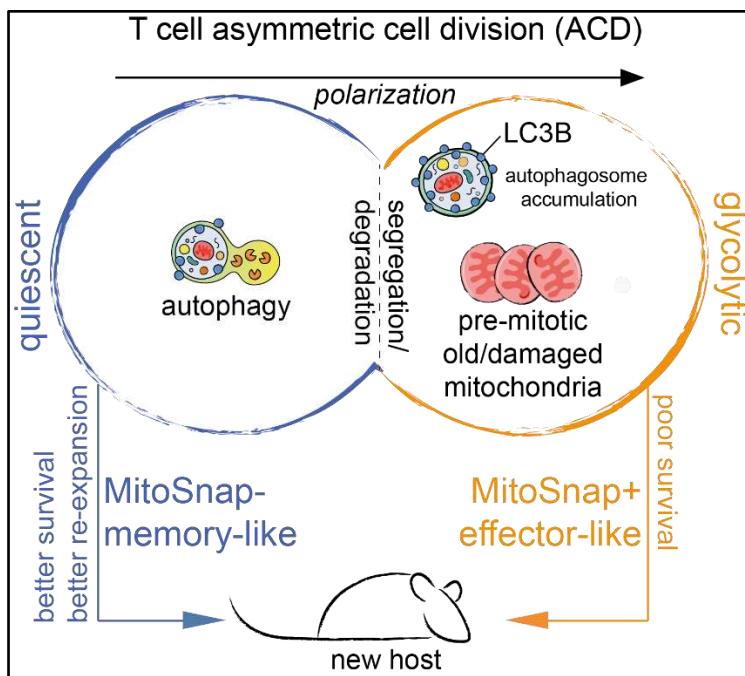


1 **Title: Inheritance of old mitochondria controls early CD8⁺ T cell fate commitment and is**
2 **regulated by autophagy**

3 Mariana Borsa^{1,5,6}, Ana Victoria Lechuga-Vieco¹, Amir H. Kayvanjoo⁴, Yavuz Yazicioglu¹, Ewoud B.
4 Compeer¹, Felix C. Richter¹, Hien Bui², Michael L. Dustin¹, Pekka Katajisto^{2,3}, Anna Katharina Simon^{1,5}

5 ¹Kennedy Institute of Rheumatology, University of Oxford, Oxford, England;

6 ²HiLife, Institute of Biotechnology, University of Helsinki, Helsinki, Finland;


7 ³Department of Cell and Molecular Biology (CMB), Karolinska Institute, Stockholm, Sweden;

8 ⁴Max-Delbrück-Center for Molecular Medicine, Berlin, Germany

9 ⁵Corresponding author: mariana.borsa@kennedy.ox.ac.uk; katja.simon@mdc-berlin.de

10 ⁶Lead contact

11

12

13 The MitoSnap model allows tracking of pre-mitotic and post-mitotic cell cargoes.

14

15 Both segregation and degradation (autophagy) contribute to the asymmetric inheritance of old mitochondria.

16

Old mitochondria impact cell metabolism and function.

17

Cells devoid of old mitochondria exhibit better memory potential *in vivo*.

18

19 **Abstract**

20 T cell immunity is impaired during ageing, particularly in memory responses needed for efficient
21 vaccination. Autophagy and asymmetric cell division (ACD) are cell biological mechanisms key to
22 memory formation, which undergo a decline upon ageing. However, despite the fundamental
23 importance of these processes in cellular function, the link between ACD and *in vivo* fate decisions has
24 remained highly correlative in T cells and in the field of mammalian ACD overall. Here we provide robust
25 causal evidence linking ACD to *in vivo* T cell fate decisions and our data are consistent with the concept
26 that initiation of asymmetric T cell fates is regulated by autophagy. Analysing the proteome of first-
27 daughter CD8⁺ T cells following TCR-triggered activation, we reveal that mitochondrial proteins rely on
28 autophagy for their asymmetric inheritance and that damaged mitochondria are polarized upon first
29 division. These results led us to evaluate whether mitochondria were asymmetrically inherited and to
30 functionally address their impact on T cell fate. For this we used a novel mouse model that allows
31 sequential tagging of mitochondria in mother and daughter cells, enabling their isolation and subsequent
32 *in vivo* analysis of CD8⁺ T cell progenies based on pre-mitotic cell cargo. Autophagy-deficient CD8⁺ T
33 cells showed impaired clearance and symmetric inheritance of old mitochondria, suggesting that
34 degradation events promote asymmetry and are needed to generate T cells devoid of old organelles.
35 Daughter cells inheriting old mitochondria are more glycolytic and upon adoptive transfer show reduced
36 memory potential, whereas daughter cells that have not inherited old mitochondria from the mother cell
37 are long-lived and expand upon cognate-antigen challenge. Proteomic and single-cell transcriptomic
38 analysis of cells inheriting aged mitochondria suggest that their early fate divergence relies on one
39 carbon metabolism as a consequence of poor mitochondrial quality and function. These findings
40 increase our understanding of how T cell diversity is early-imprinted during division and will help foster
41 the development of strategies to modulate T cell function.

42

43 Introduction

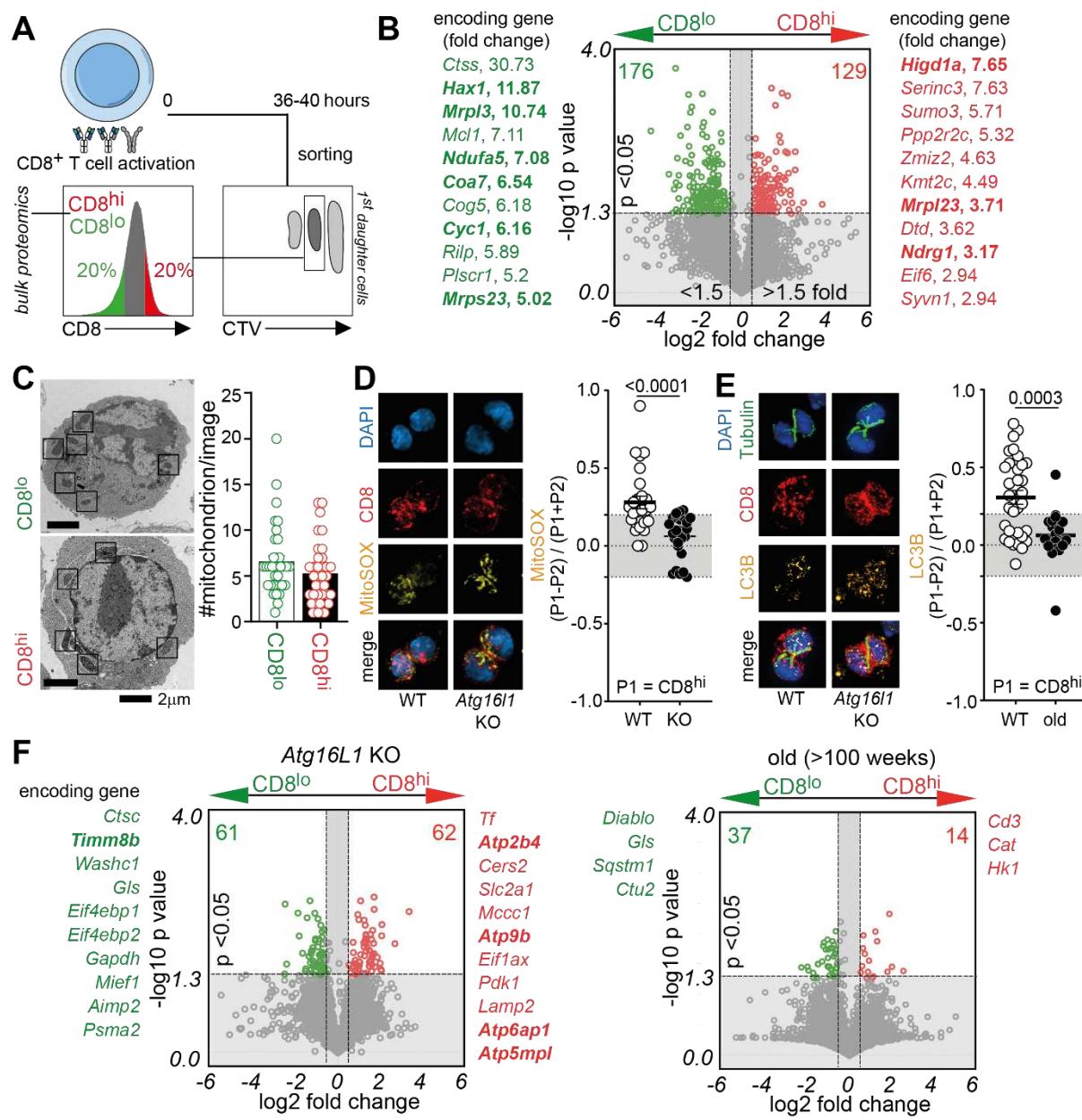
44 Efficient immune responses rely on the coordinated function of different immune cell types, which also
45 requires generation of diversity within the same cell type. In the context of CD8⁺ T cells, one single cell
46 is able to differentiate and generate progeny with heterogeneous fates upon activation^{1,2}. Activation of
47 a naïve T cell by its cognate antigenic epitope leads to the differentiation of short-lived effector cells that
48 exert cytotoxic effector functions, and long-lived memory cells that self-renew and differentiate upon
49 antigenic re-challenge and are central to vaccination efficacy. Despite increased understanding of
50 mechanisms that contribute to fate decision during CD8⁺ T cell differentiation, there is still no consensus
51 on when these decisions are made, and particularly how long-lived memory T cells are formed³⁻⁵.
52 Moreover, during aging T cell memory is severely impaired^{6,7}, and senescent CD8⁺ T cell subsets that
53 exhibit DNA damage, cell cycle arrest, mitochondrial dysfunction due to defective mitophagy⁸, and
54 global poor effector function accumulate⁹⁻¹¹. Amongst the cellular processes that benefit the formation
55 and maintenance of memory CD8⁺ T cells but which are negatively impacted by ageing^{6,12,13}, there are
56 two highly conserved mechanisms: macroautophagy (hereafter termed autophagy) and asymmetric cell
57 division (ACD).

