

1 **LARGE-SCALE BIOLOGY ARTICLE**

2

3 **A diel multi-tissue genome-scale metabolic model of *Vitis*
4 *vinifera***

5 **Marta Sampaio^{1*}, Miguel Rocha^{1,2}, Oscar Dias^{1,2*}**

6 ¹Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga,
7 Portugal and

8 ²LABBELS, Associate Laboratory, Braga/Guimarães, Portugal

9 *Corresponding author: msampaio@ceb.uminho.pt; odias@ceb.uminho.pt

10

11 **Abstract**

12 *Vitis vinifera*, also known as grapevine, is widely cultivated and commercialized,
13 particularly to produce wine. As wine quality is directly linked to fruit quality, studying
14 grapevine metabolism is important to understand the processes underlying grape
15 composition. Genome-scale metabolic models (GSMMs) have been used for the study
16 of plant metabolism and advances have been made, allowing the integration of omics
17 datasets with GSMMs. On the other hand, Machine learning (ML) has been used to
18 analyze omics data, and while the combination of ML with GSMMs has shown
19 promising results, it is still scarcely used to study plants. Here, the first GSSM of *V.*
20 *vinifera* was reconstructed and validated, comprising 7199 genes, 5399 reactions, and
21 5141 metabolites across 8 compartments. Tissue-specific models for stem, leaf, and
22 berry of the Cabernet Sauvignon cultivar were generated from the original model,
23 through the integration of RNA-Seq data. These models have been merged into diel
24 multi-tissue models to study the interactions between tissues at light and dark phases.
25 The potential of combining ML with GSMMs was explored by using ML to analyze the
26 fluxomics data generated by green and mature grape GSMMs, helping to understand
27 the factors influencing grape quality at different developmental stages.

28

29 **Introduction**

30 *Vitis vinifera* is one of the major fruit crops in the world. It is cultivated worldwide and
31 has high economic value, mainly due to wine production. In 2022, the world vineyard
32 surface area was estimated to be 7.3 million hectares and world wine production
33 reached 258 million hectoliters. In the same year, and despite inflation, wine exports
34 reached a value of 37.6 billion euros (International Organisation of Vine and Wine,
35 2023). In addition, grapes have other purposes, being marketed as fresh and dried
36 fruits, and used for juice production. The grape pulp contains high levels of sugars and
37 phenolic compounds, like flavonoids and stilbenes, with potential health benefits, such
38 as antioxidant and anti-inflammatory activities, and cardiovascular protection (Saad et
39 al., 2020), thus being currently studied for possible pharmaceutical and cosmetic
40 applications. Therefore, as grapevines have high economic interest and fruit quality is
41 intrinsically linked to metabolism, the study of grapevine metabolism is essential for
42 understanding its responses to different environmental conditions that may affect grape
43 metabolic composition.

44 Genome-scale metabolic models (GSMMs) represent all metabolic reactions taking
45 place within an organism. These models are reconstructed from the genome and allow
46 performing phenotype predictions under different environmental or genetic conditions
47 (Feist et al., 2008). Although GSMMs have been extensively used for the metabolic
48 engineering of prokaryotes, several GSMMs are available for plants (Gu et al., 2019),
49 mainly *Arabidopsis thaliana* (Poolman et al., 2009; Dal'Molin et al., 2010; Saha et al.,
50 2011; Cheung et al., 2013; Maurice Cheung et al., 2014; de Oliveira Dal'Molin et al.,
51 2015; Shaw and Cheung, 2018), *Zea mays* (Saha et al., 2011; Simons et al., 2014;
52 Bogart and Myers, 2016), and *Oryza sativa* (Poolman et al., 2013; Lakshmanan et al.,
53 2015; Chatterjee et al., 2017). Currently, the reconstruction of plant GSMMs is still very
54 challenging and time-consuming due to the high number of gaps in genome
55 annotations, the large diversity of metabolites, and the extensive compartmentalization
56 of plant cells (Collakova et al., 2012; Sweetlove and George Ratcliffe, 2011; Sampaio et
57 al., 2022). Despite the obstacles, many plant GSMMs have emerged recently, and new
58 approaches have been developed to reconstruct more realistic models that include
59 different plant tissues, through the integration of omics data, as well as the day-night

60 cycle (Maurice Cheung et al., 2014; Gomes de Oliveira Dal'Molin and Nielsen, 2018;
61 Shaw and Cheung, 2020). These models allow for differentiating the metabolism of
62 each tissue and analyzing the metabolic interactions between tissues and the light and
63 dark phases.

64 Despite the existence of several methods for integrating omics into GSMMs, this is still
65 a challenging and inefficient task. As omics datasets are complex and heterogeneous,
66 Machine Learning (ML) has been used to process and integrate different types of omics
67 to extract biological knowledge from data. Recently, ML and GSMM approaches have
68 been combined to improve the model's predictions and interpretability, and this strategy
69 has shown promising results (Zampieri et al., 2017; Rana et al., 2020; Antonakoudis et
70 al., 2020; Sampaio et al., 2022; Kim et al., 2021). ML can be used to extract knowledge
71 from the fluxomics data generated by the models or to integrate the predicted fluxomics
72 data with experimental omics. Thus far, these studies have mainly been applied to
73 bacteria, yeast, and human cells, but not to plants.

74 In this manuscript, we pioneer *V. vinifera* research with the introduction of iMS7199, the
75 first GSMM for the grapevine, developed using the most recent genome version,
76 PN40024.v4 (Velt et al., 2023). In addition to the overarching model, tissue-specific
77 models for the leaf, stem, and grape were developed by incorporating RNA-Seq data
78 from these distinct tissues. Furthermore, to capture the dynamic changes in grape
79 metabolism, we created two separate models representing the grape in both its green
80 and mature states. These tissue-specific models were then integrated to construct diel
81 multi-tissue GSMMs, enabling the simulation of grapevine metabolism across the day-
82 night cycle and facilitating the study of inter-tissue metabolic interactions. Utilizing this
83 comprehensive model, we investigated the metabolic responses of the grapevine under
84 varying concentrations of sulfate and nitrate.

85 Also, simulated fluxomics data were generated from GSMMs of grapes in the green and
86 mature state and analyzed by ML to identify the reactions that most contribute to the
87 model's predictions of the grape developmental phase.

88 Therefore, this diel multi-tissue GSMM emerges as a useful tool for exploring the
89 metabolic behavior of *V. vinifera* under various conditions, offering insights into factors

90 influencing grape quality and phenolic content. In addition, the analysis of generated
91 data from GSMMs by ML represents the first effort to apply this strategy in the study of
92 plant metabolism.

93

94 **Results and Discussion**

95

96 **The iplants repository**

97 To collect and organize all the relevant data for the model reconstruction efforts, a
98 repository with the metabolic information of PlantCyc 14.0 (Zhang et al., 2010) and
99 MetaCyc 26.1 (Caspi et al., 2016) databases, and Universal Protein Resource (UniProt)
100 (The UniProt Consortium, 2017) sequence data was created. In total, the repository
101 includes 24333 metabolites, 205128 reactions, 3519 pathways, and 22433 enzymes,
102 72% of which have a protein sequence. The Neo4j database includes the relationships
103 between the metabolic entities, while MongoDB includes all the metadata that
104 characterizes the entities. Details on how data is organized in the iplants repository are
105 available in Supplementary Material and Supplementary File 1.

106 In addition to data from the metabolic databases, nine plant metabolic models were
107 integrated into the iplants repository, namely *Arabidopsis thaliana* (Poolman et al., 2009;
108 Cheung et al., 2013), *Zea mays* (Bogart and Myers, 2016), *Oryza sativa* (Poolman et
109 al., 2013; Chatterjee et al., 2017), *Solanum lycopersicum* (Yuan et al., 2016), *Medicago*
110 *truncatula* (Pfau et al., 2018), *Glycine max* (Moreira et al., 2019), and *Setaria viridis*
111 (Shaw and Maurice Cheung, 2019). These models have PlantCyc and MetaCyc
112 identifiers for metabolites and reactions, which facilitated the integration. In total, 3815
113 metabolites and 4197 reactions from the models were successfully integrated. However,
114 around 395 metabolites and 1498 reactions from the metabolic models did not match
115 any entry in our database and were added to it. These can include biomass and
116 transporter reactions, whose identifiers are not standardized, or entities with deprecated
117 identifiers that were already removed from the PlantCyc and MetaCyc databases.

118 iplants repository can be accessed through an application programming interface (API)
119 created with Django and Django REST framework for both database systems, using

120 Mongoengine and Neomodel Python packages. Several views were defined to allow the
121 extraction of the data needed for the reconstruction of GSMMs and to save the data of
122 the model under reconstruction. The API included views to get all objects in the
123 repository, details of an object, and to create a new metabolic model object and link it to
124 reactions, metabolites, and enzymes in the database (link to API).

125

126 **Model properties**

127 A GSMM for *V. vinifera* was reconstructed from the PN40024.v4 genome (annotation
128 version 1) (Velt et al., 2023). DIAMOND similarity searches (Buchfink et al., 2014)
129 against iplants resulted in 10840 protein matches, representing 26% of the 41160
130 proteins in the genome, which is in line with the percentage of metabolic genes
131 described for the *A. thaliana*'s genome (between 25-30%) (Kaul et al., 2000).

132 The reconstructed generic model, iMS7199, includes 5399 reactions (1624 transporters
133 and 244 exchanges), and 5141 metabolites, across eight compartments: cytosol,
134 chloroplast, mitochondria, endoplasmic reticulum, peroxisome, Golgi apparatus,
135 vacuole, and extracellular space. In this model, the Gene-Protein-Reaction (GPR) rules
136 were defined using the genome protein identifiers instead of genes as genome
137 annotation was performed using protein sequences. As genes can encode more than
138 one protein, the model includes 7199 protein identifiers that represent the 6018 genes
139 of the *V. vinifera* genome.

140 This model is mass-balanced and can simulate growth in phototrophic and heterotrophic
141 conditions, by setting the photon and carbon dioxide or sucrose as the only energy or
142 carbon source, respectively. In addition, it requires the uptake of nitrate, phosphate,
143 sulfate, iron, magnesium, and water to produce biomass.

144 The statistics of the *V. vinifera* model, as well as other relevant plant models, are
145 presented in Table 1. Analyzing the table, only the *Quercus suber* model (Cunha et al.,
146 2023b) has more genes, reactions, and metabolites than the *V. vinifera* model. The
147 other models are much smaller, even the *G. max* model, which has a high number of
148 genes.

149

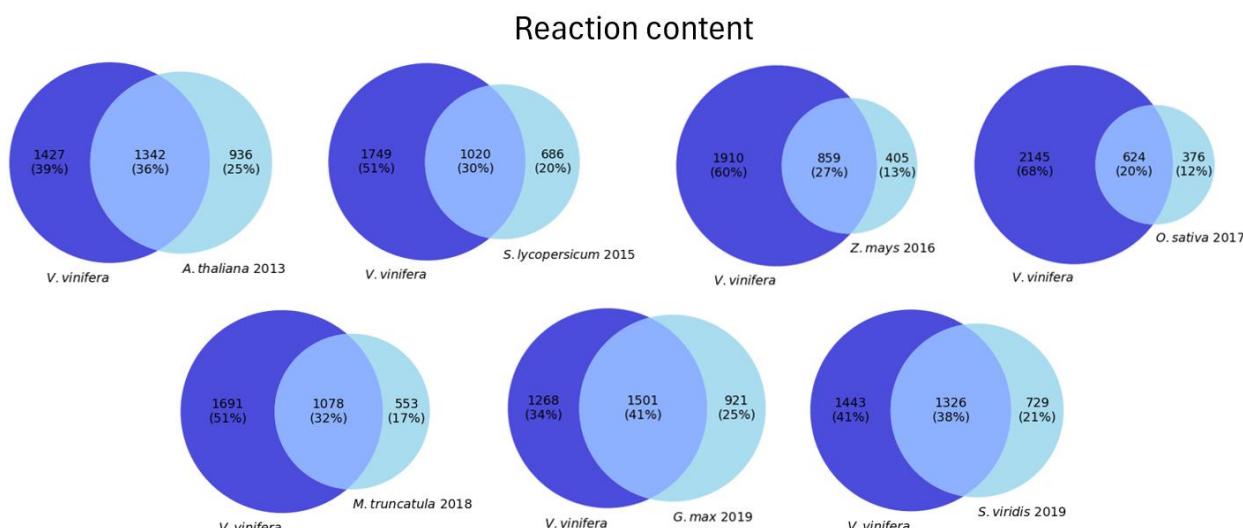
150

151 **Table 1.** Statistics of the *V. vinifera* model and other eight plant GSMMs.

	Reactions	Metabolites	Genes	Compartments
<i>A. thaliana</i> (Cheung et al., 2013)	2769	2739	2857	5
<i>Z. mays</i> (Bogart et al., 2016)	1268	1121	2140	8
<i>O. sativa</i> (Chatterjee et al., 2017)	1136	1330	3602	4
<i>S. lycopersicum</i> (Yuan et al., 2015)	2143	1998	3410	5
<i>M. truncatula</i> (Pfau et al., 2018)	2909	2780	3403	8
<i>G. max</i> (Moreira et al., 2019)	3001	2814	6127	5
<i>S. viridis</i> (Shaw et al. 2019)	2473	2429	3376	5
<i>Q. suber</i> (Cunha et al., 2021)	6230	6481	7871	8
<i>V. vinifera</i> (this work)	5399	5141	7199	8

152

153 The reactions of *V. vinifera* were compared with those from the other models, except for
154 *Q. suber* which has different model identifiers. Drains, transporters, biomass pseudo-
155 reactions, and compartments were not considered, resulting in 2769 reactions of the
156 iMS7199 model (Figure 1).



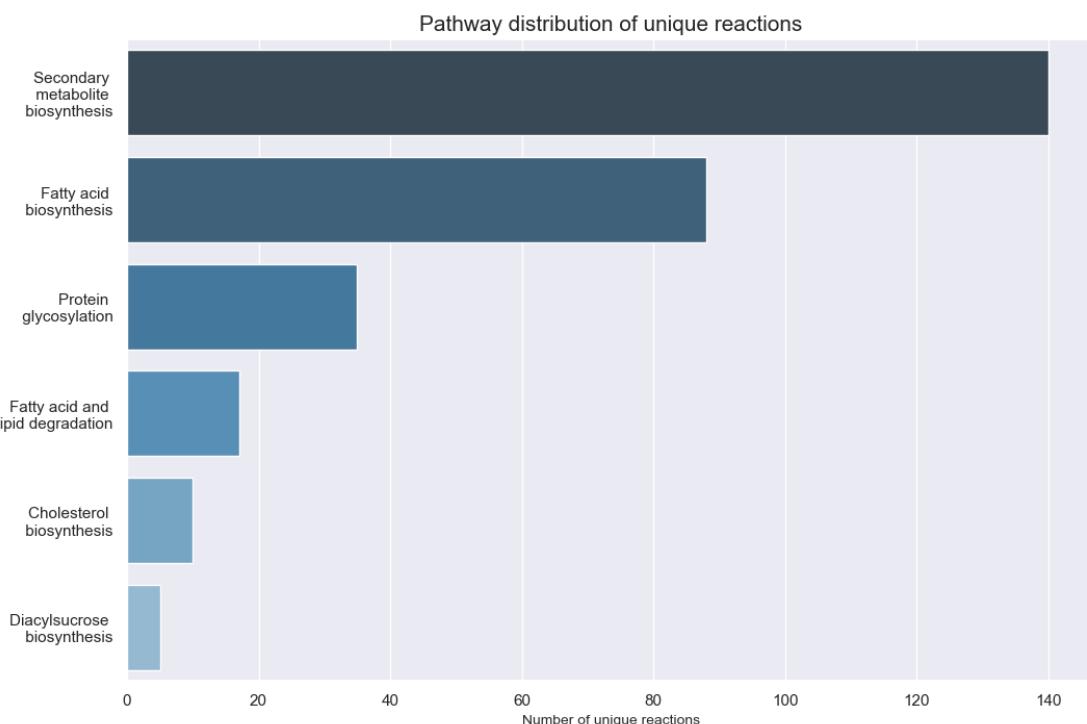
157

158 **Figure 1.** Venn diagrams comparing the reaction content of *V. vinifera* model with other seven plant
159 models.

160

161 The *G. max* model shares the highest number of reactions with the *V. vinifera* model,
162 corresponding to around 41% of all reactions from both models. This model is followed
163 by the ones of *S. viridis* and *A. thaliana*, which share 1326 (38%) and 1342 (36%)
164 reactions with iMS7199, respectively. The most distant model is the one from *O. sativa*,
165 sharing only 624 reactions (20%).

