

1 **West Nile virus is transmitted within mosquito populations through infectious mosquito excreta**

2

3 **Short title: mosquito excreta-mediated transmission**

4

5 Rodolphe Hamel^{1,2,3,*}, Quentin Narpon¹, Idalba Serrato-Pomar^{1,4} Camille Gauliard¹, Arnaud Berthomieu¹,

6 Sineewanlaya Wichit^{2,3}, Dorothée Missé¹, Mircea T. Sofonea^{5,6} and Julien Pompon^{1,*}

7

8 1. MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France

9 2. Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology,

10 Mahidol University, Bangkok, Thailand

11 3. Viral Vector Joint Unit and Join Laboratory, Mahidol University, Thailand

12 4. IHU Méditerranée Infection, Marseille, France

13 5. PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France

14 6. CHU Nîmes, Nîmes, France.

15

16 * corresponding author; rodolphe.hamel@ird.fr; Julien.pompon@ird.fr

17

18

19 **Abstract**

20 Understanding transmission routes of arboviruses is key to control their epidemiology and global
21 health burden. Using West Nile virus and *Culex* mosquitoes, we tested whether arboviruses are
22 transmitted through mosquito excreta. First, we determined the presence of infectious virions in
23 excreta and quantified a high concentration of infectious units per excreta. Second, we showed that
24 virion excretion starts early after oral infection and remains constant for a long period, regardless
25 of mosquito infection level. These results highlight the infectiousness of excreta from infected
26 mosquitoes. Third, we found that both larvae and pupae were susceptible to infection, although
27 pupae were highly permissive. Forth, we established the proof-of-concept that immature mosqui-
28 toes can be infected by infectious excreta, demonstrating a new excreta-mediated mode of trans-
29 mission. Finally, by mathematically modelling excreta-mediated transmission in the field, we
30 demonstrated its potential impact on arbovirus epidemiology. Our study uncovers a new route of
31 transmission for arboviruses, unveiling mechanisms of viral maintenance in mosquito reservoirs
32 and of vector species shift that contribute to zoonotic emergence.

33 **Introduction**

34 Originally isolated in the West Nile province of Uganda in 1937 [1], West Nile Virus (WNV) is currently
35 the most widely distributed mosquito-borne diseases [2]. Circulation of WNV has been reported on all
36 continents, except Antarctica [3–6]. Although WNV infection in humans remains asymptomatic in most
37 cases, approximately 25% of infected patients develop non-lethal flu-like symptoms and 1% show
38 neurological manifestations such as encephalitis, meningitis, or acute flaccid paralysis, potentially causing
39 death and long-term sequelae [7]. Furthermore, an epidemiologic shift in the 90's resulted in increased
40 severity of outbreaks with more frequent neurological symptoms [8]. Initially observed around the
41 Mediterranean basin, the more virulent lineage 1 was introduced in the USA in 1999 and rapidly spread
42 throughout the country and the Americas. Since 2000, WNV infected an estimated 7 million people and
43 caused more than 2,700 deaths in the USA [9,10], while the disease causes yearly deaths in the EU where
44 more than 100 people died in 2022 and 2023 [11]. Despite the alarming situation, there is neither
45 therapeutics nor licensed vaccines for humans [3,6].

46 WNV transmission occurs through multiple routes. Primarily, WNV is transmitted between vertebrate
47 hosts through mosquito vectors, mostly from the *Culex* genera; a mode that is referred to as “horizontal”
48 transmission [2]. Successful horizontal transmission occurs when a susceptible mosquito bites an infected
49 host. The virus then multiplies within the vector until infecting the salivary glands, from which it is
50 excreted in the skin of other susceptible hosts during subsequent blood feeding, resulting in transmission
51 [12]. WNV circulates in an enzootic cycle between birds, where *Cx. quinquefasciatus*, *Cx. pipiens* and *Cx.*
52 *tarsalis* are the main vectors. Occasionally, opportunistic feeding of some *Culex* species result in
53 transmission from birds to humans or other mammals [13,14]. However, mammals are dead-end hosts as
54 most of them do not develop a sufficiently high viremia to infect mosquitoes. Additionally, WNV can be
55 directly transmitted between vertebrate hosts by contact with or consumption of infectious material, such as
56 infected birds, mosquitoes, cloacal fluids, blood transfusion, organ transplantation or even breast milk [15–
57 17]. Finally, WNV as for other flaviviruses can be maintained within mosquito populations by direct

58 transmission from an infected female mosquito to its offspring; a mode referred to as “vertical” transmission
59 [18–20]. However, low vertical transmission rates reported in laboratories imply a moderate
60 epidemiological role [21], even though vertical transmission efficiency improves with extrinsic incubation
61 duration [18,22].

62 Several lines of evidence indicate that WNV is maintained within mosquito populations without cycling
63 through vertebrate hosts. WNV was detected in *Culex* males [23], in larvae [24,25] and pupae [26], all of
64 which became infected by exposition to another inoculum source than blood. Circulation of the virus
65 between mosquitoes then enables persistence of the virus when conditions are unfavorable for horizontal
66 transmission, and facilitate resurgence of transmission to vertebrate, including humans, when conditions
67 favor mosquito biting to susceptible hosts [8,27]. Understanding the modes of transmission that maintain
68 viruses within mosquito populations is important to promote novel interventions and improve
69 epidemiological forecast to adjust interventions.

70 Here, we test whether WNV can be maintained in mosquito populations through excreta-mediated
71 transmission. Our hypothesis is based on the observation that excreta from infected mosquitoes contain
72 detectable amount of arboviral RNA and for this reason are screened as an innovative surveillance strategy
73 [28,29]. Furthermore, a previous study observed that excreta from *Cx. annulirostris* mosquitoes carry
74 infectious WNV virions but concluded that the amount was too low to infect other mosquitoes [29]. In our
75 study, we used WNV as a flavivirus model and showed that infected *Cx. quinquefasciatus* excrete infectious
76 virions. We then evaluated the possibility of an excreta-mediated transmission to immature mosquitoes by:
77 (i) quantifying the inoculum per excreta; (ii) assessing how extrinsic incubation period and mosquito
78 infection intensity influence excreta infectivity; (iii) determining the susceptibility of immature mosquitoes
79 to viral infection; and (iv) demonstrating that infectious excreta can infect immature mosquitoes. Eventually,
80 we combined our multifactorial dataset into a mathematical model to assess the potential for excreta-
81 mediated WNV transmission in breeding sites. Our study uncovers a new mode of transmission for WNV
82 and probably all arboviruses through infectious excreta, improving our understanding of arbovirus
83 epidemiology.

84

85 **Materials and Methods**

86 **Cells, viruses, and mosquitoes**

87 C6/36 cells (ATCC CRL-1660) derived from *Aedes albopictus* and Vero cells (ATCC-CCL-81) derived
88 from green monkey (*Chlorocebus sabaeus*) kidney were grown in Dulbecco's modified Eagle's medium
89 (DMEM) (Invitrogen, France) supplemented with 10% fetal bovine serum (FBS) (Eurobio, France), 1%
90 penicillin-streptomycin (Gibco, France). Insect cells medium was also supplemented with 1 % non-essential
91 amino acid (Gibco, France). Mosquito cells were grown at 28°C and mammalian cells at 37°C, while both
92 cells were grown with 5% CO₂.

93 A WNV infectious clone derived from IS98, a highly virulent strain isolated from a white stork, *Ciconia*
94 *ciconia* (IC-WNV-IS98; Genbank accession number: KR107956.1), was received from Dr. Philippe
95 Després [30] and propagated in C6/36 cells before storage at -70°C.

96 *Culex quinquefasciatus* strain SLAB originating from California were bred in the Montpellier Vectopole
97 Sud facility. Larvae were maintained in plastic trays (Gilac®, France) with distilled water and fed a mixture
98 of pelleted rabbit food (Hamiform™, France) and fish TetraMin flake (Tetra®, France). L1 larvae were also
99 initially given yeast solution. Pupae were transferred to a new tank and placed in a net cage (29 x 18 x 22
100 cm) (Custom manufacturing) with water and sugar solution (10%) for emerging adults. Mosquitoes were
101 maintained at 26-28°C, 70-80% humidity with a 12h:12h photoperiod.

102

103 **Oral infection**

104 Adult mosquitoes aged 3 to 5 day-old were sedated at +4°C, sorted at a density of 50 females and 5 males
105 per box and starved for 24h. Mosquitoes were then transferred to the BSL3 insectary to acclimatize at 28°C
106 with 80% humidity for 3 hours. Hemotek® membrane feeding system (Hemotek Ltd, United Kingdom) was
107 used for oral infection using chicken's skin and an infection mixture consisting of 1,500 µl PBS-washed-
108 rabbit blood (IRD animal facility, accreditation number H3417221), 150 µl FBS, 150 µl of 5 mM ATP

109 (Sigma-Aldrich, France), 700 μ l Roswell Parc Memorial Institute medium (RPMI) (Gibco, France) and
110 WNV stock to obtain either 10^5 or 10^7 pfu/ml of blood. Mosquitoes were allowed to feed on the blood
111 mixture maintained at 37°C for 1h15. Fully engorged mosquitoes were then sorted in an appropriate
112 container with *ad libitum* access to water and sugar solution (10%).

113

114 **Collection of excreta**

115 To avoid detecting viruses secreted during feeding on the WNV-blood meal, mosquitoes were transferred
116 into new containers 2-3 days post exposure (DPE), when the blood was digested. Different types of
117 containers were used for collecting pooled or single excreta.

