

1 **Cooperativity of c-MYC with Krüppel-Like Factor 6 Splice Variant 1 induces**
2 **phenotypic plasticity and promotes prostate cancer progression and metastasis**

3

4 Sudeh Izadmehr^{1,2,3}, Heriberto Fernandez-Hernandez², Danica Wiredja⁴, Alexander
5 Kirschenbaum⁵, Christine Lee-Poturalski², Peyman Tavassoli⁶, Shen Yao⁷, Daniela
6 Schlatzer⁴, Divya Hoon², Analisa Difeo⁸, Alice C. Levine⁷, Juan-Miguel Mosquera⁶,
7 Matthew D. Galsky^{1,9}, Carlos Cordon-Cardo^{3,9}, Goutham Narla^{9#}

8

9 1. Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer
10 Institute, Icahn School of Medicine at Mount Sinai, New York, NY.

11 2. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
12 Sinai, New York, NY.

13 3. Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of
14 Medicine at Mount Sinai, New York, NY.

15 4. Center for Proteomics and Bioinformatics, Case Western Reserve University,
16 Cleveland, OH.

17 5. Department of Urology, Icahn School of Medicine at Mount Sinai. New York, NY.

18 6. Department of Pathology and Laboratory Medicine, The Caryl and Israel Englander
19 Institute for Precision Medicine, Weill Cornell Medical College, New York-Presbyterian
20 Hospital, New York, NY.

21 7. The Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine
22 at Mount Sinai, New York, NY.

23 8. Department of Pathology, University of Michigan, Ann Arbor, MI.

24 9. Division of Genetic Medicine, Department of Internal Medicine, University of Michigan,
25 Ann Arbor, MI.

26 #These authors contributed equally to this work.

27

28 **Correspondence**

29 Goutham Narla MD, PhD: goutham.narla@med.umich.edu

30

31 **Keywords**

32 Prostate Cancer, Metastasis, Oncogene, Transgenic Mouse Model, Genetically

33 Engineered Mouse Model, Splice Variant, c-MYC, KLF6-SV1, Krüppel-like factor, KLF6

34

35 **Abstract**

36 Metastasis remains a major cause of morbidity and mortality in men with prostate
37 cancer, and the functional impact of the genetic alterations, alone or in combination,
38 driving metastatic disease remains incompletely understood. The proto-oncogene c-
39 MYC, commonly deregulated in prostate cancer. Transgenic expression of c-MYC is
40 sufficient to drive the progression to prostatic intraepithelial neoplasia and ultimately to
41 moderately differentiated localized primary tumors, however, c-MYC-driven tumors are
42 unable to progress through the metastatic cascade, suggesting that a “second-hit” is
43 necessary in the milieu of aberrant c-MYC-driven signaling. Here, we identified
44 cooperativity between c-MYC and KLF6-SV1, an oncogenic splice variant of the KLF6
45 gene. Transgenic mice that co-expressed KLF6-SV1 and c-MYC developed progressive
46 and metastatic prostate cancer with a histological and molecular phenotype like human
47 prostate cancer. Silencing c-MYC expression significantly reduced tumor burden in
48 these mice supporting the necessity for c-MYC in tumor maintenance. Unbiased global
49 proteomic analysis of tumors from these mice revealed significantly enriched vimentin, a
50 dedifferentiation and pro-metastatic marker, induced by KLF6-SV1. c-MYC-positive
51 tumors were also significantly enriched for KLF6-SV1 in human prostate cancer
52 specimens. Our findings provide evidence that KLF6-SV1 is an enhancer of c-MYC-
53 driven prostate cancer progression and metastasis, and a correlated genetic event in
54 human prostate cancer with potential translational significance.

55

56 **Introduction**

57 Prostate cancer, the most diagnosed cancer in men, is a genetically heterogeneous and
58 clinically complex disease (Siegel RL et al., 2021). Genetic alterations necessary or
59 sufficient for prostate tumors to transition from localized to disseminated disease are
60 incompletely understood. This gap in understanding has posed a challenge clinically in
61 predicting tumor aggressiveness. Genomic and transcriptomic studies of human prostate
62 tumors have identified commonly deregulated genetic events (Dhanasekaran SM et al.,
63 2001, Lapointe J et al., 2004, Taylor BS et al., 2010, Grasso CS et al., 2012), many of
64 which have since been functionally and mechanistically characterized using genetically
65 engineered mouse models (GEMM). These prostate GEMMs have characteristically
66 modeled the early stages of disease, but few have modeled the complete spectrum of
67 disease development and progression.

68 Extensive scientific evidence has demonstrated that the activation of the cellular proto-
69 oncogene c-MYC is a causative event in the induction of cancer and is frequently
70 deregulated in human prostate cancer (Dhanasekaran SM et al., 2001, Lapointe J et al.,
71 2004, Taylor BS et al., 2010, Grasso CS et al., 2012). c-MYC mRNA and nuclear c-
72 MYC protein are expressed in early stages of human prostate cancer signifying that
73 deregulated c-MYC protein is an early alteration in prostate tumorigenesis (Gurel B et
74 al., 2008). Increased expression of c-MYC is sufficient to initiate prostatic intraepithelial
75 neoplasia (PIN) and localized low-grade prostate adenocarcinoma *in vivo*, however, is
76 insufficient to induce further progression suggesting that multiple genetic events are
77 necessary and can cooperate to drive progression to metastatic disease (Zhang X et al.,
78 2000, Ellwood-Yen K et al., 2003, Ellis L et al., 2016, Kim J et al., 2009, Yang G et al.,
79 2012, Nguyen HG et al., 2018). Prior studies modeled by double transgenic or knock-out
80 GEMMs of c-MYC and a “second-hit” (e.g., PTEN (Kim J et al., 2009), TMPRSS2-ERG

81 (King JC et al., 2009), AKT (Clegg NJ et al., 2011), Caveolin-1 (Yang G et al., 2012),
82 NF-κB (Jin RJ et al., 2008), PIM1 (Wang J et al., 2010), and Hepsin (Nandana S et al.,
83 2010), Nanog (Liu B et al., 2017) have predominantly shown moderate degrees of
84 cooperativity inducing mPIN and indolent disease, and in a few models (e.g. PTEN or
85 RAS gain (Thompson TC et al., 1989, Hubbard GK et al., 2016, Arriaga JM et al., 2020))
86 progression was prompted to locally advanced and metastatic disease. GEMMs, which
87 model human prostate cancer, can aid in our understanding of the role of c-MYC in
88 cellular transformation and tumor progression. We previously identified splice variant 1
89 (SV1) of the KLF6 tumor suppressor gene, KLF6-SV1, as a metastasis-promoting late
90 event in tumorigenesis that induces invasion and dedifferentiation in prostate cancer
91 (Narla G et al., 2005; Narla G et al., 2005; Narla G et al., 2008). Due to splicing, KLF6-
92 SV1, a cytoplasmic protein, lacks the C-terminus C2H2 three zinc-finger DNA binding
93 domains, characteristic of Krüppel-like factors, and a nuclear localization signal (Narla G
94 et al., 2005). A novel C-terminal sequence of 21 amino acids replaces these regions.
95 Increased KLF6-SV1 expression has been associated with prostate cancer tumor
96 growth, metastasis, hormone refractory disease, and poor survival (Narla G et al., 2005;
97 Narla G et al., 2005; Narla G et al., 2008).

98 The multistep nature of tumorigenesis has been established to be in part due to the
99 consecutive activation of several dominantly acting oncogenes. Here, we have taken two
100 genetic alterations, KLF6-SV1 and c-MYC, observed in human prostate tumors that have
101 temporal significance and modeled them in mice and human cells. We report for the first
102 time a KLF6-SV1 GEMM and a double-transgenic GEMM expressing both c-MYC and
103 KLF6-SV1, herein MYC-SV1, that faithfully recapitulate the molecular features and
104 clinical phases of human prostate cancer. Coupled with supportive clinical and
105 comprehensive proteomic studies, we define the oncogenic splice variant, KLF6-SV1, as

106 a major contributor to c-MYC-driven prostate tumorigenesis and metastatic disease
107 through the upregulation of vimentin. We demonstrate that disrupting the cooperativity of
108 c-MYC and KLF6-SV1 can effectively prevent tumor progression. These findings provide
109 further molecular and mechanistic insights into the oncogenic drivers of prostate cancer
110 progression.

111

112 **Results**

113

114 **KLF6-SV1 expression induces premalignant transformation in the mouse prostate**

115

116 Our central hypothesis is that aberrant KLF6-SV1 expression in c-MYC-driven prostate
117 cancer is sufficient to drive localized tumors through the full metastatic cascade. To test
118 this hypothesis and determine whether KLF6-SV1 contributes to disease initiation *in*
119 *vivo*, we engineered transgenic mice expressing the human KLF6-SV1 gene under the
120 control of the β-Actin promoter like designs used previously in prostate mouse models
121 (Roh M et al., 2006; Kim J et al., 2009) (Figure 1A). Prostates from KLF6-SV1 mice were
122 harvested and compared to wild-type (WT) littermate controls (Figure 1B, C).
123 Immunohistochemistry (IHC) and Hematoxylin and Eosin (H&E) staining were used to
124 histologically evaluate the cells of the mouse prostate (Figure 1D-F). KLF6-SV1 GEMM
125 harbored focal low-grade mouse prostatic intraepithelial neoplasia (mPIN) by 10 months
126 of age (n=8/11 mice, $P < 0.0001$), suggesting that KLF6-SV1 can induce pre-neoplastic
127 transformation. A subset of KLF6-SV1 GEMM developed benign hyperplasia of the
128 prostate (n = 2/11 mice) or remained unchanged (n = 1/11) (Figure 1E, F). mPIN lesions
129 were in the dorsal (DP) and anterior (AP) prostate lobes of the mouse prostate. α-SMA
130 and p63 IHC staining confirmed the *in situ* nature of the mPIN lesions in KLF6-SV1

131 GEMM by the presence of an intact basal layer (p63-positive basal cells) and
132 fibromuscular layer (α -SMA-positive fibromuscular cells) (Figure S2B, S2C). However,
133 the mPIN lesions were self-limited during the lifespan of the mice. KLF6-SV1 expression
134 alone was insufficient to initiate an overt tumor of the mouse prostate in the specific
135 genetic context of this model, providing evidence that KLF6-SV1 is sufficient to induce a
136 pre-cancer phenotype in the prostate modeling the early stages of human prostate
137 cancer similar to those observed in other established transgenic models of the disease
138 (e.g. AKT, TMPRSS2-ERG, PTEN, and c-MYC (Zhang X et al., 2000; Ellwood-Yen K et
139 al., 2003; King JC et al., 2009; Clegg NJ et al., 2011)).

140

141 **KLF6-SV1 drives the rapid progression of prostate adenocarcinoma in**
142 **cooperation with c-MYC**

143

144 To investigate whether KLF6-SV1 functions as a secondary genetic event to promote
145 tumor progression in c-MYC-driven prostate cancer, we crossed KLF6-SV1 transgenic
146 mice with Hi-Myc transgenic mice, a prostate-specific model that uses the epithelial-
147 specific rat probasin promoter to overexpress human c-MYC (Ellwood-Yen K et al.,
148 2003), to generate a novel double transgenic mouse model which we termed MYC-SV1
149 (Figure 1A). MYC-SV1 double transgenic mice displayed gross enlargement of the
150 prostate (Figure 1B) and a significant increase in the weight of the urogenital system
151 compared to WT, KLF6-SV1 or Hi-Myc mice ($P < 0.0001$, Figure 1C). Expression of
152 human KLF6-SV1 and c-MYC protein in the GEMMs were confirmed by genotyping and
153 IHC (Figure 1D). In line with previous reports, we found that Hi-Myc mice developed
154 mPIN and then focal invasive well and moderately differentiated adenocarcinoma
155 (Figure 1E, F) (Ellwood-Yen K et al., 2003). MYC-SV1 mice gave rise to overt, diffuse,
156 and poorly differentiated invasive tumors in all lobes of the prostate (VP, DLP, and AP

157 lobes). Histopathological analysis by H&E (Figure 1F, S1A, S1B, S1C, S4B, S4C), E-
158 cadherin (Figure 1F), p63 (Figure S2B), and α -SMA (Figure S1C) immunohistochemistry
159 staining showed that MYC-SV1 mice reliably developed highly penetrant mPIN, well and
160 moderately differentiated adenocarcinoma, and then poorly differentiated invasive
161 prostatic carcinoma. Tumor cells were positive for E-cadherin protein expression,
162 confirming the epithelial origin of the lesions, with decreased expression of E-cadherin
163 protein in poorly differentiated regions within the tumor (Figure 1G, S2C). MYC-SV1
164 prostate tumors were highly invasive and penetrated the basal layer, fibromuscular layer,
165 stroma, periprostatic adipose tissue, and the capsule of the prostate (Figure S1B, S1C,
166 S2B). Loss of the basal and fibromuscular layer of the prostate glands by the
167 displacement of basal cells (p63-positive cells) and fibromuscular cells (α -SMA-positive
168 cells), respectively, confirmed the invasive nature of the tumor cells (Figure S1C, S2B).
169 Tumors displayed features of angiogenesis noted by increased blood vessel formation
170 within the lesions ($P < 0.0001$, Figure 1H), were highly proliferative ($P < 0.0001$, Figure
171 1I) and apoptotic ($P < 0.0001$, Figure 1J).

172

173 **KLF6-SV1 and c-MYC promote tumor progression and metastasis *in vivo***

174

175 We followed a cohort of 93 mice over their lifetime for survival analysis. Consistent with
176 the aggressive phenotype noted, a significant reduction in survival was observed in the
177 MYC-SV1 mice compared with WT, KLF6-SV1, and Hi-Myc mice, which had similar
178 lifespans ($P < 0.0001$, Figure 2A). We determined the kinetics of mPIN, tumor
179 development, and progression of disease (Figure S4A-C). By 1 month of age, MYC-SV1
180 mice showed clear histological evidence of mPIN ($n = 3/3$) (Figure S4B, S4C). The
181 latency of tumor development was shortened through the cooperativity of c-MYC and

182 KLF6-SV1. Transition from mPIN to invasive carcinoma, and penetration of tumor cells
183 into the surrounding stroma, was evident by 3 months of age. Mice developed pan-
184 cytokeratin (Pan-CK) positive adenocarcinoma ($n = 4/4$) with invasive features ($n = 2/4$)
185 (Figure S4B-D). In line with previous reports, only mPIN was found in Hi-Myc mice at this
186 age (Ellwood-Yen K et al., 2003, Melis M et al., 2017). By 6 months of age, tumors
187 progressed to high-grade poorly differentiated carcinoma (i.e. tumors of epithelial origin
188 lacking glandular structure) (Figure S4C). Prostate lesions in Hi-Myc and KLF6-SV1
189 mice did not progress to advanced disease. Notably, aged MYC-SV1 mice developed
190 large prostate tumors with cystic degeneration and bladder outlet obstruction causing
191 hydronephrosis (Figure S5). Taken together these results suggest that KLF6-SV1
192 induces invasive and proliferative prostate carcinoma in the setting of c-MYC
193 dysregulation.

194
195 Metastasis is a late-stage adverse health event in human prostate cancer (Siegel RL et
196 al., 2021). Metastatic lesions were observed in MYC-SV1 mice at several anatomical
197 sites including lymph nodes, liver, and pancreas (Figure 2B, 2C, S3, S6). A
198 representative pancreatic lesion is shown in Figure 2C and S3 from a MYC-SV1 mouse
199 at 12 months of age. Cell morphology on H&E, and positive AR, NKX3.1, and c-MYC
200 protein expression confirmed the prostatic origin of the metastatic foci (Figure 2C).
201 NKX3.1 protein expression is restricted to prostate epithelial cells and used as a
202 diagnostic biomarker for prostate cancer and metastatic lesions originating from the
203 prostate. Additionally, c-MYC is driven by the probasin promoter, which limits the
204 expression of c-MYC to luminal epithelial cells. Metastatic foci also expressed diffuse
205 cytoplasmic expression of E-cadherin and pan-cytokeratin (Figure S3). Lack of α -SMA or
206 collagen protein expression (Masson's Trichrome staining) confirmed that the metastatic
207 foci were not of myoepithelial or fibroblast origin, respectively (Figure S3). Hi-Myc mice

208 did not develop metastatic disease, a constrained phenotype that aligns with previous
209 reports of the model (Ellwood-Yen K et al., 2003; King JC et al., 2009). MYC-SV1 mice
210 modeled each phase of human prostate cancer development and progression, including
211 mPIN, adenocarcinoma, and metastases. Overall, these data indicate that KLF6-SV1 is
212 sufficient, in the presence of c-MYC, to drive the multi-step process of the metastatic
213 cascade of prostate tumorigenesis.

214

215 **KLF6-SV1 and c-MYC expression is mutually regulated and significantly
216 associated with proliferation**

217

218 Our finding that cooperativity exists between KLF6-SV1 and c-MYC *in vivo* prompted us
219 to investigate this relationship *in vitro* using a panel of human prostate cell lines
220 spanning the spectrum of prostate cancer disease states. The expression of *KLF6-SV1*
221 and *c-MYC* mRNA was measured in the human prostate cell lines (Figure 3A, B). There
222 was a significant difference in mRNA (*c-MYC*, $P < 0.001$; *KLF6-SV1*, $P = 0.0289$) and
223 protein levels amongst the non-tumorigenic and cancer cells. Increased c-MYC and
224 KLF6-SV1 protein expression was observed in metastatic prostate cancer cells
225 compared to PIN and non-tumorigenic prostate cells (Figure 3C). We next impaired the
226 function of these genes by small interfering RNA (siRNA) individually or in combination
227 in PC3 and PC3M cells, which harbor c-MYC amplification (Taylor BS et al. 2010)
228 (Figure 3A, C), to evaluate the effects of c-MYC or KLF6-SV1 loss-of-function.
229 Knockdown of KLF6-SV1 by siRNA in PC3 cells significantly reduced *c-MYC* mRNA and
230 c-MYC protein expression within 48 hours ($P < 0.001$) (Figure 3D, E). Knockdown of c-
231 MYC was associated with significantly reduced *KLF6-SV1* mRNA and KLF6-SV1 protein
232 expression in PC3 cells. Similar changes in expression were observed in PC3M cells
233 (Figure 3F, G). To complement the loss-of-function studies, we engineered stable cell

234 lines which exogenously expressed c-MYC, KLF6-SV1, or both, to conduct gain-of-
235 function studies in the benign luminal epithelial cell line, RWPE-1, that endogenously
236 expresses low basal levels of c-MYC and KLF6-SV1 (Figure 3A-C). We again observed
237 that endogenous expression of *KLF6-SV1* mRNA was significantly associated with an
238 increase in c-MYC mRNA ($P < 0.001$), and KLF6-SV1 protein expression was
239 associated with c-MYC protein expression (Figure 3H). Similarly, the added expression
240 of c-MYC was associated with increased KLF6-SV1 mRNA and KLF6-SV1 protein
241 expression ($P < 0.001$) (Figure, 3I-L). Next, we examined the effects of c-MYC and
242 KLF6-SV1 on proliferation (Figure 3M-O) and the cell cycle (Figure 3P). Dual knockdown
243 of c-MYC and KLF6-SV1 in PC3 cells also correlated with inhibition of cell proliferation
244 demonstrated by a significant decrease in thymidine incorporation ($P < 0.001$) (Figure
245 3M) and KI-67 mRNA expression ($P < 0.001$) (Figure 3O). Additionally, silencing of c-
246 MYC and KLF6-SV1 induced a cell cycle arrest in the G1/S phase with increased
247 expression of CDKN1A (p21) ($P < 0.0089$) suggesting inhibition of cell growth and DNA
248 replication (Figure 3Q, R).

249

250 **Targeting of c-MYC through androgen ablation impairs tumor maintenance *in vivo***

251

252 Prior *in vivo* studies have demonstrated that c-MYC is necessary and sufficient for tumor
253 maintenance (Podsypanina K et al., 2008; Soucek L et al., 2008). Since we observed
254 that in PC3 cells with siRNA mediated silencing of c-MYC resulted in rapid growth arrest
255 (Figure 3M, O), we uncoupled c-MYC and KLF6-SV1 expressions *in vivo* to study the
256 effects of c-MYC depletion in the presence of functional KLF6-SV1 on tumor growth and
257 maintenance. Hormone ablation therapy is the primary clinical treatment for advanced
258 prostate cancer. The ARR₂PB promoter driving c-MYC expression contains two
259 androgen response elements, which increases the level of c-MYC expression in an

260 androgen-dependent manner, therefore, androgen ablation can reduce *c-MYC*
261 expression. Since the ARR₂PB promoter is regulated by androgens, surgical castration
262 can serve as a method to induce the loss of *c-MYC* expression. However, the effects of
263 androgen ablation must also be considered in this setting. Castrated ($n = 5$) ("c-MYC
264 off") and intact littermates ($n = 5$) ("c-MYC on") were sacrificed 3 months after castration
265 for analysis (Figure 4A). Gross and histological analysis of castrated and control mice
266 were performed to evaluate the phenotypic effects of castration. MYC-SV1 urogenital
267 systems post-castration weighed significantly less suggesting sustained c-MYC
268 expression was required for MYC-SV1 tumor maintenance ($P = 0.05$) (Figure 4B). We
269 examined the consequences of castration on the MYC-SV1 prostate. H&E revealed a
270 significant reduction in prostate tumor lesions with the presence of involuted, atrophic,
271 fibrotic lumens, increased deposition of collagen, with substitution by adipose tissue in
272 castrated mice (Figure 4C-E). A decrease in c-MYC transgene expression by IHC was
273 observed, lesions retained AR and KLF6-SV1 protein expression (Figure 4E-G). Cells
274 within the castrated lumens expressed cytokeratin (CK) 18 (Figure 4H, brown). Dual
275 staining with CK5 (green), a basal cell specific cytokeratin, confirmed the loss of basal
276 cells in tumors of intact mice, a sign of invasion. The presence and restructuring of basal
277 epithelial cells around luminal epithelial cells were noted in castrated mice (Figure 4H) (P
278 = 0.0017). Staining for α -SMA identified the smooth muscle cells of the prostate (Figure
279 4I). In the intact mice, smooth muscle cells normally encircling prostate glands were
280 displaced, however, these cells encircled the atrophic and mPIN glands of the castrated
281 mice, reforming the natural prostate gland architecture ($P = 0.0151$). Cells remained
282 highly proliferative as evidenced by strong nuclear PCNA expression ($P = 0.5784$)
283 suggesting that KLF6-SV1 is sufficient to maintain mPIN and androgen-independent
284 growth of the prostate (Figure 4J).