166 In total, *V. vinifera* has 785 reactions that are not present in any other model. These
167 reactions were analyzed to identify the associated pathways and gene annotation. The
168 pathways with more unique reactions are presented in Figure 2. Reactions without
169 pathway associations were not considered.



170
171 **Figure 2.** Pathway distribution of reactions included in the *V. vinifera* model and not in the other plant
172 models analyzed.

173
174 As shown in Figure 2, the biosynthesis of secondary metabolites is the pathway class
175 associated with more unique reactions, around 140, followed by fatty acid biosynthesis
176 (88 reactions), protein glycosylation (35 reactions), and fatty acid and lipid degradation
177 (17 reactions). These pathway classes comprise several specific pathways. Other
178 specific pathways with more than four unique reactions include cholesterol biosynthesis

179 and diacylsucrose biosynthesis. Hence, the *V. vinifera* model represents a great
180 advance compared to the previous plant models, as it comprises new reactions,
181 especially for the secondary metabolism, which is often underrepresented in plant
182 models.

183 On the other hand, the other plant models include 661 secondary pathway reactions not
184 available in iMS7199. This number can be explained by the fact that 380 reactions are
185 not associated with GPR rules in the models. Moreover, 93 are sub-reactions of others
186 that are included in the *V. vinifera* model. Of the 188 reactions that have GPR rules, 155
187 have a corresponding enzyme sequence in the iplants database, which had a match in
188 the DIAMOND annotation but were not the first hit for any query protein (Supplementary
189 File 2). This data is made available and may be used in the future to improve the model
190 by performing further manual curation. Regarding genome annotation, 27% of the
191 proteins that catalyze these unique reactions were annotated based on the genome of
192 *A. thaliana*. These proteins or reactions were probably not in metabolic databases when
193 the *A. thaliana* models were reconstructed, which can explain why they are missing
194 from these models. Besides *A. thaliana*, 12% of the unique proteins matched human
195 proteins, and around 27% were annotated based on proteins from more than 100
196 different plant species, including *S. lycopersicum*, *Solanum tuberosum*, *Catharanthus*
197 *roseus*, *Petunia x hybrida*, *M. truncatula*, *G. max*, and *V. vinifera*.

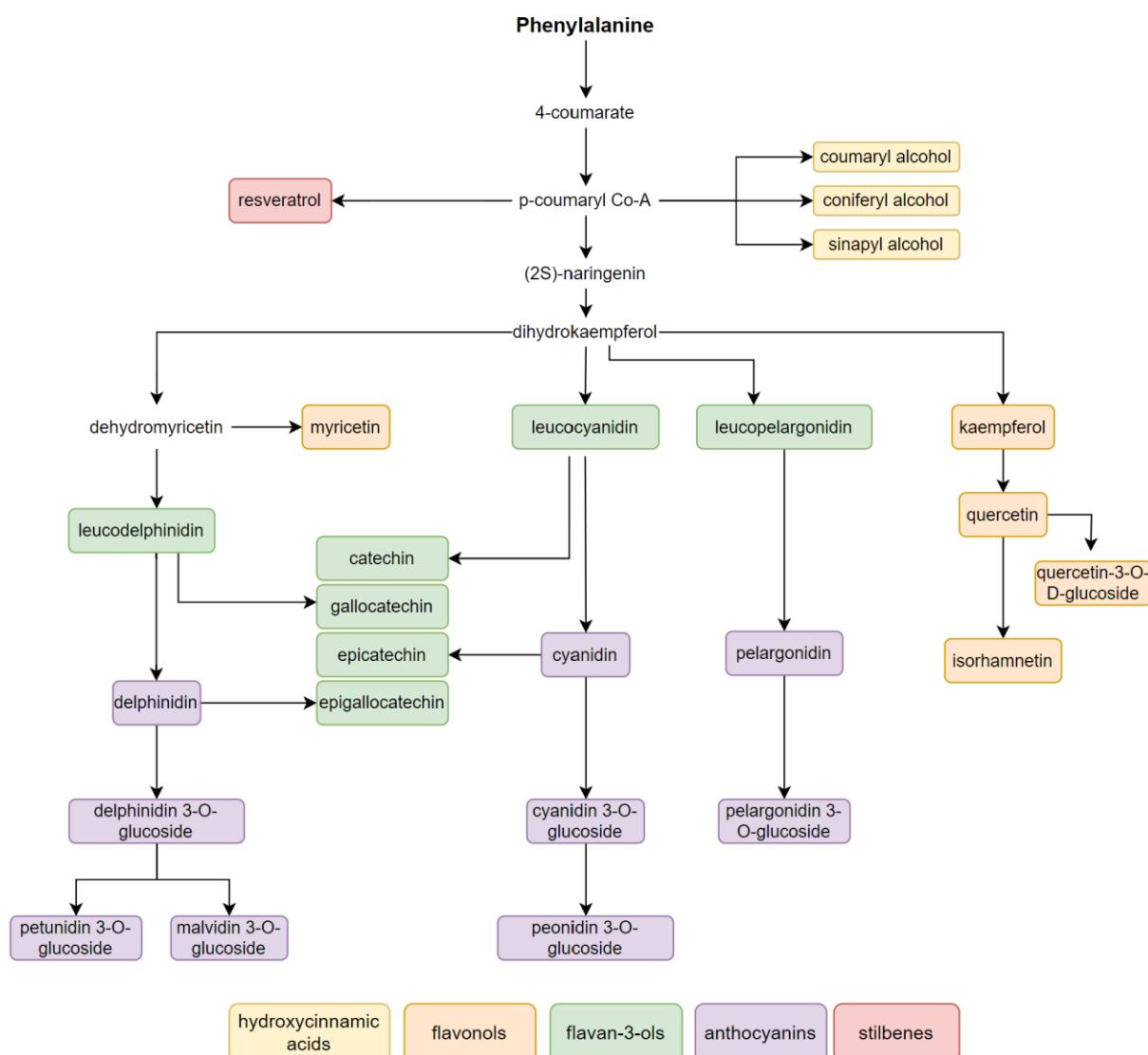
198 As *A. thaliana* is a reference organism for plants, there are several GSMMs for this
199 organism (Poolman et al., 2009; Dal'Molin et al., 2010; Saha et al., 2011; Cheung et al.,
200 2013; Maurice Cheung et al., 2014; de Oliveira Dal'Molin et al., 2015; Shaw and
201 Cheung, 2018) and much enzymatic and metabolic information of *A. thaliana* is
202 available in databases, like PlantCyc and UniProt. On the other hand, data for more
203 complex plants is scarce. Therefore, it was expected that a large percentage of *V. vinifera*
204 proteins would be annotated based on homologous proteins from *A. thaliana*.
205 However, as *V. vinifera* is a much more complex plant, gene annotations can be wrong
206 or missing, and the consequent validation process helps to limit these errors. In
207 addition, several proteins were similar to human proteins, which was also expected as

208 various pathways, mainly related to lipid metabolism, are better characterized in
209 humans than in plants.

210

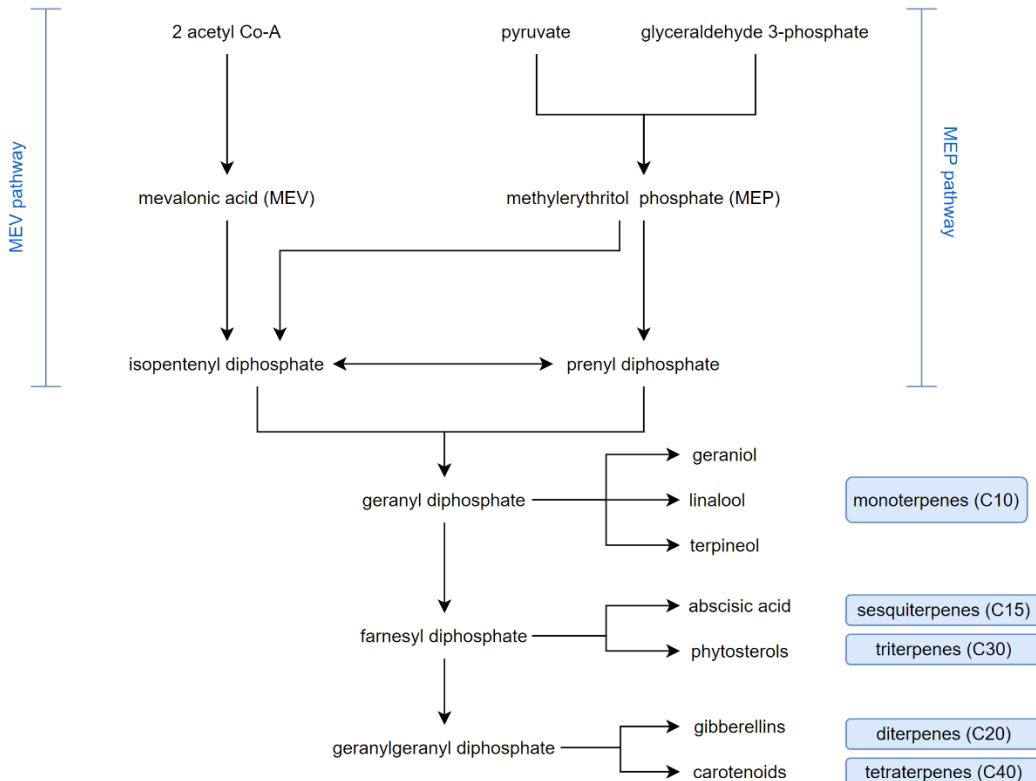
211 *Specialized metabolic pathways*

212 Secondary metabolites are economically very important as they have many relevant
213 applications. However, the pathways that produce them are very complex and diverse,
214 and the knowledge in this subject is still limited (Collakova et al., 2012). Figures Figure 3
215 and Figure 4 schematize the production of the main secondary metabolites in the model,
216 phenylpropanoids and terpenoids, respectively.



217

218 **Figure 3.** Simplified schema of the production of the main secondary metabolites in the *V. vinifera* model.
219 This illustrates the phenylpropanoid pathway which starts with the amino acid phenylalanine that is
220 converted to p-Coumaryl Coenzyme A. This metabolite can be used to produce hydroxycinnamic acids,
221 and stilbenes, such as resveratrol, or to start the flavonoid biosynthesis pathway to produce different
222 types of flavonoids, such as flavonols, flavan-3-ols, and anthocyanins. Compounds are colored based on
223 the compound class they belong to.



224
225 **Figure 4.** Simplified schema of the terpenoid biosynthesis pathway in the *V. vinifera* model. Isopentenyl
226 diphosphate (IPP) and prenyl diphosphate are the precursors for terpenoids and can be produced from
227 the mevalonic acid (MEV) or methylerythritol phosphate (MEP) pathways. These originate all terpenoids
228 including monoterpenes, sesquiterpenes, triterpenes, diterpenes, and tetraterpenes.

229
230 Grapes are known to have a high content of phenolic compounds and different grape
231 varieties usually have different phenolic compositions, which leads to different wine
232 flavors and aromas (Singh et al., 2016). The reconstructed *V. vinifera* model contains
233 complete pathways for the biosynthesis of several terpenoids and phenylpropanoids,
234 which include flavonoids, such as quercetin, myricetin, kaempferol (and derivatives),
235 and anthocyanins, like malvidin and peonidin. Anthocyanins usually accumulate during

236 grape maturation and are responsible for the grape color in red grapevine varieties,
237 being absent in white varieties (Massonnet et al., 2017a).

238 Another important group of phenylpropanoids in grapes are stilbenes, such as
239 resveratrol, which protects grapes from intense UV light. As resveratrol is an antioxidant
240 agent, it has high economic importance, being used in the pharmaceutical and cosmetic
241 industry (Saad et al., 2020). The complete pathway of resveratrol biosynthesis is
242 described and included in the model, but there are many gaps in the biosynthetic
243 pathways of resveratrol derivatives, such as viniferins, which are not included in the
244 model but are important for wine flavor and aroma. However, this model also contains
245 complete pathways for the biosynthesis of other aroma compounds, such as linalool,
246 1,3,5-trimethoxybenzene (TMB), and 3,5-dimethoxytoluene, the latter two being only
247 described for *Rosa chinensis*.

248 In addition, complete secondary pathways for the biosynthesis of plant hormones, such
249 as jasmonates, cytokinins, gibberellins, ethylene, and auxins, are available in the model.
250 For instance, jasmonates are known to regulate seed germination and flower and fruit
251 development, as well as to defend plants against some pathogens (Wasternack and
252 Song, 2017). Cytokinins usually control cell growth and differentiation (Kieber and
253 Schaller, 2014). Although the reconstructed GSMM does not represent the action of
254 these hormones, it can show the metabolic potential of the network to produce them.

255 Thus, the reconstructed model of *V. vinifera* represents an important source of
256 secondary metabolic data. Further curation is still necessary to fill the existing gaps and
257 increase the number of secondary metabolites in the model, as new knowledge on
258 these pathways becomes available.

259

260 **Tissue-specific models**

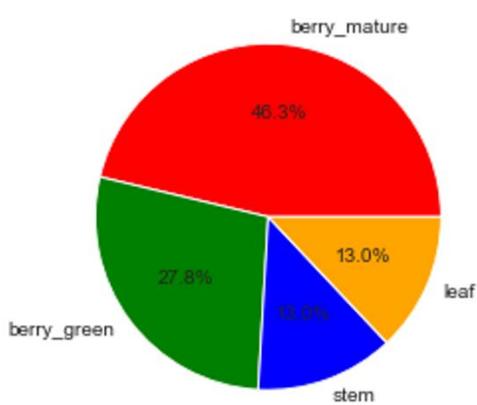
261 Tissue-specific models were reconstructed to represent the metabolic differences
262 between tissues. This was accomplished by integrating RNA-Seq data with the
263 iMS7199 model.

264

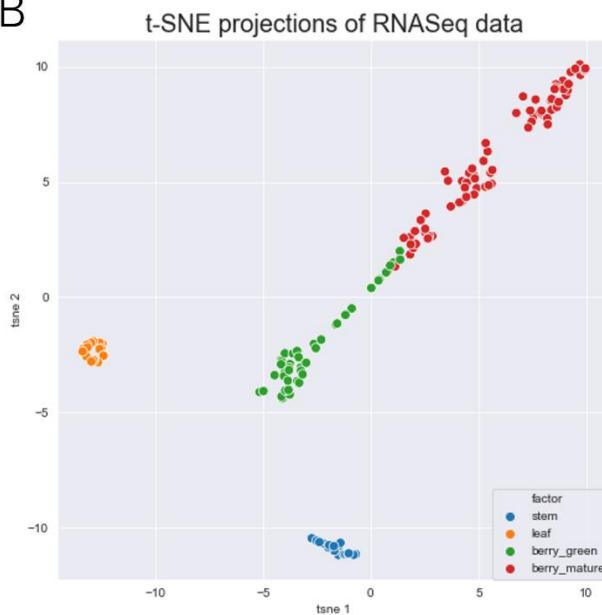
265 *RNA-Seq Data*

266 The RNA-Seq data of *V. vinifera* Cabernet Sauvignon was retrieved from the GREAT
267 database (Velt and Rustenholz, 2023) for leaf, stem, and berry. In total, the RNA-Seq
268 dataset contained the expression of the 6018 genes (matching the 7199 proteins in the
269 model) across 162 samples. The time-point metadata for berry samples was discretized
270 into two developmental stages, green and mature. The sample distribution and the T-
271 distributed Stochastic Neighbor Embedding (t-SNE) for the RNA-Seq data are shown in
272 Figure 5.

A



B



273

274 **Figure 5.**RNA-Seq data for all tissues: leaf, stem, and berry in a green and mature state. A. Distribution of
275 samples across the different tissues. B. t-SNE visualization of the RNA-Seq data for all tissues: leaf
276 (orange dots), stem (blue dots), and berry in green (green dots) and mature (red dots) states. Data was
277 retrieved from the GREAT database, including the expression of the *V. vinifera* genes in the model across
278 162 samples.