118 For pooled excreta collections, at 6 DPE, female mosquitoes were grouped in 250 mL jars (Nalgene,
119 France) at a density of 25 mosquitoes/jar. Mosquitoes were offered sugar solutions (10%) containing a blue
120 food colorant (Vahiné, France). Excreta were then collected over intervals of 1h-1h30 in 500 μ l of DMEM
121 containing 1% antibiotic-antimycotic (Gibco, France). Before adding media, the number of excreta was
122 visually counted as blue dots.

123 For single excreta collections, female mosquitoes were maintained in round-bottomed 14 mL
124 polypropylene Falcon tubes (Fisher Scientific, France), crowned with a cap manufactured by a 3D printer
125 to allow mosquito feeding on a sugar solution (10%) and safe mosquito transfer from one tube to another to
126 collect excreta without sedating mosquitoes (Sup. Fig. 1). Excreta were collected in 500 μ l of DMEM
127 containing 1% antibiotic-antimycotic (Gibco, France) on the 4th, 6th, 8th, 10th and 12th DPE. On the twelfth
128 day, mosquitoes were collected and analyzed. During excreta collection, mosquitoes were maintained in a
129 climatic chamber at 28°C, 80% humidity and a 12h:12h photoperiod.

130

131 **Infection of cells with excreta**

132 Media containing pooled excreta was filtered through 0.22 μ m filter (Milex-GV®, Fisher Scientific, France)
133 and 150 μ l of the filtrate were combined with 350 μ l of DMEM to inoculate T25 flasks containing 8.5×10^5

134 Vero cells for 1h15 at 37°C. After washing, cells were incubated for 6 days at 37°C with 5% CO₂.
135 Supernatant was collected, filtered (filter exclusion size 0.45µm, Fisher Scientific, France) and analyzed by
136 RT-PCR and plaque assay.

137

138 **RNA extraction**

139 Single adult mosquitoes were homogenized in a 1.5 ml Eppendorf tube with plastic pestle in 500 µl of TRI
140 Reagent (Euromedex, France) before RNA extraction according to manufacturer's instructions. Single
141 larval and pupal mosquitoes were similarly homogenized in 500 µl of TRI Reagent before RNA extraction
142 according to manufacturer's instructions. RNA from 150 µl of excreta solution was extracted by adding 600
143 µl of RAV1 lysis buffer and using NucleoSpin virus RNA kit (Macherey-Nagel, France).

144

145 **WNV gRNA detection by RT-PCR and quantification by RT-qPCR**

146 RT-PCR was performed using AccessQuick RT-PCR System (Promega, France) in total reaction volume
147 of 25 µl with 5 µl of RNA extracts and 400 nM of forward primer (5'-ATTCGGGAGGAGACGTGGTA-
148 3') and reverse primer (5'-CAGCCGCCAACATCAACAAA-3') to amplify a 129 base pairs (bp) in the
149 WNV envelope region. Reactions were conducted at 42°C for 45 min, 95°C for 2 min followed by 45 cycles
150 of 20s at 95°C, 20s at 58°C and 20s at 72°C and a 2 min-final step at 72°C. PCR products were visualized
151 on 2% agarose gel.

152 One-step RT-qPCR was conducted using GoTaq 1-Step RT-qPCR System kit (Promega, France) in total
153 reaction volume of 20 µl containing 2 µl of RNA extracts and 300 nM of the same forward and reverse
154 primers as above. Amplification was conducted on AriaMax Real-Time PCR system (Agilent, France) and
155 consisted of an initial RT step at 42°C for 20 min, 95°C for 10 min, followed by 45 cycles of 10s at 95°C,
156 15s at 60°C and 20s at 72°C, and a final melting curve analysis. Viral RNA was absolutely quantified by
157 establishing a standard equation using serial dilutions of known amounts of the *in vitro* transcribed qPCR
158 RNA target. The amplicon target was amplified from WNV cDNA using the qPCR primers with the forward

159 primer flanked by T7 sequence (5'-TAATACGACTCACTATAGGGATTCGGGAGGAGACGTGGTA-
160 3') and transcribed using T7 RiboMAX Express Large Scale RNA Production System kit (Promega,
161 France). RNA was purified by ethanol precipitation, quantified by NanoDrop spectrophotometer
162 (FisherScientific, France) and converted to concentration of molecular copies by using the following
163 formula: number of Viral RNA copy / μ l = [(g/ μ l of RNA)/(transcript length in bp x 340)] x 6.02 x 10²³.

164

165 **WNV titration**

166 Triplicates of 1.8×10^5 Vero cells were infected with 10-fold serial dilutions of 250 μ l of excreta solution
167 or cell supernatant at 37°C for 1h15. After washing, cells were overlaid with DMEM containing 2%
168 carboxymethylcellulose (CMC, Sigma-Aldrich, France), 2% FBS and 1% of antibiotic-antimytotic (Gibco,
169 France). Cells were incubated at 37°C with 5% CO₂ for 7 days. The overlay medium was then aspirated,
170 and cells were incubated 30 min at room temperature with 3.7% formaldehyde diluted in PBS, washed twice
171 with PBS, and incubated with crystal violet solution (3.7% formaldehyde and 0.1% crystal violet in 20%
172 ethanol) for 1h. After two washes, plaques were counted and used to calculate PFU/ml with the following
173 formula:

$$174 \quad PFU / ml = (number\ of\ plaques) / (dilution\ factor) \times 4$$

175

176 **WNV stability**

177 5 x 10⁴ PFU/ml of WNV was incubated in water supplemented with larval food at 28°C. 200 μ L of liquid
178 were collected after 0 min, 30 min, 1h, 2h and used for viral titration.

179

180 **Infection of mosquito aquatic stages**

181 Fifteen L1 *Cx. quinquefasciatus* larvae were incubated for 1h in one Petri dish (Nunclon™, FisherScientific,
182 France) containing 2 ml of food-supplemented water and different concentrations of WNV stock. Larvae
183 were then transferred to plastic tubes (Nalgen, France) capped with cotton and containing 3 ml of distilled

184 water with larval nutrient solution and incubated at 28°C, 80% humidity. On day 5 post exposition, L4
185 larvae were collected, rinsed twice in distilled water and collected for RNA extraction. Twenty-five pupae
186 were similarly incubated with WNV and, after exposure, were transferred inside a rearing cage and kept at
187 28°C, 80% humidity with sugar solution (10%). RNA extraction was performed on adult mosquitoes
188 collected three days after emergence.

189 Seven and eight pupae were separately incubated with 300 μ l of pooled excreta solution in one well of
190 48-well flat-bottom plate (Falcon™, Fisher Scientific, France). Pupae were placed in a climatic chamber
191 with rearing conditions. Adults were collected in 500 μ l of TRI Reagent for RNA extraction three days after
192 emergence.

193

194 **Mathematical modeling of stercoraceous transmission**

195 A mathematical model governed by an autonomous non-linear dynamical system governed by five ordinary
196 differential equations (ODE) (see below) was analyzed through the next-generation theorem [31] to derive
197 a closed-formed expression of the basic reproduction number for transmission through mosquito excreta,
198 R^d_0 (see below).

199
$$\frac{dS_E}{dt} = \Phi \nu - \eta S_E \quad (1),$$

200
$$\frac{dS_L}{dt} = \eta S_E - \left(\frac{\beta}{\nu} W + \kappa + \mu \right) S_L \quad (2),$$

201
$$\frac{dI_L}{dt} = \frac{\beta}{\nu} W S_L - (\kappa + \mu) I_L \quad (3),$$

202
$$\frac{dI_A}{dt} = \kappa I_L - \nu I_A \quad (4),$$

203
$$\frac{dW}{dt} = \zeta I_A - \rho W \quad (5),$$

204 and $R^d_0 = \sqrt[3]{\frac{N_L \kappa \zeta \beta}{(\kappa + \mu) \nu \rho}} \quad (6).$

205 Where S_E stands for surviving eggs; S_L immature mosquito susceptibility; I_L infected immature
206 mosquitoes; I_A infected adult mosquitoes; and W for the viral load in breeding site in PFU. The other
207 parameters are defined in Table 1.

208 The distribution of the R^d_0 was calculated using Monte-Carlo method by computing its value across a
209 large number (10,000) of parameter sets, independently drawn (both within and between sets) from
210 distributions fitted from data either found in the literature or generated by the current study (Table 1). Note
211 that the volumic demographic inflow Φ is linked to the (volumic) larval density N_L , defined as the value of
212 $(S_L + I_L)/V$ (i.e., the total number of larvae and pupae in the breeding site, whether susceptible or infected,
213 per unit volume) and evaluated at the demographic equilibrium (i.e. by cancelling out the ODE 1-3).

214 Modelling assumptions included the well-mixed nature of the breeding site water volume, the
215 exponential distribution of the time-to-events (conditionally to the knowledge of their expectations), the
216 negligibility of the WNV infection impact on both immature and mature stage survival, the non-
217 susceptibility of the eggs and the density-dependence of mosquito demography restricted by breeding site
218 volume [in line with empirical studies suggesting fitness reduction in overcrowded habitat [32]].

219 All calculations and visualisations of the modelling part were performed on R [33], using the package
220 `fitdistrplus` [34] for distribution fitting.

221

222 **Statistics**

223 Differences in infection rate were tested with Chi-square. One-way repeated-measures ANOVA was used
224 to test the effect of DPE on infection intensity. Statistical analyses were conducted with Prism v8.0
225 (GraphPad).

