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Abstract 11 

Vitis vinifera, also known as grapevine, is widely cultivated and commercialized, 12 

particularly to produce wine. As wine quality is directly linked to fruit quality, studying 13 

grapevine metabolism is important to understand the processes underlying grape 14 

composition. Genome-scale metabolic models (GSMMs) have been used for the study 15 

of plant metabolism and advances have been made, allowing the integration of omics 16 

datasets with GSMMs. On the other hand, Machine learning (ML) has been used to 17 

analyze omics data, and while the combination of ML with GSMMs has shown 18 

promising results, it is still scarcely used to study plants. Here, the first GSSM of V. 19 

vinifera was reconstructed and validated, comprising 7199 genes, 5399 reactions, and 20 

5141 metabolites across 8 compartments. Tissue-specific models for stem, leaf, and 21 

berry of the Cabernet Sauvignon cultivar were generated from the original model, 22 

through the integration of RNA-Seq data. These models have been merged into diel 23 

multi-tissue models to study the interactions between tissues at light and dark phases. 24 

The potential of combining ML with GSMMs was explored by using ML to analyze the 25 

fluxomics data generated by green and mature grape GSMMs, helping to understand 26 

the factors influencing grape quality at different developmental stages. 27 

 28 
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Introduction 29 

Vitis vinifera is one of the major fruit crops in the world. It is cultivated worldwide and 30 

has high economic value, mainly due to wine production. In 2022, the world vineyard 31 

surface area was estimated to be 7.3 million hectares and world wine production 32 

reached 258 million hectoliters. In the same year, and despite inflation, wine exports 33 

reached a value of 37.6 billion euros (International Organisation of Vine and Wine, 34 

2023). In addition, grapes have other purposes, being marketed as fresh and dried 35 

fruits, and used for juice production. The grape pulp contains high levels of sugars and 36 

phenolic compounds, like flavonoids and stilbenes, with potential health benefits, such 37 

as antioxidant and anti-inflammatory activities, and cardiovascular protection (Saad et 38 

al., 2020), thus being currently studied for possible pharmaceutical and cosmetic 39 

applications. Therefore, as grapevines have high economic interest and fruit quality is 40 

intrinsically linked to metabolism, the study of grapevine metabolism is essential for 41 

understanding its responses to different environmental conditions that may affect grape 42 

metabolic composition. 43 

Genome-scale metabolic models (GSMMs) represent all metabolic reactions taking 44 

place within an organism. These models are reconstructed from the genome and allow 45 

performing phenotype predictions under different environmental or genetic conditions 46 

(Feist et al., 2008). Although GSMMs have been extensively used for the metabolic 47 

engineering of prokaryotes, several GSMMs are available for plants (Gu et al., 2019), 48 

mainly Arabidopsis thaliana (Poolman et al., 2009; Dal’Molin et al., 2010; Saha et al., 49 

2011; Cheung et al., 2013; Maurice Cheung et al., 2014; de Oliveira Dal’Molin et al., 50 

2015; Shaw and Cheung, 2018), Zea mays (Saha et al., 2011; Simons et al., 2014; 51 

Bogart and Myers, 2016), and Oryza sativa (Poolman et al., 2013; Lakshmanan et al., 52 

2015; Chatterjee et al., 2017). Currently, the reconstruction of plant GSMMs is still very 53 

challenging and time-consuming due to the high number of gaps in genome 54 

annotations, the large diversity of metabolites, and the extensive compartmentalization 55 

of plant cells (Collakova et al., 2012; Sweetlove and George Ratcliffe, 2011; Sampaio et 56 

al., 2022). Despite the obstacles, many plant GSMMs have emerged recently, and new 57 

approaches have been developed to reconstruct more realistic models that include 58 

different plant tissues, through the integration of omics data, as well as the day-night 59 
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cycle (Maurice Cheung et al., 2014; Gomes de Oliveira Dal’Molin and Nielsen, 2018; 60 

Shaw and Cheung, 2020). These models allow for differentiating the metabolism of 61 

each tissue and analyzing the metabolic interactions between tissues and the light and 62 

dark phases. 63 

Despite the existence of several methods for integrating omics into GSMMs, this is still 64 

a challenging and inefficient task. As omics datasets are complex and heterogeneous, 65 

Machine Learning (ML) has been used to process and integrate different types of omics 66 

to extract biological knowledge from data. Recently, ML and GSMM approaches have 67 

been combined to improve the model's predictions and interpretability, and this strategy 68 

has shown promising results (Zampieri et al., 2017; Rana et al., 2020; Antonakoudis et 69 

al., 2020; Sampaio et al., 2022; Kim et al., 2021). ML can be used to extract knowledge 70 

from the fluxomics data generated by the models or to integrate the predicted fluxomics 71 

data with experimental omics. Thus far, these studies have mainly been applied to 72 

bacteria, yeast, and human cells, but not to plants. 73 

In this manuscript, we pioneer V. vinifera research with the introduction of iMS7199, the 74 

first GSMM for the grapevine, developed using the most recent genome version, 75 

PN40024.v4 (Velt et al., 2023). In addition to the overarching model, tissue-specific 76 

models for the leaf, stem, and grape were developed by incorporating RNA-Seq data 77 

from these distinct tissues. Furthermore, to capture the dynamic changes in grape 78 

metabolism, we created two separate models representing the grape in both its green 79 

and mature states. These tissue-specific models were then integrated to construct diel 80 

multi-tissue GSMMs, enabling the simulation of grapevine metabolism across the day-81 

night cycle and facilitating the study of inter-tissue metabolic interactions. Utilizing this 82 

comprehensive model, we investigated the metabolic responses of the grapevine under 83 

varying concentrations of sulfate and nitrate.  84 

Also, simulated fluxomics data were generated from GSMMs of grapes in the green and 85 

mature state and analyzed by ML to identify the reactions that most contribute to the 86 

model's predictions of the grape developmental phase.  87 

Therefore, this diel multi-tissue GSMM emerges as a useful tool for exploring the 88 

metabolic behavior of V. vinifera under various conditions, offering insights into factors 89 
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influencing grape quality and phenolic content. In addition, the analysis of generated 90 

data from GSMMs by ML represents the first effort to apply this strategy in the study of 91 

plant metabolism. 92 

 93 

Results and Discussion 94 

 95 

The iplants repository 96 

To collect and organize all the relevant data for the model reconstruction efforts, a 97 

repository with the metabolic information of PlantCyc 14.0 (Zhang et al., 2010) and 98 

MetaCyc 26.1 (Caspi et al., 2016) databases, and Universal Protein Resource (UniProt) 99 

(The UniProt Consortium, 2017) sequence data was created. In total, the repository 100 

includes 24333 metabolites, 205128 reactions, 3519 pathways, and 22433 enzymes, 101 

72% of which have a protein sequence. The Neo4j database includes the relationships 102 

between the metabolic entities, while MongoDB includes all the metadata that 103 

characterizes the entities. Details on how data is organized in the iplants repository are 104 

available in Supplementary Material and Supplementary File 1. 105 

In addition to data from the metabolic databases, nine plant metabolic models were 106 

integrated into the iplants repository, namely Arabidopsis thaliana (Poolman et al., 2009; 107 

Cheung et al., 2013), Zea mays (Bogart and Myers, 2016), Oryza sativa (Poolman et 108 

al., 2013; Chatterjee et al., 2017), Solanum lycopersicum (Yuan et al., 2016), Medicago 109 

truncatula (Pfau et al., 2018), Glycine max (Moreira et al., 2019), and Setaria viridis 110 

(Shaw and Maurice Cheung, 2019). These models have PlantCyc and MetaCyc 111 

identifiers for metabolites and reactions, which facilitated the integration. In total, 3815 112 

metabolites and 4197 reactions from the models were successfully integrated. However, 113 

around 395 metabolites and 1498 reactions from the metabolic models did not match 114 

any entry in our database and were added to it. These can include biomass and 115 

transporter reactions, whose identifiers are not standardized, or entities with deprecated 116 

identifiers that were already removed from the PlantCyc and MetaCyc databases. 117 

iplants repository can be accessed through an application programming interface (API) 118 

created with Django and Django REST framework for both database systems, using 119 
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Mongoengine and Neomodel Python packages. Several views were defined to allow the 120 

extraction of the data needed for the reconstruction of GSMMs and to save the data of 121 

the model under reconstruction. The API included views to get all objects in the 122 

repository, details of an object, and to create a new metabolic model object and link it to 123 

reactions, metabolites, and enzymes in the database (link to API). 124 

 125 

Model properties 126 

A GSMM for V. vinifera was reconstructed from the PN40024.v4 genome (annotation 127 

version 1) (Velt et al., 2023). DIAMOND similarity searches (Buchfink et al., 2014) 128 

against iplants resulted in 10840 protein matches, representing 26% of the 41160 129 

proteins in the genome, which is in line with the percentage of metabolic genes 130 

described for the A. thaliana's genome (between 25-30%) (Kaul et al., 2000).  131 