285

286 **Proteomic analysis reveals KLF6-SV1-promoting epithelial de-differentiation**
287 **through the upregulation of vimentin**

288

289 Having observed the progression to metastatic disease in the MYC-SV1 GEMM model,
290 we sought to use unbiased proteomic profiling to better understand the pathway
291 perturbations in our GEMM. Specifically, we used a proteome-wide profiling using label-
292 free mass spectrometry (LC-MS/MS assays) of the WT, KLF6-SV1, Hi-Myc, and MYC-
293 SV1 GEMMs (Figure 5A). Primary tissue was harvested at 10 months of age from each
294 model for protein profiling; 10,677 peptides corresponding to 2,142 proteins (as
295 determined by unique HUGO gene symbols) were analyzed, of which 1085 showed
296 statistically significant differential expression ($P < 0.01$). Principal component analysis
297 showed clear segregation of the samples by transgene expression (Figure 5B). A protein
298 cluster was identified, “group B” (Figure 5C), that showed increased expression in the
299 MYC-SV1 tumors compared to Hi-Myc or KLF6-SV1 prostates alone. Hierarchical
300 clustering analysis revealed vimentin as a major phenotypic biomarker (Figure 5C, 5D).
301 Furthermore, Ingenuity Pathway Analysis (IPA) also highlighted vimentin as among the
302 top upregulated proteins in MYC-SV1 tumors (Figure S7). The convergence of
303 hierarchical clustering and IPA analysis supported vimentin as playing a key role in the
304 transformation of MYC-SV1 tumors. Unbiased proteomic data reinforced the finding that
305 coordinate expression of KLF6-SV1 and c-MYC resulted in changes in prostate cancer
306 cellular plasticity and dedifferentiation. Protein analysis by Western blot also confirmed
307 increased vimentin protein expression in MYC-SV1 tumors compared to the prostates
308 from the other GEMM mice analyzed (Figure 5E). Next, we examined vimentin
309 expression by IHC to assess protein expression in individual cells while preserving the
310 spatial tissue context of the WT, KLF6-SV1, Hi-Myc, and MYC-SV1 (Figure 5F).
311 Vimentin was predominantly expressed in the connective tissue of WT and Hi-Myc mice.

312 Cells expressing elevated vimentin protein were largely located within poorly
313 differentiated tumor foci in the MYC-SV1 model (Figure 5F, G). Molecular
314 characterization by IHC staining of vimentin, E-cadherin, and the AR, on consecutive
315 tumor sections, revealed the co-expression of AR and E-cadherin in cells that expressed
316 elevated vimentin (Figure 5G). These changes in protein expression were also observed
317 in high-grade human prostate adenocarcinoma (Figure 5H). MYC-SV1 pancreatic
318 metastases (see Figure 2) also expressed elevated vimentin (Figure 5I). Vimentin
319 expression was absent in lesions of castrated MYC-SV1 mice (“c-MYC-off”) compared to
320 lesions of intact mice (“c-MYC-on”) (see Figure 4) (Figure 5J). We examined the dual
321 expression of vimentin and E-cadherin in Hi-Myc and MYC-SV1 mice by dual staining
322 (Figure 6A). In well-differentiated lesions of Hi-Myc and MYC-SV1 GEMMs, expression
323 of E-cadherin was localized to the cell membrane and vimentin expression was absent.
324 Poorly differentiated lesions of MYC-SV1 predominately expressed vimentin with
325 decreased and diffuse E-cadherin co-expression (Figure 6A). Western blot analysis
326 confirmed an induction in vimentin protein expression with a concomitant decrease in E-
327 cadherin protein expression in MYC-SV1 prostate tumors compared to those of Hi-Myc
328 mice (Figure 6B). To confirm the role of KLF6-SV1 driving epithelial plasticity with
329 characteristics of epithelial to mesenchymal transition, we turned to *in vitro* gene
330 expression analysis. Exogenously expressed KLF6-SV1 in the Myc-CaP (KLF6-SV1-
331 negative) mouse prostate epithelial cell line isolated from Hi-Myc mice (Ellwood-Yen K et
332 al., 2003) led to a concomitant increase in c-MYC and vimentin protein expression with a
333 decrease in E-cadherin protein expression (Figure 6C). We examined *CDH1* and *VIM*
334 mRNA and E-cadherin and vimentin protein expression in a panel of human prostate cell
335 lines of differing disease states (see Figure 3). *CDH1* mRNA and E-cadherin protein
336 expression were significantly decreased in prostate cancer cell lines compared to non-
337 tumorigenic cell lines ($P = 0.0189$, Figure 6D, 6F), while *VIM* mRNA and vimentin protein

338 expression were significantly increased in prostate cancer cell lines compared to non-
339 tumorigenic cell lines ($P = 0.0029$, Figure 6E, 6F). To further confirm that the phenotype
340 observed was due to the cooperativity between c-MYC and KLF6-SV1, we examined the
341 expression of vimentin and E-cadherin in the RWPE-1 stable non-tumorigenic cell lines
342 and siRNA-treated PC3 cell lines shown in Figure 3. RWPE-1 cells stably expressing c-
343 MYC and/or KLF6-SV1 also demonstrated a concomitant decrease in *CDH1* mRNA and
344 E-cadherin protein expression ($P < 0.0001$, Figure 6G, 6I) with a coordinate upregulation
345 of vimentin mRNA and protein expression ($P < 0.0001$, Figure 6H, 6I). Collectively, these
346 cellular and *in vivo* data suggest that KLF6-SV1, in the presence of c-MYC, regulated
347 vimentin and E-cadherin expression, inducing cellular plasticity promoting prostate
348 cancer progression and metastasis (Figure 6J).

349

350 We next sought to determine whether concurrent c-MYC and KLF6-SV1 expression
351 occurred in human prostate cancer by RNA *in situ* hybridization (RNA ISH) and IHC
352 staining. In our proof-of-concept study of human prostate cancer and liver metastases
353 from 19 patients (57 specimens) (Figure 7A), c-MYC and KLF6-SV1 expression were
354 significantly positively correlated at the RNA (Figure 7B, 7C) and protein levels (Figure
355 7D, 7E). Increased epithelial c-MYC mRNA as evaluated by *in situ* hybridization was
356 significantly associated with increased KLF6-SV1 mRNA expression (Pearson $r =$
357 0.7301, $P < 0.0001$ and Spearman $r = 0.8041$, $P < 0.0001$). c-MYC protein expression
358 assessed by IHC was associated with significantly increased KLF6-SV1 protein
359 (Pearson $r = 0.5424$, $P < 0.0001$ and Spearman $r = 0.4983$, $P < 0.0001$). These findings
360 provide a proof-of-principle of our working hypothesis of the cooperation between c-MYC
361 and KLF6-SV1 in human prostate tumorigenesis.

362

363 **Discussion**

364

365 The goal of this study was to investigate oncogenic events that govern the genesis and
366 progression of aggressive and metastatic prostate cancer. Defining the discrete genetic
367 events that lead to prostate cancer development and metastases are critical for
368 generating preclinical models to study the lethal form of prostate cancer. The molecular
369 basis of prostate cancer has been explored by several groups revealing numerous
370 molecular alterations with the potential to act as drivers of cancer development and
371 progression (Dhanasekaran SM et al., 2001, Lapointe J et al., 2004, Taylor BS et al.,
372 2010, Grasso CS et al., 2012). The functional and biological impact of some of these
373 genetic alterations has been defined through the generation and characterization of
374 GEMMs. One identified dysregulated gene, *c-MYC*, is recognized as a major contributor
375 to the onset of mPIN, a key precursor lesion to adenocarcinoma, and prostate cancer
376 initiation and maintenance, in both mouse and human (Zhang X et al., 2000, Ellwood-
377 Yen K et al., 2003, Ellis L et al., 2016, Nguyen HG et al., 2018, Watson PA et al., 2005).
378 Elevated *c-MYC* mRNA and protein expression is present in greater than 50% of
379 metastatic prostate cancer (Taylor BS et al., 2010, Beltran H et al., 2016), thus, raising
380 questions about the additional genetic events that cooperate with *c-MYC* to induce the
381 metastatic cascade. We demonstrate that cooperativity between two frequent genetic
382 events in human prostate cancer, increased expression of *c-MYC* and *KLF6-SV1*, are
383 necessary and sufficient to promote and drive progression to a poorly differentiated and
384 metastatic state. Our results have uncovered a mechanism underlying prostate cancer
385 progression and demonstrates that *c-MYC* and *KLF6-SV1* cooperate to accelerate
386 prostate tumor development from localized to metastatic disease and induce cellular
387 plasticity. In benign prostate glands, *KLF6-SV1* expression induces pre-malignant
388 transformation (i.e., mPIN). In the presence of *c-MYC*, *KLF6-SV1* profoundly alters *c-*
389 *MYC*-driven prostate tumorigenesis at an early stage, resulting in a more rapid onset of

390 cancer, leading to poorly differentiated, invasive, and metastatic disease with a unique
391 proteomic program, including significant upregulation of vimentin in MYC-SV1 prostate
392 tumors. Taken together, our findings implicate KLF6-SV1 as a key regulator of cellular
393 plasticity, invasion, and metastasis. We found that KLF6-SV1 was necessary and
394 sufficient to drive the plasticity of tumor cells in the presence of c-MYC. A predominant
395 subset of these tumor cells displayed markedly elevated vimentin expression with
396 concurrent loss of E-cadherin, characteristic molecular features of epithelial to
397 mesenchymal transition, invasion, and metastasis. Defects in epithelial cell-cell adhesion
398 and cell polarity have been associated with prostate cancer initiation, progression, and
399 aggressiveness (Das R et al., 2014). Dedifferentiation and cellular plasticity have been
400 described in many tumor types, including prostate cancer, as a contributor of tumor
401 heterogeneity, metastasis, treatment resistance, disease recurrence, and poor outcomes
402 (Das R et al., 2014, Yang J et al., 2020). Our histological and molecular findings
403 corroborate with previously reported clinical outcomes in patients with advanced and
404 metastatic prostate cancer (Zhao Y et al., 2008, Armstrong AJ et al., 2011, Lang SH et
405 al., 2002). Lang et al. and Zhao et al. found that vimentin expression to be clinically
406 relevant as it significantly correlated with prostate cancer disease aggressiveness. High
407 vimentin protein expression was observed in tumors of men with poorly differentiated
408 and metastatic prostate cancer to the bone compared to well- and moderately
409 differentiated tumors (Lang SH et al., 2002, Hanahan D and Weinberg R, 2011).
410 Additionally, the expression of E-cadherin was demonstrated to be inversely associated
411 with vimentin expression in human prostate cancer patients (Armstrong AJ et al., 2011).
412 Circulating tumor cells isolated from patients with metastatic prostate cancer expressed
413 vimentin and E-cadherin (Armstrong AJ et al., 2011).
414
415 Our loss- and gain-of-function studies confirmed the mutually regulated nature of this

416 cooperativity and that of KLF6-SV1 expression is responsible for the significant changes
417 in E-cadherin and vimentin protein expression observed. Furthermore, inactivation of an
418 initiating oncogene suggests that a single oncogene can play a crucial role in the
419 maintenance of genetically complex tumors (Podsypanina K et al., 2008, Soucek L et al.,
420 2008). In our model system, androgen deprivation reflected the loss of c-MYC oncogene
421 expression (Ellwood-Yen et al., 2003). Our findings demonstrate that interfering with
422 cooperating genetic events can induce regression, a finding that may have important
423 implications regarding prostate cancer treatment. In the absence of *c-MYC*, *KLF6-SV1*
424 was insufficient to drive full and rapid malignant transformation. c-MYC played a crucial
425 role in the maintenance and viability of MYC-SV1 tumors, while KLF6-SV1 acted as a
426 potent driver of MYC-SV1 tumor progression and aggressiveness in the presence of c-
427 MYC. Additionally, prostates from castrated mice retained expression of AR and PCNA
428 suggesting that KLF6-SV1 signaling may play a role in androgen-independent growth of
429 prostate epithelial cells, a characteristic not observed in castrated Hi-Myc mice (Ellwood-
430 Yen K et al., 2003). A longer treatment course is needed to determine if these mice
431 ultimately develop castration resistant prostate cancer. Collectively, our findings are
432 consistent with other c-MYC-driven tumor mouse models (e.g., sarcoma and liver
433 cancer) and those displaying cooperation with RAS (e.g., breast cancer and lung cancer)
434 in which the inactivation of c-MYC expression led to the regression of tumors
435 demonstrating the necessity for c-MYC in tumor maintenance (Podspanina K et al.,
436 2008, Soucek L et al., 2008, Shachaf CM et al., 2004, Jain M et al., 2002).

437
438 The human relevance of our MYC-SV1 GEMM is credentialed by the significant
439 correlation of these genetic alterations in human tumors, and the recapitulation of
440 clinically relevant phases of human prostate cancer progression histologically. MYC-SV1
441 tumors also possess characteristics that define the “hallmarks of cancer”: sustaining

442 proliferation, evading growth suppressors and cell death, limitless replicative ability,
443 angiogenesis, and invasion and metastasis (Hanahan D and Weinberg R, 2011). In
444 addition to our genetic and experimental evidence in the GEMMs, corroborating results
445 were obtained in prostate cell lines of various histological origins and validated by the
446 significant correlation of these genetic alterations in humans. The novelty of our work
447 resides in unraveling the genetic cooperativity between *c-MYC* and *KLF6-SV1* revealing
448 primary and metastatic prostate cancer development at a rate greater than the additive
449 effect of each oncogenic factor alone. The enhanced and reliable tumor kinetics have
450 implications in the multistep nature of tumor progression and metastasis and contribute
451 to our understanding of the genetic drivers of lethal disease. In summary, our findings
452 further improve our understanding of the genetic drivers of lethal prostate cancer and
453 identify promising targets for biomarker and therapeutic development.

454

455 **Methods**

456

457 **Cell Lines**

458

459 Prostate (RWPE-1, RWPE-2, PWR1E, VCaP, DU145, PC3, PC3M) and phoenix cell
460 lines were obtained from the American Type Culture Collection (Manassas, VA). Myc-
461 CaP and Prostatic Intraepithelial Neoplasia (PIN) cell lines were a generous gift from Dr.
462 Charles Sawyers (Memorial Sloan Kettering, New York, NY) and Dr. Mark Stearns
463 (Drexel University, Philadelphia, PA) respectively. All cells were maintained at 37°C with
464 5% CO₂. RWPE-1, RWPE-2, PWR-1E and PIN cells were cultured in Keratinocyte
465 Serum-Free Medium supplemented with bovine pituitary extract and recombinant human
466 epidermal growth factor (Gibco, Life Technologies, Grand Island, NY). Myc-CaP, VCaP,
467 DU145, PC3, and PC3M cells were cultured in Dulbecco's modified Eagle's medium

468 (HyClone, GE Healthcare Life Sciences, Logan, UT) supplemented with 10% fetal
469 bovine serum (HyClone, GE Healthcare Life Sciences, Logan, UT) and 0.5% penicillin-
470 streptomycin (Life Technologies, Grand Island, NY). Cells were regularly tested for
471 mycoplasma with MycoAlert per manufacturer's protocol (LT07-318, Lonza, Basel,
472 Switzerland).

473

474 **Exogenous expression or siRNA knockdown**

475

476 Stable cell lines were generated by retroviral infection with pBABE-puro (1764, Addgene,
477 Cambridge, MA), pBABE-zeo (1766, Addgene, Cambridge, MA), pBabe-c-myc-zeo
478 (17758, Addgene, Cambridge, MA) or pBabe-KLF6-SV1 virus. Retrovirus was generated
479 by transfecting oncogenic plasmids and viral packaging plasmid (pCL-Ampho) into
480 phoenix cells with Lipofectamine 2000 (Life Technologies, Grand Island, NY). Viral
481 particles were incubated with prostate cells (70% confluence) in polybrene (4 mg/ml) for
482 24 hours. Infected cells were selected for puromycin or zeocin resistance (2 mg/mL).
483 Targeted knockdown was conducted with 100nM ON-TARGETplus smartpool human *c-*
484 *MYC* (mixture of 4 individual siRNA) and/or human *KLF6-SV1* siRNA (Dharmacon,
485 Lafayette, CO) with HiPerfect (Qiagen, Valencia, CA).

486

487 **Quantitative real-time PCR**

488

489 RNA was extracted using the RNeasy Mini Kit according to the manufacturer's protocol
490 and treated with DNase (Qiagen, Valencia, CA USA). cDNA was prepared with the
491 Fermentas cDNA synthesis kit according to the manufacturer's instructions. mRNA
492 levels were quantified by quantitative real-time polymerase chain reaction (qRT-PCR)
493 using the following PCR primers on a ABI PRISM 7900HT Sequence Detection System

494 (Applied Biosystems). Primer sequences: KLF6-SV1 endogenous F: 5'-
495 CCTCGCCAGGGAAGGAGAA-3', R: 5'-CGGTGTGCTTCGGAAGTG-3'; KLF6-SV1
496 exogenous F: 5'-CCTCGCCAGGGAAGGAGAA-3', R: 5'-AAAACGCCACTCACACC-3';
497 c-MYC exogenous F: 5'-TTTCGGGTAGTGGAAAACCA-3', c-MYC R: 5'-
498 GAGGAGGAGCAGCGTCATCT-3'; c-MYC endogenous F: 5'-
499 TTCGGGTAGTGGAAAACCAAG-3', R: 5' CAGCAGCTCGAATTCTTCC-3'; KI-67 F: 5'-
500 ATCGTCCCAGGTGGAAGAGTT-3', R: 5'-ATAGTAACCAGGCGTCTCGTGG-3'; E-
501 cadherin (CDH1) F: 5'-CAAAGTGGGCACAGATGGTGTG-3', R: 5'-
502 CTGCTTGGATTCCAGAACACGG-3'; Vimentin (VIM) F: 5'-
503 CAGATTCAGGAACAGCATGTC-3', 5'-TCAGAGAGGTCAGCAAACTTG-3'. Quantitative
504 real-time PCR was performed on an ABI PRISM 7900HT Fast Real-Time PCR machine
505 using SYBR Green (Applied Biosystems, Foster City, CA). Data was analyzed with SDS
506 2.3 software. Expression levels were determined using the ΔCt method normalized to
507 GAPDH, β -Actin and 18S. Graphs shown are of expression levels normalized to
508 GAPDH.

509

510 **Western blot**

511

512 Tissues and cell protein lysates were prepared with RIPA buffer (89900, Thermo Fisher
513 Scientific, Waltham, MA), which includes a protease inhibitor cocktail (05892791001,
514 Roche/Sigma-Aldrich, St. Louis, MO). Proteins were quantified by the protein
515 quantification assay (BioRad, Hercules, CA). Equal amounts of protein (40-50 μ g) were
516 denatured and separated on 12% Bis-Tris SDS-polyacrylamide electrophoresis gels
517 (NP0341BOX, Invitrogen, Carlsbad, CA) and transferred to a nitrocellulose membrane
518 (BioRad, Hercules, CA). Membranes were blocked with 5% nonfat milk (LabScientific
519 Inc., Livingston, NJ) in Tris-Buffered Saline-Tween (77500, Affymetrix, Thermo Fisher

520 Scientific, Waltham, MA) and incubated, at 4°C overnight with antibodies against KLF6
521 (sc-7158, Santa Cruz Biotechnology Inc., Dallas, TX), KLF6-SV1 (9A2, Hybridoma
522 Facility, Icahn School of Medicine at Mount Sinai), E-cadherin (sc-7870, Santa Cruz
523 Biotechnology Inc., Dallas, Texas, USA; ab40772, Abcam, Cambridge, MA), Vimentin
524 (ab92547, Abcam, Cambridge, MA, USA; sc-6260, Santa Cruz Biotechnology Inc.,
525 Dallas, TX; Epitomics 2707-1, Burlingame, CA 94010), c-MYC (ab32072, clone Y69,
526 Abcam, Cambridge, MA; OP10, clone 9E10, Calbiochem, San Diego, CA), GAPDH
527 (8884, Cell Signaling, Danvers, MA; sc-25778, Santa Cruz Biotechnology Inc., Dallas,
528 TX), Actin (12620, Cell Signaling, Danvers, MA; sc-1616, Santa Cruz Biotechnology Inc.,
529 Dallas, TX), HSP-90 (79641S, Cell Signaling, Danvers, MA) anti-mouse (31430, Thermo
530 Fisher Scientific, Rockford, IL) or anti-rabbit (Jackson ImmunoResearch Laboratories,
531 West Grove, PA) horseradish peroxidase-conjugated secondary antibody. Membranes
532 were developed using enhanced chemiluminescence (Lumi Light or Lumi Light-plus,
533 Roche/Sigma-Aldrich, St. Louis, MO) following the manufacturer's instructions.

