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Abstract

Vitis vinifera, also known as grapevine, is widely cultivated and commercialized,
particularly to produce wine. As wine quality is directly linked to fruit quality, studying
grapevine metabolism is important to understand the processes underlying grape
composition. Genome-scale metabolic models (GSMMs) have been used for the study
of plant metabolism and advances have been made, allowing the integration of omics
datasets with GSMMs. On the other hand, Machine learning (ML) has been used to
analyze omics data, and while the combination of ML with GSMMs has shown
promising results, it is still scarcely used to study plants. Here, the first GSSM of V.
vinifera was reconstructed and validated, comprising 7199 genes, 5399 reactions, and
5141 metabolites across 8 compartments. Tissue-specific models for stem, leaf, and
berry of the Cabernet Sauvignon cultivar were generated from the original model,
through the integration of RNA-Seq data. These models have been merged into diel
multi-tissue models to study the interactions between tissues at light and dark phases.
The potential of combining ML with GSMMs was explored by using ML to analyze the
fluxomics data generated by green and mature grape GSMMSs, helping to understand

the factors influencing grape quality at different developmental stages.
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Introduction

Vitis vinifera is one of the major fruit crops in the world. It is cultivated worldwide and
has high economic value, mainly due to wine production. In 2022, the world vineyard
surface area was estimated to be 7.3 million hectares and world wine production
reached 258 million hectoliters. In the same year, and despite inflation, wine exports
reached a value of 37.6 billion euros (International Organisation of Vine and Wine,
2023). In addition, grapes have other purposes, being marketed as fresh and dried
fruits, and used for juice production. The grape pulp contains high levels of sugars and
phenolic compounds, like flavonoids and stilbenes, with potential health benefits, such
as antioxidant and anti-inflammatory activities, and cardiovascular protection (Saad et
al., 2020), thus being currently studied for possible pharmaceutical and cosmetic
applications. Therefore, as grapevines have high economic interest and fruit quality is
intrinsically linked to metabolism, the study of grapevine metabolism is essential for
understanding its responses to different environmental conditions that may affect grape

metabolic composition.

Genome-scale metabolic models (GSMMs) represent all metabolic reactions taking
place within an organism. These models are reconstructed from the genome and allow
performing phenotype predictions under different environmental or genetic conditions
(Feist et al., 2008). Although GSMMs have been extensively used for the metabolic
engineering of prokaryotes, several GSMMs are available for plants (Gu et al., 2019),
mainly Arabidopsis thaliana (Poolman et al., 2009; Dal’'Molin et al., 2010; Saha et al.,
2011; Cheung et al., 2013; Maurice Cheung et al., 2014; de Oliveira Dal'Molin et al.,
2015; Shaw and Cheung, 2018), Zea mays (Saha et al., 2011; Simons et al., 2014;
Bogart and Myers, 2016), and Oryza sativa (Poolman et al., 2013; Lakshmanan et al.,
2015; Chatterjee et al., 2017). Currently, the reconstruction of plant GSMMs is still very
challenging and time-consuming due to the high number of gaps in genome
annotations, the large diversity of metabolites, and the extensive compartmentalization
of plant cells (Collakova et al., 2012; Sweetlove and George Ratcliffe, 2011; Sampaio et
al., 2022). Despite the obstacles, many plant GSMMs have emerged recently, and new
approaches have been developed to reconstruct more realistic models that include

different plant tissues, through the integration of omics data, as well as the day-night
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cycle (Maurice Cheung et al., 2014; Gomes de Oliveira Dal'Molin and Nielsen, 2018;
Shaw and Cheung, 2020). These models allow for differentiating the metabolism of
each tissue and analyzing the metabolic interactions between tissues and the light and

dark phases.

Despite the existence of several methods for integrating omics into GSMMs, this is still
a challenging and inefficient task. As omics datasets are complex and heterogeneous,
Machine Learning (ML) has been used to process and integrate different types of omics
to extract biological knowledge from data. Recently, ML and GSMM approaches have
been combined to improve the model's predictions and interpretability, and this strategy
has shown promising results (Zampieri et al., 2017; Rana et al., 2020; Antonakoudis et
al., 2020; Sampaio et al., 2022; Kim et al., 2021). ML can be used to extract knowledge
from the fluxomics data generated by the models or to integrate the predicted fluxomics
data with experimental omics. Thus far, these studies have mainly been applied to

bacteria, yeast, and human cells, but not to plants.

In this manuscript, we pioneer V. vinifera research with the introduction of IMS7199, the
first GSMM for the grapevine, developed using the most recent genome version,
PN40024.v4 (Velt et al., 2023). In addition to the overarching model, tissue-specific
models for the leaf, stem, and grape were developed by incorporating RNA-Seq data
from these distinct tissues. Furthermore, to capture the dynamic changes in grape
metabolism, we created two separate models representing the grape in both its green
and mature states. These tissue-specific models were then integrated to construct diel
multi-tissue GSMMs, enabling the simulation of grapevine metabolism across the day-
night cycle and facilitating the study of inter-tissue metabolic interactions. Utilizing this
comprehensive model, we investigated the metabolic responses of the grapevine under

varying concentrations of sulfate and nitrate.

Also, simulated fluxomics data were generated from GSMMs of grapes in the green and
mature state and analyzed by ML to identify the reactions that most contribute to the

model's predictions of the grape developmental phase.

Therefore, this diel multi-tissue GSMM emerges as a useful tool for exploring the

metabolic behavior of V. vinifera under various conditions, offering insights into factors
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90 influencing grape quality and phenolic content. In addition, the analysis of generated
91 data from GSMMs by ML represents the first effort to apply this strategy in the study of
92  plant metabolism.

93

94 Results and Discussion
95

96 The iplants repository

97 To collect and organize all the relevant data for the model reconstruction efforts, a
98 repository with the metabolic information of PlantCyc 14.0 (Zhang et al., 2010) and
99 MetaCyc 26.1 (Caspi et al., 2016) databases, and Universal Protein Resource (UniProt)
100 (The UniProt Consortium, 2017) sequence data was created. In total, the repository
101 includes 24333 metabolites, 205128 reactions, 3519 pathways, and 22433 enzymes,
102 72% of which have a protein sequence. The Neo4j database includes the relationships
103 between the metabolic entities, while MongoDB includes all the metadata that
104 characterizes the entities. Details on how data is organized in the iplants repository are

105 available in Supplementary Material and Supplementary File 1.

106 In addition to data from the metabolic databases, nine plant metabolic models were
107 integrated into the iplants repository, namely Arabidopsis thaliana (Poolman et al., 2009;
108 Cheung et al., 2013), Zea mays (Bogart and Myers, 2016), Oryza sativa (Poolman et
109 al., 2013; Chatterjee et al., 2017), Solanum lycopersicum (Yuan et al., 2016), Medicago
110 truncatula (Pfau et al., 2018), Glycine max (Moreira et al., 2019), and Setaria viridis
111  (Shaw and Maurice Cheung, 2019). These models have PlantCyc and MetaCyc
112 identifiers for metabolites and reactions, which facilitated the integration. In total, 3815
113  metabolites and 4197 reactions from the models were successfully integrated. However,
114 around 395 metabolites and 1498 reactions from the metabolic models did not match
115 any entry in our database and were added to it. These can include biomass and
116 transporter reactions, whose identifiers are not standardized, or entities with deprecated

117 identifiers that were already removed from the PlantCyc and MetaCyc databases.

118 iplants repository can be accessed through an application programming interface (API)
119 created with Django and Django REST framework for both database systems, using
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120 Mongoengine and Neomodel Python packages. Several views were defined to allow the
121 extraction of the data needed for the reconstruction of GSMMs and to save the data of
122 the model under reconstruction. The API included views to get all objects in the
123  repository, details of an object, and to create a new metabolic model object and link it to

124  reactions, metabolites, and enzymes in the database (link to API).

125

126  Model properties

127 A GSMM for V. vinifera was reconstructed from the PN40024.v4 genome (annotation
128 version 1) (Velt et al., 2023). DIAMOND similarity searches (Buchfink et al., 2014)
129 against iplants resulted in 10840 protein matches, representing 26% of the 41160
130 proteins in the genome, which is in line with the percentage of metabolic genes
131  described for the A. thaliana's genome (between 25-30%) (Kaul et al., 2000).

132  The reconstructed generic model, iIMS7199, includes 5399 reactions (1624 transporters
133 and 244 exchanges), and 5141 metabolites, across eight compartments: cytosol,
134  chloroplast, mitochondria, endoplasmic reticulum, peroxisome, Golgi apparatus,
135 vacuole, and extracellular space. In this model, the Gene-Protein-Reaction (GPR) rules
136 were defined using the genome protein identifiers instead of genes as genome
137 annotation was performed using protein sequences. As genes can encode more than
138 one protein, the model includes 7199 protein identifiers that represent the 6018 genes

139  of the V. vinifera genome.