279

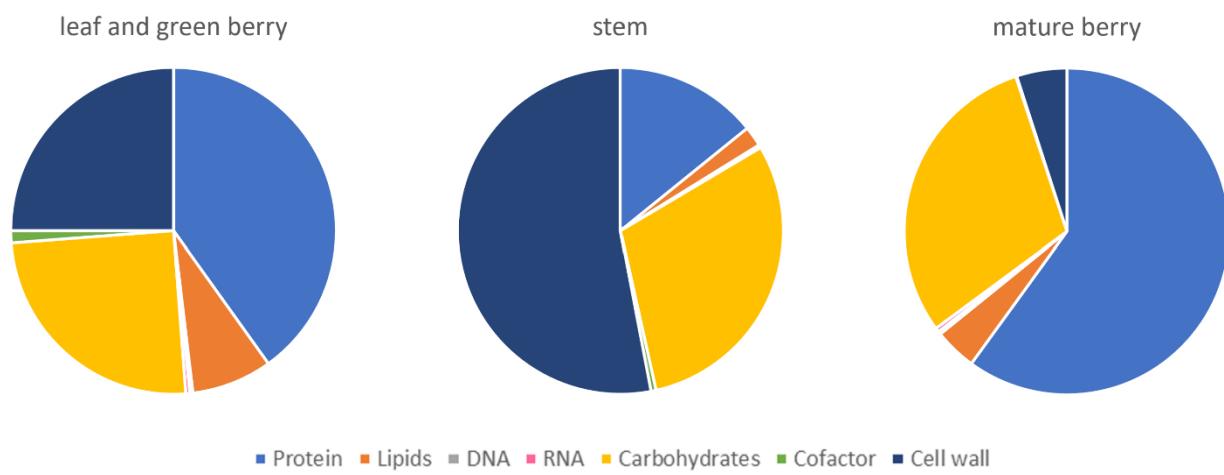
280 Mature berry is the most represented tissue in the dataset with 46% of the samples (75
281 samples), 28% of the samples are from green berries (45 samples), while stem and leaf
282 represent 13% of the samples each (21 samples).

283 Analyzing the t-SNE plot, the data grouped well by tissue: leaf samples are the most
284 well-grouped, followed by stem samples, while berry samples are more scattered.

285 Green berry samples partially overlap mature berry samples, and some separation
286 exists between some mature berry samples. This was expected as these samples were
287 retrieved every week from fruit set to maturity. Thus, samples a week before and a week
288 after veraison, which is when the maturation phase starts, may be similar in metabolism.

289 *Biomass composition*

290 The biomass composition of the different tissues is represented in Figure 6. Details on
291 biomass compositions are described in the Materials and Methods section and
292 Supplementary File 3. The biomass of leaf and green berry was considered to be the
293 same, and it was used as a reference to define the biomass composition of the other
294 tissues. According to other plant models (*Q. suber* (Cunha et al., 2023b) and *A. thaliana*
295 (de Oliveira Dal'Molin et al., 2015)), the stem is expected to have a higher cell wall and
296 carbohydrate content and lower protein and lipid levels. According to the literature, the
297 mature berry is expected to have higher sugar and amino acid content (Cheng et al.,
298 2016). Therefore, in the model, leaf and green berries present high levels of
299 carbohydrates and proteins, the stem is mainly composed of carbohydrates and cell
300 wall precursors, and mature berries present high amounts of sugars and proteins but
301 fewer organic acids.



302
303 **Figure 6.** Biomass composition of the leaf and green berry, stem, and mature berry. These values were
304 adapted from available plant models and literature.

305
306 *Models*

307 The FASTCORE algorithm (Vlassis et al., 2014) was used to create tissue-specific
308 models (see Materials and Methods). The statistics of the reconstructed generic and
309 tissue-specific models are shown in Table 2. All models have the same 244 exchange
310 reactions.

311 The number of reactions is similar across all tissue-specific models. Even so, the
312 mature berry model is the smallest one, while the leaf model is the largest, having a
313 higher number of reactions in the chloroplast, as well as more unique reactions. At the
314 pathway level, no significant differences were found between models (Supplementary
315 File 4).

316 **Table 2.** Statistics of the generic and tissue-specific GSMMs of *V. vinifera*.

	Generic model	Leaf	Stem	Green berry	Mature berry
Genes	7199	6701	6602	6657	6312
Metabolites	5141	4456	4310	4399	4181
Reactions	5399	4510	4384	4495	4272
Transport	1624	1295	1315	1324	1305
Unique reactions	-	124	97	26	19
Metabolic reactions	3531	2971	2825	2927	2723
Cytosol	1434	1154	1092	1113	1059
Chloroplast	793	745	701	725	684
Mitochondria	335	313	318	320	314
Endoplasmic reticulum	568	410	370	417	353
Peroxisome	165	158	152	153	151
Vacuole	52	49	47	48	32
Golgi complex	54	41	41	50	50
Extracellular	130	101	104	101	80

317
318 The tissue-specific models were simulated using parsimonious Flux Balance Analysis
319 (pFBA) (Lewis et al., 2010), following the first strategy defined in the Materials and
320 Methods section of keeping biomass rate at 0.11 h⁻¹ and minimizing the uptake of
321 photons and sucrose.

322 A summary of the phenotype predictions is presented in Table 3 and full results are
323 available in Supplementary file 5. The leaf tissue was simulated for all processes:
324 photosynthesis, photorespiration, and respiration, while the other tissues were

325 simulated for respiration only. Photosynthesis can also occur in green berries, but not at
326 significant levels. Hence, in this analysis, the leaf was considered to be the only
327 photosynthetic tissue.

328

329 **Table 3.** Summary of the net conversions obtained from the phenotype predictions of the tissue-specific
330 models of leaf, stem, green berry, and mature berry for photosynthesis, photorespiration (leaf only), and
331 respiration, minimizing the uptake of photons or sucrose and fixing biomass rate at 0.11h^{-1} . This table
332 shows the metabolites that are consumed and produced by the models. The fluxes of the metabolites are
333 in $\text{mmol.gDW}^{-1}.\text{h}^{-1}$ while biomass fluxes are in h^{-1} .

metabolite	photosynthesis	photorespiration	respiration			
	leaf			stem	berry green	berry mature
Uptake						
SUCROSE	-	-	0.61	0.49	0.61	0.72
Light	32.09	43.76	-	-	-	-
CARBON-DIOXIDE	4.41	4.41	-	-	-	-
NITRATE	0.37	0.37	0.37	-	0.37	-
OXYGEN-MOLECULE	-	-	1.74	1.71	1.74	1.84
PROTON	6.64	6.64	3.73	4.01	3.73	3.71
SULFATE	0.02	0.02	0.02	0.01	0.02	0.02
WATER	3.21	3.21	-	0.11	-	-
Production						
OXYGEN-MOLECULE	5.54	5.54	-	-	-	-
NITRATE	-	-	-	-	-	0.70
AMMONIUM	-	-	-	0.04	-	-
HCO ₃	-	-	2.86	1.98	2.86	3.47
PPI	0.05	0.05	-	-	-	-
Pi	-	-	0.09	0.21	0.09	-
WATER	-	-	0.55	-	0.55	1.25
e-Biomass	0.11	0.11	0.11	0.11	0.11	0.11

334

335 In photosynthesis and photorespiration, the leaf uptakes light, carbon dioxide, water,
336 nitrate, sulfate, and protons to produce biomass, and releases oxygen and phosphate,
337 as expected. Iron II and magnesium (Mg) are also captured but with very low fluxes
338 (less than $1\text{e-}5$ $\text{mmmol.gDW}^{-1}.\text{h}^{-1}$). Light uptake is significantly higher in

339 photorespiration than in photosynthesis ($43.75 \text{ mmol.gDW}^{-1}.\text{h}^{-1}$ vs $32.09 \text{ mmol.gDW}^{-1}.\text{h}^{-1}$), which was also expected as the latter process is known to be more efficient for
340 energy production. In both cases, the pathways of the primary metabolism are the most
341 active: photosynthesis, Calvin cycle, glycolysis, starch and amino acid biosynthesis, and
342 oxidative phosphorylation. Also, the photorespiration pathway is only active under
343 photorespiration conditions.

345 During photosynthetic conditions, the tricarboxylic acid (TCA) cycle is incomplete: citrate
346 is converted to isocitrate, and this is converted to α -ketoglutarate, which is used for the
347 biosynthesis of glutamate and glutamine instead of being used to produce succinate.
348 Fumarate is produced from arginine biosynthesis, instead of being produced from
349 succinate, and enters the cycle. This result is consistent with the results observed for
350 other plant models under light conditions (Maurice Cheung et al., 2014; Cunha et al.,
351 2023b) and with isotope labeling experiments, which stated that a cyclic TCA only
352 happens when the demand for ATP is high. The photosynthetic ATP production reduces
353 that demand (Sweetlove et al., 2010; Williams et al., 2008).

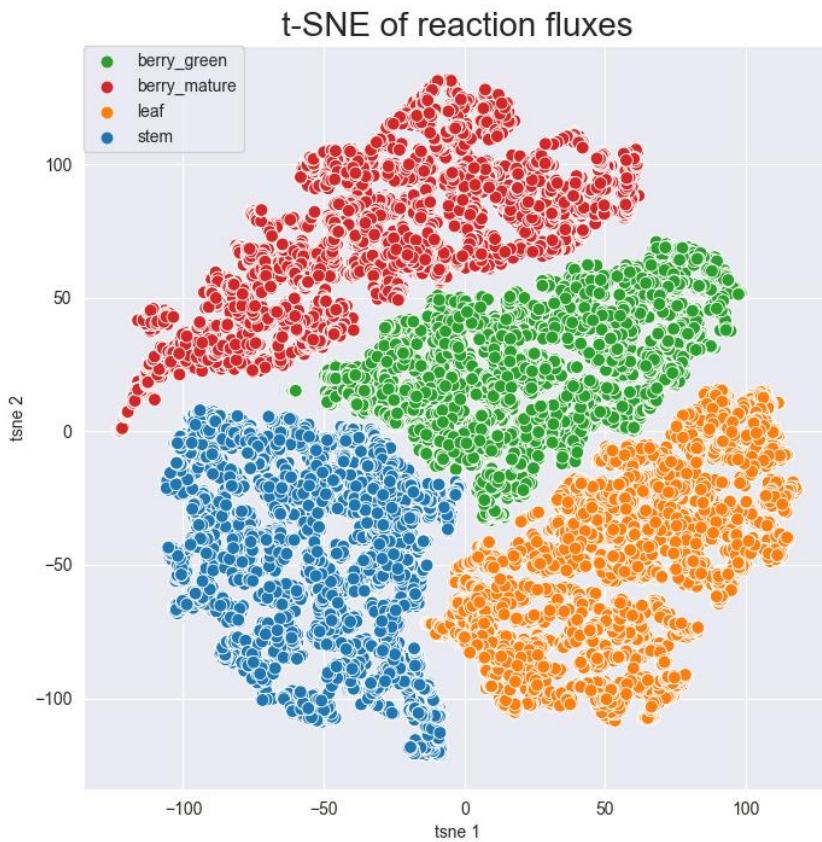
354 In respiration, the leaf uptakes sucrose, nitrate, sulfate, oxygen, and protons, and
355 releases hydrogencarbonate, water, and phosphate. The main active pathways include
356 glycolysis, the TCA cycle, starch and amino acid biosynthesis, and oxidative
357 phosphorylation. The respiration results were similar across tissues. The stem uptakes
358 water and releases ammonium, and the mature berry has a slightly higher demand for
359 sucrose to produce the same biomass flux.

360 In summary, the integration of omics data into the generic GSMM created tissue-specific
361 models that try to reflect the differences in gene expression between tissues. However,
362 the number of reactions and the phenotype predictions are not very different between
363 models; thus, a complementary analysis based on differential flux predictions was
364 performed to understand the metabolic differences between the tissues.

365

366 *Differential flux analysis*

367 The ACHR sampler (Bordel et al., 2010) was used to generate 10000 sample fluxes for
368 all reactions from the different tissue-specific models. Then, these data were used to
369 identify the reactions with differential fluxes between models (see Materials and
370 Methods). In total, 764 reactions were found to have altered fluxes between at least two
371 models. The sampled flux data is shown in the t-SNE of Figure 7.



372
373 **Figure 7.** t-SNE visualization of the sampled reaction fluxes of the tissue-specific models. Data was
374 generated by the ACHR sampler, filtered by the reactions with differential flux between models, and
375 scaled. Green dots represent the reaction fluxes from the green berry model, red dots the mature berry,
376 orange dots the leaf, and blue dots the stem.

377
378 As observed previously, despite the higher number of samples, t-SNE was able to
379 separate well the fluxes from the different tissues as no overlap is evident between
380 samples of different tissues. In addition, there is no group where flux samples group
381 better nor are more separated from the other groups. These results are not fully in line
382 with those observed for the expression data: leaf flux samples do not appear to group
383 better than the samples from the other tissues, and there is no evident overlap between

384 green and mature berry samples. This may be because only reactions with differential
385 flux between at least two tissue models were considered in the analysis. Overall, flux
386 data seems to separate the tissues better than gene expression data.

387 Hypergeometric enrichment tests were used to identify the pathways that presented
388 significantly differential flux between each pair of models. These results are available in
389 the Supplementary File 6. Analyzing the results, it was clear that smaller pathways were
390 not selected even when only one reaction was not identified as having differential flux.
391 Therefore, this method seems to be more suitable for analyzing pathways with a large
392 number of reactions. For this reason, the complete list of reactions with differential flux
393 between the models was also analyzed.

394 Comparing the green and mature berry models, reactions from glycolysis, TCA cycle,
395 and related to nucleotide biosynthesis were identified as having differential flux. In
396 addition, anthocyanin biosynthesis exhibited more flux in the mature berry, as well as
397 some reactions involved in the biosynthesis of quercetin and derivatives. This was
398 expected as the mature berry has anthocyanins and a higher content of sugars in its
399 biomass composition while demanding a lower content of nucleotides.

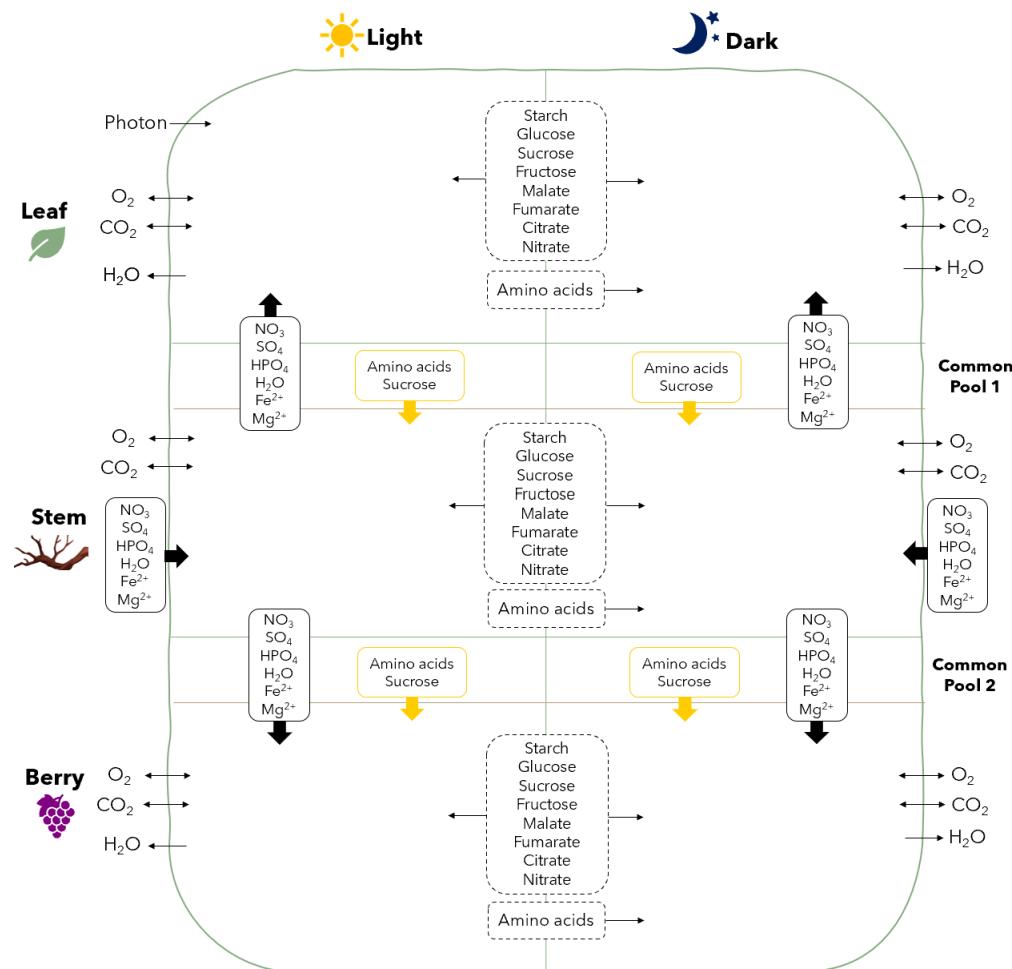
400 Comparisons between the other models are available in Supplementary Material. In
401 summary, it was expected that the primary metabolic pathways would be identified as
402 having differential flux between tissues, as tissue models have different demands for
403 biomass precursors, and produce energy by different processes: the leaf performs
404 photosynthesis, while the others perform aerobic respiration. Besides these, no relevant
405 pathways were found to characterize the specific metabolism of each tissue.