The reconstructed generic model, iMS7199, includes 5399 reactions (1624 transporters 132 

and 244 exchanges), and 5141 metabolites, across eight compartments: cytosol, 133 

chloroplast, mitochondria, endoplasmic reticulum, peroxisome, Golgi apparatus, 134 

vacuole, and extracellular space. In this model, the Gene-Protein-Reaction (GPR) rules 135 

were defined using the genome protein identifiers instead of genes as genome 136 

annotation was performed using protein sequences. As genes can encode more than 137 

one protein, the model includes 7199 protein identifiers that represent the 6018 genes 138 

of the V. vinifera genome.  139 

This model is mass-balanced and can simulate growth in phototrophic and heterotrophic 140 

conditions, by setting the photon and carbon dioxide or sucrose as the only energy or 141 

carbon source, respectively. In addition, it requires the uptake of nitrate, phosphate, 142 

sulfate, iron, magnesium, and water to produce biomass.  143 

The statistics of the V. vinifera model, as well as other relevant plant models, are 144 

presented in Table 1. Analyzing the table, only the Quercus suber model (Cunha et al., 145 

2023b) has more genes, reactions, and metabolites than the V. vinifera model. The 146 

other models are much smaller, even the G. max model, which has a high number of 147 

genes. 148 
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 149 

 150 

Table 1. Statistics of the V. vinifera model and other eight plant GSMMs. 151 

  Reactions Metabolites Genes Compartments 

A. thaliana (Cheung et al., 2013) 2769 2739 2857 5 

Z. mays (Bogart et al., 2016) 1268 1121 2140 8 

O. sativa (Chatterjee et al., 2017) 1136 1330 3602 4 

S. lycopersicum (Yuan et al., 2015) 2143 1998 3410 5 

M. truncatula (Pfau et al., 2018) 2909 2780 3403 8 

G. max (Moreira et al., 2019) 3001 2814 6127 5 

S. viridis (Shaw et al. 2019) 2473 2429 3376 5 

Q. suber (Cunha et al., 2021) 6230 6481 7871 8 

V. vinifera (this work) 5399 5141 7199 8 

 152 

The reactions of V. vinifera were compared with those from the other models, except for 153 

Q. suber which has different model identifiers. Drains, transporters, biomass pseudo-154 

reactions, and compartments were not considered, resulting in 2769 reactions of the 155 

iMS7199 model (Figure 1). 156 

 157 

Figure 1.  Venn diagrams comparing the reaction content of V. vinifera model with other seven plant 158 
models. 159 

 160 
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The G. max model shares the highest number of reactions with the V. vinifera model, 161 

corresponding to around 41% of all reactions from both models. This model is followed 162 

by the ones of S. viridis and A. thaliana, which share 1326 (38%) and 1342 (36%) 163 

reactions with iMS7199, respectively. The most distant model is the one from O. sativa, 164 

sharing only 624 reactions (20%). 165 

In total, V. vinifera has 785 reactions that are not present in any other model. These 166 

reactions were analyzed to identify the associated pathways and gene annotation. The 167 

pathways with more unique reactions are presented in Figure 2. Reactions without 168 

pathway associations were not considered. 169 

 170 

Figure 2.  Pathway distribution of reactions included in the V. vinifera model and not in the other plant 171 

models analyzed. 172 

 173 

As shown in Figure 2, the biosynthesis of secondary metabolites is the pathway class 174 

associated with more unique reactions, around 140, followed by fatty acid biosynthesis 175 

(88 reactions), protein glycosylation (35 reactions), and fatty acid and lipid degradation 176 

(17 reactions). These pathway classes comprise several specific pathways. Other 177 

specific pathways with more than four unique reactions include cholesterol biosynthesis 178 
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and diacylsucrose biosynthesis. Hence, the V. vinifera model represents a great 179 

advance compared to the previous plant models, as it comprises new reactions, 180 

especially for the secondary metabolism, which is often underrepresented in plant 181 

models. 182 

On the other hand, the other plant models include 661 secondary pathway reactions not 183 

available in iMS7199. This number can be explained by the fact that 380 reactions are 184 

not associated with GPR rules in the models. Moreover, 93 are sub-reactions of others 185 

that are included in the V. vinifera model. Of the 188 reactions that have GPR rules, 155 186 

have a corresponding enzyme sequence in the iplants database, which had a match in 187 

the DIAMOND annotation but were not the first hit for any query protein (Supplementary 188 

File 2). This data is made available and may be used in the future to improve the model 189 

by performing further manual curation. Regarding genome annotation, 27% of the 190 

proteins that catalyze these unique reactions were annotated based on the genome of 191 

A. thaliana. These proteins or reactions were probably not in metabolic databases when 192 

the A. thaliana models were reconstructed, which can explain why they are missing 193 

from these models. Besides A. thaliana, 12% of the unique proteins matched human 194 

proteins, and around 27% were annotated based on proteins from more than 100 195 

different plant species, including S. lycopersicum, Solanum tuberosum, Catharanthus 196 

roseus, Petunia x hybrida, M. truncatula, G. max, and V. vinifera. 197 

As A. thaliana is a reference organism for plants, there are several GSMMs for this 198 

organism (Poolman et al., 2009; Dal’Molin et al., 2010; Saha et al., 2011; Cheung et al., 199 

2013; Maurice Cheung et al., 2014; de Oliveira Dal’Molin et al., 2015; Shaw and 200 

Cheung, 2018) and much enzymatic and metabolic information of A. thaliana is 201 

available in databases, like PlantCyc and UniProt. On the other hand, data for more 202 

complex plants is scarce. Therefore, it was expected that a large percentage of V. 203 

vinifera proteins would be annotated based on homologous proteins from A. thaliana. 204 

However, as V. vinifera is a much more complex plant, gene annotations can be wrong 205 

or missing, and the consequent validation process helps to limit these errors. In 206 

addition, several proteins were similar to human proteins, which was also expected as 207 
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various pathways, mainly related to lipid metabolism, are better characterized in 208 

humans than in plants. 209 

 210 

Specialized metabolic pathways 211 

Secondary metabolites are economically very important as they have many relevant 212 

applications. However, the pathways that produce them are very complex and diverse, 213 

and the knowledge in this subject is still limited (Collakova et al., 2012). Figures Figure 3 214 

and Figure 4 schematize the production of the main secondary metabolites in the model, 215 

phenylpropanoids and terpenoids, respectively.  216 

 217 
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Figure 3. Simplified schema of the production of the main secondary metabolites in the V. vinifera model. 218 

This illustrates the phenylpropanoid pathway which starts with the amino acid phenylalanine that is 219 

converted to p-Coumaryl Coenzyme A. This metabolite can be used to produce hydroxycinnamic acids, 220 

and stilbenes, such as resveratrol, or to start the flavonoid biosynthesis pathway to produce different 221 

types of flavonoids, such as flavonols, flavan-3-ols, and anthocyanins. Compounds are colored based on 222 

the compound class they belong to. 223 

 224 

Figure 4. Simplified schema of the terpenoid biosynthesis pathway in the V. vinifera model. Isopentenyl 225 

diphosphate (IPP) and prenyl diphosphate are the precursors for terpenoids and can be produced from 226 

the mevalonic acid (MEV) or methylerythritol phosphate (MEP) pathways. These originate all terpenoids 227 

including monoterpenes, sesquiterpenes, triterpenes, diterpenes, and tetraterpenes. 228 

 229 

Grapes are known to have a high content of phenolic compounds and different grape 230 

varieties usually have different phenolic compositions, which leads to different wine 231 

flavors and aromas (Singh et al., 2016). The reconstructed V. vinifera model contains 232 

complete pathways for the biosynthesis of several terpenoids and phenylpropanoids, 233 

which include flavonoids, such as quercetin, myricetin, kaempferol (and derivatives), 234 

and anthocyanins, like malvidin and peonidin. Anthocyanins usually accumulate during 235 
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grape maturation and are responsible for the grape color in red grapevine varieties, 236 

being absent in white varieties (Massonnet et al., 2017a). 237 

Another important group of phenylpropanoids in grapes are stilbenes, such as 238 

resveratrol, which protects grapes from intense UV light. As resveratrol is an antioxidant 239 

agent, it has high economic importance, being used in the pharmaceutical and cosmetic 240 

industry (Saad et al., 2020). The complete pathway of resveratrol biosynthesis is 241 

described and included in the model, but there are many gaps in the biosynthetic 242 

pathways of resveratrol derivatives, such as viniferins, which are not included in the 243 

model but are important for wine flavor and aroma. However, this model also contains 244 

complete pathways for the biosynthesis of other aroma compounds, such as linalool, 245 

1,3,5-trimethoxybenzene (TMB), and 3,5-dimethoxytoluene, the latter two being only 246 

described for Rosa chinensis.  247 

In addition, complete secondary pathways for the biosynthesis of plant hormones, such 248 

as jasmonates, cytokinins, gibberellins, ethylene, and auxins, are available in the model. 249 

For instance, jasmonates are known to regulate seed germination and flower and fruit 250 

development, as well as to defend plants against some pathogens (Wasternack and 251 

Song, 2017). Cytokinins usually control cell growth and differentiation (Kieber and 252 

Schaller, 2014). Although the reconstructed GSMM does not represent the action of 253 

these hormones, it can show the metabolic potential of the network to produce them. 254 