226

227 **Results**

228 **Quantification of infectious virions in mosquito excreta**

229 To test whether excreta from infected mosquitoes carry infectious virions, we orally infected *Cx.*
230 *quinquefasciatus* with 10^5 PFU/ml of WNV. We collected pools of excreta across different days post
231 exposure (DPE) and inoculated virus-susceptible Vero cells with the excreta solution. At 6 days post

232 inoculation, we detected viral genomic RNA (gRNA) in the resulting cell supernatant (Fig. 1a),
233 demonstrating active viral infection. To confirm that excreta induced a productive infection, we performed
234 a cell-based titration assay and showed that the supernatant of cells inoculated with mosquito excreta
235 contained infectious virions as indicated by the presence of many lytic plaques on the cell monolayer (Fig.
236 1b). In contrast, cells inoculated with excreta of non-infected mosquitoes did not show any plaque. As
237 observed in previous studies [29], our results confirm that excreta of infected mosquitoes, in our case *Cx.*
238 *quinquefasciatus* mosquitoes infected with WNV, carry infectious viral particles.

239 We next quantified the number of infectious particles per excreta. To enable excreta counting, we offered
240 mosquitoes a sugar solution supplemented with food colorant that resulted in blue-colored excreta and
241 counted the blue dots on the plastic walls as a proxy for excreta. To maximize the number of collected
242 excreta, we grouped 25 mosquitoes in one container and regularly collected excreta by washing the plastic
243 containers with cell culture media used to perform viral titration. However, we could not detect infectious
244 particles when collection was conducted every 24h or more. We reasoned that viruses may not be stable for
245 long time in dried excreta and collected excreta at shorter intervals of 1h-1h30 to limit virus degradation. In
246 these conditions, we detected infectious particles in pools of excreta and were able to quantify the number
247 of PFU, which we divided by the estimated number of excreta to obtain an averaged PFU/excreta. We
248 observed a large variation in PFU/excreta between the different samples ranging from 0.2 to 400
249 PFU/excreta with a geometric mean of 13.75 PFU/excreta (Fig. 1c). As a control, we did not detect any
250 plaque in control excreta from mosquitoes that were not exposed to an infectious blood meal.

251 To evaluate the infectivity of excreted virions, we calculated the ratio of gRNA/PFU, which estimates
252 the number of infectious particles among all particles [35]. For this, we assumed that each particle contained
253 one gRNA copy and each PFU resulted from one infectious unit. In excreta, the gRNA/PFU ratio exhibited
254 variability, ranging from 1.8×10^3 to 6.1×10^6 , with a geometric mean of 7.8×10^4 (Fig. 1d). In comparison
255 to a gRNA/PFU ratio of 100 for dengue virus, another flavivirus, secreted from mosquito cells [36], the
256 higher gRNA/PFU ratio for excreted WNV indicates a high proportion of non-infectious particles, which
257 may have undergone degradation before excreta collection. We reasoned that the elevated gRNA/PFU ratio

258 might be attributed to virion degradation in certain samples, given the varied collection times contingent on
259 mosquito excretion dynamics. Supporting this hypothesis, we observed a clear negative correlation ($R^2 =$
260 0.44) between excreta infection load, measured by PFU/excreta, and virion infectivity, estimated by
261 gRNA/PFU ratio (Fig. 1e). This observation underscores the sensitivity of excreted virions in our conditions,
262 implying an underestimation of PFU per excreta. Altogether, our findings demonstrate that WNV-infected
263 mosquitoes excrete infectious virions, which quantification at an average of 13.75 PFU per excreta was
264 probably underestimated due to virus lability.

265

266 **Virions are excreted early and continuously after exposure to an infectious blood meal**

267 To deepen our comprehension of virion excretion, we assessed the kinetics of virion excretion and how
268 mosquito infection level influences virion excretion. To monitor the time period of excretion, we collected
269 excreta from single mosquitoes every 2 days from 4-12 DPE to a WNV blood inoculum of 10^7 PFU/ml,
270 which is within the high end of bird viremia [37,38]. Excreta collected at each time point corresponded to
271 all excreta from the past 2 days. For instance, sample at 4 DPE included excreta from 2-4 DPE. We did not
272 collect excreta earlier than 2 DPE to avoid collecting viruses from the blood inoculum [39]. We then
273 quantified viral gRNA and calculated both the infection rate, as the percentage of samples with detectable
274 amount of gRNA among collected samples, and the infection intensity, as gRNA copies per infected
275 samples.

276 First, we quantified infection in the orally exposed mosquitoes from which we collected excreta at the
277 end of the experiment (12 DPE). The high blood inoculum resulted in 100% of mosquitoes infected with a
278 geometric mean of 3.2×10^8 gRNA copies per mosquito (Fig. 2a). Second, we observed that about 50% of
279 excreta carried viruses as early as 4 DPE and that excreta infection rate peaked at 93% at 6 DPE before
280 gradually decreasing to 50% at 10 and 12 DPE (Fig. 2a). In contrast, the infection intensity (i.e., gRNA
281 copies per infected samples) did not significantly change with time and remained relatively constant
282 between 2.6×10^7 and 5.5×10^8 gRNA copies per excreta sample across the different time points (Fig. 2a).

283 To evaluate the influence of mosquito infection level, we repeated the excreta collection kinetics with
284 mosquito orally exposed to a lower inoculum (i.e., 10^5 PFU/ml) of WNV, resulting in 15% of infected
285 mosquitoes with a geometric mean of 1.5×10^9 gRNA copies per mosquito collected at 10 DPE (Fig. 2b).
286 Excreta infection rate from 6-10 DPE was stable between 15-17% (Fig. 2b), and gRNA was mostly detected
287 in excreta from infected-mosquitoes. Additionally, we found that each infected excreta samples contained
288 6.8×10^8 and 1.7×10^9 gRNA copies at 6 and 8 DPE, respectively, before diminishing to 2.5×10^7 gRNA
289 copies at 10 DPE (Fig. 2b). Altogether, the kinetic study from mosquitoes infected with a high and low
290 inoculum show that virions are excreted early after oral exposure to infectious blood and for a long period
291 at a relatively constant intensity level.

292

293 **Pupae are highly susceptible to infection**

294 To determine whether infectious excreta can infect mosquito aquatic stages, we first monitored the virus
295 stability in mosquito rearing water. WNV was diluted in water supplemented with larval food and quantified
296 at different time intervals. At the initial collection time (0 min), just after diluting the virus stock, the number
297 of infectious particles was 1,425 PFU/ml (Fig. 3a). Infectious particles then rapidly diminished to reach zero
298 at 1h post inoculation, indicating a high lability of the virus in rearing water.

299 We evaluated the susceptibility of L1 larvae and pupae to different concentrations of WNV in rearing
300 water. Our experimental design included several precautions to avoid confounding effects. Mosquito aquatic
301 stages were exposed for only 1h to minimize effects due to exposition to the viral stock solution. Viral
302 gRNA was quantified in extensively washed L4 larvae resulting from the exposed L1 larvae to avoid
303 detecting viral remnants from the inoculum. For the same reason, viral gRNA was quantified in adult
304 mosquitoes resulting from the exposed pupae, as gut content is expelled and cuticula renewed during
305 morphogenesis [40]. None of the larvae were infected after exposition to 10^5 PFU/ml and only 15% after
306 incubation with 10^7 PFU/ml (Fig. 3b). In contrast, pupae were more susceptible to infection with 46%
307 infected with 10^3 , 59% with 10^5 and 100% with 10^7 PFU/ml (Fig. 3c). We also evaluated survival after

308 inoculum exposition. Larvae were not affected, whereas nymphs exhibited a slightly reduced survival (Sup.
309 Fig. 2). Altogether, our results show that the short duration stability of WNV in rearing solution is sufficient
310 to infect larvae and pupae, albeit pupae are more susceptible to infection. These observations imply that
311 mosquito excretion in rearing water pools may lead to infection of aquatic stages.

312

313 **Infectious mosquito excreta infect pupae**

314 While our previous experiments separately determined the excreta infectivity and the infection susceptibility
315 of immature mosquitoes, we then tested the proof-of-concept that infectious excreta can infect mosquito
316 pupae. We collected pools of excreta every 1h from mosquitoes at 6 DPE to a high blood inoculum to ensure
317 maximum excreta infectivity. The excreta pools were quantified and diluted in rearing water at 4.6×10^3
318 PFU/ml. Pupae were reared in the excreta-containing solution and infection rate assessed in adult
319 mosquitoes. We found that 17% of pupae-exposed adults were infected (Fig. 4), thereby establishing the
320 proof-of-concept of excreta-mediated transmission of an arbovirus.

321

322 **Excreta-mediated infection can maintain flavivirus infection within mosquito populations**

323 To determine the contribution of excreta-mediated infection in WNV epidemiology within mosquito
324 reservoir, we built and examined a compartmental model (Fig. 5a). In a given breeding site, we modelled
325 egg laying, mortality, hatching and emergence to calculate the number of susceptible immature mosquitoes
326 (S_L) and the resulting number of infected immature mosquitoes (I_L) based on excreted virions (W) from
327 infected adult mosquitoes (I_A). The resulting basic reproduction number is $R_0^d = \sqrt[3]{((N_L) \sim \kappa \zeta \beta) / (\kappa + \mu) \nu \rho}$ (see Table 1 for details of the parameters). This formula implies that the epidemiological potential of
328 excreta-mediated infection increases with larval density (\tilde{N}_L), survival rate to emergence ($\kappa / (\kappa + \mu)$),
329 excretion rate (ζ), infection rate (β), duration of the adult stage (ν^{-1}) and time before excreted virions lose
330

331 their infectivity (ρ^{-1}). Importantly, the analysis of the model shows that the epidemiological potential does
332 not depend on the surface, height or volume of the breeding sites. As a consequence, our modelling result
333 is scale-free and applies to any size of mosquito population, or any spatial range. Moreover, our reproduction
334 number represents solely the lower bound of the true basic reproduction number, as the model does not
335 account for any other transmission route - namely horizontal, from mammal hosts to mosquitoes, and
336 vertical, from female mosquitoes to eggs [41].