140  This model is mass-balanced and can simulate growth in phototrophic and heterotrophic
141  conditions, by setting the photon and carbon dioxide or sucrose as the only energy or
142  carbon source, respectively. In addition, it requires the uptake of nitrate, phosphate,

143  sulfate, iron, magnesium, and water to produce biomass.

144  The statistics of the V. vinifera model, as well as other relevant plant models, are
145 presented in Table 1. Analyzing the table, only the Quercus suber model (Cunha et al.,
146  2023b) has more genes, reactions, and metabolites than the V. vinifera model. The
147  other models are much smaller, even the G. max model, which has a high number of

148  genes.
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149

150

151  Table 1. Statistics of the V. vinifera model and other eight plant GSMMs.

Reactions Metabolites Genes Compartments

A. thaliana (Cheung et al., 2013) 2769 2739 2857 5
Z. mays (Bogart et al., 2016) 1268 1121 2140 8
O. sativa (Chatterjee et al., 2017) 1136 1330 3602 4
S. lycopersicum (Yuan et al., 2015) 2143 1998 3410 5
M. truncatula (Pfau et al., 2018) 2909 2780 3403 8
G. max (Moreira et al., 2019) 3001 2814 6127 5
S. viridis (Shaw et al. 2019) 2473 2429 3376 5
Q. suber (Cunha et al., 2021) 6230 6481 7871 8
V. vinifera (this work) 5399 5141 7199 8

152

153  The reactions of V. vinifera were compared with those from the other models, except for
154 Q. suber which has different model identifiers. Drains, transporters, biomass pseudo-
155 reactions, and compartments were not considered, resulting in 2769 reactions of the
156  iIMS7199 model (Figure 1).

Reaction content

1342 936 1020 686

859 405 624 376
(36%) (25%) (30%) (20%) (27%) (13%) (20%)  (12%)

O.sativa 2017

. S. lycopersicum 2015 Z.mays 2016
V:vinifera o V- vinifera V. vinifera V.vinifera

1078 553
(32%) (17%)

729

1501 921
(41%) (25%) (21%)

M. truncatula 2018 = S maxi 3615 B S. viridis 2019
V.vinifera V. vinifera

1 5 7 V. vinifera

158 Figure 1. Venn diagrams comparing the reaction content of V. vinifera model with other seven plant
159  models.
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161 The G. max model shares the highest number of reactions with the V. vinifera model,
162  corresponding to around 41% of all reactions from both models. This model is followed
163 by the ones of S. viridis and A. thaliana, which share 1326 (38%) and 1342 (36%)
164  reactions with iIMS7199, respectively. The most distant model is the one from O. sativa,
165 sharing only 624 reactions (20%).

166 In total, V. vinifera has 785 reactions that are not present in any other model. These
167 reactions were analyzed to identify the associated pathways and gene annotation. The
168 pathways with more unique reactions are presented in Figure 2. Reactions without

169 pathway associations were not considered.

Pathway distribution of unigue reactions

Secondary
metabolite
biosynthesis

Fatty acid
biosynthesis

Protein
glycosylation

Fatty acid and
lipid degradation

Cholesterol
biosynthesis

Diacylsucrose
biosynthesis

B
5

60 80 100 120 140
170 Number of unique reactions

171 Figure 2. Pathway distribution of reactions included in the V. vinifera model and not in the other plant
172  models analyzed.

173

174  As shown in Figure 2, the biosynthesis of secondary metabolites is the pathway class
175 associated with more unique reactions, around 140, followed by fatty acid biosynthesis
176 (88 reactions), protein glycosylation (35 reactions), and fatty acid and lipid degradation
177 (17 reactions). These pathway classes comprise several specific pathways. Other

178  specific pathways with more than four unique reactions include cholesterol biosynthesis
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179 and diacylsucrose biosynthesis. Hence, the V. vinifera model represents a great
180 advance compared to the previous plant models, as it comprises new reactions,
181 especially for the secondary metabolism, which is often underrepresented in plant
182 models.

183  On the other hand, the other plant models include 661 secondary pathway reactions not
184  available in iIMS7199. This number can be explained by the fact that 380 reactions are
185 not associated with GPR rules in the models. Moreover, 93 are sub-reactions of others
186 that are included in the V. vinifera model. Of the 188 reactions that have GPR rules, 155
187 have a corresponding enzyme sequence in the iplants database, which had a match in
188 the DIAMOND annotation but were not the first hit for any query protein (Supplementary
189  File 2). This data is made available and may be used in the future to improve the model
190 by performing further manual curation. Regarding genome annotation, 27% of the
191 proteins that catalyze these unique reactions were annotated based on the genome of
192 A. thaliana. These proteins or reactions were probably not in metabolic databases when
193 the A. thaliana models were reconstructed, which can explain why they are missing
194 from these models. Besides A. thaliana, 12% of the unique proteins matched human
195 proteins, and around 27% were annotated based on proteins from more than 100
196 different plant species, including S. lycopersicum, Solanum tuberosum, Catharanthus

197  roseus, Petunia x hybrida, M. truncatula, G. max, and V. vinifera.

198 As A. thaliana is a reference organism for plants, there are several GSMMs for this
199 organism (Poolman et al., 2009; Dal’Molin et al., 2010; Saha et al., 2011; Cheung et al.,
200 2013; Maurice Cheung et al., 2014; de Oliveira Dal'Molin et al., 2015; Shaw and
201 Cheung, 2018) and much enzymatic and metabolic information of A. thaliana is
202 available in databases, like PlantCyc and UniProt. On the other hand, data for more
203 complex plants is scarce. Therefore, it was expected that a large percentage of V.
204  vinifera proteins would be annotated based on homologous proteins from A. thaliana.
205 However, as V. vinifera is a much more complex plant, gene annotations can be wrong
206 or missing, and the consequent validation process helps to limit these errors. In

207 addition, several proteins were similar to human proteins, which was also expected as
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208 various pathways, mainly related to lipid metabolism, are better characterized in

209 humans than in plants.

210

211  Specialized metabolic pathways

212 Secondary metabolites are economically very important as they have many relevant
213  applications. However, the pathways that produce them are very complex and diverse,
214  and the knowledge in this subject is still limited (Collakova et al., 2012). Figures Figure 3
215 and Figure 4 schematize the production of the main secondary metabolites in the model,

216  phenylpropanoids and terpenoids, respectively.
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218 Figure 3. Simplified schema of the production of the main secondary metabolites in the V. vinifera model.
219 This illustrates the phenylpropanoid pathway which starts with the amino acid phenylalanine that is
220 converted to p-Coumaryl Coenzyme A. This metabolite can be used to produce hydroxycinnamic acids,
221 and stilbenes, such as resveratrol, or to start the flavonoid biosynthesis pathway to produce different
222  types of flavonoids, such as flavonols, flavan-3-ols, and anthocyanins. Compounds are colored based on
223  the compound class they belong to.

2 acetyl Co-A pyruvate glyceraldehyde 3-phosphate
. l 5
2 ¥ o
£ B
2 mevalonic acid (MEV) methylerythritol phosphate (MEP) ;j'
i | g
=
Y J
isopentenyl diphosphate <€ » prenyl diphosphate
l —> geraniol
geranyl diphosphate —> linalool [monoterpenes (C10)
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y £ P phytosterols [ triterpenes (C30)
) gibberellins [ diterpenes (C20) |
geranylgeranyl diphosphate
carotenoids [ tetraterpenes (C40)

225  Figure 4. Simplified schema of the terpenoid biosynthesis pathway in the V. vinifera model. Isopentenyl
226  diphosphate (IPP) and prenyl diphosphate are the precursors for terpenoids and can be produced from
227  the mevalonic acid (MEV) or methylerythritol phosphate (MEP) pathways. These originate all terpenoids
228 including monoterpenes, sesquiterpenes, triterpenes, diterpenes, and tetraterpenes.

l ——> terpineol

224

229
230 Grapes are known to have a high content of phenolic compounds and different grape

231 varieties usually have different phenolic compositions, which leads to different wine
232 flavors and aromas (Singh et al., 2016). The reconstructed V. vinifera model contains
233 complete pathways for the biosynthesis of several terpenoids and phenylpropanoids,
234  which include flavonoids, such as quercetin, myricetin, kaempferol (and derivatives),

235 and anthocyanins, like malvidin and peonidin. Anthocyanins usually accumulate during
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236 grape maturation and are responsible for the grape color in red grapevine varieties,

237 being absent in white varieties (Massonnet et al., 2017a).

238 Another important group of phenylpropanoids in grapes are stilbenes, such as
239 resveratrol, which protects grapes from intense UV light. As resveratrol is an antioxidant
240 agent, it has high economic importance, being used in the pharmaceutical and cosmetic
241 industry (Saad et al., 2020). The complete pathway of resveratrol biosynthesis is
242  described and included in the model, but there are many gaps in the biosynthetic
243  pathways of resveratrol derivatives, such as viniferins, which are not included in the
244  model but are important for wine flavor and aroma. However, this model also contains
245 complete pathways for the biosynthesis of other aroma compounds, such as linalool,
246 1,3,5-trimethoxybenzene (TMB), and 3,5-dimethoxytoluene, the latter two being only

247 described for Rosa chinensis.