Thus, the reconstructed model of V. vinifera represents an important source of 255 

secondary metabolic data. Further curation is still necessary to fill the existing gaps and 256 

increase the number of secondary metabolites in the model, as new knowledge on 257 

these pathways becomes available. 258 

 259 

Tissue-specific models 260 

Tissue-specific models were reconstructed to represent the metabolic differences 261 

between tissues. This was accomplished by integrating RNA-Seq data with the 262 

iMS7199 model. 263 

 264 
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RNA-Seq Data 265 

The RNA-Seq data of V. vinifera Cabernet Sauvignon was retrieved from the GREAT 266 

database (Velt and Rustenholz, 2023) for leaf, stem, and berry. In total, the RNA-Seq 267 

dataset contained the expression of the 6018 genes (matching the 7199 proteins in the 268 

model) across 162 samples. The time-point metadata for berry samples was discretized 269 

into two developmental stages, green and mature. The sample distribution and the T-270 

distributed Stochastic Neighbor Embedding (t-SNE) for the RNA-Seq data are shown in 271 

Figure 5. 272 

 273 

Figure 5.RNA-Seq data for all tissues: leaf, stem, and berry in a green and mature state. A. Distribution of 274 

samples across the different tissues. B. t-SNE visualization of the RNA-Seq data for all tissues: leaf 275 

(orange dots), stem (blue dots), and berry in green (green dots) and mature (red dots) states. Data was 276 

retrieved from the GREAT database, including the expression of the V. vinifera genes in the model across 277 

162 samples. 278 

 279 

Mature berry is the most represented tissue in the dataset with 46% of the samples (75 280 

samples), 28% of the samples are from green berries (45 samples), while stem and leaf 281 

represent 13% of the samples each (21 samples).  282 

Analyzing the t-SNE plot, the data grouped well by tissue: leaf samples are the most 283 

well-grouped, followed by stem samples, while berry samples are more scattered. 284 
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Green berry samples partially overlap mature berry samples, and some separation 285 

exists between some mature berry samples. This was expected as these samples were 286 

retrieved every week from fruit set to maturity. Thus, samples a week before and a week 287 

after veraison, which is when the maturation phase starts, may be similar in metabolism. 288 

Biomass composition 289 

The biomass composition of the different tissues is represented in Figure 6. Details on 290 

biomass compositions are described in the Materials and Methods section and 291 

Supplementary File 3. The biomass of leaf and green berry was considered to be the 292 

same, and it was used as a reference to define the biomass composition of the other 293 

tissues. According to other plant models (Q. suber (Cunha et al., 2023b) and A. thaliana 294 

(de Oliveira Dal’Molin et al., 2015)), the stem is expected to have a higher cell wall and 295 

carbohydrate content and lower protein and lipid levels. According to the literature, the 296 

mature berry is expected to have higher sugar and amino acid content (Cheng et al., 297 

2016). Therefore, in the model, leaf and green berries present high levels of 298 

carbohydrates and proteins, the stem is mainly composed of carbohydrates and cell 299 

wall precursors, and mature berries present high amounts of sugars and proteins but 300 

fewer organic acids. 301 

 302 

Figure 6. Biomass composition of the leaf and green berry, stem, and mature berry. These values were 303 

adapted from available plant models and literature. 304 

 305 

Models 306 
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The FASTCORE algorithm (Vlassis et al., 2014) was used to create tissue-specific 307 

models (see Materials and Methods). The statistics of the reconstructed generic and 308 

tissue-specific models are shown in Table 2.  All models have the same 244 exchange 309 

reactions. 310 

The number of reactions is similar across all tissue-specific models. Even so, the 311 

mature berry model is the smallest one, while the leaf model is the largest, having a 312 

higher number of reactions in the chloroplast, as well as more unique reactions. At the 313 

pathway level, no significant differences were found between models (Supplementary 314 

File 4). 315 

Table 2. Statistics of the generic and tissue-specific GSMMs of V. vinifera. 316 

  Generic model Leaf Stem Green berry Mature berry 

Genes 7199 6701 6602 6657 6312 

Metabolites 5141 4456 4310 4399 4181 

Reactions 5399 4510 4384 4495 4272 

Transport 1624 1295 1315 1324 1305 

Unique reactions - 124 97 26 19 

Metabolic reactions 3531 2971 2825 2927 2723 

Cytosol 1434 1154 1092 1113 1059 

Chloroplast 793 745 701 725 684 

Mitochondria 335 313 318 320 314 

Endoplasmic 

reticulum 
568 410 370 417 353 

Peroxisome 165 158 152 153 151 

Vacuole 52 49 47 48 32 

Golgi complex 54 41 41 50 50 

Extracellular 130 101 104 101 80 

 317 

The tissue-specific models were simulated using parsimonious Flux Balance Analysis 318 

(pFBA) (Lewis et al., 2010), following the first strategy defined in the Materials and 319 

Methods section of keeping biomass rate at 0.11 h-1 and minimizing the uptake of 320 

photons and sucrose. 321 

A summary of the phenotype predictions is presented in Table 3 and full results are 322 

available in Supplementary file 5. The leaf tissue was simulated for all processes: 323 

photosynthesis, photorespiration, and respiration, while the other tissues were 324 
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simulated for respiration only. Photosynthesis can also occur in green berries, but not at 325 

significant levels. Hence, in this analysis, the leaf was considered to be the only 326 

photosynthetic tissue. 327 

 328 

Table 3. Summary of the net conversions obtained from the phenotype predictions of the tissue-specific 329 

models of leaf, stem, green berry, and mature berry for photosynthesis, photorespiration (leaf only), and 330 

respiration, minimizing the uptake of photons or sucrose and fixing biomass rate at 0.11h
-1

. This table 331 

shows the metabolites that are consumed and produced by the models. The fluxes of the metabolites are 332 

in mmol.gDW
-1

.h
-1

 while biomass fluxes are in h
-1

. 333 

  photosynthesis photorespiration respiration 

metabolite 
leaf stem 

berry 

green 

berry 

mature 

Uptake 

SUCROSE - - 0.61 0.49 0.61 0.72 

Light 32.09 43.76 - - - - 

CARBON-DIOXIDE 4.41 4.41 - - - - 

NITRATE 0.37 0.37 0.37 - 0.37 - 

OXYGEN-

MOLECULE 
- - 1.74 1.71 1.74 1.84 

PROTON 6.64 6.64 3.73 4.01 3.73 3.71 

SULFATE 0.02 0.02 0.02 0.01 0.02 0.02 

WATER 3.21 3.21 - 0.11 - - 

Production 

OXYGEN-

MOLECULE 
5.54 5.54 - - - - 

NITRATE - - - - - 0.70 

AMMONIUM - - - 0.04 - - 

HCO3 - - 2.86 1.98 2.86 3.47 

PPI 0.05 0.05 - - - - 

Pi - - 0.09 0.21 0.09 - 

WATER - - 0.55 - 0.55 1.25 

e-Biomass 0.11 0.11 0.11 0.11 0.11 0.11 

 334 

In photosynthesis and photorespiration, the leaf uptakes light, carbon dioxide, water, 335 

nitrate, sulfate, and protons to produce biomass, and releases oxygen and phosphate, 336 

as expected. Iron II and magnesium (Mg) are also captured but with very low fluxes 337 

(less than 1e-5 mmmol.gDW-1.h-1). Light uptake is significantly higher in 338 
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photorespiration than in photosynthesis (43.75 mmmol.gDW-1.h-1 vs 32.09 mmmol.gDW-
339 

1.h-1), which was also expected as the latter process is known to be more efficient for 340 

energy production. In both cases, the pathways of the primary metabolism are the most 341 

active: photosynthesis, Calvin cycle, glycolysis, starch and amino acid biosynthesis, and 342 

oxidative phosphorylation. Also, the photorespiration pathway is only active under 343 

photorespiration conditions.  344 

During photosynthetic conditions, the tricarboxylic acid (TCA) cycle is incomplete: citrate 345 

is converted to isocitrate, and this is converted to α-ketoglutarate, which is used for the 346 

biosynthesis of glutamate and glutamine instead of being used to produce succinate. 347 

Fumarate is produced from arginine biosynthesis, instead of being produced from 348 

succinate, and enters the cycle. This result is consistent with the results observed for 349 

other plant models under light conditions (Maurice Cheung et al., 2014; Cunha et al., 350 

2023b) and with isotope labeling experiments, which stated that a cyclic TCA only 351 

happens when the demand for ATP is high. The photosynthetic ATP production reduces 352 

that demand (Sweetlove et al., 2010; Williams et al., 2008). 353 

In respiration, the leaf uptakes sucrose, nitrate, sulfate, oxygen, and protons, and 354 

releases hydrogencarbonate, water, and phosphate. The main active pathways include 355 

glycolysis, the TCA cycle, starch and amino acid biosynthesis, and oxidative 356 

phosphorylation. The respiration results were similar across tissues. The stem uptakes 357 

water and releases ammonium, and the mature berry has a slightly higher demand for 358 

sucrose to produce the same biomass flux. 359 

In summary, the integration of omics data into the generic GSMM created tissue-specific 360 

models that try to reflect the differences in gene expression between tissues. However, 361 

the number of reactions and the phenotype predictions are not very different between 362 

models; thus, a complementary analysis based on differential flux predictions was 363 

performed to understand the metabolic differences between the tissues. 364 

 365 

Differential flux analysis 366 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.30.578056doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.578056
http://creativecommons.org/licenses/by/4.0/


 

