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Abstract

Single-cell RNA-sequencing (scRNA-seq) provides unprecedented insights into cellular heterogeneity. Although scRNA-
seq reads from most prevalent and popular tagged-end protocols are expected to arise from the 3’ end of polyadenylated
RNAsS, recent studies have shown that “off-target” reads can constitute a substantial portion of the read population.

In this work, we introduced scCensus, a comprehensive analysis workflow for systematically evaluating and categorizing
off-target reads in scRNA-seq. We applied scCensus to seven scRNA-seq datasets. Our analysis of intergenic reads shows
that these off-target reads contain information about chromatin structure and can be used to identify similar cells across
modalities. Our analysis of antisense reads suggests that these reads can be used to improve gene detection and capture
interesting transcriptional activities like antisense transcription. Furthermore, using splice-aware quantification, we find
that spliced and unspliced reads provide distinct information about cell clusters and biomarkers, suggesting the utility of
integrating signals from reads with different splicing statuses.

Overall, our results suggest that off-target scRNA-seq reads contain underappreciated information about various
transcriptional activities. These observations about yet-unexploited information in existing scRNA-seq data will help
guide and motivate the community to improve current algorithms and analysis methods, and to develop novel approaches
that utilize off-target reads to extend the reach and accuracy of single-cell data analysis pipelines.

Data Availability: The scripts for reproducing the results are available at https://github.com/COMBINE-lab/
sc-census. Supplementary files can be found at https://doi.org/10.5281/zenodo.10520670.

Key words: scRNA-seq, single-cell multiomics, off-target priming, chromatin structure, antisense transcription, enhancer
RNA.

Introduction with a protein-coding or non-coding RNA. Oligo(dT) priming
that occurs outside of the “expected” A-SNRs (i.e. the polyA

Single-cell RNA-sequencing (scRNA-seq) has become a popular
tail of polyadenylated RNA molecules) is typically referred to

approach for gaining valuable insights into various biological
as “off-target priming”. However, reverse transcription can be

initiated by priming oligo(dT) at internal sites with as few
as 6 consecutive As [Nam et al., 2002, Svoboda et al., 2022].
Additionally, a technical note from 10x Genomics [10x, 2021]

questions [Jovic et al., 2022, Sun et al., 2021, Hwang et al.,
2018] at the cellular level. In most short-read scRNA-seq assays,
such as the 10x Genomics Chromium 3’ system, cDNA reverse
transcription is primed using oligo(dT) in order to capture the

poly(A) tail of polyadenylated RNAs [10x, 2022a, Hrdlickova describes and explains the mechanisms of generating sequencing
et al., 2016]. Then, the synthesized cDNAs are amplified, reads from internal polyA sites on RNAs as well as on cDNAs,
fragmented, and sequenced to generate sequencing reads as the supporting the validity, and to some extent, prevalence, of
off-target priming in scRNA-seq.

Recent studies have shown that off-target priming is
prevalent in scRNA-seq. For example, a detailed technical note
from 10x Genomics [10x, 2021] showed a high proportion of off-

target reads across popular 10X scRNA-seq assays. Svoboda

readout of the RNAs primed by oligo(dT) primers. Because,
in droplet-based scRNA-seq protocols, cells (or nuclei) are
lysed within each droplet, all exposed adenine-single nucleotide
repeats (A-SNRs) in lysed cells have the chance to be captured

by oligo(dT) primers and generate “valid” reads. This is true
et al. [2022] showed the prevalence of intronic priming by

analyzing publicly available datasets. He et al. [2023] processed
eight 10X Chromium 3’ scRNA-seq datasets from both single-
cell and single-nucleus samples to show that when considering

regardless of whether or not the A-SNRs appear in a poly(A)
tail, or internally within a spliced or unspliced molecule, and,
of course, whether or not the underlying molecule is associated
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all sense genic reads, up to 40% of unique molecule identifiers
(UMIs) only have reads compatible with intronic regions
in unspliced (or partially spliced) transcripts. In general,
throughout this article, we will refer to “unspliced” molecules
in the understanding that they may be actively undergoing
splicing and hence be partially spliced. Meanwhile, researchers
have realized the underappreciated value of off-target reads
and designed sophisticated algorithms to incorporate off-target
reads in scRNA-seq data analysis [Chamberlin et al., 2022,
10x, 2022b, Pool et al., 2023, Chari et al., 2023, Gorin
et al., 2023]. One example is single-cell RNA velocity, in
which cellular splicing dynamics are inferred using spliced
gene counts from reads compatible with spliced transcripts,
and unspliced counts accounting for reads compatible with
unspliced transripts [La Manno et al., 2018]. Although these
studies showed the existence of some types of off-target reads
and suggested plausible biological interpretations, there is not
yet a comprehensive study systematically analyzing all types of
off-target reads from different genomic features and exploring
their potential use cases.

In this study, we introduced scCensus, a comprehensive
Nextflow [Di Tommaso et al., 2017] workflow for systematically
classifying the off-target scRNA-seq reads from different
genomic feature groups. We divided scRNA-seq reads into three
categories: sense intragenic, antisense intragenic, and intergenic
reads. We performed an in-depth analysis for reads belonging
to each read group, and we observed that off-target reads
from all genomic feature groups reflect meaningful biology.
Our results show that intergenic scRNA-seq reads are enriched
near open chromatin regions (OCR) as detected from single-
cell sequencing assay for transposase-accessible chromatin
(scATAC-seq), i.e., scATAC-seq peaks, and provide information
about open chromatin regions. Furthermore, OCR-associated
reads can result, at least at low resolutions, in clustering
results consistent with the standard method. Furthermore,
when sense and antisense intragenic reads are quantified
separately we find that their quantification results are highly,
but imperfectly, correlated, suggesting that antisense reads can
be used to improve gene detection. On the other hand, some
antisense reads are likely to be derived from genuine antisense
transcripts [Pelechano and Steinmetz, 2013, Barann et al.,
2013]. Finally, using splice-aware quantification methods [He
and Patro, 2023, He et al., 2022], we find that the clustering
results generated from spliced, unspliced, and ambiguous
matrices are consistent to a large extent (at a coarse level),
but also show informative differences (at finer granularity).
Well-established marker genes of cell types were exclusively
discovered from each of these count matrices, further suggesting
that reads with different splicing statuses should be processed
and analyzed separately and integrated in a later stage. All
of these results suggest that off-target scRNA-seq reads reflect
meaningful and interesting biology. Therefore, we urge the
community to expand current analyses to incorporate such off-
target fragments, and to develop novel methods and approaches
that intrinsically account for such fragments.

