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Abstract 22 

DNA hypomethylating agents (HMAs) are used to treat acute myeloid leukaemia (AML) and 23 

myelodysplasia patients who are unsuitable for intensive chemotherapy, but low response rates and 24 

therapy-resistant relapse remain significant challenges. To optimise HMA efficacy, we must 25 

understand how resistance and relapse arise from cells that survive treatment. Here we combine 26 

single-cell multi-omic analysis with parallel colony-forming assays to link HMA-induced molecular 27 

heterogeneity with functional consequences in AML cells. HMAs, azacytidine (AZA) and decitabine 28 

(DAC), induced global epigenetic heterogeneity associated with upregulation of inflammatory 29 

responses and cell death pathways in a subset of hypomethylated cells. Some AML cells maintained 30 

high DNA methylation during treatment, and these methylation-retaining cells had increased self-31 

renewal capacity following DAC, but not AZA. Molecular profiling of individual colonies revealed 32 

upregulated cholesterol biosynthesis as an adaptation to HMA treatment, and inhibition by 33 

rosuvastatin enhanced DAC effects in vitro and in vivo. Thus, HMA-induced heterogeneity has 34 

important implications for AML cell growth and statins are a candidate co-treatment strategy to 35 

delay or prevent HMA-resistant relapse.  36 

Introduction 37 

Hypomethylating agents (HMAs) are DNA methyltransferase (DNMT) inhibitors that are used to treat 38 

patients with Acute Myeloid Leukaemia (AML) and the pre-leukaemic condition Myelodysplastic 39 

Syndrome (MDS). Two commonly prescribed HMAs are the cytidine analogues, azacytidine (AZA, 5-40 

azacytidine) and decitabine (DAC, 2’-deoxy-5-azacytidine), which are incorporated into DNA during 41 

replication1,2. This leads to degradation of DNMTs3 and loss of DNA methylation in subsequent cell 42 

divisions2,4,5.  43 

The relatively limited side effects of these epigenetic therapies make them useful alternatives to 44 

standard intensive chemotherapies, and they are routinely administered to older, or otherwise unfit, 45 

AML patients. While single agent HMA treatment extends survival in many patients6-12, only 20% 46 

have a complete response to therapy13. Responses are also short-lived (e.g., 8-15 months14), with 47 

acquired resistance leading to relapse in most patients. To address these limitations, many clinical 48 

trials are testing co-treatment strategies with some studies delivering improved outcomes15. For 49 

example, the pro-apoptotic therapy, venetoclax, has increased response rates in elderly AML 50 

patients undergoing HMA treatment16. However, relapse remains a significant problem with the 51 

median duration of response being 11-18 months for patients treated with both venetoclax and 52 

HMA therapy16,17. To improve the long-term benefits of HMA therapy, we must understand the 53 
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molecular mechanisms responsible for HMA efficacy, as well as the processes by which relapse 54 

arises from cells that survive treatment.  55 

While initial studies demonstrated that HMA treatment can eliminate cancer cells with self-renewal 56 

capacity18, some leukaemic stem cell (LSC) populations were shown to survive AZA treatment in AML 57 

and MDS patients19. This may be facilitated by integrin signaling in the bone marrow 58 

microenvironment, which induces quiescence in blasts and predicts AZA response in MDS patients20. 59 

Another study demonstrated that LSCs increase CD70 expression following HMA treatment, and 60 

CD70 blockade by cusatuzumab was shown to reduce the self-renewal capacity of AML patient 61 

blasts21. A phase I/II clinical trial of this combination recently reported a marginal improvement in 62 

survival compared to historical data from a similar patient cohort22,23.  63 

Altered pyrimidine metabolism can also facilitate HMA resistance. Prior to DNA incorporation, both 64 

DAC and AZA must be converted into a deoxycytidine triphosphate analogue, Aza-dCTP24. Unlike 65 

DAC, AZA can also be converted to AZA-CTP and incorporated into RNA, where it influences 66 

transcript stability and translation25,26. Distinct enzymes catalyse these reactions and are 67 

dysregulated at relapse24. For example, Deoxycytidine Kinase (DCK) is required for the metabolism of 68 

DAC, but not AZA. Loss of DCK promotes resistance to DAC27, and its expression is downregulated in 69 

patients who develop relapse on DAC, but not AZA24. 70 

In this study, we further characterise the cellular processes that facilitate AML cell survival and 71 

proliferation following HMA treatment. Our single-cell multi-omic analysis reveals global HMA-72 

induced DNA methylation heterogeneity and methylation-retaining cells that appear to evade 73 

treatment. In parallel colony-forming assays, we show that methylation-retaining cells have a growth 74 

advantage following treatment with DAC, but not AZA, and reveal upregulation of cholesterol 75 

biosynthesis in cells surviving treatment. Co-treatment with statins enhances the effects of DAC in 76 

colony assays and extends the survival of leukaemia-bearing mice. Together, our work suggests that 77 

relapse may arise from metabolic adaptation in therapy-evading cells and identifies a candidate 78 

treatment strategy to enhance the long-term efficacy of HMA therapy.   79 

Results 80 

DNA methylation heterogeneity induced by HMA treatment 81 

To characterise the responses of individual AML cells to HMA treatment, we performed single-cell 82 

analysis of DNA methylation. AML cell lines (HL-60, MOLM-13, MV-4-11) were treated with low 83 

doses of decitabine (DAC) or azacytidine (AZA) to induce maximal demethylation with minimal 84 

effects on cell growth and viability (Supplementary Fig. 1). After 3 days of HMA treatment, striking 85 
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heterogeneity in DNA methylation levels was observed (Fig. 1A, Supplementary Table 1). While 86 

untreated cells had homogeneously high levels of DNA methylation (e.g., HL-60: 65-73%), the extent 87 

of hypomethylation varied substantially among cells treated with DAC (e.g., HL-60: 17-69%) or AZA 88 

(e.g., HL-60: 20-69%). Interestingly, a small proportion (1-5%) of methylation-retaining cells (Fig. 1A, 89 

dashed boxes) displayed no evidence of HMA-induced hypomethylation, with DNA methylation 90 

levels comparable to untreated cells. The extent of HMA-induced hypomethylation was related to 91 

cell division rate, as indicated by positive correlations between DNA methylation and CellTrace 92 

fluorescence (Fig. 1B). This is consistent with HMA incorporation during replication2 and confirms 93 

that slowly dividing cells can avoid the effects of HMA treatment. 94 

We next examined DNA methylation in different genomic contexts to test whether heterogeneity is 95 

observed across the genome. Contexts with high levels of DNA methylation in untreated HL-60 cells 96 

(i.e., exons, introns, intergenic regions) showed the greatest reductions upon HMA treatment (Fig. 97 

1C), and this loss of methylation was accompanied by increased cell-to-cell heterogeneity (Fig. 1D). 98 

Active promoters marked by H3K4me3 were the only genomic features without increased DNA 99 

methylation heterogeneity following HMA treatment. 100 

To explore the consequences of DNA methylation heterogeneity on other layers of genetic 101 

regulation, we used the multi-omic data collected from HL-60 cells. The scNMT-seq method profiles 102 