58 Autophagy involves the recycling and degradation of cellular cargoes, which occurs via the engulfment
59 of cellular components by double-membrane structures called autophagosomes, and their delivery to
60 lysosomes for degradation. The regulation by autophagy of immune cell fate decision is cell- and
61 context-dependent¹⁴. In CD8⁺ T cell differentiation, autophagy loss results in an impaired memory
62 response^{6,15,16}, which is at least partly caused by accumulation of damaged organelles^{17,18}.

63 ACD has been well characterised in model organisms such as yeast, *Drosophila melanogaster* and
64 *Caenorhabditis elegans*¹⁹, but evidence of the impact of this mechanism on cell fate in mammalian cells
65 remains correlative and inconclusive²⁰. In cells from the haematopoietic lineage, this is a consequence
66 of technical limitations as *in vivo* functional readouts of sibling cells have relied on cell cargoes that do
67 not directly influence fate decisions and/or show dynamic and variable expression. Thus, a critical
68 question remains: is inherited material synthesized post-cell division, or is it inherited asymmetrically?
69 Here we address this question using CD8⁺ T cells. ACD in CD8⁺ T cells is important for the generation
70 of two distinct cell types, through the early generation of effector-like and memory-like daughter cells²¹
71 that occurs from the first mitosis after naïve T cell activation by high-affinity TCR stimulation^{22,23}. The
72 daughter cells emerging from ACD inherit several layers of asymmetry, including the differential
73 expression of surface markers, transcription factors, divergent metabolic activity and translation²⁴⁻²⁷.
74 However, a direct link between asymmetric inheritance of pre-mitotic T cell cargo and the future fate of
75 emerging daughter cells *in vivo* has not been made. Thus, solid causal evidence linking ACD to fate
76 decisions is lacking in T cells and in the field of mammalian ACD in general.

77 Because it is unclear whether cell cargo degradation can contribute to cell division asymmetries, we
78 performed an integrated functional analysis of the contribution of autophagy and ACD to CD8⁺ T cell
79 differentiation. We identified damaged mitochondria as asymmetrically inherited cargo, and this
80 asymmetry is further deepened on mitophagy. Then, using a novel mouse model that allows specific
81 labelling of mitochondria before and after cell division, we tracked mitochondrial inheritance and
82 biogenesis, ensuring that this cell cargo was not perturbed by post-mitotic changes in CD8⁺ T cell
83 progenies. This novel tool allowed us to follow the presence of pre-mitotic mitochondria by imaging and
84 flow cytometry, and evaluate the impact of mitochondrial inheritance by proteomics, scRNAseq and *in*
85 *vivo* transfer of daughter cells. Our results suggest that autophagy contributes to the generation of early
86 divergent cell fates by promoting both clearance and asymmetric partitioning of old mitochondria.
87 Furthermore, we are the first to unequivocally draw a causal link between the inheritance of cell cargo
88 to future fate commitment, as old mitochondria caused poor memory potential in CD8⁺ T cell immune
89 responses. Our findings offer new insight into how T cell diversity is imprinted early during cell division,
90 and how organelle ageing regulates CD8⁺ T cell metabolism and function, facilitating more refined
91 therapeutic approaches to T cell modulation.

92

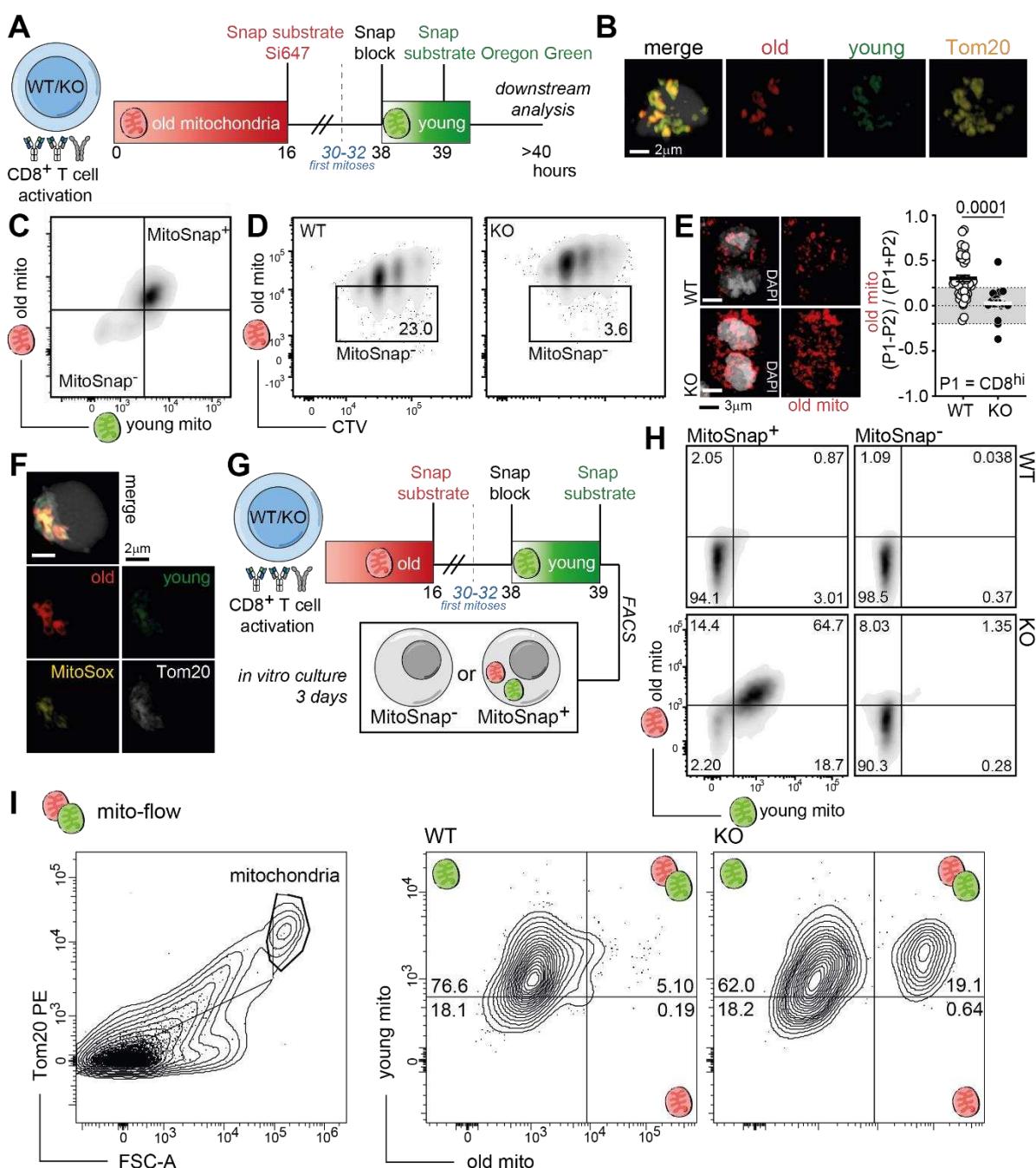

93 Results

94 Divergent proteome and mitochondrial inheritance in CD8⁺ T cell mitosis relies on autophagy

95 Asymmetric cell division in CD8⁺ T cells results in the unequal inheritance of different cell cargoes that
96 culminates in divergent transcriptomes between daughter cells²⁷⁻³⁰. We aimed to broaden our

