids on each side, and 408 

(3) sequence dereplication at 60% identity using CD-HIT(Fu et al. 2012) with 409 

parameters 8cd-hit -n 3 -M 0 -c 0.69. DIAMOND BLASTX is run with parameters 410 

8diamond blastx --outfmt 6 qseqid full_qseq sseqid --top 1 --evalue 0.01 --block-411 

size 0.5 --target-indexed -c1 --query-gencode 49. A single database comprising 412 

sequences from all markers is used. The output from this step is a set of read 413 

identifiers, read sequences and the marker gene they best match to. We found 414 

that specifying translation table 4 worked well in practice, because doing so 415 

detects those lineages which use translation table 4, but also because 416 

inappropriately translated sequences from genomes which use table 11 (the 417 

standard bacterial table) were excluded on the basis of sequence dissimilarity. 418 

In this default mode, reads are assigned only to their best matching marker 419 

gene, which is appropriate for short reads. Long reads, but contrast, may 420 

encode genes from multiple markers colocated on a genome. Therefore we 421 

suggest the current direct BLASTX approach used by default in SingleM is 422 

inappropriate for long reads. 423 

If the input to SingleM is a genome ('--genome-fasta-files'), then a quick, rough 424 

transcriptome generated by OrfM(Woodcroft et al. 2016) using a minimum gene 425 

length of 100 amino acids. Since many of these predicted transcripts are not 426 

true genes and may overlap, a dereplication step is applied after marker HMM 427 

alignment such that only the longest open reading frame is kept at each locus. 428 

2. Candidate sequences are aligned to the HMMs of their respective marker 429 

genes. Translated open reading frames are identified with OrfM using a 430 
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minimum open reading from size of 24 amino acids (8orfm -m 729) and then 431 

aligned using the hmmalign tool in the HMMER suite(Eddy 2011). 432 

3. Aligned amino acid sequences are filtered to remove any sequences which do 433 

not cover the window. Specifically, any sequences which do not align to both 434 

the first and last positions of the window are excluded from further analysis. 435 

4. Sequences are translated from aligned amino acid sequences back into aligned 436 

nucleotide sequences, using the matching read sequence. This 60bp 437 

nucleotide sequence is then the 8OTU9 sequence. The redundancy of the 438 

genetic code means that these 60bp are a richer source of information than the 439 

20 amino acid sequence when differentiating closely related OTUs and when 440 

attempting to apply taxonomic assignment to the species level. This sequence 441 

may include gaps, but any inserts are removed so that all OTU sequences are 442 

60bp in length. This consistency of length facilitates efficient comparison of 443 

OTU sequences and taxonomic assignment. Sequences containing insertions 444 

were also found to be rare in practice. 445 

5. Sequences with the same OTU sequence are aggregated together by exact 446 

sequence clustering of the 60bp windows, creating an OTU table. This OTU 447 

table can be dereplicated by inexact sequence clustering using the 8singlem 448 

summarise9 subcommand, if desired, though the 8condense9 algorithm includes 449 

correction mechanisms for sequencing error (see below). 450 

6. The 'coverage' of each OTU is calculated using the established relationship 451 

between kmer coverage and read coverage as set out by Velvet(Zerbino and 452 

Birney 2008): 453 āāăăÿÿ�ă =  Ā�� 2  ý +  1 454 

Where n is the number of reads with the OTU sequence, L is the length of the 455 

read and k is the length of the OTU sequence including inserts but excluding 456 

gaps (usually 60 bp). In practice, each read may have a different length and/or 457 

aligned length within the 20 amino acids, so the coverage contribution of each 458 

read is calculated separately according to the formula above. The coverage 459 

assigned to an OTU is the sum of each read9s contribution. 460 

7. OTUs are assigned taxonomic annotations by matching their nucleotide OTU 461 

sequences to a database of species representatives from the GTDB(Parks et 462 

al. 2022), using the 'query' procedure (see below). Sequences are assigned to 463 

their closest matching species with a maximum difference of 3bp, since 3 out 464 

of 60bp corresponds to 95%, the ANI threshold used for species delineation in 465 

the GTDB(Parks et al. 2020). Sequences are matched using the 8naive9 method 466 

of the 8singlem query9 machinery, described below. When several species have 467 

equivalent best hits, the taxonomic assignment of the OTU is then the last 468 
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common ancestor of these species. The 8condense9 algorithm incorporates 469 

these equal best hits directly to disambiguate taxonomy in these cases (see 470 

below). 471 

8. OTUs which are not assigned taxonomy in the previous step are assigned 472 

taxonomy via DIAMOND BLASTX. The raw, unaligned and untrimmed read 473 

sequences of each OTU are used as input, searching against a database of 474 

sequences derived from the OTU9s assigned marker gene. Like the initial read 475 

recruitment (prefilter) step, this database consists of protein sequences 476 

trimmed to the ~20 amino acids which align to the HMM window plus 30 amino 477 

acids on either side using translation table 4, but unlike the prefilter step the 478 

database is not dereplicated. The database also includes protein sequences 479 

derived from 'off-target' species e.g. archaeal sequences from bacterial-only 480 

markers. Eukaryotic sequences are also included as off-target, as derived from 481 