Methods

Data Description

In this study, we processed seven scRNA-seq datasets generated
using single cells and single nuclei samples from the brain,
blood, and bone marrow of mouse and human. Details about
the selected datasets can be found in Supp table 3. We
processed all human datasets using the GRCh38 version 2020-A
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genome build and all mouse datasets with the mm10 version
2020-A genome build. Both genome builds were downloaded
from the 10X Genomics website *. For each genome build, we
applied two sets of gene annotations, one was downloaded from
the 10x Genomics website along with the genome build, and the
other was the scRNA-seq optimized gene annotations [Pool
et al., 2023]. The seven selected single-cell datasets span
different species, tissue types, and sample sizes.

Quantification

To perform downstream analyses, we processed the read
alignment BAM files generated in Supplementary section A.2
for sense intragenic, antisense intragenic, and intergenic reads.
The resulting count matrices represent the unique molecule
identifiers (UMIs) that are compatible with sense intragenic
(including intronic regions), antisense intragenic (including
intronic regions), and intergenic regions. Intergenic regions
are defined as genomic regions that do not intersect with
any gene annotations. In the following text, we describe the
quantification pipeline applied to each dataset.

First, we quantified the sense and antisense intragenic
reads using simpleaf [He and Patro, 2023] to generate cell
barcode-by-gene count matrices. For each single-cell dataset, we
generated a total of six-count matrices for intragenic UMIs with
a spliced transcript origin (Ms), unspliced transcript origin
(My), ambiguous splicing status(Mp), and UMIs from genes’
antisense, reverse complement strand with the three splicing
statuses, Mg®, M{’, M}°, respectively. We note that only UMIs
that were not associated with any sense reads were used to
generate the antisense count matrices (that is, sense assignment
was preferred if it was possible), and the only change instructing
simpleaf to generate antisense instead of sense count matrices
was changing the expected-ori parameter from fw to rc.

The simpleaf pipeline used in this work involves two
steps: reference index construction and sequencing read
quantification. We wused the spliced+unspliced (spliceu)
reference [He et al., 2023], which contains the sequence of
spliced transcripts and gene bodies. The gene body of each
gene contains the contiguous genomic interval from the 5’
farthest exonic locus to the 3’ farthest exonic locus of each
gene considering all its isoforms. Providing the spliceu reference
to simpleaf triggered the USA mode [He et al., 2022] of the
underlying alevin-fry module to generate three UMI count
matrices, representing the UMI count of each gene in each
cell with spliced, unspliced, and ambiguous splicing status.
Briefly, when using spliceu, the spliced count matrix contains
UMIs with exon-exon junctional mappings and without intronic
alignments, the unspliced count matrix contains UMIs that
are entirely or partially compatible with introns, and the
ambiguous count matrix contains UMIs compatible with both
spliced and unspliced transcripts, i.e., exonic UMIs.

Additionally, We developed a custom pipeline to process
intergenic reads to generate four open chromatin region(OCR)-
associated count matrices. In this work, we used the ATAC-seq
peaks discovered from the ATAC-seq component of the single-
cell multiome ATAC+RNA (scMultiome) assays to represent
the experimental open chromatin regions. To show that our
conclusions apply to unpaired ATAC-seq and RNA-seq data,
we also used the peaks discovered from independent ATAC-seq
samples for validation. In order to verify that the ATAC-seq

! https://support.10xgenomics.com/
single-cell-gene-expression/software/downloads/7.0/
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peaks represent cis-regulatory elements, we apply the same
pipeline using the candidate cis-regulatory elements (cCREs)
from the SCREEN project [Consortium. et al., 2020] as the
OCR features to generate cCRE-associated count matrices. As
the same pipeline was applied to all OCR feature sets, in the
following text we describe the pipeline for one feature set,
F, which can be an ATAC-seq peak set or the cCREs from
SCREEN. Note that in this pipeline, only UMIs that are not
associated with intragenic reads were included to generate the
count matrices.

The pipeline is divided into the following steps. First,
we filtered the original feature set, F, into two subsets
using bedtools intersect. The first subset, Fj,;, contains
only intergenic features. The second subset, Fy., contains
all features that do not intersect with protein-coding genes
(on either strand of the genome). Second, we process all
or a subset of sequencing data with F, Fjs, or Fj. using
the bedtools closest program by specifying -d and -t first
to find the closest features for each read. Specifically, We
used only intergenic reads together with Fj; to generate
the intergenic feature-associated count matrix, Mi?g. The
subscript represents the reads (in this case, intergenic reads)
used to generate the count matrix, and the superscript
represents the feature set (in this case, intergenic features).

We used reads from UMIs that are not compatible with any
protein-coding genes on either strand of the genome with F.
to generate the non-coding features-associated count matrix,
Mfc‘“h We used reads that are not compatible with protein-
coding genes in the forward orientation with the whole feature
set, F', to build the not-sense-coding feature-associated count
matrix, MFE

nsc*

We used all read alignments with F' to build an
all feature-associated count matrix, M:;l. During this process,
only alignments that are less than 4,000 bases away from their
nearest feature were used, corresponding to the reported length
range of eRNAs and other IncRNAs [Wan et al., 2022].