97 understanding of early events of asymmetric segregation by assessing the global proteome of first-
98 daughter CD8⁺ T cells. To that end, we used CD8 as a surrogate marker to classify effector-like (CD8^{hi})
99 and memory-like (CD8^{lo}) progenies. Briefly, we isolated naïve CD8⁺ T cells from spleens and lymph
100 nodes of wild-type (WT) C57BL/6 mice, labelled them with a cell trace dye and activated these cells for
101 36-40 h on anti-CD3, anti-CD28 and Fc-ICAM-1 coated wells. First-daughter CD8⁺ T cells were sorted
102 into CD8^{hi} or CD8^{lo} populations as previously described²⁸ (Fig.1A). Cells were washed and pellets were
103 used for quantitative label-free high-resolution mass spectrometry. >6000 proteins were identified and
104 the proteomic ruler method was used to calculate both protein mass and copy numbers of each protein
105 per cell³¹. We did not observe differences in total protein mass between CD8^{hi} and CD8^{lo} daughter cells
106 (Fig. S1A). However, we identified several proteins that were enriched in one of these two populations,
107 as represented by fold-change in protein copy number between effector-like and memory-like cells
108 following first mitosis (Fig. 1B). Amongst the top 50 identified targets in each group, we found several
109 proteins with a role linked to cell metabolism, mitochondrial function and biogenesis, which are
110 highlighted in bold. Because mitochondria are known to contribute to T cell fate^{32,33}, we decided to
111 focus on these organelles. We aimed to validate the results obtained from this unbiased approach by
112 imaging mitochondria in mitotic cells and emerging siblings. By electron microscopy, we could neither
113 observe any differences in mitochondrial content (Fig. 1C), nor any differences in mitochondrial
114 architecture. The inheritance of mitochondria by daughter cells during mitosis has been superficially
115 investigated with conflicting results^{25,26,34}. Thus, we evaluated whether mitochondrial fitness is different
116 between CD8⁺ T cell siblings. Using the cell permeable probe MitoSOX, we imaged mitochondria
117 producing high levels of reactive oxygen species (ROS, a readout of damaged organelles), and
118 observed that CD8^{hi} (effector-like) daughter cells had a higher abundance of mitochondrial ROS
119 production (Fig. 1D). Because damaged mitochondria are targets of autophagy - a mechanism known
120 to benefit memory CD8⁺ T cells - and known to undergo an age-related decline, we interrogated whether
121 mitophagy contributes to this unequal distribution and quantified MitoSOX inheritance in autophagy-
122 deficient CD8⁺ T cells. Using non-inducible autophagy-deleted CD8⁺ T cells (*Atg7^{fl/fl} Cd4^{Cre}*), we
123 observed that the immune synapse (IS) area and TCR clustering were distinct between the autophagy-
124 sufficient and -deficient CD8⁺ T cells (Fig. S1B). As it has been described that IS formation and TCR-
125 affinity and signalling strength are crucial for asymmetric T cell division²¹⁻²³, we excluded that any
126 differences in T cell activation due to loss of Atg7 interferes with ACD readouts by using an inducible
127 model of autophagy deletion (*Atg16^{fl/fl} Ert2^{Cre}*). Here activation happens with functional autophagy, as
128 *Atg16^{fl}* is deleted only upon *in vitro* Z-4-Hydroxytamoxifen (4OHT) treatment (Fig. S1C), and Cre-
129 recombination events do not result in immediate ATG16L1 loss. We analyzed mitotic CD8⁺ T cells by
130 confocal microscopy at 36-40 h post-activation, and found that autophagy loss abolishes the
131 asymmetric inheritance of damaged (MitoSOX+) mitochondria (Fig. 1D). To evaluate whether the
132 autophagic machinery itself is polarized during cell division, we evaluated the expression of the
133 autophagy-marker LC3B. LC3B is the lipidated and membrane-bound version of Microtubule-
134 associated protein 1A/1B-light chain 3 (LC3), which functions in autophagy substrate selection and
135 autophagosome biogenesis and is a target of degradation itself during the autophagic process when no
136 lysosomal inhibitor is added¹⁴. As observed for MitoSOX, LC3B was co-inherited by CD8^{hi} (effector-like)
137 daughter cells, suggesting that this daughter cell performs less autophagy/mitophagy, which leads to
138 the accumulation of autophagy targets. To confirm this, we also evaluated the inheritance of LC3B in
139 CD8⁺ T cells from aged mice, known to show poor ACD potential and low autophagy levels^{12,15,16}. We
140 found that ageing leads to the symmetric inheritance of LC3B (Fig. 1E). Finally, these results could be
141 correlated with the proteome of CD8^{hi} and CD8^{lo} daughter cells generated from autophagy-deficient
142 (inducible *Atg16^{fl}* deletion) and aged cells (Fig. 1F), since: i) the numbers of differentially inherited
143 proteins were lower than the ones observed in WT cells (Fig 1B), and ii) we found fewer and different
144 proteins linked to mitochondrial function amongst the differentially-inherited in autophagy-deficient and
145 aged CD8⁺ T cells. Together these findings highlight the relevance of autophagy in the establishment
146 of asymmetric inheritance patterns. Interestingly, the pool of enriched proteins found in CD8^{hi} and CD8^{lo}
147 daughter cells was very small in old mice and no mitochondrial proteins were found, perhaps because
148 both ACD and autophagy decline with age.