UniProt truncating the taxonomy to the kingdom level. DIAMOND is run with 482 

parameters 8diamond blastx --outfmt 6 qseqid sseqid bitscore --top 1 --evalue 483 

0.01 --block-size 0.5 --target-indexed -c1 --query-gencode 49. The taxonomic 484 

annotations of these hits are processed in a similar way to the previous step: 485 

equal best hits are recorded for later use by 8condense9. Within an OTU table, 486 

the taxonomy of each OTU is calculated by gathering a taxon string for each 487 

read in the OTU, which is the last common ancestor of taxons which hit best for 488 

each read. Then the taxonomy of the OTU is the most specific taxonomic 489 

annotation such that 50% of the reads9 last common ancestors agree. 490 

In the generated OTU table and condensed taxonomic profile (see below), no 491 

assignment is made to the species level for entries that are assigned taxonomy 492 

through DIAMOND BLASTX. Taxonomic annotation made to the genus level at 493 

most, since there is insufficient identity on the nucleotide level to be assigned 494 

to a specific species. For species where no representative is known to the 495 

genus level (novel genera, novel families, etc.), a genus level annotation will be 496 

incorrect. In the current implementation, we do not attempt to remedy this and 497 

as such interpret genus level assignments as being either correct or 498 

representing lineages that are novel at the genus level or higher. 499 

9. The OTU tables generated are optionally output as an 'OTU table', which is a 500 

tab-separated file containing one OTU per line, or an 'archive OTU table', which 501 

is a JSON format file containing more detailed information about each OTU. 502 

10. The OTU table is optionally subject to the 8condense9 procedure (see below), 503 

and output as a 'taxonomic profile' and/or Krona HTML(Ondov et al. 2011).  504 

Query: assigning taxonomy by comparison of OTU window sequences 505 

An OTU window sequence is a 60bp sequence which has been aligned to a marker9s 506 

HMM. Unlike a traditional sequence similarity search, which might use a more general 507 

local alignment algorithm such as Smith-Waterman to find an optimal alignment 508 

between two sequences, comparison between window sequences is a simpler 509 
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problem. This is because the two sequences are aligned before comparison, since 510 

they have both been aligned to the same HMM. Comparing window sequences can 511 

therefore be achieved through simple pairwise comparison of the pair of bases at each 512 

position in the window.  513 

This simpler problem can further be reframed as a vector similarity search problem, 514 

by one-hot binary encoding the base at each position. We represent A with [1,0,0,0,0], 515 

T with [0,1,0,0,0], C with [0,0,1,0,0], G with [0,0,0,1,0], and other characters (Ns, gaps 516 

or IUPAC codes) with [0,0,0,0,1]. Each position of the 60bp is represented by one of 517 

these, and concatenating these across the 60 positions, we generate a binary vector 518 

of length 60*5 = 300 for each sequence. For sequences containing only A, T, G and 519 

C, the number of positions that differ between two sequences is the Manhattan 520 

distance between their vector representations divided by 2. It is divided by 2 since at 521 

a mismatching base position, 2 columns will differ. 522 

Calculating these distances can be quickly computed particularly since modern 523 

compilers utilise CPU instructions which operate on vectors of bits. If we have one 524 

60bp sequence as a query and a comparatively small number sequences in a 525 

database, such as the current number of species in GTDB R214 (85,205 species, each 526 

containing ~1 unique single copy marker gene sequence), then we can compute the 527 

most similar set of sequences by brute force, comparing the query sequence against 528 

each database sequence. We term this approach the 8naive9 method. 529 

For larger scale comparison of sequences, the search time can become prohibitive. 530 

To speed this search up, the problem can be solved inexactly. The inexact version is 531 

known as approximate k-nearest neighbours (approximate kNN), here in 300 532 

dimensional space. Approximate kNN is a well studied problem, particularly since it 533 

has many applications in machine learning(Aumüller et al. 2020). However, most 534 

implementations assume each dimension is not binary but instead a float value. This 535 

likely means that the implementations are not computationally optimised as they might 536 

be, but nonetheless provide accurate results. One exception to this is 537 

NMSLIB(Boytsov and Naidan 2013), which does provide a binary space 538 

implementation. We tested a number of binary and floating point implementations, 539 

finding that SCANN(Guo et al. 13--18 Jul 2020) was the most accurate and fast, 540 

though ANNOY (https://github.com/spotify/annoy) required less RAM and had a 541 

smaller start-up time since it is an on-disk implementation.  542 

Due to the merely approximate results and slightly ill-suited implementations available, 543 

we implemented an exact brute force search program, 8smafa9, and use it as the default 544 

window search method ('smafa-naive' in the SingleM codebase). Implemented in the 545 