We tested that using more restrictive thresholds for the
distance did not affect our conclusions (data not shown).
Finally, we processed all sets of filtered alignments in Python
using pysa.m2 to generate the feature-associated count matrices.
We assigned each UMI to its closest feature, among all filtered
alignments, to get the UMI count of each feature.

Cell type identification

For each dataset, we used sctype [lanevski et al., 2022] to assign
a cell type to each high-confidence cell. The quantification
results generated by simpleaf using the sense intragenic
alignments were loaded into an R (version 4.3.2) environment
as a seurat object [Hao et al., 2021] using the loadFry function
from the fishpond Bioconductor package [Zhu et al., 2019]. For
cell samples, we used the spliced and ambiguous total count
to create the seurat object. For nucleus samples, we used the
spliced, unspliced, and ambiguous total count to create the
seurat object. As this is the standard strategy to create the
count matrix for cell and nucleus samples, we call them the
standard matrices Mgtq throughout the paper. For each seurat
object, SCTransform [Hafemeister and Satija, 2019] with the
default setting was used for preprocessing.

Next, we computed the top 100 principal components (PCs)
by applying the RunPCA function using the variable features
found by SCTransform. The number of significant PCs was
found using findPC [Zhuang et al., 2022]. We then used
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these significant PCs to assign a cell cluster to each cell by
calling FindNeighbors followed by FindClusters. The resolution
parameter of FindClusters was set as 0.7. We then adapted the
example code from the sctype GitHub repository® to assign a
cell type to each cell. The predicted labels were written to disk
as a CSV file for future use. Although using a high clustering
resolution, 0.7, might result in more cell clusters than the actual
number of cell types, clusters with similar expression profiles
should be assigned the same cell type by sctype [lanevski et al.,
2022].

The sense intragenic read analysis pipeline

In this section, we describe the pipeline for analyzing the
quantification results generated from the sense transcriptomic
reads in each dataset using simpleaf. This analysis focused
on comparing the cell clusters and the differentially expressed
genes discovered from each cell type across different count
matrices. The quantification results were loaded into R using
loadFry.The spliced, unspliced, and ambiguous count matrices
were saved separately.

We first created a seurat object for each of the following
count types: (1) spliced counts (Ms), (2) unspliced counts
(Muy), (3) ambiguous counts (Ma), (4) spliced and ambiguous
total counts (Msa), and (5) spliced, unspliced and ambiguous
total counts (Muysa). Usually, (4) and (5) are the standard
count matrix for cell and nucleus samples. Each seurat object
was processed as described in section 2.3. For each seurat
object, we tuned the resolution parameter of FindClusters to
find three cluster sets, each with a different number of clusters.
Assuming that the number of cell types found by sctype
(section 2.3) is n., the three cluster sets have max(3,n. x 0.2),
max(7,n. X 0.6), and n., respectively. We performed this
resolution sweep, as we want to see how the clustering changes
and relates across different types of counts as the resolution
of the clusters changes, as similarities present at a coarse
resolution may either persist or diminish at a finer resolution.
To assess the similarity of two sets of cluster assignments with
the same number of clusters, we adopted the evaluation metrics
used in Yu et al. [2022], namely the adjusted Rand index
(ARI) [Chiquet et al., 2023], normalized mutual information
(NMI) [Chiquet et al., 2023], and Fowlkes—Mallows index
(FMI) [Galili, 2015]. All three metrics range from 0 to 1, where
1 represents a perfect match.

We then computed the differentially expressed genes (DEGs)
for each cell cluster identified by sctype (section 2.3) in each
seurat object using the FindAllMarkers function from seurat
with the default setting.

The antisense intragenic read analysis pipeline

In this analysis, we explored the count matrix containing
antisense intragenic UMIs (Manti). The antisense count matrix
was generated by quantifying UMIs that do not have any
associated sense intragenic alignments across all splicing
statuses (section 2.2) and loaded into R using loadFry. We
also generated a sense count matrix by considering the sense
UMIs across all splicing statuses, same as the Myga described
in section 2.4. Then, based on Mgense and Manti, we imputed
genes that were likely to be missing from the Mgepse matrix to
generate an imputed sense count matrix, Mimputed- This was
done by identifying cell, gene pairs whose count in Mgense was
zero, but whose count in M,ynt; was non-zero; these cell, gene

2 https://github.com/pysam-developers/pysam

3 https://github.com/IanevskiAleksandr/sc-type
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pairs were then assigned a value of 1 in Mimputed.- All non-
zero cell, gene entries from Mgense were carried over directly
to Mimputed Without modification. A sense and antisense total
count matrix, Mgenic, was also created by summing Mgense and
Manti-

Next, we computed the correlation of each cell in Mgense
and Mnti using all genes that are detected in that cell in the
Miense matrix. We also tried to use genes that are detected in
M anti of that cell, and genes detected in both Mgense and Mang;-
The correlation was assessed using Spearman’s rank correlation
coefficient (p), the Pearson correlation coefficient (r), and the
cosine similarity (cos).

Then, we applied the same clustering analysis and
differential expression analysis pipelines introduced in section 2.4
to Msense, Mantis Mimputed, and Mgenic, to find the cell clusters

and the DEGs discovered in the sctype cell types (section 2.3).