17 
 

The ACHR sampler (Bordel et al., 2010) was used to generate 10000 sample fluxes for 367 

all reactions from the different tissue-specific models. Then, these data were used to 368 

identify the reactions with differential fluxes between models (see Materials and 369 

Methods). In total, 764 reactions were found to have altered fluxes between at least two 370 

models. The sampled flux data is shown in the t-SNE of Figure 7. 371 

 372 

Figure 7. t-SNE visualization of the sampled reaction fluxes of the tissue-specific models. Data was 373 

generated by the ACHR sampler, filtered by the reactions with differential flux between models, and 374 

scaled.  Green dots represent the reaction fluxes from the green berry model, red dots the mature berry, 375 

orange dots the leaf, and blue dots the stem. 376 

 377 

As observed previously, despite the higher number of samples, t-SNE was able to 378 

separate well the fluxes from the different tissues as no overlap is evident between 379 

samples of different tissues. In addition, there is no group where flux samples group 380 

better nor are more separated from the other groups. These results are not fully in line 381 

with those observed for the expression data: leaf flux samples do not appear to group 382 

better than the samples from the other tissues, and there is no evident overlap between 383 
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green and mature berry samples. This may be because only reactions with differential 384 

flux between at least two tissue models were considered in the analysis. Overall, flux 385 

data seems to separate the tissues better than gene expression data. 386 

Hypergeometric enrichment tests were used to identify the pathways that presented 387 

significantly differential flux between each pair of models. These results are available in 388 

the Supplementary File 6. Analyzing the results, it was clear that smaller pathways were 389 

not selected even when only one reaction was not identified as having differential flux. 390 

Therefore, this method seems to be more suitable for analyzing pathways with a large 391 

number of reactions. For this reason, the complete list of reactions with differential flux 392 

between the models was also analyzed. 393 

Comparing the green and mature berry models, reactions from glycolysis, TCA cycle, 394 

and related to nucleotide biosynthesis were identified as having differential flux. In 395 

addition, anthocyanin biosynthesis exhibited more flux in the mature berry, as well as 396 

some reactions involved in the biosynthesis of quercetin and derivatives. This was 397 

expected as the mature berry has anthocyanins and a higher content of sugars in its 398 

biomass composition while demanding a lower content of nucleotides.  399 

Comparisons between the other models are available in Supplementary Material. In 400 

summary, it was expected that the primary metabolic pathways would be identified as 401 

having differential flux between tissues, as tissue models have different demands for 402 

biomass precursors, and produce energy by different processes: the leaf performs 403 

photosynthesis, while the others perform aerobic respiration. Besides these, no relevant 404 

pathways were found to characterize the specific metabolism of each tissue. 405 

 406 

Diel multi-tissue models 407 

Diel multi-tissue models were created to analyze the metabolic interactions between the 408 

leaf, stem, and berry of V. vinifera in the light (day) and dark (night) phases of a diel 409 

cycle. Two models were created, one using the green berry tissue and the other using 410 

the mature berry. The resulting diel multi-tissue models include 32391 and 31999 411 

reactions, and 29064 and 28710 metabolites for green and mature berries, respectively. 412 
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The structure of the multi-tissue diel models is schematized in Figure 8, showing the 413 

different tissues, the diel phases, and the connections between them. 414 

 415 

Figure 8. Schematic representation of the reconstructed diel multi-tissue models of V. vinifera, including 416 

the leaf, stem, and berry tissues and the common pools 1 and 2 in both light and dark phases. Photon 417 

uptake was allowed through the leaf in the light phase while mineral nutrients (nitrate, sulfate, phosphate, 418 

iron, magnesium) were allowed through the stem in both phases. Exchanges of carbon dioxide, oxygen, 419 

and water were allowed in all tissues and phases. Starch, glucose, sucrose, fructose, malate, fumarate, 420 

citrate, and nitrate were allowed to accumulate in the light and dark phases (dashed rectangle between 421 

phases). Amino acids can be stored in the light and used in the dark. Exchanges of amino acids, sucrose, 422 

and minerals were allowed between tissues through common pools. 423 

 424 

pFBA was used to simulate the models, as described in the Materials and Methods 425 

section for photorespiration conditions. The phenotype predictions are available in the 426 

Supplementary File 7. A summary of the results is presented in Table 4 and the fluxes 427 
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for the storage metabolites between light and dark phases are shown in Tables Table 5 428 

and S1, for green and mature berries, respectively.   429 

 430 

Table 4. Summary of the phenotype predictions for the diel multi-tissue models of green and mature 431 

berries under photorespiration with biomass maximization as objective function and fixing the photon 432 

uptake to 300 mmol.gDW
-1

.h
-1

. This table shows the metabolites that are consumed and produced by the 433 

models. The fluxes of the metabolites are in mmol.gDW
-1

.h
-1

 while biomass fluxes are in h
-1

. 434 

  photorespiration 

metabolite green mature 

uptake 

Light__light 300.000 300.000 

NITRATE__light 1.147 1.589 

NITRATE__dark 0.764 1.059 

OXYGEN-MOLECULE_dark 5.999 5.818 

PROTON_light 26.330 27.210 

PROTON_dark 16.790 16.020 

SULFATE_light 0.098 0.112 

SULFATE_dark 0.002 0.001 

WATER_light 31.070 29.770 

CARBON-DIOXIDE_light 35.830 34.920 

production 

OXYGEN-MOLECULE_light 39.810 40.84 

WATER_dark 1.455 2.788 

CARBON-DIOXIDE_dark 0.000 0.000 

HCO3_light 2.995 2.956 

HCO3_dark 5.602 4.475 

Pi_light 0.527 0.384 

Pi_dark 0.527 0.384 

total biomass 0.149 0.142 

 435 

Significant differences were found between the light and dark phases, mainly in the leaf, 436 

as photosynthesis and photorespiration occur in this tissue. The light phase starts with 437 

photosynthesis light reactions and carbon dioxide fixation through the Calvin cycle in the 438 

leaf. The resulting carbohydrates are then used to produce all biomass precursors. 439 

Starch, sucrose, malate, and some amino acids are stored to be used in the leaf during 440 

the dark phase. At night, the active pathways include aerobic respiration, starch 441 

degradation, glycolysis, pentose phosphate, and citrate biosynthesis through the TCA 442 
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cycle. Sucrose was expected to be produced at night but instead, the model uses 443 

fructose 6-phosphate from starch degradation to start glycolysis. The sucrose 444 

requirements for biomass are fulfilled by accumulating very small quantities of sucrose 445 

between light and dark phases (flux value less than 0.02 mmol.gDW-1.h-1). This is an 446 

artifact as the model finds sucrose transport to the dark phase less costly than 447 

producing it. However, sucrose production at night can be assured by forcing flux in the 448 

respective reactions. In addition, starch is the main carbon compound stored in the light, 449 

and it is degraded in the dark phase to produce energy. This was expected as less 450 

energy is needed to mobilize plastidic starch reserves than vacuolar sucrose (Maurice 451 

Cheung et al., 2014). 452 

Table 5. Fluxes for the metabolites stored between light and dark phases in the diel multi-tissue model 453 

with green berry. Positive fluxes indicate that the metabolites are stored in the light phase to be used in 454 

the dark while the metabolites with negative fluxes are stored in the dark to be used during the day. The 455 

fluxes are in mmol.gDW
-1

.h
-1

. 456 

  reaction flux 

leaf 

CIT__vacu_leaf_light_dark_storage -1.354 

CYS__cyto_leaf_light_dark_storage 0.009 

ILE__cyto_leaf_light_dark_storage 0.025 

MAL__vacu_leaf_light_dark_storage 1.168 

MET__cyto_leaf_light_dark_storage 0.011 

NITRATE__vacu_leaf_light_dark_storage -0.020 

PRO__cyto_leaf_light_dark_storage 0.360 

Starch__chlo_leaf_light_dark_storage 0.374 

SUCROSE__vacu_leaf_light_dark_storage 0.020 

THR__cyto_leaf_light_dark_storage 0.051 

stem 

CIT__vacu_stem_light_dark_storage -0.261 

CYS__cyto_stem_light_dark_storage 0.003 

ILE__cyto_stem_light_dark_storage 0.009 

MAL__vacu_stem_light_dark_storage 0.060 

MET__cyto_stem_light_dark_storage 0.015 

NITRATE__vacu_stem_light_dark_storage -0.745 

PRO__cyto_stem_light_dark_storage 0.276 

Starch__chlo_stem_light_dark_storage 0.009 

berry 

CYS__cyto_berry_light_dark_storage 0.009 

ILE__cyto_berry_light_dark_storage 0.025 

PRO__cyto_berry_light_dark_storage 0.162 

Starch__chlo_berry_light_dark_storage 0.013 
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 457 

Then, the citrate produced at night is stored in the vacuole to be used during the day, 458 

entering the TCA cycle. Nitrate is also transported from the dark to the light to support 459 

nitrogen assimilation, which was predicted to occur only during the day. These results 460 

were confirmed by experimental evidence and observed in other plant models (Maurice 461 

Cheung et al., 2014; Cunha et al., 2023b; Gauthier et al., 2010) 462 

However, the entire TCA cycle was expected to occur in the dark phase. This does not 463 

happen in the leaf, as all citrate produced at night is stored in vacuoles to be used 464 

during the day. α-ketoglutarate is produced from the degradation of amino acids like 465 

glutamate and enters the cycle, which is complete until citrate production. The citrate 466 

accumulated, besides feeding the TCA cycle in the light phase, is used for the 467 

biosynthesis of Acetyl Co-A during the day, which is then used for lipid production. 468 