406

407 **Diel multi-tissue models**

408 Diel multi-tissue models were created to analyze the metabolic interactions between the
409 leaf, stem, and berry of *V. vinifera* in the light (day) and dark (night) phases of a diel
410 cycle. Two models were created, one using the green berry tissue and the other using
411 the mature berry. The resulting diel multi-tissue models include 32391 and 31999
412 reactions, and 29064 and 28710 metabolites for green and mature berries, respectively.

413 The structure of the multi-tissue diel models is schematized in Figure 8, showing the
414 different tissues, the diel phases, and the connections between them.



415
416 **Figure 8.** Schematic representation of the reconstructed diel multi-tissue models of *V. vinifera*, including
417 the leaf, stem, and berry tissues and the common pools 1 and 2 in both light and dark phases. Photon
418 uptake was allowed through the leaf in the light phase while mineral nutrients (nitrate, sulfate, phosphate,
419 iron, magnesium) were allowed through the stem in both phases. Exchanges of carbon dioxide, oxygen,
420 and water were allowed in all tissues and phases. Starch, glucose, sucrose, fructose, malate, fumarate,
421 citrate, and nitrate were allowed to accumulate in the light and dark phases (dashed rectangle between
422 phases). Amino acids can be stored in the light and used in the dark. Exchanges of amino acids, sucrose,
423 and minerals were allowed between tissues through common pools.

424
425 pFBA was used to simulate the models, as described in the Materials and Methods
426 section for photorespiration conditions. The phenotype predictions are available in the
427 Supplementary File 7. A summary of the results is presented in Table 4 and the fluxes

428 for the storage metabolites between light and dark phases are shown in Tables Table 5
429 and S1, for green and mature berries, respectively.

430

431 **Table 4.** Summary of the phenotype predictions for the diel multi-tissue models of green and mature
432 berries under photorespiration with biomass maximization as objective function and fixing the photon
433 uptake to 300 mmol.gDW⁻¹.h⁻¹. This table shows the metabolites that are consumed and produced by the
434 models. The fluxes of the metabolites are in mmol.gDW⁻¹.h⁻¹ while biomass fluxes are in h⁻¹.

metabolite	photorespiration	
	green	mature
	uptake	
Light_light	300.000	300.000
NITRATE_light	1.147	1.589
NITRATE_dark	0.764	1.059
OXYGEN-MOLECULE_dark	5.999	5.818
PROTON_light	26.330	27.210
PROTON_dark	16.790	16.020
SULFATE_light	0.098	0.112
SULFATE_dark	0.002	0.001
WATER_light	31.070	29.770
CARBON-DIOXIDE_light	35.830	34.920
production		
OXYGEN-MOLECULE_light	39.810	40.84
WATER_dark	1.455	2.788
CARBON-DIOXIDE_dark	0.000	0.000
HCO3_light	2.995	2.956
HCO3_dark	5.602	4.475
Pi_light	0.527	0.384
Pi_dark	0.527	0.384
total biomass	0.149	0.142

435

436 Significant differences were found between the light and dark phases, mainly in the leaf,
437 as photosynthesis and photorespiration occur in this tissue. The light phase starts with
438 photosynthesis light reactions and carbon dioxide fixation through the Calvin cycle in the
439 leaf. The resulting carbohydrates are then used to produce all biomass precursors.
440 Starch, sucrose, malate, and some amino acids are stored to be used in the leaf during
441 the dark phase. At night, the active pathways include aerobic respiration, starch
442 degradation, glycolysis, pentose phosphate, and citrate biosynthesis through the TCA

443 cycle. Sucrose was expected to be produced at night but instead, the model uses
444 fructose 6-phosphate from starch degradation to start glycolysis. The sucrose
445 requirements for biomass are fulfilled by accumulating very small quantities of sucrose
446 between light and dark phases (flux value less than $0.02 \text{ mmol.gDW}^{-1}.\text{h}^{-1}$). This is an
447 artifact as the model finds sucrose transport to the dark phase less costly than
448 producing it. However, sucrose production at night can be assured by forcing flux in the
449 respective reactions. In addition, starch is the main carbon compound stored in the light,
450 and it is degraded in the dark phase to produce energy. This was expected as less
451 energy is needed to mobilize plastidic starch reserves than vacuolar sucrose (Maurice
452 Cheung et al., 2014).

453 **Table 5.** Fluxes for the metabolites stored between light and dark phases in the diel multi-tissue model
454 with green berry. Positive fluxes indicate that the metabolites are stored in the light phase to be used in
455 the dark while the metabolites with negative fluxes are stored in the dark to be used during the day. The
456 fluxes are in $\text{mmol.gDW}^{-1}.\text{h}^{-1}$.

	reaction	flux
leaf	CIT_vacu_leaf_light_dark_storage	-1.354
	CYS_cyto_leaf_light_dark_storage	0.009
	ILE_cyto_leaf_light_dark_storage	0.025
	MAL_vacu_leaf_light_dark_storage	1.168
	MET_cyto_leaf_light_dark_storage	0.011
	NITRATE_vacu_leaf_light_dark_storage	-0.020
	PRO_cyto_leaf_light_dark_storage	0.360
	Starch_chlo_leaf_light_dark_storage	0.374
	SUCROSE_vacu_leaf_light_dark_storage	0.020
	THR_cyto_leaf_light_dark_storage	0.051
stem	CIT_vacu_stem_light_dark_storage	-0.261
	CYS_cyto_stem_light_dark_storage	0.003
	ILE_cyto_stem_light_dark_storage	0.009
	MAL_vacu_stem_light_dark_storage	0.060
	MET_cyto_stem_light_dark_storage	0.015
	NITRATE_vacu_stem_light_dark_storage	-0.745
	PRO_cyto_stem_light_dark_storage	0.276
	Starch_chlo_stem_light_dark_storage	0.009
	CYS_cyto_berry_light_dark_storage	0.009
	ILE_cyto_berry_light_dark_storage	0.025
berry	PRO_cyto_berry_light_dark_storage	0.162
	Starch_chlo_berry_light_dark_storage	0.013

457

458 Then, the citrate produced at night is stored in the vacuole to be used during the day,
459 entering the TCA cycle. Nitrate is also transported from the dark to the light to support
460 nitrogen assimilation, which was predicted to occur only during the day. These results
461 were confirmed by experimental evidence and observed in other plant models (Maurice
462 Cheung et al., 2014; Cunha et al., 2023b; Gauthier et al., 2010)

463 However, the entire TCA cycle was expected to occur in the dark phase. This does not
464 happen in the leaf, as all citrate produced at night is stored in vacuoles to be used
465 during the day. α -ketoglutarate is produced from the degradation of amino acids like
466 glutamate and enters the cycle, which is complete until citrate production. The citrate
467 accumulated, besides feeding the TCA cycle in the light phase, is used for the
468 biosynthesis of Acetyl Co-A during the day, which is then used for lipid production.
469 Therefore, the model finds it more efficient to store more citrate to be used during the
470 day than to complete the TCA cycle in the leaf at night.

471 Ammonium is provided by the stem and transported to the leaf, where it is used for
472 amino acid biosynthesis. In addition, phosphate, sulfate, pyruvate, formate, and
473 glutamate are imported from the stem through common pool 1 in the light and dark
474 phases to feed amino acid and citrate biosynthesis.

475 On the other hand, sugars and amino acids produced in the leaf are transported to the
476 stem. The active pathways in the stem during the day have much lower fluxes than in
477 the leaf. These include aerobic respiration, sucrose degradation, glycolysis, starch
478 biosynthesis, pentose phosphate pathway, amino acid, and nucleotide biosynthesis, and
479 degradation of beta-alanine and uracil.

480 The leaf and stem metabolisms in the dark phase are similar, and the same metabolites
481 are stored between the light and dark phases. Also, in the stem, the TCA cycle is
482 complete during the night, as expected, but a high percentage of the produced citrate is
483 still stored (around 59%). The berry metabolism is very similar to the stem metabolism,
484 but the reaction fluxes are even lower, except for the reactions related to folate
485 biosynthesis. Formate and pyruvate are produced here and transported to the stem

486 through common pool 2 to be further transported from the stem to the leaf to be used for
487 amino acid biosynthesis. Only starch and amino acids are exchanged in the berry
488 between light and dark phases.

489 No significant differences were found in the phenotype predictions between green and
490 mature berries. The total biomass rate is slightly higher in the green berry model (0.149 h^{-1}) than in the mature one (0.142 h^{-1}), and generally, the photosynthetic pathways and
491 those related to cellular respiration have lower flux in the mature berry. The pathways
492 related to secondary metabolite biosynthesis, mainly anthocyanins, have flux in the
493 mature and not in the green berry, as expected, but these fluxes are very low; thus, no
494 major differences were observed in the primary metabolism.

496

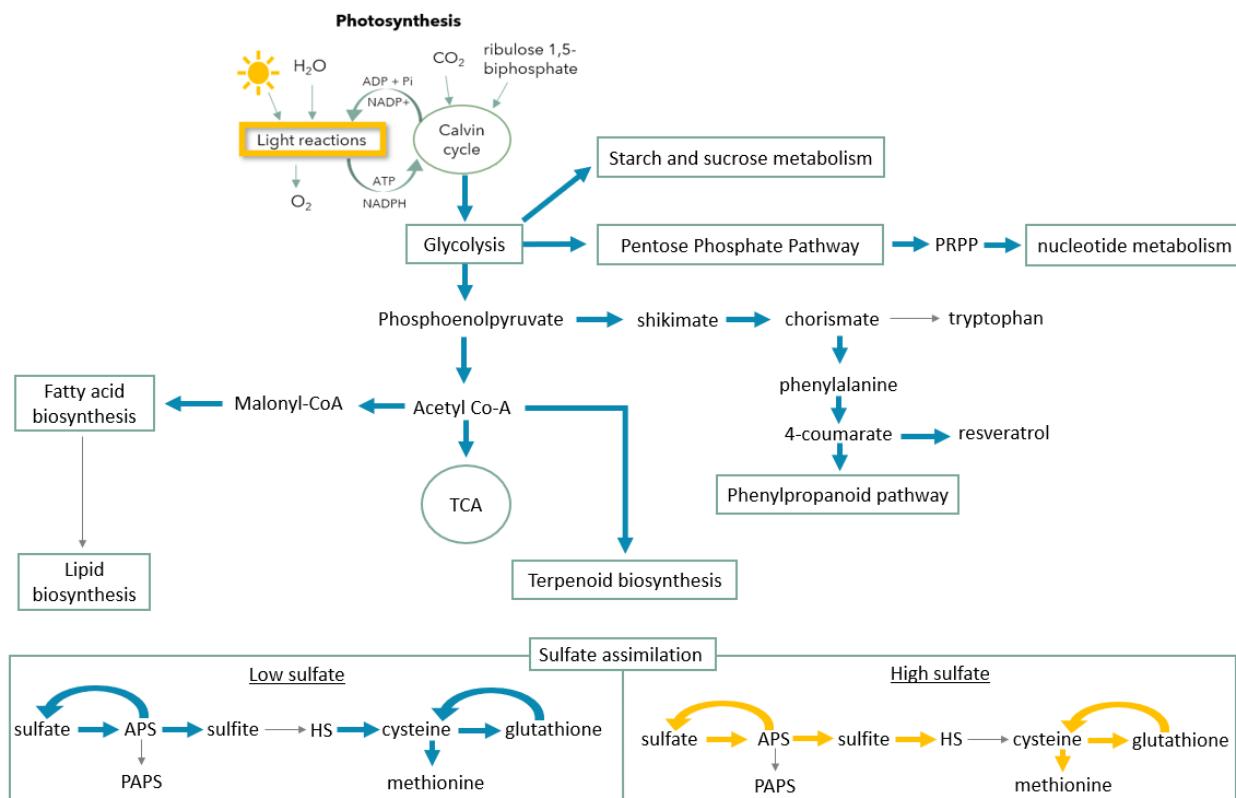
497 *Sulfate Assimilation*

498 Sulfur is an important nutrient taken up by plants from the soil in the form of sulfate, and
499 it is the key element of the amino acids cysteine and methionine. Thus, a major part of
500 sulfate is used for protein biosynthesis. Sulfur is also a component of glutathione, which
501 is an important antioxidant agent, and S-adenosyl methionine and coenzyme A, which
502 are cofactors for several enzymes. Elemental sulfur (S^0) is the oldest pesticide applied
503 to grapevines and it is still widely used nowadays, being particularly effective against
504 powdery mildew disease, one of the most common diseases affecting grapevines that is
505 caused by the fungus *Erysiphe necator*. In addition, sulfur dioxide (SO_2) is often used as
506 a conservative of table grapes or in winemaking to prevent oxidation and microbial
507 contamination.

508 Plant exposure to high sulfur levels can lead to the accumulation of sulfur-derived
509 compounds or affect the metabolism of phenolic compounds, which can change the
510 flavor, aroma, and texture of grapes and wine (Cheng et al., 2016; Considine and Foyer,
511 2015). It was observed that residual sulfur on berries can lead to the formation of
512 undesirable flavors, such as hydrogen sulfide (H_2S), during wine fermentation
513 (Considine and Foyer, 2015).

514 *V. vinifera* diel multi-tissue models were simulated to assess the effect of different
515 sulfate concentrations on grapevine metabolism. Flux Variability Analysis (FVA) was
516 used to get the possible range of reaction fluxes while keeping at least 80% of the
517 maximum total biomass and fixing a photon uptake of 300 $\text{mmmol.gDW}^{-1}.\text{h}^{-1}$. Two
518 different flux values for sulfate uptake in the light phase were tested, 0.01 and 10
519 $\text{mmmol.gDW}^{-1}.\text{h}^{-1}$. The choice of these values was arbitrary, but the goal was to have
520 one value above and one below the unrestricted sulfate uptake flux (Table 4). Similar
521 results were obtained for the multi-tissue models with green and mature berries. Thus,
522 only the results for the green multi-tissue are described. The full results are available in
523 Supplementary File 8 and detailed in Supplementary Material.

524 With high sulfate ($10 \text{ mmol.gDW}^{-1}.\text{h}^{-1}$), the maximum flux for biomass production
525 decreased from 0.149 to 0.138 h^{-1} . Similarly, the production of all biomass components
526 also decreased as well as the flux for primary and secondary metabolism (Figure 9).



527 528 **Figure 9.** Simplified schema of the main metabolic pathways in the model affected by varying sulfate
529 levels. Pathways with increased maximum flux under low sulfate conditions are highlighted with a thick

530 blue arrow while pathways with increased flux under high sulfate conditions are highlighted with a thick
531 yellow arrow. Pathways with decreased flux in both conditions are represented by a thin gray arrow.

532

533 As expected, the maximum fluxes of the reactions involved in sulfate assimilation and
534 oxidation, and glutathione biosynthesis have increased. Surprisingly, in the model, the
535 biosynthesis of cysteine and methionine decreased with high sulfate levels. During
536 sulfate reduction, the reaction that produces H₂S has a higher maximum flux but the
537 reaction that uses it to produce cysteine has a lower flux, which leads to a big increase
538 in the flux of the H₂S exchange reaction (Figure 9). This could mean that when plants
539 are exposed to high sulfur levels, they try to adapt to these conditions by adjusting their
540 metabolism, leading to the accumulation of H₂S or other sulfur compounds that can alter
541 the flavor and aroma of the grapes.

542 When plants are under a sulfate deficiency, the production of biomass and all its
543 components also decreases. For a sulfate uptake of 0.01 mmmol.gDW⁻¹.h⁻¹, the
544 maximum production of biomass greatly decreased from 0.149 to 0.018 h⁻¹. Hence, the
545 plant has an excess of carbon skeletons, which are not being used for protein
546 biosynthesis and are available for the biosynthesis of secondary metabolites, increasing
547 the available flux for these pathways. Therefore, there was an increase in the flux of
548 primary pathways, such as sucrose and starch biosynthesis and degradation,
549 gluconeogenesis, and glycolysis, as well as in the pathways responsible for producing
550 secondary metabolites, plant hormones, and amino acids that are precursors of
551 secondary compounds, like phenylalanine (Figure 9). For instance, the maximum flux
552 for resveratrol synthase reaction during the day increased from 0.41 to 1.75
553 mmmol.gDW⁻¹.h⁻¹. In addition, there was a great increase in the maximum flux for the
554 storage of all amino acids, except for cysteine and methionine. Thus, sulfur levels in the
555 soil can greatly influence grapevine metabolism and affect the flavor and aroma of
556 grapes by sulfide or sulfur-compound accumulation or changes in the phenolic content
557 in grapes.

558 The same approach was applied to assess the effect of different nitrate concentrations
559 in the *V. vinifera* model and similar patterns were observed. The full results are available
560 in Supplementary File 9 and described in Supplementary Material.