Rust programming language using needletail 546 

(https://github.com/onecodex/needletail), smafa efficiently and exactly finds similar 547 

window sequences. It uses the postcard format 548 

(https://github.com/jamesmunns/postcard) to store its sequence database with the 549 
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primary aim of fast database load times. For GTDB 08-RS214, the average marker9s 550 

sequences require only a ~20MB sequence database file. 551 

Condense: combining OTU tables from each marker gene into a single taxonomic profile 552 

On their own, the set of OTUs from each marker can be considered a taxonomic 553 

profile. However, we provide a method to combine (8condense9) these into a single 554 

taxonomic profile which is advantageous for several reasons. Holistically using the 555 

information contained across marker genes is more sensitive, because lower 556 

abundance community members may not be represented in each marker9s OTU table. 557 

It also allows more specificity in taxonomic annotations, because sequences shared 558 

by multiple taxa in one marker9s table may be disambiguated by the sequences 559 

observed in another. For instance, if one marker9s OTU table contains a sequence that 560 

matches 2 species in one genus (species A and species B), but another marker only 561 

contains sequences that match species B, then it is most likely that species B is 562 

present in the sample while species A is not. Finally, inspecting one taxonomic profile 563 

is simply more convenient than inspecting all 59 individually. 564 

There are some important disadvantages of condensing each markers9 OTU table into 565 

a single taxonomic profile, though. In the current implementation, information about 566 

the diversity of sequences is not incorporated directly, only their taxonomic affiliation(s) 567 

are. For instance, consider a situation where there are two window sequences from 568 

different species assigned to a genus G in each of the marker OTU tables, but neither 569 

of these species are contained in the reference database (GTDB). The final taxonomic 570 

profile will show only coverage of the genus G, with no delineation of lineages at the 571 

species level within this genus. In this case, community structure at the species level 572 

will not be evident in the condensed taxonomic profile, even though the marker OTU 573 

tables show two separate species from the genus are present. 574 

The condense algorithm works in several steps: 575 

1. Any OTUs which have 8off-target9 taxonomic annotations are removed. These 576 

might be Eukaryotic OTUs, or bacterial OTUs which matched archaeal markers, 577 

or OTUs not assigned domain-level taxonomy, for instance. 578 

2. Species-wise expectation-maximisation is used to disambiguate the taxonomic 579 

affiliation of OTUs that have been assigned to multiple species when matching 580 

their nucleotide window sequences to GTDB species nucleotide window 581 

sequences. In some cases, window sequences derived from multiple species 582 

are identical, and novel strains may map with identical imperfect identity to 583 

multiple species. To address these situations, information from other marker 584 

gene OTUs is used. Specifically, in this iterative expectation-maximisation 585 

procedure, each species is initially assigned equal abundance. Then for each 586 

OTU, the coverage is partitioned according to the abundance ratio of species 587 

that the OTU matches. The abundance of each species is then re-calculated as 588 

the average abundance across the markers (counting only markers targeting 589 

the domain to which the species belongs), and the procedure repeated until no 590 
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species changes in abundance by >0.001 coverage units. A simplified example 591 

of this procedure is provided in Supplementary Note 5. 592 

3. In order to suppress false positive species that might otherwise be predicted to 593 

be present in low abundance by window sequences derived from reads that 594 

contain sequencing errors, a 8shadow abundance9 threshold is applied after 595 

calculating the average abundance in the iterative algorithm above. Any 596 

species which is present at <10% of its genus9 total abundance, and which is 597 

not associated with 10 or more different markers to the exclusion of all other 598 

species, is removed. 599 

After the expectation maximisation has converged, in rare cases it may still not 600 

be possible to disambiguate some sets of species. For these sets, the OTU 601 

coverages associated with them are assigned a taxonomy that is the last 602 

common ancestor of the species in the set. 603 

4. Genus-wise expectation maximisation is used to disambiguate the taxonomic 604 

affiliation of OTUs that have been assigned to multiple taxons through 605 

DIAMOND BLASTX. It is unlikely that reads assigned through this method are 606 

from species that exist in the reference database since their nucleotide window 607 

sequences did not closely match any in the database, so this step seeks only 608 

to assign taxonomy down to the genus level, but no further. The procedure is 609 

similar to the expectation maximisation used above, except that it assigns 610 

taxonomy to genera rather than species. The 8shadow abundance9 thresholding 611 

is also not applied. Coverages from OTUs that have been assigned by 612 

nucleotide sequence are included in the calculation of genus-wise coverage, 613 

but the taxonomic assignment of these lineages is not modified in the second 614 

step. 615 

5. Combination of OTU coverages into a single taxonomic profile. The final profile 616 

is created in a step-down approach, where the coverage of each domain is 617 

calculated, then the coverage of each phylum, and so on, down to species level. 618 