248 In addition, complete secondary pathways for the biosynthesis of plant hormones, such
249 as jasmonates, cytokinins, gibberellins, ethylene, and auxins, are available in the model.
250 For instance, jasmonates are known to regulate seed germination and flower and fruit
251 development, as well as to defend plants against some pathogens (Wasternack and
252  Song, 2017). Cytokinins usually control cell growth and differentiation (Kieber and
253  Schaller, 2014). Although the reconstructed GSMM does not represent the action of

254  these hormones, it can show the metabolic potential of the network to produce them.

255 Thus, the reconstructed model of V. vinifera represents an important source of
256  secondary metabolic data. Further curation is still necessary to fill the existing gaps and
257 increase the number of secondary metabolites in the model, as new knowledge on

258 these pathways becomes available.
259

260 Tissue-specific models
261  Tissue-specific models were reconstructed to represent the metabolic differences

262 between tissues. This was accomplished by integrating RNA-Seq data with the
263  iMS7199 model.

264

11
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265 RNA-Seq Data

266 The RNA-Seq data of V. vinifera Cabernet Sauvignon was retrieved from the GREAT
267 database (Velt and Rustenholz, 2023) for leaf, stem, and berry. In total, the RNA-Seq
268 dataset contained the expression of the 6018 genes (matching the 7199 proteins in the
269 model) across 162 samples. The time-point metadata for berry samples was discretized
270 into two developmental stages, green and mature. The sample distribution and the T-
271  distributed Stochastic Neighbor Embedding (t-SNE) for the RNA-Seq data are shown in
272  Figure 5.

A B t-SNE projections of RNASeq data

berry_mature

eaf

berry_green

factor
® stem

stem = ® leaf
@ bemy_green
@ berry_mature

273

274  Figure 5.RNA-Seq data for all tissues: leaf, stem, and berry in a green and mature state. A. Distribution of
275  samples across the different tissues. B. t-SNE visualization of the RNA-Seq data for all tissues: leaf
276  (orange dots), stem (blue dots), and berry in green (green dots) and mature (red dots) states. Data was
277  retrieved from the GREAT database, including the expression of the V. vinifera genes in the model across
278 162 samples.

279
280 Mature berry is the most represented tissue in the dataset with 46% of the samples (75

281 samples), 28% of the samples are from green berries (45 samples), while stem and leaf

282  represent 13% of the samples each (21 samples).

283  Analyzing the t-SNE plot, the data grouped well by tissue: leaf samples are the most

284  well-grouped, followed by stem samples, while berry samples are more scattered.
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285 Green berry samples partially overlap mature berry samples, and some separation
286  exists between some mature berry samples. This was expected as these samples were
287 retrieved every week from fruit set to maturity. Thus, samples a week before and a week

288  after veraison, which is when the maturation phase starts, may be similar in metabolism.
289  Biomass composition

290 The biomass composition of the different tissues is represented in Figure 6. Details on
291 biomass compositions are described in the Materials and Methods section and
292  Supplementary File 3. The biomass of leaf and green berry was considered to be the
293 same, and it was used as a reference to define the biomass composition of the other
294  tissues. According to other plant models (Q. suber (Cunha et al., 2023b) and A. thaliana
295 (de Oliveira Dal'Molin et al., 2015)), the stem is expected to have a higher cell wall and
296 carbohydrate content and lower protein and lipid levels. According to the literature, the
297 mature berry is expected to have higher sugar and amino acid content (Cheng et al.,
298 2016). Therefore, in the model, leaf and green berries present high levels of
299 carbohydrates and proteins, the stem is mainly composed of carbohydrates and cell
300 wall precursors, and mature berries present high amounts of sugars and proteins but

301 fewer organic acids.

leaf and green berry stem mature berry

= Protein = Lipids = DNA = RNA = Carbohydrates = Cofactor = Cell wall
302

303 Figure 6. Biomass composition of the leaf and green berry, stem, and mature berry. These values were
304  adapted from available plant models and literature.

305
306 Models
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307 The FASTCORE algorithm (Vlassis et al., 2014) was used to create tissue-specific
308 models (see Materials and Methods). The statistics of the reconstructed generic and
309 tissue-specific models are shown in Table 2. All models have the same 244 exchange

310 reactions.

311 The number of reactions is similar across all tissue-specific models. Even so, the
312 mature berry model is the smallest one, while the leaf model is the largest, having a
313  higher number of reactions in the chloroplast, as well as more unique reactions. At the
314 pathway level, no significant differences were found between models (Supplementary
315 File 4).

316  Table 2. Statistics of the generic and tissue-specific GSMMs of V. vinifera.

Generic model Leaf Stem  Green berry Mature berry

Genes 7199 6701 6602 6657 6312
Metabolites 5141 4456 4310 4399 4181
Reactions 5399 4510 4384 4495 4272
Transport 1624 1295 1315 1324 1305
Unique reactions - 124 97 26 19
Metabolic reactions 3531 2971 2825 2927 2723
Cytosol 1434 1154 1092 1113 1059
Chloroplast 793 745 701 725 684
Mitochondria 335 313 318 320 314
Endoplasmic 568 410 370 417 353
reticulum

Peroxisome 165 158 152 153 151
Vacuole 52 49 47 48 32
Golgi complex 54 41 41 50 50
Extracellular 130 101 104 101 80

317

318 The tissue-specific models were simulated using parsimonious Flux Balance Analysis
319 (pFBA) (Lewis et al., 2010), following the first strategy defined in the Materials and
320 Methods section of keeping biomass rate at 0.11 h™ and minimizing the uptake of

321 photons and sucrose.

322 A summary of the phenotype predictions is presented in Table 3 and full results are
323 available in Supplementary file 5. The leaf tissue was simulated for all processes:

324  photosynthesis, photorespiration, and respiration, while the other tissues were
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simulated for respiration only. Photosynthesis can also occur in green berries, but not at
significant levels. Hence, in this analysis, the leaf was considered to be the only

photosynthetic tissue.

Table 3. Summary of the net conversions obtained from the phenotype predictions of the tissue-specific
models of leaf, stem, green berry, and mature berry for photosynthesis, photorespiration (leaf only), and

respiration, minimizing the uptake of photons or sucrose and fixing biomass rate at 0.11h™. This table
shows the metabolites that are consumed and produced by the models. The fluxes of the metabolites are
in mmol.gDW".h™ while biomass fluxes are in h™.
photosynthesis | photorespiration respiration

. leaf stem berry berry

metabolite green | mature
Uptake
SUCROSE - - 0.61 0.49 0.61 0.72
Light 32.09 43.76 - - - -
CARBON-DIOXIDE 4.41 4.41 - - - -
NITRATE 0.37 0.37 0.37 - 0.37 -
OXYGEN-
MOLECULE - - 1.74 1.71 1.74 1.84
PROTON 6.64 6.64 3.73 4.01 3.73 3.71
SULFATE 0.02 0.02 0.02 0.01 0.02 0.02
WATER 3.21 3.21 - 0.11 - -
Production

OXYGEN-
MOLECULE 5.54 5.54 - - - -
NITRATE - - - - - 0.70
AMMONIUM - - - 0.04 - -
HCO3 - - 2.86 1.98 2.86 3.47
PPI 0.05 0.05 - - - -
Pi - - 0.09 0.21 0.09 -
WATER - - 0.55 - 0.55 1.25
e-Biomass 0.11 0.11 0.11 0.11 0.11 0.11

In photosynthesis and photorespiration, the leaf uptakes light, carbon dioxide, water,
nitrate, sulfate, and protons to produce biomass, and releases oxygen and phosphate,
as expected. Iron Il and magnesium (Mg) are also captured but with very low fluxes
(less than 1e-5 mmmol.gDW"'.h™"). Light

uptake is significantly higher in
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339  photorespiration than in photosynthesis (43.75 mmmol.gDW™".h™" vs 32.09 mmmol.gDW
340 1.h'1), which was also expected as the latter process is known to be more efficient for
341  energy production. In both cases, the pathways of the primary metabolism are the most
342  active: photosynthesis, Calvin cycle, glycolysis, starch and amino acid biosynthesis, and
343 oxidative phosphorylation. Also, the photorespiration pathway is only active under

344  photorespiration conditions.

345 During photosynthetic conditions, the tricarboxylic acid (TCA) cycle is incomplete: citrate
346 is converted to isocitrate, and this is converted to a-ketoglutarate, which is used for the
347  biosynthesis of glutamate and glutamine instead of being used to produce succinate.
348 Fumarate is produced from arginine biosynthesis, instead of being produced from
349 succinate, and enters the cycle. This result is consistent with the results observed for
350 other plant models under light conditions (Maurice Cheung et al., 2014; Cunha et al.,
351 2023b) and with isotope labeling experiments, which stated that a cyclic TCA only
352 happens when the demand for ATP is high. The photosynthetic ATP production reduces
353 that demand (Sweetlove et al., 2010; Williams et al., 2008).