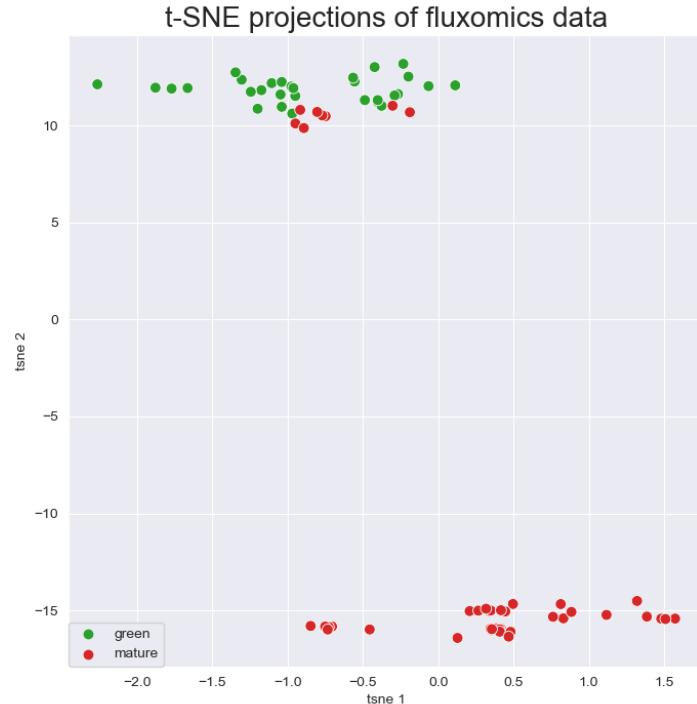
561

562 **Machine Learning and Fluxomics**

563 The potential of using ML to analyze fluxomics data generated by metabolic models was
564 explored. As a significant number of samples is required to train good predictive ML
565 models, the idea of applying ML to fluxomics data is to study the relationships between
566 variables and their impact on the output class. With this in mind, 73 context-specific
567 GSMMs were created by integrating RNA-Seq data from grapes in different
568 developmental stages. Simulated fluxomics data was then obtained from each GSMM
569 as described in Materials and Methods. In this case, the output class to be predicted by
570 the models is the grape developmental phase, green or mature.

571 First, data was preprocessed and explored using unsupervised methods, starting with t-
572 SNE for data visualization. Before applying the t-SNE, the reactions with the same value
573 in all samples were removed, which greatly reduced the dataset from 8632 to 2322
574 features.

575 The results of the t-SNE are plotted in Figure 10. A clear separation between the two
576 states is shown as all green samples are located at the top of the plot while most
577 mature samples are at the bottom. However, six mature samples were grouped with the
578 green ones. These comprise Cabernet Sauvignon samples from time points 5 and 6
579 and Pinot Noir samples from time point 5. As veraison is expected to occur between
580 time points 3 and 4, these results indicate that not many differences exist at the
581 fluxomics level between green and early mature samples. Even so, fluxomics seems to
582 distinguish well the remaining green and mature samples.



583

584 **Figure 10.** t-SNE visualization of the fluxomics data obtained from the 73 context-specific GSMMs.
585 Samples are colored by the grape developmental stage.

586

587 For the supervised analysis, five different ML model architectures were applied including
588 logistic regression (LR), K-nearest neighbors (KNN), decision trees (DT), support vector
589 machine (SVM), and random forests (RF). These ML models were evaluated using
590 repeated stratified cross-validation with 10 folds and 10 repeats. The average
591 evaluation results are shown in Table 6.

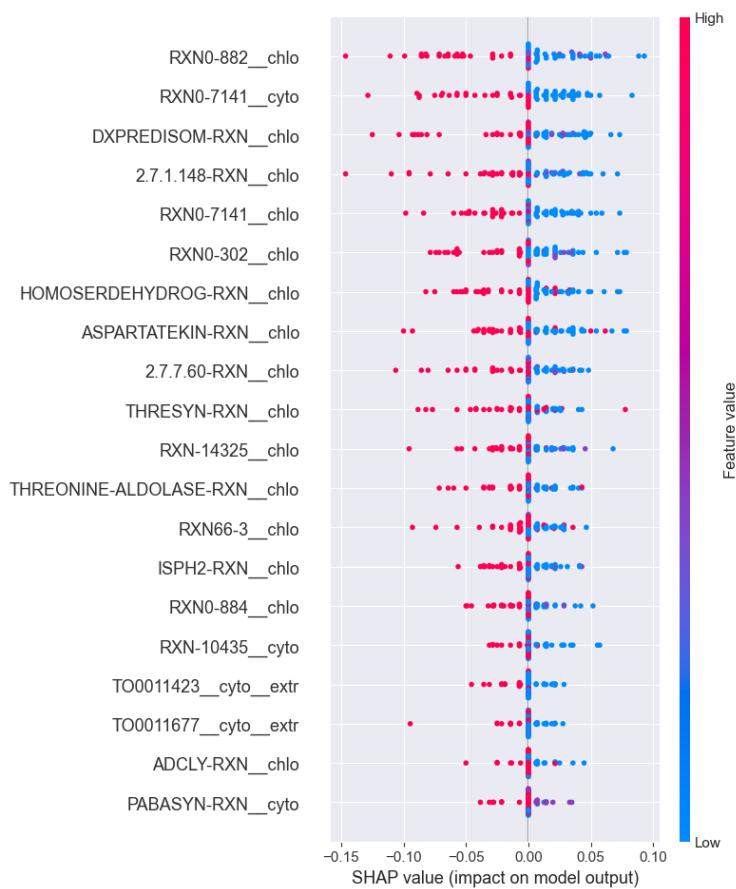
592 **Table 6.** Evaluation results of the ML models for the metrics balanced accuracy, precision, recall, and F1
593 score.

	LR	KNN	DT	SVM	RF
BALANCED ACCURACY	0.96	0.95	0.96	0.93	0.97
PRECISION	0.97	0.96	0.98	0.96	0.98
RECALL	0.96	0.98	0.95	0.94	0.97
F1 SCORE	0.96	0.97	0.96	0.94	0.97

594

595 According to these results, the models are performing well in predicting the grape
596 developmental stage with this fluxomics dataset. The model's performances across the
597 different folds are robust, indicating that the models can learn meaningful patterns in the

598 data and handle data variations well. Overall, RF obtained higher values for all metrics,
599 while SVM presented the worst performance. Despite the results being good and the
600 models being able to generalize correctly on the test set of each fold, the dataset is very
601 small (73 samples), which is a common problem when working with omics data. Larger
602 datasets are needed to create better predictive models and draw more conclusions from
603 the data. Nevertheless, these models represent a good start for understanding which
604 reactions contribute most to the model's prediction. Hence, SHAP values (Lundberg et
605 al.) were calculated for the two best models, RF and KNN, and the most contributing
606 reactions are shown in Figure 11 for RF. The KNN results are described in
607 Supplementary Material.



608

609 **Figure 11.** Beeswarm plot of SHAP values for the reactions that contribute most to RF's predictions.
610 Features are ordered from higher to lower effects on the predictions. The dots represent a single
611 observation, and the color indicates if the observation has a higher (pink) or a lower (blue) feature value
612 compared to the other observations.

613 Overall, when the reactions presented high flux capacity (FCa) values, they had
614 negative SHAP values, leading the model to predict the green state, while with lower
615 FCa they exhibited higher positive SHAP values, leading the model to predict the
616 mature state. Hence, all the reactions identified here presented an average FCa value
617 higher in the green than in the mature grapes.

618 For the RF model, RXN0-882 in the chloroplast is the reaction that most contributes to
619 the predictions. Similarly, high fluxes of this reaction have negative SHAP values
620 (around -0.15), classifying the samples as green, while lower fluxes have positive SHAP
621 values (close to 0.10), classifying the samples as mature. There are some exceptions to
622 this trend, such as the chloroplastic THREONINE-ALDOLASE-RXN and THRESYN-
623 RXN reactions that show positive SHAP values when presenting high flux, indicating
624 that samples classified as mature by the models can also have high fluxes in these
625 reactions.

626 Of the 20 reactions identified for each model, 10 have a high impact on both models,
627 indicating that the results are reliable and robust and that these features are important
628 for predicting the output. Most of these reactions are involved in the methylerythritol
629 phosphate (MEP) pathway, which is responsible for the biosynthesis of the terpenoid
630 precursors (Figure 4), threonine degradation into glycine, and the transport of
631 glycerides. The remaining reactions identified only with the RF model are involved in the
632 biosynthesis of nucleotides, 4-aminobenzoate, and threonine.

633 The accumulation of terpenoids in grapes typically starts before veraison, which can
634 explain why the reactions associated with the biosynthesis of terpenoid precursors had
635 higher FCa in the green state. However, terpenoid biosynthesis intensifies after
636 veraison, which is not observed in the fluxes of these reactions. Fasoli et al., 2018 have
637 also identified terpene metabolism as a negative biomarker for the onset of ripening. In
638 addition, the abscisic acid (ABA) signaling is increased at veraison, and ABA is derived
639 from carotenoids, whose biosynthesis starts with the MEP pathway. Thus, there is
640 strong evidence that genes or reactions from the MEP pathway could be used as
641 biomarkers for the onset of ripening.

642 In the green phase, as grapes are rapidly growing, the metabolism of amino acids,
643 nucleotides, and lipids is expected to be more active than in the mature phase. 4-
644 aminobenzoate is a precursor for the biosynthesis of various metabolites, such as
645 tetrahydrofolates, which are involved in several processes like photorespiration, amino
646 acid metabolism, and protein biosynthesis. These pathways are also expected to be
647 more active in the green phase. This fact may explain why the reactions related to these
648 pathways are important for the model's predictions. However, it is not clear why
649 threonine metabolism is more important for the model than the metabolism of the other
650 amino acids. Nevertheless, the models presented good predictions, associating high
651 fluxes of these reactions to predict the green state and low fluxes to predict the mature
652 state.

653

654 **Materials and methods**

655

656 **Metabolic data source**

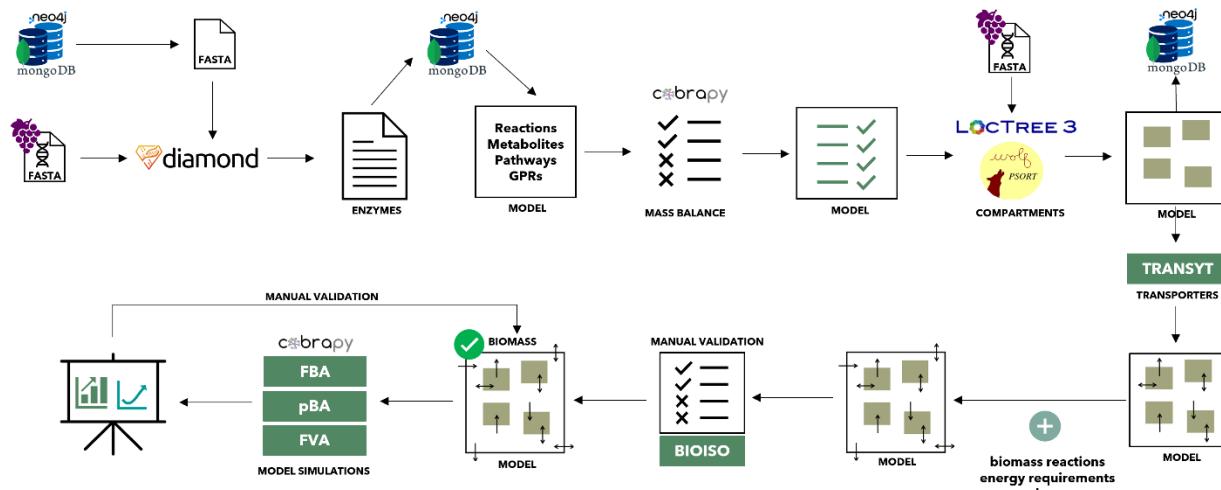
657 The metabolic information of PlantCyc 14.0 (Zhang et al., 2010) and MetaCyc 26.1
658 (Caspi et al., 2016) databases was saved and organized in a repository named iplants,
659 using Neo4j (Huang and Dong, 2013) and MongoDB (Jose and Abraham, 2017)
660 database management systems. These NoSQL databases do not store data in
661 relational tables, having instead a more flexible schema. Neo4j uses a graph structure,
662 while MongoDB uses a document structure to represent data. The implementation and
663 management of the databases were performed with Python 3.8, using the Neomodel
664 package, an object graph mapper for Neo4j, and Mongoengine, an object document
665 mapper for MongoDB. The Neo4j database saved the connections between
666 metabolites, reactions, enzymes, genes, pathways, organisms, and models, while
667 MongoDB stored metadata for all Neo4j entities. UniProt (The UniProt Consortium,
668 2017) data for enzymes were also collected when available, and added to MongoDB,
669 including protein function, localization, sequence, and annotation status.

670 In addition, nine plant metabolic models of different species were integrated into the
671 repository, comprising *A. thaliana*, *O. sativa*, *M. truncatula*, *S. viridis*, *G. max*, and *S.*

672 *Lycopersicum*. This integration involved matching the iplants entry identifier with the
673 identifier in the models and connecting the model object with the associated objects in
674 the database.

675 Model Reconstruction

676 The reconstruction of the GSMM of *V. vinifera* was based on the PN40024.v4 genome
677 and the PN40024.v4.1 annotation version, which includes 35922 genes and 41160
678 proteins (Velt et al., 2023). All the main steps and analyses were performed using
679 Python 3.8 and COBRApy version 0.25 (Ebrahim et al., 2013) and are schematized in
680 Figure 12.



681
682 **Figure 12.** The main steps of the *V. vinifera* GSMM reconstruction. Genome annotation is performed
683 using DIAMOND with the protein sequences from the database and *V. vinifera* proteins from the genome.
684 The identified enzymes are used to get all metabolic information from the database as well as to define
685 the GPR rules in the model. Next, the mass balance of reactions is checked and fixed whenever possible.
686 Unbalanced non-essential reactions were removed from the model. Then, subcellular compartments were
687 predicted using LocTree3 and Wolfpsort tools, and transporters between these compartments were
688 predicted using TranSyt. Finally, biomass, exchange, and energy requirement reactions were defined, and
689 the model was manually validated, using BioISO to verify biomass production. The final model was
690 simulated using different methods, such as FBA and FVA, and the results were analyzed to validate the
691 model.

692
693 The reconstruction started with genome annotation which was based on DIAMOND
694 (Buchfink et al., 2014) similarity searches of *V. vinifera* proteins against the protein
695 sequences in iplants, to assign enzymatic functions and associate reactions to *V.*
696 *vinifera* proteins. Using only the iplants database to perform the annotation facilitated

697 the identification of the reactions to include in the model. DIAMOND searches were
698 performed against the SwissProt database to determine the completeness of important
699 enzyme annotations in iplants. In the course of these searches, it was found that more
700 than 17,000 *V. vinifera* proteins had a match in SwissProt. However, most proteins were
701 involved in other processes like transcription regulation, protein phosphorylation, and
702 nuclear transport, which are not relevant to be included in the metabolic model.

703 Based on the iplants' annotation, the reactions linked to the identified enzymes and
704 spontaneous reactions were assembled to create a draft metabolic network. WolfPSort
705 (Horton et al., 2007) and LocTree3 (Goldberg et al., 2014) were used to predict the
706 subcellular location of the proteins. However, due to contradictory outcomes from these
707 tools, manual curation of the results was deemed necessary. For instance, certain
708 enzymes catalyzing the reactions of the sphingolipid biosynthesis, like serine C-
709 palmitoyltransferase and dihydroceramide fatty acyl 2-hydroxylase reactions, were
710 predicted to be on the endoplasmic reticulum by LocTree3 and in the chloroplast or
711 cytosol by WolfPSort. In this case, the annotations collected from UniProt were
712 considered and the location of these enzymes was defined to be the endoplasmic
713 reticulum. The thylakoidal and mitochondrial intermembrane compartments were added
714 manually for the photosynthesis and oxidative phosphorylation reactions, respectively.

715 Transport reactions were automatically identified using TranSyT (Cunha et al., 2023a)
716 and added to the model. Additional transporters were manually included in the model
717 when required. All reactions were validated for mass and charge balance.