DNA methylation, DNA accessibility and gene expression in parallel28, allowing these molecular 103 

modalities to be correlated with each other across the genome of individual cells (Fig. 1E). Untreated 104 

cells showed the expected trends, with DNA methylation being negatively correlated to accessibility 105 

and gene expression, while DNA accessibility and transcription were positively correlated. In HMA-106 

treated cells, the relationship between DNA methylation and accessibility was weakened in all 107 

genomic contexts. HMA treatment also weakened the correlation between DNA methylation (in CpG 108 

islands, promoters, exons, and introns) and expression of associated genes. In contrast, HMA 109 

treatment had minimal impact on associations between DNA accessibility and gene expression. 110 

These observations imply that loss of DNA methylation is not always accompanied by increased 111 

accessibility and transcription, but may introduce epigenetic noise in an otherwise well-regulated 112 

system.   113 
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 114 

Figure 1. HMA treatment induces DNA methylation heterogeneity in AML cells. HL-60, MOLM-13 115 
and MV-4-11 cells were labelled with CellTrace and treated with decitabine (DAC; 100nM) or 116 

azacytidine (AZA; HL-60: 2000nM, MOLM-13 and MV-4-11: 500nM) every 24h for 72h. Single cells 117 
collected by indexed FACS were subjected to scNMT-seq (HL-60) or scTEM-seq (MOLM-13, MV-4-118 
11). A) Violin plots of DNA methylation levels in single HL-60 (left), MOLM-13 (centre) and MV-4-11 119 
(right) cells. Superimposed points show single-cell values from untreated (UNT, orange), DAC (cyan) 120 
and AZA (purple) groups. Dashed boxes surround DAC and AZA cells with methylation levels within 121 
the range of UNT samples. Data are shown for 185-222 cells collected from 2-3 replicate 122 

experiments in each cell line (UNT, n = 27-38; DAC n = 63-93; AZA n = 68-91). B) Scatter plots 123 
comparing CellTrace fluorescence and DNA methylation in single cells, with linear regression analysis 124 

and F-test p-values. C) Violin plots of DNA methylation levels in different genomic contexts from HL-125 
60 scNMT-seq data. D) Violin plots of DNA methylation heterogeneity, as determined by pairwise 126 

dissimilarity analysis, within different genomic contexts from HL-60 scNMT-seq data. E) Box and 127 
whisker plots of Pearson correlation coefficients computed within single cells from HL-60 scNMT-seq 128 
data. DNA methylation and DNA accessibility were considered in different genomic contexts, and 129 
individual loci were matched based on genomic co-ordinates. Correlations were performed between 130 
DNA methylation and DNA accessibility (top), DNA methylation and gene expression (middle), and 131 
DNA accessibility and gene expression (bottom). Boxes depict the interquartile range (IQR) with 132 

median. Whiskers extend to the highest and lowest data points within 1.5 x IQR of the first and third 133 
quartile. Outlying data points are not shown.  134 
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Transcriptional programs linked to HMA-induced epigenetic heterogeneity 135 

HMA mechanisms of action have been difficult to precisely define because genome-wide loss of DNA 136 

methylation is associated with pleiotropic transcriptional changes15. HMA-induced promoter 137 

hypomethylation is thought to allow re-expression of tumour suppressor genes29, re-activation of 138 

DNA repair pathways30 and upregulation of differentiation markers31,32. HMA treatment can also 139 

increase expression of cancer testis antigens33 and enhance antigen presentation on cancer cells34. 140 

Furthermore, genome-wide de-repression of transposable elements (TEs) has been shown to trigger 141 

a viral mimicry response in which dsRNA stimulate interferon signalling and apoptosis35-37. To clarify 142 

how HMA-induced epigenetic heterogeneity influences transcriptional responses we performed a 143 

multivariate analysis to integrate the three molecular layers: DNA methylation, DNA accessibility, 144 

and transcription. We excluded untreated cells to focus on variability among HMA-treated cells and 145 

applied an unsupervised sparse Partial Least Squares (sPLS)  method38. This method performed 146 

feature selection to identify variably expressed transcripts that are highly correlated to changes in 147 

DNA methylation and accessibility in regulatory regions (CpG islands, promoters, H3K4me3 sites and 148 

H3K27ac sites) and 3kb genomic windows. 149 

The 200 transcript features selected by sPLS were further examined in both treated and untreated 150 

cells, revealing 4 groups of cells with distinct transcriptional profiles (Fig. 2A, B). Consistent with the 151 

induction of viral mimicry, a gradient of TE expression was observed across component 1. For 152 

example, cell group 3 had high expression of LINE: L2a and low global DNA methylation levels (Fig. 153 

2A, C and D). Gene ontology (GO) over-representation analysis (ORA) was performed for each of the 154 

3 clusters of transcript features (Fig. 2B; Supplementary Table 2). Cell group 3 had low expression of 155 

genes in cluster 3, which were related to translation and inhibition of cell death (Fig. 2E, 156 

Supplementary Table 3). Simultaneously, cell group 3 had high expression of genes in cluster 1, 157 

which were enriched in terms related to immune inflammatory response and positive regulation of 158 

cell death (Fig. 2F, Supplementary Table 3). This transcriptional profile is consistent with the 159 

expected effects of HMA treatment1, and 29 of the 78 genes in expression cluster 1 were 160 

significantly upregulated by DAC and/or AZA in matched bulk RNA sequencing (RNA-seq) data 161 

(Supplementary Table 2). In contrast, cell group 1 displayed an inverted gene expression pattern 162 

which was shared with many untreated cells (observed:expected ratio = 1.48). This suggests that cell 163 

group 1 did not activate transcriptional pathways commonly associated with HMA treatment, 164 

despite low methylation levels in most cells (Fig. 2A, D). The expression profile of cell group 2 was 165 

intermediate between groups 1 and 3, whereas cell group 4 showed distinctive upregulation of gene 166 

expression cluster 2. No ontology terms from gene cluster 2 retained significance after multiple 167 

testing correction.  168 
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Figure 2. HMA-induced epigenetic heterogeneity influences transcriptional programs in AML cells. 171 

HMA treated (AZA and DAC only) HL-60 scNMT-seq data underwent multivariate feature selection by 172 
sparse least squares (sPLS) using an unsupervised model. A) sPLS projection of cells based on 173 
transcript features coloured by cell group 1-4 (from B). B) Heatmap of transcript features selected by 174 
sPLS displaying all samples (treated and untreated) as columns, are split by k-means clustering and 175 
grouped by treatment. Individual gene and TE expression levels (rows) are z-score normalised and 176 

split by k-means clustering with internal hierarchical clustering. C-D) sPLS projections of cells based 177 
on transcript features are coloured by C) LINE:L2:L2a expression, and D) global methylation level. E-178 

F) Tree plots of the gene ontology (GO) over-representation analysis (ORA) for gene expression 179 
clusters 3 and 1. G) Heatmaps summarising the DNA methylation and DNA accessibility features 180 

selected by sPLS. Samples (columns) are ordered according to the heatmap in B. The average 181 
methylation or accessibility of all sPLS selected features across all samples (treated and untreated) is 182 
displayed on the left for each genomic context. The two heatmaps show z-score normalised 183 
averages of DNA methylation and accessibility for all sPLS selected features in each genomic context. 184 
H) Pearson correlations were computed between gene expression and DNA methylation (top) or 185 
accessibility (bottom) of associated promoters. Bar graphs show the percentage of correlations (p < 186 