354 In respiration, the leaf uptakes sucrose, nitrate, sulfate, oxygen, and protons, and
355 releases hydrogencarbonate, water, and phosphate. The main active pathways include
356 glycolysis, the TCA cycle, starch and amino acid biosynthesis, and oxidative
357 phosphorylation. The respiration results were similar across tissues. The stem uptakes
358 water and releases ammonium, and the mature berry has a slightly higher demand for

359 sucrose to produce the same biomass flux.

360 In summary, the integration of omics data into the generic GSMM created tissue-specific
361 models that try to reflect the differences in gene expression between tissues. However,
362 the number of reactions and the phenotype predictions are not very different between
363 models; thus, a complementary analysis based on differential flux predictions was

364 performed to understand the metabolic differences between the tissues.
365

366  Differential flux analysis
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367 The ACHR sampler (Bordel et al., 2010) was used to generate 10000 sample fluxes for
368 all reactions from the different tissue-specific models. Then, these data were used to
369 identify the reactions with differential fluxes between models (see Materials and
370 Methods). In total, 764 reactions were found to have altered fluxes between at least two
371 models. The sampled flux data is shown in the t-SNE of Figure 7.

t-SNE of reaction fluxes

berry_green
berry_mature

100

tsne 2
o

&l

0%
&%

-100

-100 -50 0 5 100

372 tsne 1

373  Figure 7. t-SNE visualization of the sampled reaction fluxes of the tissue-specific models. Data was
374  generated by the ACHR sampler, filtered by the reactions with differential flux between models, and
375  scaled. Green dots represent the reaction fluxes from the green berry model, red dots the mature berry,
376  orange dots the leaf, and blue dots the stem.

377
378 As observed previously, despite the higher number of samples, t-SNE was able to

379 separate well the fluxes from the different tissues as no overlap is evident between
380 samples of different tissues. In addition, there is no group where flux samples group
381 better nor are more separated from the other groups. These results are not fully in line
382  with those observed for the expression data: leaf flux samples do not appear to group

383  better than the samples from the other tissues, and there is no evident overlap between
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384 green and mature berry samples. This may be because only reactions with differential
385 flux between at least two tissue models were considered in the analysis. Overall, flux

386 data seems to separate the tissues better than gene expression data.

387 Hypergeometric enrichment tests were used to identify the pathways that presented
388 significantly differential flux between each pair of models. These results are available in
389 the Supplementary File 6. Analyzing the results, it was clear that smaller pathways were
390 not selected even when only one reaction was not identified as having differential flux.
391 Therefore, this method seems to be more suitable for analyzing pathways with a large
392 number of reactions. For this reason, the complete list of reactions with differential flux

393 between the models was also analyzed.

394 Comparing the green and mature berry models, reactions from glycolysis, TCA cycle,
395 and related to nucleotide biosynthesis were identified as having differential flux. In
396 addition, anthocyanin biosynthesis exhibited more flux in the mature berry, as well as
397 some reactions involved in the biosynthesis of quercetin and derivatives. This was
398 expected as the mature berry has anthocyanins and a higher content of sugars in its

399 biomass composition while demanding a lower content of nucleotides.

400 Comparisons between the other models are available in Supplementary Material. In
401 summary, it was expected that the primary metabolic pathways would be identified as
402  having differential flux between tissues, as tissue models have different demands for
403 biomass precursors, and produce energy by different processes: the leaf performs
404  photosynthesis, while the others perform aerobic respiration. Besides these, no relevant

405 pathways were found to characterize the specific metabolism of each tissue.
406

407  Diel multi-tissue models
408 Diel multi-tissue models were created to analyze the metabolic interactions between the

409 leaf, stem, and berry of V. vinifera in the light (day) and dark (night) phases of a diel
410 cycle. Two models were created, one using the green berry tissue and the other using
411 the mature berry. The resulting diel multi-tissue models include 32391 and 31999

412  reactions, and 29064 and 28710 metabolites for green and mature berries, respectively.
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413  The structure of the multi-tissue diel models is schematized in Figure 8, showing the

414  different tissues, the diel phases, and the connections between them.

x
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416 Figure 8. Schematic representation of the reconstructed diel multi-tissue models of V. vinifera, including
417 the leaf, stem, and berry tissues and the common pools 1 and 2 in both light and dark phases. Photon
418 uptake was allowed through the leaf in the light phase while mineral nutrients (nitrate, sulfate, phosphate,
419 iron, magnesium) were allowed through the stem in both phases. Exchanges of carbon dioxide, oxygen,
420 and water were allowed in all tissues and phases. Starch, glucose, sucrose, fructose, malate, fumarate,
421 citrate, and nitrate were allowed to accumulate in the light and dark phases (dashed rectangle between
422  phases). Amino acids can be stored in the light and used in the dark. Exchanges of amino acids, sucrose,
423  and minerals were allowed between tissues through common pools.

424
425 pFBA was used to simulate the models, as described in the Materials and Methods

426  section for photorespiration conditions. The phenotype predictions are available in the

427  Supplementary File 7. A summary of the results is presented in Table 4 and the fluxes
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428 for the storage metabolites between light and dark phases are shown in Tables Table 5

429 and S1, for green and mature berries, respectively.

430

431 Table 4. Summary of the phenotype predictions for the diel multi-tissue models of green and mature
432 berries under photorespiration with biomass maximization as objective function and fixing the photon
433 uptake to 300 mmol.gDW’1.h'1. This table shows the metabolites that are consumed and produced by the
434  models. The fluxes of the metabolites are in mmol.gDW'.h™" while biomass fluxes are in h™.

photorespiration
metabolite green mature
uptake
Light__light 300.000 300.000
NITRATE__light 1.147 1.589
NITRATE__dark 0.764 1.059
OXYGEN-MOLECULE_dark 5.999 5.818
PROTON_light 26.330 27.210
PROTON_dark 16.790 16.020
SULFATE_light 0.098 0.112
SULFATE_dark 0.002 0.001
WATER_light 31.070 29.770
CARBON-DIOXIDE_light 35.830 34.920
production
OXYGEN-MOLECULE_light 39.810 40.84
WATER_dark 1.455 2.788
CARBON-DIOXIDE_dark 0.000 0.000
HCO3_light 2.995 2.956
HCO3_dark 5.602 4.475
Pi_light 0.527 0.384
Pi_dark 0.527 0.384
total biomass 0.149 0.142

435

436  Significant differences were found between the light and dark phases, mainly in the leaf,
437  as photosynthesis and photorespiration occur in this tissue. The light phase starts with
438 photosynthesis light reactions and carbon dioxide fixation through the Calvin cycle in the
439 leaf. The resulting carbohydrates are then used to produce all biomass precursors.
440  Starch, sucrose, malate, and some amino acids are stored to be used in the leaf during
441 the dark phase. At night, the active pathways include aerobic respiration, starch

442  degradation, glycolysis, pentose phosphate, and citrate biosynthesis through the TCA
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443 cycle. Sucrose was expected to be produced at night but instead, the model uses
444  fructose 6-phosphate from starch degradation to start glycolysis. The sucrose
445  requirements for biomass are fulfilled by accumulating very small quantities of sucrose
446  between light and dark phases (flux value less than 0.02 mmol.gDW™'.h™). This is an
447  artifact as the model finds sucrose transport to the dark phase less costly than
448  producing it. However, sucrose production at night can be assured by forcing flux in the
449  respective reactions. In addition, starch is the main carbon compound stored in the light,
450 and it is degraded in the dark phase to produce energy. This was expected as less
451 energy is needed to mobilize plastidic starch reserves than vacuolar sucrose (Maurice
452 Cheung et al., 2014).