337 Feeding the model with data from our study and literature (Table 1), we inferred the distribution of
338 R^d_0 as a function of larval density, ranging from 0-400 larva per L – a density range previously observed in
339 the field [42]. Although extremely hard to assess in nature, the proportion of excreta falling into breeding
340 sites is a key determinant of R^d_0 . In absence of data, we selected two reasonable boundaries at 20 and 50%
341 for the proportion of excreta falling into a breeding site. The median basic reproduction number for excreta-
342 mediated transmission rapidly increased from 0 to 25 larva/L and subsequently gradually increased to 0.42
343 and 0.57 for 400 larvae/L with 20 and 50% excreta falling into breeding sites, respectively (Fig. 5b). A
344 reproduction number lower than 1 indicates that excreta-mediated transmission cannot amplify
345 transmission. However, by computing variability in conditions between breeding sites, our model showed
346 that the 90th percentile of reproduction number reached 1 for as little as 25 and 50 larvae/L for 20 and 50%
347 excreta falling into breeding sites, respectively. Accordingly, when plotting the proportion of breeding sites
348 suitable for excreta-mediated infection, we calculated that transmission takes place in some breeding sites
349 (Fig. 5c). For instance, excreta-mediated infection occurs in 14 and 20% of breeding sites containing a low
350 density of 100 larvae/L when 20 and 50% excreta falling into breeding sites, respectively. Altogether, by
351 combining detailed characterization of the parameters defining excreta-mediated infection of mosquitoes
352 and comprehensive mathematical modelling, we revealed the existence of a new mode of transmission
353 within mosquito populations through infectious excreta.

354

355 **Discussion**

356 While mosquito-human transmission (horizontal) remains the most prevalent route, repeated detection of
357 multiple flaviviruses, including WNV, in non-blood feeding mosquito stages such as males, larvae and
358 pupae expose the existence of alternative modes of transmission [23–26,43–47]. In our study, we
359 demonstrate that transmission occurs when infected mosquitoes release excreta in breeding sites. We
360 reported the presence of infectious WNV virions in mosquito excreta and quantified a potentially high
361 concentration of infectious units per excreta. By defining the mosquito-related conditions for virion
362 excretion, we observed that virion excretion occurs shortly after mosquito oral infection and remain constant
363 for longer periods. We also found that excreta viral load is independent of infection level, as previously
364 observed [28]. These findings emphasize the infectiousness of excreta from infected mosquitoes.
365 Furthermore, we reported the susceptibility of immature mosquitoes, especially pupae, to WNV infection,
366 and demonstrated the capacity of infectious excreta to infect immature mosquitoes, uncovering a new mode
367 of transmission. Finally, we modelled excreta-mediated transmission in the field and demonstrated its
368 potential for maintaining WNV infection within mosquito reservoirs. As compared to horizontal and vertical
369 transmissions, we propose to name the excreta-mediated transmission as “diagonal transmission”.

370 Excreta-mediated transmission depends on several parameters. First, infectious virions have to be
371 shed through excretion. Malpighian tubules are the main excretory organs and accumulate wastes as primary
372 urine, which is then transferred to the hindgut for excretion [48]. Flavivirus infection of the Malpighian
373 tubules [28] can result in virion accumulation in urine and subsequent excretion. Alternatively, following
374 initial infection of the midgut, virions can be secreted into the gut lumen and channeled to the hindgut for
375 excretion. Other authors detected a very low WNV inoculum in excreta from *Cx. annulirostris*, suspecting
376 degradation by proteases [29]. Based on our observed sensitivity to time for excreted WNV, we posit that
377 the previously-observed low infectivity resulted from the bi-daily excreta collection. Second, mosquitoes
378 have to drop excreta in breeding sites. Excretion in mosquitoes occurs continuously but more frequently
379 when the insect imbibes liquids, given the osmoregulation function of excretion [48,49]. Accordingly,
380 mosquitoes exhibit an excretion peak shortly after blood-feeding [50]. Mosquitoes drinking from breeding
381 sites should similarly excrete in excess, contaminating the water. Additionally, excreta could be released

382 during egg laying by compressing the hindgut. In our model, we selected a conservative and a more
383 “optimistic” estimate of excreta proportions falling into breeding sites, both of which resulted in
384 maintenance of WNV in certain mosquito reservoirs. Third, there must be immature mosquitoes in the
385 breeding sites. Mosquito selection of breeding sites with specific characteristics [51,52] and attraction to
386 breeding sites with con-specific eggs [53,54] because of egg aggregation pheromone [55,56] should favor
387 this condition. Forth, viruses have to be stable in breeding water. WNV half-life in cell culture media is 17h
388 [57]. We observed a much faster viral decay in laboratory breeding water that may be caused by unfavorable
389 pH [58]. Viral stability is expected to fluctuate depending on breeding site biophysical conditions, such as
390 pH, oxygen level, temperature and organic matter concentration. Last, immature mosquitoes have to be
391 susceptible to infection. Although both larvae and pupae were susceptible to WNV infection, we observed
392 a higher susceptibility for pupae. Infection of immature mosquitoes was previously observed for Zika and
393 dengue viruses [59,60], while the differential susceptibility between larvae and pupae was also previously
394 reported [60]. Infection may occur when viruses come in contact with midgut epithelial cells. However,
395 larvae midgut has a protective peritrophic membrane that is absent in nymph [40,61], potentially explaining
396 the differential susceptibility between the two immature stages. Alternatively, changes in cuticle during the
397 nymphal stage might favor virus penetration [62]. Our results demonstrate that each of these conditions is
398 met to allow excreta-mediated transmission.

399 Excreta-mediated transmission potentially occurs in all arbovirus-mosquito systems because all the
400 required conditions are conserved in different arbovirus-mosquito systems. Multiple flaviviruses such as
401 dengue, Usutu, Murray valley viruses [28,63,64] and alphaviruses such as Ross river virus [29] shed virions
402 in excreta from *Aedes* and *Culex* mosquitoes, although excreta infectivity has not been tested. WNV [65]
403 and Zika virus [60] survive in water from potential breeding sites, while all four serotypes of dengue virus
404 remain infectious in cell media [57]. Finally, immature mosquitoes from *Aedes* and *Culex* are susceptible to
405 Zika [60], dengue [59] and Rift valley fever viruses [66]. Importantly, conservation of excreta-mediated
406 transmission across different arbovirus systems implies the potential for this mode of transmission to act as
407 a transmission bridge for viruses between different mosquito vectors. Indeed, breeding sites usually contain

408 several different mosquito species [67,68]. A shift in mosquito vectors to more anthropophilic species could
409 promote emergence of zoonotic arboviruses.

410 Understanding arbovirus transmission routes is critical to deploy efficient vector control strategies.
411 Our discovery of a new excreta-mediated (diagonal) mode of transmission emphasizes the importance of
412 water management. Restricting excreta-mediated transmission will alleviate the arbovirus health burden by
413 reducing maintenance of arbovirus reservoirs in mosquito populations and preventing expansion of
414 arbovirus host range through a switch in mosquito vector species.

415

416 **Acknowledgement**

417 MSc scholarship for QN was provided by KIM RIVE from MUSE. PhD scholarship for IS was provided by
418 the Institut Méditerranéen Hospitalier (IHU, Marseille). Support for the research was provided by the Labex
419 CEMEB and the I-SITE Excellence Program of the University of Montpellier, under the investissements
420 France 2030 as the exploratory research project INGENIOUS to RH, the French Agence Nationale pour la
421 Recherche (ANR-20-CE15-0006) and by the EU (HORIZON-HLTH-2023-DISEASE-03 #101137006) to
422 JP.

423

424 **References**

- 425 1. Smithburn KC, Hughes TP, Burke AW, Paul JH. A Neurotropic Virus Isolated from the Blood of a
426 Native of Uganda. *The American Journal of Tropical Medicine and Hygiene*. 1940;s1-20: 471–492.
427 doi:10.4269/ajtmh.1940.s1-20.471
- 428 2. Heidecke J, Schettini AL, Rocklöv J. West Nile virus eco-epidemiology and climate change. *PLOS
429 Climate*. 2023;2: e0000129. doi:10.1371/journal.pclm.0000129
- 430 3. Kramer LD, Li J, Shi P-Y. West Nile virus. *The Lancet Neurology*. 2007;6: 171–181.
431 doi:10.1016/S1474-4422(07)70030-3
- 432 4. Pradier S, Lecollinet S, Leblond A. West Nile virus epidemiology and factors triggering change in
433 its distribution in Europe. 2012;31: 829. doi:10.20506/rst.31.3.2167

434 5. Ronca SE, Ruff JC, Murray KO. A 20-year historical review of West Nile virus since its initial
435 emergence in North America: Has West Nile virus become a neglected tropical disease? *PLOS*
436 *Neglected Tropical Diseases*. 2021;15: e0009190. doi:10.1371/journal.pntd.0009190

437 6. Zeller HG, Schuffenecker I. West Nile Virus: An Overview of Its Spread in Europe and the
438 Mediterranean Basin in Contrast to Its Spread in the Americas. *Eur J Clin Microbiol Infect Dis*.
439 2004;23: 147–156. doi:10.1007/s10096-003-1085-1

440 7. Suthar MS, Diamond MS, Gale Jr M. West Nile virus infection and immunity. *Nature Reviews*
441 *Microbiology*. 2013;11: 115–128.