The coverage for each domain is calculated as the trimmed mean of marker-619 

wise coverages, excluding the highest and lowest 10% of values. The coverage 620 

of each phylum is then calculated in the same way, but to make it consistent 621 

with the domain-wise coverages, the coverage of each phylum in a domain is 622 

calculated as a proportion of the overall domain9s coverage. These proportions 623 

are the percentage of coverage values assigned either to a phylum (including 624 

its taxonomic descendents) or to the domain without further taxonomic 625 

specificity, including coverage that has not been assigned to any phylum. This 626 

process is then repeated down to species level. 627 

6. The rate of taxonomic assignment to the species level is increased to account 628 

for sequencing error. To account for sequencing read error that reduces the 629 

level of resolution of an OTU taxonomic assignment from the species to the 630 
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genus level for known species, 10% of the coverage of each genus is 631 

partitioned out to each species, in proportion to their coverage before this step. 632 

If <10% of the genus9 coverage is unassigned before application of this step, all 633 

of the unassigned coverage is partitioned out instead. 634 

7. The resulting taxonomic profiles are output in a simple tab-separated format 635 

and/or KRONA plot(Ondov et al. 2011). 636 

Supplement: Adding new genomes to the SingleM reference database 637 

The SingleM 'supplement' mode takes in a list of genomes in FASTA format, and a 638 

reference package (a SingleM 'metapackage') to be supplemented according to the 639 

following procedure: 640 

1. Genomes are filtered for quality using as input a CheckM2(Chklovski et al. 641 

2022) quality file, with the default cutoff of minimum completeness 70% and 642 

maximum contamination 10%. This step is optional. 643 

2. Genomes are dereplicated using Galah(Aroney et al. 2024) at 95% average 644 

nucleotide identity, so as to only include one representative per species cluster 645 

such that the 95%/3bp threshold used in the 'singlem pipe' is appropriate. Galah 646 

is used to choose genomes of highest quality according to the following formula, 647 

greedily selecting genomes to include in the supplemented package. The 648 

quality formula used to rank genomes is similar to that used in GTDB for species 649 

clustering, but only including those scoring criteria that can be calculated from 650 

the sequence without homology search. Completeness and contamination 651 

values used are those provided in the CheckM2 quality file. 652 

āāÿĂþăāăĀăĀĀ 2  5 ∗ āāĀāÿÿ�Āÿā�āĀ 2  5 ∗ ĀĂÿ āāĀā��Ā100 2 5 ∗ ĀĂÿ ÿÿĀ��ĂāĂĀ ĀÿĀăĀ10,000  653 

3. Transcripts and protein sequences for each genome are generated using 654 

Prodigal(Hyatt et al. 2010). As with GTDB-Tk(Chaumeil et al. 2022), the 655 

genome is determined to use the non-standard translation table 4 if both of the 656 

following conditions hold, otherwise translation table 11 is used: 657 āÿÿĀĀþÿā�āĀ āÿĀþă 4 āāĂ�Ā� ĂăĀĀ�ā� 2  āÿÿĀĀþÿā�āĀ āÿĀþă 11 āāĂ�Ā� ĂăĀĀ�ā� >  0.05 658 āÿÿĀĀþÿā�āĀ āÿĀþă 4 āāĂ�Ā� ĂăĀĀ�ā� >  0.7 659 

4. Genomes are assigned taxonomy using GTDB-Tk, the database version of 660 

which must be equal to that used to generate the original metapackage. 661 

Genomes which are assigned a species level taxonomy are excluded since 662 

they do not add new species.  663 

5. Protein sequences from remaining genomes are searched with HMMSEARCH 664 

using the HMMs of each SingleM marker gene with a default e-value of 1e-20. 665 

Each protein is assigned to at most one marker gene. 666 
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6. SingleM 'pipe' is run on the transcripts of hit proteins to gather 60bp sequences 667 

for use with 'smafa-naive'. 668 

7. Further bookkeeping procedures are carried out and a final supplemented 669 

metapackage output. 670 

Reduced genome marker searching 671 

To determine the number of markers contained within extremely reduced bacterial 672 

genomes (Supplementary Data 1), SingleM 'pipe' was run using default parameters 673 

with the genome sequence as input, outputting an OTU table. The number of markers 674 

was the number of unique markers which remained after removing 'off-target' markers 675 