0.05) with negative (left) and positive (right) coefficients for all genes and filtered by gene expression 187 
cluster (identified in D). I) Correlations between RHEX expression and DNA methylation of adjacent 188 

loci (top) are displayed together with annotated short and long interspersed nuclear elements (SINE, 189 
LINE), long terminal repeat (LTR), DNA, and Simple repeat sequences (bottom). The blue shading 190 

highlights a promoter-proximal region of intron 1 that included 6 regions with negative correlations 191 

(cor < -0.3, p < 0.05) between DNA methylation and RHEX expression.  192 

 193 

When considering the epigenetic features selected by sPLS (Supplementary Tables 4 and 5), we 194 

noted that cell group 3 was the only group to have relatively low DNA methylation and high 195 

chromatin accessibility across several genomic contexts (Fig. 2G). This suggests that the 196 

transcriptional response to HMA treatment depends on both reductions in DNA methylation and 197 

gains in accessibility. Consistently, transcript features from expression cluster 1 had predominantly 198 

positive correlations with accessibility features, and many negative correlations to methylation 199 

features, especially in CpG islands and 3kb genomic windows (Supplementary Fig. 2).  200 

To test whether epigenetic alterations in cis-regulatory elements could influence transcriptional 201 

responses to HMA treatment, we next correlated gene expression to DNA methylation and 202 

accessibility in nearby genomic loci. Genes from expression cluster 1 showed a significant shift 203 

toward negative correlations with promoter methylation (p = 2.15x10-11, χ2 test) and positive 204 

correlations with promoter accessibility (p = 2.26x10-8, χ2 test) (Fig. 2H, Supplementary Table 6). An 205 

interesting example is RHEX (regulator of hemoglobinization and erythroid cell expansion), which is 206 

highly expressed in AML39. Negative correlations between RHEX expression and DNA methylation 207 

were concentrated in a promoter-proximal region of intron 1 that contained several conserved long 208 

terminal repeat (LTR) TEs (Fig. 2I). A previous study has identified an AML-specific RHEX transcript 209 

resulting from onco-exaptation of an upstream LTR2B element39, so HMA-induced hypomethylation 210 

could induce other non-canonical transcripts by activating additional TEs. 211 
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In summary, our single-cell multi-omic analysis has identified transcriptional changes linked to the 212 

patterns of epigenetic heterogeneity in HMA-treated AML cells. Importantly, activation of genes 213 

involved in inflammatory response and cell death pathways (expression cluster 1) with simultaneous 214 

down-regulation of inhibitory genes involved in these pathways (expression cluster 3) is observed in 215 

only a sub-set of hypomethylated cells (cell group 3) (Fig. 2A, C, D).  216 

Functional consequences of HMA-induced heterogeneity 217 

To determine the functional consequences of epigenetic and transcriptional heterogeneity in HMA-218 

treated cells, we next performed colony-forming assays. DAC and AZA significantly decreased colony 219 

counts (Fig. 3A), confirming that HMA treatment decreases the self-renewal capacity of AML cells18. 220 

DAC treatment also significantly increased the size of MOLM-13 and MV-4-11 colonies, indicative of 221 

increased proliferation during colony formation (Supplementary Fig. 3A). To characterise the 222 

molecular profiles of colonies formed after HMA treatment, we performed single-colony analysis of 223 

DNA methylation (Fig. 3B, C). Following DAC treatment (Fig. 3B, solid fill), we observed a high 224 

percentage of colonies (34-65%) with DNA methylation levels comparable to untreated colonies 225 

(≥75%). This was in stark contrast to the low percentage of methylation-retaining cells (1-5%) 226 

observed in single-cell data after 72h DAC treatment (Fig. 1A, dashed box; Fig. 3B, dashed line). 227 

Surprisingly, this shift towards higher DNA methylation levels was far less pronounced in colonies 228 

established following AZA treatment (Fig. 3C).  229 

To assess recovery of DNA methylation following HMA treatment, a time-course analysis was 230 

performed during the colony-forming assay (Fig. 3D). DNA methylation levels in HMA-treated HL-60 231 

colonies were low throughout the time-course (Fig. 3D, top), mirroring an analysis performed in 232 

suspension culture (Supplementary Fig. 1E). Similar results were obtained for MOLM-13 and MV-4-233 

11 colonies derived after AZA treatment (Fig. 3D, centre and bottom). In contrast, high levels of DNA 234 

methylation were observed at early stages of colony formation (experiment day 6) following DAC 235 

treatment of MOLM-13 and MV-4-11 cells (Fig. 3D, centre and bottom). This suggests that the shift 236 

toward high DNA methylation observed in these colonies (Fig. 3B) is not due to a gradual recovery of 237 

methylation. Rather, our data is consistent with the selection of highly methylated cells in colony-238 

forming assays performed after DAC treatment. We deduce that methylation-retaining cells have 239 

increased self-renewal and proliferative capacity relative to hypomethylated cells, after treatment 240 

with DAC, but not AZA.  241 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.577864doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577864
http://creativecommons.org/licenses/by-nc-nd/4.0/


 242 

Figure 3. Highly methylated AML cells display a growth and survival advantage following 243 
treatment with DAC, but not AZA. A) HL-60, MOLM-13, and MV-4-11 colony counts following 244 
treatment with DAC (cyan) or AZA (purple) vs. untreated cells (UNT, orange). B-C) Density plots show 245 
the average DNA methylation levels for single cells collected on experiment day 3 (dashed line) and 246 

individual colonies collected on experiment day 17 (solid fill) following treatment with DAC or AZA. 247 
HL-60 scNMT-seq data were filtered for cytosines within SINE Alu sites for direct comparison to 248 

scTEM-seq data from colonies. Data are shown for 288 colonies collected from triplicate 249 
experiments in each cell line (n = 96 per treatment). D) Time-course experiment showing changes in 250 

average DNA methylation of cells collected at different time points throughout the colony-forming 251 
assay (experiment days 6, 10 and 17). Values for experiment day 3 were obtained from single-cell 252 
data (Fig. 1A). Data in A and D are expressed as mean +/- standard error of the mean (SEM). 253 
Statistical analysis of colony counts (A) was performed using ordinary one-way ANOVA with 254 
Dunnett’s multiple comparisons test with a p < 0.05 cut-off for significance (p < 0.03*, p < 0.006**, p 255 

< 0.0002***). 256 

 257 

Transcriptional programs associated with recovery following HMA exposure 258 

To identify cellular processes active during recovery from HMA exposure, we next generated 259 

matched transcriptomes from the same set of colony samples. Single-colony RNA-seq and principal 260 

component analysis (PCA) showed that DAC and AZA samples were generally distinct from untreated 261 

samples, regardless of their global DNA methylation levels, in all cell lines (Fig. 4A). This implies that 262 

HMA exposure has substantial effects on the transcriptome, even in highly methylated cells.  263 
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 264 

Figure 4. HMA treatment has sustained transcriptional effects in both methylation-retaining and 265 
hypomethylated cells. A) Principal Component Analysis (PCA) plots of single-colony RNA-seq data 266 
from AML cell lines, highlighting treatment groups (UNT = orange; DAC = cyan; AZA = purple) and 267 
matched mean DNA methylation levels (circle: high > 75%; triangle: low < 75%). Data shown for 119 - 268 
220 colonies collected from 3 replicate experiments in each cell line (UNT, n = 14-73; DAC, n = 46-78; 269 
AZA, n = 56-73). B) Heatmap of the top 2000 highly variable genes from colony RNA-seq data. 270 