149

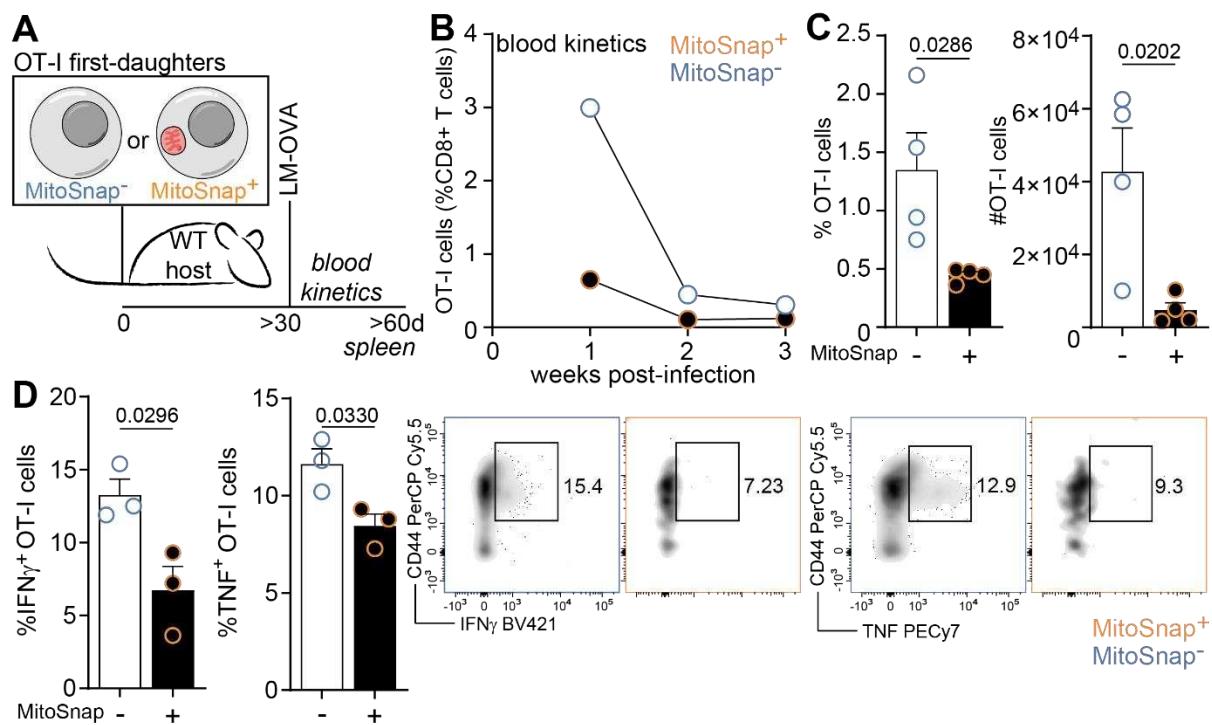

151 **Figure 1. Autophagy regulates asymmetries in CD8⁺ T cell mitosis.** (A) Experimental layout: CTV-
152 labelled naïve CD8⁺ T cells were activated on anti-CD3, anti-CD28 and Fc-ICAM-1 coated plates for
153 36-40 h. Cells were harvested and stained with anti-CD8 antibodies. First-daughter cells were identified
154 as the first peak of CTV dilution (in reference to undivided cells). CD8^{hi} and CD8^{lo} cells were sorted as
155 populations expressing 20% highest or lowest CD8, respectively, as previously described²⁸. Cells
156 pellets were frozen and stored until being processed for proteomics analysis. (B) Volcano plot showing
157 differentially inherited proteins by CD8^{hi} and CD8^{lo} daughter-cells. Data pooled from 4 samples done in
158 2 independent experiments. Each sample had cells originally harvested from 2-3 mice. Encoding genes
159 for proteins amongst the top 50 differentially expressed in CD8^{lo} and CD8^{hi} daughter cells are
160 highlighted in green and red, respectively. Genes in bold have their function linked to mitochondrial
161 metabolism and function. (C) Representative transmission electron microscopy images from CD8^{hi} and
162 CD8^{lo} daughter cells emerging from the first mitosis following naïve CD8⁺ T cell activation (left). Number
163 of mitochondria per image/slice was calculated (right). (D) Representative images of WT (*Atg16l1*^{fl/fl}
164 *Ert2*^{Cre}) and autophagy KO (*Atg16l1*^{fl/fl} *Ert2*^{Cre}) mitotic CD8⁺ T cells 36-40 h post-activation. Autophagy
165 depletion was achieved by culturing cells in presence of 500 nM Z-4-Hydroxytamoxifen (4OHT). Inheritance of MitoSOX was calculated as previously described²⁸. Any values above or below the grey
166 area in the graph were considered asymmetric. Data are represented as mean \pm SEM. Statistical
167

168 analysis was performed using an unpaired two-tailed Student's *t* test. Exact P values are depicted in
169 the figure. **(E)** Representative images of mitotic CD8⁺ T cells from young (8-16 weeks-old) and old (>100
170 weeks-old) mice 36-40 h post-activation. Inheritance of LC3B, a marker of autophagosomes, was
171 calculated in each group. Data are represented as mean \pm SEM. Statistical analysis was performed
172 using an unpaired two-tailed Student's *t* test. Exact P values are depicted in the figure. **(F)** Volcano plot
173 showing differentially inherited proteins by CD8^{hi} and CD8^{lo} daughter-cells from *Atg16l1^{fl/fl} Ert2^{Cre}* (post-
174 tamoxifen inducible depletion of autophagy) and old (>100 weeks) mice. Data pooled from 2-4 samples.
175 Each sample had cells originally harvested from 2-3 mice. Encoding genes for proteins amongst the
176 top 50 differentially expressed in CD8^{lo} and CD8^{hi} daughter cells are highlighted in green and red,
177 respectively, for each type of sample. Genes are ordered from top to bottom in decreasing fold-change
178 values. Genes in bold have their function linked to mitochondrial metabolism and function. Proteomics
179 volcano plots were done using Tableau.

180 Inheritance of old mitochondria is autophagy-dependent

181 To functionally address whether damaged organelles play a role as fate determinants during ACD *in*
182 *vivo*, we took advantage of the MitoSnap murine model (MGI:6466976; *Omp25-SnapTag^{fl/fl} Ert2^{Cre}*),
183 which allows mitochondria to be followed from the mother cell, hereafter named 'old' based on the
184 permanent fluorescent labelling of a SnapSubstrate targeted to mitochondria via OMP25. SnapTag is
185 a modified DNA repair enzyme that can covalently bind to different cell-permeable substrates linked to
186 fluorophores. Sequential labelling of SnapTag expressing cells allows separation by flow cytometry of
187 different populations based on patterns of organelle inheritance. We optimized the timelines to
188 discriminate between older and younger organelles in CD8⁺ T cells. Briefly, naïve CD8⁺ T cells were
189 isolated, activated overnight on anti-CD3, anti-CD28 and Fc-ICAM-1 coated plates in the presence of
190 Z-4-Hydroxytamoxifen (4OHT) to induce SnapTag expression, and labelled with two different
191 fluorescently labelled SnapSubstrates at 16 h ('old', before 1st mitosis), and 36 h ('young', post-mitotic)
192 post-stimulation. Incubation with an unlabelled SnapSubstrate (SnapBlock) was done immediately
193 before the second labelling, guaranteeing that young organelle structures had emerged from recent
194 biogenesis. Downstream analysis was done 2 h post-young labelling (Fig. 2A)^{35,36}. With the MitoSnap
195 system we can unequivocally link the inheritance of labelled (old) mitochondria to an event of
196 asymmetric segregation of a cell cargo that was present >24 h before cell division. Furthermore, this
197 cargo is not affected by recent transcriptional, translational or anabolic events of biogenesis. SnapTag
198 labelled mitochondria co-localized with Tom20+ structures by fluorescence confocal microscopy,
199 confirming the specificity of the SnapTag chemistry (Fig. 2B). Analysis of first-daughter CD8⁺ T cells by
200 flow cytometry revealed the emergence of two main populations inheriting either both old and young
201 mitochondria or exhibiting no SnapTag labelling (Fig. 2C). Importantly, SnapTag negative cells result
202 from degradation or segregation of mitochondria, as labelling efficiency is close to 100% (Fig. S2A). To
203 confirm whether these two populations result from segregation into the daughter cells or degradation,
204 we generated autophagy-deficient MitoSnap mice (*Atg16l1^{fl/fl} Omp25-SnapTag^{fl/fl} Ert2^{Cre}*). We labelled
205 old SnapTag mitochondria from autophagy-sufficient and autophagy-deficient CD8⁺ T cells and
206 evaluated their loss over several cell divisions. Autophagy-deficient MitoSnap CD8⁺ T cells only lost the
207 old mitochondria in 3.6% of all dividing cells, as opposed to 23% in WT conditions (Fig. 2D). To directly
208 observe segregation events, mitotic MitoSnap CD8⁺ T cells were analyzed by fluorescence confocal
209 microscopy, revealing that asymmetric segregation of old mitochondria occurs in WT but not KO cells
210 and therefore relies on autophagy (Fig. 2E). Importantly, we confirmed that old mitochondria are
211 MitoSOX+ (Fig. 2F). To further dissect the role of mitophagy in the generation of MitoSnap- cells, we
212 sorted MitoSnap+ and MitoSnap- cells following first CD8⁺ T cell division and put them back in culture
213 without any further TCR stimulation for 3 days in T cell medium containing IL-2, IL-7 and IL-15, which
214 are cytokines that promote survival and memory maintenance (Fig. 2G). Using MitoSnap- conditions as
215 reference negative controls, we observed that WT cells that were originally MitoSnap+ became
216 MitoSnap-. However, most of the MitoSnap+ autophagy-deficient CD8⁺ T cells maintained their
217 SnapTag labelling (Fig. 2H). Finally, aiming to comprehend the mitochondrial content of autophagy-
218 sufficient and -deficient CD8⁺ T cells at the organelle level, we enriched mitochondrial fractions of both
219 types of cells at 40 h post-activation (as in Fig. 2A) and performed flow cytometry analysis. We gated
220 on mitochondria based on their size and Tom20 expression and observed that mitochondrial units are
221 larger in *Atg16l1*-deficient cells (Fig. 2A, Fig. S2B). Supporting the role of mitophagy in the clearance
222 of aged mitochondria, we observed that autophagy-deficient cells had a higher proportion of

223 mitochondria preserving old organelle labelling in comparison to their WT counterparts (Fig. 2I). These
 224 results suggest that the emergence of MitoSnap- cells relies both on segregation and degradation
 225 events and that autophagy plays a role in both mechanisms.