(i.e. archaeal markers which are not in the bacterial set, but may nonetheless be 676 

encoded in some bacteria) using SingleM 'summarise --exclude-off-target-hits'. We 677 

note that many of the tested genomes use translation table 4, but we report the number 678 

of markers found by SingleM, which currently assumes translation table 11 during 679 

'pipe' mode. 680 

Benchmarking 681 

Benchmarking was carried out within Snakemake(Köster and Rahmann 2012) 682 

pipelines, which are available at https://github.com/wwood/singlem-benchmarking. 683 

Novel lineage detection 684 

To benchmark detection of novel lineages, a pipeline was created which simulated 685 

read sequences which were from lineages present in GTDB R214 but not GTDB R207. 686 

Specifically, 120 genomes were chosen where the GTDB R214 taxonomy contained 687 

no species representatives that were in GTDB R207 (regardless of their assigned 688 

taxonomy). At each level of novelty (from species to phylum), 20 of the highest quality 689 

genomes (calculated as CheckM1(Parks et al. 2015) completeness - 5 x 690 

contamination) were chosen, with as close to 10 Archaea as possible. The chosen 691 

genomes were sometimes from the same novel lineage. To enable direct comparison 692 

with profiling tools such as Bracken which estimate the number of reads from each 693 

lineage, rather than the relative abundance of each lineage(Sun et al. 2021), the 694 

known and novel genomes were chosen to have genome sizes as similar as possible. 695 

To run each benchmark, reads were simulated from 120 communities each containing 696 

a novel genome and a known genome (either Staphylococcus aureus assembly 697 

GCF_001027105.1 or Methanobrevibacter ruminantium assembly 698 

GCF_000024185.1), at equal read coverage of 10X. Paired-end 150bp reads were 699 

simulated using ART version 2.5.8(Huang et al. 2012) with parameters '-ss HSXt -p -l 700 

150 -f 10 -m 400 -s 10'. To test against the gold standard, the output of each tool was 701 

first converted to the 'condensed profile' format, the default SingleM taxonomic profile 702 

output format using custom scripts available in the benchmarking codebase, and then 703 

further converted to biobox format(Belmann et al. 2015) and compared to gold 704 

standards using OPAL(Meyer et al. 2019) v1.0.11. To test detection (Figure 2), 705 
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communities were compared at the kingdom level. To benchmark classification of 706 

novel lineages lower ranks were used (excepting Kaiju and MAP2B for which no GTDB 707 

R207 reference database was available). Reference databases were transferred to 708 

local scratch space to minimise the effect of IO wait on runtimes. 709 

SingleM 'pipe' v0.15.0 was run with default parameters. MetaPhlAn v4.0.6 was run by 710 

first concatenating paired-end reads into a single gzip compressed FASTQ format. 711 

Taxonomy assignments were converted to GTDB using 712 

mpa_vOct22_CHOCOPhlAnSGB_202212.pkl with the supplied 713 

sgb_to_gtdb_profile.py script. mOTUs v3.1.0 'profile' was run using default 714 

parameters and converted to condensed format using the provided 715 

'mOTUs_3.0.0_GTDB_tax.tsv' mapping file. Sourmash 4.8.2 was run using the GTDB 716 

07-RS207 reference database using 'sourmash sketch dna -p 717 

k=21,k=31,k=51,scaled=1000,abund', and using the median_abund as the abundance 718 

measure. The Kraken2+Bracken workflow used the GTDB database built by 719 

Struo2(Youngblut and Ley 2021). Kraken2 v2.1.2(Wood et al. 2019) was used with 720 

'kraken2 3report .. 3paired ..' followed by Braken git commit 88b7738 using '-t 10' and 721 

'-l' for each taxonomic level. This produced a report for each taxonomic level, which 722 

was then converted to condensed format. To compare classification accuracy, the 723 

taxonomic annotation of the novel genome in GTDB 07-R207 was estimated using 724 

GTDB-Tk(Chaumeil et al. 2022) version v2.1.0. 725 

The taxonomy assignments of Kaiju and MAP2B are not based on GTDB R207 726 

taxonomy, so these tools could not be fully benchmarked against the rest of the tools. 727 

To assess their ability to detect novel lineages, we converted taxonomy assignments 728 

to the kingdom level (i.e. Bacteria or Archaea) and compared them on this level only. 729 