Samples are ordered by decreasing global methylation levels (green gradient) within each treatment 271 
group. Rows are grouped by K-means clusters based on gene expression, with hierarchical clustering 272 

by Euclidean distance within each cluster. C) GO analysis of the clusters from the top 2000 highly 273 
variable genes from B. The size of the circles indicates the gene ratio (number of genes from the 274 

input list annotated to the GO term divided by the total number of genes in the input list), and the 275 
colour represents the significance of the adjusted p-value. Gene clusters are colour-coded on the y-276 

axis and GO processes are shown on the x-axis. 277 

 278 

Of the 2000 most variably expressed genes among HL-60 samples, only 215 had increased 279 

expression specific to hypomethylated colonies (Fig. 4B, cluster 3; Supplementary Table 8). Many of 280 

these genes (42.3%) were upregulated following 72h treatment with either DAC or AZA in bulk HL-60 281 

RNA-seq data, and several were associated with activation of inflammatory responses within the 282 
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sPLS model (e.g., S100A8, S100A9; Supplementary Table 8; Fig. 2B, cluster 1). In contrast, genes in 283 

cluster 5 were upregulated following HMA exposure in both hypomethylated and highly methylated 284 

colonies (Fig. 4B). Only 3.5% of these genes were induced by HMA treatment in bulk RNA-seq data, 285 

but several were included in gene expression cluster 3 from the sPLS model (e.g., MYC, MPO; 286 

Supplementary Table 8; Fig. 2B). Thus, some transcriptional changes that occur immediately after 287 

HMA treatment are maintained in hypomethylated colonies, while other genes are upregulated 288 

during colony formation and are independent of HMA-induced global hypomethylation. GO ORA 289 

revealed an enrichment of anti-microbial and immune-related processes among both 290 

hypomethylation-dependent and -independent gene sets, whereas ‘small molecule biosynthetic 291 

process’ was uniquely over-represented among the hypomethylation-independent cluster 5 genes 292 

(Fig. 4C; Supplementary Table 9).  293 

To identify cellular processes that could favour the growth of methylation-retaining cells (Fig. 3), we 294 

next focused on the HL-60 colonies derived following DAC treatment. Among these samples, the 295 

broad range of DNA methylation levels (Fig. 3B) allowed us to compute correlations to gene and TE 296 

expression (Fig. 5A). We found an enrichment for negative correlations with TE expression, 297 

consistent with their upregulation in hypomethylated cells35-37. We also identified transcripts with 298 

both significant negative (cor < -0.4, adjusted p-value < 0.05, n = 722) and positive (cor > 0.4, 299 

adjusted p-value < 0.05, n = 345) correlations to global DNA methylation levels and divided these 300 

genes into 4 clusters based on their expression patterns across treatment groups (Fig. 5B, C; 301 

Supplementary Table 10). Genes with increased expression in hypomethylated colonies (Fig. 5B, 302 

cluster 2) were enriched for GO terms related to defense responses, cell motility and chemotaxis 303 

(Supplementary Table 11). Interestingly, we also identified 233 genes with specific upregulation in 304 

highly methylated HL-60 colonies derived following DAC treatment (Fig. 5B, cluster 1). These genes 305 

displayed significant enrichment of cholesterol-related ontologies, which included many enzymes 306 

required for de novo cholesterol biosynthesis downstream of mevalonate40 (Figure 5C, 307 

Supplementary Table 11; Supplementary Fig. 4). Other genes involved in the mevalonate pathway 308 

(e.g., MVD, MVK, and PMVK) were increased by HMA treatment in most HL-60 colonies, regardless 309 

of their global DNA methylation level. MOLM-13 and MV-4-11 colonies also displayed increased 310 

expression of cholesterol biosynthesis genes after HMA treatment (Supplementary Fig. 5). 311 

Interestingly, these changes were not observed immediately following HMA treatment, nor after 312 

long-term culture in suspension (i.e., in day 3 and day 21 HL-60 bulk RNA-seq data). On the contrary, 313 

several members of the cholesterol biosynthesis pathway were significantly decreased (FDR < 0.05, 314 

Log2(fold change) < -1) following 72h DAC and/or AZA treatment of HL-60 cells (LSS, DHCR7, 315 

Supplementary Table 8; HMGCS1, HMGCR, data not shown). These observations suggest that 316 
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increased cholesterol production is a delayed response to HMA treatment that occurs independently 317 

of methylation changes and facilitates the self-renewal and proliferation of AML cells.  318 

Inhibition of cholesterol biosynthesis following HMA exposure 319 

To test whether inhibition of cholesterol biosynthesis could enhance HMA efficacy, we performed 320 

co-treatments with rosuvastatin in colony-forming assays. Rosuvastatin is a potent inhibitor of the 321 

rate limiting enzyme of the cholesterol biosynthetic pathway, HMG-CoA reductase (HMGCR), and is 322 

frequently prescribed to reduce the risk of cardiovascular disease associated with 323 

hypercholesterolaemia41. In all cell lines, rosuvastatin caused a trend towards decreased colony 324 

numbers following DAC treatment, with a significant decrease in MOLM-13 colonies, whereas co-325 

treatment with AZA had varied effects (Fig. 5D). Following DAC and rosuvastatin co-treatment, 326 

colonies also displayed significantly reduced size (Supplementary Fig. 3B) and DNA methylation 327 

levels (Fig. 5E) in MOLM-13 and MV-4-11 cell lines, where strong selection for highly methylated 328 

cells was previously noted (Fig. 3B). This suggests that inhibition of cholesterol biosynthesis 329 

specifically inhibits the self-renewal capacity of methylation-retaining cells and identifies statins as a 330 

candidate co-treatment strategy to target HMA-evading AML blasts.     331 

The efficacy and potential clinical utility of DAC and rosuvastatin co-treatment was then tested in 332 

immunocompromised mice engrafted with luciferase-tagged MOLM-13 cells (Fig. 5F). In a dose 333 

optimisation experiment, combining DAC and rosuvastatin led to a significant increase in median 334 

survival for all doses tested (Fig. 5F, left). The 1mg/kg/day dose of rosuvastatin was chosen for 335 

further validation in this model, as it is a low dose that is commonly prescribed for preventing 336 

cardiovascular disease (equivalent to approximately 5-10mg/day oral dose in humans). DAC and 337 

rosuvastatin co-treatment once again led to a significant increase in median survival compared to 338 

DAC treatment alone (24 vs. 21 days) in this aggressive in vivo AML model (Fig. 5F, right). 339 

Rosuvastatin alone provided no benefit, with survival times comparable to vehicle treated mice. DAC 340 

and rosuvastatin co-treated mice also exhibited a trend towards decreased tumour burden, as 341 

measured by BLI, between days 17 – 24 of the experiment, compared to mice treated with DAC 342 

alone (Supplementary Fig. 6). These in vivo results provide evidence that HMAs combined with 343 

statins have the potential to decrease tumour burden and improve AML survival. 344 
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 345 

