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22 Abstract

23 DNA hypomethylating agents (HMAs) are used to treat acute myeloid leukaemia (AML) and

24  myelodysplasia patients who are unsuitable for intensive chemotherapy, but low response rates and
25  therapy-resistant relapse remain significant challenges. To optimise HMA efficacy, we must

26 understand how resistance and relapse arise from cells that survive treatment. Here we combine
27  single-cell multi-omic analysis with parallel colony-forming assays to link HMA-induced molecular
28  heterogeneity with functional consequences in AML cells. HMAs, azacytidine (AZA) and decitabine
29  (DAC), induced global epigenetic heterogeneity associated with upregulation of inflammatory

30 responses and cell death pathways in a subset of hypomethylated cells. Some AML cells maintained
31  high DNA methylation during treatment, and these methylation-retaining cells had increased self-
32  renewal capacity following DAC, but not AZA. Molecular profiling of individual colonies revealed

33 upregulated cholesterol biosynthesis as an adaptation to HMA treatment, and inhibition by

34  rosuvastatin enhanced DAC effects in vitro and in vivo. Thus, HMA-induced heterogeneity has

35 important implications for AML cell growth and statins are a candidate co-treatment strategy to

36  delay or prevent HMA-resistant relapse.

37 Introduction

38  Hypomethylating agents (HMAs) are DNA methyltransferase (DNMT) inhibitors that are used to treat
39  patients with Acute Myeloid Leukaemia (AML) and the pre-leukaemic condition Myelodysplastic

40  Syndrome (MDS). Two commonly prescribed HMAs are the cytidine analogues, azacytidine (AZA, 5-
41  azacytidine) and decitabine (DAC, 2’'-deoxy-5-azacytidine), which are incorporated into DNA during
42 replication™. This leads to degradation of DNMTs® and loss of DNA methylation in subsequent cell

43 divisions®*>.

44  The relatively limited side effects of these epigenetic therapies make them useful alternatives to

45  standard intensive chemotherapies, and they are routinely administered to older, or otherwise unfit,
46  AML patients. While single agent HMA treatment extends survival in many patients®*?, only 20%

47  have a complete response to therapy™. Responses are also short-lived (e.g., 8-15 months'), with

48  acquired resistance leading to relapse in most patients. To address these limitations, many clinical
49  trials are testing co-treatment strategies with some studies delivering improved outcomes®. For

50 example, the pro-apoptotic therapy, venetoclax, has increased response rates in elderly AML

51  patients undergoing HMA treatment®. However, relapse remains a significant problem with the

52 median duration of response being 11-18 months for patients treated with both venetoclax and

53  HMA therapy'®". To improve the long-term benefits of HMA therapy, we must understand the
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54  molecular mechanisms responsible for HMA efficacy, as well as the processes by which relapse

55 arises from cells that survive treatment.

56  While initial studies demonstrated that HMA treatment can eliminate cancer cells with self-renewal
57 capacity'®, some leukaemic stem cell (LSC) populations were shown to survive AZA treatment in AML
58  and MDS patients™. This may be facilitated by integrin signaling in the bone marrow

59  microenvironment, which induces quiescence in blasts and predicts AZA response in MDS patients®.
60  Another study demonstrated that LSCs increase CD70 expression following HMA treatment, and

61  CD70 blockade by cusatuzumab was shown to reduce the self-renewal capacity of AML patient

62  blasts®™. A phase /Il clinical trial of this combination recently reported a marginal improvement in

63  survival compared to historical data from a similar patient cohort®%.

64  Altered pyrimidine metabolism can also facilitate HMA resistance. Prior to DNA incorporation, both
65  DAC and AZA must be converted into a deoxycytidine triphosphate analogue, Aza-dCTP*. Unlike
66  DAC, AZA can also be converted to AZA-CTP and incorporated into RNA, where it influences

67  transcript stability and translation®?

. Distinct enzymes catalyse these reactions and are
68  dysregulated at relapse®®. For example, Deoxycytidine Kinase (DCK) is required for the metabolism of
69  DAC, but not AZA. Loss of DCK promotes resistance to DAC?, and its expression is downregulated in

70  patients who develop relapse on DAC, but not AZA*,

71  Inthis study, we further characterise the cellular processes that facilitate AML cell survival and

72 proliferation following HMA treatment. Our single-cell multi-omic analysis reveals global HMA-

73  induced DNA methylation heterogeneity and methylation-retaining cells that appear to evade

74  treatment. In parallel colony-forming assays, we show that methylation-retaining cells have a growth
75  advantage following treatment with DAC, but not AZA, and reveal upregulation of cholesterol

76  Dbiosynthesis in cells surviving treatment. Co-treatment with statins enhances the effects of DAC in
77  colony assays and extends the survival of leukaemia-bearing mice. Together, our work suggests that
78 relapse may arise from metabolic adaptation in therapy-evading cells and identifies a candidate

79  treatment strategy to enhance the long-term efficacy of HMA therapy.

so Results

81 DNA methylation heterogeneity induced by HMA treatment

82  To characterise the responses of individual AML cells to HMA treatment, we performed single-cell
83 analysis of DNA methylation. AML cell lines (HL-60, MOLM-13, MV-4-11) were treated with low
84  doses of decitabine (DAC) or azacytidine (AZA) to induce maximal demethylation with minimal

85  effects on cell growth and viability (Supplementary Fig. 1). After 3 days of HMA treatment, striking
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86  heterogeneity in DNA methylation levels was observed (Fig. 1A, Supplementary Table 1). While

87 untreated cells had homogeneously high levels of DNA methylation (e.g., HL-60: 65-73%), the extent
88  of hypomethylation varied substantially among cells treated with DAC (e.g., HL-60: 17-69%) or AZA
89 (e.g., HL-60: 20-69%). Interestingly, a small proportion (1-5%) of methylation-retaining cells (Fig. 1A,
90 dashed boxes) displayed no evidence of HMA-induced hypomethylation, with DNA methylation

91 levels comparable to untreated cells. The extent of HMA-induced hypomethylation was related to
92  cell division rate, as indicated by positive correlations between DNA methylation and CellTrace

93 fluorescence (Fig. 1B). This is consistent with HMA incorporation during replication” and confirms

94  that slowly dividing cells can avoid the effects of HMA treatment.

95  We next examined DNA methylation in different genomic contexts to test whether heterogeneity is
96 observed across the genome. Contexts with high levels of DNA methylation in untreated HL-60 cells
97 (i.e., exons, introns, intergenic regions) showed the greatest reductions upon HMA treatment (Fig.
98  1C), and this loss of methylation was accompanied by increased cell-to-cell heterogeneity (Fig. 1D).
99  Active promoters marked by H3K4me3 were the only genomic features without increased DNA

100  methylation heterogeneity following HMA treatment.