453  Table 5. Fluxes for the metabolites stored between light and dark phases in the diel multi-tissue model
454  with green berry. Positive fluxes indicate that the metabolites are stored in the light phase to be used in
455 the dark while the metabolites with negative fluxes are stored in the dark to be used during the day. The
456  fluxes are in mmol.gDW™*.h™.

reaction flux

CIT__vacu_leaf_light_dark_storage -1.354

CYS__ cyto_leaf light dark storage 0.009

ILE__ cyto_leaf light_dark_storage 0.025

MAL__ vacu_leaf light_dark_storage 1.168

leaf MET__ cyto_leaf light_dark_storage 0.011
NITRATE__ vacu_leaf light_dark_storage -0.020
PRO__cyto_leaf_light_dark_storage 0.360
Starch__chlo_leaf light_dark_storage 0.374
SUCROSE__ vacu_leaf light dark storage 0.020
THR___cyto_leaf_light_dark_storage 0.051
CIT__vacu_stem_light_dark_storage -0.261
CYS__cyto_stem_light_dark_storage 0.003

ILE_ cyto_stem_light_dark storage 0.009

stem MAL__vacu_stem_light _dark_storage 0.060
MET__cyto_stem_light_dark_storage 0.015
NITRATE__ vacu_stem_light_dark _storage -0.745
PRO__cyto_stem_light_dark_storage 0.276
Starch___chlo_stem_light_dark_storage 0.009
CYS__cyto_berry_light_dark_storage 0.009

berry ILE__cyto_berry_light_dark_storage 0.025
PRO__cyto_berry light dark_storage 0.162
Starch___chlo_berry_light_dark_storage 0.013
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457

458 Then, the citrate produced at night is stored in the vacuole to be used during the day,
459  entering the TCA cycle. Nitrate is also transported from the dark to the light to support
460 nitrogen assimilation, which was predicted to occur only during the day. These results
461 were confirmed by experimental evidence and observed in other plant models (Maurice
462 Cheung et al., 2014; Cunha et al., 2023b; Gauthier et al., 2010)

463 However, the entire TCA cycle was expected to occur in the dark phase. This does not
464  happen in the leaf, as all citrate produced at night is stored in vacuoles to be used
465 during the day. a-ketoglutarate is produced from the degradation of amino acids like
466 glutamate and enters the cycle, which is complete until citrate production. The citrate
467 accumulated, besides feeding the TCA cycle in the light phase, is used for the
468  biosynthesis of Acetyl Co-A during the day, which is then used for lipid production.
469 Therefore, the model finds it more efficient to store more citrate to be used during the

470 day than to complete the TCA cycle in the leaf at night.

471  Ammonium is provided by the stem and transported to the leaf, where it is used for
472 amino acid biosynthesis. In addition, phosphate, sulfate, pyruvate, formate, and
473 glutamate are imported from the stem through common pool 1 in the light and dark

474  phases to feed amino acid and citrate biosynthesis.

475  On the other hand, sugars and amino acids produced in the leaf are transported to the
476  stem. The active pathways in the stem during the day have much lower fluxes than in
477 the leaf. These include aerobic respiration, sucrose degradation, glycolysis, starch
478  biosynthesis, pentose phosphate pathway, amino acid, and nucleotide biosynthesis, and

479  degradation of beta-alanine and uracil.

480 The leaf and stem metabolisms in the dark phase are similar, and the same metabolites
481 are stored between the light and dark phases. Also, in the stem, the TCA cycle is
482  complete during the night, as expected, but a high percentage of the produced citrate is
483  still stored (around 59%). The berry metabolism is very similar to the stem metabolism,
484  but the reaction fluxes are even lower, except for the reactions related to folate

485  biosynthesis. Formate and pyruvate are produced here and transported to the stem
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486  through common pool 2 to be further transported from the stem to the leaf to be used for
487 amino acid biosynthesis. Only starch and amino acids are exchanged in the berry

488  between light and dark phases.

489  No significant differences were found in the phenotype predictions between green and
490 mature berries. The total biomass rate is slightly higher in the green berry model (0.149
491  h™") than in the mature one (0.142 h™"), and generally, the photosynthetic pathways and
492  those related to cellular respiration have lower flux in the mature berry. The pathways
493 related to secondary metabolite biosynthesis, mainly anthocyanins, have flux in the
494  mature and not in the green berry, as expected, but these fluxes are very low; thus, no

495  major differences were observed in the primary metabolism.
496
497  Sulfate Assimilation

498  Sulfur is an important nutrient taken up by plants from the soil in the form of sulfate, and
499 it is the key element of the amino acids cysteine and methionine. Thus, a major part of
500 sulfate is used for protein biosynthesis. Sulfur is also a component of glutathione, which
501 is an important antioxidant agent, and S-adenosyl methionine and coenzyme A, which
502 are cofactors for several enzymes. Elemental sulfur (S°) is the oldest pesticide applied
503 to grapevines and it is still widely used nowadays, being particularly effective against
504 powdery mildew disease, one of the most common diseases affecting grapevines that is
505 caused by the fungus Erysiphe necator. In addition, sulfur dioxide (SO,) is often used as
506 a conservative of table grapes or in winemaking to prevent oxidation and microbial

507 contamination.

508 Plant exposure to high sulfur levels can lead to the accumulation of sulfur-derived
509 compounds or affect the metabolism of phenolic compounds, which can change the
510 flavor, aroma, and texture of grapes and wine (Cheng et al., 2016; Considine and Foyer,
511  2015). It was observed that residual sulfur on berries can lead to the formation of
512 undesirable flavors, such as hydrogen sulfide (H.S), during wine fermentation
513 (Considine and Foyer, 2015).
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514 V. vinifera diel multi-tissue models were simulated to assess the effect of different
515 sulfate concentrations on grapevine metabolism. Flux Variability Analysis (FVA) was
516 used to get the possible range of reaction fluxes while keeping at least 80% of the
517 maximum total biomass and fixing a photon uptake of 300 mmmol.gDW™'.h™. Two
518 different flux values for sulfate uptake in the light phase were tested, 0.01 and 10
519 mmmol.gDW".h™". The choice of these values was arbitrary, but the goal was to have
520 one value above and one below the unrestricted sulfate uptake flux (Table 4). Similar
521 results were obtained for the multi-tissue models with green and mature berries. Thus,
522 only the results for the green multi-tissue are described. The full results are available in

523  Supplementary File 8 and detailed in Supplementary Material.

524  With high sulfate (10 mmmol.gDW™'.h"), the maximum flux for biomass production
525 decreased from 0.149 to 0.138 h™'. Similarly, the production of all biomass components

526 also decreased as well as the flux for primary and secondary metabolism (Figure 9).
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528  Figure 9. Simplified schema of the main metabolic pathways in the model affected by varying sulfate
529 levels. Pathways with increased maximum flux under low sulfate conditions are highlighted with a thick
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530 blue arrow while pathways with increased flux under high sulfate conditions are highlighted with a thick
531 yellow arrow. Pathways with decreased flux in both conditions are represented by a thin gray arrow.

532

533 As expected, the maximum fluxes of the reactions involved in sulfate assimilation and
534  oxidation, and glutathione biosynthesis have increased. Surprisingly, in the model, the
535 biosynthesis of cysteine and methionine decreased with high sulfate levels. During
536 sulfate reduction, the reaction that produces H,S has a higher maximum flux but the
537 reaction that uses it to produce cysteine has a lower flux, which leads to a big increase
538 in the flux of the H,S exchange reaction (Figure 9). This could mean that when plants
539 are exposed to high sulfur levels, they try to adapt to these conditions by adjusting their
540 metabolism, leading to the accumulation of H,S or other sulfur compounds that can alter

541 the flavor and aroma of the grapes.

542 When plants are under a sulfate deficiency, the production of biomass and all its
543 components also decreases. For a sulfate uptake of 0.01 mmmol.gDW™.h?, the
544  maximum production of biomass greatly decreased from 0.149 to 0.018 h™'. Hence, the
545 plant has an excess of carbon skeletons, which are not being used for protein
546  biosynthesis and are available for the biosynthesis of secondary metabolites, increasing
547  the available flux for these pathways. Therefore, there was an increase in the flux of
548 primary pathways, such as sucrose and starch biosynthesis and degradation,
549 gluconeogenesis, and glycolysis, as well as in the pathways responsible for producing
550 secondary metabolites, plant hormones, and amino acids that are precursors of
551 secondary compounds, like phenylalanine (Figure 9). For instance, the maximum flux
552 for resveratrol synthase reaction during the day increased from 0.41 to 1.75
553 mmmol.gDW™.h™. In addition, there was a great increase in the maximum flux for the
554  storage of all amino acids, except for cysteine and methionine. Thus, sulfur levels in the
555 soil can greatly influence grapevine metabolism and affect the flavor and aroma of
556 grapes by sulfide or sulfur-compound accumulation or changes in the phenolic content

557 in grapes.

558 The same approach was applied to assess the effect of different nitrate concentrations
559 in the V. vinifera model and similar patterns were observed. The full results are available

560 in Supplementary File 9 and described in Supplementary Material.
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561

562 Machine Learning and Fluxomics
563 The potential of using ML to analyze fluxomics data generated by metabolic models was

564 explored. As a significant number of samples is required to train good predictive ML
565 models, the idea of applying ML to fluxomics data is to study the relationships between
566 variables and their impact on the output class. With this in mind, 73 context-specific
567 GSMMs were created by integrating RNA-Seq data from grapes in different
568 developmental stages. Simulated fluxomics data was then obtained from each GSMM
569 as described in Materials and Methods. In this case, the output class to be predicted by

570 the models is the grape developmental phase, green or mature.

571  First, data was preprocessed and explored using unsupervised methods, starting with t-
572  SNE for data visualization. Before applying the t-SNE, the reactions with the same value
573 in all samples were removed, which greatly reduced the dataset from 8632 to 2322

574  features.