Therefore, the model finds it more efficient to store more citrate to be used during the 469 

day than to complete the TCA cycle in the leaf at night.  470 

Ammonium is provided by the stem and transported to the leaf, where it is used for 471 

amino acid biosynthesis. In addition, phosphate, sulfate, pyruvate, formate, and 472 

glutamate are imported from the stem through common pool 1 in the light and dark 473 

phases to feed amino acid and citrate biosynthesis.  474 

On the other hand, sugars and amino acids produced in the leaf are transported to the 475 

stem. The active pathways in the stem during the day have much lower fluxes than in 476 

the leaf. These include aerobic respiration, sucrose degradation, glycolysis, starch 477 

biosynthesis, pentose phosphate pathway, amino acid, and nucleotide biosynthesis, and 478 

degradation of beta-alanine and uracil.  479 

The leaf and stem metabolisms in the dark phase are similar, and the same metabolites 480 

are stored between the light and dark phases. Also, in the stem, the TCA cycle is 481 

complete during the night, as expected, but a high percentage of the produced citrate is 482 

still stored (around 59%). The berry metabolism is very similar to the stem metabolism, 483 

but the reaction fluxes are even lower, except for the reactions related to folate 484 

biosynthesis. Formate and pyruvate are produced here and transported to the stem 485 
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through common pool 2 to be further transported from the stem to the leaf to be used for 486 

amino acid biosynthesis. Only starch and amino acids are exchanged in the berry 487 

between light and dark phases. 488 

No significant differences were found in the phenotype predictions between green and 489 

mature berries. The total biomass rate is slightly higher in the green berry model (0.149 490 

h-1) than in the mature one (0.142 h-1), and generally, the photosynthetic pathways and 491 

those related to cellular respiration have lower flux in the mature berry. The pathways 492 

related to secondary metabolite biosynthesis, mainly anthocyanins, have flux in the 493 

mature and not in the green berry, as expected, but these fluxes are very low; thus, no 494 

major differences were observed in the primary metabolism. 495 

 496 

Sulfate Assimilation 497 

Sulfur is an important nutrient taken up by plants from the soil in the form of sulfate, and 498 

it is the key element of the amino acids cysteine and methionine. Thus, a major part of 499 

sulfate is used for protein biosynthesis. Sulfur is also a component of glutathione, which 500 

is an important antioxidant agent, and S-adenosyl methionine and coenzyme A, which 501 

are cofactors for several enzymes. Elemental sulfur (S0) is the oldest pesticide applied 502 

to grapevines and it is still widely used nowadays, being particularly effective against 503 

powdery mildew disease, one of the most common diseases affecting grapevines that is 504 

caused by the fungus Erysiphe necator. In addition, sulfur dioxide (SO2) is often used as 505 

a conservative of table grapes or in winemaking to prevent oxidation and microbial 506 

contamination. 507 

Plant exposure to high sulfur levels can lead to the accumulation of sulfur-derived 508 

compounds or affect the metabolism of phenolic compounds, which can change the 509 

flavor, aroma, and texture of grapes and wine (Cheng et al., 2016; Considine and Foyer, 510 

2015). It was observed that residual sulfur on berries can lead to the formation of 511 

undesirable flavors, such as hydrogen sulfide (H2S), during wine fermentation 512 

(Considine and Foyer, 2015). 513 
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V. vinifera diel multi-tissue models were simulated to assess the effect of different 514 

sulfate concentrations on grapevine metabolism. Flux Variability Analysis (FVA) was 515 

used to get the possible range of reaction fluxes while keeping at least 80% of the 516 

maximum total biomass and fixing a photon uptake of 300 mmmol.gDW-1.h-1. Two 517 

different flux values for sulfate uptake in the light phase were tested, 0.01 and 10 518 

mmmol.gDW-1.h-1. The choice of these values was arbitrary, but the goal was to have 519 

one value above and one below the unrestricted sulfate uptake flux (Table 4). Similar 520 

results were obtained for the multi-tissue models with green and mature berries. Thus, 521 

only the results for the green multi-tissue are described. The full results are available in 522 

Supplementary File 8 and detailed in Supplementary Material. 523 

With high sulfate (10 mmmol.gDW-1.h-1), the maximum flux for biomass production 524 

decreased from 0.149 to 0.138 h-1. Similarly, the production of all biomass components 525 

also decreased as well as the flux for primary and secondary metabolism (Figure 9). 526 

 527 

Figure 9. Simplified schema of the main metabolic pathways in the model affected by varying sulfate 528 

levels. Pathways with increased maximum flux under low sulfate conditions are highlighted with a thick 529 
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blue arrow while pathways with increased flux under high sulfate conditions are highlighted with a thick 530 

yellow arrow. Pathways with decreased flux in both conditions are represented by a thin gray arrow. 531 

 532 

As expected, the maximum fluxes of the reactions involved in sulfate assimilation and 533 

oxidation, and glutathione biosynthesis have increased. Surprisingly, in the model, the 534 

biosynthesis of cysteine and methionine decreased with high sulfate levels. During 535 

sulfate reduction, the reaction that produces H2S has a higher maximum flux but the 536 

reaction that uses it to produce cysteine has a lower flux, which leads to a big increase 537 

in the flux of the H2S exchange reaction (Figure 9). This could mean that when plants 538 

are exposed to high sulfur levels, they try to adapt to these conditions by adjusting their 539 

metabolism, leading to the accumulation of H2S or other sulfur compounds that can alter 540 

the flavor and aroma of the grapes. 541 

When plants are under a sulfate deficiency, the production of biomass and all its 542 

components also decreases. For a sulfate uptake of 0.01 mmmol.gDW-1.h-1, the 543 

maximum production of biomass greatly decreased from 0.149 to 0.018 h-1. Hence, the 544 

plant has an excess of carbon skeletons, which are not being used for protein 545 

biosynthesis and are available for the biosynthesis of secondary metabolites, increasing 546 

the available flux for these pathways. Therefore, there was an increase in the flux of 547 

primary pathways, such as sucrose and starch biosynthesis and degradation, 548 

gluconeogenesis, and glycolysis, as well as in the pathways responsible for producing 549 

secondary metabolites, plant hormones, and amino acids that are precursors of 550 

secondary compounds, like phenylalanine (Figure 9). For instance, the maximum flux 551 

for resveratrol synthase reaction during the day increased from 0.41 to 1.75 552 

mmmol.gDW-1.h-1. In addition, there was a great increase in the maximum flux for the 553 

storage of all amino acids, except for cysteine and methionine. Thus, sulfur levels in the 554 

soil can greatly influence grapevine metabolism and affect the flavor and aroma of 555 

grapes by sulfide or sulfur-compound accumulation or changes in the phenolic content 556 

in grapes.   557 

The same approach was applied to assess the effect of different nitrate concentrations 558 

in the V. vinifera model and similar patterns were observed. The full results are available 559 

in Supplementary File 9 and described in Supplementary Material. 560 
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 561 

Machine Learning and Fluxomics 562 

The potential of using ML to analyze fluxomics data generated by metabolic models was 563 

explored. As a significant number of samples is required to train good predictive ML 564 

models, the idea of applying ML to fluxomics data is to study the relationships between 565 

variables and their impact on the output class. With this in mind, 73 context-specific 566 

GSMMs were created by integrating RNA-Seq data from grapes in different 567 

developmental stages. Simulated fluxomics data was then obtained from each GSMM 568 

as described in Materials and Methods. In this case, the output class to be predicted by 569 

the models is the grape developmental phase, green or mature. 570 

First, data was preprocessed and explored using unsupervised methods, starting with t-571 

SNE for data visualization. Before applying the t-SNE, the reactions with the same value 572 

in all samples were removed, which greatly reduced the dataset from 8632 to 2322 573 

features.  574 

The results of the t-SNE are plotted in Figure 10. A clear separation between the two 575 

states is shown as all green samples are located at the top of the plot while most 576 

mature samples are at the bottom. However, six mature samples were grouped with the 577 

green ones. These comprise Cabernet Sauvignon samples from time points 5 and 6 578 

and Pinot Noir samples from time point 5. As veraison is expected to occur between 579 

time points 3 and 4, these results indicate that not many differences exist at the 580 

fluxomics level between green and early mature samples. Even so, fluxomics seems to 581 

distinguish well the remaining green and mature samples. 582 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.30.578056doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.578056
http://creativecommons.org/licenses/by/4.0/


 

27 
 

 583 

Figure 10. t-SNE visualization of the fluxomics data obtained from the 73 context-specific GSMMs. 584 

Samples are colored by the grape developmental stage. 585 

 586 

For the supervised analysis, five different ML model architectures were applied including 587 

logistic regression (LR), K-nearest neighbors (KNN), decision trees (DT), support vector 588 

machine (SVM), and random forests (RF). These ML models were evaluated using 589 

repeated stratified cross-validation with 10 folds and 10 repeats. The average 590 

evaluation results are shown in Table 6. 591 

Table 6. Evaluation results of the ML models for the metrics balanced accuracy, precision, recall, and F1 592 
score. 593 

 