Figure 5. Upregulation of cholesterol biosynthesis in cells surviving HMA therapy can be targeted 346 
to enhance treatment efficacy. A) Volcano plot showing the Pearson correlation coefficient and 347 
adjusted p-value for correlations between gene or transposable element (TE) expression and global 348 
DNA methylation levels from HL-60 colonies derived following DAC treatment. The upper density 349 
plot shows a bias toward negative correlations, especially between global DNA methylation level and 350 

TE expression (red). B) Simplified heatmap of k-means clustering for the 1,067 genes with significant 351 
correlations to global DNA methylation level (adjusted p-value ≤ 0.05 and 0.4 ≤ correlation estimate 352 

≤ 0.4, from A). C) Summarised tree plots displaying GO terms with significant (adjusted p-value < 353 
0.05) over-representation in clusters 1 and 2 (from B). D) Colony counts for HL-60 (top), MOLM-13 354 

(middle) and MV-4-11 (bottom) cell lines obtained following HMA and rosuvastatin co-treatments. 355 
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Data from No HMA (orange), DAC (cyan) and AZA (purple) groups are normalised to the 356 

corresponding 0 µM rosuvastatin control. Means ± SEM for n = 3 experiments. Significance 357 
determined by two-way ordinary ANOVA with Dunnett’s multiple comparisons test, p < 0.05* vs. 358 

corresponding 0 µM rosuvastatin control. E) DNA methylation of colonies formed following DAC and 359 
rosuvastatin co-treatments. Means ± SEM for n = 3 experiments. Significance determined by one-360 
way ANOVA with Tukey’s multiple comparisons test, p < 0.05* vs. corresponding 0 µM rosuvastatin 361 
control. F) Left: rosuvastatin dose optimisation experiment showing median survival of mice 362 
engrafted with MOLM-13-luc cells following treatment with DAC (0.2mg/kg/day) +/- rosuvastatin (1, 363 
10, 40mg/kg/day) on a treatment schedule of ‘5 days on, 2 days off’ for 3 cycles. Right: Validation of 364 

survival benefit when DAC (0.2mg/kg/day) is combined with rosuvastatin (1mg/kg/day) in mice 365 
engrafted with MOLM-13-luc AML cells. Survival analyses were performed using Kaplan-Meier 366 
analysis followed by the Log-rank (Mantel-Cox) test and an adjusted p-value of < 0.05 was 367 

considered statistically significant. Left: p < 0.002**, p < 0.0001****; Right: p < 0.05*, p < 0.005**. 368 

 369 

Discussion 370 

The clinical benefits of HMA therapy are limited by the rapid development of treatment-resistant 371 

relapse. We have characterised the heterogeneous responses of AML cells to HMA treatment, 372 

revealing new insights into how cells survive and adapt to treatment.  373 

Our single-cell multi-omic analyses revealed global DNA methylation heterogeneity induced by 374 

treatment, and transcriptional responses linked to epigenetic changes. We observed activation of 375 

inflammatory response and cell death pathways in only a minor subset of hypomethylated cells (Fig. 376 

2B), consistent with our previous report of heterogeneous TE expression following DAC treatment42 377 

and scRNA-seq data from a colorectal cancer cell line43. These observations suggest that additional 378 

epigenetic modifications, transcription factors, or other mechanisms, can suppress transcriptional 379 

responses in hypomethylated cells (e.g., H3K9me344,45). Alternatively, loss of methylation at specific 380 

loci may be required for HMAs to exert their effects. Our observations are consistent with the lack of 381 

correlation between HMA-induced hypomethylation and clinical response46-48, and support the use 382 

of locus-specific methylation changes to build a predictor of patient response49.  383 

In contrast to our single-cell analyses, Li et al. reported reduced epigenetic and transcriptional 384 

variance in AML cells collected after 12 weeks of AZA treatment in a transgenic mouse model50. We 385 

suggest that HMAs initially increase epigenetic and transcriptional diversity, allowing some cells to 386 

gain a relative growth or survival advantage. Subsequent expansion of those clones would lead to 387 

the reduced heterogeneity reported by Li et al.
50

. Consistently, we found that some AML cells retain 388 

high levels of DNA methylation during HMA treatment (Fig. 1A) and have a relative growth 389 

advantage following drug withdrawal (Fig. 3). Methylation-retaining cells tended to divide less 390 

frequently during treatment (Fig. 1B) but had higher self-renewal and proliferative capacity than 391 

hypomethylated cells after DAC treatment (Fig. 3). Interestingly, this selection for methylation-392 
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retaining cells was not observed following AZA treatment, reflecting previous reports of distinct 393 

effects of these HMAs51-53.  Since AZA is incorporated into both DNA and RNA54, while DAC is 394 

restricted to DNA, we speculate that RNA-mediated toxicities (such as translational inhibition25,26) 395 

could prevent the growth of highly methylated cells following AZA treatment. Together, our results 396 

suggest that methylation-retaining cells are a likely source of AML relapse, especially following DAC 397 

therapy.  398 

We observed upregulated cholesterol biosynthesis, particularly in colonies that had high DNA 399 

methylation after HMA treatment (Fig. 5 and Supplementary Fig. 4). This indicates that HMA 400 

exposure causes transcriptional changes and metabolic alterations, even in highly methylated cells. 401 

Previous studies have shown that HMAs perturb the homeostasis of pyrimidine metabolism 402 

independently of DNA methylation changes24, and similar effects have been linked to altered 403 

cholesterol and lipid metabolism in AZA-treated liver cell lines55. Therefore, we speculate that 404 

upregulation of cholesterol biosynthesis is a delayed response to HMA treatment that occurs in 405 

highly methylated cells, potentially via altered pyrimidine metabolism.  406 

Increased cholesterol demand is an established feature of AML cells56, and upregulation of 407 

cholesterol biosynthesis genes has shown prognostic value in AML57-59. While the precise 408 

mechanisms by which cholesterol confers a survival advantage remain unclear, inhibiting cholesterol 409 

biosynthesis has been shown to sensitize AML cells to radiation and chemotherapy60,61. In addition, 410 

we have demonstrated that inhibition of cholesterol biosynthesis by rosuvastatin can decrease the 411 

self-renewal capacity and global DNA methylation levels of MOLM-13 colonies when combined with 412 

DAC treatment (Fig. 5D, E). This suggests that the upregulation of cholesterol biosynthesis facilitates 413 

the self-renewal and proliferation of cells that retain DNA methylation during HMA treatment. 414 

Recently, cholesterol metabolism was also linked to DAC resistance in AML cell lines, with statin co-415 

treatment showing synergistic inhibition of in vitro AML cell growth62. In vivo, we observed 416 

significantly improved survival of leukaemia-bearing mice treated with DAC and rosuvastatin (Fig. 417 

5F), suggesting that co-treatment may increase the duration of HMA response in some AML and 418 

MDS patients.  419 

Encouragingly, a recent retrospective analysis of MDS patients (including some HMA-treated high-420 

risk cases) reported improved survival and reduced progression to AML for patients who 421 

commenced statin treatments three months before or after MDS diagnosis63. Current clinical trials 422 

are testing the safety of a statin (pitavastatin) in combination with AZA and venetoclax in AML 423 

patients64 and our results imply that DAC and statin co-treatments should also be assessed. This 424 

therapeutic avenue is of particular interest since statins are commonly prescribed, well-tolerated, 425 
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oral medications, which could be rapidly repositioned for use in AML and MDS patients receiving 426 