575 The results of the t-SNE are plotted in Figure 10. A clear separation between the two
576 states is shown as all green samples are located at the top of the plot while most
577 mature samples are at the bottom. However, six mature samples were grouped with the
578 green ones. These comprise Cabernet Sauvignon samples from time points 5 and 6
579 and Pinot Noir samples from time point 5. As veraison is expected to occur between
580 time points 3 and 4, these results indicate that not many differences exist at the
581 fluxomics level between green and early mature samples. Even so, fluxomics seems to

582  distinguish well the remaining green and mature samples.
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t-SNE projections of fluxomics data
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584  Figure 10. t-SNE visualization of the fluxomics data obtained from the 73 context-specific GSMMs.
585  Samples are colored by the grape developmental stage.

586
587  For the supervised analysis, five different ML model architectures were applied including

588 logistic regression (LR), K-nearest neighbors (KNN), decision trees (DT), support vector
589 machine (SVM), and random forests (RF). These ML models were evaluated using
590 repeated stratified cross-validation with 10 folds and 10 repeats. The average

591 evaluation results are shown in Table 6.

592 Table 6. Evaluation results of the ML models for the metrics balanced accuracy, precision, recall, and F1
593  score.

LR KNN DT SVM RF
BALANCED ACCURACY 0.96 0.95 096 0.93 0.97

PRECISION 0.97 0.96 0.98 0.96 0.98
RECALL 0.96 0.98 0.95 0.94 0.97
F1 SCORE 0.96 0.97 0.96 0.94 0.97

594

595 According to these results, the models are performing well in predicting the grape
596 developmental stage with this fluxomics dataset. The model's performances across the

597 different folds are robust, indicating that the models can learn meaningful patterns in the
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data and handle data variations well. Overall, RF obtained higher values for all metrics,

while SVM presented the worst performance. Despite the results being good and the

models being able to generalize correctly on the test set of each fold, the dataset is very

small (73 samples), which is a common problem when working with omics data. Larger

datasets are needed to create better predictive models and draw more conclusions from

the data. Nevertheless, these models represent a good start for understanding which

reactions contribute most to the model's prediction. Hence, SHAP values (Lundberg et

al.) were calculated for the two best models, RF and KNN, and the most contributing

reactions are shown in Figure 11 for RF. The KNN results are described in

Supplementary Material.

Figure 11.
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613 Overall, when the reactions presented high flux capacity (FCa) values, they had
614 negative SHAP values, leading the model to predict the green state, while with lower
615 FCa they exhibited higher positive SHAP values, leading the model to predict the
616 mature state. Hence, all the reactions identified here presented an average FCa value

617 higher in the green than in the mature grapes.

618 For the RF model, RXN0-882 in the chloroplast is the reaction that most contributes to
619 the predictions. Similarly, high fluxes of this reaction have negative SHAP values
620 (around -0.15), classifying the samples as green, while lower fluxes have positive SHAP
621 values (close to 0.10), classifying the samples as mature. There are some exceptions to
622 this trend, such as the chloroplastic THREONINE-ALDOLASE-RXN and THRESYN-
623 RXN reactions that show positive SHAP values when presenting high flux, indicating
624 that samples classified as mature by the models can also have high fluxes in these

625 reactions.

626 Of the 20 reactions identified for each model, 10 have a high impact on both models,
627 indicating that the results are reliable and robust and that these features are important
628 for predicting the output. Most of these reactions are involved in the methylerythritol
629 phosphate (MEP) pathway, which is responsible for the biosynthesis of the terpenoid
630 precursors (Figure 4), threonine degradation into glycine, and the transport of
631 glycerides. The remaining reactions identified only with the RF model are involved in the

632  biosynthesis of nucleotides, 4-aminobenzoate, and threonine.

633 The accumulation of terpenoids in grapes typically starts before veraison, which can
634 explain why the reactions associated with the biosynthesis of terpenoid precursors had
635 higher FCa in the green state. However, terpenoid biosynthesis intensifies after
636  veraison, which is not observed in the fluxes of these reactions. Fasoli et al., 2018 have
637 also identified terpene metabolism as a negative biomarker for the onset of ripening. In
638 addition, the abscisic acid (ABA) signaling is increased at veraison, and ABA is derived
639 from carotenoids, whose biosynthesis starts with the MEP pathway. Thus, there is
640 strong evidence that genes or reactions from the MEP pathway could be used as

641  biomarkers for the onset of ripening.
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642 In the green phase, as grapes are rapidly growing, the metabolism of amino acids,
643 nucleotides, and lipids is expected to be more active than in the mature phase. 4-
644 aminobenzoate is a precursor for the biosynthesis of various metabolites, such as
645 tetrahydrofolates, which are involved in several processes like photorespiration, amino
646 acid metabolism, and protein biosynthesis. These pathways are also expected to be
647 more active in the green phase. This fact may explain why the reactions related to these
648 pathways are important for the model's predictions. However, it is not clear why
649 threonine metabolism is more important for the model than the metabolism of the other
650 amino acids. Nevertheless, the models presented good predictions, associating high
651 fluxes of these reactions to predict the green state and low fluxes to predict the mature
652 state.

653

654 Materials and methods
655

656 Metabolic data source

657 The metabolic information of PlantCyc 14.0 (Zhang et al.,, 2010) and MetaCyc 26.1
658 (Caspi et al., 2016) databases was saved and organized in a repository named iplants,
659 using Neo4j (Huang and Dong, 2013) and MongoDB (Jose and Abraham, 2017)
660 database management systems. These NoSQL databases do not store data in
661 relational tables, having instead a more flexible schema. Neo4j uses a graph structure,
662 while MongoDB uses a document structure to represent data. The implementation and
663 ~management of the databases were performed with Python 3.8, using the Neomodel
664 package, an object graph mapper for Neo4j, and Mongoengine, an object document
665 mapper for MongoDB. The Neo4j database saved the connections between
666 metabolites, reactions, enzymes, genes, pathways, organisms, and models, while
667 MongoDB stored metadata for all Neo4dj entities. UniProt (The UniProt Consortium,
668 2017) data for enzymes were also collected when available, and added to MongoDB,

669 including protein function, localization, sequence, and annotation status.

670 In addition, nine plant metabolic models of different species were integrated into the

671 repository, comprising A. thaliana, O. sativa, M. truncatula, S. viridis, G. max, and S.
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672 lycopersicum. This integration involved matching the iplants entry identifier with the
673 identifier in the models and connecting the model object with the associated objects in
674 the database.

675 Model Reconstruction
676  The reconstruction of the GSMM of V. vinifera was based on the PN40024.v4 genome

677 and the PN40024.v4.1 annotation version, which includes 35922 genes and 41160
678 proteins (Velt et al.,, 2023). All the main steps and analyses were performed using
679 Python 3.8 and COBRApy version 0.25 (Ebrahim et al., 2013) and are schematized in
680 Figure 12.
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682  Figure 12. The main steps of the V. vinifera GSMM reconstruction. Genome annotation is performed
683 using DIAMOND with the protein sequences from the database and V. vinifera proteins from the genome.
684  The identified enzymes are used to get all metabolic information from the database as well as to define
685 the GPR rules in the model. Next, the mass balance of reactions is checked and fixed whenever possible.
686  Unbalanced non-essential reactions were removed from the model. Then, subcellular compartments were
687 predicted using LocTree3 and Wolfpsort tools, and transporters between these compartments were
688 predicted using TranSyt. Finally, biomass, exchange, and energy requirement reactions were defined, and
689 the model was manually validated, using BiolSO to verify biomass production. The final model was
690  simulated using different methods, such as FBA and FVA, and the results were analyzed to validate the
691  model.

692
693 The reconstruction started with genome annotation which was based on DIAMOND

694 (Buchfink et al., 2014) similarity searches of V. vinifera proteins against the protein
695 sequences in iplants, to assign enzymatic functions and associate reactions to V.

696 vinifera proteins. Using only the iplants database to perform the annotation facilitated
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697 the identification of the reactions to include in the model. DIAMOND searches were
698 performed against the SwissProt database to determine the completeness of important
699 enzyme annotations in iplants. In the course of these searches, it was found that more
700 than 17,000 V. vinifera proteins had a match in SwissProt. However, most proteins were
701 involved in other processes like transcription regulation, protein phosphorylation, and

702  nuclear transport, which are not relevant to be included in the metabolic model.

703 Based on the iplants' annotation, the reactions linked to the identified enzymes and
704  spontaneous reactions were assembled to create a draft metabolic network. WolfPsort
705 (Horton et al., 2007) and LocTree3 (Goldberg et al., 2014) were used to predict the
706  subcellular location of the proteins. However, due to contradictory outcomes from these
707 tools, manual curation of the results was deemed necessary. For instance, certain
708 enzymes catalyzing the reactions of the sphingolipid biosynthesis, like serine C-
709 palmitoyltransferase and dihydroceramide fatty acyl 2-hydroxylase reactions, were
710 predicted to be on the endoplasmic reticulum by Loctree3 and in the chloroplast or
711  cytosol by WolfPSort. In this case, the annotations collected from UniProt were
712 considered and the location of these enzymes was defined to be the endoplasmic
713  reticulum. The thylakoidal and mitochondrial intermembrane compartments were added

714  manually for the photosynthesis and oxidative phosphorylation reactions, respectively.