LR KNN DT SVM RF 

BALANCED ACCURACY 0.96 0.95 0.96 0.93 0.97 

PRECISION 0.97 0.96 0.98 0.96 0.98 

RECALL 0.96 0.98 0.95 0.94 0.97 

F1 SCORE 0.96 0.97 0.96 0.94 0.97 

 594 

According to these results, the models are performing well in predicting the grape 595 

developmental stage with this fluxomics dataset. The model's performances across the 596 

different folds are robust, indicating that the models can learn meaningful patterns in the 597 
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data and handle data variations well. Overall, RF obtained higher values for all metrics, 598 

while SVM presented the worst performance. Despite the results being good and the 599 

models being able to generalize correctly on the test set of each fold, the dataset is very 600 

small (73 samples), which is a common problem when working with omics data. Larger 601 

datasets are needed to create better predictive models and draw more conclusions from 602 

the data. Nevertheless, these models represent a good start for understanding which 603 

reactions contribute most to the model's prediction. Hence, SHAP values (Lundberg et 604 

al.) were calculated for the two best models, RF and KNN, and the most contributing 605 

reactions are shown in Figure 11 for RF. The KNN results are described in 606 

Supplementary Material. 607 

 608 

Figure 11.  Beeswarm plot of SHAP values for the reactions that contribute most to RF's predictions. 609 

Features are ordered from higher to lower effects on the predictions. The dots represent a single 610 

observation, and the color indicates if the observation has a higher (pink) or a lower (blue) feature value 611 

compared to the other observations. 612 
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Overall, when the reactions presented high flux capacity (FCa) values, they had 613 

negative SHAP values, leading the model to predict the green state, while with lower 614 

FCa they exhibited higher positive SHAP values, leading the model to predict the 615 

mature state. Hence, all the reactions identified here presented an average FCa value 616 

higher in the green than in the mature grapes. 617 

For the RF model, RXN0-882 in the chloroplast is the reaction that most contributes to 618 

the predictions. Similarly, high fluxes of this reaction have negative SHAP values 619 

(around -0.15), classifying the samples as green, while lower fluxes have positive SHAP 620 

values (close to 0.10), classifying the samples as mature. There are some exceptions to 621 

this trend, such as the chloroplastic THREONINE-ALDOLASE-RXN and THRESYN-622 

RXN reactions that show positive SHAP values when presenting high flux, indicating 623 

that samples classified as mature by the models can also have high fluxes in these 624 

reactions. 625 

Of the 20 reactions identified for each model, 10 have a high impact on both models, 626 

indicating that the results are reliable and robust and that these features are important 627 

for predicting the output. Most of these reactions are involved in the methylerythritol 628 

phosphate (MEP) pathway, which is responsible for the biosynthesis of the terpenoid 629 

precursors (Figure 4), threonine degradation into glycine, and the transport of 630 

glycerides. The remaining reactions identified only with the RF model are involved in the 631 

biosynthesis of nucleotides, 4-aminobenzoate, and threonine.  632 

The accumulation of terpenoids in grapes typically starts before veraison, which can 633 

explain why the reactions associated with the biosynthesis of terpenoid precursors had 634 

higher FCa in the green state. However, terpenoid biosynthesis intensifies after 635 

veraison, which is not observed in the fluxes of these reactions. Fasoli et al., 2018 have 636 

also identified terpene metabolism as a negative biomarker for the onset of ripening. In 637 

addition, the abscisic acid (ABA) signaling is increased at veraison, and ABA is derived 638 

from carotenoids, whose biosynthesis starts with the MEP pathway. Thus, there is 639 

strong evidence that genes or reactions from the MEP pathway could be used as 640 

biomarkers for the onset of ripening. 641 
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In the green phase, as grapes are rapidly growing, the metabolism of amino acids, 642 

nucleotides, and lipids is expected to be more active than in the mature phase. 4-643 

aminobenzoate is a precursor for the biosynthesis of various metabolites, such as 644 

tetrahydrofolates, which are involved in several processes like photorespiration, amino 645 

acid metabolism, and protein biosynthesis. These pathways are also expected to be 646 

more active in the green phase. This fact may explain why the reactions related to these 647 

pathways are important for the model's predictions. However, it is not clear why 648 

threonine metabolism is more important for the model than the metabolism of the other 649 

amino acids. Nevertheless, the models presented good predictions, associating high 650 

fluxes of these reactions to predict the green state and low fluxes to predict the mature 651 

state. 652 

 653 

Materials and methods 654 

 655 

Metabolic data source 656 

The metabolic information of PlantCyc 14.0 (Zhang et al., 2010) and MetaCyc 26.1 657 

(Caspi et al., 2016) databases was saved and organized in a repository named iplants, 658 

using Neo4j (Huang and Dong, 2013) and MongoDB (Jose and Abraham, 2017) 659 

database management systems. These NoSQL databases do not store data in 660 

relational tables, having instead a more flexible schema. Neo4j uses a graph structure, 661 

while MongoDB uses a document structure to represent data. The implementation and 662 

management of the databases were performed with Python 3.8, using the Neomodel 663 

package, an object graph mapper for Neo4j, and Mongoengine, an object document 664 

mapper for MongoDB. The Neo4j database saved the connections between 665 

metabolites, reactions, enzymes, genes, pathways, organisms, and models, while 666 

MongoDB stored metadata for all Neo4j entities. UniProt (The UniProt Consortium, 667 

2017) data for enzymes were also collected when available, and added to MongoDB, 668 

including protein function, localization, sequence, and annotation status. 669 

In addition, nine plant metabolic models of different species were integrated into the 670 

repository, comprising A. thaliana, O. sativa, M. truncatula, S. viridis, G. max, and S. 671 
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lycopersicum. This integration involved matching the iplants entry identifier with the 672 

identifier in the models and connecting the model object with the associated objects in 673 

the database. 674 

Model Reconstruction 675 

The reconstruction of the GSMM of V. vinifera was based on the PN40024.v4 genome 676 

and the PN40024.v4.1 annotation version, which includes 35922 genes and 41160 677 

proteins (Velt et al., 2023). All the main steps and analyses were performed using 678 

Python 3.8 and COBRApy version 0.25 (Ebrahim et al., 2013) and are schematized in 679 

Figure 12. 680 

 681 

Figure 12. The main steps of the V. vinifera GSMM reconstruction. Genome annotation is performed 682 

using DIAMOND with the protein sequences from the database and V. vinifera proteins from the genome. 683 

The identified enzymes are used to get all metabolic information from the database as well as to define 684 

the GPR rules in the model. Next, the mass balance of reactions is checked and fixed whenever possible. 685 

Unbalanced non-essential reactions were removed from the model. Then, subcellular compartments were 686 

predicted using LocTree3 and Wolfpsort tools, and transporters between these compartments were 687 

predicted using TranSyt. Finally, biomass, exchange, and energy requirement reactions were defined, and 688 

the model was manually validated, using BioISO to verify biomass production. The final model was 689 

simulated using different methods, such as FBA and FVA, and the results were analyzed to validate the 690 

model. 691 

 692 

The reconstruction started with genome annotation which was based on DIAMOND 693 

(Buchfink et al., 2014) similarity searches of V. vinifera proteins against the protein 694 

sequences in iplants, to assign enzymatic functions and associate reactions to V. 695 

vinifera proteins. Using only the iplants database to perform the annotation facilitated 696 
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the identification of the reactions to include in the model. DIAMOND searches were 697 

performed against the SwissProt database to determine the completeness of important 698 

enzyme annotations in iplants. In the course of these searches, it was found that more 699 

than 17,000 V. vinifera proteins had a match in SwissProt. However, most proteins were 700 

involved in other processes like transcription regulation, protein phosphorylation, and 701 

nuclear transport, which are not relevant to be included in the metabolic model. 702 

Based on the iplants' annotation, the reactions linked to the identified enzymes and 703 

spontaneous reactions were assembled to create a draft metabolic network. WolfPsort 704 

(Horton et al., 2007) and LocTree3 (Goldberg et al., 2014) were used to predict the 705 

subcellular location of the proteins. However, due to contradictory outcomes from these 706 

tools, manual curation of the results was deemed necessary. For instance, certain 707 

enzymes catalyzing the reactions of the sphingolipid biosynthesis, like serine C-708 

palmitoyltransferase and dihydroceramide fatty acyl 2-hydroxylase reactions, were 709 

predicted to be on the endoplasmic reticulum by Loctree3 and in the chloroplast or 710 

cytosol by WolfPSort. In this case, the annotations collected from UniProt were 711 

considered and the location of these enzymes was defined to be the endoplasmic 712 

reticulum. The thylakoidal and mitochondrial intermembrane compartments were added 713 

manually for the photosynthesis and oxidative phosphorylation reactions, respectively. 714 

Transport reactions were automatically identified using  TranSyT (Cunha et al., 2023a) 715 

and added to the model. Additional transporters were manually included in the model 716 

when required. All reactions were validated for mass and charge balance. 717 

 718 

Biomass composition 719 

The definition of tissue-specific biomass compositions is crucial to obtaining good 720 

models capable of simulating the specific metabolism of each tissue. Biomass is 721 

composed of macromolecules labeled "e-metabolites", which are required for cell 722 

growth, including RNA, DNA, proteins, carbohydrates, lipids, co-factors, and cell wall 723 

components. Ideally, experimental data should be used to define biomass composition 724 

for different tissues. However, as these data are not available for V. vinifera, the 725 

biomass content was estimated based on previously published plant GSMMs and 726 
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insights from the literature.  Specifically, the biomass formulation for leaf, stem, and 727 

green berry was based on the models of A. thaliana (Dal’Molin et al., 2010; de Oliveira 728 