226

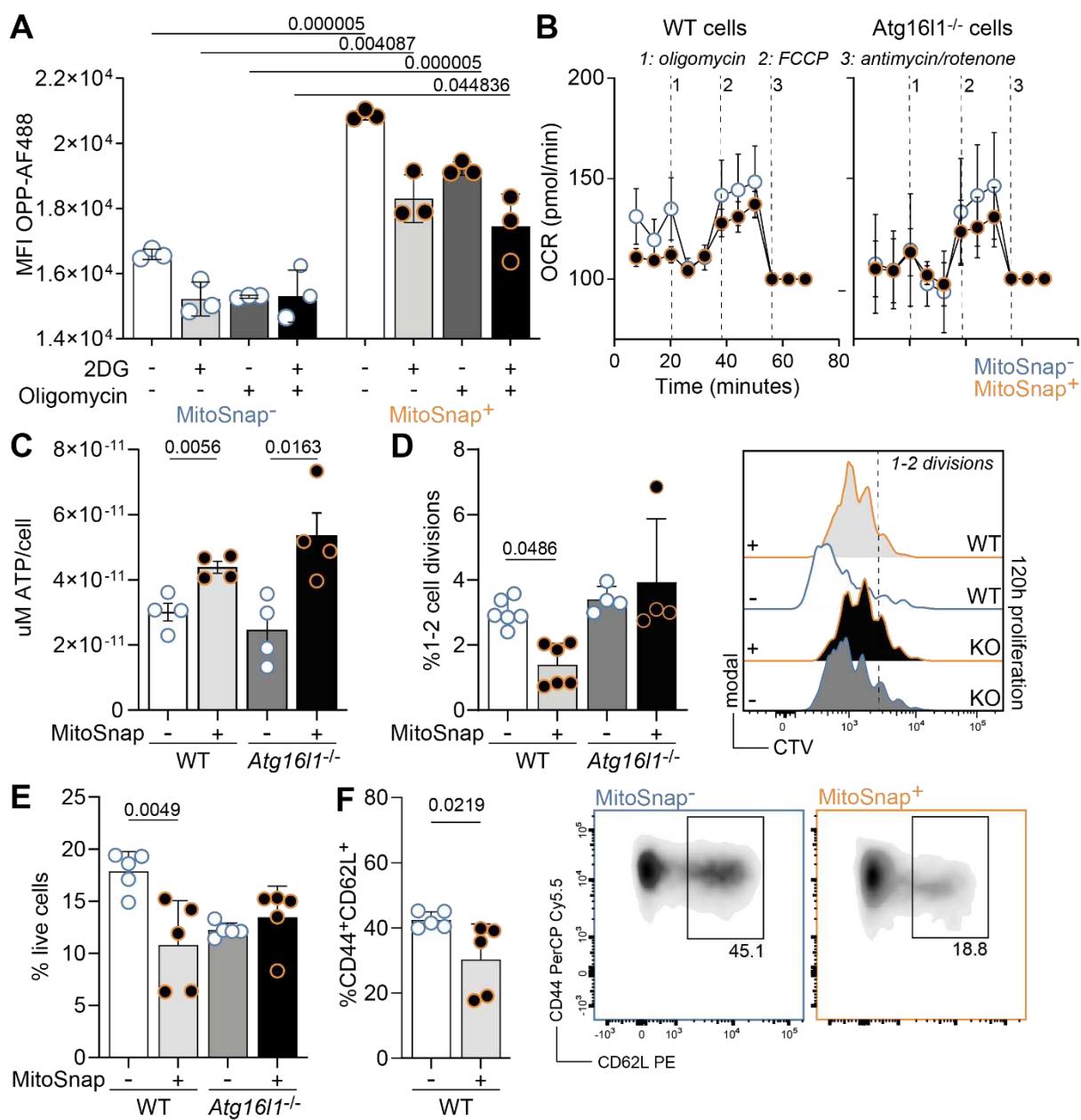
227 **Figure 2. Inheritance of old mitochondria is autophagy-dependent.** (A) Experimental layout: CTV
 228 labelled naïve MitoSnap CD8⁺ T cells (WT-*Atg16l1*^{fl/fl} *Omp25*^{fl/fl} *Ert2*^{Cre} or KO-*Atg16l1*^{fl/fl} *Omp25*^{fl/fl} *Ert2*^{Cre})
 229 were activated on anti-CD3, anti-CD28 and Fc-ICAM-1 coated plates for 36-40 h. Cells were cultured
 230 in T cell medium containing 500 nM Z-4-Hydroxytamoxifen (4OHT). 16 h post-activation, cells were
 231 harvested and labelled with Snap-Cell 647-SiR to tag old mitochondria and cultured for a further 24 h,
 232 when Snap-Cell Block and Snap-Cell Oregon Green incubations allowed young organelle labelling.
 233 Downstream analysis was done >2 h after cell resting in complete T cell medium at 37°C. (B)
 234 Representative confocal microscopy images showing specificity of SnapTag labelling (staining overlaps
 235 with anti-Tom20 antibody labelling) in WT MitoSnap CD8⁺ T cells 36 h post-activation. (C)
 236 Representative flow cytometry plot of old and young mitochondria inheritance amongst activated
 237 MitoSnap CD8⁺ T cells following first cell division. (D) Representative flow cytometry plots showing

238 inheritance of old mitochondria during several cell division cycles in both autophagy-sufficient (WT) and
239 autophagy-deficient (KO) cells. **(E)** Representative confocal microscopy images of mitotic WT and KO
240 MitoSnap CD8⁺ T cells 36-40 h post-activation. Asymmetric inheritance of old mitochondria was
241 calculated in each group. Data are represented as mean \pm SEM. Statistical analysis was performed
242 using an unpaired two-tailed Student's *t* test. Exact P values are depicted in the figure. **(F)**
243 Representative confocal microscopy images showing overlap between MitoSOX staining and old
244 mitochondria labelling in WT MitoSnap CD8⁺ T cells 36 h post-activation. **(G)** Experimental layout: CTV
245 labelled MitoSnap CD8⁺ T cells (WT-*Atg16l1*^{fl/fl}- *Omp25*^{fl/fl}- *Ert2*^{Cre} or KO-*Atg16l1*^{fl/fl} *Omp25*^{fl/fl}- *Ert2*^{Cre}) were
246 activated and SnapTag labelled as in 2A. MitoSnap- cells and MitoSnap+ cells were sorted as depicted
247 in 2C. Sorted cells were cultured for 3 days in T cell medium supplemented with IL-2, IL-7 and IL-15.
248 **(H)** Representative plots from MitoSnap CD8⁺ T cells 3 days post sorting. Sorted MitoSnap- cells were
249 used to set up gating strategy. **(I)** MitoSnap CD8⁺ T cells (WT-*Atg16l1*^{fl/fl}- *Omp25*^{fl/fl}- *Ert2*^{Cre} or KO-
250 *Atg16l1*^{fl/fl} *Omp25*^{fl/fl}- *Ert2*^{Cre}) were activated and SnapTag-labelled as in 2A. Mitochondria were purified
251 and phenotyped by flow cytometry. Mitochondrial gating was determined based on size and Tom20
252 expression (left, also refer to Fig. S2B). SnapTag-labelling was preserved and maintenance of old and
253 young organelle staining was evaluated in autophagy-sufficient and autophagy-deficient cells.

254 Old mitochondria are cell fate determinants that impede memory CD8⁺ T cell differentiation

255 Next, we aimed to investigate whether the inheritance of aged mitochondria impacts the fate of CD8⁺ T
256 cells *in vivo*. To achieve that, we generated OT-I CD45.1 MitoSnap mice. CD8⁺ T cells from OT-I mice
257 express a transgenic TCR specific to OVA₂₅₇₋₂₆₄ SIINFEKL peptide³⁷. The transgenic TCR allows robust
258 and specific TCR-activation of these cells and CD45.1 allows tracing of these cells in a host mouse. As
259 antigen, we chose *Listeria monocytogenes* expressing OVA (LM-OVA) as an acute infection model.
260 OT-I MitoSnap cells were activated *in vitro* and first-daughter cells sorted into MitoSnap+ and MitoSnap-
261 populations. These two distinct populations of OT-I T cells were transferred to WT naïve CD45.2
262 C57BL/6 hosts and after >4 weeks host mice were infected with LM-OVA. The immune responses
263 generated by the transferred OT-I MitoSnap cells were followed by blood kinetics and >4 weeks post-
264 bacterial challenge (memory phase) we assessed the abundance, phenotype and function of remaining
265 progenies (Fig. 3A). We observed that cell populations derived from originally MitoSnap- cells had
266 superior ability to survive than those generated by from MitoSnap+ cells, as re-expansion potential upon
267 LM-OVA infection was significantly higher in the first group (Fig. 3B). The higher frequencies of
268 MitoSnap- progenies within the total CD8⁺ T cell population from the host were maintained throughout
269 the course of the immune response. When spleens were analyzed at the memory phase, we confirmed
270 that higher frequencies were also predictive of higher OT-I cell numbers (Fig. 3C). Upon *in vitro* re-
271 stimulation, MitoSnap- progenies also produced more than twice as much IFN γ than their MitoSnap+
272 counterparts (Fig. 3D). We did not observe differences in the frequencies of KLRG1⁺CD127⁺ and
273 KLRG1⁺CD127⁻ between MitoSnap+ and MitoSnap- progenies (Fig. S3A). *In vitro* Tat-Cre driven
274 recombination of *Omp25*-SnapTag^{fl/fl}- CD8⁺ T cells resulted in similar results, i.e. MitoSnap- cells show
275 higher re-expansion rates upon cognate antigen re-challenge than MitoSnap+ cells (Fig. S3B).
276 Together, the phenotype and function of MitoSnap- CD8⁺ T cells suggest that they have better memory
277 potential.