715 Transport reactions were automatically identified using TranSyT (Cunha et al., 2023a)
716 and added to the model. Additional transporters were manually included in the model
717  when required. All reactions were validated for mass and charge balance.

718
719  Biomass composition

720 The definition of tissue-specific biomass compositions is crucial to obtaining good
721 models capable of simulating the specific metabolism of each tissue. Biomass is
722 composed of macromolecules labeled "e-metabolites", which are required for cell
723  growth, including RNA, DNA, proteins, carbohydrates, lipids, co-factors, and cell wall
724  components. Ideally, experimental data should be used to define biomass composition
725 for different tissues. However, as these data are not available for V. vinifera, the

726 biomass content was estimated based on previously published plant GSMMs and
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727 insights from the literature. Specifically, the biomass formulation for leaf, stem, and
728 green berry was based on the models of A. thaliana (Dal’Molin et al., 2010; de Oliveira
729 Dal'Molin et al., 2015), S. lycopersicum (Yuan et al., 2016), and Q. suber (Cunha et al.,
730 2023b), while the biomass of the mature berry was adjusted according to the literature
731  (Cheng et al., 2016) and the metabolomics data available for the same samples used to
732 obtain the RNA-Seq data (Fasoli et al., 2018). Details of the biomass composition are
733 available in Supplementary File 3.

734  The monomer contents for the production of DNA, RNA, and proteins were calculated
735 from the genome sequence using the biomass tool (Santos and Rocha, 2016), available
736 in merlin (Dias et al.,, 2015). The reactions for the production of the cell wall,
737  carbohydrates, fatty acids, lipids, and co-factors were also adapted from A. thaliana and
738 Q. suber models. The e-Cofactor metabolite includes several universal cofactors, such
739 as NAD(H), and vitamins, and in the case of leaf, it also includes pigments, such as
740 chlorophylls. The content of carbohydrates was adapted to reflect the grape
741  composition described in the literature. For instance, tartaric acid was added to the
742 model as it was described as the main organic acid found in grapes and it is not present
743 in any other plant model (Cheng et al., 2016). For mature berries, the content of sugars
744  and organic acids was adjusted to reflect the changes in berry composition during
745 maturation. In addition, some secondary metabolites were added to the carbohydrate
746 reaction of the mature berry based on metabolomics data (Fasoli et al., 2018). These
747  metabolites were found in mature grapes and mainly included anthocyanins, such as

748  malvidin 3-glucoside, peonidin 3-O-glucoside, and petunidin-3-O-glucoside.

749  Manual validation

750 Manual curation was an essential step during the reconstruction process. Literature and
751 Dbiological databases, such as Kyoto Encyclopedia of Genes and Genomes (KEGG)
752 (Kanehisa et al., 2017), National Center for Biotechnology Information (NCBI) (Sayers
753 et al,, 2022), BRaunschweig Enzyme Database (BRENDA) (Placzek et al., 2017) and
754  UniProt (The UniProt Consortium, 2017), were consulted to retrieve additional

755 information about specific reactions, enzymes, or pathways.
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756  Validating the model required verifying its ability to produce biomass. BiolSO (Cruz et
757 al., 2024) was used to accomplish this goal, as it verifies the production of each
758 biomass substrate to see which ones are missing. Then, the gaps in the model were
759 analyzed and filled in when necessary for the production of essential metabolites. Also,
760 it was assured that growth did not occur without photons and carbon sources, and no
761 futile cycles were present. Then, dead-end metabolites and blocked reactions were
762 identified, and each blocked reaction was analyzed and fixed by resorting to other
763 databases. When no information was available, the blocked reactions were kept in the
764  model.

765 Finally, the model's capability to accurately simulate key metabolic processes like
766  photosynthesis, photorespiration, and respiration was confirmed. This was achieved
767  through the application of diverse methods, including Flux Balance Analysis (FBA),
768 parsimonious FBA (pFBA), and Flux Variability Analysis (FVA). FBA (Varma and
769  Palsson, 1994), which uses linear programming to calculate an optimal flux distribution
770 for a given objective function, has been extensively used to simulate GSMMs. However,
771  usually, multiple optimal solutions exist in the solution space for a given objective.
772 Hence, pFBA has emerged as a novel approach. It refines the traditional FBA by
773  selecting a flux distribution from the FBA optimal space that minimizes the total sum of
774  fluxes (Lewis et al., 2010). Likewise, FVA (Mahadevan and Schilling, 2003) is used to
775 determine the span of flux variability of GSMMs in simulations by calculating the

776  minimum and maximum flux of each reaction for a defined set of constraints.

777
778

779 Tissue-specific Models
780

781  Omics Data

782  Available RNA-Seq data from different tissues were used to create specific GSMMs for
783 stem, leaf, and berry. Due to the absence of a single study providing RNA-Seq data for
784  all three tissues, we resorted to using two distinct studies to gather the necessary

785 information. Leaf and stem data were retrieved from the healthy samples of V. vinifera
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786  Cabernet Sauvignon cultivar in the study of Massonnet et al., 2017b (Gene Expression
787  Omnibus (GEO) accession: GSE97900). RNA-Seq data for the C. Sauvignon berries
788 was obtained from the study of Fasoli et al., 2018 (GEO accession: GSE98923), which
789 included berry samples in different developmental stages and associated metabolomics
790 data. The time-point metadata for these samples was grouped into two developmental
791 stages, green and mature, to create a metabolic model for each state. Samples until
792 time point 4 were considered to be in the green state, while samples after time point 4
793 were considered to be mature. Although sample time 4 was collected 7 days after

794  veraison, it was still considered to be in the green phase to reduce class imbalance.

795 These datasets were retrieved from GRape Expression ATlas (GREAT) (Velt and
796 Rustenholz, 2023). GREAT is a gene expression atlas for grapevine that integrates all
797  public RNA-Seq experiments, allowing the analysis and visualization of the data. The
798 RNA-Seq data were already normalized in transcripts per million (TPM) and the reads

799  were mapped to the new genome (PN40024.v4).

800 A dataset with all collected data and respective metadata was built, and a log2
801 transformation was applied to the gene expression values. Finally, the gene identifiers in
802 the datasets were mapped to the protein identifiers present in the model to allow for
803  omics integration.

804

805 Models

806  Tissue-specific models for stem, leaf, green berry, and mature berry were reconstructed
807 using the FASTCORE algorithm (Vlassis et al., 2014) implemented in the Troppo
808 package (Ferreira et al., 2020). This algorithm identifies the reactions that should be
809 removed or kept in the model, based on the expression levels of the genes associated
810 with each reaction through GPR rules, resulting in models with different reaction

811 content.

812 The reconstructed generic model and the omics dataset were used as input for this
813  algorithm, and the local T2 thresholding strategy (Richelle et al., 2019) was applied to
814 preprocess the omics data before integrating it into the model. In this strategy, two

815 global thresholds, upper and lower, are defined, and genes whose expression is below
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816 the lower threshold are considered to be inactive, while genes whose expression is
817 above the upper threshold are considered to be active. Genes with expression levels
818 between these two thresholds may be active or not and further analysis is performed by
819 comparing the expression values to a local threshold. This is a gene-specific threshold
820 that accounts for the expression levels of each gene over all samples, while the global
821 thresholds have the same value for all genes. This strategy was employed as it was
822  described to obtain better results (Richelle et al., 2019).

823 In this work, we selected the percentiles 25 and 75 for the global lower and upper
824  thresholds, respectively, and the percentile 50 (median) for the local threshold. The
825 pseudo-reaction representing the drain of macromolecules required to create a new unit
826  of biomass was included in the set of protected reactions of the algorithm so that all

827  tissue-specific models would be able to produce biomass.
828  Phenotype predictions

829 Phenotype predictions of the tissue-specific models were performed by pFBA, using two
830 different strategies as applied in other plant models (Dal'Molin et al., 2010; Cunha et al.,
831 2023b) and based on A. thaliana experimental measures (Niemann et al., 1995). The
832 first consisted of fixing the biomass growth rate to 0.11h™ and defining the minimization
833  of the photon/sucrose uptake as the objective function. The second strategy defined the
834 biomass growth rate as the objective function and fixed the photon uptake to 100
835 mmmol.gDW™.h™ for photosynthesis and photorespiration and the sucrose uptake to 1
836 mmmol.gDW™.h"* for respiration. Photorespiration was simulated by constraining the
837 carboxylation (RIBULOSE-BISPHOSPHATE-CARBOXYLASE-RXN) and oxygenation
838 (RXN-961) reactions by Rubisco with a flux ratio of 3:1 (Dal’'Molin et al., 2010; Cunha et
839 al., 2023b).