Dal’Molin et al., 2015), S. lycopersicum (Yuan et al., 2016), and Q. suber (Cunha et al., 729 

2023b), while the biomass of the mature berry was adjusted according to the literature 730 

(Cheng et al., 2016) and the metabolomics data available for the same samples used to 731 

obtain the RNA-Seq data (Fasoli et al., 2018). Details of the biomass composition are 732 

available in Supplementary File 3. 733 

The monomer contents for the production of DNA, RNA, and proteins were calculated 734 

from the genome sequence using the biomass tool (Santos and Rocha, 2016), available 735 

in merlin (Dias et al., 2015). The reactions for the production of the cell wall, 736 

carbohydrates, fatty acids, lipids, and co-factors were also adapted from A. thaliana and 737 

Q. suber models. The e-Cofactor metabolite includes several universal cofactors, such 738 

as NAD(H), and vitamins, and in the case of leaf, it also includes pigments, such as 739 

chlorophylls. The content of carbohydrates was adapted to reflect the grape 740 

composition described in the literature. For instance, tartaric acid was added to the 741 

model as it was described as the main organic acid found in grapes and it is not present 742 

in any other plant model (Cheng et al., 2016). For mature berries, the content of sugars 743 

and organic acids was adjusted to reflect the changes in berry composition during 744 

maturation. In addition, some secondary metabolites were added to the carbohydrate 745 

reaction of the mature berry based on metabolomics data (Fasoli et al., 2018). These 746 

metabolites were found in mature grapes and mainly included anthocyanins, such as 747 

malvidin 3-glucoside, peonidin 3-O-glucoside, and petunidin-3-O-glucoside. 748 

Manual validation 749 

Manual curation was an essential step during the reconstruction process. Literature and 750 

biological databases, such as Kyoto Encyclopedia of Genes and Genomes (KEGG)  751 

(Kanehisa et al., 2017), National Center for Biotechnology Information (NCBI) (Sayers 752 

et al., 2022), BRaunschweig Enzyme Database (BRENDA) (Placzek et al., 2017) and 753 

UniProt (The UniProt Consortium, 2017), were consulted to retrieve additional 754 

information about specific reactions, enzymes, or pathways.  755 
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Validating the model required verifying its ability to produce biomass. BioISO (Cruz et 756 

al., 2024) was used to accomplish this goal, as it verifies the production of each 757 

biomass substrate to see which ones are missing. Then, the gaps in the model were 758 

analyzed and filled in when necessary for the production of essential metabolites. Also, 759 

it was assured that growth did not occur without photons and carbon sources, and no 760 

futile cycles were present. Then, dead-end metabolites and blocked reactions were 761 

identified, and each blocked reaction was analyzed and fixed by resorting to other 762 

databases. When no information was available, the blocked reactions were kept in the 763 

model. 764 

Finally, the model's capability to accurately simulate key metabolic processes like 765 

photosynthesis, photorespiration, and respiration was confirmed. This was achieved 766 

through the application of diverse methods, including Flux Balance Analysis (FBA), 767 

parsimonious FBA (pFBA), and Flux Variability Analysis (FVA). FBA (Varma and 768 

Palsson, 1994), which uses linear programming to calculate an optimal flux distribution 769 

for a given objective function, has been extensively used to simulate GSMMs. However, 770 

usually, multiple optimal solutions exist in the solution space for a given objective. 771 

Hence, pFBA has emerged as a novel approach. It refines the traditional FBA by 772 

selecting a flux distribution from the FBA optimal space that minimizes the total sum of 773 

fluxes (Lewis et al., 2010). Likewise, FVA (Mahadevan and Schilling, 2003) is used to 774 

determine the span of flux variability of GSMMs in simulations by calculating the 775 

minimum and maximum flux of each reaction for a defined set of constraints. 776 

 777 

 778 

Tissue-specific Models 779 

 780 

Omics Data 781 

Available RNA-Seq data from different tissues were used to create specific GSMMs for 782 

stem, leaf, and berry. Due to the absence of a single study providing RNA-Seq data for 783 

all three tissues, we resorted to using two distinct studies to gather the necessary 784 

information. Leaf and stem data were retrieved from the healthy samples of V. vinifera 785 
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Cabernet Sauvignon cultivar in the study of Massonnet et al., 2017b (Gene Expression 786 

Omnibus (GEO) accession: GSE97900). RNA-Seq data for the C. Sauvignon berries 787 

was obtained from the study of Fasoli et al., 2018 (GEO accession: GSE98923), which 788 

included berry samples in different developmental stages and associated metabolomics 789 

data. The time-point metadata for these samples was grouped into two developmental 790 

stages, green and mature, to create a metabolic model for each state. Samples until 791 

time point 4 were considered to be in the green state, while samples after time point 4 792 

were considered to be mature. Although sample time 4 was collected 7 days after 793 

veraison, it was still considered to be in the green phase to reduce class imbalance.    794 

These datasets were retrieved from GRape Expression ATlas (GREAT) (Velt and 795 

Rustenholz, 2023). GREAT is a gene expression atlas for grapevine that integrates all 796 

public RNA-Seq experiments,  allowing the analysis and visualization of the data. The 797 

RNA-Seq data were already normalized in transcripts per million (TPM) and the reads 798 

were mapped to the new genome (PN40024.v4).  799 

A dataset with all collected data and respective metadata was built, and a log2 800 

transformation was applied to the gene expression values. Finally, the gene identifiers in 801 

the datasets were mapped to the protein identifiers present in the model to allow for 802 

omics integration. 803 

 804 

Models 805 

Tissue-specific models for stem, leaf, green berry, and mature berry were reconstructed 806 

using the FASTCORE algorithm (Vlassis et al., 2014) implemented in the Troppo 807 

package (Ferreira et al., 2020). This algorithm identifies the reactions that should be 808 

removed or kept in the model, based on the expression levels of the genes associated 809 

with each reaction through GPR rules, resulting in models with different reaction 810 

content. 811 

The reconstructed generic model and the omics dataset were used as input for this 812 

algorithm, and the local T2 thresholding strategy (Richelle et al., 2019) was applied to 813 

preprocess the omics data before integrating it into the model. In this strategy, two 814 

global thresholds, upper and lower, are defined, and genes whose expression is below 815 
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the lower threshold are considered to be inactive, while genes whose expression is 816 

above the upper threshold are considered to be active. Genes with expression levels 817 

between these two thresholds may be active or not and further analysis is performed by 818 

comparing the expression values to a local threshold. This is a gene-specific threshold 819 

that accounts for the expression levels of each gene over all samples, while the global 820 

thresholds have the same value for all genes. This strategy was employed as it was 821 

described to obtain better results (Richelle et al., 2019). 822 

In this work, we selected the percentiles 25 and 75 for the global lower and upper 823 

thresholds, respectively, and the percentile 50 (median) for the local threshold. The 824 

pseudo-reaction representing the drain of macromolecules required to create a new unit 825 

of biomass was included in the set of protected reactions of the algorithm so that all 826 

tissue-specific models would be able to produce biomass. 827 

Phenotype predictions 828 

Phenotype predictions of the tissue-specific models were performed by pFBA, using two 829 

different strategies as applied in other plant models (Dal’Molin et al., 2010; Cunha et al., 830 

2023b) and based on A. thaliana experimental measures (Niemann et al., 1995). The 831 

first consisted of fixing the biomass growth rate to 0.11h-1 and defining the minimization 832 

of the photon/sucrose uptake as the objective function. The second strategy defined the 833 

biomass growth rate as the objective function and fixed the photon uptake to 100 834 

mmmol.gDW-1.h-1 for photosynthesis and photorespiration and the sucrose uptake to 1 835 

mmmol.gDW-1.h-1 for respiration. Photorespiration was simulated by constraining the 836 

carboxylation (RIBULOSE-BISPHOSPHATE-CARBOXYLASE-RXN) and oxygenation 837 

(RXN-961) reactions by Rubisco with a flux ratio of 3:1 (Dal’Molin et al., 2010; Cunha et 838 

al., 2023b). 839 

 840 

Differential Flux Analysis 841 

Differential flux analysis between the created tissue models was performed using the 842 

approach of (Nanda and Ghosh, 2021). In this approach, sample fluxes for the tissue 843 

models were generated using Artificial Co-ordinate Hit and Run (ACHR) sampler 844 
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(Bordel et al., 2010) from CobraPy, with a thinning factor of 100 and a sample size of 845 

10000 for each model. Pairwise Kolmogorov-Smirnov tests were used to compare the 846 

flux distribution of the distinct tissue models. The flux change (FC) of each reaction 847 

between the two models was also calculated as shown in Equation (1), where 𝑆𝑚̅𝑜𝑑𝑒𝑙1  848 

and 𝑆𝑚̅𝑜𝑑𝑒𝑙2 represent the mean of the flux distributions for a reaction in model1 and 849 

model2, respectively. Reactions with an absolute value less than 0.82 (equivalent to a 850 