Kaiju 1.9.2 was run using the progenomes 2021-03-02 database, as we are unaware 730 

of any GTDB-based reference database. Paired-end reads were concatenated 731 

together and provided to the 'kaiju' executable followed by 'kaiju2table -r phylum'. 732 

Kingdom level taxonomies were derived using pytaxonkit(Shen and Ren 2021) 733 

(https://github.com/bioforensics/pytaxonkit). MAP2b(Sun et al. 2023) v1.5 was run 734 

using the data specified in its 8config/GTDB.CjePI.database.list9 file, a database 735 

generated from GTDB R202.  736 

Profiling of communities of known species 737 

To benchmark profiling tools against communities of species present in the reference 738 

database, a similar set of procedures and reference databases were used. Reads 739 

were simulated according to the abundance profiles in the 10 CAMI 2(Meyer et al. 740 

2022) 'marine' communities. All entries in the coverage definition file (8OTU9 or 741 

otherwise) were simulated as microbial genomes, for an average of 469 simulated 742 

genomes per sample. To emulate a more realistic community, genomes which were 743 

not species representatives were chosen for simulation. To reduce bias in the chosen 744 

species towards highly sequenced species, for each species, only those genomes in 745 

the top 20 genomes ordered by completeness - 5*contamination were included in the 746 

set to choose from. Genomes were chosen at random from the remaining set of 747 
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genomes to include in the profiling benchmark. Runtime and RAM usage stats were 748 

collected using the 8s9 and 8max_rss' columns output by the Snakemake benchmark 749 

directive. Figures were generated using R(Ihaka and Gentleman 1996), 750 

ggplot2(Wickham 2016) and patchwork(Pedersen 2014). 751 

Generation of Sandpiper dataset 752 

A set of metagenomes to be analysed were collected according to the following 753 

criteria, querying Google BigQuery via SQL where each of the following conditions 754 

was true: (1) The 'librarysource' was 'metagenomic', or the 'organism' was a 755 

descendent of the 'metagenome' taxonomy, (2) The 'platform' was 'ILLUMINA', (3) 756 

'consent' was 'public', (4) 'mbases' was >1000 or 'libraryselection' was 'RANDOM' and 757 

mbases was > 100, (5) mbases was <= 200,000, (6) librarysource was not 'VIRAL 758 

RNA' or 'METATRANSCRIPTOMIC' or 'TRANSCRIPTOMIC'. 759 

Metagenomes were analysed using kubernetes on Google GCP or Amazon AWS. 760 

Metagenomes were copied from AWS in .sra format and streamed to SingleM 'pipe' 761 

using Kingfisher(Woodcroft et al. 2024). The git commit of SingleM used was e97d171 762 

and the reference database used was 'S3.metapackage_20211101.smpkg' (DOI 763 

10.5281/zenodo.5739612), based on GTDB 06-RS202. We note that this version of 764 

SingleM did not specify '--query-gencode 4' in its initial DIAMOND BLASTX, as the 765 

current version does, so lineages which use translation table 4 are likely 766 

underrepresented in these profiles. Outputs were generated in 'archive OTU table' 767 

format and later processed using 'singlem renew' to update the taxonomy annotations 768 

of each genome to GTDB R214 version (DOI 10.5281/zenodo.7955518) using 769 

SingleM v0.16.0. Taxonomic profiles are available at DOI 10.5281/zenodo.10547494. 770 

The Sandpiper website was built using Flask (https://flask.palletsprojects.com) and 771 

Vue (https://vuejs.org/). The source code is available at 772 

https://github.com/wwood/sandpiper/ and incorporates a list of manually curated 773 

corrections to NCBI-derived project and sample metadata available at 774 

https://github.com/wwood/public_sequencing_metadata_corrections.  775 

Biome-wise breakdowns of taxonomic profiles 776 

The biome each metagenome was derived from was mostly derived from the 777 

'organism' field stored in the biosample associated with each metagenome at NCBI. 778 

However, given the large number of metagenomes assigned to an undifferentiated 779 

organism 'metagenome', we trained a machine learning classifier to predict whether a 780 

metagenome is either eukaryotic host-associated or ecological based upon its 781 

taxonomic profile. Using metagenomes annotated as 'organismal metagenomes' as 782 

host-associated and 'ecological metagenomes' as ecological as the gold standard, an 783 

XGBoost(Chen and Guestrin 2016) model was trained, using five-fold cross validation. 784 

To minimise overtraining, we grouped metagenomes by their BioProject such that 785 

metagenomes from one BioProject were never included in both the training and test 786 

sets at the same time, using the GroupKFold function of sci-kit learn(Pedregosa et al.). 787 