The intergenic read analysis pipeline

In this
for analyzing intergenic scRNA-seq reads (section 2.2) from

section, we describe the analysis pipeline used
each dataset. The input of this analysis consists of an
intergenic count matrix My, an intergenic open chromatin
region-associated count matrix My.,, as well as a standard
count matrix, Msiq, generated from sense intragenic reads
(section 2.3). The Mgiq of cell samples were generated by
summing the spliced and ambiguous count matrices, and the
Msgsta of nucleus samples were generated by summing the
spliced, unspliced, and ambiguous counts. We explored all types
of OCRs defined in 2.2, including the intergenic OCRs, not-
protein-coding OCRs, non-sense-coding OCRs, and all OCRs
from ATAC-seq peaks and SCREEN cCREs.

matrices were loaded into R using either loadFry or the Read10X

Those count

function from seurat, as appropriate. We built a seurat object
for each count matrix separately and used them in the following
steps.

To evaluate the abundance of intergenic reads near ATAC-
seq peaks, we designed a statistical test to evaluate if the
ratio of the count of intergenic regions from Mi,t to its OCRs
from M., is significantly different than the ratio of their size
(section A.3).

The intergenic
First,
discussed in section 2.4 using Mgtq,

read analysis pipeline contains two

components. we performed a clustering analysis as
Meyer, and Mine. For
Mgiq, we set the number of variable features as 3,000 when
invoking SCTransform. For M,.,, we used the top 70% of features
ranked by their variance as the variable features, because of the
sparsity. Meanwhile, we applied the standard Seruat pipeline
ScaleData,
sequentially) instead of SCTransform for all count matrices

(using NormalizeData, and FindVariableFeatures
except Mspq, because (i) running SCTransform with too many
(i) we
processed Mstq using SCTransform in all other sections, and (iii)

variable features was computationally prohibitive,

the main purpose of this step is to test if the clusters generated
from Mgyq are similar with others, which should not happen
owing to processing data differently.

Second, we showed that, in the multiomics datasets (Supp
table 3), the ATAC-seq peak counts of a cell are more similar
to its RNA-seq OCR counts than the RNA-seq OCR counts
of most other cells. In this analysis, because the processed
datasets are single-cell multiome ATAC + Gene Expression
(scMultiome) datasets, the two modalities of each dataset —
represented by the RNA-seq OCR count matrix and the ATAC-
seq peak count matrix — contain the same set of features
(ATAC-seq peaks) but different types of readouts. For each cell,

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

its RNA-seq OCR counts contain the UMIs representing the
RNAs that have read alignments associating with ATAC-seq
peaks, while its ATAC-seq peak counts are from the readout
of the DNA fragments measured by ATAC-seq. This allows us
to ascertain ground truth correspondence, against which we
can then compare by evaluating the similarity of the RNA-seq
OCR and ATAC-seq peak counts. The ATAC-seq peak count
matrix was downloaded as a part of each scMultiome dataset
and loaded into R using Read10X. It consists of the same set of
features (peaks) and cells with the OCR count matrix.

Cosine similarity was used to evaluate the association of the
two modalities to avoid the effect of genes that are undetected
in both modalities. The null hypothesis is that the ranking
of the cosine similarity of each cell’s counts across the two
modalities should not differ from the ranking of the cell’s
ATAC-seq peak count to a random cell’s OCR count. In other
words, there should be no meaningful association between the
ATAC-seq peak counts in a cell and the RNA-seq OCR peaks in
the same cell, so that, if we ranked one according to the other
with respect to their cosine similarity, it would appear at an
essentially random position in the ranked list. The statistical
significance of the rankings was evaluated by a Wilcoxon rank
sum test, the lower-tailed t-test, and the Kolmogorov—Smirnov
test on the two distributions.

Results

Below, we describe the results of analyzing seven selected
(Supp table 3). First,
single-cell multiome ATAC+Gene expression

single-cell datasets we examine
the selected
(scMultiomics) datasets and show that intergenic RNA-seq
reads retain cellular chromatin structure, and can be used for
identifying similar cells across modalities. Next, we explain
the relationship between the count matrices generated from
sense and antisense intragenic reads, and the possibility of
using antisense reads to augment the standard count matrix
and to study antisense transcription. Finally, we discuss the
clustering and differential expression analysis results using
sense intragenic reads from different splicing statuses.

The first striking observation from our analyses is that off-
target priming is prevalent in scRNA-seq data. As shown in
Supp table 3, among the seven scRNA-seq datasets we analyzed
— spanning different species, sample types, tissue types, and
sample sizes — on average 78% of sense intragenic UMIs are
not exclusively compatible with spliced transcripts (i.e. do not
span an exon-exon junction), and this percentage can grow up
to up to 96% in some datasets. Antisense transcript UMIs on
average account for 18% (maximum 30%) of intragenic UMIs.
Intergenic UMIs on average account for 8% (13% in maximum)
of total genomic UMIs. This work aims to explore the biological
interpretability of off-target scRNA-seq reads and shed light on
the potential usages of off-target reads to improve and expand
current single-cell analysis methods.

Intergenic reads associate with cell-specific open
chromatin regions

Intergenic reads are reads compatible with the genome but
not gene annotations. In the processed datasets, intergenic
reads on average account for approximately 10% of the high-
quality reads (Supp table 3). Although those reads do not
match any existing gene annotations, they are presumed to
arise from RNAs,

scCensus, we associate scRNA-seq reads with intergenic open

and to represent cellular transcripts. In

chromatin regions (OCRs) detected from single-cell sequencing


https://doi.org/10.1101/2024.01.29.577807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.29.577807; this version posted January 31, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

assays for transposase-accessible chromatin (scATAC-seq), i.e.,
scATAC-seq peaks.