534

535 **Thymidine proliferation assay**

536

537 Proliferation was determined by estimating [³H] thymidine incorporation. 1 µCi/ml [³H]
538 thymidine (Amersham, Arlington Heights, IL) was added to cells. After 2-hr incubation
539 period, cells were washed with ice-cold PBS and fixed in methanol at 4°C. Cells were
540 solubilized in 0.25% sodium hydroxide and 0.25% Sodium Dodecyl Sulfate, Molecular
541 Biology Grade (SDS) and neutralization with hydrochloric acid (1N). Disintegrations per
542 minute were estimated by liquid scintillation counting.

543

544 **Cell cycle analysis**

545

546 Cells were harvested, fixed in absolute ethanol (Sigma-Aldrich, St. Louis, MO), stained
547 with a solution of propidium iodide, RNase A, and PBS, and analyzed by the FACScan
548 flow cytometer. The data was analyzed with CellQuest software (BD Biosciences, San
549 Jose, CA).

550

551 **Establishment of mouse colonies and genotyping**

552

553 All mice were housed in the animal facility at the Icahn School of Medicine at Mount
554 Sinai. Mice were cared for in accordance with institutional guidelines to ensure humane,
555 responsible, and appropriate care of the animals (IACUC #08-0034). Mice were
556 maintained on a 12-hour light/dark cycle, at a constant temperature and relative
557 humidity. Tap water and food were available *ad libitum*. Hi-Myc mice were obtained from
558 the Mouse Repository of the National Cancer Institute Mouse Models of Human Cancer
559 Consortium at National Cancer Institute (Frederick, MD). KLF6-SV1 mice were kindly
560 provided by Dr. John Martignetti (Icahn School of Medicine at Mount Sinai). KLF6-SV1
561 mice were engineered to express human KLF6-SV1, which was cloned into the pCAGG-
562 neo expression vector that is driven by the β -actin promoter. Following pronuclear
563 injection of the purified construct, a total of fourteen pups were produced and analyzed.
564 Three of six pups (s1–s3) in the first of two litters contained the KLF6-SV1 insert as
565 revealed by quantitative real-time PCR (qRT-PCR) of the human-specific 602-bp
566 sequence in the KLF6-SV1 gene. Three independent KLF6-SV1 transgenic founders
567 were generated. The Mouse Genetics and Gene Targeting Core at the Icahn School of
568 Medicine at Mount Sinai performed injections into FVB blastocysts. KLF6-SV1
569 transgenic mice were crossed with Hi-Myc mice and germline transmission was
570 determined by genotyping. Mouse tail DNA was isolated and genotyped to evaluate
571 transgene transmission with Phire Animal Tissue Direct PCR (F-140, Thermo Fisher

572 Scientific, Waltham, MA).

573

574 **Histopathological assessment and tissue analysis**

575

576 Mouse prostates were isolated and fixed in 10% neutral-buffered formalin (SF100-4,
577 Thermo Fisher Scientific, Waltham, MA) overnight, paraffin-embedded, sectioned and
578 stained with haematoxylin and eosin (H&E). Murine model characterization and
579 documentation of lesion progression was conducted in a blinded manner following the
580 Bar Harbor Classification System (Shappell SB et al., 2004). All mice were age-matched
581 and of identical genetic background (FVB/N inbred background). For
582 immunohistochemistry, 5µm sections were deparaffinized with xylene and rehydrated
583 through graded ethanol washes followed by antigen retrieval in sodium citrate buffer (10
584 mM, pH 6.0) with a pressure cooker (Dako, Carpinteria, CA), blocked, and incubated
585 with primary antibodies AR (ab133273, Abcam, Cambridge, MA, USA), vimentin
586 (ab92547, Abcam, Cambridge, MA; 9855S (Alexa Fluor 555), Cell Signaling, Danvers,
587 MA), E-cadherin (ab40772, Abcam, Cambridge, MA; 3199S (Alexa Fluor 488), Cell
588 Signaling, Danvers, MA), Smooth Muscle Actin (ab188498, Abcam, Cambridge, MA), c-
589 MYC (ab32072, Abcam, Cambridge, MA), PCNA (ab92552, Abcam, Cambridge, MA),
590 KLF6-SV1 (9A2, Hybridoma Facility, Icahn School of Medicine at Mount Sinai), or
591 NKX3.1 (AB5983, MilliporeSigma, Burlington, MA) overnight at 4°C. Sections were
592 washed with PBS (PBS940M, Biocare Medical, Concord, CA). The Mouse on Mouse
593 (MOM) Detection Kit (BMK-2202, Vector Laboratories, Burlingame, CA) was used for
594 mouse primary antibodies. EnVision+ Rabbit (K400311-2, Agilent Technologies, Inc.,
595 Santa Clara, CA) was used as a secondary antibody. Proteins were visualized with 3,3'-
596 diaminobenzidine (DAB) (K346811-2, Agilent Technologies, Inc., Santa Clara, CA) or
597 Vina Green (BRR807AS, Biocare Medical, Concord, CA). Sections were counterstained

598 with hematoxylin (CATHE-H, Biocare Medical, Concord, CA), dehydrated, and mounted
599 with Permount (Thermo Fisher Scientific, Waltham, MA). For immunofluorescence
600 staining, tissue was counterstained with DAPI nuclear stain (H-1200, Vector
601 Laboratories, Burlingame, CA). Bright-field or fluorescent images were captured with
602 Zeiss AxioImager Z2 (Jena, Germany). Images were captured at the Icahn School of
603 Medicine at Mount Sinai Microscopy Core (supported by NIH P30CA196521). TUNEL
604 staining was performed using the ApopTag Peroxidase *In Situ* Apoptosis Detection Kit
605 (S7100, EMD Millipore, Billerica, MA) as per manufacturer protocol. For cell
606 quantification, representative sections from more than three mice were counted for each
607 genotype by using the cell counter function in ImageJ software
608 (<https://imagej.nih.gov/ij/>).

609

610 **Castration treatment**

611

612 MYC-SV1 mice were castrated at 10 months of age with definite adenocarcinoma ($n = 5$)
613 and examined 3 months post-castration. The control group (intact) contained age-
614 matched littermate animals ($n = 5$). Mice were anesthetized using isoflurane (Baxter
615 Healthcare Corporation, Deerfield, IL). The perineal region was cleaned with ethanol and
616 a 4–5 mm incision was made with sterile dissecting shears. Using sterile forceps, the
617 testes were located, and a ligature was made around the testicular vessels and the
618 tunica albuginea. The testes were amputated, and the scrotum was sutured. An
619 antibiotic was applied over the region of the wound to help the healing process.

620

621 **Proteomics Analysis**

622

623 **Sample preparation of WT, KLF6-SV1, Hi-Myc, and MYC-SV1 tissues for label-free**

624 **expression.** Tissues were lysed in 3% sodium dodecyl phosphate (SDS) and protease
625 inhibitor (Sigma, part number 4693159001) using a pestle followed by pulse sonification.
626 Once lysed, tissues were cleaned of detergent using a previously published filter-aided
627 sample preparation protocol with a 10-kDa molecular weight cutoff filter (Millipore,
628 Billerica, MA) and buffer exchanged with 8M Urea in 50mM Tris-pH-8.0 to a final volume
629 of 50 μ L (Tomechko SE et al., 2015). After cleanup, protein concentration of each lysed
630 sample was measured using the Bradford assay and following the manufacturer's
631 standard protocol (Bio-Rad, Hercules, CA). Next, 10 μ g of total protein were digested
632 with Lysyl Endopeptidase (Wako Chemicals, Richmond, VA) at an enzyme:substrate
633 ratio of 1:20 for 2-hours at 37°C. The urea concentration was then adjusted to 2M using
634 50mM Tris, pH 8, followed by an overnight trypsin digestion using sequencing grade
635 trypsin (Promega, Madison, WI) at an enzyme:substrate ratio of 1:20 at 37°C. Digested
636 peptides were then stored at -80°C until used for the downstream LC-MS/MS analysis.

637

638 **Reverse Phase LC-MS/MS Analysis.** Six hundred nanograms of each sample were
639 analyzed by LC-MS/MS using a LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher
640 Scientific, San Jose, CA) equipped with a nanoAcquityTM Ultra-high pressure liquid
641 chromatography system (Waters, Taunton, MA). The injection order on the LC-MS was
642 randomized over all samples. Blank injections were run after each sample to minimize
643 carry-over between samples. Mobile phases were organic phase A (0.1% formic acid in
644 water) and aqueous phase B (0.1% formic acid in acetonitrile). Peptides were loaded
645 onto a nanoACQUITY UPLC[®] 2G-V/M C18 desalting trap column (180 μ m x 20 mm nano
646 column, 5 μ m, 100 A°) at flow rate of 0.300 μ l/minute. The analytical column used to
647 resolve peptides was a nanoACQUITY UPLC[®] BEH300 C18 reversed phase column
648 (75 μ m x 250 mm nano column, 1.7 μ m, 100A°; Waters, Milford, MA). The gradient
649 employed was 1-90 % of phase B over 240 minutes (isocratic at 1% B, 0-1 min; 2-42%

650 B, 2-212 min; 42-90% B, 212-223 min; and 90-1% B, 223-240 min) at a flow rate of
651 300nL/min. A nano ES ion source at 1.5 kV spray voltage, and 270 °C capillary
652 temperature was utilized to ionize peptides. Full scan MS spectra (m/z 380-1800) were
653 acquired at a resolution of 60,000 followed by twenty data dependent MS/MS scans.
654 MS/MS spectra were generated by collision-induced dissociation of the peptide ions
655 (normalized collision energy = 35%; activation Q = 0.250; activation time = 20 ms) to
656 generate a series of b-and y-ions as major fragments. LC-MS/MS raw data were
657 acquired using the Xcalibur software (Thermo Fisher Scientific, version 2.2 SP1). LC-
658 MS/MS raw data were then acquired using the Xcalibur software (Thermo Fisher
659 Scientific, version 2.2 SP1).

660

661 **Data Processing for Protein Identification and Quantification.** The LC-MS/MS raw
662 files (one for each sample) were imported into Rosetta Elucidator™ (Rosetta Bio-
663 software, version 3.3.0.1.SP.25) and processed as previously described. The peak list
664 (.dta) files were searched by Mascot (version 2. 1, Matrix Science London, UK) against
665 the Uniprot database. Mascot search settings were as follow: trypsin enzyme specificity;
666 mass accuracy window for precursor ion, 10 ppm; mass accuracy window for fragment
667 ions, 0.8 Da; carbamidomethylation of cysteines as fixed modifications; oxidation of
668 methionine as variable modification; and one missed cleavage. Peptide identification
669 criteria were a mass accuracy of ≤10 ppm, an expectation value of $P < 0.05$, and an
670 estimated False Discovery Rate (FDR) of less than 2%. The search results were
671 imported back into Elucidator and automated differential quantification of peptides was
672 then accomplished with Rosetta Elucidator (Wisiewski JR et al., 2009). Normalization of
673 signal intensities across samples was performed using the average signal intensities
674 obtained in each sample.

675

676 **Bioinformatics analyses**

677

678 Computational analyses of the processed dataset were performed with R version 3.3.2
679 unless otherwise noted. Differential peptide expression was evaluated by one-way
680 ANOVA across all groups (WT, KLF6-SV1, Hi-Myc, and MYC-SV1). Principal component
681 analysis (PCA) was calculated using the “prcomp” function and plotted using the
682 “scatterplot3d” package. The heatmap of the protein intensities were generated with the
683 “heatmap.2” function found in the “gplots” package. Each protein was represented by the
684 peptide with the lowest one-way ANOVA statistic, and only proteins having a
685 corresponding peptide with $P < 0.01$ were included in the heatmap. Those proteins were
686 subsequently clustered using hierarchical clustering (“hclust”). The resulting dendrogram
687 was then divided into 6 groups using the “cutree” function. Proteins within each group
688 were then analyzed for pathway enrichment by Fisher’s exact test using the PANTHER
689 Statistical overrepresentation tool, released 20190711 (Mi H et al., 2019). The Reactome
690 version 65 database of pathways was used as reference. The P values were corrected
691 for multiple hypothesis testing using the Benjamini-Hochberg FDR method. Pathway
692 analysis was performed using Ingenuity Pathway Analysis (Qiagen, Redwood City, CA;
693 www.ingenuity.com) on protein, which had peptides that were deemed significant ($P =$
694 0.005 and a fold change $> +/-$ of 3). Proteins identifications that met the above criteria for
695 significance were imported into Ingenuity Pathways Analysis. Ingenuity Pathways
696 Analysis calculated significant pathways using a right-tailed Fisher’s exact test. Top
697 canonical pathways were chosen based on passing the significance criteria ($P \leq 0.05$).
698

699 **RNA ISH, IHC, and analysis of human tissues**

700

701 The tissue microarray (TMA) was constructed at Weill Cornell Medicine/New York

702 Presbyterian Hospital (New York, NY). Archival pathology specimens from Weill Cornell
703 Medicine/New York Presbyterian Hospital were obtained retrospectively under approved
704 Institutional Review Board (IRB) protocol (IRB #1007011157). This study was also
705 approved by the IRB at the Icahn School of Medicine at Mount Sinai (IRB#14-00757).
706 The TMA contained a total of 57 prostate cancer specimens from 19 patients with
707 localized (n=16 patients, 48 specimens) and metastases (n=3 patients, 9 specimens)
708 and additional benign control tissues (prostate, liver, placenta, brain, kidney, and testis).
709 H&E stained slides were reviewed by study pathologist (J.M.M.). RNA ISH was
710 performed by the single-color chromogenic QuantiGene® ViewRNA ISH Tissue Assay
711 (Affymetrix, Santa Clara, CA) using pairs of specially designed oligonucleotide probes
712 that through sequence-specific hybridization recognizes both the specific target RNA
713 sequence and the signal amplification system. A ViewRNA Type 1 target probe (1
714 bDNA) was designed for KLF6-SV1 (Affymetrix, Santa Clara, CA). ViewRNA Type 1
715 catalog probe was used for c-MYC (Affymetrix, Santa Clara, CA). Cross-hybridization to
716 other sequences was minimized by screening against the entire human RNA sequence
717 database. Signal amplification occurred at target sites bound by probe pairs only.
718 Nonspecific off-target binding by single probes did not result in signal amplification.
719 Quantigene ViewRNA ISH Tissue Control Kit (1-Plex), which includes GAPD, ACTB,
720 PP1, E. Coli, K12 dapB, UBC, and PPIB (Affymetrix, Santa Clara, CA) was used as a
721 staining technical control. Immunohistochemical (IHC) staining for c-MYC and KLF6-SV1
722 was applied using a commercially available antibody for c-MYC protein expression
723 (monoclonal antibody, clone Y69, Abcam), and for KLF6-SV1 (monoclonal antibody,
724 clone 9A2, Icahn School of Medicine at Mount Sinai) on the Leica Bond III automated
725 stainer (Leica Biosystems Inc., Buffalo Grove, IL). Hybridization signals (red colorimetric
726 staining) were detected under a brightfield microscope followed by counterstaining with
727 hematoxylin. Signals were granular and discrete red dots corresponding to individual

728 RNA targets. HALO™ Software (Indica Labs, Inc., Corrales, NM) was utilized for image
729 analysis of RNA *in situ* expression and IHC staining for protein expression at a single
730 cell resolution to quantify expression of positive epithelial cells (Park K et al., 2010).

731 **Materials Availability Statement**

732 Materials of this study are available upon request from the corresponding author.

733

734 **Conflict of Interest**

735

736 G.N. is an author on patent 20090325150 (KLF6 alternative splice forms and a germline
737 KLF6 DNA Polymorphism associated with increased cancer risk) related to this work.

738

739 **Acknowledgments**

740

741 The authors would like to acknowledge the support of the Howard Hughes Medical
742 Institute (G.N.), NIH/NCI R01CA181654 (G.N., M.D.G., A.C.L., S.I.), NIH/OD
743 U54OD020353 (C.C.C., S.I.), NIH/NCATS Loan Repayment Program (S.I.) and
744 NIH/NCATS KL2RR029885 (S.I.). We thank Mireia Castillo-Martin, Michael Parides, and
745 Raheleh Hatami for helpful discussions, and Jill Gregory and Christopher Smith of the
746 Instructional Technology Group at the Icahn School of Medicine for illustrations.

747

748 **References**

749

750 1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. *CA Cancer J Clin.*
751 2021 Jan;71(1):7-33.

752 2. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta

753 KJ, Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers in prostate cancer.

754 *Nature*. 2001 Aug 23;412(6849):822-6.

755 3. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad

756 L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown

757 PO, Brooks JD, Pollack JR. Gene expression profiling identifies clinically relevant

758 subtypes of prostate cancer. *Proc Natl Acad Sci U S A*. 2004 Jan 20;101(3):811-6.

759 4. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK,

760 Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE,

761 Wilson M, Soccia ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino

762 PT, Sander C, Sawyers CL, Gerald WL. Integrative genomic profiling of human prostate

763 cancer. *Cancer Cell*. 2010 Jul 13;18(1):11-22.

764 5. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ,

765 Jing X, Lonigro RJ, Brenner JC, Asangani IA, Ateeq B, Chun SY, Siddiqui J, Sam L,

766 Anstett M, Mehra R, Prensner JR, Palanisamy N, Ryslik GA, Vandin F, Raphael BJ,

767 Kunju LP, Rhodes DR, Pienta KJ, Chinnaiyan AM, Tomlins SA. The mutational

768 landscape of lethal castration-resistant prostate cancer. *Nature*. 2012 Jul

769 12;487(7406):239-43.

770 6. Zhang X, Lee C, Ng PY, Rubin M, Shabsigh A, Buttyan R. Prostatic neoplasia in

771 transgenic mice with prostate-directed overexpression of the c-myc oncoprotein.

772 *Prostate*. 2000 Jun 1;43(4):278-85.

773 7. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R,

774 Thomas GV, Sawyers CL. Myc-driven murine prostate cancer shares molecular features

775 with human prostate tumors. *Cancer Cell*. 2003 Sep;4(3):223-38.

776 8. Ellis L, Ku S, Li Q, Azabdaftari G, Seliski J, Olson B, Netherby CS, Tang DG, Abrams

777 SI, Goodrich DW, Pili R. Generation of a C57BL/6 MYC-Driven Mouse Model and Cell

778 Line of Prostate Cancer. *Prostate*. 2016 Sep;76(13):1192-202.

779 9. Kim J, Eltoum IE, Roh M, Wang J, Abdulkadir SA. Interactions between cells with
780 distinct mutations in c-MYC and Pten in prostate cancer. *PLoS Genet.* 2009
781 Jul;5(7):e1000542.

782 10. Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, DeMayo FJ,
783 Troncoso P, Blando J, DiGiovanni J, Thompson TC. Caveolin-1 upregulation contributes
784 to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer. *Mol*
785 *Cancer Res.* 2012 Feb;10(2):218-29.

786 11. Nguyen HG, Conn CS, Kye Y, Xue L, Forester CM, Cowan JE, Hsieh AC,
787 Cunningham JT, Truillet C, Tameire F, Evans MJ, Evans CP, Yang JC, Hann B,
788 Koumenis C, Walter P, Carroll PR, Ruggero D. Development of a stress response
789 therapy targeting aggressive prostate cancer. *Sci Transl Med.* 2018 May 2;10(439).

790 12. Hubbard GK, Mutton LN, Khalili M, McMullin RP, Hicks JL, Bianchi-Frias D, Horn LA,
791 Kulac I, Moubarek MS, Nelson PS, Yegnasubramanian S, De Marzo AM, Bieberich CJ.
792 Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability
793 and Lethal Metastatic Prostate Cancer. *Cancer Res.* 2016 Jan 15;76(2):283-92.

794 13. Clegg NJ, Couto SS, Wongvipat J, Hieronymus H, Carver BS, Taylor BS, Ellwood-
795 Yen K, Gerald WL, Sander C, Sawyers CL. MYC cooperates with AKT in prostate
796 tumorigenesis and alters sensitivity to mTOR inhibitors. *PLoS One.* 2011 Mar
797 4;6(3):e17449.

798 14. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, Taylor BS,
799 Sander C, Cardiff RD, Couto SS, Gerald WL, Sawyers CL. Cooperativity of TMPRSS2-
800 ERG with PI3-kinase pathway activation in prostate oncogenesis. *Nat Genet.* 2009
801 May;41(5):524-6.

802 15. Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint Jean L, Case TC, Ellwood-Yen K,
803 Sawyers CL, Bhowmick NA, Blackwell TS, Yull FE, Matusik RJ. The nuclear factor-
804 kappaB pathway controls the progression of prostate cancer to androgen-independent

805 growth. *Cancer Res.* 2008 Aug 15;68(16):6762-9.

806 16. Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML, Abdulkadir SA. Pim1
807 kinase synergizes with c-MYC to induce advanced prostate carcinoma. *Oncogene*. 2010
808 Apr 29;29(17):2477-87.

809 17. Nandana S, Ellwood-Yen K, Sawyers C, Wills M, Weidow B, Case T, Vasioukhin V,
810 Matusik R. Hepsin cooperates with MYC in the progression of adenocarcinoma in a
811 prostate cancer mouse model. *Prostate*. 2010 May 1;70(6):591-600.

812 18. Liu B, Gong S, Li Q, Chen X, Moore J, Suraneni MV, Badeaux MD, Jeter CR, Shen
813 J, Mehmmood R, Fan Q, Tang DG. Transgenic overexpression of NanogP8 in the mouse
814 prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development
815 in the Hi-Myc mouse model. *Oncotarget*. 2017 Apr 18;8(32):52746-52760.