101  To explore the consequences of DNA methylation heterogeneity on other layers of genetic

102  regulation, we used the multi-omic data collected from HL-60 cells. The scNMT-seq method profiles
103 DNA methylation, DNA accessibility and gene expression in parallel®, allowing these molecular

104  modalities to be correlated with each other across the genome of individual cells (Fig. 1E). Untreated
105  cells showed the expected trends, with DNA methylation being negatively correlated to accessibility
106  and gene expression, while DNA accessibility and transcription were positively correlated. In HMA-
107  treated cells, the relationship between DNA methylation and accessibility was weakened in all

108 genomic contexts. HMA treatment also weakened the correlation between DNA methylation (in CpG
109 islands, promoters, exons, and introns) and expression of associated genes. In contrast, HMA

110 treatment had minimal impact on associations between DNA accessibility and gene expression.

111  These observations imply that loss of DNA methylation is not always accompanied by increased

112 accessibility and transcription, but may introduce epigenetic noise in an otherwise well-regulated

113 system.
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115  Figure 1. HMA treatment induces DNA methylation heterogeneity in AML cells. HL-60, MOLM-13
116  and MV-4-11 cells were labelled with CellTrace and treated with decitabine (DAC; 100nM) or

117 azacytidine (AZA; HL-60: 2000nM, MOLM-13 and MV-4-11: 500nM) every 24h for 72h. Single cells
118 collected by indexed FACS were subjected to scNMT-seq (HL-60) or scTEM-seq (MOLM-13, MV-4-
119  11). A) Violin plots of DNA methylation levels in single HL-60 (left), MOLM-13 (centre) and MV-4-11
120  (right) cells. Superimposed points show single-cell values from untreated (UNT, orange), DAC (cyan)
121  and AZA (purple) groups. Dashed boxes surround DAC and AZA cells with methylation levels within
122 therange of UNT samples. Data are shown for 185-222 cells collected from 2-3 replicate

123 experiments in each cell line (UNT, n = 27-38; DAC n = 63-93; AZA n = 68-91). B) Scatter plots

124 comparing CellTrace fluorescence and DNA methylation in single cells, with linear regression analysis
125  and F-test p-values. C) Violin plots of DNA methylation levels in different genomic contexts from HL-
126 60 scNMT-seq data. D) Violin plots of DNA methylation heterogeneity, as determined by pairwise
127  dissimilarity analysis, within different genomic contexts from HL-60 scNMT-seq data. E) Box and

128  whisker plots of Pearson correlation coefficients computed within single cells from HL-60 scNMT-seq
129  data. DNA methylation and DNA accessibility were considered in different genomic contexts, and
130  individual loci were matched based on genomic co-ordinates. Correlations were performed between
131  DNA methylation and DNA accessibility (top), DNA methylation and gene expression (middle), and
132  DNA accessibility and gene expression (bottom). Boxes depict the interquartile range (IQR) with

133  median. Whiskers extend to the highest and lowest data points within 1.5 x IQR of the first and third
134  quartile. Outlying data points are not shown.
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135  Transcriptional programs linked to HMA-induced epigenetic heterogeneity

136 HMA mechanisms of action have been difficult to precisely define because genome-wide loss of DNA
137 methylation is associated with pleiotropic transcriptional changes®. HMA-induced promoter

138  hypomethylation is thought to allow re-expression of tumour suppressor genes®, re-activation of

3132 HMA treatment can also

139  DNA repair pathways® and upregulation of differentiation markers
140 increase expression of cancer testis antigen533 and enhance antigen presentation on cancer cells®.
141 Furthermore, genome-wide de-repression of transposable elements (TEs) has been shown to trigger
142 aviral mimicry response in which dsRNA stimulate interferon signalling and apoptosis®™*’. To clarify
143  how HMA-induced epigenetic heterogeneity influences transcriptional responses we performed a
144 multivariate analysis to integrate the three molecular layers: DNA methylation, DNA accessibility,
145  and transcription. We excluded untreated cells to focus on variability among HMA-treated cells and
146  applied an unsupervised sparse Partial Least Squares (sPLS) method™. This method performed

147  feature selection to identify variably expressed transcripts that are highly correlated to changes in

148  DNA methylation and accessibility in regulatory regions (CpG islands, promoters, H3K4me3 sites and

149  H3K27ac sites) and 3kb genomic windows.

150  The 200 transcript features selected by sPLS were further examined in both treated and untreated
151  cells, revealing 4 groups of cells with distinct transcriptional profiles (Fig. 2A, B). Consistent with the
152  induction of viral mimicry, a gradient of TE expression was observed across component 1. For

153  example, cell group 3 had high expression of LINE: L2a and low global DNA methylation levels (Fig.
154  2A, Cand D). Gene ontology (GO) over-representation analysis (ORA) was performed for each of the
155 3 clusters of transcript features (Fig. 2B; Supplementary Table 2). Cell group 3 had low expression of
156  genesin cluster 3, which were related to translation and inhibition of cell death (Fig. 2E,

157  Supplementary Table 3). Simultaneously, cell group 3 had high expression of genes in cluster 1,

158  which were enriched in terms related to immune inflammatory response and positive regulation of
159  cell death (Fig. 2F, Supplementary Table 3). This transcriptional profile is consistent with the

160  expected effects of HVMIA treatment’, and 29 of the 78 genes in expression cluster 1 were

161  significantly upregulated by DAC and/or AZA in matched bulk RNA sequencing (RNA-seq) data

162  (Supplementary Table 2). In contrast, cell group 1 displayed an inverted gene expression pattern
163  which was shared with many untreated cells (observed:expected ratio = 1.48). This suggests that cell
164  group 1 did not activate transcriptional pathways commonly associated with HMA treatment,

165  despite low methylation levels in most cells (Fig. 2A, D). The expression profile of cell group 2 was
166 intermediate between groups 1 and 3, whereas cell group 4 showed distinctive upregulation of gene
167  expression cluster 2. No ontology terms from gene cluster 2 retained significance after multiple

168  testing correction.
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171  Figure 2. HMA-induced epigenetic heterogeneity influences transcriptional programs in AML cells.
172  HMA treated (AZA and DAC only) HL-60 scNMT-seq data underwent multivariate feature selection by
173  sparse least squares (sPLS) using an unsupervised model. A) sPLS projection of cells based on

174  transcript features coloured by cell group 1-4 (from B). B) Heatmap of transcript features selected by
175  sPLS displaying all samples (treated and untreated) as columns, are split by k-means clustering and
176  grouped by treatment. Individual gene and TE expression levels (rows) are z-score normalised and
177  split by k-means clustering with internal hierarchical clustering. C-D) sPLS projections of cells based
178  on transcript features are coloured by C) LINE:L2:L2a expression, and D) global methylation level. E-
179  F) Tree plots of the gene ontology (GO) over-representation analysis (ORA) for gene expression

180  clusters 3 and 1. G) Heatmaps summarising the DNA methylation and DNA accessibility features

181  selected by sPLS. Samples (columns) are ordered according to the heatmap in B. The average

182  methylation or accessibility of all sPLS selected features across all samples (treated and untreated) is
183  displayed on the left for each genomic context. The two heatmaps show z-score normalised

184  averages of DNA methylation and accessibility for all sPLS selected features in each genomic context.
185 H) Pearson correlations were computed between gene expression and DNA methylation (top) or

186  accessibility (bottom) of associated promoters. Bar graphs show the percentage of correlations (p <
187  0.05) with negative (left) and positive (right) coefficients for all genes and filtered by gene expression
188  cluster (identified in D). I) Correlations between RHEX expression and DNA methylation of adjacent
189  loci (top) are displayed together with annotated short and long interspersed nuclear elements (SINE,
190  LINE), long terminal repeat (LTR), DNA, and Simple repeat sequences (bottom). The blue shading

191  highlights a promoter-proximal region of intron 1 that included 6 regions with negative correlations
192 (cor <-0.3, p < 0.05) between DNA methylation and RHEX expression.