442 8. Ciota AT, Kramer LD. Vector-Virus Interactions and Transmission Dynamics of West Nile Virus.
443 *Viruses*. 2013;5: 3021–3047. doi:10.3390/v5123021

444 9. Historic Data (1999–2022) | West Nile Virus | CDC. 13 Jun 2023 [cited 4 Sep 2023]. Available:
445 <https://www.cdc.gov/westnile/statsmaps/historic-data.html>

446 10. Mandalakas AM, Kippes C, Sedransk J, Kile JR, Garg A, McLeod J, et al. West Nile Virus
447 Epidemic, Northeast Ohio, 2002. *Emerging Infectious Diseases*. 2005;11: 1774–7.
448 doi:10.3201/eid1111.040933

449 11. Epidemiological update: West Nile virus transmission season in Europe, 2022. 30 Jun 2023 [cited 1
450 Sep 2023]. Available: <https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west->
451 [nile-virus-transmission-season-europe-2022](https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2022)

452 12. Chancey C, Grinev A, Volkova E, Rios M. The Global Ecology and Epidemiology of West Nile
453 Virus. In: BioMed Research International [Internet]. Hindawi; 19 Mar 2015 [cited 6 Mar 2021] p.
454 e376230. doi:<https://doi.org/10.1155/2015/376230>

455 13. Farajollahi A, Fonseca DM, Kramer LD, Marm Kilpatrick A. “Bird biting” mosquitoes and human
456 disease: a review of the role of *Culex pipiens* complex mosquitoes in epidemiology. *Infection*
457 *Genetics and Evolution*. 2011;11: 1577–85.

458 14. Molaei G, Andreadis TG, Armstrong PM, Bueno R, Dennett JA, Real SV, et al. Host feeding pattern
459 of *Culex quinquefasciatus* (Diptera: Culicidae) and its role in transmission of West Nile virus in
460 Harris County, Texas. *The American journal of tropical medicine and hygiene*. 2007;77: 73–81.

461 15. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, et al. Experimental infection of
462 North American birds with the New York 1999 strain of West Nile virus. *Emerg Infect Dis*. 2003;9:
463 311–322. doi:10.3201/eid0903.020628

464 16. McLean RG, Ubico SR, Docherty DE, Hansen WR, Sileo L, McNamara TS. West Nile virus
465 transmission and ecology in birds. *Ann N Y Acad Sci*. 2001;951: 54–57. doi:10.1111/j.1749-
466 6632.2001.tb02684.x

467 17. van der Meulen KM, Pensaert MB, Nauwynck HJ. West Nile virus in the vertebrate world. *Arch*
468 *Virol*. 2005;150: 637–657. doi:10.1007/s00705-004-0463-z

469 18. Anderson JF, Main AJ, Delroux K, Fikrig E. Extrinsic Incubation Periods for Horizontal and
470 Vertical Transmission of West Nile Virus by *Culex pipiens pipiens* (Diptera: Culicidae). *Journal of*
471 *medical entomology*. 2008.

472 19. Baqar S, Hayes CG, Murphy JR, Watts DM. Vertical transmission of West Nile virus by *Culex* and
473 *Aedes* species mosquitoes. *Am J Trop Med Hyg.* 1993;48: 757–762. doi:10.4269/ajtmh.1993.48.757

474 20. Dohm DJ, Sardelis MR, Turell MJ. Experimental vertical transmission of West Nile virus by *Culex*
475 *pipiens* (Diptera: Culicidae). *J Med Entomol.* 2002;39: 640–644. doi:10.1603/0022-2585-39.4.640

476 21. Nelms BM, Fechter-Leggett E, Carroll BD, Macedo P, Klugh S, Reisen WK. Experimental and
477 natural vertical transmission of West Nile virus by California *Culex* (Diptera: Culicidae) mosquitoes.
478 *J Med Entomol.* 2013;50: 371–378. doi:10.1603/me12264

479 22. Manuel M, Missé D, Pompon J. Highly Efficient Vertical Transmission for Zika Virus in *Aedes*
480 *aegypti* after Long Extrinsic Incubation Time. *Pathogens.* 2020;9: E366.
481 doi:10.3390/pathogens9050366

482 23. Miller BR, Nasci RS, Godsey MS, Savage HM, Lutwama JJ, Lanciotti RS, et al. First field evidence
483 for natural vertical transmission of West Nile virus in *Culex univittatus* complex mosquitoes from
484 Rift Valley province, Kenya. *Am J Trop Med Hyg.* 2000;62: 240–246.
485 doi:10.4269/ajtmh.2000.62.240

486 24. Phillips RA, Christensen K. Field-Caught *Culex* erythrothorax Larvae Found Naturally Infected with
487 West Nile Virus in Grand County, Utah. *moco.* 2006;22: 561–562. doi:10.2987/8756-
488 971X(2006)22[561:FCELFN]2.0.CO;2

489 25. Unlu I, Mackay AJ, Roy A, Yates MM, Foil LD. Evidence of vertical transmission of West Nile
490 virus in field-collected mosquitoes. *Journal of Vector Ecology.* 2010;35: 95–99. doi:10.1111/j.1948-
491 7134.2010.00064.x

492 26. Kolodziejek J, Seidel B, Jungbauer C, Dimmel K, Kolodziejek M, Rudolf I, et al. West Nile Virus
493 Positive Blood Donation and Subsequent Entomological Investigation, Austria, 2014. *PLOS ONE.*
494 2015;10: e0126381. doi:10.1371/journal.pone.0126381

495 27. Reisen WK, Fang Y, Lothrop HD, Martinez VM, Wilson J, O'Connor P, et al. Overwintering of
496 West Nile Virus in Southern California. *Journal of Medical Entomology.* 2006;43: 344–355.
497 doi:10.1093/jmedent/43.2.344

498 28. Fontaine A, Jiolle D, Moltini-Conclois I, Lequime S, Lambrechts L. Excretion of dengue virus RNA
499 by *Aedes aegypti* allows non-destructive monitoring of viral dissemination in individual mosquitoes.
500 *Sci Rep.* 2016;6: 24885. doi:10.1038/srep24885

501 29. Ramírez AL, Hall-Mendelin S, Doggett SL, Hewitson GR, McMahon JL, Ritchie SA, et al.
502 Mosquito excreta: A sample type with many potential applications for the investigation of Ross
503 River virus and West Nile virus ecology. *PLOS Neglected Tropical Diseases.* 2018;12: e0006771.
504 doi:10.1371/journal.pntd.0006771

505 30. Bahuon C, Després P, Pardigon N, Panthier J-J, Cordonnier N, Lowenski S, et al. IS-98-ST1 West
506 Nile Virus Derived from an Infectious cDNA Clone Retains Neuroinvasiveness and Neurovirulence
507 Properties of the Original Virus. *PLOS ONE.* 2012;7: e47666. doi:10.1371/journal.pone.0047666

508 31. van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for
509 compartmental models of disease transmission. *Mathematical Biosciences.* 2002;180: 29–48.
510 doi:10.1016/S0025-5564(02)00108-6

511 32. Ukubuiwe AC, Ojianwuna CC, Olayemi IK, Arimoro FO, Omalu ICJ, Ukubuiwe CC, et al.
512 Quantifying the Influence of Larval Density on Disease Transmission Indices in *Culex*
513 *quinquefasciatus*, the Major African Vector of Filariasis. *Int J Insect Sci.* 2019;11:
514 1179543319856022. doi:10.1177/1179543319856022

515 33. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
516 Computing, Vienna, Austria.; 2023. Available: <https://www.R-project.org/>.

517 34. Delignette-Muller ML, Dutang C. *fitdistrplus*: An R Package for Fitting Distributions. *Journal of*
518 *Statistical Software.* 2015;64: 1–34. doi:10.18637/jss.v064.i04

519 35. Sanjuán R. Collective properties of viral infectivity. *Current Opinion in Virology.* 2018;33: 1–6.
520 doi:10.1016/j.coviro.2018.06.001

521 36. Vial T, Tan W-L, Deharo E, Missé D, Marti G, Pompon J. Mosquito metabolomics reveal that
522 dengue virus replication requires phospholipid reconfiguration via the remodeling cycle. *Proc Natl*
523 *Acad Sci USA.* 2020; 202015095. doi:10.1073/pnas.2015095117

524 37. Bingham J, Lunt R, Green D, Davies K, Stevens V, Wong F. Experimental studies of the role of the
525 little raven (*Corvus mellori*) in surveillance for West Nile virus in Australia. *Australian Veterinary*
526 *Journal.* 2010;88: 204–210. doi:10.1111/j.1751-0813.2010.00582.x

527 38. Nemeth N, Young G, Ndaluka C, Bielefeldt-Ohmann H, Komar N, Bowen R. Persistent West Nile
528 virus infection in the house sparrow (*Passer domesticus*). *Arch Virol.* 2009;154: 783–789.
529 doi:10.1007/s00705-009-0369-x

530 39. Gooding RH, CHEUNG A, ROLSETH B. Digestive processes of haematophagous insects. I. A
531 literature review. 1973.