816 19. Narla G, Difeo A, Reeves HL, Schaid DJ, Hirshfeld J, Hod E, Katz A, Isaacs WB,
817 Hebring S, Komiya A, McDonnell SK, Wiley KE, Jacobsen SJ, Isaacs SD, Walsh PC,
818 Zheng SL, Chang BL, Friedrichsen DM, Stanford JL, Ostrander EA, Chinnaiyan AM,
819 Rubin MA, Xu J, Thibodeau SN, Friedman SL, Martignetti JA. A germline DNA
820 polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is
821 associated with increased prostate cancer risk. *Cancer Res.* 2005 Feb 15;65(4):1213-
822 22.

823 20. Narla G, DiFeo A, Fernandez Y, Dhanasekaran S, Huang F, Sangodkar J, Hod E,
824 Leake D, Friedman SL, Hall SJ, Chinnaiyan AM, Gerald WL, Rubin MA, Martignetti JA.
825 KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression
826 and metastasis. *J Clin Invest.* 2008 Aug;118(8):2711-21.

827 21. Narla G, DiFeo A, Yao S, Banno A, Hod E, Reeves HL, Qiao RF, Camacho-Vanegas
828 O, Levine A, Kirschenbaum A, Chan AM, Friedman SL, Martignetti JA. Targeted
829 inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth
830 and spread. *Cancer Res.* 2005 Jul 1;65(13):5761-8.

831 22. Roh M, Kim J, Song C, Wills M, Abdulkadir SA. Transgenic mice for Cre-inducible
832 overexpression of the oncogenes c-MYC and Pim-1 in multiple tissues. *Genesis*. 2006
833 Oct;44(10):447-53.

834 23. Watson PA, Ellwood-Yen K, King JC, Wongvipat J, Lebeau MM, Sawyers CL.
835 Context-dependent hormone-refractory progression revealed through characterization of
836 a novel murine prostate cancer cell line. *Cancer Res*. 2005 Dec 15;65(24):11565-71.

837 24. Podsypanina K, Politi K, Beverly LJ, Varmus HE. Oncogene cooperation in tumor
838 maintenance and tumor recurrence in mouse mammary tumors induced by Myc and
839 mutant Kras. *Proc Natl Acad Sci U S A*. 2008 Apr 1;105(13):5242-7.

840 25. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN,
841 Swigart LB, Sergio Nasi S, Evan GI. Modelling Myc Inhibition as a Cancer Therapy.
842 *Nature*. 2008 Oct 2;455(7213):679-83.

843 26. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann
844 MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher
845 DW. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in
846 hepatocellular cancer. *Nature*. 2004 Oct 28;431(7012):1112-7.

847 27. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop
848 JM, Felsher DW. Sustained loss of a neoplastic phenotype by brief inactivation of MYC.
849 *Science*. 2002 Jul 5;297(5578):102-4.

850 28. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, Hicks JL, Morgan J,
851 Cornish TC, Sutcliffe S, Isaacs WB, Luo J, De Marzo AM. Nuclear MYC protein
852 overexpression is an early alteration in human prostate carcinogenesis. *Mod Pathol*.
853 2008 Sep;21(9):1156-67.

854 29. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C,
855 Giannopoulou E, Chakravarthi BV, Varambally S, Tomlins SA, Nanus DM, Tagawa ST,
856 Van Allen EM, Elemento O, Sboner A, Garraway LA, Rubin MA, Demichelis F. Divergent

857 clonal evolution of castration-resistant neuroendocrine prostate cancer. *Nat. Med.*
858 2016;22:298–305.

859 30. Das R, Gregory PA, Hollier BG, Tilley WD, Seltz LA. Epithelial plasticity in prostate
860 cancer: principles and clinical perspectives. *Trends Mol Med.* 2014 Nov;20(11):643-51.

861 31. Yang J, Antin P, Berx G, Blanpain C, Brabec T, Bronner M, Campbell K, Cano A,
862 Casanova J, Christofori G, Dedhar S, Deryck R, Ford HL, Fux J, García de Herreros
863 A, Goodall GJ, Hadjantonakis AK, Huang RY, Kalcheim C, Kalluri R, Kang Y, Khew-
864 Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massagué J, Mayor R, McClay D,
865 Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B,
866 Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW,
867 Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G; EMT International Association
868 (TEMTIA). Guidelines and definitions for research on epithelial-mesenchymal transition.
869 *Nat Rev Mol Cell Biol.* 2020 Apr 16.

870 32. Zhao Y, Yan Q, Long X, Chen X, Wang Y. Vimentin affects the mobility and
871 invasiveness of prostate cancer cells. *Cell Biochem Funct.* 2008 Sep-Oct;26(5):571-7.

872 33. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold
873 CI, Marcom PK, George DJ, Garcia-Blanco MA. Circulating tumor cells from patients
874 with advanced prostate and breast cancer display both epithelial and mesenchymal
875 markers. *Mol Cancer Res.* 2011 Aug;9(8):997-1007.

876 34. Lang SH, Hyde C, Reid IN, Hitchcock IS, Hart CA, Gordon Bryden AA, Villette JM,
877 Stower MJ, Maitland NJ. Enhanced expression of vimentin in motile prostate cell lines
878 and in poorly differentiated and metastatic prostate carcinoma. *Prostate.* 2002 Sep
879 1;52(4):253-63.

880 35. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell.* 2011 Mar
881 4;144(5):646-74.

882 36. Tomechko SE, Liu G, Tao M, Schlatzer D, Powell CT, Gupta S, Chance MR,

883 Daneshgari F. Tissue specific dysregulated protein subnetworks in type 2 diabetic
884 bladder urothelium and detrusor muscle. *Mol Cell Proteomics*. 2015 Mar;14(3):635-45.

885 37. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation
886 method for proteome analysis. *Nat Methods*. 2009 May;6(5):359-62.

887 38. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more
888 genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools.
889 *Nucleic Acids Res*. 2019 Jan 8;47(D1):D419-D426.

890 39. Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R, Suleman K,
891 Varambally S, Brenner JC, MacDonald T, Srivastava A, Tewari AK, Sathyanarayana U,
892 Nagy D, Pestano G, Kunju LP, Demichelis F, Chinnaiyan AM, Rubin MA. Antibody-
893 based detection of ERG rearrangement-positive prostate cancer. *Neoplasia*. 2010
894 Jul;12(7):590-8.

895 40. Arriaga JM, Panja S, Alshalalfa M, Zhao J, Zou M, Giacobbe A, Madubata CJ, Yeji
896 Kim J, Rodriguez A, Coleman I, Virk RK, Hibshoosh H, Ertunc O, Ozbek B, Fountain J,
897 Karnes RJ, Luo J, Antonarakis ES, Nelson PS, Feng FY, Rubin MA, De Marzo AM,
898 Rabadan R, Sims PA, Mitrofanova A, Abate-Shen C. A MYC and RAS co-activation
899 signature in localized prostate cancer drives bone metastasis and castration resistance.
900 *Nat Cancer*. 2020 Nov;1(11):1082-1096.

901 41. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, Hicks JL, Morgan J,
902 Cornish TC, Sutcliffe S, Isaacs WB, Luo J, De Marzo AM. Nuclear MYC protein
903 overexpression is an early alteration in human prostate carcinogenesis. *Mod Pathol*.
904 2008 Sep;21(9):1156-67.

905 42. Melis MHM, Nevedomskaya E, van Burgsteden J, Cioni B, van Zeeburg HJT, Song
906 JY, Zevenhoven J, Hawinkels LJAC, de Visser KE, Bergman AM. The adaptive immune
907 system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic
908 mouse model. *Oncotarget*. 2017 Sep 28;8(55):93867-93877.

909 43. Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA,
910 Humphrey PA, Sundberg JP, Rozengurt N, Barrios R, Ward JM, Cardiff RD. Prostate
911 pathology of genetically engineered mice: definitions and classification. The consensus
912 report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium
913 Prostate Pathology Committee. *Cancer Res.* 2004 Mar 15;64(6):2270-305.

914 44. Thompson TC, Southgate J, Kitchener G, Land H. Multistage carcinogenesis
915 induced by ras and myc oncogenes in a reconstituted organ. *Cell.* 1989 Mar
916 24;56(6):917-30.

917

918 **Figure Legends**

919

920 **Figure 1. KLF6-SV1 cooperates with c-MYC to promote the progression of prostate**
921 **tumorigenesis *in vivo*.** **A**, Generation of MYC-SV1 GEMM. Confirmation of germline
922 transmission of transgenes. **B**, Representative gross images of the urogenital system of
923 WT, KLF6-SV1, Hi-Myc and MYC-SV1 mice at 10 months of age (scale bar=1cm). **C**,
924 Urogenital weights of WT, KLF6-SV1, Hi-Myc and MYC-SV1 mice at 10 months of age
925 (mean \pm s.d., $P = 0.0032$, ANOVA). **D**, IHC staining of c-MYC (brown) and KLF6-SV1
926 (green) co-expression of FFPE sections of representative Hi-Myc and MYC-SV1 mouse
927 prostates at 10 months of age (63x magnification; scale bar=20 μ m). **E**, Penetrance of
928 histological phenotype of WT ($n = 10$), KLF6-SV1 ($n = 11$), Hi-Myc ($n = 10$) and MYC-
929 SV1 ($n = 10$) at 10 months of age. **F**, Comparative pathological characterization of the
930 mouse prostate. Photomicrographs of FFPE hematoxylin and eosin (H&E) stained
931 sections of representative WT, KLF6-SV1, Hi-Myc and MYC-SV1 prostates at 10 months
932 of age of age, and paired normal and adenocarcinoma (grade IV) of human prostate
933 tissue at low (1.25x magnification, scale bar=2.5mm; 2.5x magnification, scale
934 bar=500 μ m) and high (40x magnification; scale bar=50 μ m) magnification views of the
935 prostate are shown. WT mice display healthy glands (red arrow); KLF6-SV1 mice exhibit
936 PIN (blue arrow); Hi-Myc mice develop focally invasive well-differentiated prostate

937 cancer (black arrow); MYC-SV1 mice develop diffuse poorly differentiated invasive
938 prostate cancer (green arrow). **G**, IHC staining of E-cadherin (brown) of FFPE sections
939 from representative GEMM prostates at 10 months of age (40x magnification; scale
940 bar=50 μ m). **H**, Microvessel count and representative IHC of CD31 stained vessels per
941 field (mean \pm s.d., $P < 0.0001$, ANOVA); **I**, PCNA-positive proliferating cells per field
942 (mean \pm s.d., $P < 0.0001$, ANOVA); **J**, TUNEL-positive apoptotic cells per field (mean \pm
943 s.d., $P < 0.0001$, ANOVA)

944

945

946 **Figure 2. MYC-SV1 mice develop poorly differentiated tumors of luminal epithelial**
947 **origin with metastatic disease.** **A**, Kaplan–Meier cumulative survival analysis shows a
948 significant decrease in the lifespan of MYC-SV1 mice ($n = 42$, Median survival 477 days)
949 compared with WT ($n = 25$, Median survival = 824 days), KLF6-SV1 ($n = 13$, Median
950 survival = 785 days), and Hi-Myc ($n = 13$, Median survival = 689 days) cohorts ($P <$
951 0.0001, Log-rank test). **B**, Schematic of WT and GEMM metastatic phenotypes. **C**,
952 Photomicrographs of H&E and immunohistochemical stained sections of MYC-SV1
953 metastatic pancreatic lesion at low and high magnification (2x magnification, scale
954 bar=500 μ m; 40x magnification, scale bar=50 μ m) magnification. Metastatic tumor
955 nodules encircled by dashed lines (2x magnification, scale bar=500 μ m). Pancreatic
956 metastasis was stained for AR, c-MYC and NKX3.1 to confirm prostate origin.

957

958 **Figure 3. c-MYC and KLF6-SV1 cooperate and regulate cellular proliferation *in***
959 ***vitro*.** **A**, c-MYC mRNA in a panel of prostate cell lines of differing disease states.
960 Asterisk (*) denotes cell lines with c-MYC amplification (mean \pm s.d., $P < 0.001$,
961 ANOVA). **B**, KLF6-SV1 mRNA in a panel of prostate cell lines of differing disease states
962 (mean \pm s.d., $P = 0.0289$, ANOVA). **C**, c-MYC and KLF6-SV1 protein expression in a

963 panel of prostate cell lines of differing disease states (blue = benign cell lines, green =
964 PIN cell lines, pink = tumorigenic cell lines; PC3 and PC3M cell lines with *c-MYC*
965 amplification). **D**, qRT-PCR for *c-MYC* and **E**, *KLF6-SV1* mRNA expression 48 hours
966 after *KLF6-SV1* and *c-MYC* siRNA-mediated knockdown in PC3 cells (mean \pm s.d., $P <$
967 0.0001, ANOVA). **F**, qRT-PCR for *c-MYC* **G**, *KLF6-SV1* mRNA expression with *KLF6-*
968 *SV1* and *c-MYC* knockdown by siRNA in PC3M cells (mean \pm s.d., $P < 0.0001$, ANOVA).
969 PC3 and PC3M cells transfected with indicated siRNAs normalized to the corresponding
970 non-silencing control. **H**, *KLF6-SV1* and *c-MYC* protein expression 48 hours after *KLF6-*
971 *SV1* and *c-MYC* knockdown by siRNA in PC3 cells. **I**, qRT-PCR for *c-MYC* mRNA
972 expression; **J**, qRT-PCR for *KLF6-SV1* mRNA; **K**, qRT-PCR for exogenous *KLF6-SV1*
973 mRNA of RWPE-1 cell lines stably overexpressing p-Babe-*KLF6-SV1*, p-Babe-*c-MYC*,
974 or p-Babe-*KLF6-SV1/c-MYC* in RWPE-1 cells (mean \pm s.d., $P < 0.0001$, ANOVA).
975 RWPE-1 cells transfected with indicated plasmids normalized to the corresponding p-
976 Babe control. **L**, *KLF6-SV1* and *c-MYC* protein expression of RWPE-1 cell lines stably
977 expressing p-Babe-*KLF6-SV1*, *c-MYC*, or *KLF6-SV1/c-MYC*. **M**, *KI-67* mRNA expression
978 in a panel of prostate cell lines of differing disease states (mean \pm s.d., $P = 0.1788$,
979 ANOVA). **N**, *KI-67* mRNA expression 48 hours after *KLF6-SV1* and *c-MYC* knockdown
980 by siRNA in PC3 cells (mean \pm s.d., $P < 0.0001$, ANOVA). **O**, Thymidine incorporation
981 48 hours after *KLF6-SV1* and *c-MYC* knockdown by siRNA in PC3 cells (mean \pm s.d., P
982 < 0.0001 , ANOVA). **P**, Cell cycle analysis of PC3 cells 48 hours after *KLF6-SV1* and *c-*
983 *MYC* knockdown by siRNA. Bars in graphs represent three biological replicates. **Q**,
984 *CDKN1A* (p21) mRNA expression in a panel of prostate cell lines of differing disease
985 states (mean \pm s.d., $P = 0.187$, ANOVA). **R**, *CDKN1A* (p21) mRNA expression 48 hours
986 after *KLF6-SV1* and *c-MYC* knockdown by siRNA in PC3 cells (mean \pm s.d., $P = 0.0089$,
987 ANOVA).

988

989 **Figure 4. Castration and de-induction of c-MYC on the maintenance of MYC-SV1**

990 **A**, Schematic of castration experiment using the MYC-SV1 GEMM.

991 Mice were castrated at 10 months of age ($n = 5$) post- tumor development and were

992 sacrificed 3 months post-surgery. **B**, Urogenital weights of intact or castrated MYC-SV1

993 mice (mean \pm s.d., $P = 0.05$, Student's t-test). **C**, Incidence of mPIN and

994 adenocarcinoma in intact and castrated mice. **D**, Gross images and micrographs of H&E

995 of the urogenital system of all mice in the study. **E**, Histological evaluation of treatment

996 phenotype incidence (%). H&E and immunohistochemical (IHC) staining of AR, c-MYC

997 and KLF6-SV1 (10x magnification, scale bar=200 μ m; 40x magnification, scale

998 bar=50 μ m). **F**, Percent of epithelial cells expressing AR (mean \pm s.d., $P = 0.1625$,

999 Student's t-test). A total of more than 500 cells were counted from high-power fields. **G**,

1000 AR protein expression intensity. AR expression was measured on a 1+, 2+ or 3+ scoring

1001 system (0=negative, 1=weak, 2=moderate, 3=strong). Samples scored by intensity.

1002 Intensity distribution with representative images; primary tumors with total regions

1003 scored. **H**, IHC staining of CK5 (green) (mean \pm s.d., $P = 0.0017$, Student's t-test) and

1004 CK18 (brown) of intact and castrated prostate tissue (63x magnification, scale

1005 bar=20 μ m; 100x magnification, scale bar=10 μ m). **I**, Representative

1006 immunofluorescence staining image for alpha-smooth muscle actin (SMA) (mean \pm s.d.,

1007 $P = 0.0151$, Student's t-test) (40x magnification, scale bar=50 μ m). **J**, Representative IHC

1008 staining image of PCNA (100x magnification, scale bar=10 μ m) with percent of epithelial

1009 cells expressing PCNA (mean \pm s.d., $P = 0.5784$, Student's t-test). A total of more than

1010 500 cells were counted from high-power fields.

1011 **Figure 5. Proteomics analysis identifies a distinct expression signature with**

1012 **significant upregulation of vimentin in MYC-SV1 mouse model. A**, Proteomics

1013 analysis experimental design. **B**, Principal component analysis (PCA) including WT ($n=5$;
1014 black dots), KLF6-SV1 ($n=5$; blue dots), Hi-Myc ($n=5$; red dots) and MYC-SV1 ($n=5$;
1015 yellow dots) prostate tissue specimens. **C**, Heatmap of significantly altered proteins
1016 amongst GEMM groups normalized to WT or Hi-Myc, as indicated ($P < 0.01$, ANOVA). A
1017 magnified subset of the heatmap (group B) is shown to the right. **D**, Select enriched
1018 pathways. **E**, Western blot of vimentin protein expression of mouse prostates. **F**, IHC
1019 staining of vimentin shows increased expression of vimentin in MYC-SV1 tumors (10x,
1020 scale bar=250 μ m). **E**, MYC-SV1 lesions expressing high levels of vimentin protein
1021 expression also concurrently express AR and E-cadherin confirmed by IHC staining of
1022 consecutive FFPE tumor sections of MYC-SV1 prostate (10x magnification, scale
1023 bar=250 μ m). Representative areas are noted with an asterisk (*) and shown at high
1024 magnification (40x magnification, scale bar=50 μ m). **H**, IHC staining of consecutive
1025 sections of human prostate cancer for vimentin expression (10x magnification, scale
1026 bar=250 μ m; 40x magnification, scale bar=50 μ m). **I**, IHC staining of MYC-SV1 pancreatic
1027 metastases for vimentin (encircled by dashed lines). High and low magnification
1028 photomicrographs are shown (2x magnification, scale bar=500 μ m; 40x magnification,
1029 scale bar=50 μ m). **J**, IHC staining of vimentin expression in intact vs. castrated MYC-SV1
1030 mouse prostate (10x magnification, scale bar=250 μ m; 40x magnification, scale
1031 bar=50 μ m).

1032

1033 **Figure 6. KLF6-SV1 dependent up-regulation of vimentin.** **A**, Micrographs of
1034 immunofluorescence (IF) staining for vimentin (red) and E-cadherin (green) capturing
1035 single and dual-positive tumor cells (yellow). **B**, Western blot analysis of vimentin protein
1036 expression in MYC-SV1 and Hi-MYC prostate tumors. **C**, Western blot of exogenous
1037 expression of KLF6-SV1 in Myc-CaP cells for c-MYC, KLF6-SV1, vimentin and E-
1038 cadherin protein expression. **D**, E-cadherin mRNA in a panel of prostate cell lines of

1039 differing disease states (mean \pm s.d., $P = 0.0189$, ANOVA). Fold change to RWPE-1
1040 expression. Bars represent means \pm s.d. of three biological replicates. **E**, qRT-PCR for
1041 vimentin mRNA expression in a panel of prostate cell lines of differing disease states
1042 (mean \pm s.d., $P = 0.0029$, ANOVA). Fold change normalized to RWPE-1 expression.
1043 Error bars represent s.d. and experiment performed in triplicate. **F**, E-cadherin and
1044 vimentin protein expression in a panel of prostate cell lines of differing disease states. **G**,
1045 qRT-PCR for E-cadherin mRNA expression of stable cell lines over-expressing p-Babe-
1046 KLF6-SV1, p-Babe-c-MYC, or p-Babe-KLF6-SV1/c-MYC in RWPE-1 cells (mean \pm s.d.,
1047 $P < 0.0001$, ANOVA). Bars represent means of three biological replicates. **H**, qRT-PCR
1048 of vimentin mRNA expression of stable cell lines over-expressing p-Babe-KLF6-SV1, p-
1049 Babe-c-MYC, or p-Babe-KLF6-SV1/c-MYC in RWPE-1 cells ($P < 0.0001$). Bars
1050 represent means of three biological replicates. **I**, E-cadherin and vimentin protein
1051 expression in stable RWPE-1 cell lines over-expressing p-Babe-KLF6-SV1, p-Babe-c-
1052 MYC or p-Babe-KLF6-SV1/c-MYC. Bars represent means of three biological replicates.
1053 **J**, Schematic of KLF6-SV1/c-MYC-induced dedifferentiation.