193

194  When considering the epigenetic features selected by sPLS (Supplementary Tables 4 and 5), we
195 noted that cell group 3 was the only group to have relatively low DNA methylation and high

196  chromatin accessibility across several genomic contexts (Fig. 2G). This suggests that the

197  transcriptional response to HMA treatment depends on both reductions in DNA methylation and
198  gainsin accessibility. Consistently, transcript features from expression cluster 1 had predominantly
199  positive correlations with accessibility features, and many negative correlations to methylation

200 features, especially in CpG islands and 3kb genomic windows (Supplementary Fig. 2).

201  To test whether epigenetic alterations in cis-regulatory elements could influence transcriptional
202  responses to HMA treatment, we next correlated gene expression to DNA methylation and

203  accessibility in nearby genomic loci. Genes from expression cluster 1 showed a significant shift

204  toward negative correlations with promoter methylation (p = 2.15x10™, x* test) and positive

205  correlations with promoter accessibility (p = 2.26x10°, x* test) (Fig. 2H, Supplementary Table 6). An
206 interesting example is RHEX (regulator of hemoglobinization and erythroid cell expansion), which is
207 highly expressed in AML*. Negative correlations between RHEX expression and DNA methylation
208  were concentrated in a promoter-proximal region of intron 1 that contained several conserved long
209  terminal repeat (LTR) TEs (Fig. 21). A previous study has identified an AML-specific RHEX transcript
210  resulting from onco-exaptation of an upstream LTR2B element®, so HMA-induced hypomethylation

211  could induce other non-canonical transcripts by activating additional TEs.
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212 In summary, our single-cell multi-omic analysis has identified transcriptional changes linked to the
213 patterns of epigenetic heterogeneity in HMA-treated AML cells. Importantly, activation of genes
214  involved in inflammatory response and cell death pathways (expression cluster 1) with simultaneous
215  down-regulation of inhibitory genes involved in these pathways (expression cluster 3) is observed in

216  only a sub-set of hypomethylated cells (cell group 3) (Fig. 2A, C, D).

217  Functional consequences of HMA-induced heterogeneity

218  To determine the functional consequences of epigenetic and transcriptional heterogeneity in HMA-
219  treated cells, we next performed colony-forming assays. DAC and AZA significantly decreased colony
220  counts (Fig. 3A), confirming that HMA treatment decreases the self-renewal capacity of AML cells'®.
221 DAC treatment also significantly increased the size of MOLM-13 and MV-4-11 colonies, indicative of
222 increased proliferation during colony formation (Supplementary Fig. 3A). To characterise the

223 molecular profiles of colonies formed after HMA treatment, we performed single-colony analysis of
224  DNA methylation (Fig. 3B, C). Following DAC treatment (Fig. 3B, solid fill), we observed a high

225  percentage of colonies (34-65%) with DNA methylation levels comparable to untreated colonies
226 (275%). This was in stark contrast to the low percentage of methylation-retaining cells (1-5%)

227  observed in single-cell data after 72h DAC treatment (Fig. 1A, dashed box; Fig. 3B, dashed line).

228  Surprisingly, this shift towards higher DNA methylation levels was far less pronounced in colonies

229 established following AZA treatment (Fig. 3C).

230  To assess recovery of DNA methylation following HMA treatment, a time-course analysis was

231  performed during the colony-forming assay (Fig. 3D). DNA methylation levels in HMA-treated HL-60
232 colonies were low throughout the time-course (Fig. 3D, top), mirroring an analysis performed in

233 suspension culture (Supplementary Fig. 1E). Similar results were obtained for MOLM-13 and MV-4-
234 11 colonies derived after AZA treatment (Fig. 3D, centre and bottom). In contrast, high levels of DNA
235  methylation were observed at early stages of colony formation (experiment day 6) following DAC
236  treatment of MOLM-13 and MV-4-11 cells (Fig. 3D, centre and bottom). This suggests that the shift
237  toward high DNA methylation observed in these colonies (Fig. 3B) is not due to a gradual recovery of
238  methylation. Rather, our data is consistent with the selection of highly methylated cells in colony-
239  forming assays performed after DAC treatment. We deduce that methylation-retaining cells have
240  increased self-renewal and proliferative capacity relative to hypomethylated cells, after treatment

241 with DAC, but not AZA.
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243 Figure 3. Highly methylated AML cells display a growth and survival advantage following

244 treatment with DAC, but not AZA. A) HL-60, MOLM-13, and MV-4-11 colony counts following

245  treatment with DAC (cyan) or AZA (purple) vs. untreated cells (UNT, orange). B-C) Density plots show
246  the average DNA methylation levels for single cells collected on experiment day 3 (dashed line) and
247  individual colonies collected on experiment day 17 (solid fill) following treatment with DAC or AZA.
248  HL-60 scNMT-seq data were filtered for cytosines within SINE Alu sites for direct comparison to

249  scTEM-seq data from colonies. Data are shown for 288 colonies collected from triplicate

250  experiments in each cell line (n = 96 per treatment). D) Time-course experiment showing changes in
251  average DNA methylation of cells collected at different time points throughout the colony-forming
252  assay (experiment days 6, 10 and 17). Values for experiment day 3 were obtained from single-cell
253  data (Fig. 1A). Data in A and D are expressed as mean +/- standard error of the mean (SEM).

254  Statistical analysis of colony counts (A) was performed using ordinary one-way ANOVA with

255  Dunnett’s multiple comparisons test with a p < 0.05 cut-off for significance (p < 0.03*, p < 0.006**, p
256  <0.0002***),

257

258  Transcriptional programs associated with recovery following HMA exposure

259  Toidentify cellular processes active during recovery from HMA exposure, we next generated

260  matched transcriptomes from the same set of colony samples. Single-colony RNA-seq and principal
261  component analysis (PCA) showed that DAC and AZA samples were generally distinct from untreated
262 samples, regardless of their global DNA methylation levels, in all cell lines (Fig. 4A). This implies that

263  HMA exposure has substantial effects on the transcriptome, even in highly methylated cells.
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265  Figure 4. HMA treatment has sustained transcriptional effects in both methylation-retaining and
266  hypomethylated cells. A) Principal Component Analysis (PCA) plots of single-colony RNA-seq data
267  from AML cell lines, highlighting treatment groups (UNT = orange; DAC = cyan; AZA = purple) and
268  matched mean DNA methylation levels (circle: high > 75%; triangle: low < 75%). Data shown for 119 -
269 220 colonies collected from 3 replicate experiments in each cell line (UNT, n = 14-73; DAC, n = 46-78;
270  AZA, n = 56-73). B) Heatmap of the top 2000 highly variable genes from colony RNA-seq data.