HMA therapy.  427 

Methods 428 

Cell lines and culture 429 

AML cell lines, HL-60 (ATCC #CCL-240), MOLM-13 (DSMZ #ACC-554), and MV-4-11 (ATCC #CRL-9591) 430 

were maintained in tissue culture flasks (Greiner Bio-One) at 37°C, 5% CO2, and sub-cultured at 431 

500,000 cells/mL every 2-3 days with fresh medium. HL-60 cells were maintained in IscoveXs 432 

Modified DulbeccoXs media (IMDM; Sigma-Aldrich) supplemented with 4mM GlutaMAX (Thermo 433 

Fisher Scientific) and 10% Fetal Bovine Serum (FBS; Sigma-Aldrich). MOLM-13 and MV-4-11 cells 434 

were maintained in Roswell Park Memorial Institute 1640 media (RPMI; Sigma-Aldrich) 435 

supplemented with 2mM GlutaMAX and 10% FBS. All cell lines were mycoplasma negative based on 436 

routine testing using MycoAlert Mycoplasma Detection Kit (Lonza). Cell line authentication was 437 

routinely performed by the Australian Genome Research Facility (AGRF). 438 

CellTrace staining 439 

Prior to drug treatment (Day 0), AML cells (2x106 cells/mL) were stained with 1µM (MOLM-13 and 440 

MV-4-11) or 3µM (HL-60) CellTrace Far Red (Thermo Fisher Scientific) to monitor cell divisions, 441 

according to manufacturer’s instructions. Cells with uniformly high CellTrace fluorescence 442 

underwent fluorescence activated cell sorting (FACS) prior to treatment with hypomethylating 443 

agents (HMAs) in MOLM-13 and MV-4-11 cell lines, whereas all cells were used for HL-60 444 

treatments.  445 

HMA treatments 446 

AML cell lines were treated with HMAs at various doses in suspension culture, every 24h for 72h 447 

total. All cell lines were treated with 100nM decitabine (DAC; Selleckchem #S1200), HL-60 cells were 448 

treated with 2000nM azacytidine (AZA; Selleckchem # S1782), and MOLM-13 and MV-4-11 cells 449 

were treated with 500nM AZA. Untreated cells (UNT) were given an equal volume of 0.1% DMSO in 450 

UltraPure™ DNase/RNase-Free Distilled Water (Thermo Fisher Scientific) and served as a negative 451 

control. After HMA treatment, cells were prepared for FACS or colony forming assays, as described 452 

below. 453 

Fluorescence activated cell sorting (FACS)   454 

HMA treated cells were stained with propidium iodide (PI, 1.5µg/mL) and prepared for FACS. Viable 455 

(PI-) single cells were sorted into 2.5µL of RLT PLUS buffer (Qiagen) containing 2.5U SUPERas-In 456 

(Thermo Fisher Scientific) in LoBind 96-well full skirted plates (Eppendorf) using indexed sorting on a 457 
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FACS Aria II (BD Biosciences). Plates were sealed and briefly centrifuged before storage at -80°C for 458 

sequencing analyses. 459 

Colony-forming assays 460 

HMA treated cells were seeded in MethoCult Optimum (H4034; STEMCELL Technologies Inc.) at 500 461 

cells/well in 6-well plates, with rosuvastatin (Selleckchem # S2169) added to the MethoCult at 462 

various doses (0, 1, 10, 30µM). Cells were then cultured at 37°C, 5% CO2 for 14 days to allow colony 463 

formation. Wells containing colonies were imaged using Cytation3 (Biotek). Colony counts and sizes 464 

were analysed using ImageJ software. Individual colonies were manually plucked using a 20µL 465 

pipette tip into 100µL of media, centrifuged at 200xg for 5 mins, and then resuspended in 20µL of 466 

RLT PLUS buffer before storage at -80°C. Alternatively, all colonies in each well were collected by 467 

resuspending the MethoCult Optimum media (and colonies) in 3mL of standard culture media 468 

(IMDM or RPMI), centrifuging at 200xg for 5 mins, and resuspending the cell pellet in 20-50µL RLT 469 

PLUS buffer, before storage at -80°C. 470 

Library preparation and sequencing 471 

scNMT-seq library preparation and sequencing 472 

For scNMT-seq, matched scNOMe-seq and scRNA-seq libraries were prepared from sorted HL-60 473 

single cells, as previously described28. Minor modifications to the published protocol are in the 474 

Supplementary Methods.  475 

For scNOMe-seq libraries, paired-end 150bp sequencing was performed on the NovaSeq (Illumina) 476 

platform. For scRNA-seq libraries, paired-end 75bp sequencing was performed on the NovaSeq or 477 

NextSeq (Illumina) platform. 478 

scTEM-seq library preparation and sequencing  479 

For scTEM-seq analysis of global DNA methylation levels in single MOLM-13 and MV-4-11 cells, 480 

library preparation was performed as previously described65.  481 

Paired-end 150bp sequencing was performed on the MiSeq (Illumina) platform. 482 

Colony TEM-seq and RNA-seq library preparation and sequencing 483 

Single colony TEM-seq (Fig. 3B, C) and parallel RNA-seq analysis was performed as described65,66 with 484 

minor modifications. Lysates from single colonies (HL-60: 7.5µL; MOLM-13 and MV-4-11: 2.5µL) 485 

were used to separate genomic DNA and mRNA. During single colony TEM-seq library preparation, 486 

the number of SINE Alu amplification cycles was reduced to 29. For RNA-seq analysis, 15 cycles of 487 

cDNA amplification were used. 488 
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TEM-seq analysis of pooled colonies (Fig. 3D, 5E) was performed as described65,66 using 5-10µL of cell 489 

lysate as input for bisulphite conversion, and 29 cycles for SINE Alu amplification.  490 

All TEM-seq libraries were sequenced using 150bp paired-end sequencing on the MiSeq (Illumina) 491 

platform. For RNA-seq libraries, paired-end 75bp sequencing was performed on the NextSeq or 492 

NovaSeq platform. 493 

Data processing 494 

Sequencing data were processed and aligned as described in the Supplementary Methods.  495 

scNMT-seq data analysis 496 

Quality control  497 

For scNMT-seq data, cells were required to pass both scNOMe-seq and scRNA-seq quality control 498 

(QC). Cells that had less than 500,000 CpG sites covered, less than 5,000,000 GpC sites covered, 499 

greater than 15% CHH methylation rate, or less than 2% GpC methylation, failed scNOMe-seq QC. 500 

For scRNA-seq, QC was performed using bam files from hisat2, and the SeqMonk67 (v1.47.1) ‘RNA-501 

seq QC Plot’. Cells that had less than 70% reads in exons, or less than 15% genes measured, failed 502 

scRNA-seq QC. In total, 222 scNMT-seq samples passed QC (Supplementary Table 1). 503 

scNOMe-seq normalisation and batch correction 504 

scNOMe-seq libraries provide information on both DNA methylation (CpG sites) and DNA 505 

accessibility (GpC sites). For both CpG (methylation) and GpC (accessibility) datasets, several 506 

genomic annotation contexts were considered: introns, exons, intergenic regions, CpG islands, 507 

promoters (-1500 to +500 bp of transcription start sites), H3K4me3 sites (ENCODE68-70 accession ID: 508 