718
719 *Biomass composition*

720 The definition of tissue-specific biomass compositions is crucial to obtaining good
721 models capable of simulating the specific metabolism of each tissue. Biomass is
722 composed of macromolecules labeled "e-metabolites", which are required for cell
723 growth, including RNA, DNA, proteins, carbohydrates, lipids, co-factors, and cell wall
724 components. Ideally, experimental data should be used to define biomass composition
725 for different tissues. However, as these data are not available for *V. vinifera*, the
726 biomass content was estimated based on previously published plant GSMMs and

727 insights from the literature. Specifically, the biomass formulation for leaf, stem, and
728 green berry was based on the models of *A. thaliana* (Dal'Molin et al., 2010; de Oliveira
729 Dal'Molin et al., 2015), *S. lycopersicum* (Yuan et al., 2016), and *Q. suber* (Cunha et al.,
730 2023b), while the biomass of the mature berry was adjusted according to the literature
731 (Cheng et al., 2016) and the metabolomics data available for the same samples used to
732 obtain the RNA-Seq data (Fasoli et al., 2018). Details of the biomass composition are
733 available in Supplementary File 3.

734 The monomer contents for the production of DNA, RNA, and proteins were calculated
735 from the genome sequence using the biomass tool (Santos and Rocha, 2016), available
736 in *merlin* (Dias et al., 2015). The reactions for the production of the cell wall,
737 carbohydrates, fatty acids, lipids, and co-factors were also adapted from *A. thaliana* and
738 *Q. suber* models. The e-Cofactor metabolite includes several universal cofactors, such
739 as NAD(H), and vitamins, and in the case of leaf, it also includes pigments, such as
740 chlorophylls. The content of carbohydrates was adapted to reflect the grape
741 composition described in the literature. For instance, tartaric acid was added to the
742 model as it was described as the main organic acid found in grapes and it is not present
743 in any other plant model (Cheng et al., 2016). For mature berries, the content of sugars
744 and organic acids was adjusted to reflect the changes in berry composition during
745 maturation. In addition, some secondary metabolites were added to the carbohydrate
746 reaction of the mature berry based on metabolomics data (Fasoli et al., 2018). These
747 metabolites were found in mature grapes and mainly included anthocyanins, such as
748 malvidin 3-glucoside, peonidin 3-O-glucoside, and petunidin-3-O-glucoside.

749 *Manual validation*

750 Manual curation was an essential step during the reconstruction process. Literature and
751 biological databases, such as Kyoto Encyclopedia of Genes and Genomes (KEGG)
752 (Kanehisa et al., 2017), National Center for Biotechnology Information (NCBI) (Sayers
753 et al., 2022), BRAunschweig Enzyme Database (BRENDA) (Placzek et al., 2017) and
754 UniProt (The UniProt Consortium, 2017), were consulted to retrieve additional
755 information about specific reactions, enzymes, or pathways.

756 Validating the model required verifying its ability to produce biomass. *BioISO* (Cruz et
757 al., 2024) was used to accomplish this goal, as it verifies the production of each
758 biomass substrate to see which ones are missing. Then, the gaps in the model were
759 analyzed and filled in when necessary for the production of essential metabolites. Also,
760 it was assured that growth did not occur without photons and carbon sources, and no
761 futile cycles were present. Then, dead-end metabolites and blocked reactions were
762 identified, and each blocked reaction was analyzed and fixed by resorting to other
763 databases. When no information was available, the blocked reactions were kept in the
764 model.

765 Finally, the model's capability to accurately simulate key metabolic processes like
766 photosynthesis, photorespiration, and respiration was confirmed. This was achieved
767 through the application of diverse methods, including Flux Balance Analysis (FBA),
768 parsimonious FBA (pFBA), and Flux Variability Analysis (FVA). FBA (Varma and
769 Palsson, 1994), which uses linear programming to calculate an optimal flux distribution
770 for a given objective function, has been extensively used to simulate GSMMs. However,
771 usually, multiple optimal solutions exist in the solution space for a given objective.
772 Hence, pFBA has emerged as a novel approach. It refines the traditional FBA by
773 selecting a flux distribution from the FBA optimal space that minimizes the total sum of
774 fluxes (Lewis et al., 2010). Likewise, FVA (Mahadevan and Schilling, 2003) is used to
775 determine the span of flux variability of GSMMs in simulations by calculating the
776 minimum and maximum flux of each reaction for a defined set of constraints.

777

778

779 **Tissue-specific Models**

780

781 *Omics Data*

782 Available RNA-Seq data from different tissues were used to create specific GSMMs for
783 stem, leaf, and berry. Due to the absence of a single study providing RNA-Seq data for
784 all three tissues, we resorted to using two distinct studies to gather the necessary
785 information. Leaf and stem data were retrieved from the healthy samples of *V. vinifera*

786 Cabernet Sauvignon cultivar in the study of Massonnet et al., 2017b (Gene Expression
787 Omnibus (GEO) accession: GSE97900). RNA-Seq data for the C. Sauvignon berries
788 was obtained from the study of Fasoli et al., 2018 (GEO accession: GSE98923), which
789 included berry samples in different developmental stages and associated metabolomics
790 data. The time-point metadata for these samples was grouped into two developmental
791 stages, green and mature, to create a metabolic model for each state. Samples until
792 time point 4 were considered to be in the green state, while samples after time point 4
793 were considered to be mature. Although sample time 4 was collected 7 days after
794 veraison, it was still considered to be in the green phase to reduce class imbalance.

795 These datasets were retrieved from GRape Expression ATlas (GREAT) (Velt and
796 Rustenholz, 2023). GREAT is a gene expression atlas for grapevine that integrates all
797 public RNA-Seq experiments, allowing the analysis and visualization of the data. The
798 RNA-Seq data were already normalized in transcripts per million (TPM) and the reads
799 were mapped to the new genome (PN40024.v4).

800 A dataset with all collected data and respective metadata was built, and a log2
801 transformation was applied to the gene expression values. Finally, the gene identifiers in
802 the datasets were mapped to the protein identifiers present in the model to allow for
803 omics integration.

804
805 *Models*

806 Tissue-specific models for stem, leaf, green berry, and mature berry were reconstructed
807 using the FASTCORE algorithm (Vlassis et al., 2014) implemented in the *Troppo*
808 package (Ferreira et al., 2020). This algorithm identifies the reactions that should be
809 removed or kept in the model, based on the expression levels of the genes associated
810 with each reaction through GPR rules, resulting in models with different reaction
811 content.

812 The reconstructed generic model and the omics dataset were used as input for this
813 algorithm, and the local T2 thresholding strategy (Richelle et al., 2019) was applied to
814 preprocess the omics data before integrating it into the model. In this strategy, two
815 global thresholds, upper and lower, are defined, and genes whose expression is below

816 the lower threshold are considered to be inactive, while genes whose expression is
817 above the upper threshold are considered to be active. Genes with expression levels
818 between these two thresholds may be active or not and further analysis is performed by
819 comparing the expression values to a local threshold. This is a gene-specific threshold
820 that accounts for the expression levels of each gene over all samples, while the global
821 thresholds have the same value for all genes. This strategy was employed as it was
822 described to obtain better results (Richelle et al., 2019).

823 In this work, we selected the percentiles 25 and 75 for the global lower and upper
824 thresholds, respectively, and the percentile 50 (median) for the local threshold. The
825 pseudo-reaction representing the drain of macromolecules required to create a new unit
826 of biomass was included in the set of protected reactions of the algorithm so that all
827 tissue-specific models would be able to produce biomass.

828 *Phenotype predictions*

829 Phenotype predictions of the tissue-specific models were performed by pFBA, using two
830 different strategies as applied in other plant models (Dal'Molin et al., 2010; Cunha et al.,
831 2023b) and based on *A. thaliana* experimental measures (Niemann et al., 1995). The
832 first consisted of fixing the biomass growth rate to 0.11h^{-1} and defining the minimization
833 of the photon/sucrose uptake as the objective function. The second strategy defined the
834 biomass growth rate as the objective function and fixed the photon uptake to 100
835 $\text{mmmol.gDW}^{-1}.\text{h}^{-1}$ for photosynthesis and photorespiration and the sucrose uptake to 1
836 $\text{mmmol.gDW}^{-1}.\text{h}^{-1}$ for respiration. Photorespiration was simulated by constraining the
837 carboxylation (RIBULOSE-BISPHOSPHATE-CARBOXYLASE-RXN) and oxygenation
838 (RXN-961) reactions by Rubisco with a flux ratio of 3:1 (Dal'Molin et al., 2010; Cunha et
839 al., 2023b).

840

841 *Differential Flux Analysis*

842 Differential flux analysis between the created tissue models was performed using the
843 approach of (Nanda and Ghosh, 2021). In this approach, sample fluxes for the tissue
844 models were generated using Artificial Co-ordinate Hit and Run (ACHR) sampler

845 (Bordel et al., 2010) from *CobraPy*, with a thinning factor of 100 and a sample size of
846 10000 for each model. Pairwise Kolmogorov-Smirnov tests were used to compare the
847 flux distribution of the distinct tissue models. The flux change (FC) of each reaction
848 between the two models was also calculated as shown in Equation (1), where \bar{S}_{model1}
849 and \bar{S}_{model2} represent the mean of the flux distributions for a reaction in *model1* and
850 *model2*, respectively. Reactions with an absolute value less than 0.82 (equivalent to a
851 10-fold change in flux) were considered insignificant.

852

$$FC = \frac{\bar{S}_{model1} - \bar{S}_{model2}}{|\bar{S}_{model1} + \bar{S}_{model2}|}$$

(1)

853 For reactions that are absent in a model, their flux is assumed to be zero in that model,
854 and bootstrapping is used to estimate the 95% confidence interval of their fluxes. If zero
855 is outside the interval, the reactions are considered to have differential flux in the two
856 models. In addition, the p-values of altered reactions were adjusted by a Benjamini-
857 Hochberg correction, with a significance level of 0.05. The differential pathways
858 between models were obtained using hypergeometric enrichment tests that select the
859 pathways that are over-represented due to the higher number of altered reactions and
860 not by chance.

861 T-distributed Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten and Hinton,
862 2008) was used to visually compare the sampled flux data of the different tissue
863 models. This tool is a dimensionality reduction algorithm that allows for nonlinear data
864 separation. Before applying t-SNE, the flux data was filtered, keeping only the reactions
865 with altered flux between models, and scaled to z-scores.

866

867 **Diel multi-tissue models**

868

869 *Models*

870 Multi-tissue models were created by joining the tissue-specific models and connecting
871 them by two common pools, one between stem and leaf, and the other between stem
872 and berry, based on a previous approach (de Oliveira Da'Molin et al., 2015). Transport
873 reactions between tissues and common pools were manually added when required.

874 Given that a model for the root was not developed, we assumed that the uptake of
875 minerals occurs in the stem. Exchanges of water, oxygen, and carbon dioxide were
876 allowed in all tissues, and light absorption was allowed only in the leaf model. Two multi-
877 tissue models were created, one with the berry in the green phase and the other with
878 the mature berry.

879 Additionally, diel models were created to account for light and dark phases. All reactions
880 and metabolites were duplicated for each phase, and new reactions were added to
881 allow the exchange of some metabolites between the two phases. These are called
882 storage metabolites and include the 20 amino acids, nitrate, citrate, malate, glucose,
883 sucrose, fructose, and starch, which can be produced in one phase and used in the
884 other, as previously described (Maurice Cheung et al., 2014).

885
886 *Phenotype predictions*

887 Phenotype predictions using multi-tissue diel models were also performed with pFBA
888 using the second strategy mentioned above for photorespiration conditions, but with a
889 photon uptake of 300 $\text{mmmol.gDW}^{-1}.\text{h}^{-1}$ as flux values were very low with 100
890 $\text{mmmol.gDW}^{-1}.\text{h}^{-1}$. As in other plant diel models (Maurice Cheung et al., 2014; Shaw
891 and Cheung, 2018; Cunha et al., 2023b), the nitrate uptake was constrained to a ratio of
892 3:2 in the light and dark cycle.

893

894 **Machine learning and Fluxomics**

895 *Data*

896 All samples from the RNA-Seq dataset from Fasoli et al., 2018 were used to create
897 simulated fluxomics data for grapes in the green and mature state, by using the
898 iMS7199 model and the aforementioned phenotype prediction approaches to reach flux
899 distributions. Firstly, the mean expression value of all replicates was calculated to
900 represent each biological sample, resulting in a dataset with 73 samples, 55% from
901 Cabernet Sauvignon and 45% from Pinot Noir, and the log2 expressions of the 6018
902 genes in the model. As performed before, these samples were discretized into two

903 developmental stages, green and mature, which represent the output class to be later
904 predicted by the ML models. Then, the final RNA-Seq dataset was integrated with the
905 generic *V. vinifera* model to create GSMMs representing each sample in the dataset
906 using the FASTCORE algorithm as described before. In total, 73 context
907 models were created, one per sample. The resulting sample-specific GSMMs were
908 simulated using FVA and the flux capacity (FCa) of each reaction was calculated by
909 subtracting the maximum and minimum flux obtained for each reaction while keeping
910 80% of the maximum biomass value (Equation (2)). Before running FVA, all reactions
911 were made irreversible to facilitate the interpretation of results. The reactions absent in
912 the models were considered to have a capacity of 0.

$$FCa(r) = Flux_{max}(r) - Flux_{min}(r)$$

913 *Models*

914 The analysis of fluxomics with ML was performed in Python 3.11 with Scikit-learn 1.2.2.
915 For the unsupervised analysis, the dataset was filtered to remove the reactions with the
916 same FCa across all samples using *VarianceThreshold* and scaled by *StandardScaler*.
917 t-SNE was applied to visualize the distribution of the data. For the supervised analysis,
918 the original dataset was divided into train and test sets by cross-validation with 10 folds
919 and repeated 10 times, using the *RepeatedStratifiedKfold* function. In each iteration,
920 feature selection was performed using *VarianceThreshold* and, as the number of
921 features was still high, the *SelectKBest* function was used to select the 500 most
922 relevant features based on ANOVA F-values. In addition, the resulting dataset was also
923 scaled by *StandardScaler*. Then, an ML model fitted the train data and predicted the
924 output classes for the test set. Five different ML models were tested including logistic
925 regression, K-nearest neighbors, decision trees, support vector machine, and random
926 forests. These were evaluated by different metrics, such as recall (Equation (3)),
927 precision (Equation (4)), balanced accuracy (Equation (5)), and F1 score (Equation (6)),
928 which were averaged across all train-test splits.

$$recall = \frac{TP}{TP + FN} \tag{3}$$

$$\tag{4}$$

$$\tag{5}$$

$$precision = \frac{TP}{TP + FP}$$

$$balanced\ accuracy = 0.5 * (recall + \frac{TN}{TN + FP})$$

$$F1\ score = \frac{2 * TP}{TP + 0.5 (FP + FN)}$$

929 The importance of each feature in the prediction of the output was analyzed by
930 calculating the SHAP values for each classifier. SHAP values (SHAPley Additive
931 exPlanations) are defined based on the contribution of each feature to the prediction of
932 each sample and are used to increase the interpretability of ML models. Larger absolute
933 SHAP values have a larger effect on the prediction (Lundberg et al.). The SHAP values
934 for each fold of the repeated cross-validation were calculated, and the average SHAP
935 values for each sample were calculated to give a more stable representation of the
936 feature contributions.

937

938 Conclusion

939 In this work, we reconstructed the first GSSM of *V. vinifera*. This model is based on the
940 latest *V. vinifera* genome and database knowledge, including primary and secondary
941 metabolic pathways, mainly related to flavonoids and hormone biosynthesis. The model
942 can simulate grapevine metabolism under photosynthesis, photorespiration, and
943 respiration. RNA-Seq data was integrated with this generic model to build tissue-specific
944 models for the leaf, stem, green berry, and mature berry of *V. vinifera* Cabernet
945 Sauvignon cultivar. Multi-tissue models were built by connecting the tissue-specific
946 models, and the diel cycle was introduced in the models by replicating the multi-tissue
947 model for both light and dark phases. Two diel multi-tissue GSMMs were built, one
948 using the green berry tissue and the other using the mature berry tissue. The models
949 were used to simulate the metabolic responses of grapevine to different levels of sulfate
950 and nitrate. The results indicated that with low nitrate or low sulfate, less biomass is
951 produced, and more flux is expected in the respiratory pathways, fatty acid production,
952 and secondary pathways. Conversely, with high levels of nitrate or sulfate, the maximum

953 flux of secondary reactions has decreased, as well as most primary pathways of sugar
954 metabolism. Hence, controlling the soil levels of nitrate and sulfate in specific stages of
955 development can help control the phenolic and sugar content in the grapes, which will
956 affect their quality.

957 The reconstructed metabolic models developed here can be a valuable tool for
958 analyzing and predicting the metabolic behavior of grapevine under different
959 environmental conditions and assessing its metabolic potential and fruit quality, which
960 can be important for wine production.

961 Fluxomics data were generated from GSMMs of green and mature grapes and analyzed
962 using ML techniques. The resulting models obtained very good results in predicting the
963 grape developmental stage, with accuracy, precision, recall, and F1 scores higher than
964 90%. The reactions that contributed the most to the model's predictions are associated
965 with different pathways, including MEP, threonine, nucleotide metabolism, and
966 ascorbate degradation, and presented higher fluxes in the green state. Although these
967 pathways are not the main differences between green and mature grapes found in the
968 literature, the results suggest that their fluxes are significantly different between the two
969 states.