532 40. Moncayo AC, Lerdthusnee K, Leon R, Robich RM, Romoser WS. Meconial Peritrophic Matrix
533 Structure, Formation, and Meconial Degeneration in Mosquito Pupae/Pharate Adults: Histological
534 and Ultrastructural Aspects. *Journal of Medical Entomology.* 2005;42: 939–944.
535 doi:10.1093/jmedent/42.6.939

536 41. Sofonea MT, Aldakak L, Boullosa LFV. v., Alizon S. Can Ebola virus evolve to be less virulent in
537 humans? *Journal of Evolutionary Biology.* 2018;31: 382–392. doi:10.1111/jeb.13229

538 42. Amara Korba R, Alayat MS, Bouiba L, Boudrissa A, Bouslama Z, Boukraa S, et al. Ecological
539 differentiation of members of the *Culex pipiens* complex, potential vectors of West Nile virus and
540 Rift Valley fever virus in Algeria. *Parasites & Vectors.* 2016;9: 455. doi:10.1186/s13071-016-1725-
541 9

542 43. Ahmad R, Ismail A, Saat Z, Lim LH. Detection of dengue virus from field *Aedes aegypti* and *Aedes*
543 *albopictus* adults and larvae. *Southeast Asian J Trop Med Public Health.* 1997;28: 138–142.

544 44. Cecílio SG, Júnior WFS, Tótola AH, de Brito Magalhães CL, Ferreira JMS, de Magalhães JC.
545 Dengue virus detection in *Aedes aegypti* larvae from southeastern Brazil. *J Vector Ecol.* 2015;40:
546 71–74. doi:10.1111/jvec.12134

547 45. Izquierdo-Suzán M, Zárate S, Torres-Flores J, Correa-Morales F, González-Acosta C, Sevilla-Reyes
548 EE, et al. Natural Vertical Transmission of Zika Virus in Larval *Aedes aegypti* Populations,
549 Morelos, Mexico. *Emerg Infect Dis.* 2019;25: 1477–1484. doi:10.3201/eid2508.181533

550 46. Johari NA, Toh SY, Voon K, Lim PKC. Detection of Zika virus RNA in *Aedes aegypti* and *Aedes*

551 albopictus larvae in Klang Valley, Peninsular Malaysia. *Trop Biomed.* 2019;36: 310–314.

552 47. Velandia-Romero ML, Olano VA, Coronel-Ruiz C, Cabezas L, Calderon-Pelaez MA, Castellanos

553 JE, et al. Dengue virus detection in *Aedes aegypti* larvae and pupae collected in rural areas of

554 Anapoima, Cundinamarca, Colombia. *Biomedica.* 2017;37: 193–200.

555 48. Farina P, Bedini S, Conti B. Multiple Functions of Malpighian Tubules in Insects: A Review.

556 *Insects.* 2022;13: 1001. doi:10.3390/insects13111001

557 49. Clements AN. *Biology Of Mosquitoes : Development Nutrition And Reproduction* By A. N.

558 Clements. 1992.

559 50. Williams JC, Hagedorn HH, Beyenbach KW. Dynamic changes in flow rate and composition of

560 urine during the post-bloodmeal diuresis in *Aedes aegypti* (L.). *J Comp Physiol B.* 1983;153: 257–

561 265. doi:10.1007/BF00689629

562 51. Beehler JW, Millar JG, Mulla MS. Field evaluation of synthetic compounds mediating oviposition

563 in *Culex* mosquitoes (Diptera: Culicidae). *J Chem Ecol.* 1994;20: 281–291.

564 doi:10.1007/BF02064436

565 52. Ikeshoji T, Umino T, Hirakoso S. Studies on mosquito attractants and stimulants. Part IV. An agent

566 producing stimulative effects for oviposition of *Culex pipiens fatigans* in field water and the

567 stimulative effects of various chemicals. *Jikken Igaku Zasshi = Japanese Journal of Experimental*

568 Medicine. 1967;37: 61–9.

569 53. Bruno DW, Laurence BR. The Influence of the Apical Droplet of *Culex* Egg Rafts on Oviposition of

570 *Culex Pipiens Faticans* (Diptera: Culicidae). *Journal of Medical Entomology.* 1979;16: 300–305.

571 doi:10.1093/jmedent/16.4.300

572 54. Reiskind MH, Wilson ML. *Culex restuans* (Diptera: Culicidae) Oviposition Behavior Determined by

573 Larval Habitat Quality and Quantity in Southeastern Michigan. *Journal of Medical Entomology.*

574 2004;41: 179–186. doi:10.1603/0022-2585-41.2.179

575 55. Mboera LEG, Mdira KY, Salum FM, Takken W, Pickett JA. Influence of Synthetic Oviposition

576 Pheromone and Volatiles from Soakage Pits and Grass Infusions Upon Oviposition Site-Selection of

577 *Culex* Mosquitoes in Tanzania. *J Chem Ecol.* 1999;25: 1855–1865. doi:10.1023/A:1020933800364

578 56. Millar JG, Chaney JD, Beehler JW, Mulla MS. Interaction of the *Culex quinquefasciatus* egg raft

579 pheromone with a natural chemical associated with oviposition sites. *J Am Mosq Control Assoc.*

580 1994;10: 374–379.

581 57. Goo L, Dowd KA, Smith ARY, Pelc RS, DeMaso CR, Pierson TC. Zika Virus Is Not Uniquely

582 Stable at Physiological Temperatures Compared to Other Flaviviruses. *mBio.* 2016;7:

583 10.1128/mbio.01396-16. doi:10.1128/mbio.01396-16

584 58. Oliveira ERA, de Alencastro RB, Horta BAC. New insights into flavivirus biology: the influence of

585 pH over interactions between prM and E proteins. *J Comput Aided Mol Des.* 2017;31: 1009–1019.

586 doi:10.1007/s10822-017-0076-8

587 59. Bara JJ, Clark TM, Remold SK. Susceptibility of Larval *Aedes aegypti* and *Aedes albopictus*
588 (Diptera: Culicidae) to Dengue Virus. *Journal of Medical Entomology*. 2013;50: 179–184.
589 doi:10.1603/ME12140

590 60. Du S, Liu Y, Liu J, Zhao J, Champagne C, Tong L, et al. *Aedes* mosquitoes acquire and transmit
591 Zika virus by breeding in contaminated aquatic environments. *Nature Communications*. 2019;10:
592 1324. doi:10.1038/s41467-019-09256-0

593 61. Edwards MJ, Jacobs-Lorena M. Permeability and disruption of the peritrophic matrix and caecal
594 membrane from *Aedes aegypti* and *Anopheles gambiae* mosquito larvae. *Journal of Insect
595 Physiology*. 2000;46: 1313–1320. doi:10.1016/S0022-1910(00)00053-6

596 62. Romoser WS, Oviedo MVN. Function of the dendritic setae in *Aedes aegypti* mosquito
597 pupae: float hairs don't float. *OAIP*. 2011;3: 7–11. doi:10.2147/OAIP.S13727

598 63. Körsten C, Vasić A, Al-Hosary AA, Tews BA, Răileanu C, Silaghi C, et al. Excretion Dynamics of
599 Arboviruses in Mosquitoes and the Potential Use in Vector Competence Studies and Arbovirus
600 Surveillance. *Trop Med Infect Dis*. 2023;8: 410. doi:10.3390/tropicalmed8080410

601 64. Meyer DB, Ramirez AL, van den Hurk AF, Kurucz N, Ritchie SA. Development and Field
602 Evaluation of a System to Collect Mosquito Excreta for the Detection of Arboviruses. *Journal of
603 Medical Entomology*. 2019;56: 1116–1121. doi:10.1093/jme/tjz031

604 65. Lund M, Shearn-Bochsler V, Dusek RJ, Shivers J, Hofmeister E. Potential for Waterborne and
605 Invertebrate Transmission of West Nile Virus in the Great Salt Lake, Utah. *Applied and
606 Environmental Microbiology*. 2017;83: e00705-17. doi:10.1128/AEM.00705-17

607 66. Turell MJ, Linthicum KJ, Beaman JR. Transmission of Rift Valley Fever Virus by Adult
608 Mosquitoes after Ingestion of Virus as Larvae. *The American Journal of Tropical Medicine and
609 Hygiene*. 1990;43: 677–680. doi:10.4269/ajtmh.1990.43.677