10-fold change in flux) were considered insignificant. 851 

𝐹𝐶 =  
𝑆𝑚̅𝑜𝑑𝑒𝑙1− 𝑆̅𝑚𝑜𝑑𝑒𝑙2

|𝑆𝑚̅𝑜𝑑𝑒𝑙1+ 𝑆̅𝑚𝑜𝑑𝑒𝑙2|
  852 

For reactions that are absent in a model, their flux is assumed to be zero in that model, 853 

and bootstrapping is used to estimate the 95% confidence interval of their fluxes. If zero 854 

is outside the interval, the reactions are considered to have differential flux in the two 855 

models. In addition, the p-values of altered reactions were adjusted by a Benjamini-856 

Hochberg correction, with a significance level of 0.05. The differential pathways 857 

between models were obtained using hypergeometric enrichment tests that select the 858 

pathways that are over-represented due to the higher number of altered reactions and 859 

not by chance.  860 

T-distributed Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten and Hinton, 861 

2008) was used to visually compare the sampled flux data of the different tissue 862 

models. This tool is a dimensionality reduction algorithm that allows for nonlinear data 863 

separation. Before applying t-SNE, the flux data was filtered, keeping only the reactions 864 

with altered flux between models, and scaled to z-scores. 865 

 866 

Diel multi-tissue models 867 

 868 

Models 869 

Multi-tissue models were created by joining the tissue-specific models and connecting 870 

them by two common pools, one between stem and leaf, and the other between stem 871 

and berry, based on a previous approach (de Oliveira Dal’Molin et al., 2015). Transport 872 

reactions between tissues and common pools were manually added when required. 873 

(1) 
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Given that a model for the root was not developed, we assumed that the uptake of 874 

minerals occurs in the stem. Exchanges of water, oxygen, and carbon dioxide were 875 

allowed in all tissues, and light absorption was allowed only in the leaf model. Two multi-876 

tissue models were created, one with the berry in the green phase and the other with 877 

the mature berry. 878 

Additionally, diel models were created to account for light and dark phases. All reactions 879 

and metabolites were duplicated for each phase, and new reactions were added to 880 

allow the exchange of some metabolites between the two phases. These are called 881 

storage metabolites and include the 20 amino acids, nitrate, citrate, malate, glucose, 882 

sucrose, fructose, and starch, which can be produced in one phase and used in the 883 

other, as previously described (Maurice Cheung et al., 2014). 884 

 885 

Phenotype predictions 886 

Phenotype predictions using multi-tissue diel models were also performed with pFBA 887 

using the second strategy mentioned above for photorespiration conditions, but with a 888 

photon uptake of 300 mmmol.gDW-1.h-1 as flux values were very low with 100 889 

mmmol.gDW-1.h-1. As in other plant diel models (Maurice Cheung et al., 2014; Shaw 890 

and Cheung, 2018; Cunha et al., 2023b), the nitrate uptake was constrained to a ratio of 891 

3:2 in the light and dark cycle. 892 

 893 

Machine learning and Fluxomics 894 

Data 895 

All samples from the RNA-Seq dataset from Fasoli et al., 2018 were used to create 896 

simulated fluxomics data for grapes in the green and mature state, by using the 897 

iMS7199 model and the aforementioned phenotype prediction approaches to reach flux 898 

distributions. Firstly, the mean expression value of all replicates was calculated to 899 

represent each biological sample, resulting in a dataset with 73 samples, 55% from 900 

Cabernet Sauvignon and 45% from Pinot Noir, and the log2 expressions of the 6018 901 

genes in the model. As performed before, these samples were discretized into two 902 
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developmental stages, green and mature, which represent the output class to be later 903 

predicted by the ML models. Then, the final RNA-Seq dataset was integrated with the 904 

generic V. vinifera model to create GSMMs representing each sample in the dataset 905 

using the FASTCORE algorithm as described before. In total, 73 context-specific 906 

models were created, one per sample. The resulting sample-specific GSMMs were 907 

simulated using FVA and the flux capacity (FCa) of each reaction was calculated by 908 

subtracting the maximum and minimum flux obtained for each reaction while keeping 909 

80% of the maximum biomass value (Equation (2)).  Before running FVA, all reactions 910 

were made irreversible to facilitate the interpretation of results. The reactions absent in 911 

the models were considered to have a capacity of 0. 912 

𝐹𝐶𝑎(𝑟) = 𝐹𝑙𝑢𝑥𝑚𝑎𝑥(𝑟) −  𝐹𝑙𝑢𝑥𝑚𝑖𝑛(𝑟) 

Models 913 

The analysis of fluxomics with ML was performed in Python 3.11 with Scikit-learn 1.2.2. 914 

For the unsupervised analysis, the dataset was filtered to remove the reactions with the 915 

same FCa across all samples using VarianceThreshold and scaled by StandardScaler. 916 

t-SNE was applied to visualize the distribution of the data. For the supervised analysis, 917 

the original dataset was divided into train and test sets by cross-validation with 10 folds 918 

and repeated 10 times, using the RepeatedStratifiedKfold function. In each iteration, 919 

feature selection was performed using VarianceThreshold and, as the number of 920 

features was still high, the SelectKBest function was used to select the 500 most 921 

relevant features based on ANOVA F-values. In addition, the resulting dataset was also 922 

scaled by StandardScaler. Then, an ML model fitted the train data and predicted the 923 

output classes for the test set. Five different ML models were tested including logistic 924 

regression, K-nearest neighbors, decision trees, support vector machine, and random 925 

forests. These were evaluated by different metrics, such as recall (Equation (3)), 926 

precision (Equation (4)), balanced accuracy (Equation (5)), and F1 score (Equation (6)), 927 

which were averaged across all train-test splits. 928 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 

(2) 

 

(4) 

(5) 

(3) 

) 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  0.5 ∗ (𝑟𝑒𝑐𝑎𝑙𝑙 +  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗  𝑇𝑃

𝑇𝑃 + 0.5 (𝐹𝑃 + 𝐹𝑁)
 

The importance of each feature in the prediction of the output was analyzed by 929 

calculating the SHAP values for each classifier. SHAP values (SHAPley Additive 930 

exPlanations) are defined based on the contribution of each feature to the prediction of 931 

each sample and are used to increase the interpretability of ML models. Larger absolute 932 

SHAP values have a larger effect on the prediction (Lundberg et al.). The SHAP values 933 

for each fold of the repeated cross-validation were calculated, and the average SHAP 934 

values for each sample were calculated to give a more stable representation of the 935 

feature contributions. 936 

 937 

Conclusion  938 

In this work, we reconstructed the first GSSM of V. vinifera. This model is based on the 939 

latest V. vinifera genome and database knowledge, including primary and secondary 940 

metabolic pathways, mainly related to flavonoids and hormone biosynthesis. The model 941 

can simulate grapevine metabolism under photosynthesis, photorespiration, and 942 

respiration. RNA-Seq data was integrated with this generic model to build tissue-specific 943 

models for the leaf, stem, green berry, and mature berry of V. vinifera Cabernet 944 

Sauvignon cultivar. Multi-tissue models were built by connecting the tissue-specific 945 

models, and the diel cycle was introduced in the models by replicating the multi-tissue 946 

model for both light and dark phases. Two diel multi-tissue GSMMs were built, one 947 

using the green berry tissue and the other using the mature berry tissue. The models 948 

were used to simulate the metabolic responses of grapevine to different levels of sulfate 949 

and nitrate. The results indicated that with low nitrate or low sulfate, less biomass is 950 

produced, and more flux is expected in the respiratory pathways, fatty acid production, 951 

and secondary pathways. Conversely, with high levels of nitrate or sulfate, the maximum 952 
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flux of secondary reactions has decreased, as well as most primary pathways of sugar 953 

metabolism. Hence, controlling the soil levels of nitrate and sulfate in specific stages of 954 

development can help control the phenolic and sugar content in the grapes, which will 955 

affect their quality. 956 

The reconstructed metabolic models developed here can be a valuable tool for 957 

analyzing and predicting the metabolic behavior of grapevine under different 958 

environmental conditions and assessing its metabolic potential and fruit quality, which 959 

can be important for wine production. 960 

Fluxomics data were generated from GSMMs of green and mature grapes and analyzed 961 

using ML techniques. The resulting models obtained very good results in predicting the 962 

grape developmental stage, with accuracy, precision, recall, and F1 scores higher than 963 

90%. The reactions that contributed the most to the model's predictions are associated 964 

with different pathways, including MEP, threonine, nucleotide metabolism, and 965 

ascorbate degradation, and presented higher fluxes in the green state.  Although these 966 

pathways are not the main differences between green and mature grapes found in the 967 

literature, the results suggest that their fluxes are significantly different between the two 968 

states. 969 

A deeper understanding of plant metabolic pathways is essential to develop more robust 970 

GSMMs. Additionally, the creation of larger omics datasets is crucial for developing 971 

more realistic predictive ML models, enabling more advanced analyses such as the 972 

identification of biomarkers for disease or environmental stress resistance. This 973 

approach not only represents a novel and pioneering effort in integrating omics, 974 

GSMMs, and ML in plant metabolism studies but also showcases the significant 975 

potential of applying this strategy for more insightful analyses, as additional data 976 

becomes available. 977 

 978 
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 980 
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