970 A deeper understanding of plant metabolic pathways is essential to develop more robust
971 GSMMs. Additionally, the creation of larger omics datasets is crucial for developing
972 more realistic predictive ML models, enabling more advanced analyses such as the
973 identification of biomarkers for disease or environmental stress resistance. This
974 approach not only represents a novel and pioneering effort in integrating omics,
975 GSMMs, and ML in plant metabolism studies but also showcases the significant
976 potential of applying this strategy for more insightful analyses, as additional data
977 becomes available.

978

979 **Supplemental Data**

980

981 **Supplemental Material.** Technical and additional details about the methods and
982 results.

983 **Supplemental File 1.** List of the attributes for all objects in MongoDB.

984 **Supplemental File 2.** Full comparisons between the metabolic content of iMS7199 and
985 other plant models.

986 **Supplemental File 3.** Details on the definition of biomass compositions.

987 **Supplemental File 4.** Pathway content by tissue.

988 **Supplemental File 5.** pFBA phenotype predictions of each tissue GSMM.

989 **Supplemental File 6.** Full differential flux analysis results.

990 **Supplemental File 7.** pFBA phenotype predictions of the diel GSMMs.

991 **Supplemental File 8.** Effects of varying sulfate levels on the phenotype predictions of
992 the diel GSMMs.

993 **Supplemental File 9.** Effects of varying nitrate levels on the phenotype predictions of
994 the diel GSMMs.

995 **Supplemental File 10.** Zip folder with all GSMMs reconstructed in this work in the
996 Systems Biology Markup Language (SBML) format: iMS7199, leaf, stem, berry green,
997 berry mature, diel with green berry, and diel with mature berry models.

998

999 **Competing interests**

1000 No competing interest is declared.

1001

1002 **Author contributions statement**

1003 M.S. was involved in the conceptualization and writing of the original draft. M.R. and
1004 O.D. were responsible for the conceptualization, reviewing, and editing of the
1005 manuscript.

1006

1007 **Acknowledgments**

1008 The authors thank the Portuguese Foundation for Science and Technology (FCT) which
1009 supported this work under the scope of the strategic funding of UID/BIO/04469/2020
1010 unit and the PhD scholarship (SFRH/BD/144643/2019) to Marta Sampaio. Oscar Dias
1011 also acknowledges FCT for the Assistant Research contract obtained under CEEC
1012 Individual 2018 (DOI 10.54499/CEECIND/03425/2018/CP1581/CT0020).

1013

1014 **References**

1015 Antonakoudis, A., Barbosa, R., Kotidis, P., and Kontoravdi, C. (2020). The era of big data: Genome-scale
1016 modelling meets machine learning. *Comput. Struct. Biotechnol. J.* 18: 3287–3300.

1017 Bogart, E. and Myers, C.R. (2016). Multiscale metabolic modeling of C4 plants: Connecting nonlinear
1018 genome-scale models to leaf-scale metabolism in developing maize leaves. *PLoS One* 11: 1–27.

1019 Bordel, S., Agren, R., and Nielsen, J. (2010). Sampling the Solution Space in Genome-Scale Metabolic
1020 Networks Reveals Transcriptional Regulation in Key Enzymes. *PLOS Comput. Biol.* 6: e1000859.

1021 Buchfink, B., Xie, C., and Huson, D.H. (2014). Fast and sensitive protein alignment using DIAMOND. *Nat. Methods* 2014 121 12: 59–60.

1022 Caspi, R. et al. (2016). The MetaCyc database of metabolic pathways and enzymes and the BioCyc
1023 collection of pathway/genome databases. *Nucleic Acids Res.* 44: D471–D480.

1024 Chatterjee, A., Huma, B., Shaw, R., and Kundu, S. (2017). Reconstruction of *Oryza sativa indica* genome
1025 scale metabolic model and its responses to varying RuBisCO activity, light intensity, and enzymatic
1026 cost conditions. *Front. Plant Sci.* 8: 1–18.

1027 Cheng, Y.-L. et al. (2016). Grape and Wine Metabolites: Biotechnological Approaches to Improve Wine
1028 Quality. In *Intech*, p. 13.

1029 Cheung, C.Y.M., Williams, T.C.R., Poolman, M.G., Fell, D.A., Ratcliffe, R.G., and Sweetlove, L.J. (2013).
1030 A method for accounting for maintenance costs in flux balance analysis improves the prediction of
1031 plant cell metabolic phenotypes under stress conditions. *Plant J.* 75: 1050–1061.

1032 Collakova, E., Yen, J.Y., and Senger, R.S. (2012). Are we ready for genome-scale modeling in plants?
1033 *Plant Sci.* 191–192: 53–70.

1034 Considine, M.J. and Foyer, C.H. (2015). Metabolic responses to sulfur dioxide in grapevine (*Vitis vinifera*
1035 L.): Photosynthetic tissues and berries. *Front. Plant Sci.* 6: 127145.

1036 Cruz, F., Capela, J., Ferreira, E.C., Rocha, M., and Dias, O. (2024). BioISO: an objective-oriented
1037 application for assisting the curation of genome-scale metabolic models. *IEEE/ACM Trans. Comput.*
1038 *Biol. Bioinforma.* PP: 1–13.

1039 Cunha, E., Lagoa, D., Faria, J.P., Liu, F., Henry, C.S., and Dias, O. (2023a). TranSyT, an innovative
1040 framework for identifying transport systems. *Bioinformatics* 39.

1041 Cunha, E., Silva, M., Chaves, I., Demirci, H., Lagoa, D.R., Lima, D., Rocha, M., Rocha, I., and Dias, O.
1042 (2023b). The first multi-tissue genome-scale metabolic model of a woody plant highlights suberin

1044 biosynthesis pathways in *Quercus suber*. PLOS Comput. Biol. 19: e1011499.

1045 Dal'Molin, C.G. de O., Quek, L.E., Palfreyman, R.W., Brumbley, S.M., and Nielsen, L.K. (2010). AraGEM,
1046 a genome-scale reconstruction of the primary metabolic network in *Arabidopsis*. Plant Physiol. 152:
1047 579–589.

1048 Dias, O., Rocha, M., Ferreira, E.C., and Rocha, I. (2015). Reconstructing genome-scale metabolic models
1049 with merlin. Nucleic Acids Res. 43: 3899–3910.

1050 Ebrahim, A., Lerman, J.A., Palsson, B.O., and Hyduke, D.R. (2013). COBRApy: COnstraints-Based
1051 Reconstruction and Analysis for Python. BMC Syst. Biol. 7: 1–6.

1052 Fasoli, M., Richter, C.L., Zenoni, S., Bertini, E., Vitulo, N., Dal Santo, S., Dokoozlian, N., Pezzotti, M., and
1053 Tornielli, G.B. (2018). Timing and order of the molecular events marking the onset of berry ripening
1054 in grapevine. Plant Physiol. 178: 1187–1206.

1055 Feist, A.M., Herrgård, M.J., Thiele, I., Reed, J.L., and Palsson, B.Ø. (2008). Reconstruction of
1056 Biochemical Networks in Microbial Organisms. Nat. Rev. Microbiol.

1057 Ferreira, J., Vieira, V., Gomes, J., Correia, S., and Rocha, M. (2020). Troppo - A Python Framework for
1058 the Reconstruction of Context-Specific Metabolic Models. Adv. Intell. Syst. Comput. 1005: 146–153.

1059 Gauthier, P.P.G., Bligny, R., Gout, E., Mahé, A., Nogués, S., Hodges, M., and Tcherkez, G.G.B. (2010).
1060 In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent
1061 from current CO₂ assimilation in illuminated leaves of *Brassica napus*. New Phytol. 185: 988–999.

1062 Goldberg, T. et al. (2014). LocTree3 prediction of localization. Nucleic Acids Res. 42: W350.

1063 Gomes de Oliveira Dal'Molin, C. and Nielsen, L.K. (2018). Plant genome-scale reconstruction: from single
1064 cell to multi-tissue modelling and omics analyses. Curr. Opin. Biotechnol. 49: 42–48.

1065 Gu, C., Kim, G.B., Kim, W.J., Kim, H.U., and Lee, S.Y. (2019). Current status and applications of
1066 genome-scale metabolic models. Genome Biol. 20: 1–18.

1067 Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., and Nakai, K. (2007).
1068 WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35.

1069 Huang, H. and Dong, Z. (2013). Research on architecture and query performance based on distributed
1070 graph database Neo4j. 2013 3rd Int. Conf. Consum. Electron. Commun. Networks, CECNet 2013 -
1071 Proc.: 533–536.

1072 International Organisation of Vine and Wine (2023). STATE OF THE WORLD VINE AND WINE SECTOR
1073 IN 2022.

1074 Jose, B. and Abraham, S. (2017). Exploring the merits of nosql: A study based on mongodb. 2017 Int.
1075 Conf. Networks Adv. Comput. Technol. NetACT 2017: 266–271.

1076 Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG: new perspectives
1077 on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45: D353–D361.

1078 Kaul, S. et al. (2000). Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. Nat.
1079 2000 4086814 408: 796–815.

1080 Kieber, J.J. and Schaller, G.E. (2014). Cytokinins. Arabidopsis Book 12: e0168.

1081 Kim, Y., Kim, G.B., and Lee, S.Y. (2021). Machine learning applications in genome-scale metabolic
1082 modeling. Curr. Opin. Syst. Biol. 25: 42–49.

1083 Lakshmanan, M., Lim, S.H., Mohanty, B., Kim, J.K., Ha, S.H., and Lee, D.Y. (2015). Unraveling the light-
1084 specific metabolic and regulatory signatures of rice through combined in silico modeling and
1085 multiomics analysis. Plant Physiol. 169: 3002–3020.

1086 Lewis, N.E. et al. (2010). Omic data from evolved *E. coli* are consistent with computed optimal growth
1087 from genome-scale models. *Mol. Syst. Biol.* 6.

1088 Lundberg, S.M., Allen, P.G., and Lee, S.-I. A Unified Approach to Interpreting Model Predictions.

1089 Van Der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE. *J. Mach. Learn. Res.* 9: 2579–
1090 2605.

1091 Mahadevan, R. and Schilling, C.H. (2003). The effects of alternate optimal solutions in constraint-based
1092 genome-scale metabolic models. *Metab. Eng.* 5: 264–276.

1093 Massonnet, M., Fasoli, M., Tornielli, G.B., Altieri, M., Sandri, M., Zuccolotto, P., Paci, P., Gardiman, M.,
1094 Zenoni, S., and Pezzotti, M. (2017a). Ripening transcriptomic program in red and white grapevine
1095 varieties correlates with berry skin anthocyanin accumulation. *Plant Physiol.* 174: 2376–2396.

1096 Massonnet, M., Figueroa-Balderas, R., Galarneau, E.R.A., Miki, S., Lawrence, D.P., Sun, Q., Wallis,
1097 C.M., Baumgartner, K., and Cantu, D. (2017b). *Neofusicoccum parvum* colonization of the
1098 grapevine woody stem triggers asynchronous host responses at the site of infection and in the
1099 leaves. *Front. Plant Sci.* 8.

1100 Maurice Cheung, C.Y., Poolman, M.G., Fell, D.A., George Ratcliffe, R., and Sweetlove, L.J. (2014). A diel
1101 flux balance model captures interactions between light and dark metabolism during day-night cycles
1102 in C3 and crassulacean acid metabolism leaves. *Plant Physiol.* 165: 917–929.

1103 Moreira, T.B., Shaw, R., Luo, X., Ganguly, O., Kim, H.S., Coelho, L.G.F., Cheung, C.Y.M., and Williams,
1104 T.C.R. (2019). A genome-scale metabolic model of soybean (*Glycine max*) highlights metabolic
1105 fluxes in seedlings. *Plant Physiol.* 180: 1912–1929.

1106 Nanda, P. and Ghosh, A. (2021). Genome scale-differential flux analysis reveals deregulation of lung cell
1107 metabolism on SARS-CoV-2 infection. *PLoS Comput. Biol.* 17: 1–22.

1108 Niemann, G.J., Pureveen, J.B.M., Eijkel, G.B., Poorter, H., and Boon, J.J. (1995). Differential chemical
1109 allocation and plant adaptation: A Py-MS Study of 24 species differing in relative growth rate. *Plant
1110 Soil* 175: 275–289.

1111 de Oliveira Dal'Molin, C.G., Quek, L.E., Saa, P.A., and Nielsen, L.K. (2015). A multi-tissue genome-scale
1112 metabolic modeling framework for the analysis of whole plant systems. *Front. Plant Sci.* 6: 1–12.

1113 Pfau, T., Christian, N., Masakapalli, S.K., Sweetlove, L.J., Poolman, M.G., and Ebenhöh, O. (2018). The
1114 intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. *Sci.
1115 Rep.* 8: 1–11.

1116 Placzek, S., Schomburg, I., Chang, A., Jeske, L., Ulbrich, M., Tillack, J., and Schomburg, D. (2017).
1117 BRENDA in 2017: new perspectives and new tools in BRENDA. *Nucleic Acids Res.* 45: D380–
1118 D388.

1119 Poolman, M.G., Kundu, S., Shaw, R., and Fell, D.A. (2013). Responses to light intensity in a genome-
1120 scale model of rice metabolism. *Plant Physiol.* 162: 1060–1072.

1121 Poolman, M.G., Miguet, L., Sweetlove, L.J., and Fell, D.A. (2009). A genome-scale metabolic model of
1122 *Arabidopsis* and some of its properties. *Plant Physiol.* 151: 1570–1581.

1123 Rana, P., Berry, C., Ghosh, P., and Fong, S.S. (2020). Recent advances on constraint-based models by
1124 integrating machine learning. *Curr. Opin. Biotechnol.* 64: 85–91.

1125 Richelle, A., Joshi, C., and Lewis, N.E. (2019). Assessing key decisions for transcriptomic data integration
1126 in biochemical networks. *PLoS Comput. Biol.* 15: 1–18.

1127 Saad, N.M., Sekar, M., Gan, S.H., Lum, P.T., Vaijanathappa, J., and Ravi, S. (2020). Resveratrol: Latest
1128 scientific evidences of its chemical, biological activities and therapeutic potentials. *Pharmacogn. J.*
1129 12: 1779–1791.

1130 Saha, R., Suthers, P.F., and Maranas, C.D. (2011). *Zea mays* 1563: A comprehensive genome-scale
1131 metabolic reconstruction of maize metabolism. *PLoS One* 6.

1132 Sampaio, M., Rocha, M., and Dias, O. (2022). Exploring synergies between plant metabolic modelling
1133 and machine learning. *Comput. Struct. Biotechnol. J.* 20: 1885–1900.

1134 Santos, S. and Rocha, I. (2016). Estimation of biomass composition from genomic and transcriptomic
1135 information. *J. Integr. Bioinform.* 13: 285.

1136 Sayers, E.W. et al. (2022). Database resources of the national center for biotechnology information.
1137 *Nucleic Acids Res.* 50: D20–D26.

1138 Shaw, R. and Cheung, C.Y.M. (2018). A dynamic multi-tissue flux balance model captures carbon and
1139 nitrogen metabolism and optimal resource partitioning during *arabidopsis* growth. *Front. Plant Sci.* 9:
1140 1–15.

1141 Shaw, R. and Cheung, C.Y.M. (2020). Multi-tissue to whole plant metabolic modelling. *Cell. Mol. Life Sci.*
1142 77: 489–495.

1143 Shaw, R. and Maurice Cheung, C.Y. (2019). A mass and charge balanced metabolic model of *Setaria*
1144 *viridis* revealed mechanisms of proton balancing in C4 plants. *BMC Bioinformatics* 20: 1–11.

1145 Simons, M., Saha, R., Amiour, N., Kumar, A., Guillard, L., Clément, G., Miquel, M., Li, Z., Mouille, G., Lea,
1146 P.J., Hirel, B., and Maranas, C.D. (2014). Assessing the metabolic impact of nitrogen availability
1147 using a compartmentalized maize leaf genome-scale model. *Plant Physiol.* 166: 1659–1674.

1148 Singh, J., Kumar, M., Sharma, A., Pandey, G., Chae, K., and Lee, S. (2016). Phenolic Compounds of
1149 Grapes and Wines: Key Compounds and Implications in Sensory Perception.

1150 Sweetlove, L.J., Beard, K.F.M., Nunes-Nesi, A., Fernie, A.R., and Ratcliffe, R.G. (2010). Not just a circle:
1151 flux modes in the plant TCA cycle. *Trends Plant Sci.* 15: 462–470.