278


Figure 3. Old mitochondria are cell fate determinants that impede memory CD8⁺ T cell differentiation. (A) Experimental layout: CTV labelled naïve OT-I MitoSnap CD8⁺ T cells (*Atg16l1^{fl/fl}*-*Omp25^{fl/fl}*-*Ert2^{Cre}*) were activated on anti-CD3, anti-CD28 and Fc-ICAM-1 coated plates for 36-40 h. Cells were cultured in T cell medium containing 500 nM Z-4-Hydroxytamoxifen (4OHT). 16 h post-activation, cells were harvested and labelled with Snap-Cell 647-SiR to tag old mitochondria and put back in culture. 24 h later cells were sorted into MitoSnap+ and MitoSnap- cells. 5x10³ cells were transferred to new hosts (CD45.1 and CD45.2 congenic markers were used to trace transferred cells). >30 days following adoptive cell transfer, host mice were infected with 2000 colony forming units (CFU) of *Listeria monocytogenes* expressing ovalbumin (OVA) (LM-OVA). Immune responses were evaluated in the blood and spleen. (B) Frequencies of OT-I cells within the CD8⁺ T-cell population in the blood. (C) Frequency and numbers of adoptively transferred OT-I cells within CD8⁺ T cells in the spleens of recipient mice. (D) Frequency of splenic IFN γ and TNF OT-I producing cells (left). Representative flow cytometry plots of MitoSnap+ and MitoSnap- cytokine producing cells (right). C, D: Data are represented as mean \pm SEM. Statistical analysis was performed using an unpaired two-tailed Student's *t* test. Exact P values are depicted in the figure. Representative data of 1 out of 4 experiments.

294

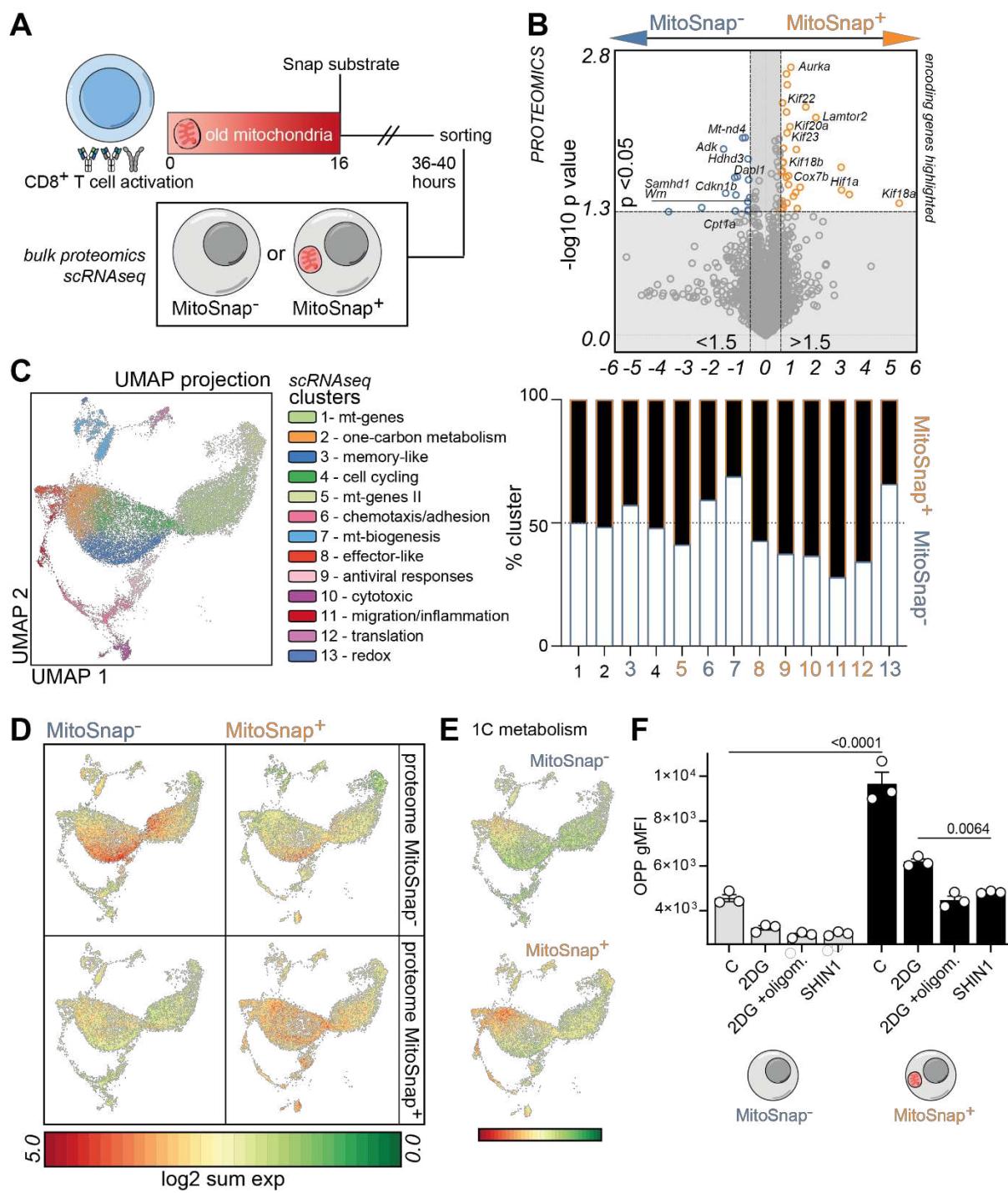
295 Inheritance of aged mitochondria counteracts cellular quiescence

296 Effector CD8⁺ T cells are highly proliferative, while memory CD8⁺ T cells divide slower and are more
 297 quiescent. This is a feature that is established early on following T cell activation, with cell cycle speed
 298 predictive of CD8⁺ T cell fate^{22,38}. CD8⁺ T cells with different clonal expansion rates have different
 299 metabolic demands, effector cells being more reliant on glycolysis, while long-lived naïve and memory
 300 cells mostly perform mitochondrial oxidative phosphorylation and fatty acid oxidation to produce
 301 ATP^{32,33}. Thus, we investigated whether the metabolism of first-daughter CD8⁺ T cells is impacted by
 302 the inheritance of aged mitochondria using a modified version of the Scenith assay³⁹. This assay allows
 303 measurement of metabolic dependencies by quantifying cellular translation rates, which highly correlate
 304 with ATP production. Translation is measured by the incorporation of O-propargyl-puromycin (OPP, a
 305 puromycin analogue), which can be visualized using click chemistry and flow cytometry. Metabolic
 306 reliance is evaluated by the addition of different inhibitors targeting glycolysis or OXPHOS. MitoSnap+
 307 CD8⁺ T cells inheriting old mitochondria exhibited higher global translation rates and reliance on
 308 glycolysis than MitoSnap- cells, which were more metabolically quiescent (Fig. 4A). Because the
 309 resolution of this assay did not allow us to quantify mitochondrial function in MitoSnap- cells, we also

310 directly measured oxygen consumption rates (OCR, Fig. 4B) and ATP synthesis (Fig. 4C) in both
311 purified populations. Besides a trend of higher basal respiration in MitoSnap- cells, we did not observe
312 significant differences between the two populations (Fig. S4A). We speculate that differences in
313 mitochondrial respiration were not seen because defects in mitochondrial function might take longer
314 than a timeline of 24 h, the time between old-organelle labelling and the experimental assay. We did
315 the same metabolic measurements in autophagy-deficient MitoSnap+ and MitoSnap- cells, and
316 obtained similar results (Fig 4B-C, S4A). To assess whether inheritance of distinct mitochondrial pools
317 and differences in metabolic reliance cause differences in proliferation rates and survival, sorted
318 MitoSnap+ and MitoSnap- cells were cultured in T cell medium containing IL-2, IL-7 and IL-15 in
319 absence of T cell activation for further 3 or 7 days, respectively. CD8+ T cells inheriting aged
320 mitochondria exhibited lower frequencies of slow-dividing cells, and more homogeneous proliferation
321 profile in comparison to MitoSnap- cells, corroborating their less quiescent status that might contribute
322 to precocious cell death (Fig. 4E). Autophagy-deficient cells showed slower proliferation rates
323 independent of their mitochondrial inheritance profile, suggesting that autophagy loss might play a role
324 in cell cycle arrest, which corroborates previous reports about the role of autophagy in degrading cyclin-
325 dependent kinase inhibitor 1B (CDKN1B) in T cells⁴⁰. Concerning survival in cytokine-limiting
326 conditions, as expected for the effector population, MitoSnap+ cells showed lower viability than
327 MitoSnap- cells after 7 days in culture (Fig. 4F). Interestingly, autophagy-sufficient remaining surviving
328 cells exhibited distinct phenotypes, being CD44+CD62L+ cells, an expression pattern seen quiescent
329 memory cells^{22,38}, more abundant amongst MitoSnap- progenies (Fig. 4G). Autophagy-deficient cells
330 did not exhibit differences in phenotype linked to early mitochondrial inheritance (Fig. S4B). Because in
331 WT cells aged mitochondria are cleared after 3 days even in MitoSnap+ cells that inherited their
332 mitochondria from the mother cell, our results suggest that old organelles inherited at first division
333 counteract cellular quiescence at early stages post-T cell stimulation. In turn this promotes the
334 emergence of a cell population that resembles short-lived effector CD8+ T cells. Our results provide the
335 first unequivocal data linking organelle inheritance in mammals - here mitochondria - to changes in cell
336 function that culminate in fate commitment of cells *in vivo*.