In this section, we present our intergenic read analysis
results using the selected scMultiome datasets, in which the
gene expression and chromatin accessibility profiles of each
cell are measured by scRNA-seq and scATAC-seq, respectively.
Briefly, we counted the intergenic scRNA-seq UMIs associated
with each intergenic ATAC-seq peak, to generate a scRNA-seq
OCR count matrix Myer. In this count matrix, the features
represent the intergenic ATAC-seq peaks, and the entries
represent the scRNA-seq UMI count of each feature. Similarly,
we generated an intergenic count matrix, Mint, by counting the
UMIs compatible with the intergenic regions between each pair
of adjacent genes. We compared the results from Myc, and My,
with the standard count matrix Mgq (section 2.6). We focus
here on the results from a human PBMC scMultiomics dataset,
the results from other datasets and other types of OCR count
matrices are listed in Supp figs. 5 to 15.

We first validated the biological interpretability of intergenic
reads to show that they do mnot appear to be DNA
ambient RNAs, or ribosomal RNAs. Our
results demonstrate that for each cell, the size ratio of

contamination,

intergenic regions to intergenic OCR regions was on average
six times higher than their count ratio, with a p-value < 10~8
(Supplementary Files). The p-value was computed using a one-
side t-test (section 2.6). Moreover, the cell clusters obtained
from M;,; and M., were consistent with those obtained from
the standard count matrix Mgtq, especially when the clustering
resolution was low, as shown in figs. la, 1b and 24 to 30).
This suggests that, at the coarsest resolutions, the large-scale
similarity structure of the cell count matrices persists, even
when vastly different types of features are being quantified.

The similarity was measured using the Adjusted Rand Index
(ARI) [Chiquet et al., 2023]. An ARI = 1 means that two
sets of cluster assignments are identical. When the clustering
resolution is low, the cluster assignments under the M;j, and
M,y matrices are very similar to the standard count matrix,
with an ARI higher than 0.9. As the clustering resolution
increases, the ARI decreases. Although it is uncertain whether
the divergence in the high resolution was caused by the high
sparsity of Moy, the high similarity at a low resolution provides
compelling evidence that M., contains sufficient biological
signals to distinguish the major cell types. Similar results
were obtained when performing our analysis using independent
scATAC-seq datasets, or using a reference that augments
unannotated 3' UTRs [Pool et al., 2023] (Supplementary Files
and Supp table 5). These two pieces of evidence together show
that intergenic reads probably reflect meaningful biological
signals of the underlying cells, and that the signal-to-noise ratio
is sufficient to extract some of this information. One likely
explanation for these fragments is that they originate from
non-coding RNAs originating from intergenic open chromatin
regions (e.g. enhancer RNAs [Sartorelli and Lauberth, 2020]
and promoter RNAs [Chellini et al., 2020]).

Furthermore, by comparing M,., with the standard
scATAC-seq count matrix, we discovered that intergenic reads
reveal cell-specific chromatin structure. Briefly, for each cell
i, we computed the cosine similarity of its intergenic ATAC-

i
atac

seq peak counts (c ) to the intergenic OCR counts of every

ocr ;taCV ‘()Cr)’
where 4,5 € {0..N — 1} and N is the number of cells in
the dataset. Our results showed that if we rank the cosine

cell j (c?_.). We define these similarities as sim cos(c c!

similarity of the same cell across modalities — cos(Cy ¢, Cocy)

— the distribution is heavily skewed to the left (toward low
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Fig. 1. Intergenic reads reveal cellular chromatin structure. ARI

stands for Adjusted Rand Index. ARI=1 means the compared sets of
cluster assignments are identical. ocr_intergenic means results from the
intergenic OCR count matrix. intergenic means the intergenic count
matrix. ocr-non-coding means the not protein-coding OCR count matrix.
ocr_not_sense_coding means the OCR count matrix containing all but not
reads from the sense orientation of protein-coding genes. ocr-all means
the total OCR count matrix. Panels (a) and (b) show the ARI of the
clustering results using low and high resolution, respectively. Section 3.1
discussed the ARIs of ocr_intergenic and intergenic. Panel (c) shows the
ranking of the cosine similarity of ocr_intergenic to ATAC-seq counts of
the same cell compared with all other cells (sig), together with three null
distributions to show the significance of the high ranking (section 3.1).

ranks). That is, on average, the cosine similarity of the same
cell across modalities is much higher than the similarity of
cell ¢ with most other cells j. This distribution is shown as
the curve labeled as sig in Figure lc. We considered several
different null models. Null distributions were generated by

i k

evaluating cos(cy,.; Cocr

) for a random cell k for each i (with
replacement), shuffling the two count matrices, and permuting
the ranking of cells, corresponding to the curves labeled as
null_rand_cell, null_shuf_count, and null_permut in fig. 1c. The
difference of sig compared with the three null distributions is
statistically significant, as evaluated by a Wilcoxon rank sum
test, with p-values all < 1076, Although we focused on the
intergenic reads and peaks in this analysis, the same conclusions
still held when including more ATAC-seq peaks, as shown in
Supp figs. 17 to 23 and Supplementary Files.

In conclusion, by counting the intergenic scRNA-seq UMIs
we find that
intergenic scRNA-seq reads are enriched around scATAC-seq

proximate to intergenic scATAC-seq peaks,

peaks and can produce cluster assignments consistent with
those from standard scRNA-seq count matrix, indicating their
biological interpretability. Perhaps even more interesting, the
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strong association between intergenic scRNA-seq and scATAC-
seq peak counts suggests that intergenic scRNA-seq reads
reflect cell-specific chromatin structure, indicating that they
might originate from intergenic regulatory RNAs, such as
enhancer RNAs [Sartorelli and Lauberth, 2020, Young et al.,
2017] and promoter RNAs [Chellini et al., 2020]. The strong
association also suggests the possibility of designing novel
distance metrics according to these two modalities to help in
aligning or integrating unpaired scATAC-seq and scRNA-seq.