Taxonomic profiles were input using the relative abundance of phylum, class or orders. 788 
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Models trained at each of these taxonomic levels showed similar performance during 789 

cross-validation (~93% accuracy). The final predictor was trained on all of the gold 790 

standard data with order-level taxonomic profiles as input. When a metagenome was 791 

assigned an organism which is eukaryotic host associated or ecological in its 792 

metadata, that annotation was used for analysis here and on the Sandpiper website. 793 

Biomes more specific (e.g. soil metagenome) were taken directly from biosample 794 

metadata. The predictor is made available at 795 

https://github.com/wwood/singlem_host_or_ecological_predictor. 796 

Fractions of metagenomes assigned to the species level 797 

To establish the fractions of available communities classified at the species level at 798 

the current time, the default GTDB R214-based SingleM reference database 799 

(metapackage) was supplemented with genomes from the 8UHGG9 version 2(Almeida 800 

et al. 2021), 'SPIRE' (excluding <specI= isolate genomes)(Schmidt et al. 2023), 801 

'SMAG'(Ma et al. 2023), 'GEM'(Nayfach et al. 2021) MAG collections, as well as those 802 

from derived from Oceans by Paoli et. al.(Paoli et al. 2022). SPIRE species 803 

representative MAGs were downloaded from https://spire.embl.de/downloads, SMAG 804 

from https://zenodo.org/records/8223844, GEM from 805 

https://portal.nersc.gov/GEM/genomes/fna, and Ocean MAGs from 806 

https://sunagawalab.ethz.ch/share/microbiomics/ocean/suppl_data/representative-807 

genomes-fasta.tar.gz. All genomes were quality controlled using CheckM2 808 

v1.0.2(Chklovski et al. 2022), assigned taxonomy using GTDB-Tk v2.3.0(Chaumeil et 809 

al. 2022) 8classify_wf9. Any genomes <50% complete, >10% contaminated or assigned 810 

to a species level taxonomy by GTDB-Tk were excluded. Genes were called using 811 

<prodigal-runner= to run prodigal choosing translation table 4 or 11 as appropriate 812 

(https://github.com/wwood/prodigal-runner git commit c5f7713) based on the process 813 

established by GTDB-Tk(Chaumeil et al. 2022). The total set of MAGs was 814 

dereplicated at 95% ANI using Galah(Aroney et al. 2024) git commit f199654 which 815 

used skani(Shaw and Yu 2023). These data were input into <singlem supplement= to 816 

generate a new metapackage, which is available at DOI 10.5281/zenodo.10360136. 817 

The profiles generated are available at DOI 10.5281/zenodo.10547501. 818 

This new metapackage was used with 8singlem renew9 to reannotate the taxonomy of 819 

OTU sequences in SRA metagenomes, and to regenerate condensed profiles. We 820 

note that while this approach was used to provide an estimation of the known species 821 

fraction inclusive of these MAG data, and for high level taxonomic overviews, it is 822 

unsuitable for general purpose community profiling because taxonomic assignment of 823 

genomes was made without proper estimation of the taxonomic structure between the 824 

species level and the highest level of taxonomy provided by GTDB-Tk. As a concrete 825 

example, if two novel species are assigned to the same taxonomic family (and not to 826 

any genus), then 8singlem supplement9 currently assumes they are from distinct 827 

genera, even if they are actually congeneric.  828 

The known species fraction for each metagenome was calculated simply as the sum 829 

of coverage values reported in the SingleM profile divided by the total of coverages 830 
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assigned to all taxonomic levels. To address potential biases arising from 831 

metagenomes with limited sequencing depth, reported mean and median values are 832 

amongst those metagenomes with >50 total coverage in the SingleM taxonomic profile 833 

and total sequence depth >1 Gbp. Biome-wise breakdown of known species fractions 834 

and phylum-wise relative abundance (Supplementary Data 3) were taken from the 835 

NCBI 8organism9 metadata entry. Human samples were those with 8human9 as a 836 

substring of their organism entry, or had organism 8gut metagenome9, 8feces 837 

metagenome9 or 8oral metagenome9. Mouse, pig, bovine metagenomes were found by 838 

searching for organisms containing each as a substring. Marine samples were those 839 

with 'seawater metagenome' or 'marine metagenome' as their organism. Plant, soil, 840 

sediment, freshwater and aquatic metagenomes were identified based on exact 841 

matching of their organism e.g. <plant metagenome= to identify plant metagenomes. 842 

The default GTDB R214 SingleM metapackage was used for the following analyses. 843 