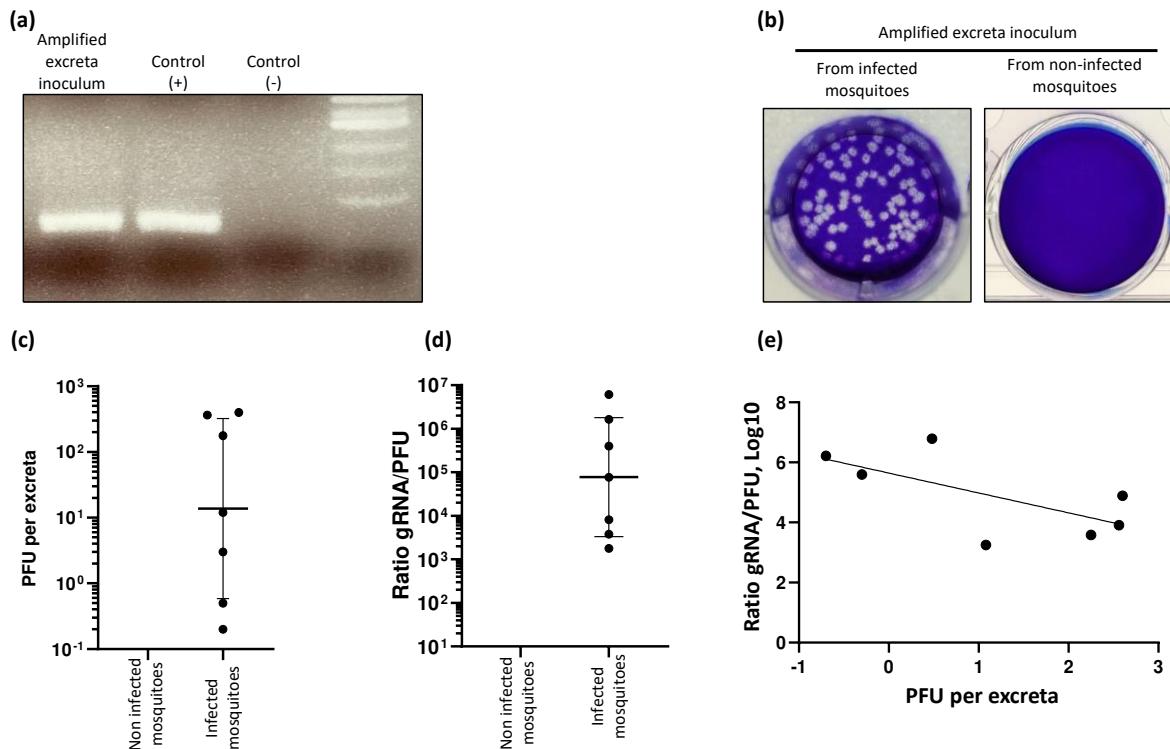
610 67. Carrieri M, Bacchi M, Bellini R, Maini S. On the Competition Occurring Between *Aedes albopictus*
611 and *Culex pipiens* (Diptera: Culicidae) in Italy. *Environmental Entomology*. 2003;32: 1313–1321.
612 doi:10.1603/0046-225X-32.6.1313

613 68. Okiwelu S, Noutcha AE. Breeding Sites of *Culex quinquefasciatus* (Say) during the Rainy Season in
614 Rural Lowland Rainforest, Rivers State, Nigeria. *Public Health Research*. 2012;2: 64–68.
615 doi:10.5923/j.phr.20120204.01

616 69. Eastwood G, Cunningham AA, Kramer LD, Goodman SJ. The vector ecology of introduced *Culex
617 quinquefasciatus* populations, and implications for future risk of West Nile virus emergence in the
618 Galápagos archipelago. *Med Vet Entomol*. 2019;33: 44–55. doi:10.1111/mve.12329

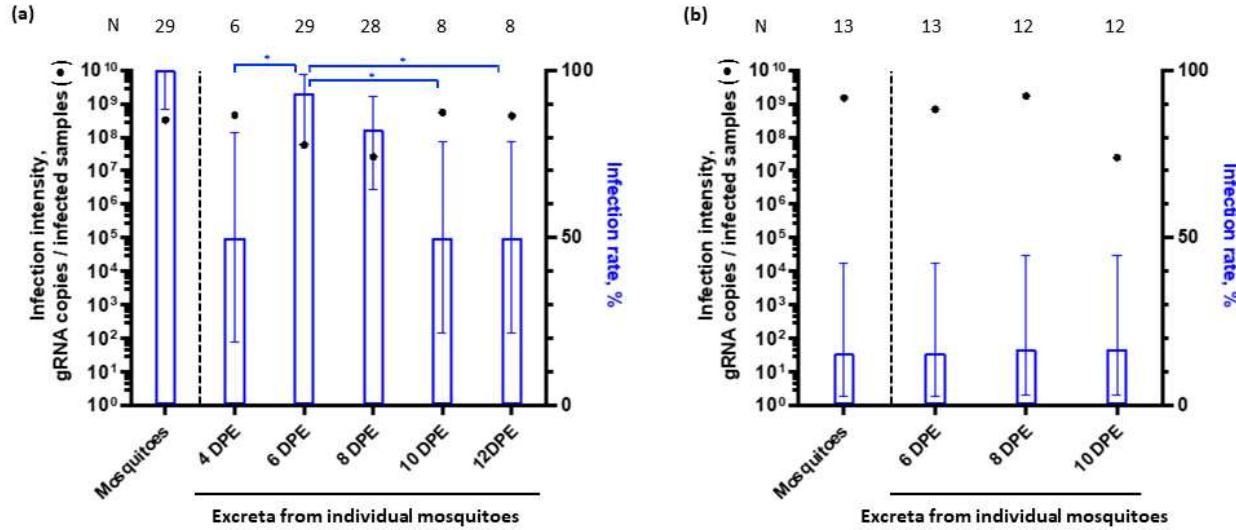
619 70. Ciota AT, Matacchiero AC, Kilpatrick AM, Kramer LD. The Effect of Temperature on Life History
620 Traits of *Culex* Mosquitoes. *Journal of Medical Entomology*. 2014;51: 55–62.
621 doi:10.1603/ME13003

622 71. Moser SK, Barnard M, Frantz RM, Spencer JA, Rodarte KA, Crooker IK, et al. Scoping review of
623 *Culex* mosquito life history trait heterogeneity in response to temperature. *Parasites & Vectors*.
624 2023;16: 200. doi:10.1186/s13071-023-05792-3


625 72. Pilote N, Zaky WI, Abrams BP, Chadee DD, Williams SA. A Novel Xenomonitoring Technique
626 Using Mosquito Excreta/Feces for the Detection of Filarial Parasites and Malaria. PLoS Negl Trop
627 Dis. 2016;10: e0004641. doi:10.1371/journal.pntd.0004641

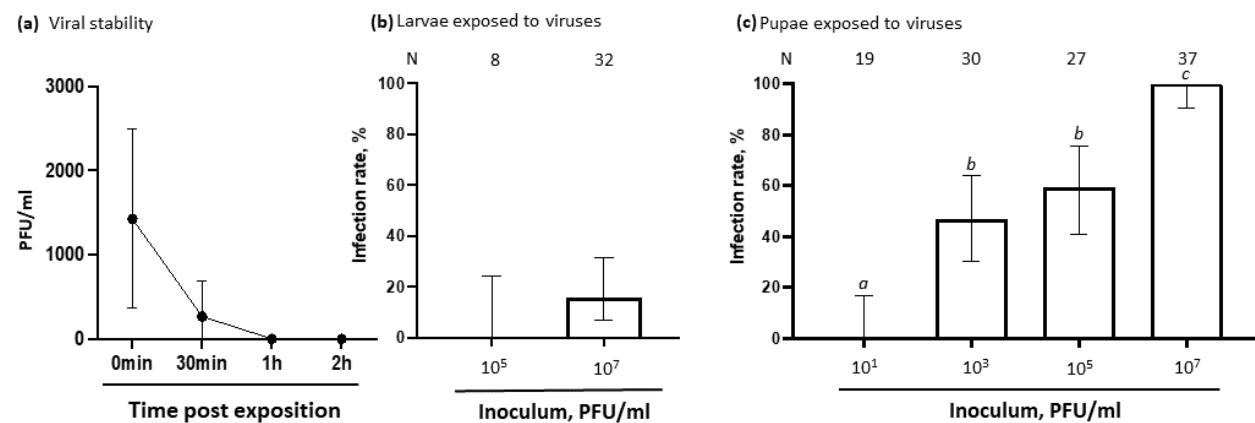
628

629


630 **Figures**

631

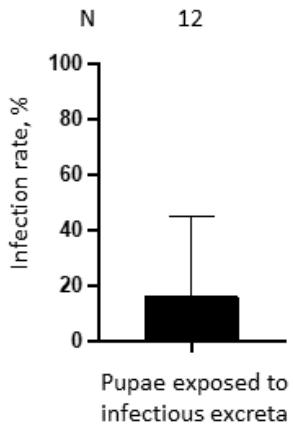
632 **Figure 1. Detection and quantification of infectious viruses in mosquito excreta. (a, b)** Detection of
633 WNV viral RNA (a) and infectious particles (b) in supernatant from cells infected with excreta pools (i.e.,
634 amplified excreta inoculum). Control (+) corresponds to RNA extracts from WNV stock. Control (-)
635 corresponds to water. **(c, d)** Quantification of PFU per excreta (c) and ratio of viral genomic RNA
636 (gRNA)/PFU in the same excreta pools collected 6 days post mosquito exposure to blood containing 5×10^6
637 PFU/ml. Bars show geometric means \pm S.D. Each point indicates one excreta pool. **(e)** Correlation between
638 PFU per excreta and gRNA/PFU ratio for the previous samples.


639

640

641 **Figure 2. The effect of oral inoculum and days post exposure (DPE) on virus excretion. (a, b)** Infection
 642 intensity and infection rate in mosquitoes exposed to blood containing 10⁷ (a) or 10⁵ (b) PFU/ml of WNV
 643 and in their excreta collected every two days. Black dots show geometric mean ± S.D for infection intensity.
 644 Blue bars show percentage ± 95% C.I. for infection rate. N, number of samples. Chi² was used to compare
 645 infection rates. Mixed-effects one-way ANOVA was used to compare infection intensities. *, p < 0.05.