Antisense transcriptomic reads contain mixed signals
from mRNAs and regulatory RNAs

In the context of scRNA-seq, antisense intragenic reads are
reads that map to gene annotations in an antisense manner.
These reads are usually discarded in assays such as 10X
Chromium V2 and V3 where stranded sequencing protocols are
used and the reads are expected to align with the underlying
genes in the forward (or sense) orientation. In our processed
datasets, antisense intragenic UMIs can account for up to 30%
of total intragenic UMIs (Supp table 3), with an average of
18% across the datasets we evaluated. 10x Genomics previously
demonstrated the prevalence of antisense scRNA-seq reads [10x,
2021], and also discussed four potential mechanisms that can
explain their presence in the collection of sequenced molecules,
including priming by the template-switching oligo, poly(dT)
primer strand invasion, first-strand cDNA priming, and sense-
antisense fusion. Antisense reads may also arise from RNAs
generated via antisense transcription [Katayama et al., 2005,
Barman et al., 2019, Barann et al., 2013] or other types of
bidirectional transcription events [Morris et al., 2008].

In this section, we discuss our findings by comparing
the analysis results obtained from the sense (Mgense) and
antisense (Manti) intragenic count matrices of each dataset
(Supp table 3). The antisense count matrix contains intragenic
UMIs only associated with antisense fragments (section 2.5).
‘We focus here on the results from a human brain scMultiomics
dataset, the results from other datasets are listed in Supp
figs. 17 to 33.

We first compared the clustering results obtained from the
sense and antisense counts. As shown in fig. 2a, we observe
an ARI of 0.65 between the cluster assignments from sense
and antisense count matrices when both have 11 clusters —
the number of cell types discovered by sctype (section 2.3).
This indicates that antisense reads contain interpretable and
meaningful biological signals (by virtue of their substantial
overlap with the intended signal from the sense intragenic
reads). Then, we confirmed that some antisense reads are
the likely products of the four technical mechanisms discussed
above. Because the four technical mechanisms can happen only
after valid RNA priming, the resulting antisense reads should
also reflect gene expression, and, therefore, their quantification
results should be well-correlated with their sense counterpart.
That is, while we expect antisense counts to diverge from sense
counts, they nevertheless require the actual presence, in the
assayed cell, of the RNA molecule to which they map. Our
results show a moderate-to-high correlation between cells’ sense
and antisense counts. Among the three selected metrics, the
Spearman p (fig. 2b) correlation coefficient of cells’ sense and
antisense counts are centered around 0.4, the Pearson r (fig. 2c¢)
centered at 0.6, and the cosine similarity(fig. 2d) are centered
around 0.7. We also confirmed that the correlation scores are
very close to zero when using shuffled sense and antisense count
matrices (Supp fig. 16).

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Our results suggest that, on one hand, many antisense reads
seem to directly provide evidence for the presence of RNA
molecules in cells that agree with the counts obtained in the
sense matrix. Thus, this substantial fraction of the antisense
reads is compatible with the four technical mechanisms
previously described in the 10x Genomics technical note. On
the other hand, the imperfect correlation also suggests that
some fraction of antisense reads appear not to be explained
by these specific technical mechanisms. Together with the
imperfect ARI discussed above, as well as the distinct cell
markers discovered from the sense and antisense count matrices
(Supp figs. 31 to 33), we hypothesize that some antisense reads
likely arise from antisense transcription or other bidirectional
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Fig. 2. Antisense intragenic reads are interpretable and show a moderate-
to-high correlation with sense reads. Panel (a) shows the high Adjusted
Rand Index scores of the cluster assignments obtained from sense,
imputed, antisense, and intergenic count matrix (section 3.2). ARI=1
means the compared sets of cluster assignments are identical. Panels (b),
(c), and (d) show the Spearman p, Pearson r, and cosine similarity of the

sense and antisense counts of cells, respectively.

In addition to evaluating the concordance between the sense
and antisense intergenic count matrices, we also explored the
possibility of using the information contained in the antisense
count matrix to augment (i.e. improve the sensitivity and
reduce the sparsity [Bouland et al., 2023] of) the standard
(sense) scRNA-seq count matrix.

Due, in part, to limited sampling from a finite population of
molecules (and potentially other sources of increased “dropout”
in scRNA-seq [Qiu, 2020]), the standard count matrix is
dominated by zeros, i.e., it is a very sparse matrix. As we
observed the correlation between cells’ sense and antisense
counts, but note that antisense reads are usually excluded
from the standard count matrix, we attempted two relatively
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naive methods to improve the sensitivity of Mgense according
to Manti-

The first strategy examines all entries that have a non-zero
entry in Manti, and if the corresponding entry in Mgense iS
zero, it is changed to a 1. This results in the generation of
an augmented sense count matrix, Mimputed (Section 2.5). We
only change zeros to ones instead of copying over the actual
antisense counts to reduce the potential disturbance caused by
the signals from regulatory RNAs in Mapti.

The second strategy sums Mgense and Mant; matrices
to obtain an intragenic count matrix, Mgenic, similar to
considering reads in both orientations when generating the
standard count matrix. Both strategies led to a substantial
reduction of sparsity. Specifically, if one considers matrix
entries where Mgonse, Manti, or both are non-zero, then in
19.3% of such cases we observe a corresponding 0 entry in
Megense and a non-zero entry in Mant; across the processed
datasets. In other words, among the non-zero entries of Mgenic,
19.3% are zero in Mgense but non-zero in M,,i;. We note
that our strategies primarily aided in the detection of the
presence of genes in cells where they were not previously
detected, but not in the detection of genes not detected across
any of the cells in Mgense (only less than 0.2% of the values
imputed from M,nt; were for genes not otherwise present when
looking across all cells in Mgense). Again, this behavior supports
the sense and antisense reads reflecting mostly the same
underlying biology. We found that the augmenting strategies
reduced the count sparsity in the scRNA-seq matrices, but
did not substantially “disturb” or alter the results of standard
analyses. Figure 2a showed that both strategies yielded cluster
assignments consistent with the sense count matrix. The ARI
of the results from Mgense t0 Mimputed is 0.97, somewhat higher
than the ARI from Msense t0 Mgenic of 0.89.