337

338 **Figure 4. Inheritance of aged mitochondria counteracts cellular quiescence.** (A) CTV labelled
339 naïve MitoSnap CD8+ T cells (*Atg16l1^{fl/fl} Omp25^{fl/fl} Ert2^{Cre}*) were activated on anti-CD3, anti-CD28 and
340 Fc-ICAM-1 coated plates for 36-40 h. Cells were cultured in T cell medium containing 500 nM Z-4-
341 Hydroxytamoxifen (4OHT). 16 h post-activation, cells were harvested and labelled with Snap-Cell 647-
342 SiR (old mitochondria) and cultured for further 24 h, when cells were harvested and prepared for the
343 Scenith assay to evaluate their metabolic reliance. OPP incorporation was used as a readout of
344 translation. 2-Deoxy-D-glucose was used to inhibit glycolysis and oligomycin was used to inhibit
345 mitochondrial respiration. A combination of both inhibitors was used to suppress both metabolic
346 pathways and obtain an OPP baseline. Analysis was done by flow cytometry, which allowed the
347 discrimination of MitoSnap+ and MitoSnap- cells. Data are represented as mean ± SEM. Statistical
348 analysis was performed using Two-Way ANOVA with Tukey's post-hoc test. Exact P values are
349 depicted in the figure. Representative data of 1 out of 3 experiments. (B) Oxygen consumption rate
350 (OCR) of sorted MitoSnap+ and MitoSnap- first-daughter CD8+ T cells was measured under basal
351 conditions and in response to indicated drugs. Data are represented as mean ± SEM. Datapoints
352 represent 4 technical replicates from 2 biological samples. (C) ATP production by sorted MitoSnap+
353 and MitoSnap- first-daughter CD8+ T cells originally isolated from WT (*Atg16l1^{fl/fl} Omp25^{fl/fl} Ert2^{Cre}*) or
354 KO (*Atg16l1^{fl/fl} Omp25^{fl/fl} Ert2^{Cre}*) mice. Data are represented as mean ± SEM. Statistical analysis was


355 performed using an unpaired two-tailed Student's *t* test. Exact P values are depicted in the figure.
356 Datapoints represent 4 technical replicates from 1 biological sample per group. Representative data
357 from 1 out of 2 experiments. **(D)** WT and KO MitoSnap+ and MitoSnap- cells were sorted as
358 represented in figure 2G and cultured for 3 days in T cell medium supplemented with IL-2, IL-7 and IL-
359 15. Frequency of slow-dividing cells (1 or 2 divisions) was calculated. Data are represented as
360 mean \pm SEM. Statistical analysis was performed using One-Way ANOVA. Exact P values are depicted
361 in the figure. Datapoints represent 1-3 technical replicates from 2 biological samples per group.
362 Representative data from 1 out of 2 experiments. **(E)** WT and KO MitoSnap+ and MitoSnap- cells were
363 sorted as represented in figure 2G and cultured for 7 days in T cell medium supplemented with IL-2, IL-
364 7 and IL-15. Frequency of viable cells was calculated. Data are represented as mean \pm SEM. Statistical
365 analysis was performed using One-Way ANOVA. Exact P values are depicted in the figure. Datapoints
366 represent 5 technical replicates from 1 biological sample per group. Representative data from 1 out of
367 2 experiments. **(F)** Frequency of CD44+ CD62L+ cells within surviving cells from E was calculated.
368 Gating strategy is depicted (right panel). Data are represented as mean \pm SEM. Statistical analysis was
369 performed using an unpaired two-tailed Student's *t* test. Exact P values are depicted in the figure.
370 Datapoints represent 5 technical replicates from 1 biological sample per group. Representative data
371 from 1 out of 2 experiments.

372

373 Unequal inheritance of mitochondrial populations drives changes in the transcriptome and proteome of
374 CD8+ T cells

375 Aiming to further identify the fate-divergency drivers found in cells and the metabolism of daughter cells
376 inheriting distinct mitochondrial pools, we labelled old mitochondria in activated CD8+ T cells, sorted
377 MitoSnap+ and MitoSnap- first-daughter cells and performed single-cell transcriptomics (scRNAseq)
378 and bulk proteomics analysis of these two populations (Fig. 5A). Proteomics analysis of combined 4
379 experiments (6 samples per group) allowed us to identify a small list of differentially inherited proteins
380 in these two populations. MitoSnap- cells expressed higher levels of Werner protein (WRN), an enzyme
381 important for genome stability⁴¹, and NADH dehydrogenase 4 (mt-ND4), a protein involved in
382 mitochondrial biogenesis as part of the mitochondrial respiratory chain complex I (gene ID: 4538,
383 HGNC). MitoSnap+ cells were enriched in Hypoxia Inducible Factor 1 Subunit Alpha (HIF1a) and late
384 endosomal/lysosomal adaptor 2 (LAMTOR2), proteins involved in mammalian target of rapamycin
385 (mTOR) metabolism, which has been reported to boost effector CD8+ T cell differentiation^{42,43} (Fig. 5B).
386 In other studies, including our own, transcriptional profiling of CD8+ T cell populations following one
387 cycle of cell division was performed using bulk and single cell strategies^{27-30,44}. However, these reports
388 either relied on the expression of surface markers and reporter genes with the caveat of their dynamic
389 expression to identify effector-like and memory-like cell daughters. They could not directly link the
390 transcriptional divergences to asymmetric inheritance of cell fate determinants during mitosis, as cells
391 were generated *in vivo* and could have emerged from both symmetric and asymmetric cell divisions.
392 Unbiased clustering of single cell transcriptomes and visualization with uniform manifold approximation
393 and projection (UMAP) plots, allowed us to define 15 clusters (Fig. 5C). Both types of cells were present
394 in all clusters, but some were enriched in MitoSnap+ or MitoSnap- daughter-cells. By evaluating the
395 expression of the genes encoding for proteomics enriched targets in our scRNAseq UMAP, we
396 confirmed that there was a positive correlation between gene and protein expression. Furthermore, the
397 MitoSnap+ proteome cluster was enriched in clusters 1 (lower-half), 2, 4 and 8-12, while the MitoSnap-
398 proteome cluster was enriched in clusters 1 (upper-half), 3, 7 and 13 (Fig. 5D). Interestingly, these
399 cluster regions matched MitoSnap+ and MitoSnap- enriched clusters concerning cell numbers (Fig. 5C).
400 Based on the genes mostly expressed in each cluster, we could assign functional signatures to each of
401 them. Clusters 1 and 5 exhibited very high expression of mitochondrial encoded genes. Clusters
402 dominated by MitoSnap- cells showed a memory-related signature (Cluster 3), high expression of genes
403 linked to mitochondrial function and biogenesis (Cluster 7) and redox balance (Cluster 13) or a
404 transcriptional signature marked by genes involved in chemotaxis and adhesion (Cluster 6). Most of the
405 other clusters had a majority of MitoSnap+ cells and exhibited transcriptional profiles that could be
406 linked to effector functions (Clusters 8-12). These gene signatures are aligned with the functional
407 readouts previously obtained, as MitoSnap- cells are the ones with higher mitochondrial turnover rates
408 and memory potential, while MitoSnap+ cells are more proliferative and show lower survival rates in

409 absence of TCR-stimulation, a feature of effector-like cells. We also selected genes extensively
410 reported to promote effector or memory differentiation in CD8⁺ T cells and found that they were enriched
411 in MitoSnap+ and MitoSnap- abundant clusters, respectively (Fig. S5A-C). Interestingly, we also found
412 a cluster enriched in genes that are linked to one-carbon (1C) metabolism (e.g. *Mthfd2*, *Phgdh* and
413 *Shmt2*, Cluster 2, Fig. S5D). This cluster is formed by a small majority of MitoSnap+ cells, but the 1C
414 metabolism signature is stronger in this population in comparison to MitoSnap- cells (Fig. 5E). In CD4⁺
415 T cells 1C metabolism is essential for proliferation and effector function as an inducer of mTOR
416 activity⁴⁵. Thus, aiming to functionally validate this finding, we again measured metabolic reliance
417 through Scenith using SHIN, an inhibitor of serine hydroxymethyltransferase (SHMT1/2) activity, a
418 mitochondrial enzyme responsible for the catabolism of serine to glycine, key to one-carbon
419 metabolism. Our results suggest that in MitoSnap+ cells SHIN1 treatment indeed suppresses their
420 translation rates, a phenotype that was not shared by MitoSnap- cells (Fig. 5F). Taken together, these
421 results further support that inheritance of mitochondrial pools of different ages determines T cell fate
422 divergence and this is caused by distinct strategies to fulfil metabolic demands: MitoSnap- cells are
423 more quiescent and quickly turn over mitochondria, which includes mitochondrial biogenesis, while
424 MitoSnap+ cells keep old/damaged mitochondria, are more glycolytic and turn to one-carbon
425 metabolism, one of the first consequences after a mitochondrial insult.