1054

1055 **Figure 7. KLF6-SV1 and c-MYC are correlated events in the human prostate. A**,
1056 Schematic of primary ($n = 48$ cores; 16 patients) and metastatic (liver) ($n = 9$ cores; 3
1057 patients) specimens included in TMA for c-MYC and KLF6-SV1. **B**, Representative RNA
1058 ISH staining with specific probes against c-MYC or KLF6-SV1. Signals are granular and
1059 discrete red dots corresponding to individual RNA targets. **C**, Quantification and
1060 correlation between *c-MYC* and *KLF6-SV1* mRNA (Pearson $r = 0.59$, $P < 0.0001$ and
1061 Spearman $r = 0.71$, $P < 0.0001$). **D**, Representative immunohistochemical staining with
1062 specific antibodies against c-MYC or KLF6-SV1. **E**, Quantification and correlation
1063 between c-MYC and KLF6-SV1 protein observed in human prostate specimens
1064 (Pearson $r = 0.70$, $P < 0.0001$ and Spearman $r = 0.63$, $P < 0.0001$).

1065

1066 **Supplemental Figures**

1067

1068 **Figure S1, Related to Figure 1. MYC-SV1 tumors are poorly differentiated**

1069 **carcinomas and locally invasive. A**, Hematoxylin and Eosin (H&E) staining of MYC-

1070 SV1 mouse prostate. **B**, An invasive adenocarcinoma lesion in a MYC-SV1 mouse

1071 exhibiting invasion into the bladder (yellow arrow), periprostatic adipose (blue arrow),

1072 muscle (orange arrow), and prostatic capsule (green arrow). **C**, Representative image of

1073 smooth muscle actin (SMA) staining (green fluorescence) and DAPI nuclear staining

1074 (blue fluorescence). Blood vessels serve as a positive internal control (10x, scale

1075 bar=100 μ m).

1076

1077 **Figure S2, Related to Figure 2. Androgen and p63 expression in GEMMs. A**, Strong

1078 nuclear AR is expressed in all mouse models. **B**, Loss of p63 is observed in tumors

1079 from MYC-SV1 mice. **C**, Molecular characterization by IHC staining with prostate

1080 lineage-marker specific antibodies on consecutive sections of a large poorly

1081 differentiated MYC-SV1 prostate carcinoma with un-involved well-differentiated adjacent

1082 adenocarcinoma (5x magnification, scale bar=600 μ m) for H&E, c-MYC, KLF6-SV1, AR,

1083 E-cadherin, p63, PCNA, Caspase-3, and CD31 with purple arrows point to blood vessels

1084 within the tumor.

1085

1086 **Figure S3, related to Figure 2. MYC-SV1 metastatic nodules are of epithelial origin.**

1087 Expression of E-cadherin, Pan-CK, and alpha-smooth muscle actin.

1088

1089 **Figure S4, Related to Figure 1. MYC-SV1 tumor kinetics. A**, Timeline of MYC-SV1

1090 mPIN and prostate cancer development and progression. **B**, Gross and

1091 photomicrographs of FFPE sections stained with hematoxylin and eosin (H&E) of tumor
1092 development kinetics of the mouse urogenital system. Scale bar = 1cm. **C**, Early stages
1093 of tumor development in MYC-SV1 mice. mPIN (blue arrow); adenocarcinoma and
1094 invasion (black arrow). **D**, Expression of pan-cytokeratin.

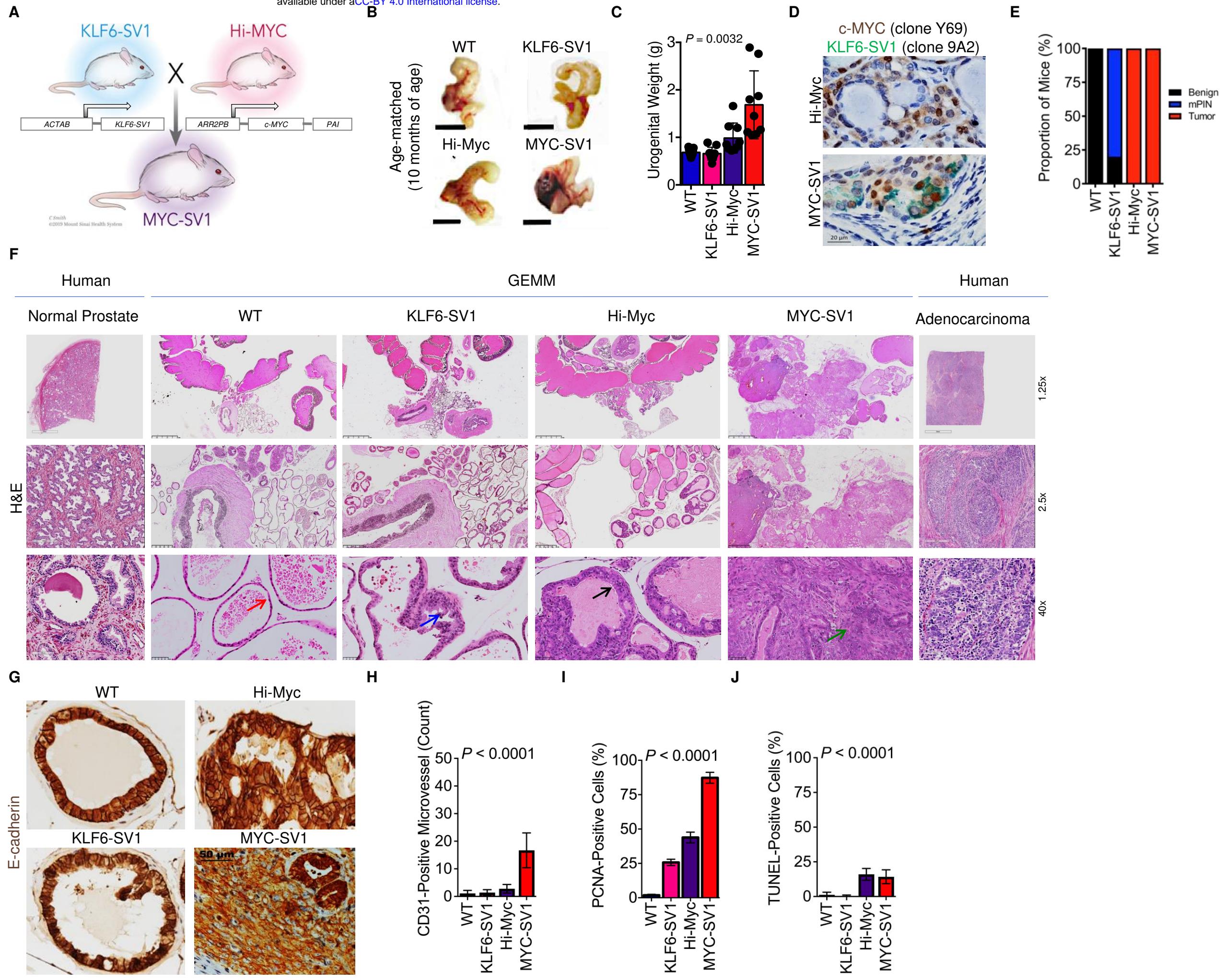
1095

1096 **Figure S5, related to Figure 2. Histopathological presentation of hydronephrosis in**
1097 **MYC-SV1 mice.** Representative gross and H&E-stained kidney sections from Hi-Myc
1098 and MYC-SV1 kidneys reveal hydronephrosis (arrow) in MYC-SV1 mice.

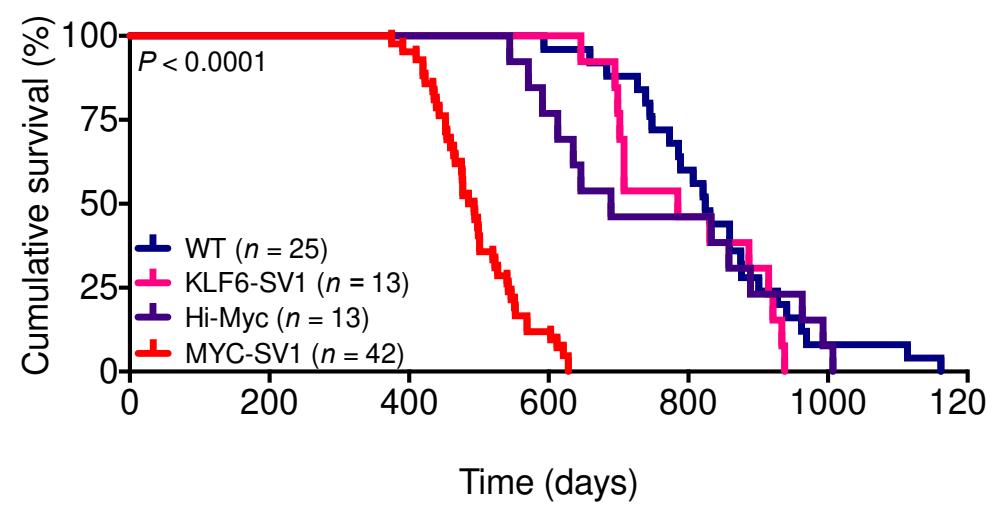
1099

1100 **Figure S6, related to Figure 2. MYC-SV1 tumors metastasize to the liver and lymph**
1101 **node.** Representative H&E stained FFPE sections of prostate cancer metastases to the
1102 liver and lymph nodes. Lack of smooth muscle actin and collagen expression (blue color)
1103 through Masson's Trichrome staining confirmed that the metastatic foci were not of
1104 myoepithelial or fibroblast origin.

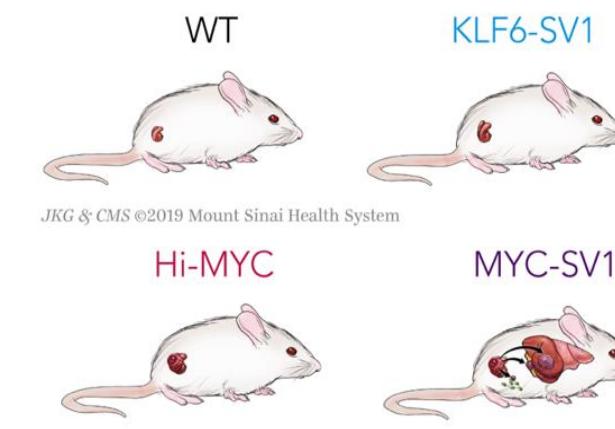
1105

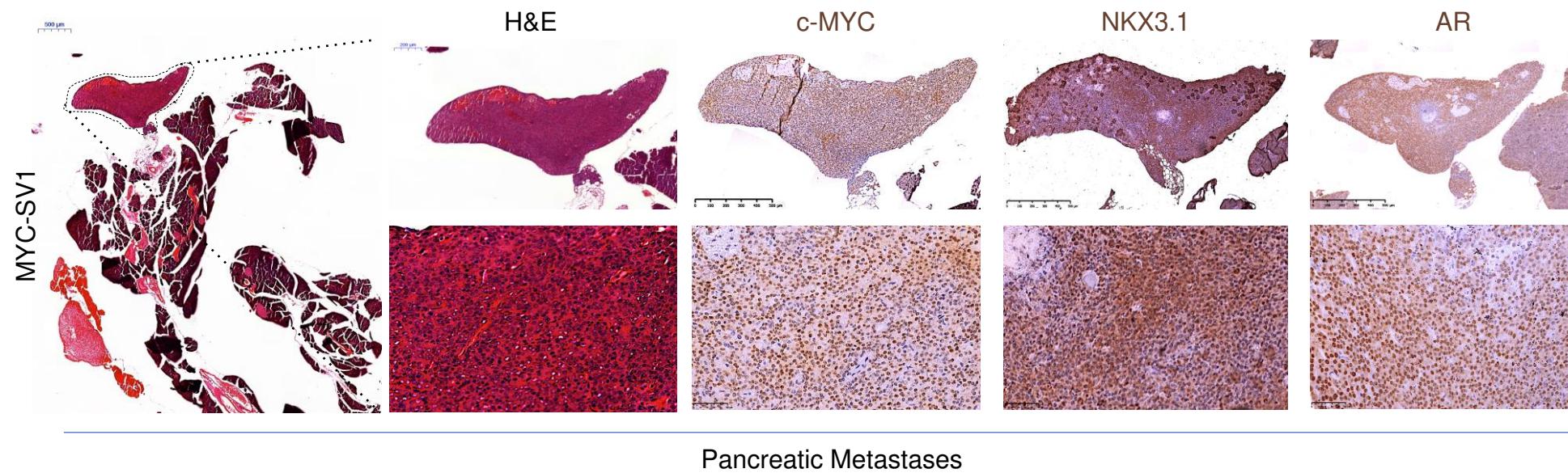

1106 **Figure S7, related to Figure 4. Ingenuity Pathway Analysis of Hi-Myc vs. MYC-SV1**
1107 **tumors.** Ingenuity Pathway Analysis (IPA) was utilized to elucidate the global
1108 implications of the differentially expressed proteins in our four mouse cohorts. The ILK
1109 pathway emerged as a top canonical pathway associated with our proteomics data.
1110 Changes in differential protein expression are depicted in red (upregulated) and green
1111 (downregulated). Proteins identified within this pathway included F-Actin, HIC5, and
1112 vimentin.

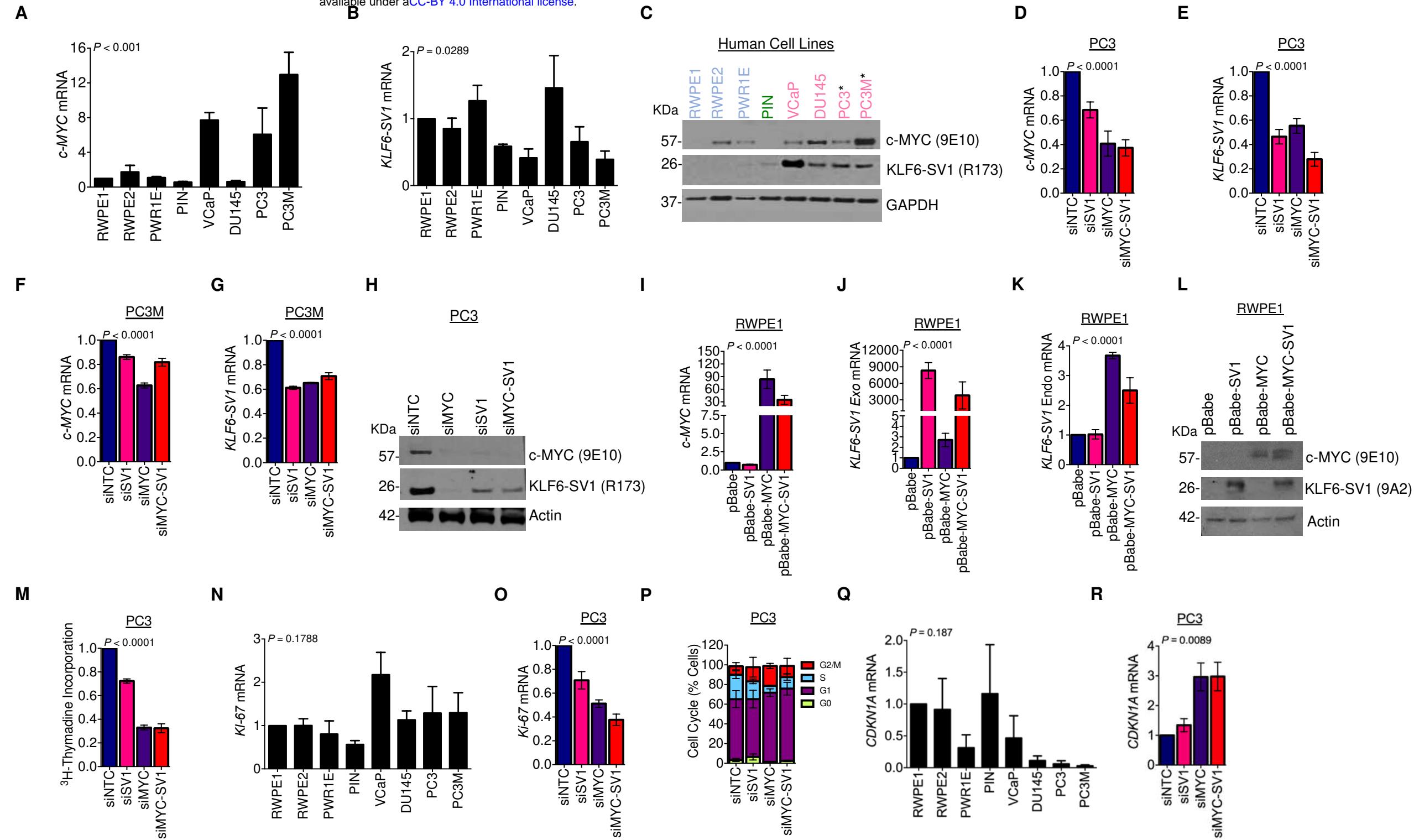
1113

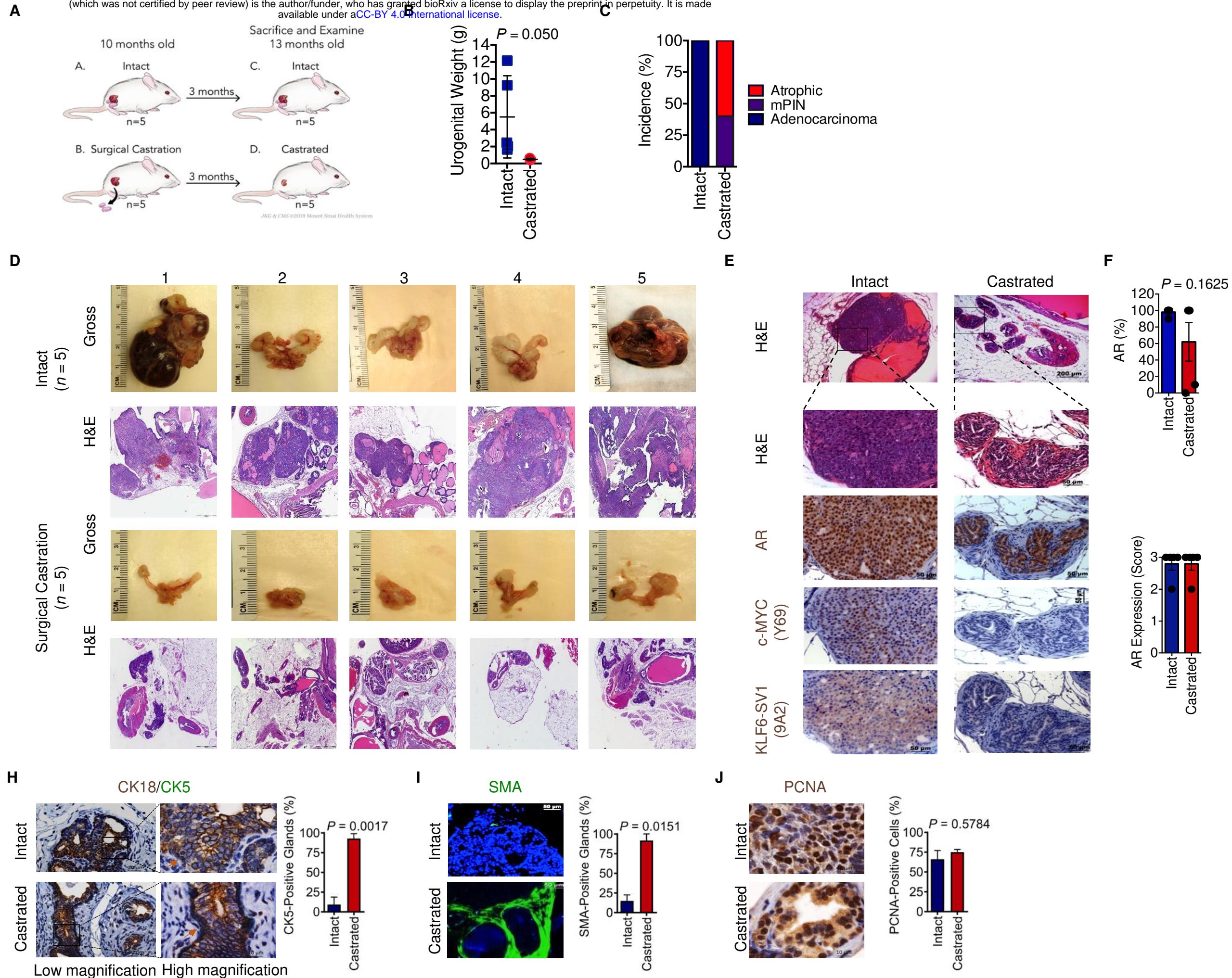

1114 **Figure S8, related to Figure 7. RNAish and IHC staining of positive control**
1115 **specimens for KLF6-SV1 and c-MYC.** **A**, Human prostate tissue stained with control
1116 probes. **B**, Human lymph node tissue stained for c-MYC protein (left). MYC-SV1 mouse

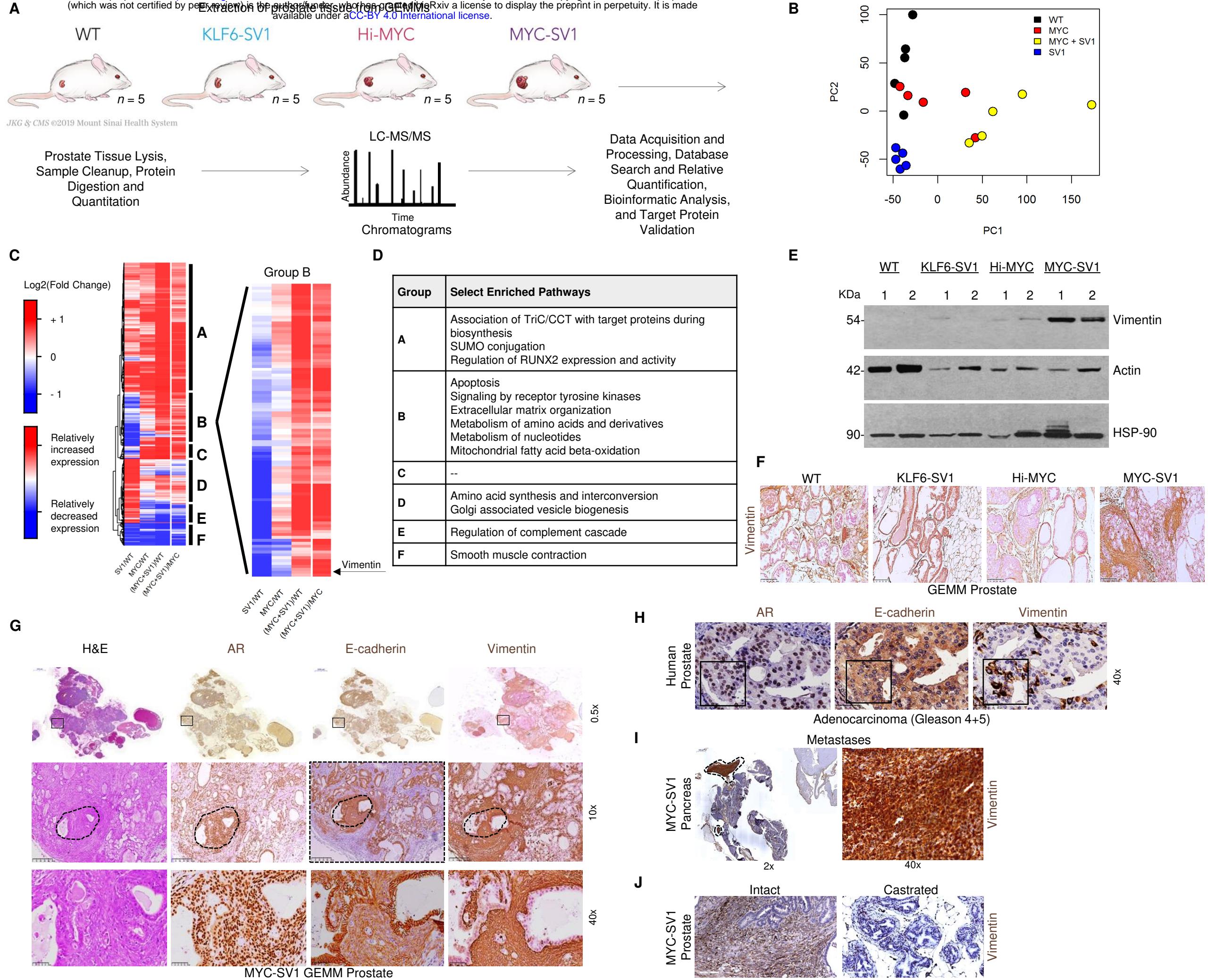
1117 prostate stained for KLF6-SV1 protein (right).