In conclusion, by quantifying sense and antisense intragenic
scRNA-seq reads separately, and comparing their analysis
results, we found a moderate correlation between their
counts and a moderate-to-high similarity between their cluster
assignments. Our results reinforced that a substantial fraction
of the antisense reads observed in scRNA-seq are the result
of specific technical artifacts that nonetheless reflect the
expression of genes that may otherwise be detected in the sense
orientation by a more sensitive assay or deeper sequencing. We
showed that incorporating the counts generated by antisense
reads can help reduce the sparsity and improve the sensitivity
of gene detection. Moreover, another fraction of antisense
reads seem to likely originate from regulatory RNAs derived
from antisense transcription [Katayama et al., 2005, Barman
et al., 2019, Barann et al., 2013] or other types of bidirectional
transcription events [Morris et al., 2008]. Proper incorporation
and assessment of these reads deserves its own dedicated
analysis, and likely the development of novel methods to
account for them in preprocessing and processing.

Sense intragenic reads with different splicing statuses
reveal different transcriptional information

Intronic reads are the reads compatible with annotated gene
models but only with their intronic regions, i.e., unspliced
transcripts.

One mechanism for generating such off-target reads is
intronic polyA priming [10x, 2021]. Such priming occurs
as many introns contain short (and even moderate-length)
polyA tracts, and evidence has shown that polyA tracts of

length 6 to 8 are sufficient to be anchored by oligo(dT)
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primers [Nam et al., 2002, Svoboda et al., 2022]. In our
selected datasets, less than 40% sense intragenic UMIs can
be unambiguously classified as arising from spliced transcripts
(Supp table 3). We note, however, that we have adopted in
this manuscript a rather conservative notion of spliced and
unspliced status [Eldjarn Hjorleifsson et al., 2022, He et al.,
2023], and other approaches, that consider purely exonic reads
as arising from spliced RNA, will lead to different ratios.
Existing studies have shown the prevalence of intronic reads
[He et al., 2023, Pool et al., 2023, Chamberlin et al., 2022, 10x,
2021] and proposed algorithms that utilize unspliced reads in
different ways [La Manno et al., 2018, 10x, 2022b, Gorin et al.,
2023].

In this section, we focus on explaining some caveats with
the currently common approaches for utilizing intronic reads for
standard types of analysis, as well as interesting findings that
underscore the necessity of expanding existing, and designing
novel, algorithms to consider signals from both splicing statuses
separately. Specifically, sense intragenic reads are quantified
into three count matrices, Mg contains UMIs only compatible
with spliced transcripts, My contains UMIs compatible only
with unspliced transcripts, and Ma contains UMIs compatible
with both, i.e., having an ambiguous splicing status. Our
analysis also included two combinations of the three-count
matrices. Mga was created by summing Mg and Ma matrices
elementwise, and Myga was created by summing My, Mg, and
M matrices elementwise. Usually, Mga is used as the standard
count matrix for datasets from single-cell samples, and Mysa
is used for single-nucleus samples. We focus on the results from
a human PBMC scMultiome dataset, the results from other
datasets are listed in Supp figs. 34 to 47

Our clustering analysis results showed that, when using a
coarse resolution clustering to assign cells into major cell types,
like B cells, T cells, and Monocytes in PBMC [Sen et al.,
2018], the evaluated count matrices all resulted in consistent
cluster assignments, as demonstrated by the very high ARIs
displayed in fig. 3a. This suggests that the difference between
major cell types in these matrices is robust, so that they can
be easily distinguished from all tested combinations of splicing
statuses. The cluster assignments from Mygsa had slightly lower
ARIs than others; this may be caused by the specific distance
metric or the random seed used for finding cell clusters [Hao
et al., 2021], as the clusters under this count matrix became
more concordant when using a slightly higher resolution (Supp
fig. 35b). The increment of ARIs as the clustering resolution
increases for Muysa when other ARIs are all decreased also
highlights the need to take more than one of the count matrices
as input to validate the final clustering results.

Furthermore, our clustering analysis results showed that,
when using a high resolution (i.e. a fine-grained clustering)
as in the standard clustering analysis pipeline [Hao et al.,
2021], the cluster assignments from different combinations
of splicing status show basic consistency but also express
interesting differences, with ARIs ranging from 0.5 to 0.85.
These imperfect ARIs suggest that, when using a single mixture
of counts to perform clustering analysis, no matter which
combination is used, the pipeline tends to cluster cells based on
the outstanding signals from that combination, and interesting,
potentially divergent, signals from other combinations remain
latent.

The difference of the cluster assignments from Mg and
My is especially important when clustering cells under active
differentiation.

For example, although cells under active

differentiation should show consistent gene expression profiles
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under the spliced counts, cells in an early stage might have
a distinct gene expression profile under the unspliced counts
compared with cells in the terminal stage, because the spliced
and unspliced transcripts in cells are desynchronized because of
the kinetics of splicing [Alpert et al., 2016]. The difference of
the cluster assignments of Mga and Mysa in fig. 3b emphasizes
the inconsistency by simply using Mysa as the standard count
matrix for datasets from both single-cell sand single-nucleus
samples, as e.g., CellRanger [Zheng et al., 2017] does in versions
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Fig. 3. Sense intragenic reads with different splicing statuses contain
distinct signals. U denotes the analysis results from the unspliced counts,
S denotes results from the spliced counts and A denotes results from the
ambiguous counts. USA is the sum of U, S, and A and SA is the sum of
S and A (section 3.3). Panels (a) and (b) show the high Adjusted Rand
Index scores of the clustering results generated from the count matrices
using a low and high clustering resolution, respectively. ARI=1 means the
compared sets of cluster assignments are identical. Panel (c¢) shows the
intersection of the DEGs discovered from hippocampus neuron cells from

the count matrices.