271  Samples are ordered by decreasing global methylation levels (green gradient) within each treatment
272 group. Rows are grouped by K-means clusters based on gene expression, with hierarchical clustering
273 by Euclidean distance within each cluster. C) GO analysis of the clusters from the top 2000 highly
274  variable genes from B. The size of the circles indicates the gene ratio (number of genes from the

275  input list annotated to the GO term divided by the total number of genes in the input list), and the
276  colour represents the significance of the adjusted p-value. Gene clusters are colour-coded on the y-
277  axis and GO processes are shown on the x-axis.

278

279  Of the 2000 most variably expressed genes among HL-60 samples, only 215 had increased

280  expression specific to hypomethylated colonies (Fig. 4B, cluster 3; Supplementary Table 8). Many of
281  these genes (42.3%) were upregulated following 72h treatment with either DAC or AZA in bulk HL-60

282 RNA-seq data, and several were associated with activation of inflammatory responses within the
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283  sPLS model (e.g., SI00A8, S100A9; Supplementary Table 8; Fig. 2B, cluster 1). In contrast, genes in
284 cluster 5 were upregulated following HMA exposure in both hypomethylated and highly methylated
285  colonies (Fig. 4B). Only 3.5% of these genes were induced by HMA treatment in bulk RNA-seq data,
286  but several were included in gene expression cluster 3 from the sPLS model (e.g., MYC, MPO;

287  Supplementary Table 8; Fig. 2B). Thus, some transcriptional changes that occur immediately after
288 HMA treatment are maintained in hypomethylated colonies, while other genes are upregulated
289  during colony formation and are independent of HMA-induced global hypomethylation. GO ORA
290 revealed an enrichment of anti-microbial and immune-related processes among both

291  hypomethylation-dependent and -independent gene sets, whereas ‘small molecule biosynthetic
292  process’ was uniquely over-represented among the hypomethylation-independent cluster 5 genes

293  (Fig. 4C; Supplementary Table 9).

294  To identify cellular processes that could favour the growth of methylation-retaining cells (Fig. 3), we
295  next focused on the HL-60 colonies derived following DAC treatment. Among these samples, the
296 broad range of DNA methylation levels (Fig. 3B) allowed us to compute correlations to gene and TE
297 expression (Fig. 5A). We found an enrichment for negative correlations with TE expression,

298  consistent with their upregulation in hypomethylated cells*>*’

. We also identified transcripts with
299  both significant negative (cor < -0.4, adjusted p-value < 0.05, n = 722) and positive (cor > 0.4,

300 adjusted p-value < 0.05, n = 345) correlations to global DNA methylation levels and divided these
301 genes into 4 clusters based on their expression patterns across treatment groups (Fig. 5B, C;

302  Supplementary Table 10). Genes with increased expression in hypomethylated colonies (Fig. 5B,
303 cluster 2) were enriched for GO terms related to defense responses, cell motility and chemotaxis
304  (Supplementary Table 11). Interestingly, we also identified 233 genes with specific upregulation in
305  highly methylated HL-60 colonies derived following DAC treatment (Fig. 5B, cluster 1). These genes
306 displayed significant enrichment of cholesterol-related ontologies, which included many enzymes
307  required for de novo cholesterol biosynthesis downstream of mevalonate® (Figure 5C,

308  Supplementary Table 11; Supplementary Fig. 4). Other genes involved in the mevalonate pathway
309 (e.g., MVD, MVK, and PMVK) were increased by HMA treatment in most HL-60 colonies, regardless
310  of their global DNA methylation level. MOLM-13 and MV-4-11 colonies also displayed increased
311  expression of cholesterol biosynthesis genes after HMA treatment (Supplementary Fig. 5).

312  Interestingly, these changes were not observed immediately following HMA treatment, nor after
313  long-term culture in suspension (i.e., in day 3 and day 21 HL-60 bulk RNA-seq data). On the contrary,
314  several members of the cholesterol biosynthesis pathway were significantly decreased (FDR < 0.05,
315  Log2(fold change) < -1) following 72h DAC and/or AZA treatment of HL-60 cells (LSS, DHCR?Z,

316 Supplementary Table 8; HMGCS1, HMGCR, data not shown). These observations suggest that
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317  increased cholesterol production is a delayed response to HMA treatment that occurs independently

318  of methylation changes and facilitates the self-renewal and proliferation of AML cells.

319 Inhibition of cholesterol biosynthesis following HMA exposure

320 To test whether inhibition of cholesterol biosynthesis could enhance HMA efficacy, we performed
321 co-treatments with rosuvastatin in colony-forming assays. Rosuvastatin is a potent inhibitor of the
322  rate limiting enzyme of the cholesterol biosynthetic pathway, HMG-CoA reductase (HMGCR), and is
323  frequently prescribed to reduce the risk of cardiovascular disease associated with

324  hypercholesterolaemia™. In all cell lines, rosuvastatin caused a trend towards decreased colony
325  numbers following DAC treatment, with a significant decrease in MOLM-13 colonies, whereas co-
326  treatment with AZA had varied effects (Fig. 5D). Following DAC and rosuvastatin co-treatment,

327  colonies also displayed significantly reduced size (Supplementary Fig. 3B) and DNA methylation
328 levels (Fig. 5E) in MOLM-13 and MV-4-11 cell lines, where strong selection for highly methylated
329  cells was previously noted (Fig. 3B). This suggests that inhibition of cholesterol biosynthesis

330  specifically inhibits the self-renewal capacity of methylation-retaining cells and identifies statins as a

331  candidate co-treatment strategy to target HMA-evading AML blasts.

332  The efficacy and potential clinical utility of DAC and rosuvastatin co-treatment was then tested in
333  immunocompromised mice engrafted with luciferase-tagged MOLM-13 cells (Fig. 5F). In a dose
334  optimisation experiment, combining DAC and rosuvastatin led to a significant increase in median
335  survival for all doses tested (Fig. 5F, left). The 1Img/kg/day dose of rosuvastatin was chosen for
336  further validation in this model, as it is a low dose that is commonly prescribed for preventing
337  cardiovascular disease (equivalent to approximately 5-10mg/day oral dose in humans). DAC and
338 rosuvastatin co-treatment once again led to a significant increase in median survival compared to
339  DAC treatment alone (24 vs. 21 days) in this aggressive in vivo AML model (Fig. 5F, right).