To ascertain the fraction of available communities classified at the species level over 844 

time, the NCBI datasets tool (https://github.com/ncbi/datasets) was used to download 845 

the genome summary in JSON format for each species (whether a species 846 

representative or not) in GTDB R214, and the submission date for each genome found 847 

using jq -rc '.reports[] | [.accession,.assembly_info.submission_date] 848 

|@tsv'.(https://jqlang.github.io/jq/). The earliest submitted genome from each GTDB 849 

species was then calculated as the first year in which any genome in the species 850 

cluster was submitted. The set of metagenomes included in the analysis also had to 851 

pass these criteria: (1) The total sample coverage had to be >50 to ensure adequate 852 

microbial sequencing depth, (2) the coverage assigned to any one genus could not 853 

exceed 90% of the total coverage to exclude single cell genomes. The date of the 854 

metagenome was the 'releasedate' in the metadata, collected using 'kingfisher 855 

annotate'(Woodcroft et al. 2024). To determine the fractions of metagenomes which 856 

not only have genomic representation but are also present in isolate culture 857 

collections, the GTDB auxiliary file 'hq_mimag_genomes_r214.tsv' 858 

(https://data.gtdb.ecogenomic.org/releases/release214/214.0/auxillary_files/) was 859 

used to gather a list of GTDB species representatives that are known to be isolated.  860 

Targeted genome recovery 861 

For genome recovery targeted at Muirbacteria, Wallbacteria, Riflebacteria and 862 

Fusobacteria, the set of samples which contained coverage of each of these phyla 863 

was extracted from Sandpiper, when it was annotated with GTDB R207. For each of 864 

these samples, the total coverage of taxons which were (1) assigned a taxonomy to 865 

one of the target phyla and (2) not assigned to the species level (the 'non-species' 866 

coverage) was tabulated for each phyla. The set of chosen samples for targeted 867 

genome recovery were those which had a high non-species coverage (>10X 868 

coverage) and high ratio of non-species coverage to coverage assigned to the species 869 

level in the phyla (>90%). Corresponding metagenomic data was downloaded with 870 

Kingfisher(Woodcroft et al. 2024). MAGs were recovered with Aviary (git commit 871 

da0efd0)(Creators Newell, Rhys J. P. Aroney, Samuel T. N. Zaugg, Julian Sternes, 872 
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Peter Tyson, Gene W. Woodcroft, Ben J.), assembling with metaSPADES(Nurk et al. 873 

2017) and binning with CONCOCT(Alneberg et al. 2014), MaxBin2(Wu et al. 2016), 874 

MetaBAT(Kang et al. 2015, 2019), SemiBin(Pan et al. 2022) and VAMB(Nissen et al. 875 

2021). Bins from each were combined using DAS Tool(Sieber et al. 2018). Some 876 

samples were manually assembled outside of Aviary using megahit v1.2.9(Li et al. 877 

2015) since metaSPAdes(Nurk et al. 2017) (the Aviary default) cannot use single-878 

ended metagenomic data as input. Only one metagenome was used to inform binning 879 

via differential coverage, the metagenome used for assembly. Genome quality was 880 

assessed with CheckM2(Chklovski et al. 2022). The reported success rate (87%) is 881 

only amongst those metagenomes where the assembly and binning steps successfully 882 

finished (Supplementary Data 4). 883 

Data availability 884 

SingleM reference databases corresponding to GTDB R207 and R214 are available 885 

at DOI 10.5281/zenodo.7582579 and 10.5281/zenodo.7955518 respectively. The 886 

reference database used for the initial screen of public metagenomes is available at 887 

DOI 10.5281/zenodo.5739612 and the reference database supplemented with 888 

genomes not yet in GTDB is available at DOI 10.5281/zenodo.10360136. GTDB-889 

based profiles of public metagenomes are available at DOI 890 

10.5281/zenodo.10547494, and reference-supplemented profiles at 891 

10.5281/zenodo.10547501. Metagenome-assembled genomes from Muirbacteria, 892 

Wallbacteria, Riflebacteria and Fusobacteria have been deposited at Zenodo under 893 

DOI 10.5281/zenodo.10162715.  894 

Code availability 895 

SingleM, sandpiper and smafa software are made available under a free software 896 

licence at https://github.com/wwood/singlem, https://github.com/wwood/sandpiper/ 897 

and https://github.com/wwood/smafa, respectively. SingleM and smafa are available 898 

through BioConda (https://anaconda.org/bioconda/singlem), and distributed through 899 

PyPI (https://pypi.org/project/singlem/) and crates.io (https://crates.io/crates/smafa) 900 

respectively. SingleM is also available through DockerHub 901 

(https://hub.docker.com/r/wwood/singlem). Workflows used for benchmarking are 902 

available at https://github.com/wwood/singlem-benchmarking and the predictor of 903 

sample eukaryotic host-association at 904 

https://github.com/wwood/singlem_host_or_ecological_predictor. 905 
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