Our differential expression analysis results suggested that
in each cell type, the counts from the three splicing statuses
resulted in largely non-overlapping differentially expressed
genes (DEGs), as shown in fig. 3c. For spliced and unspliced
counts, over 40 of their top 100 DEGs are exclusive. As for the
two combinations, Muysa and Mga, their top 100 DEGs are the
mix of the DEGs obtained from My, Mg, and Ma separately.
A closer look at these DEGs reveals that, as we concluded

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

from the clustering analysis results, the DEGs obtained from
each combination of splicing status contain exclusive, well-
documented, cell type markers (Supplementary Files). For
example, CST3, an important marker gene for monocytes [Hu
et al., 2020], was identified as a DEG for the classical monocyte
cell type when using Mg and M4, but does not show up among
the top DEGs when using the two combinations, Mgsa and
Muysa. Similarly, CD86, a marker gene for Dendritic cells [Tze
et al., 2011], was found as a DEG of the Myeloid Dendritic cell
type when using My, but in none of the other modalities. One
more example of the marker genes that were only discovered
from Mg is a well-known CD8+ T cell marker, CD3G [Li et al.,
2019]. All these exclusive marker genes discovered using the
counts of the three splicing statuses separately, suggest that
simply summing them together to generate the standard count
matrix might not be the most appropriate way to utilize the
information from different splicing statuses.

In conclusion, by quantifying sense intragenic scRNA-
seq reads according to their splicing status and performing
clustering analysis and differential expression analysis on
them and their combinations, we found that their cluster
assignments slightly diverge but still show consistency and well-
known cell type markers are discovered exclusively from each
modality. Together with the previous finding that unspliced
counts show gene length bias [Phipson et al., 2017, 10x,
2021, Chamberlin et al., 2022, Gorin et al., 2023], our results
emphasize the necessity of improving existing methods and
developing new algorithms to consider the signals from different
splicing statuses jointly, but separately, for more comprehensive
analysis results.

Discussions

In this work, we have analyzed, across different organisms,
annotations, and tissue types, off-target scRNA-seq reads
compatible with intergenic, sense intragenic, and antisense
intragenic regions. Our results draw a holistic picture of

the off-target scRNA-seq reads,
interpretability, and show examples of using off-target reads

evaluate their biological

to improve single-cell analysis from different perspectives.

Specifically, our intergenic read analysis results suggest
that intergenic reads are likely to arise from regulatory RNAs,
such as enhancer RNAs and promoter RNAs. We showed that
intergenic reads reflect the chromatin architecture of cells, and
have a strong association with scATAC-seq data, indicating the
possibility of using them for aligning or integrating unpaired
scRNA-seq and scATAC-seq data.

Furthermore, our antisense read analysis results indicate
that antisense reads contain mixed signals relating to both
gene expression and regulation. We show that antisense reads
can be used to reduce the sparsity and increase the sensitivity
in the scRNA-seq count matrix, and they also have the
potential to provide insights into antisense transcription and
other bidirectional transcription events.

Finally, we have analyzed sense intragenic reads from
different splicing statuses separately and find that reads with
different splicing statuses contain distinct signals signals, and,
in part, signals from different stages of transcription. We
found that the results of the clustering analysis and differential
expression analysis using reads from different splicing statuses
and their combinations are largely consistent but also reflect
Especially interesting was that
well-established cell markers can be found in each modality

interesting disagreements.

exclusively. Our result highlighted the necessity of expanding
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current methods and designing new analysis algorithms that
can consider signals from different splicing statuses jointly,
but individually, to draw more comprehensive biological
conclusions.

Some constraints we adopted in our analysis highlight the
limitations and future directions of this work. First, because
of the limited sensitivity and relatively low number of UMIs
per gene, and the limited read lengths (most reads are 100
bases long) in scRNA-seq protocols we evaluated, in this work
we have assumed reads compatible with introns to arise from
unspliced transcripts, and reads compatible with exon-exon
junctions to arise from spliced transcripts, ignoring the specific
category of partially-spliced transcripts. Yet, given the relevant
kinetics and speed of splicing, it is likely that a substantial
fraction of measured molecules are actually partially spliced.
An alternative assay, such as long-read single-cell sequencing,
may provide more insight into the underlying splicing dynamics,
and may provide a greater ability to properly categorize read
evidence arising from partially spliced molecules. Moreover,
we assigned an ambiguous splicing status when unable to
determine the splicing status of reads. One future direction is
to develop more sophisticated methods to resolve the splicing
status ambiguity, or to assign a meaningful probability to such
a status [He et al., 2023].

Second, we defined intergenic and intronic regions according
to existing gene annotations, but some scRNA-seq reads may
arise from unannotated transcripts and thus may be assigned
an incorrect genomic feature type. One future direction is
to improve existing gene annotations, as discussed in Pool
et al. [2023] and Barquin et al. [2023], to reduce such
misclassification.

Most importantly, in this work, we focused on analyzing the
impact and and potential uses of the latent signals encoded
within off-target scRNA-seq reads using simple examples and
strategies. This is possible, in part, because such signals look
to be substantial and relatively strong. In the end, however,
the proper way to incorporate and integrate such signals is
to develop methods and algorithms that include and model
them from the start, and propagate the relevant associated
information through the entire single-cell and single-nucleus
preprocessing and processing pipelines. From this perspective,
the current work is not only an analysis of the prevalence and
characteristics of off-target reads, but a motivation and call-
to-arms of the single-cell method development community to
design algorithms, analysis methods, and software tools to more
comprehensively and holistically model and make use of these
off-target reads.
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