340  Rosuvastatin alone provided no benefit, with survival times comparable to vehicle treated mice. DAC
341 and rosuvastatin co-treated mice also exhibited a trend towards decreased tumour burden, as
342  measured by BLI, between days 17 — 24 of the experiment, compared to mice treated with DAC
343  alone (Supplementary Fig. 6). These in vivo results provide evidence that HMAs combined with

344  statins have the potential to decrease tumour burden and improve AML survival.
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Figure 5. Upregulation of cholesterol biosynthesis in cells surviving HMA therapy can be targeted
to enhance treatment efficacy. A) Volcano plot showing the Pearson correlation coefficient and
adjusted p-value for correlations between gene or transposable element (TE) expression and global

DNA methylation levels from HL-60 colonies derived following DAC treatment. T

he upper density

plot shows a bias toward negative correlations, especially between global DNA methylation level and
TE expression (red). B) Simplified heatmap of k-means clustering for the 1,067 genes with significant
correlations to global DNA methylation level (adjusted p-value < 0.05 and 0.4 < correlation estimate

<£0.4, from A). C) Summarised tree plots displaying GO terms with significant (ad
0.05) over-representation in clusters 1 and 2 (from B). D) Colony counts for HL-6
(middle) and MV-4-11 (bottom) cell lines obtained following HMA and rosuvasta

justed p-value <
0 (top), MOLM-13
tin co-treatments.
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356  Datafrom No HMA (orange), DAC (cyan) and AZA (purple) groups are normalised to the

357  corresponding O UM rosuvastatin control. Means + SEM for n = 3 experiments. Significance

358  determined by two-way ordinary ANOVA with Dunnett’s multiple comparisons test, p < 0.05* vs.
359 corresponding 0 uM rosuvastatin control. E) DNA methylation of colonies formed following DAC and
360 rosuvastatin co-treatments. Means + SEM for n = 3 experiments. Significance determined by one-
361  way ANOVA with Tukey’s multiple comparisons test, p < 0.05* vs. corresponding 0 uM rosuvastatin
362  control. F) Left: rosuvastatin dose optimisation experiment showing median survival of mice

363  engrafted with MOLM-13-luc cells following treatment with DAC (0.2mg/kg/day) +/- rosuvastatin (1,
364 10, 40mg/kg/day) on a treatment schedule of ‘5 days on, 2 days off’ for 3 cycles. Right: Validation of
365  survival benefit when DAC (0.2mg/kg/day) is combined with rosuvastatin (1mg/kg/day) in mice

366  engrafted with MOLM-13-luc AML cells. Survival analyses were performed using Kaplan-Meier

367  analysis followed by the Log-rank (Mantel-Cox) test and an adjusted p-value of < 0.05 was

368 considered statistically significant. Left: p < 0.002**, p < 0.0001****; Right: p < 0.05%, p < 0.005**,

369

370 Discussion

371  The clinical benefits of HMA therapy are limited by the rapid development of treatment-resistant
372 relapse. We have characterised the heterogeneous responses of AML cells to HMA treatment,

373  revealing new insights into how cells survive and adapt to treatment.

374  Our single-cell multi-omic analyses revealed global DNA methylation heterogeneity induced by

375 treatment, and transcriptional responses linked to epigenetic changes. We observed activation of
376  inflammatory response and cell death pathways in only a minor subset of hypomethylated cells (Fig.
377 2B), consistent with our previous report of heterogeneous TE expression following DAC treatment™
378  and scRNA-seq data from a colorectal cancer cell line*®. These observations suggest that additional
379 epigenetic modifications, transcription factors, or other mechanisms, can suppress transcriptional

44,45
3

380 responses in hypomethylated cells (e.g., H3K9me ). Alternatively, loss of methylation at specific

381  loci may be required for HMAs to exert their effects. Our observations are consistent with the lack of

46-48

382  correlation between HMA-induced hypomethylation and clinical response™ ™, and support the use

383 of locus-specific methylation changes to build a predictor of patient response®.

384  In contrast to our single-cell analyses, Li et al. reported reduced epigenetic and transcriptional

385  variance in AML cells collected after 12 weeks of AZA treatment in a transgenic mouse model®. We
386  suggest that HMAs initially increase epigenetic and transcriptional diversity, allowing some cells to
387  gain arelative growth or survival advantage. Subsequent expansion of those clones would lead to
388  the reduced heterogeneity reported by Li et al.>°. Consistently, we found that some AML cells retain
389  high levels of DNA methylation during HMA treatment (Fig. 1A) and have a relative growth

390 advantage following drug withdrawal (Fig. 3). Methylation-retaining cells tended to divide less

391 frequently during treatment (Fig. 1B) but had higher self-renewal and proliferative capacity than

392  hypomethylated cells after DAC treatment (Fig. 3). Interestingly, this selection for methylation-
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393  retaining cells was not observed following AZA treatment, reflecting previous reports of distinct
394  effects of these HMAs™°. Since AZA is incorporated into both DNA and RNA**, while DAC is
395  restricted to DNA, we speculate that RNA-mediated toxicities (such as translational inhibition®>°)

396  could prevent the growth of highly methylated cells following AZA treatment. Together, our results
397  suggest that methylation-retaining cells are a likely source of AML relapse, especially following DAC

398  therapy.

399  We observed upregulated cholesterol biosynthesis, particularly in colonies that had high DNA

400  methylation after HMA treatment (Fig. 5 and Supplementary Fig. 4). This indicates that HMA

401  exposure causes transcriptional changes and metabolic alterations, even in highly methylated cells.
402  Previous studies have shown that HMAs perturb the homeostasis of pyrimidine metabolism

403 independently of DNA methylation changes®, and similar effects have been linked to altered

404  cholesterol and lipid metabolism in AZA-treated liver cell lines™. Therefore, we speculate that

405  upregulation of cholesterol biosynthesis is a delayed response to HMA treatment that occurs in

406 highly methylated cells, potentially via altered pyrimidine metabolism.

407  Increased cholesterol demand is an established feature of AML cells*®, and upregulation of

57-59

408  cholesterol biosynthesis genes has shown prognostic value in AML”"™". While the precise

409  mechanisms by which cholesterol confers a survival advantage remain unclear, inhibiting cholesterol

8981 |n addition,

410  biosynthesis has been shown to sensitize AML cells to radiation and chemotherapy
411  we have demonstrated that inhibition of cholesterol biosynthesis by rosuvastatin can decrease the
412  self-renewal capacity and global DNA methylation levels of MOLM-13 colonies when combined with
413  DAC treatment (Fig. 5D, E). This suggests that the upregulation of cholesterol biosynthesis facilitates
414  the self-renewal and proliferation of cells that retain DNA methylation during HMA treatment.

415 Recently, cholesterol metabolism was also linked to DAC resistance in AML cell lines, with statin co-
416  treatment showing synergistic inhibition of in vitro AML cell growth®. In vivo, we observed

417  significantly improved survival of leukaemia-bearing mice treated with DAC and rosuvastatin (Fig.