ENCFF021JBH, experiment: ENCSR000DUO) and H3K27ac sites (ENCODE68-70 accession ID: 509 

ENCFF763UAG, experiment: ENCSR919WLM). In addition, unbiased 3kb windows of the whole 510 

genome were generated with a step size of 1.5kb. 511 

For DNA methylation, the CpG methylation rate was estimated within each annotation window using 512 

the Bayes binomial approximation as in Smallwood et. al.
71.  513 

The GpC methylation, which marks accessible DNA in scNOMe-seq libraries, is introduced in vitro 514 

using a bacterial GpC methyltransferase enzyme (Supplementary Methods). To remove batch effects 515 

resulting from differences in enzymatic activity, data normalisation and batch correction were 516 

performed as follows. GpC data for the whole genome was aggregated in windows of 500kb in 517 

length with 250kb overlap separately for methylated and unmethylated GpC counts for each cell. 518 

Per-cell pooled size factors were computed from these 500kb windows using the method of Lun et. 519 

al.
72 scaling by total library size, as implemented in the single-cell R package "scuttle" (v1.8.4)73. 520 
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Batch scaling factors were estimated from corrected methylated and unmethylated window log 521 

counts using the rescaleBatches method from the R package "batchelor" (v1.14.1)74. Per cell 522 

methylated and unmethylated cell scaling factors were calculated as the ratio of the batch-corrected 523 

sum of counts to the mean sum of counts across cells. Finally, unscaled methylated and 524 

unmethylated counts in each cell were independently scaled by the product of the cell pooled size 525 

factor and the methylated/unmethylated count batch correction factor, respectively. GpC 526 

methylation rate for each annotation window was then computed using the normalised batch 527 

corrected counts by the Bayesian binomial approximation. 528 

From the overall distribution of counts across in the annotation layer for CpG and GpC methylation 529 

data, minimum total count thresholds per window of 5 counts (CpG) and 20 counts (GpC) were 530 

established and applied to discard windows with unreliable methylation rate estimation. 531 

Pairwise distance analysis of DNA methylation heterogeneity 532 

To assess the DNA methylation heterogeneity per treatment group and genomic context (Fig. 1D), 533 

pairwise CpG methylation distance analysis was performed. The mean absolute methylation 534 

difference was computed for each cell pair (A, B) as the mean of the absolute difference in 535 

methylation rate at each common cytosine position in the relevant genomic annotation. To make 536 

the comparison of methylation patterns meaningful, only cytosine loci with data in both cells in the 537 

pair were used. These mean absolute methylation differences were grouped by the treatment 538 

combination of the cell pair. The global summaries shown in Fig. 1D corresponds to the groups 539 

where both cells in the pair had the same treatment. Higher values indicate a more heterogeneous 540 

methylation pattern when cells in the same treatment group are compared vis-a-vis.  541 

Cell-wise correlation analysis  542 

To assess the relationships between DNA methylation, DNA accessibility and gene expression within 543 

individual cells (Fig. 1E), Pearson correlations were computed using HL-60 scNMT-seq data. For this 544 

analysis, RNA-seq data was normalised and log transformed per batch using 545 

‘scuttle::logNormCounts()’ (v1.6.2)73 without batch correction or prior count filtering. DNA 546 

methylation was correlated to DNA accessibility at matched loci based on genomic coordinates. For 547 

correlations with gene expression, methylation and accessibility measurements at promoters, 548 

introns and exons were matched to the corresponding transcript. For CpG islands, H3K27ac sites and 549 

H3K4me3 sites, methylation and accessibility measurements were matched to all transcripts within 550 

10kb. For intergenic regions and 3kb genomic windows, methylation and accessibility measurements 551 

were matched to every transcript within 1bp to assess the expression of immediately adjacent 552 
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genes. For each cell, Pearson correlation estimates were then computed using all matched values 553 

and the cor.test function in R. 554 

scRNAseq normalisation and batch correction 555 

scRNA-seq libraries from HL-60 scNMT-seq data were filtered to remove lowly expressed genes, 556 

requiring at least 5 counts in 10% of cells. Normalisation and variance stabilisation were performed 557 

by scTransform75 and batch correction by anchor-based integration using the R package <Seurat= 558 

(v4.2.0)76. First, batches were independently normalised by scTransform. The top 5,000 most 559 

variable features that were in common across batches were identified to determine anchors for 560 

integration and batch correction of the data (using default parameter and k.weigh=50), applied to 561 

and retaining those 5,000 commonly variable features. Finally, a sparse RNA-seq matrix was utilised, 562 

whereby gene imputation calculations were ignored and removed by reintroducing ‘NAs’ in place of 563 

genes with originally ‘missing data’ (zeros). Downstream analyses considered only autosomal genes 564 

(Chr1-22). 565 

Integrative sparse partial least squares (sPLS) analysis 566 

Mixomics38 (v6.20.0) was used to perform a multivariate integrative analysis of HL-60 scNMT-seq 567 

data (Fig. 2A-D). Feature selection was performed to identify variably expressed transcripts that are 568 

highly correlated to changes in DNA Methylation and accessibility following HMA treatment. We 569 

performed an unsupervised sparse Partial Least Squares (sPLS) analysis using the function 570 

‘mixOmics::mint.block.spls()’ which combines a multivariate integrative (MINT) method and a 571 

multiblock sPLS integrative analysis. MINT77 accounts for multiple batches (Supplementary Table 1) 572 

measured on the same variables, while the multiblock sPLS seeks for correlated patterns between 573 

DNA methylation and DNA accessibility rates that are split into multiple genomic regions (‘blocks’) 574 

and explain (correlated to) the predictor (transcriptome). 575 

To focus on transcriptomic and epigenetic changes resulting from HMA treatment only treated cells 576 

(AZA and DAC) were included in the sPLS model. The genomic regions included in this analysis for 577 

both DNA methylation and DNA accessibility were CpG islands, promoters, H3K27ac sites, H3K4me3 578 

sites and 3kb windows. The rates from these genomic regions were filtered to retain only those 579 

detected in greater than 10% of cells.  The sPLS model was implemented assessing 2 580 

components, selecting 50 features per component and per block (genomic region) in the 581 

DNA methylation and DNA accessibility data sets, and 100 genes per component in the 582 

transcriptome data set. More details are provided in our GitHub page. 583 

Heatmap visualisation and identification of cell and expression clusters from sPLS selected features 584 

was performed using ComplexHeatmap78 (v2.12.1). sPLS selected features for components 1 and 2 585 
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were extracted using the function ‘mixOmics::selectVar()’. Heatmap visualisation was performed on 586 

sPLS selected features using transcriptomic (converted to z-score) and epigenetic rates (mean of 587 

features in genomic regions and converted to z-score) that were entered into the model and 588 

included both treated and untreated cells. K-means clustering was performed on sPLS selected 589 

transcriptomic features, first on Gene Expression (row_km=3) followed by Cell Group 590 

(column_km=4). 591 

sPLS sample projections (Fig. 2A, C and D) were plotted using ggplot279 (v3.3.6) by extracting the 592 

sPLS components 1 and 2 for a given block (RNA or epigenetic genomic region) and overlayed with 593 

relevant information i.e. cell group identified from k-means clustering and treated cell type or 594 

average DNA methylation. 595 

Gene Ontology (GO) Over Representation Analysis (ORA) was calculated using clusterProfiler80 596 