Figure 1 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.30.577982>; this version posted February 1, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


A


B


C


Figure 3 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.30.577982>; this version posted February 1, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

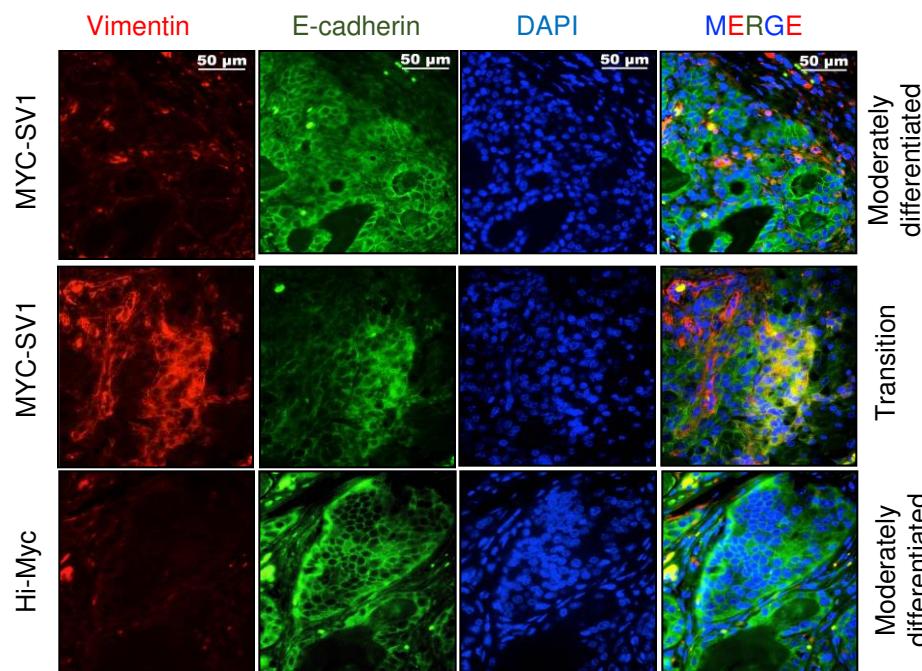
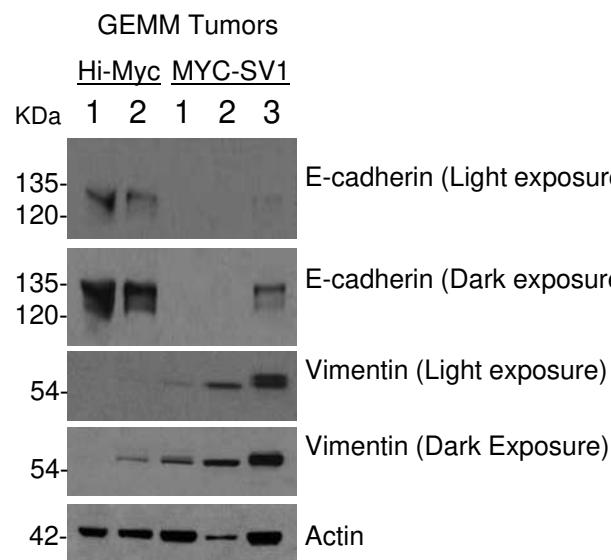
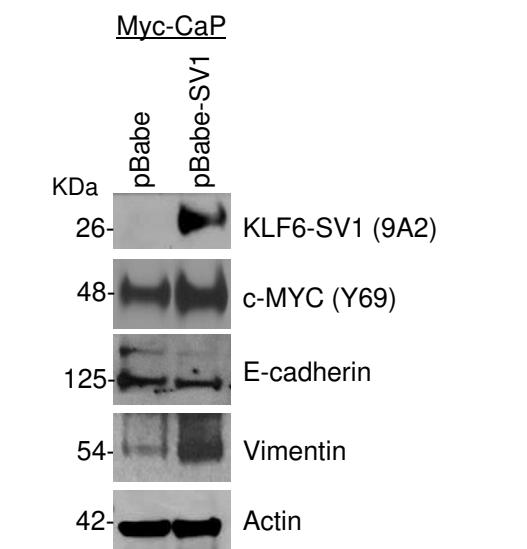

Figure 4 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.30.577982>; this version posted February 1, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 5 bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.30.577982>; this version posted February 1, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