418 5F), suggesting that co-treatment may increase the duration of HMA response in some AML and

419 MDS patients.

420 Encouragingly, a recent retrospective analysis of MDS patients (including some HMA-treated high-
421  risk cases) reported improved survival and reduced progression to AML for patients who

422  commenced statin treatments three months before or after MDS diagnosis®. Current clinical trials
423  are testing the safety of a statin (pitavastatin) in combination with AZA and venetoclax in AML
424 patients® and our results imply that DAC and statin co-treatments should also be assessed. This

425  therapeutic avenue is of particular interest since statins are commonly prescribed, well-tolerated,
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426  oral medications, which could be rapidly repositioned for use in AML and MDS patients receiving

427  HMA therapy.

428 Methods

429  Cell lines and culture

430 AML cell lines, HL-60 (ATCC #CCL-240), MOLM-13 (DSMZ #ACC-554), and MV-4-11 (ATCC #CRL-9591)
431  were maintained in tissue culture flasks (Greiner Bio-One) at 37°C, 5% CO,, and sub-cultured at

432 500,000 cells/mL every 2-3 days with fresh medium. HL-60 cells were maintained in Iscovels

433  Modified Dulbeccols media (IMDM; Sigma-Aldrich) supplemented with 4mM GlutaMAX (Thermo
434  Fisher Scientific) and 10% Fetal Bovine Serum (FBS; Sigma-Aldrich). MOLM-13 and MV-4-11 cells
435  were maintained in Roswell Park Memorial Institute 1640 media (RPMI; Sigma-Aldrich)

436  supplemented with 2mM GlutaMAX and 10% FBS. All cell lines were mycoplasma negative based on
437  routine testing using MycoAlert Mycoplasma Detection Kit (Lonza). Cell line authentication was

438  routinely performed by the Australian Genome Research Facility (AGRF).

439  CellTrace staining

440  Prior to drug treatment (Day 0), AML cells (2x10° cells/mL) were stained with 1uM (MOLM-13 and
441  MV-4-11) or 3uM (HL-60) CellTrace Far Red (Thermo Fisher Scientific) to monitor cell divisions,
442  according to manufacturer’s instructions. Cells with uniformly high CellTrace fluorescence

443  underwent fluorescence activated cell sorting (FACS) prior to treatment with hypomethylating
444 agents (HMAs) in MOLM-13 and MV-4-11 cell lines, whereas all cells were used for HL-60

445 treatments.

446  HMA treatments

447  AML cell lines were treated with HMAs at various doses in suspension culture, every 24h for 72h
448  total. All cell lines were treated with 100nM decitabine (DAC; Selleckchem #51200), HL-60 cells were
449  treated with 2000nM azacytidine (AZA; Selleckchem # $1782), and MOLM-13 and MV-4-11 cells

450  were treated with 500nM AZA. Untreated cells (UNT) were given an equal volume of 0.1% DMSO in
451 UltraPure™ DNase/RNase-Free Distilled Water (Thermo Fisher Scientific) and served as a negative
452  control. After HMA treatment, cells were prepared for FACS or colony forming assays, as described

453 below.

454  Fluorescence activated cell sorting (FACS)
455  HMA treated cells were stained with propidium iodide (PI, 1.5ug/mL) and prepared for FACS. Viable
456  (PI') single cells were sorted into 2.5uL of RLT PLUS buffer (Qiagen) containing 2.5U SUPERas-In

457  (Thermo Fisher Scientific) in LoBind 96-well full skirted plates (Eppendorf) using indexed sorting on a
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458  FACS Aria Il (BD Biosciences). Plates were sealed and briefly centrifuged before storage at -80°C for

459 sequencing analyses.

460  Colony-forming assays

461  HMA treated cells were seeded in MethoCult Optimum (H4034; STEMCELL Technologies Inc.) at 500
462  cells/well in 6-well plates, with rosuvastatin (Selleckchem # $S2169) added to the MethoCult at

463  various doses (0, 1, 10, 30uM). Cells were then cultured at 37°C, 5% CO, for 14 days to allow colony
464  formation. Wells containing colonies were imaged using Cytation3 (Biotek). Colony counts and sizes
465  were analysed using Image) software. Individual colonies were manually plucked using a 20uL

466  pipette tip into 100uL of media, centrifuged at 200xg for 5 mins, and then resuspended in 20puL of
467  RLT PLUS buffer before storage at -80°C. Alternatively, all colonies in each well were collected by
468  resuspending the MethoCult Optimum media (and colonies) in 3mL of standard culture media

469 (IMDM or RPMI), centrifuging at 200xg for 5 mins, and resuspending the cell pellet in 20-50uL RLT
470  PLUS buffer, before storage at -80°C.

471  Library preparation and sequencing

472  scNMT-seq library preparation and sequencing

473 For scNMT-seq, matched scNOMe-seq and scRNA-seq libraries were prepared from sorted HL-60
474  single cells, as previously described®®. Minor modifications to the published protocol are in the

475  Supplementary Methods.

476  For scNOMe-seq libraries, paired-end 150bp sequencing was performed on the NovaSeq (Illumina)
477 platform. For scRNA-seq libraries, paired-end 75bp sequencing was performed on the NovaSeq or

478  NextSeq (lllumina) platform.

479  scTEM-seq library preparation and sequencing
480 For scTEM-seq analysis of global DNA methylation levels in single MOLM-13 and MV-4-11 cells,

481 library preparation was performed as previously described®.
482  Paired-end 150bp sequencing was performed on the MiSeq (lllumina) platform.

483  Colony TEM-seq and RNA-seq library preparation and sequencing

d®>® with

484  Single colony TEM-seq (Fig. 3B, C) and parallel RNA-seq analysis was performed as describe
485  minor modifications. Lysates from single colonies (HL-60: 7.5uL; MOLM-13 and MV-4-11: 2.5ul)
486  were used to separate genomic DNA and mRNA. During single colony TEM-seq library preparation,
487  the number of SINE Alu amplification cycles was reduced to 29. For RNA-seq analysis, 15 cycles of

488  cDNA amplification were used.
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65,66
d )

489  TEM-seq analysis of pooled colonies (Fig. 3D, 5E) was performed as describe using 5-10pL of cell

490 lysate as input for bisulphite conversion, and 29 cycles for SINE Alu amplification.

491  All TEM-seq libraries were sequenced using 150bp paired-end sequencing on the MiSeq (lllumina)
492 platform. For RNA-seq libraries, paired-end 75bp sequencing was performed on the NextSeq or

493  NovaSeq platform.

494  Data processing

495  Sequencing data were processed and aligned as described in the Supplementary Methods.

496 scNMT-seq data analysis

497  Quality control

498 For scNMT-seq data, cells were required to pass both scNOMe-seq and scRNA-seq quality control
499 (QC). Cells that had less than 500,000 CpG sites covered, less than 5,000,000 GpC sites covered,
500 greater than 15% CHH methylation rate, or less than 2% GpC methylation, failed scNOMe-seq QC.
501  For scRNA-seq, QC was performed using bam files from hisat2, and the SeqMonk®” (v1.47.1) ‘RNA-
502  seq QC Plot’. Cells that had less than 70% reads in exons, or less than 15% genes measured, failed

503  scRNA-seq QC. In total, 222 scNMT-seq samples passed QC (Supplementary Table 1).

504 scNOMe-seq normalisation and batch correction

505 scNOMe-seq libraries provide information on both DNA methylation (CpG sites) and DNA

506  accessibility (GpC sites). For both CpG (methylation) and GpC (accessibility) datasets, several
507 genomic annotation contexts were considered: introns, exons, intergenic regions, CpG islands,

68-70

508  promoters (-1500 to +500 bp of transcription start sites), H3K4me3 sites (ENCODE accession ID:
509  ENCFF021JBH, experiment: ENCSROO0ODUO) and H3K27ac sites (ENCODE®® 7 accession ID:
510 ENCFF763UAG, experiment: ENCSRI19WLM). In addition, unbiased 3kb windows of the whole

511 genome were generated with a step size of 1.5kb.