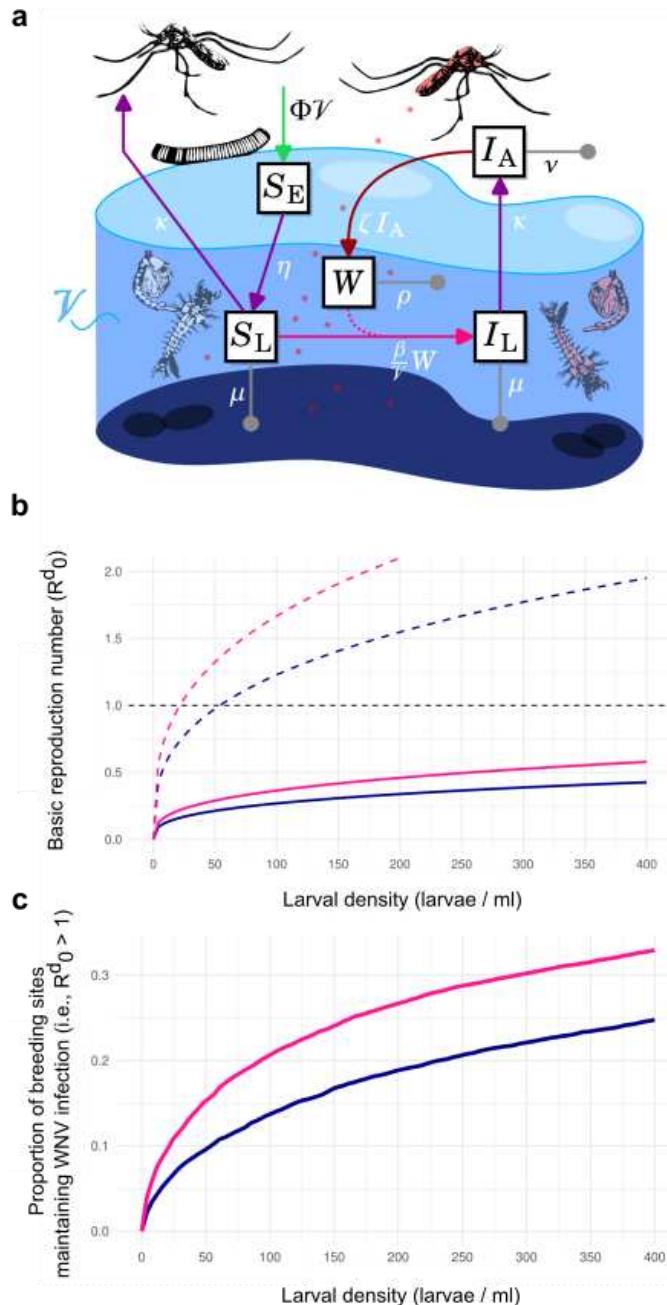
646



647

648 **Figure 3. Susceptibility of aquatic stages to WNV exposure. (a)** Stability of WNV in rearing water. Points
 649 indicate mean ± s.e.m of PFU/ml in water at different time post inoculation. N, 4. **(b, c)** Infection rate for
 650 L4 larvae exposed to WNV at L1 stage (b) and for adult mosquitoes exposed at the pupal stage (c). Bars

651 show percentage \pm 95% C.I. Chi² was used to compare infection rates between different virus
652 concentrations. Different letters indicate significant differences, $p < 0.05$. N, number of individual
653 mosquitoes.


654

655

656 **Figure 4. Susceptibility of pupae to infectious excreta.** Bar shows infection rate + 95% C.I. in adult
657 mosquitoes exposed at the pupal stage to infectious excreta at a concentration of 4.6×10^3 PFU/ml. N,
658 number of individual mosquitoes.

659

660

661 **Figure 5. Mathematical modelling of excreta-mediated infection of mosquito aquatic stages. (a)** Flow
 662 chart and mathematical formulation of the excreta-mediated flavivirus transmission model. V , breeding site
 663 volume. ΦV , egg laying rate. S_E , egg survival. η , egg hatching rate. S_L , immature mosquito susceptibility to
 664 infection. μ , immature mosquito mortality. $\beta W/V$, immature mosquito infection where W represents the
 665 WNV load in the breeding site (assumed well-mixed) and β the infection rate. I_L , infected immature

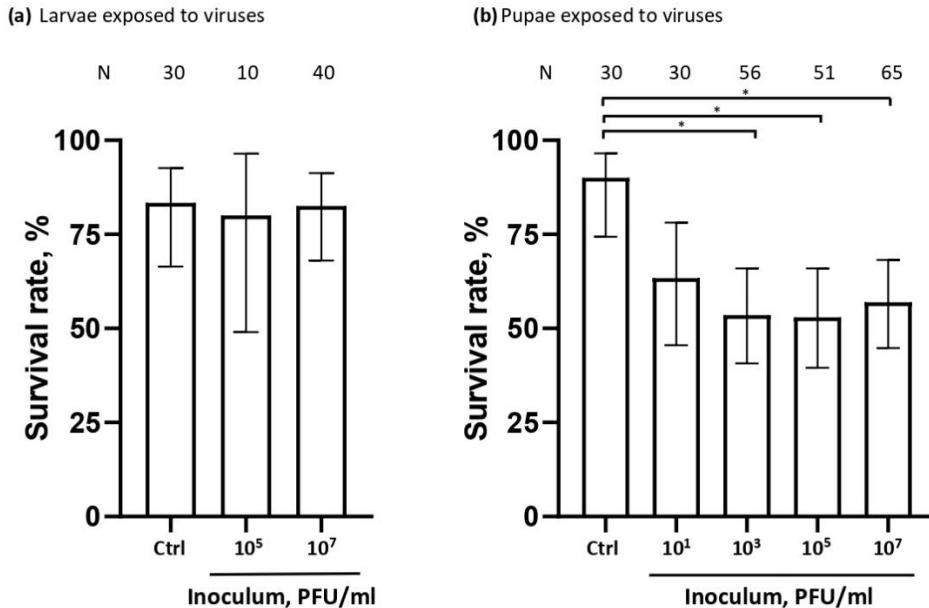
666 mosquitoes. κ , adult emergence. I_A , infected adult mosquitoes. v , adult mosquito mortality. ζ , rate of virion
 667 excretion into the breeding site. p , decay of excreted virions. Red mosquitoes indicate infection. **(b)** Basic
 668 reproduction number, R^d_0 , as a function of larval density. Solid curves indicate the median and dashed curve
 669 the 90th percentile. **(c)** The proportion of breeding sites maintaining WNV infection ($R^d_0 > 1$) as a function
 670 of larval density. (b-c) Blue curves indicate values for a fraction of excreta falling in a breeding site set at
 671 20%, while pink curves indicate values for a fraction at 50%.

672

673 **Table 1. List of parameters involved in the computation of the WNV diagonal reproduction number.**


Parameter	notation	dimension (unit)	value	source
Larval stage duration	τ_L	duration (d)	$\tau_L \sim \text{Gamma}(1176, 143)$	[69]
Pupal stage duration	τ_P	duration (d)	$\tau_P \sim \text{Gamma}(5.99, 5.21)$	[69]
Emergence rate	κ	probability per unit time (d^{-1})	$\kappa = 1/(\tau_L + \tau_P)$	
Pre-imaginal survival	q_p	probability	$q_p \sim \text{Unif}(0.77, 0.96)$	[70]
Pre-imaginal mortality rate	μ	probability per unit time (d^{-1})	$\mu = (1/q_p - 1) \cdot \kappa$	
Adult lifespan	τ_A	duration (d)	$\tau_A \sim \text{Gamma}(61.9, 1.88)$	[71]
Adult mortality rate	v	probability per unit time (d^{-1})	$v := 1/\tau_A$	
Excretion flow	ξ	number of excreta produced per mosquito per unit time (d^{-1})	$\xi := 62.5$	[72]
Breeding-site excretion proportion	χ	daily proportion of excreta falling in a breeding site	$\chi \in \{0.2, 0.5\}$	Estimation
Excretion viral load	v	viral load per single excreta (PFU)	$v \sim \text{LogNormal}(2.62, 2.92)$	Data shown in Fig. 1c
Viral excretion rate	ζ	viral load per mosquito per unit time (PFU.d ⁻¹)	$\zeta = \xi \cdot \chi \cdot v$	
Viral decay rate	ρ	probability per unit time (d^{-1})	$\rho \sim \text{Gamma}(1.56, 0.0206)$	Data shown in Fig. 4a
Infection rate	β	probability per viral concentration per unit time (PFU ⁻¹ .mL.d ⁻¹)	$\beta \sim \text{Gamma}(0.447, 58.5)$	Data shown in Fig. 4c
Larval density	\tilde{N}_L	number per unit volume (mL^{-1})	$N_L \in [0, 400]$	[42]
Volumic	Φ	number of surviving eggs	$\Phi = (\kappa + \mu) \cdot \tilde{N}_L$	Result from

	demographic inflow laid per unit volume per unit time ($\text{mL}^{-1} \cdot \text{d}^{-1}$)	demographic equilibrium.
674		D, day(s). 1, dimensionless. Gamma distributions are parametrised by their shape (first argument) and their rate (second argument).
675		Log Normal distributions are parametrised by the mean and the standard deviation of log-scale counterpart variable.
676		
677		
678		


679 **Supplementary Figures**

680

681

682 **Sup. Figure 1. Scheme of the tube-cap manufactured to enable safe transfer of mosquitoes to other**
683 **tubes.** Drawing and pictures of the tube-cap. Designed by Dr. Albin Fontaine (Unité Parasitologie et
684 Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des
685 Armées, Marseille, France). STL files available on IRD-DataSuds.

686

687 **Sup. Figure 2. Survival of mosquito aquatic stages exposed to WNV inoculum. (a-b)** Survival rate for
688 L4 larvae exposed as L1 Larvae (a) and adult mosquitoes exposed as pupae (b). Bars show percent \pm 95%
689 C.I. N, number of individual mosquitoes. *, p < 0.05, as determined by χ^2 test.

690

691

692

693

694

695