(v4.4.4) for ‘biological process’ and displayed using enrichplot81 V1.16.1 (Fig. 2E, F). Gene Expression 597 

k-means clusters (Fig. 2D) and sPLS selected features per component (1-2) were assessed by 598 

‘enrichGO(p.adj=0.05, p.adj.method = "fdr", q.val.threshold = 0.4)’ and the list of genes from the 599 

batch corrected transcriptome dataset (entered into the sPLS model) as the background. Results 600 

were displayed as treeplots using default settings for pairwise ’termsim()’ and ‘treeplot(nCluster=5, 601 

showCategory = 10)’. 602 

The correlation of sPLS features (Supplementary Fig. 2) was calculated as a similarity matrix using 603 

‘mixOmics::circosPlot()’ on the sPLS model. The results were displayed using ComplexHeatmap  604 

showing DNA methylation and DNA accessibility features related to transcript features split by the 605 

previously identified Gene Expression k-means clusters. 606 

Locus-specific correlation analysis 607 

To compare gene expression to adjacent epigenetic features, locus-specific correlations were 608 

performed using HL-60 scNMT-seq data (Fig. 2H and I). DNA methylation and DNA accessibility 609 

measurements were paired to genes based on annotation (Promoters) or by strand-aware position 610 

within 10kbp of the gene transcription start site (CpG islands, H3K27ac sites, H3K4me3 sites and 3kb 611 

windows). For paired sites, Pearson correlations were computed between CpG or GpC methylation 612 

rate and log gene expression values. All cells with data (i.e. UNT, DAC and AZA groups) were 613 

combined in these correlations, and a minimum of 22 cells with paired data (i.e. both gene 614 

expression and DNA methylation/accessibility measurements) were required for the correlation to 615 

be performed. 616 
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Colony sequencing analysis 617 

RNA-seq quality control, normalisation and batch correction 618 

Samples were excluded if they had less than 35% genes measured, or less than 70% reads in exons 619 

for HL-60 and MOLM-13 samples, or less than 65% reads in exons for MV-4-11 samples. RNA-seq 620 

data from single colonies were filtered to remove lowly expressed genes, requiring at least 5 counts 621 

in 3 samples. For each cell line, normalisation was performed by ‘scuttle::logNormCounts()’ (v1.6.2) 622 

and batch corrected using mutual nearest neighbours method by ‘batchelor::mnnCorrect()’ (v1.12.3) 623 

with default parameters. Downstream analyses considered only autosomal genes (Chr1-22). 624 

Highly variable gene analysis 625 

For Figure 4, highly variable genes (HVGs) were identified from colony RNA-seq data and PCA was 626 

performed using ‘scater::calculatePCA(ntop = 2,000)’. K-means clusters of HVGs was determined 627 

using the r stats package (v4.2.1) with ‘kmeans(centers = 8, iter.max = kmeans.iter, nstart = 50)’. 628 

Heatmapping of HVGs and k-means cluster was performed using ‘ComplexHeatmap::pheatmap()’ 629 

with z-scored values and Euclidean distance hierarchical clustering within row clusters (k-means 630 

groups) and columns (samples) ordered by treatment and descending average global methylation 631 

level.  632 

GO ORA of k-means clusters was compared using clusterProfiler for ‘biological process’ by 633 

‘compareCluster(pAdjustMethod = <fdr=, p.adj.threshold = 0.05, qvalueCutoff=0.4)’ and the full list 634 

of genes from the batch corrected dataset (for each cell type) as the background list. Plots were 635 

created using ‘clusterProfiler::dotplot(showCategory = 3) + coord_flip()’. 636 

Correlation analysis 637 

Pearson correlations comparing gene expression to mean global methylation in DAC HL-60 colonies 638 

(Fig. 5A) were performed using ‘cor.test()’ and underwent Benjamini–Hochberg false discovery rate 639 

adjustment using ‘p.adjust(method==BH=)’. Gene clustering and heatmap visualisation was 640 

performed on significantly correlated genes (p.adj ≤ 0.05 & cor.value.estimate ≤ -0.4 or 641 

cor.value.estimate ≥ 0.4). The average expression of each gene was calculated per treatment group 642 

with DAC split into high (≥75%) and low (<75%) global methylation groups. The R package 643 

<pheatmap=82 (v1.0.12) was used to plot the mean centred treatment group average expression 644 

levels with rows aggregated into 4 ‘kmeans_k’ clusters. The genes from each ‘Kmeans_k’ cluster was 645 

extracted and underwent GO ORA for biological process individually using 'enrichGO()’ with fdr 646 

adjustment and results displayed as treeplots. 647 
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AML cell-line xenograft model 648 

All experimental procedures were reviewed, approved, and carried out according to the Animal Care 649 

and Ethics Committee of the University of Newcastle (approval number: A-2023-303), and with 650 

consideration of the ARRIVE guidelines (Supplementary Methods).  651 

MOLM-13 cells transduced with firefly luciferase (MOLM-13-luc) were a kind gift from Dr Charles de 652 

Bock (Children’s Cancer Institute, UNSW Sydney). Five-week-old female NOD.Cg-Prkdc scid Il2rg 653 

tm1Wjl /SzJ (NSG) mice were obtained from the Australian Bioresources (ABR, Moss Vale, NSW, 654 

Australia) and were acclimatised for one week prior to any experimental procedure. The NSG mice 655 

were inoculated with MOLM-13-luc cells (5x105 cells suspended in 100 µL of PBS) by injection into 656 

the lateral tail vein. Tumour burden was assessed by bioluminescence imaging (BLI) twice a week 657 

using an IVIS Spectrum in vivo imaging system (PerkinElmer, Waltham, MA, USA), following 658 

intraperitoneal injections of 150 mg/kg D-luciferin (Promega, Alexandria, NSW, Australia) and under 659 

anaesthesia with isoflurane. Treatments commenced on day 6 post-engraftment, when a positive 660 

luminescence signal was detected.  661 

In a pilot experiment, three different doses of rosuvastatin were co-administered with DAC. Mice (n 662 

= 5 per group) were treated by intraperitoneal injection of either vehicle (2% DMSO, 30% PEG300 in 663 

water), DAC (0.2 mg/Kg in saline), or rosuvastatin (1 mg/kg, 10 mg/kg, or 40 mg/kg in 30% PEG300 in 664 

water) combined with DAC (0.2 mg/Kg) once a day (5 days on, 2 days off) for up to 3 weeks. The 665 

animals were monitored until they reached ethical endpoint. 666 

In a second experiment, mice (n= 15 per group) received vehicle (2% DMSO, 30% PEG300 in water), 667 

DAC (0.2 mg/Kg), rosuvastatin (1 mg/Kg), or DAC + rosuvastatin treatments via intraperitoneal 668 

injections once a day (5 days on, 2 days off) for up to 3 weeks, and mice were monitored until ethical 669 

endpoint.  670 

Survival analyses were performed using Kaplan-Meier analysis followed by the Log-rank (Mantel-671 

Cox) test. All statistical analyses were performed using GraphPad Prism v. 9.0 (GraphPad Software, 672 

La Jolla, CA, USA). An adjusted p-value of < 0.05 was considered statistically significant. 673 

Data and code availability 674 

Sequencing data and analysis code will be made available upon reasonable request and published 675 

following peer review. 676 
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