512 For DNA methylation, the CpG methylation rate was estimated within each annotation window using

513  the Bayes binomial approximation as in Smallwood et. al.”".

514  The GpC methylation, which marks accessible DNA in scNOMe-seq libraries, is introduced in vitro
515  using a bacterial GpC methyltransferase enzyme (Supplementary Methods). To remove batch effects
516  resulting from differences in enzymatic activity, data normalisation and batch correction were

517  performed as follows. GpC data for the whole genome was aggregated in windows of 500kb in

518 length with 250kb overlap separately for methylated and unmethylated GpC counts for each cell.
519  Per-cell pooled size factors were computed from these 500kb windows using the method of Lun et.

520  al.”?scaling by total library size, as implemented in the single-cell R package "scuttle" (v1.8.4)”.
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Batch scaling factors were estimated from corrected methylated and unmethylated window log
counts using the rescaleBatches method from the R package "batchelor” (v1.14.1)"*. Per cell
methylated and unmethylated cell scaling factors were calculated as the ratio of the batch-corrected
sum of counts to the mean sum of counts across cells. Finally, unscaled methylated and
unmethylated counts in each cell were independently scaled by the product of the cell pooled size
factor and the methylated/unmethylated count batch correction factor, respectively. GpC
methylation rate for each annotation window was then computed using the normalised batch

corrected counts by the Bayesian binomial approximation.

From the overall distribution of counts across in the annotation layer for CpG and GpC methylation
data, minimum total count thresholds per window of 5 counts (CpG) and 20 counts (GpC) were

established and applied to discard windows with unreliable methylation rate estimation.

Pairwise distance analysis of DNA methylation heterogeneity

To assess the DNA methylation heterogeneity per treatment group and genomic context (Fig. 1D),
pairwise CpG methylation distance analysis was performed. The mean absolute methylation
difference was computed for each cell pair (A, B) as the mean of the absolute difference in
methylation rate at each common cytosine position in the relevant genomic annotation. To make
the comparison of methylation patterns meaningful, only cytosine loci with data in both cells in the
pair were used. These mean absolute methylation differences were grouped by the treatment
combination of the cell pair. The global summaries shown in Fig. 1D corresponds to the groups
where both cells in the pair had the same treatment. Higher values indicate a more heterogeneous

methylation pattern when cells in the same treatment group are compared vis-a-vis.

Cell-wise correlation analysis

To assess the relationships between DNA methylation, DNA accessibility and gene expression within
individual cells (Fig. 1E), Pearson correlations were computed using HL-60 scNMT-seq data. For this
analysis, RNA-seq data was normalised and log transformed per batch using
‘scuttle::logNormCounts()’ (v1.6.2)"® without batch correction or prior count filtering. DNA
methylation was correlated to DNA accessibility at matched loci based on genomic coordinates. For
correlations with gene expression, methylation and accessibility measurements at promoters,
introns and exons were matched to the corresponding transcript. For CpG islands, H3K27ac sites and
H3K4me3 sites, methylation and accessibility measurements were matched to all transcripts within
10kb. For intergenic regions and 3kb genomic windows, methylation and accessibility measurements

were matched to every transcript within 1bp to assess the expression of immediately adjacent
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553  genes. For each cell, Pearson correlation estimates were then computed using all matched values

554 and the cor.test function in R.

555  scRNAseq normalisation and batch correction

556  scRNA-seq libraries from HL-60 scNMT-seq data were filtered to remove lowly expressed genes,

557  requiring at least 5 counts in 10% of cells. Normalisation and variance stabilisation were performed
558 by scTransform’® and batch correction by anchor-based integration using the R package “Seurat”
559  (v4.2.0)’°. First, batches were independently normalised by scTransform. The top 5,000 most

560  variable features that were in common across batches were identified to determine anchors for

561  integration and batch correction of the data (using default parameter and k.weigh=50), applied to
562  and retaining those 5,000 commonly variable features. Finally, a sparse RNA-seq matrix was utilised,
563  whereby gene imputation calculations were ignored and removed by reintroducing ‘NAs’ in place of
564  genes with originally ‘missing data’ (zeros). Downstream analyses considered only autosomal genes

565  (Chr1-22).

566 Integrative sparse partial least squares (SPLS) analysis

567  Mixomics® (v6.20.0) was used to perform a multivariate integrative analysis of HL-60 scNMT-seq
568  data (Fig. 2A-D). Feature selection was performed to identify variably expressed transcripts that are
569  highly correlated to changes in DNA Methylation and accessibility following HMA treatment. We
570  performed an unsupervised sparse Partial Least Squares (sPLS) analysis using the function

571  ‘mixOmics::mint.block.spls()’ which combines a multivariate integrative (MINT) method and a

572 multiblock sPLS integrative analysis. MINT”” accounts for multiple batches (Supplementary Table 1)
573  measured on the same variables, while the multiblock sPLS seeks for correlated patterns between
574  DNA methylation and DNA accessibility rates that are split into multiple genomic regions (‘blocks’)

575  and explain (correlated to) the predictor (transcriptome).

576  To focus on transcriptomic and epigenetic changes resulting from HMA treatment only treated cells
577 (AZA and DAC) were included in the sPLS model. The genomic regions included in this analysis for
578  both DNA methylation and DNA accessibility were CpG islands, promoters, H3K27ac sites, H3K4me3
579  sites and 3kb windows. The rates from these genomic regions were filtered to retain only those

580  detected in greater than 10% of cells. The sPLS model was implemented assessing 2

581  components, selecting 50 features per component and per block (genomic region) in the
582  DNA methylation and DNA accessibility data sets, and 100 genes per component in the

583  transcriptome data set. More details are provided in our GitHub page.

584  Heatmap visualisation and identification of cell and expression clusters from sPLS selected features

585  was performed using ComplexHeatmap’® (v2.12.1). sPLS selected features for components 1 and 2
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586  were extracted using the function ‘mixOmics::selectVar()'. Heatmap visualisation was performed on
587  sPLS selected features using transcriptomic (converted to z-score) and epigenetic rates (mean of
588  featuresin genomic regions and converted to z-score) that were entered into the model and

589 included both treated and untreated cells. K-means clustering was performed on sPLS selected

590 transcriptomic features, first on Gene Expression (row_km=3) followed by Cell Group

591  (column_km=4).

592  sPLS sample projections (Fig. 2A, C and D) were plotted using ggplot2”® (v3.3.6) by extracting the
593  sPLS components 1 and 2 for a given block (RNA or epigenetic genomic region) and overlayed with
594  relevant information i.e. cell group identified from k-means clustering and treated cell type or

595 average DNA methylation.