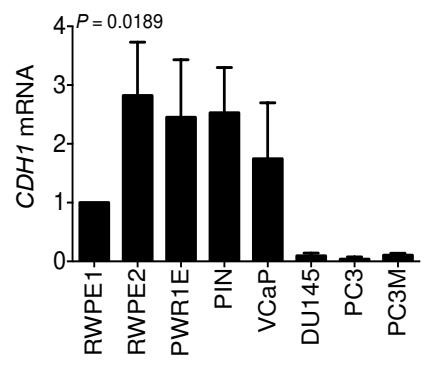
A

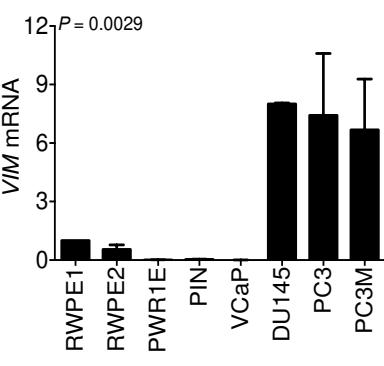


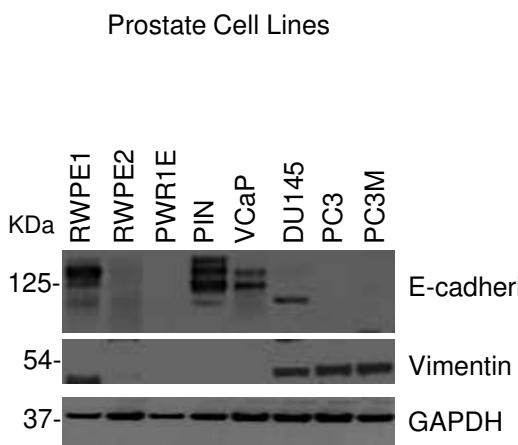
Moderately differentiated

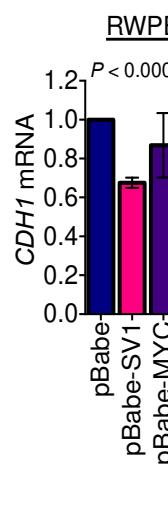

Transition

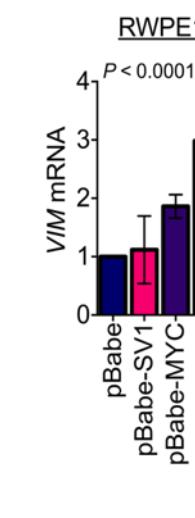
Moderately differentiated

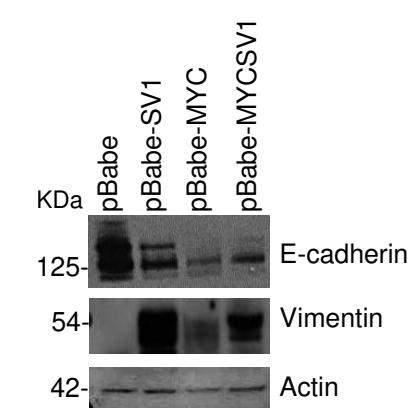

B

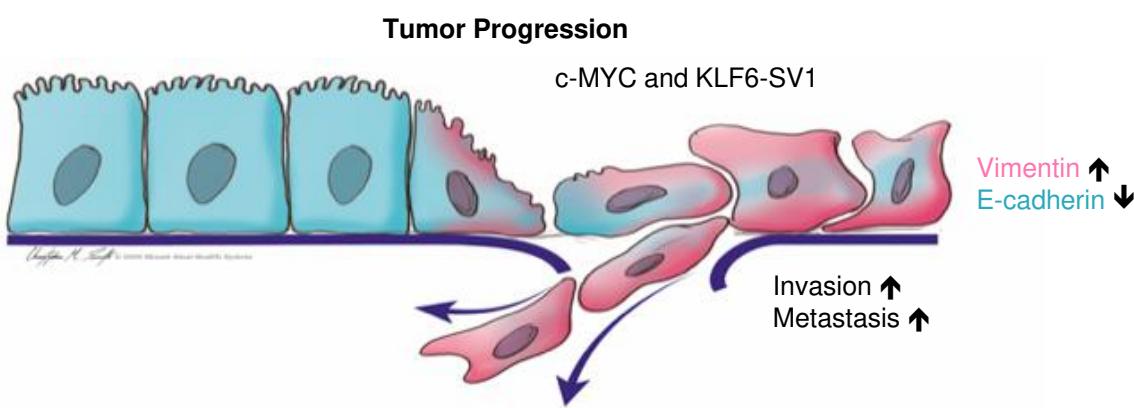

C

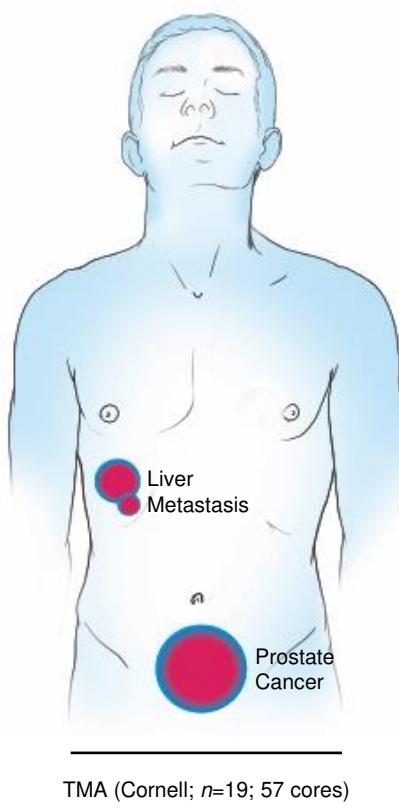

D

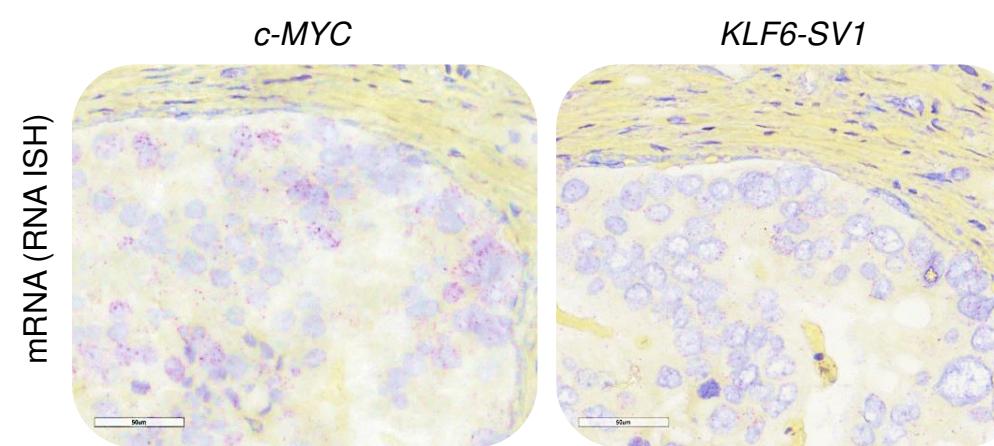

E

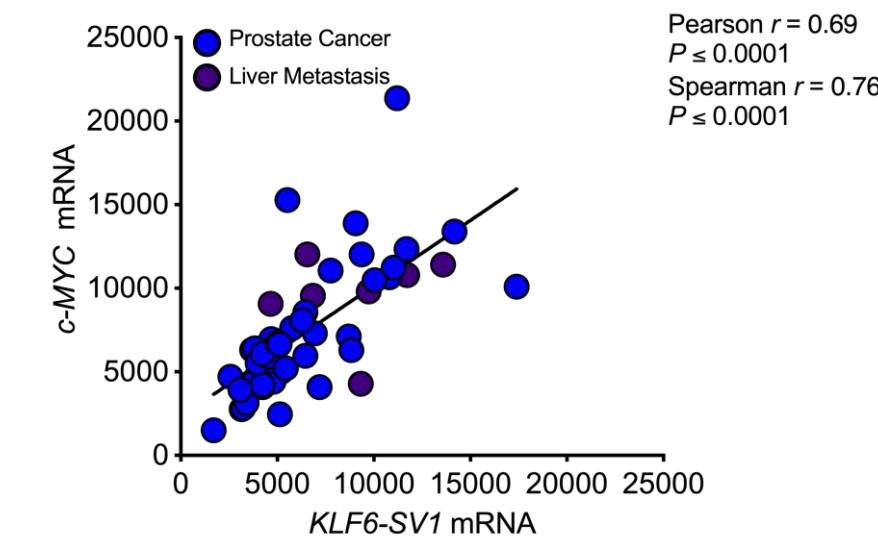

F

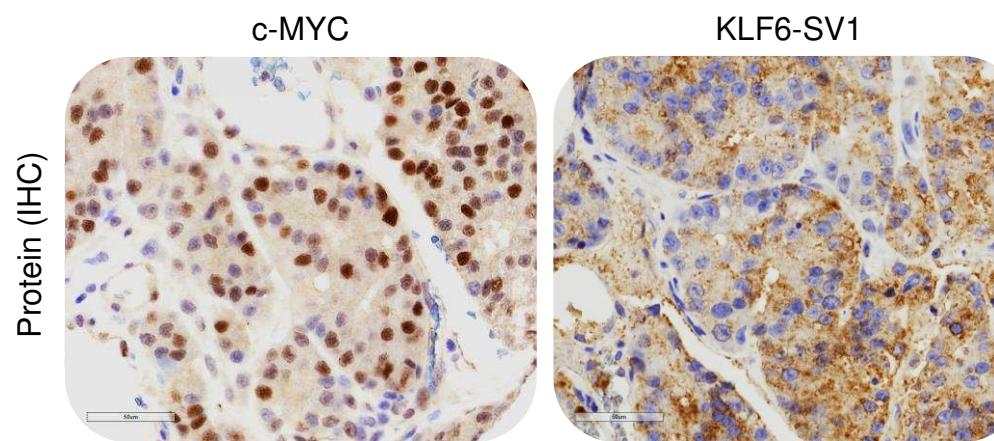

G

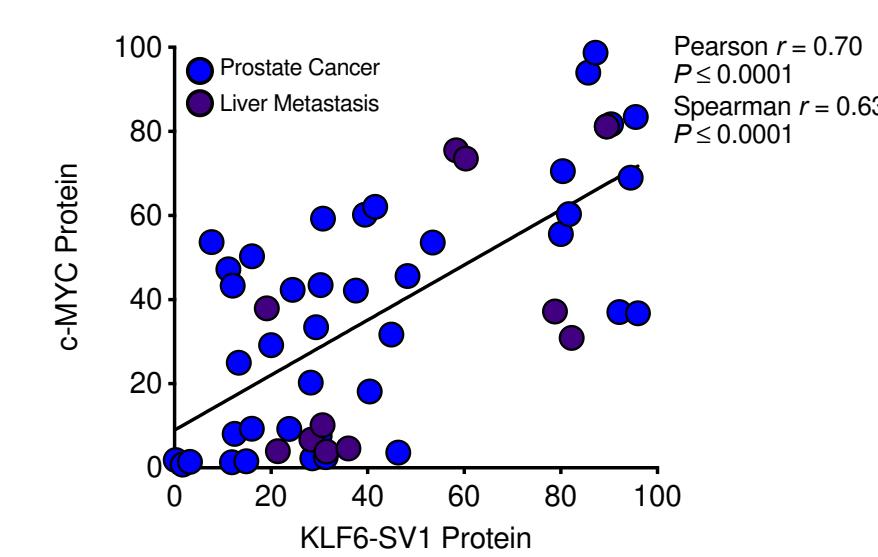

H


RWPE1

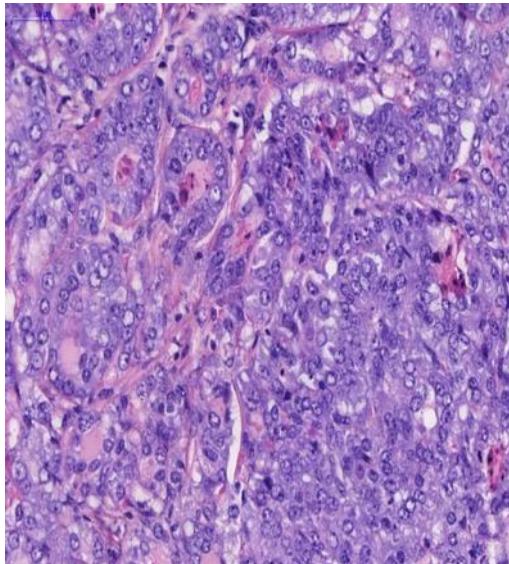

J


A

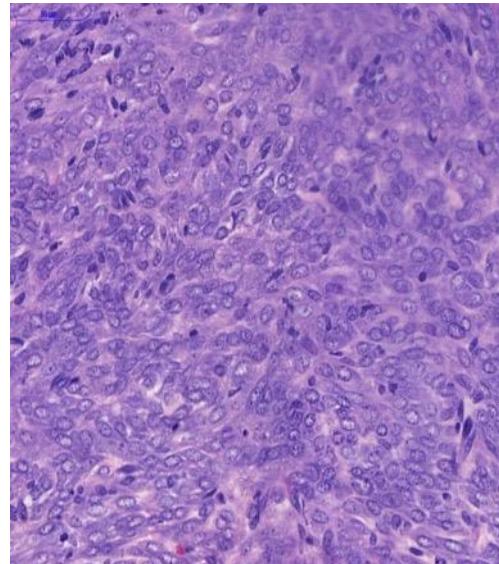

B


C

D



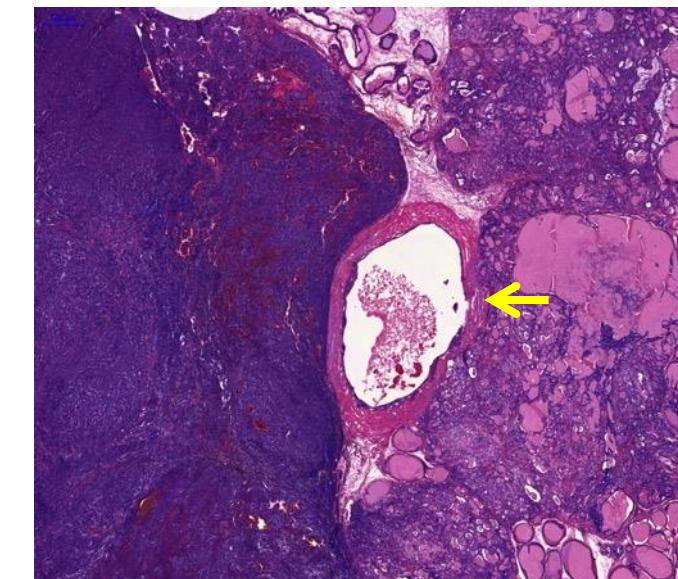
E



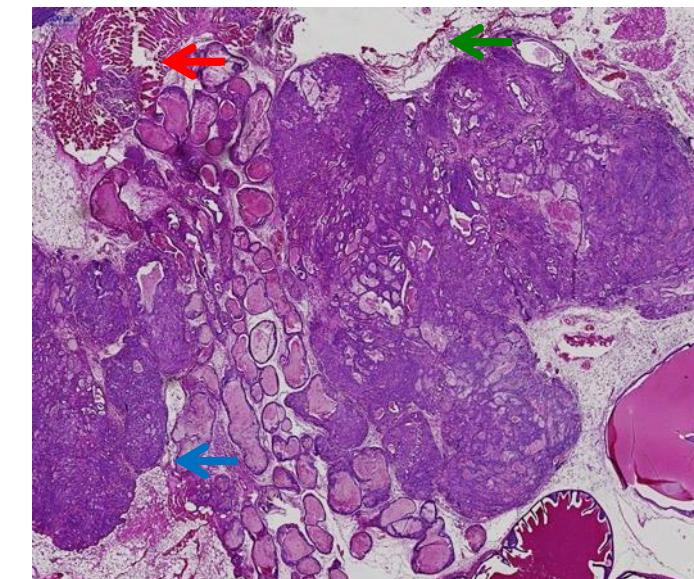
A

Adenocarcinoma

Carcinoma

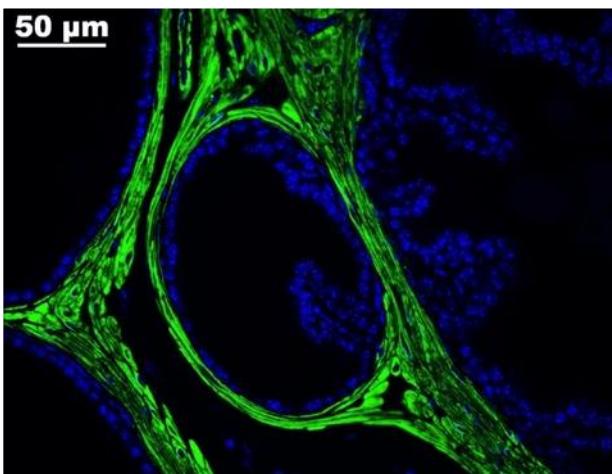


H&E

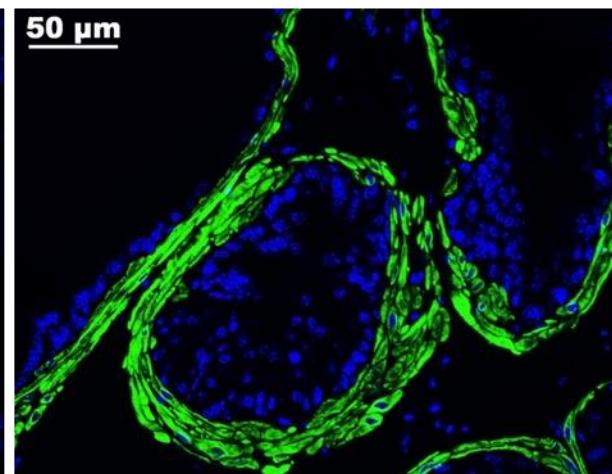

MYC-SV1

B

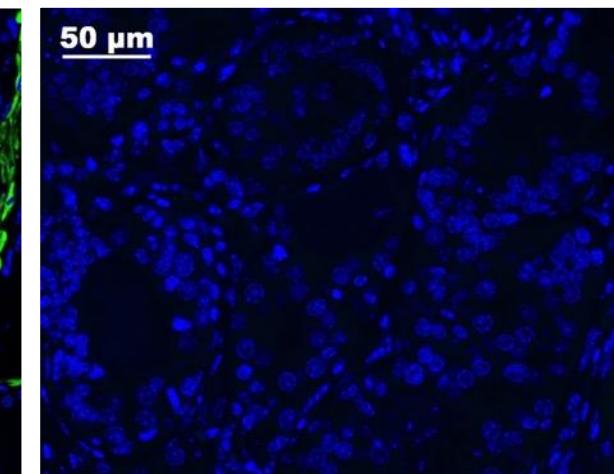
Prostate

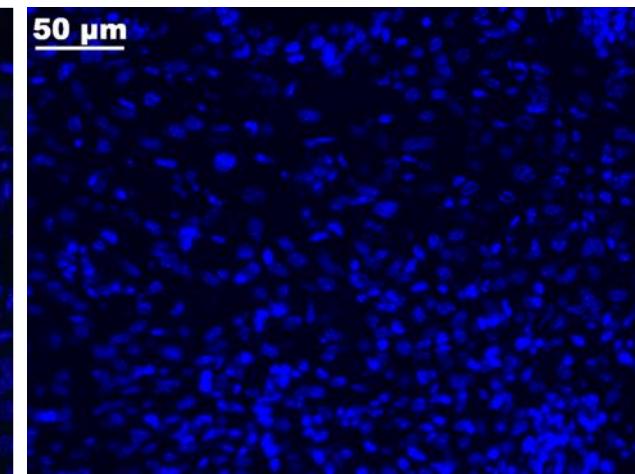


MYC-SV1

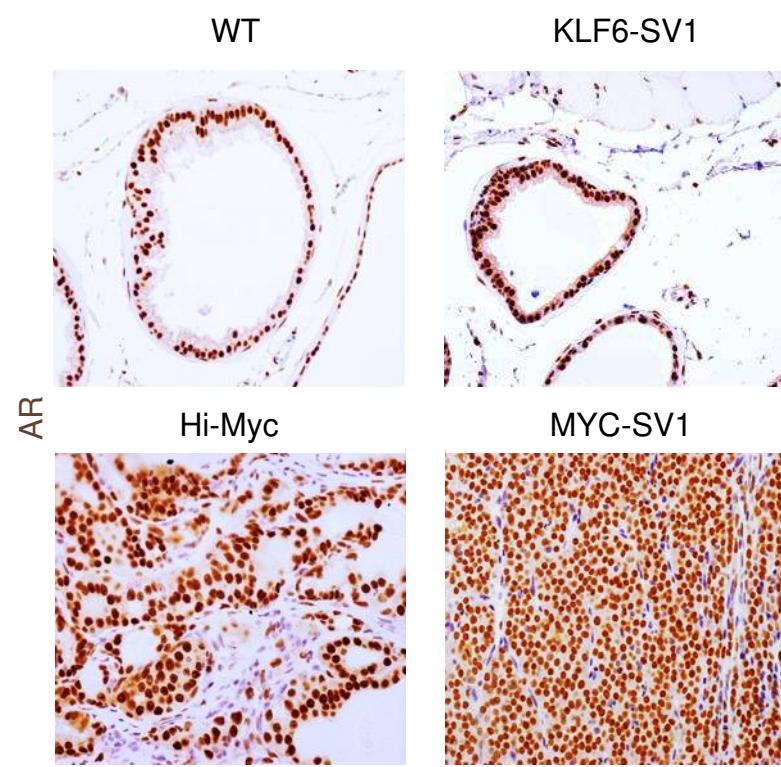


C

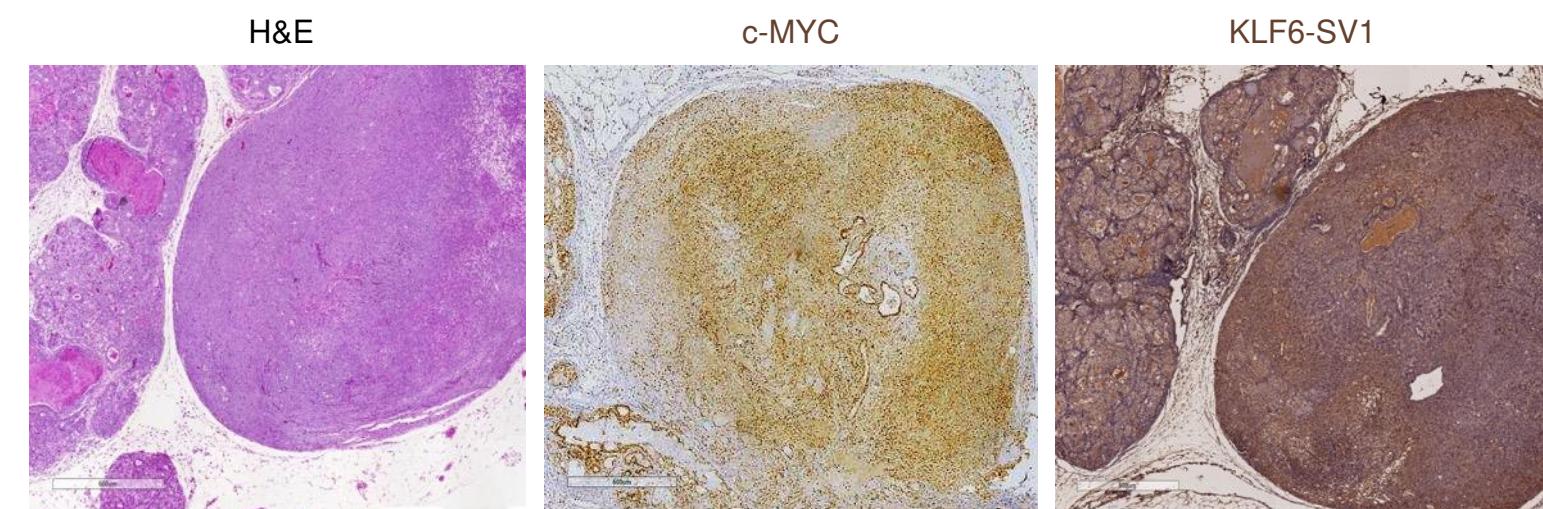

WT


KLF6-SV1

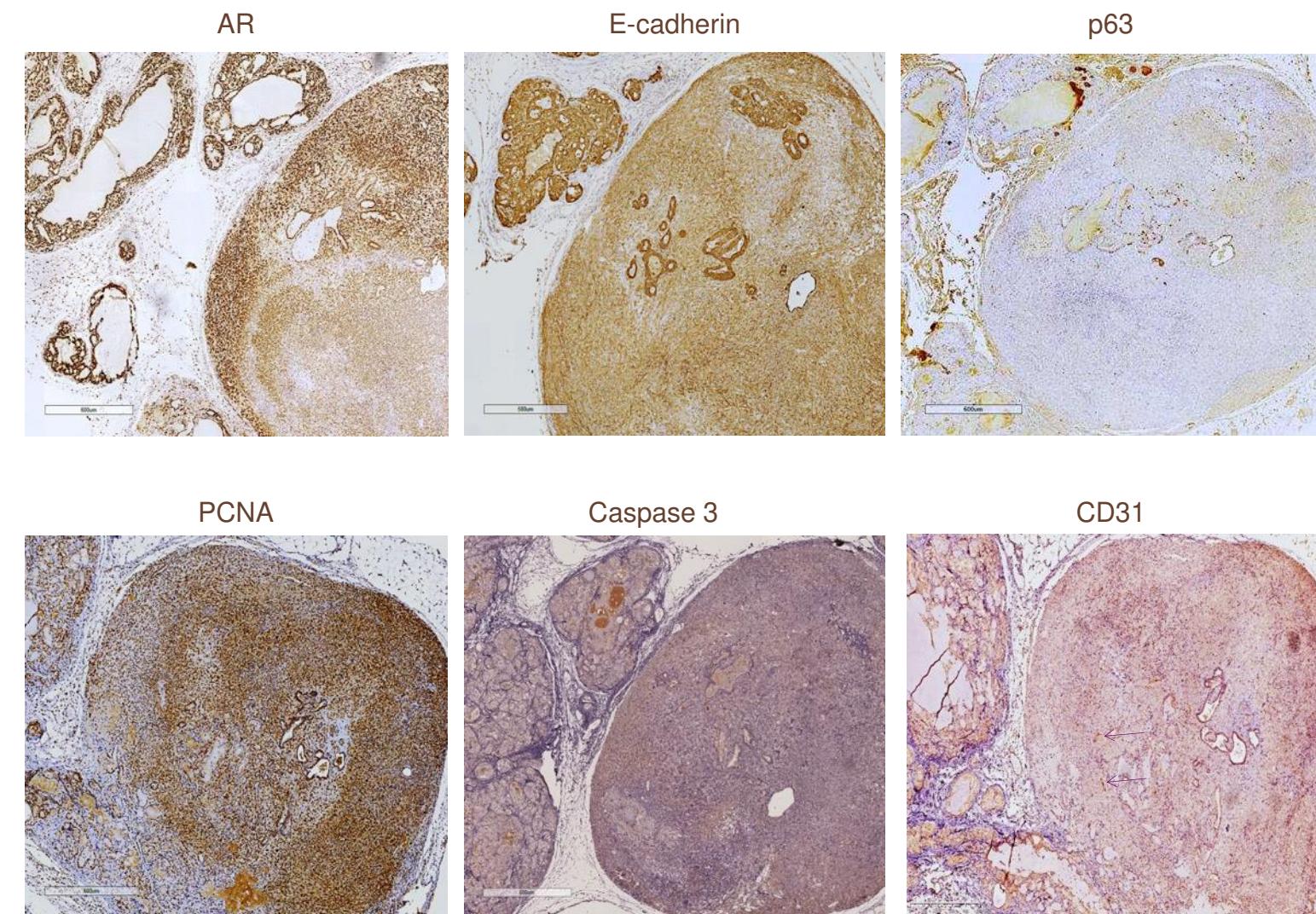
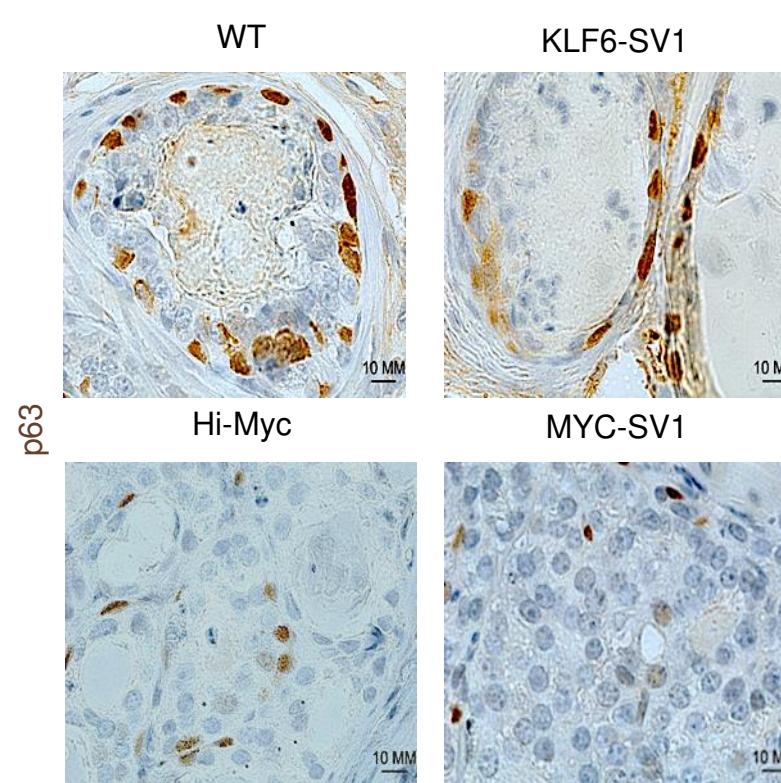
Hi-Myc