840
841  Differential Flux Analysis

842  Differential flux analysis between the created tissue models was performed using the
843 approach of (Nanda and Ghosh, 2021). In this approach, sample fluxes for the tissue

844 models were generated using Artificial Co-ordinate Hit and Run (ACHR) sampler
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845 (Bordel et al., 2010) from CobraPy, with a thinning factor of 100 and a sample size of
846 10000 for each model. Pairwise Kolmogorov-Smirnov tests were used to compare the
847  flux distribution of the distinct tissue models. The flux change (FC) of each reaction
848 between the two models was also calculated as shown in Equation (1), where S_mo(;e)ll
849 and S,,,4012 represent the mean of the flux distributions for a reaction in model1 and
850 model2, respectively. Reactions with an absolute value less than 0.82 (equivalent to a
851 10-fold change in flux) were considered insignificant.

852 FC = Smodel1— Smodel2
|Smode11+ Smodelz|

853  For reactions that are absent in a model, their flux is assumed to be zero in that model,
854  and bootstrapping is used to estimate the 95% confidence interval of their fluxes. If zero
855 is outside the interval, the reactions are considered to have differential flux in the two
856 models. In addition, the p-values of altered reactions were adjusted by a Benjamini-
857 Hochberg correction, with a significance level of 0.05. The differential pathways
858 between models were obtained using hypergeometric enrichment tests that select the
859 pathways that are over-represented due to the higher number of altered reactions and

860 not by chance.

861 T-distributed Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten and Hinton,
862 2008) was used to visually compare the sampled flux data of the different tissue
863 models. This tool is a dimensionality reduction algorithm that allows for nonlinear data
864  separation. Before applying t-SNE, the flux data was filtered, keeping only the reactions

865  with altered flux between models, and scaled to z-scores.

866

867 Diel multi-tissue models
868

869 Models

870 Multi-tissue models were created by joining the tissue-specific models and connecting
871 them by two common pools, one between stem and leaf, and the other between stem
872 and berry, based on a previous approach (de Oliveira Dal’Molin et al., 2015). Transport

873 reactions between tissues and common pools were manually added when required.
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874  Given that a model for the root was not developed, we assumed that the uptake of
875 minerals occurs in the stem. Exchanges of water, oxygen, and carbon dioxide were
876 allowed in all tissues, and light absorption was allowed only in the leaf model. Two multi-
877 tissue models were created, one with the berry in the green phase and the other with

878 the mature berry.

879  Additionally, diel models were created to account for light and dark phases. All reactions
880 and metabolites were duplicated for each phase, and new reactions were added to
881 allow the exchange of some metabolites between the two phases. These are called
882 storage metabolites and include the 20 amino acids, nitrate, citrate, malate, glucose,
883  sucrose, fructose, and starch, which can be produced in one phase and used in the
884  other, as previously described (Maurice Cheung et al., 2014).

885

886  Phenotype predictions

887 Phenotype predictions using multi-tissue diel models were also performed with pFBA
888  using the second strategy mentioned above for photorespiration conditions, but with a
889 photon uptake of 300 mmmol.gDW™.h™* as flux values were very low with 100
890 mmmol.gDW™.h™. As in other plant diel models (Maurice Cheung et al., 2014; Shaw
891 and Cheung, 2018; Cunha et al., 2023b), the nitrate uptake was constrained to a ratio of
892  3:2in the light and dark cycle.

893

894  Machine learning and Fluxomics
895 Data

896 All samples from the RNA-Seq dataset from Fasoli et al., 2018 were used to create
897 simulated fluxomics data for grapes in the green and mature state, by using the
898 iIMS7199 model and the aforementioned phenotype prediction approaches to reach flux
899 distributions. Firstly, the mean expression value of all replicates was calculated to
900 represent each biological sample, resulting in a dataset with 73 samples, 55% from
901 Cabernet Sauvignon and 45% from Pinot Noir, and the log2 expressions of the 6018

902 genes in the model. As performed before, these samples were discretized into two
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903 developmental stages, green and mature, which represent the output class to be later
904 predicted by the ML models. Then, the final RNA-Seq dataset was integrated with the
905 generic V. vinifera model to create GSMMs representing each sample in the f‘ﬂ*ﬂe(g;.
906 using the FASTCORE algorithm as described before. In total, 73 contex ‘
907 models were created, one per sample. The resulting sample-specific GSMMs were
908 simulated using FVA and the flux capacity (FCa) of each reaction was calculated by
909 subtracting the maximum and minimum flux obtained for each reaction while keeping
910 80% of the maximum biomass value (Equation (2)). Before running FVA, all reactions
911 were made irreversible to facilitate the interpretation of results. The reactions absent in

912 the models were considered to have a capacity of 0.
FCa(r) = Flux,,,,(r) — Flux,,;,(r)
913 Models

914  The analysis of fluxomics with ML was performed in Python 3.11 with Scikit-learn 1.2.2.
915 For the unsupervised analysis, the dataset was filtered to remove the reactions with the
916 same FCa across all samples using Variance Threshold and scaled by StandardScaler.
917 t-SNE was applied to visualize the distribution of the data. For the supervised analysis,
918 the original dataset was divided into train and test sets by cross-validation with 10 folds
919 and repeated 10 times, using the RepeatedStratifiedKfold function. In each iteration,
920 feature selection was performed using VarianceThreshold and, as the number of
921 features was still high, the SelectKBest function was used to select the 500 most
922 relevant features based on ANOVA F-values. In addition, the resulting dataset was also
923 scaled by StandardScaler. Then, an ML model fitted the train data and predicted the
924  output classes for the test set. Five different ML models were tested including logistic
925 regression, K-nearest neighbors, decision trees, support vector machine, and random
926 forests. These were evaluated by different metrics, such as recall (Equation (3)),
927 precision (Equation (4)), balanced accuracy (Equation (5)), and F1 score (Equation (6)),
928 which were averaged across all train-test splits.

TP (3)

= —
recat = Tp Y FN
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. TP
precision = o
balanced accuracy = 0.5 * (recall + TN + FP FP)

2% TP
TP + 0.5 (FP + FN)

F1 score =

929 The importance of each feature in the prediction of the output was analyzed by
930 calculating the SHAP values for each classifier. SHAP values (SHAPley Additive
931 exPlanations) are defined based on the contribution of each feature to the prediction of
932 each sample and are used to increase the interpretability of ML models. Larger absolute
933 SHAP values have a larger effect on the prediction (Lundberg et al.). The SHAP values
934 for each fold of the repeated cross-validation were calculated, and the average SHAP
935 values for each sample were calculated to give a more stable representation of the

936 feature contributions.

937

938 Conclusion

939 In this work, we reconstructed the first GSSM of V. vinifera. This model is based on the
940 latest V. vinifera genome and database knowledge, including primary and secondary
941 metabolic pathways, mainly related to flavonoids and hormone biosynthesis. The model
942 can simulate grapevine metabolism under photosynthesis, photorespiration, and
943 respiration. RNA-Seq data was integrated with this generic model to build tissue-specific
944 models for the leaf, stem, green berry, and mature berry of V. vinifera Cabernet
945  Sauvignon cultivar. Multi-tissue models were built by connecting the tissue-specific
946 models, and the diel cycle was introduced in the models by replicating the multi-tissue
947 model for both light and dark phases. Two diel multi-tissue GSMMs were built, one
948 using the green berry tissue and the other using the mature berry tissue. The models
949  were used to simulate the metabolic responses of grapevine to different levels of sulfate
950 and nitrate. The results indicated that with low nitrate or low sulfate, less biomass is
951 produced, and more flux is expected in the respiratory pathways, fatty acid production,

952 and secondary pathways. Conversely, with high levels of nitrate or sulfate, the maximum
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953 flux of secondary reactions has decreased, as well as most primary pathways of sugar
954 metabolism. Hence, controlling the soil levels of nitrate and sulfate in specific stages of
955 development can help control the phenolic and sugar content in the grapes, which will

956 affect their quality.

957 The reconstructed metabolic models developed here can be a valuable tool for
958 analyzing and predicting the metabolic behavior of grapevine under different
959 environmental conditions and assessing its metabolic potential and fruit quality, which

960 can be important for wine production.

961 Fluxomics data were generated from GSMMs of green and mature grapes and analyzed
962 using ML techniques. The resulting models obtained very good results in predicting the
963 grape developmental stage, with accuracy, precision, recall, and F1 scores higher than
964 90%. The reactions that contributed the most to the model's predictions are associated
965 with different pathways, including MEP, threonine, nucleotide metabolism, and
966 ascorbate degradation, and presented higher fluxes in the green state. Although these
967 pathways are not the main differences between green and mature grapes found in the
968 literature, the results suggest that their fluxes are significantly different between the two
969  states.

970  Adeeper understanding of plant metabolic pathways is essential to develop more robust
971 GSMMs. Additionally, the creation of larger omics datasets is crucial for developing
972 more realistic predictive ML models, enabling more advanced analyses such as the
973 identification of biomarkers for disease or environmental stress resistance. This
974 approach not only represents a novel and pioneering effort in integrating omics,
975 GSMMs, and ML in plant metabolism studies but also showcases the significant
976 potential of applying this strategy for more insightful analyses, as additional data

977 becomes available.

978

979 Supplemental Data
980
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