596  Gene Ontology (GO) Over Representation Analysis (ORA) was calculated using clusterProfiler®

597  (v4.4.4) for ‘biological process’ and displayed using enrichplot® V1.16.1 (Fig. 2E, F). Gene Expression
598 k-means clusters (Fig. 2D) and sPLS selected features per component (1-2) were assessed by

599  ‘enrichGO(p.adj=0.05, p.adj.method = "fdr", q.val.threshold = 0.4)’ and the list of genes from the
600  batch corrected transcriptome dataset (entered into the sPLS model) as the background. Results
601  were displayed as treeplots using default settings for pairwise ‘termsim()’ and ‘treeplot(nCluster=5,

602  showCategory = 10)'.

603  The correlation of sPLS features (Supplementary Fig. 2) was calculated as a similarity matrix using
604  ‘mixOmics::circosPlot()’ on the sPLS model. The results were displayed using ComplexHeatmap
605  showing DNA methylation and DNA accessibility features related to transcript features split by the

606 previously identified Gene Expression k-means clusters.

607  Locus-specific correlation analysis

608 To compare gene expression to adjacent epigenetic features, locus-specific correlations were

609  performed using HL-60 scNMT-seq data (Fig. 2H and 1). DNA methylation and DNA accessibility

610 measurements were paired to genes based on annotation (Promoters) or by strand-aware position
611  within 10kbp of the gene transcription start site (CpG islands, H3K27ac sites, H3K4me3 sites and 3kb
612  windows). For paired sites, Pearson correlations were computed between CpG or GpC methylation
613 rate and log gene expression values. All cells with data (i.e. UNT, DAC and AZA groups) were

614 combined in these correlations, and a minimum of 22 cells with paired data (i.e. both gene

615  expression and DNA methylation/accessibility measurements) were required for the correlation to

616  be performed.
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617 Colony sequencing analysis

618 RNA-seq quality control, normalisation and batch correction

619  Samples were excluded if they had less than 35% genes measured, or less than 70% reads in exons
620  for HL-60 and MOLM-13 samples, or less than 65% reads in exons for MV-4-11 samples. RNA-seq
621  data from single colonies were filtered to remove lowly expressed genes, requiring at least 5 counts
622  in 3 samples. For each cell line, normalisation was performed by ‘scuttle::logNormCounts()’ (v1.6.2)
623  and batch corrected using mutual nearest neighbours method by ‘batchelor::mnnCorrect()’ (v1.12.3)

624  with default parameters. Downstream analyses considered only autosomal genes (Chr1-22).

625  Highly variable gene analysis

626  For Figure 4, highly variable genes (HVGs) were identified from colony RNA-seq data and PCA was
627  performed using ‘scater::calculatePCA(ntop = 2,000)’. K-means clusters of HVGs was determined
628  using the r stats package (v4.2.1) with ‘kmeans(centers = 8, iter.max = kmeans.iter, nstart = 50)'.
629  Heatmapping of HVGs and k-means cluster was performed using ‘ComplexHeatmap::pheatmap()’
630  with z-scored values and Euclidean distance hierarchical clustering within row clusters (k-means
631  groups) and columns (samples) ordered by treatment and descending average global methylation

632 level.

633 GO ORA of k-means clusters was compared using clusterProfiler for ‘biological process’ by
634  ‘compareCluster(pAdjustMethod = “fdr”, p.adj.threshold = 0.05, qvalueCutoff=0.4)" and the full list
635  of genes from the batch corrected dataset (for each cell type) as the background list. Plots were

636  created using ‘clusterProfiler::dotplot(showCategory = 3) + coord_flip()’.

637  Correlation analysis

638 Pearson correlations comparing gene expression to mean global methylation in DAC HL-60 colonies
639  (Fig. 5A) were performed using ‘cor.test()’ and underwent Benjamini—Hochberg false discovery rate
640  adjustment using ‘p.adjust(method="BH")". Gene clustering and heatmap visualisation was

641 performed on significantly correlated genes (p.adj < 0.05 & cor.value.estimate < -0.4 or

642  cor.value.estimate > 0.4). The average expression of each gene was calculated per treatment group
643  with DAC split into high (275%) and low (<75%) global methylation groups. The R package

644  “pheatmap”®

(v1.0.12) was used to plot the mean centred treatment group average expression
645  levels with rows aggregated into 4 ‘kmeans_k’ clusters. The genes from each ‘Kmeans_k’ cluster was
646  extracted and underwent GO ORA for biological process individually using 'enrichGO()’ with fdr

647  adjustment and results displayed as treeplots.
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648  AML cell-line xenograft model

649  All experimental procedures were reviewed, approved, and carried out according to the Animal Care
650  and Ethics Committee of the University of Newcastle (approval number: A-2023-303), and with

651  consideration of the ARRIVE guidelines (Supplementary Methods).

652 MOLM-13 cells transduced with firefly luciferase (MOLM-13-luc) were a kind gift from Dr Charles de
653 Bock (Children’s Cancer Institute, UNSW Sydney). Five-week-old female NOD.Cg-Prkdc scid 112rg

654  tm1Wijl /SzJ (NSG) mice were obtained from the Australian Bioresources (ABR, Moss Vale, NSW,
655  Australia) and were acclimatised for one week prior to any experimental procedure. The NSG mice
656  were inoculated with MOLM-13-luc cells (5x10° cells suspended in 100 uL of PBS) by injection into
657  the lateral tail vein. Tumour burden was assessed by bioluminescence imaging (BLI) twice a week
658  using an IVIS Spectrum in vivo imaging system (PerkinElmer, Waltham, MA, USA), following

659 intraperitoneal injections of 150 mg/kg D-luciferin (Promega, Alexandria, NSW, Australia) and under
660  anaesthesia with isoflurane. Treatments commenced on day 6 post-engraftment, when a positive

661  luminescence signal was detected.

662 In a pilot experiment, three different doses of rosuvastatin were co-administered with DAC. Mice (n

663 =5 per group) were treated by intraperitoneal injection of either vehicle (2% DMSO, 30% PEG300 in

664 water), DAC (0.2 mg/Kg in saline), or rosuvastatin (1 mg/kg, 10 mg/kg, or 40 mg/kg in 30% PEG300 in
665  water) combined with DAC (0.2 mg/Kg) once a day (5 days on, 2 days off) for up to 3 weeks. The

666  animals were monitored until they reached ethical endpoint.

667 Inasecond experiment, mice (n= 15 per group) received vehicle (2% DMSO, 30% PEG300 in water),
668  DAC (0.2 mg/Kg), rosuvastatin (1 mg/Kg), or DAC + rosuvastatin treatments via intraperitoneal
669 injections once a day (5 days on, 2 days off) for up to 3 weeks, and mice were monitored until ethical

670  endpoint.

671  Survival analyses were performed using Kaplan-Meier analysis followed by the Log-rank (Mantel-
672  Cox) test. All statistical analyses were performed using GraphPad Prism v. 9.0 (GraphPad Software,

673  LalJolla, CA, USA). An adjusted p-value of < 0.05 was considered statistically significant.

674 Data and code availability

675  Sequencing data and analysis code will be made available upon reasonable request and published

676  following peer review.
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