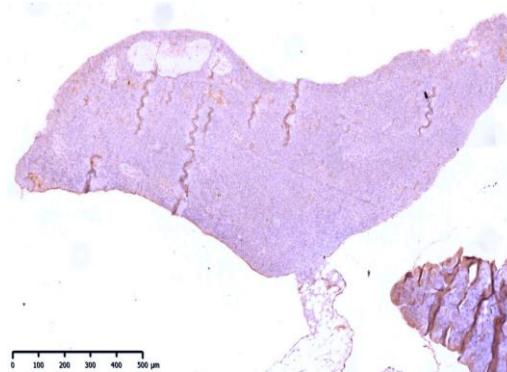
MYC-SV1



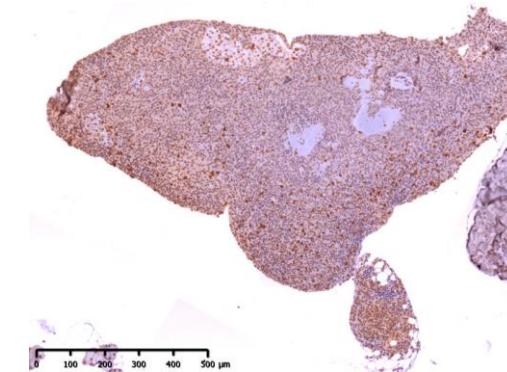
SMA



A

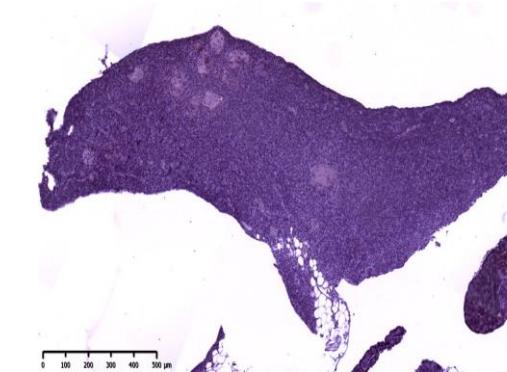
C

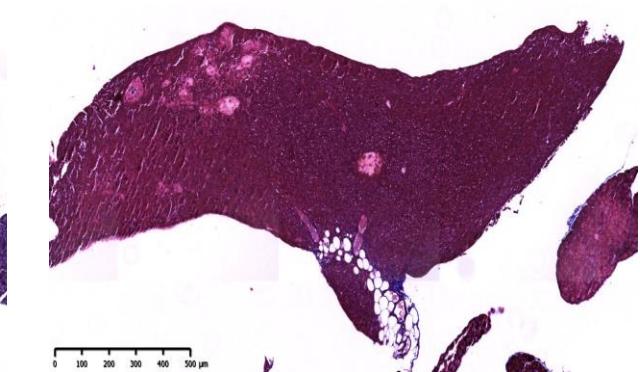


B

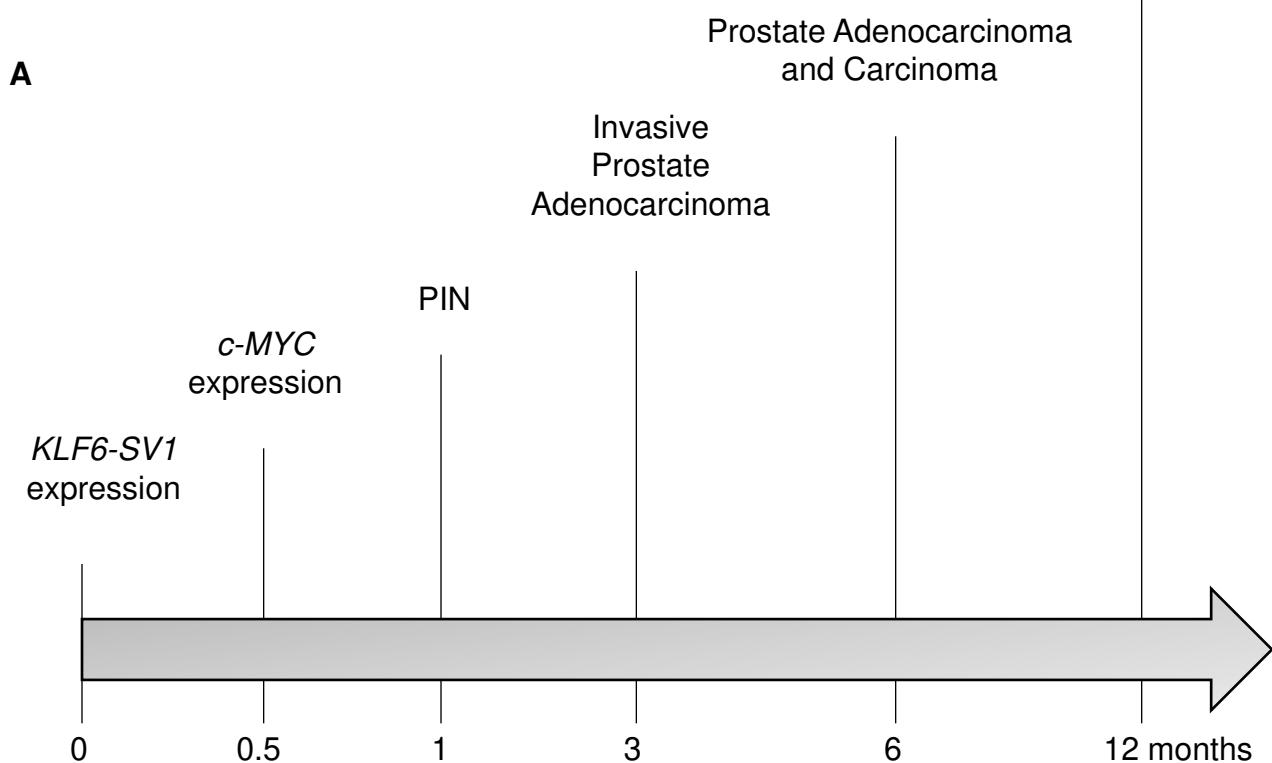


MYC-SV1

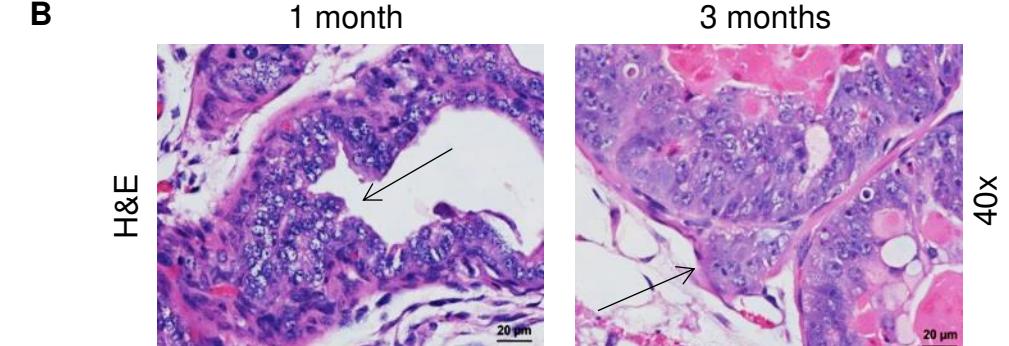

CK8/18


E-cadherin

SMA

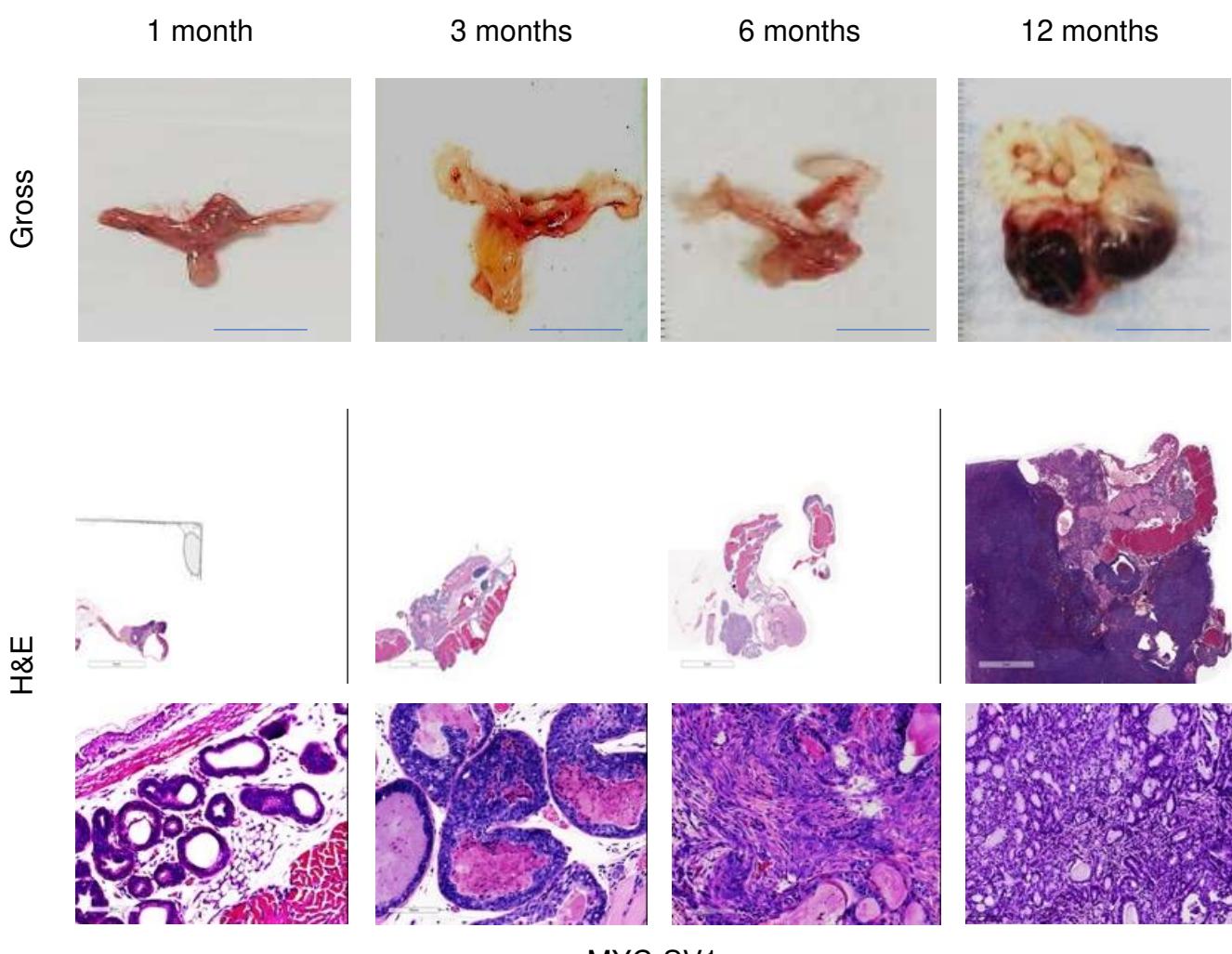


Trichrome

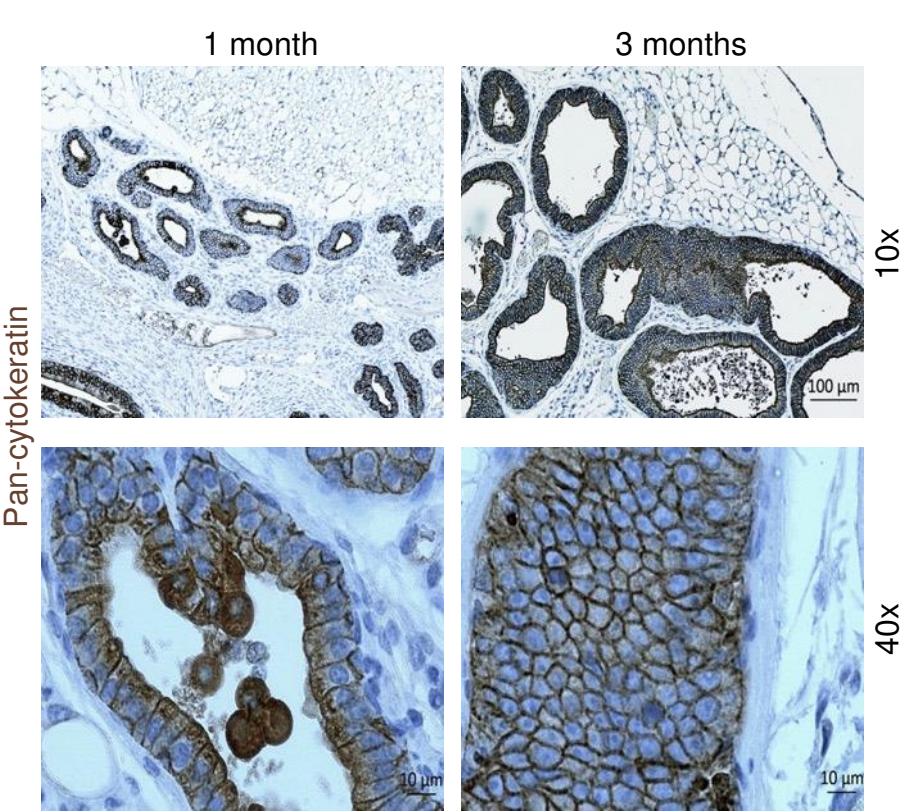


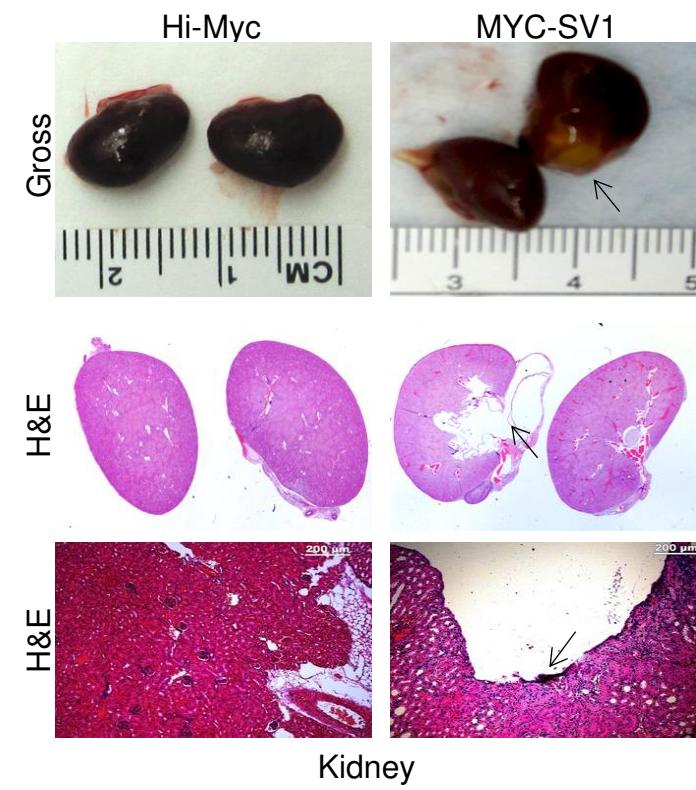
Pancreatic Metastases

A

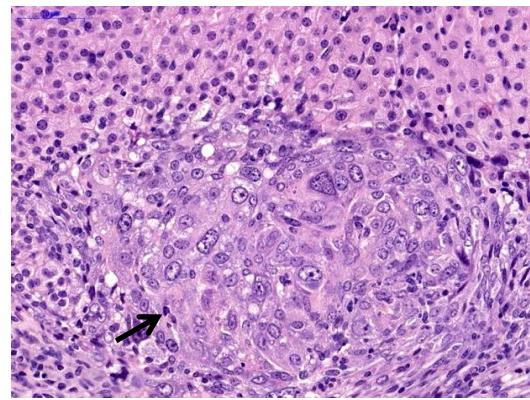
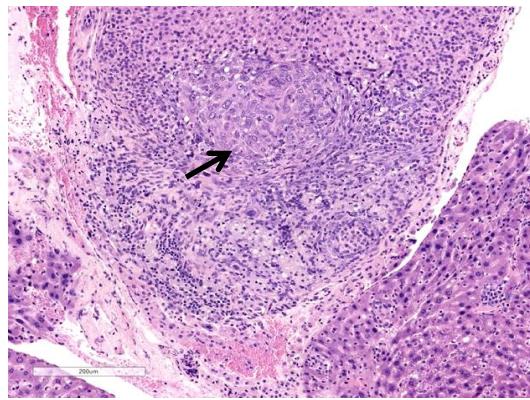


B

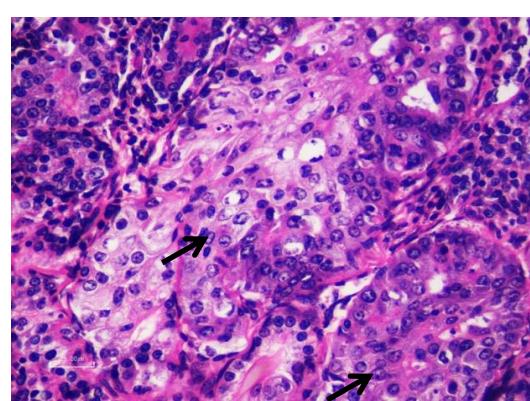
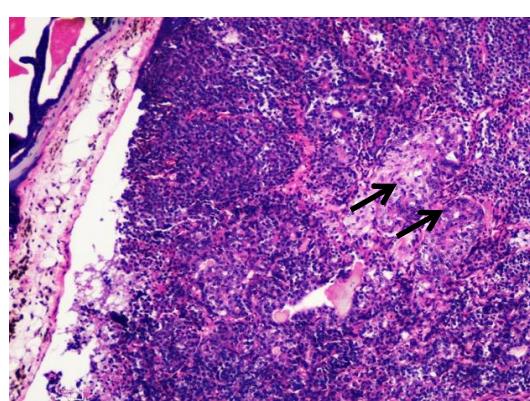



MYC-SV1	Phenotype (n)	Invasion (n)
1 month	PIN (3/3)	No (0/3)
3 months	Adenocarcinoma (4/4)	Yes (2/4)

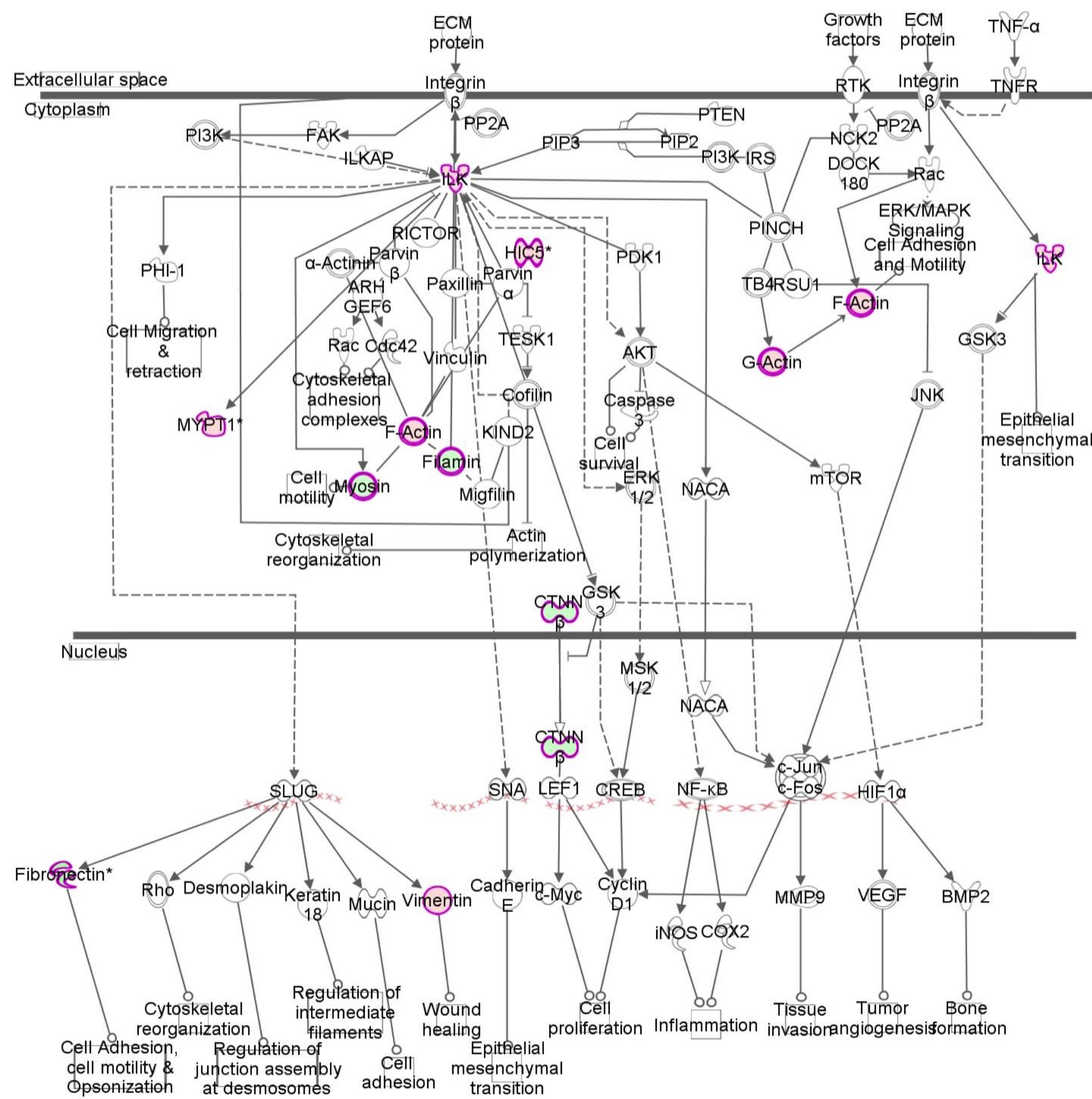
C

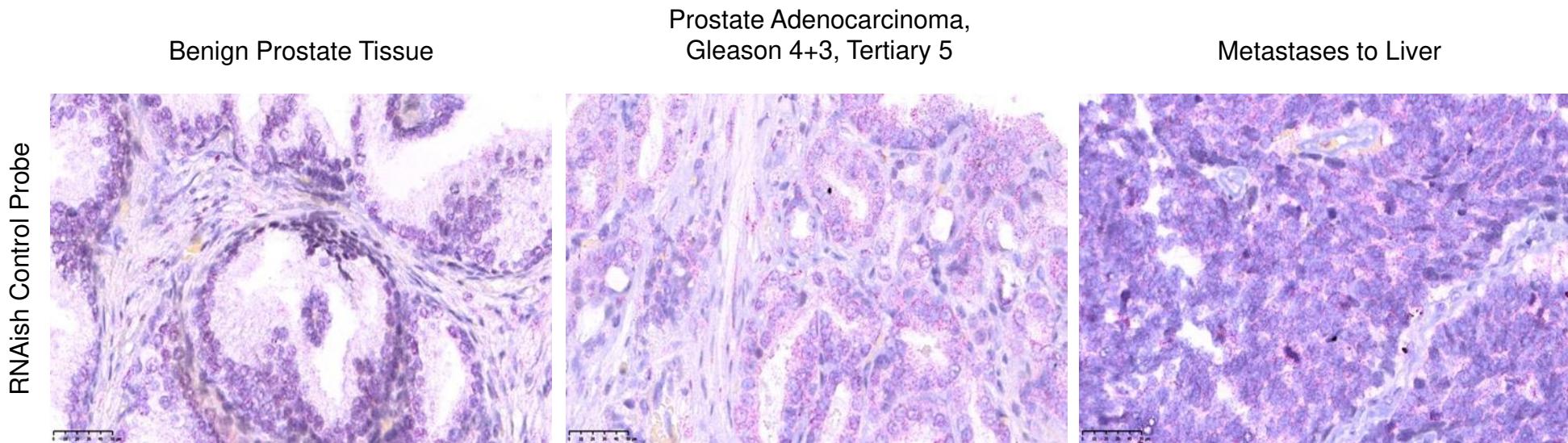
D

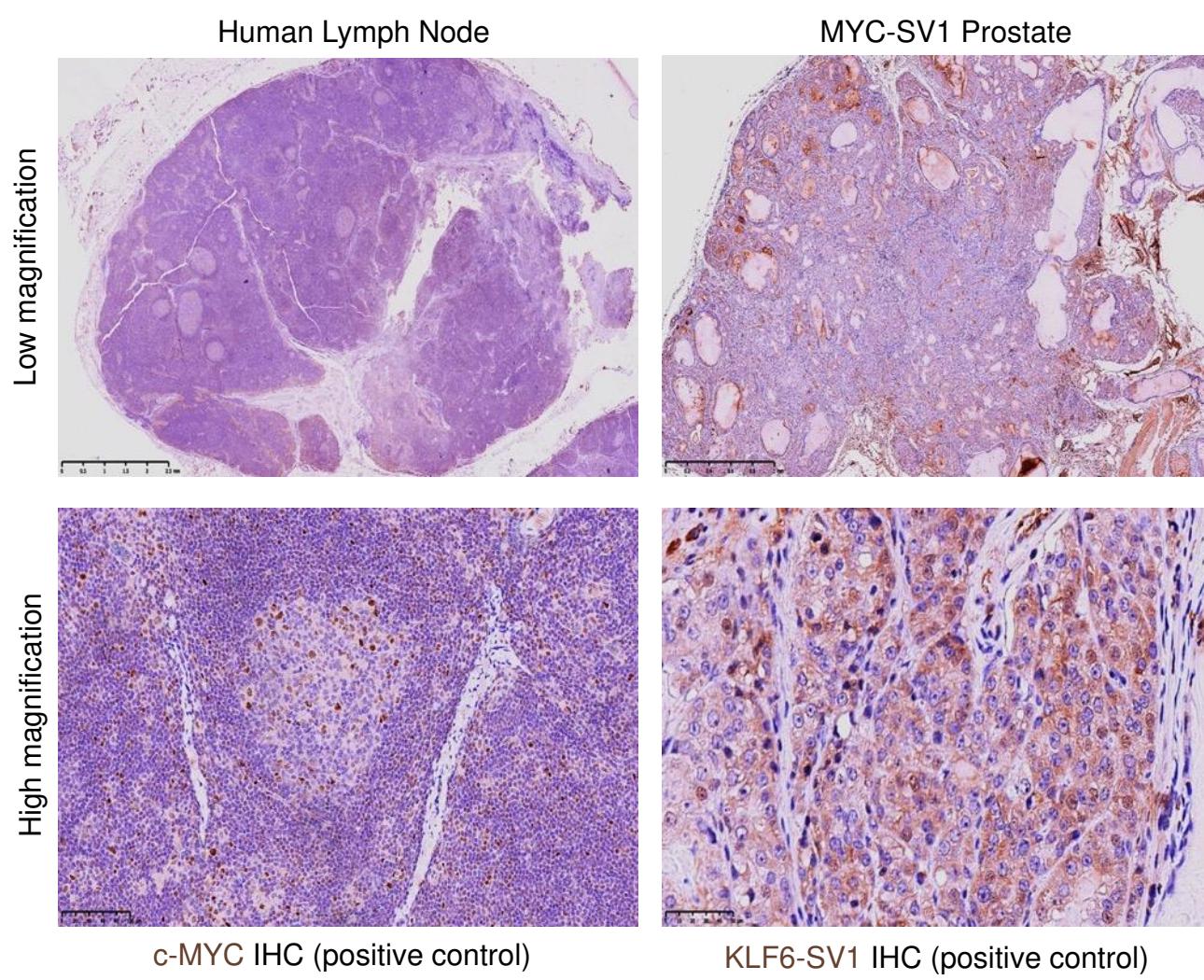
Metastases to Liver



Metastases to Lymph Node



Low Magnification


High Magnification

A

B