1152 Sweetlove, L.J. and George Ratcliffe, R. (2011). Flux-balance modeling of plant metabolism. *Front. Plant*
1153 *Sci.* 2: 1–10.

1154 The UniProt Consortium (2017). UniProt: the universal protein knowledgebase. *Nucleic Acids Res.* 45:
1155 D158.

1156 Varma, A. and Palsson, B.O. (1994). Stoichiometric flux balance models quantitatively predict growth and
1157 metabolic by-product secretion in wild-type *Escherichia coli* W3110. *Appl. Environ. Microbiol.* 60:
1158 3724–31.

1159 Velt, A. et al. (2023). An improved reference of the grapevine genome reasserts the origin of the
1160 PN40024 highly homozygous genotype. *G3 Genes|Genomes|Genetics* 13: 67.

1161 Velt, A. and Rustenholz, C. (2023). GREAT_PN40024.v4.2_beta.

1162 Vlassis, N., Pacheco, M.P., and Sauter, T. (2014). Fast Reconstruction of Compact Context-Specific
1163 Metabolic Network Models. *PLoS Comput. Biol.* 10.

1164 Wasternack, C. and Song, S. (2017). Jasmonates: biosynthesis, metabolism, and signaling by proteins
1165 activating and repressing transcription. *J. Exp. Bot.* 68: 1303–1321.

1166 Williams, T.C.R., Miguet, L., Masakapalli, S.K., Kruger, N.J., Sweetlove, L.J., and Ratcliffe, R.G. (2008).
1167 Metabolic Network Fluxes in Heterotrophic *Arabidopsis* Cells: Stability of the Flux Distribution under
1168 Different Oxygenation Conditions. *Plant Physiol.* 148: 704–718.

1169 Yuan, H., Cheung, C.Y.M., Poolman, M.G., Hilbers, P.A.J., and van Riel, N.A.W. (2016). A genome-scale
1170 metabolic network reconstruction of tomato (*Solanum lycopersicum* L.) and its application to
1171 photorespiratory metabolism. *Plant J.* 85: 289–304.

1172 Zampieri, G., Coggins, M., Valle, G., and Angione, C. (2017). A poly-omics machine-learning method to

1173 predict metabolite production in CHO cells. In 2nd International Electronic Conference on
1174 Metabolomics, p. 4993.

1175 Zhang, P. et al. (2010). Creation of a genome-wide metabolic pathway database for *populus trichocarpa*
1176 using a new approach for reconstruction and curation of metabolic pathways for plants. *Plant*
1177 *Physiol.* 153: 1479–1491.

1178

Parsed Citations

Antonakoudis, A., Barbosa, R., Kotidis, P., and Kontoravdi, C. (2020). The era of big data: Genome-scale modelling meets machine learning. *Comput. Struct. Biotechnol. J.* 18: 3287–3300.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bogart, E. and Myers, C.R. (2016). Multiscale metabolic modeling of C4 plants: Connecting nonlinear genome-scale models to leaf-scale metabolism in developing maize leaves. *PLoS One* 11: 1–27.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bordel, S., Agren, R., and Nielsen, J. (2010). Sampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes. *PLOS Comput. Biol.* 6: e1000859.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Buchfink, B., Xie, C., and Huson, D.H. (2014). Fast and sensitive protein alignment using DIAMOND. *Nat. Methods* 2014 121 12: 59–60.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Caspi, R. et al. (2016). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. *Nucleic Acids Res.* 44: D471–D480.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chatterjee, A., Huma, B., Shaw, R., and Kundu, S. (2017). Reconstruction of *Oryza sativa* indica genome scale metabolic model and its responses to varying RuBisCO activity, light intensity, and enzymatic cost conditions. *Front. Plant Sci.* 8: 1–18.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cheng, Y.-L. et al. (2016). Grape and Wine Metabolites: Biotechnological Approaches to Improve Wine Quality. In *Intech*, p. 13.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cheung, C.Y.M., Williams, T.C.R., Poolman, M.G., Fell, D.A., Ratcliffe, R.G., and Sweetlove, L.J. (2013). A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. *Plant J.* 75: 1050–1061.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Collakova, E., Yen, J.Y., and Senger, R.S. (2012). Are we ready for genome-scale modeling in plants? *Plant Sci.* 191–192: 53–70.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Considine, M.J. and Foyer, C.H. (2015). Metabolic responses to sulfur dioxide in grapevine (*Vitis vinifera* L.): Photosynthetic tissues and berries. *Front. Plant Sci.* 6: 127145.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cruz, F., Capela, J., Ferreira, E.C., Rocha, M., and Dias, O. (2024). BioISO: an objective-oriented application for assisting the curation of genome-scale metabolic models. *IEEE/ACM Trans. Comput. Biol. Bioinforma.* PP: 1–13.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cunha, E., Lagoa, D., Faria, J.P., Liu, F., Henry, C.S., and Dias, O. (2023a). TranSyT, an innovative framework for identifying transport systems. *Bioinformatics* 39.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cunha, E., Silva, M., Chaves, I., Demirci, H., Lagoa, D.R., Lima, D., Rocha, M., Rocha, I., and Dias, O. (2023b). The first multi-tissue genome-scale metabolic model of a woody plant highlights suberin biosynthesis pathways in *Quercus suber*. *PLOS Comput. Biol.* 19: e1011499.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dal'Molin, C.G. de O., Quek, L.E., Palfreyman, R.W., Brumbley, S.M., and Nielsen, L.K. (2010). AraGEM, a genome-scale reconstruction of the primary metabolic network in *Arabidopsis*. *Plant Physiol.* 152: 579–589.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dias, O., Rocha, M., Ferreira, E.C., and Rocha, I. (2015). Reconstructing genome-scale metabolic models with merlin. *Nucleic Acids Res.* 43: 3899–3910.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ebrahim, A., Lerman, J.A., Palsson, B.O., and Hyduke, D.R. (2013). COBRApy: COnstraints-Based Reconstruction and Analysis for Python. *BMC Syst. Biol.* 7: 1–6.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fasoli, M., Richter, C.L., Zenoni, S., Bertini, E., Vitulo, N., Dal Santo, S., Dokoozlian, N., Pezzotti, M., and Tornielli, G.B. (2018). Timing and order of the molecular events marking the onset of berry ripening in grapevine. *Plant Physiol.* 178: 1187–1206.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Feist, A.M., Herrgård, M.J., Thiele, I., Reed, J.L., and Palsson, B.Ø. (2008). Reconstruction of Biochemical Networks in Microbial Organisms. *Nat. Rev. Microbiol.*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ferreira, J., Vieira, V., Gomes, J., Correia, S., and Rocha, M. (2020). Troppo - A Python Framework for the Reconstruction of Context-Specific Metabolic Models. *Adv. Intell. Syst. Comput.* 1005: 146–153.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gauthier, P.P.G., Bligny, R., Gout, E., Mahé, A., Nogués, S., Hodges, M., and Tcherkez, G.G.B. (2010). In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO₂ assimilation in illuminated leaves of *Brassica napus*. *New Phytol.* 185: 988–999.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Goldberg, T. et al. (2014). LocTree3 prediction of localization. *Nucleic Acids Res.* 42: W350.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gomes de Oliveira Dal'Molin, C. and Nielsen, L.K. (2018). Plant genome-scale reconstruction: from single cell to multi-tissue modelling and omics analyses. *Curr. Opin. Biotechnol.* 49: 42–48.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gu, C., Kim, G.B., Kim, W.J., Kim, H.U., and Lee, S.Y. (2019). Current status and applications of genome-scale metabolic models. *Genome Biol.* 20: 1–18.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., and Nakai, K. (2007). WoLF PSORT: protein localization predictor. *Nucleic Acids Res.* 35.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huang, H. and Dong, Z (2013). Research on architecture and query performance based on distributed graph database Neo4j. 2013 3rd Int. Conf. Consum. Electron. Commun. Networks, CECNet 2013 - Proc.: 533–536.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

International Organisation of Vine and Wine (2023). STATE OF THE WORLD VINE AND WINE SECTOR IN 2022.

Jose, B. and Abraham, S. (2017). Exploring the merits of nosql: A study based on mongodb. 2017 Int. Conf. Networks Adv. Comput. Technol. NetACT 2017: 266–271.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res.* 45: D353–D361.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kaul, S. et al. (2000). Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. *Nat.* 2000 4086814 408: 796–815.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kieber, J.J. and Schaller, G.E. (2014). Cytokinins. *Arabidopsis Book* 12: e0168.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim, Y., Kim, G.B., and Lee, S.Y. (2021). Machine learning applications in genome-scale metabolic modeling. *Curr. Opin. Syst. Biol.* 25: 42–49.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lakshmanan, M., Lim, S.H., Mohanty, B., Kim, J.K., Ha, S.H., and Lee, D.Y. (2015). Unraveling the light-specific metabolic and regulatory signatures of rice through combined in silico modeling and multiomics analysis. *Plant Physiol.* 169: 3002–3020.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lewis, N.E. et al. (2010). Omic data from evolved *E. coli* are consistent with computed optimal growth from genome-scale models. *Mol. Syst. Biol.* 6.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lundberg, S.M., Allen, P.G., and Lee, S.-I. A Unified Approach to Interpreting Model Predictions.

Van Der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE. *J. Mach. Learn. Res.* 9: 2579–2605.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mahadevan, R. and Schilling, C.H. (2003). The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. *Metab. Eng.* 5: 264–276.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Massonnet, M., Fasoli, M., Tornielli, G.B., Altieri, M., Sandri, M., Zuccolotto, P., Paci, P., Gardiman, M., Zenoni, S., and Pezzotti, M.

(2017a). Ripening transcriptomic program in red and white grapevine varieties correlates with berry skin anthocyanin accumulation. *Plant Physiol.* 174: 2376–2396.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Massonet, M., Figueroa-Balderas, R., Galarneau, E.R.A., Miki, S., Lawrence, D.P., Sun, Q., Wallis, C.M., Baumgartner, K., and Cantu, D. (2017b). Neofusicoccum parvum colonization of the grapevine woody stem triggers asynchronous host responses at the site of infection and in the leaves. *Front. Plant Sci.* 8.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Maurice Cheung, C.Y., Poolman, M.G., Fell, D.A., George Ratcliffe, R., and Sweetlove, L.J. (2014). A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and crassulacean acid metabolism leaves. *Plant Physiol.* 165: 917–929.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moreira, T.B., Shaw, R., Luo, X., Ganguly, O., Kim, H.S., Coelho, L.G.F., Cheung, C.Y.M., and Williams, T.C.R. (2019). A genome-scale metabolic model of soybean (*Glycine max*) highlights metabolic fluxes in seedlings. *Plant Physiol.* 180: 1912–1929.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nanda, P. and Ghosh, A. (2021). Genome scale-differential flux analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection. *PLoS Comput. Biol.* 17: 1–22.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Niemann, G.J., Pureveen, J.B.M., Eijkel, G.B., Poorter, H., and Boon, J.J. (1995). Differential chemical allocation and plant adaptation: A Py-MS Study of 24 species differing in relative growth rate. *Plant Soil* 175: 275–289.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

de Oliveira Dal'Molin, C.G., Quek, L.E., Saa, P.A., and Nielsen, L.K. (2015). A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. *Front. Plant Sci.* 6: 1–12.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pfau, T., Christian, N., Masakapalli, S.K., Sweetlove, L.J., Poolman, M.G., and Ebenhöh, O. (2018). The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. *Sci. Rep.* 8: 1–11.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Placzek, S., Schomburg, I., Chang, A., Jeske, L., Ulbrich, M., Tillack, J., and Schomburg, D. (2017). BRENDA in 2017: new perspectives and new tools in BRENDA. *Nucleic Acids Res.* 45: D380–D388.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Poolman, M.G., Kundu, S., Shaw, R., and Fell, D.A (2013). Responses to light intensity in a genome-scale model of rice metabolism. *Plant Physiol.* 162: 1060–1072.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Poolman, M.G., Miguet, L., Sweetlove, L.J., and Fell, D.A (2009). A genome-scale metabolic model of *Arabidopsis* and some of its properties. *Plant Physiol.* 151: 1570–1581.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rana, P., Berry, C., Ghosh, P., and Fong, S.S. (2020). Recent advances on constraint-based models by integrating machine learning. *Curr. Opin. Biotechnol.* 64: 85–91.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Richelle, A., Joshi, C., and Lewis, N.E. (2019). Assessing key decisions for transcriptomic data integration in biochemical networks. *PLoS Comput. Biol.* 15: 1–18.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Saad, N.M., Sekar, M., Gan, S.H., Lum, P.T., Vaijanathappa, J., and Ravi, S. (2020). Resveratrol: Latest scientific evidences of its chemical, biological activities and therapeutic potentials. *Pharmacogn. J.* 12: 1779–1791.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Saha, R., Suthers, P.F., and Maranas, C.D. (2011). *Zea mays* 1rs1563: A comprehensive genome-scale metabolic reconstruction of maize metabolism. *PLoS One* 6.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sampaio, M., Rocha, M., and Dias, O. (2022). Exploring synergies between plant metabolic modelling and machine learning. *Comput. Struct. Biotechnol. J.* 20: 1885–1900.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Santos, S. and Rocha, I. (2016). Estimation of biomass composition from genomic and transcriptomic information. *J. Integr. Bioinform.* 13: 285.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sayers, E.W. et al. (2022). Database resources of the national center for biotechnology information. *Nucleic Acids Res.* 50: D20–D26.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shaw, R. and Cheung, C.Y.M. (2018). A dynamic multi-tissue flux balance model captures carbon and nitrogen metabolism and optimal resource partitioning during *arabidopsis* growth. *Front. Plant Sci.* 9: 1–15.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shaw, R. and Cheung, C.Y.M. (2020). Multi-tissue to whole plant metabolic modelling. *Cell. Mol. Life Sci.* 77: 489–495.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shaw, R. and Maurice Cheung, C.Y. (2019). A mass and charge balanced metabolic model of *Setaria viridis* revealed mechanisms of proton balancing in C4 plants. *BMC Bioinformatics* 20: 1–11.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Simons, M., Saha, R., Amiour, N., Kumar, A., Guillard, L., Clément, G., Miquel, M., Li, Z., Mouille, G., Lea, P.J., Hirel, B., and Maranas, C.D. (2014). Assessing the metabolic impact of nitrogen availability using a compartmentalized maize leaf genome-scale model. *Plant Physiol.* 166: 1659–1674.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Singh, J., Kumar, M., Sharma, A., Pandey, G., Chae, K., and Lee, S. (2016). Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception.

Sweetlove, L.J., Beard, K.F.M., Nunes-Nesi, A., Fernie, A.R., and Ratcliffe, R.G. (2010). Not just a circle: flux modes in the plant TCA cycle. *Trends Plant Sci.* 15: 462–470.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sweetlove, L.J. and George Ratcliffe, R. (2011). Flux-balance modeling of plant metabolism. *Front. Plant Sci.* 2: 1–10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

The UniProt Consortium (2017). UniProt: the universal protein knowledgebase. *Nucleic Acids Res.* 45: D158.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Varma, A. and Palsson, B.O. (1994). Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type *Escherichia coli* W3110. *Appl. Environ. Microbiol.* 60: 3724–31.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Velt, A. et al. (2023). An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype. *G3 Genes|Genomes|Genetics* 13: 67.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Velt, A. and Rustenholz, C. (2023). **GREAT_PN40024.v4.2_beta**.

Vassis, N., Pacheco, M.P., and Sauter, T. (2014). Fast Reconstruction of Compact Context-Specific Metabolic Network Models. *PLoS Comput. Biol.* 10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wasternack, C. and Song, S. (2017). Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. *J. Exp. Bot.* 68: 1303–1321.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Williams, T.C.R., Miguet, L., Masakapalli, S.K., Kruger, N.J., Sweetlove, L.J., and Ratcliffe, R.G. (2008). Metabolic Network Fluxes in Heterotrophic *Arabidopsis* Cells: Stability of the Flux Distribution under Different Oxygenation Conditions. *Plant Physiol.* 148: 704–718.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yuan, H., Cheung, C.Y.M., Poolman, M.G., Hilbers, P.A.J., and van Riel, N.A.W. (2016). A genome-scale metabolic network reconstruction of tomato (*Solanum lycopersicum* L.) and its application to photorespiratory metabolism. *Plant J.* 85: 289–304.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zampieri, G., Coggins, M., Valle, G., and Angione, C. (2017). A poly-omics machine-learning method to predict metabolite production in CHO cells. In 2nd International Electronic Conference on Metabolomics, p. 4993.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, P. et al. (2010). Creation of a genome-wide metabolic pathway database for *populus trichocarpa* using a new approach for reconstruction and curation of metabolic pathways for plants. *Plant Physiol.* 153: 1479–1491.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)