426

427 **Figure 5. Unequal inheritance of mitochondrial populations drives changes in the transcriptome**
428 **and proteome of CD8⁺ T cells.** (A) Experimental layout: CTV labelled naïve MitoSnap CD8⁺ T cells
429 (*Atg16l1*^{fl/fl} *Omp25*^{fl/fl} *Ert2*^{Cre}) were activated on anti-CD3, anti-CD28 and Fc-ICAM-1 coated plates for
430 36-40 h. Cells were cultured in T cell medium containing 500 nM Z-4-Hydroxytamoxifen (4OHT). 16 h
431 post-activation, cells were harvested and labelled with Snap-Cell 647-SiR (old mitochondria) and
432 cultured for further 24 h. Cells were harvested and sorted into MitoSnap+ and MitoSnap- populations
433 and their proteome and transcriptome were analyzed. (B) Volcano plot showing differentially inherited
434 proteins by MitoSnap+ and MitoSnap- cells. Data pooled from 6 samples done in 4 independent
435 experiments. MitoSnap+ and MitoSnap- enriched proteins (represented by their encoding genes) are
436 highlighted in orange and blue, respectively. Proteomics volcano plot was done using Tableau. (C)
437 UMAP and clustering of integrated MitoSnap+ and MitoSnap- cells obtained from 5 mice per group
438 (left). Frequency of MitoSnap+ and MitoSnap- cells per cluster (right). (D) Genes encoding for proteins

439 enriched in MitoSnap+ or MitoSnap- were projected onto UMAP clusters from 5C. **(E)** Genes involved
440 in one-carbon (1C) metabolism were projected onto UMAP clusters. **(F)** CTV labelled naïve MitoSnap
441 CD8+ T cells (*Atg16l1^{fl/fl}*; *Omp25^{fl/fl}*; *Ert2^{Cre}*) were activated on anti-CD3, anti-CD28 and Fc-ICAM-1 coated
442 plates for 36-40 h. Cells were cultured in T cell medium containing 500 nM Z-4-Hydroxytamoxifen
443 (4OHT). 16 h post-activation, cells were harvested and labelled with Snap-Cell 647-SiR (old
444 mitochondria) and cultured for further 24 h, when cells were harvested and prepared for the Scenith
445 assay, aiming to evaluate their metabolic reliance. OPP incorporation was used as a readout of
446 translation. 2-Deoxy-D-glucose was used to inhibit glycolysis and oligomycin was used to inhibit
447 mitochondrial respiration. A combination of both inhibitors was used to suppress both metabolic
448 pathways and obtain an OPP baseline. SHIN1 was used to inhibit enzymes SHMT1/2. Analysis was
449 done by flow cytometry, which allowed the discrimination of MitoSnap+ and MitoSnap- cells. Data are
450 represented as mean \pm SEM. Statistical analysis was performed using Two-Way ANOVA with Tukey's
451 post-hoc test. Exact P values are depicted in the figure. Representative data of 1 out of 2 experiments.

452 Discussion

453 Most of the previous functional readouts evaluating the role of ACD in early fate decisions have relied
454 on sorting daughter cells based on the expression of the surface marker CD8 or the transcription factor
455 c-Myc, with CD8^{hi}/c-Myc^{hi} cells being effector-like and CD8^{lo}/c-Myc^{lo} cells being memory-like
456 progenies^{21,23,26}. However, the expression of these molecules is highly dynamic and does not
457 necessarily result from asymmetric segregation events. A recent pioneering study used genetic
458 barcoding to evaluate the transcriptome of genuine sister cells and demonstrated that early-fate
459 trajectories can be established since first CD8+ T cell division²⁷. However, overall there is no currently
460 existing evidence to directly link this divergence to the inheritance of a fate determinant. Here we are
461 first to show that asymmetric inheritance of pre-mitotic cell cargo causes divergent T cell fate
462 commitment. This was possible because the MitoSnap system allows discrimination between events of
463 inheritance and recent biogenesis. Tagging mitochondria before mitosis can be exclusively allocated to
464 the pre-mitotic mother cell, thus guaranteeing that post-mitotic changes in cell phenotype do not
465 interfere with its inheritance pattern, something which was not achieved in previous reports using
466 expression of surface markers or reporter genes.

467 Mitochondria are organelles required to meet the cell's energetic demands. They are the site of
468 oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and fatty acid oxidation (FAO),
469 pathways involved in the generation of adenosine triphosphate (ATP). They are also involved in
470 maintaining the redox balance of the cell, as they can produce reactive oxygen species (ROS), are
471 involved in calcium signalling, can drive apoptotic cell death and, by being core metabolic modulators,
472 also contribute to epigenetic regulation of cell function^{5,46}. The results from several studies provide
473 evidence that T cell fate is influenced by mitochondrial homeostasis, architecture and function: effector
474 cells are highly glycolytic and memory cells rely on FAO^{32,33,47,48}. Accordingly, mitochondrial quality
475 control plays an important role in T cell fate decisions with mitophagy being a crucial regulator of cell
476 survival^{17,49,50}. Thus, mitochondria constitute a suitable cell cargo to be linked to differentiation
477 trajectories, which was corroborated by our initial proteomics screening identifying mitochondrial-related
478 proteins being differentially enriched in memory-like and effector-like CD8+ T cell daughters.

479 The emergence of cells that maintain or lose their MitoSnap labelling during CD8+ T cell proliferation
480 could result from different cell biological processes and we dissected the mechanisms underlying the
481 inheritance of mitochondria from the mother cell. Firstly, we identified that asymmetric cell division
482 contributes to the polarized inheritance of old mitochondria. However, we observed that progenies able
483 to clear old mitochondria also rapidly lost their labelling for young mitochondria, suggesting that
484 MitoSnap- cells emerge from both segregation and degradation events, mitophagy levels being higher
485 in this population. Autophagy and mitophagy support memory CD8+ T cell responses, but it remained
486 unclear when these mechanisms are required to contribute to the formation of memory-precursors or
487 the maintenance of long-lived cells¹⁵⁻¹⁷. To address whether autophagy plays a role in unequal
488 mitochondrial inheritance, we used autophagy-deficient cells and found that asymmetric inheritance of
489 old mitochondria was impaired and, as opposed to autophagy-competent cells, old mitochondria were
490 kept for several days. These results and the symmetric proteome of CD8^{hi} and CD8^{lo} progenies from
491 autophagy-deficient or old CD8+ T cells, corroborate our initial hypothesis and place ACD and

492 autophagy/mitophagy as mechanisms that work synergistically to promote early asymmetric inheritance
493 of cell fate determinants.

494 By following the frequencies of cells inheriting or not old mitochondria (MitoSnap+/-) over the course of
495 the immune responses it became clear that MitoSnap- cells were more functional memory cells, as they
496 showed better maintenance, re-expansion potential and ability to produce effector-cytokines upon re-
497 stimulation. This resembles results obtained for CD8^{hi}/c-Myc^{hi} and CD8^{lo}/c-Myc^{lo} cells^{21,26}, with the
498 advantage that we can finally draw a definitive link between the inheritance of a cell cargo that already
499 existed in the mother cell to the biased fate of its progenies. We then directed our attention to determine
500 what drives the different fates of MitoSnap+ and MitoSnap- cells. By using sorted populations or
501 approaches that provide single-cell resolution, we determined that the metabolism, survival and
502 proliferative capacity of these progenies is different. Exhibiting lower translation rates, higher
503 frequencies of slow-dividing cells and CD62L expression and better survival capacity in absence of
504 antigen, MitoSnap- cells clearly showed a stronger memory phenotype than MitoSnap+ cells^{22,38}.
505 Although, surprisingly, we could not observe significant differences in mitochondrial respiration rates,
506 MitoSnap+ cells relied more on glycolysis, a feature seen in effector CD8⁺ T cells. As old organelles
507 also produced mitochondrial ROS as measured by MitoSOX, it is reasonable to assume that they have
508 deteriorated mitochondrial fitness and that this might promote their early shift towards glycolysis³².
509 Mitophagy has recently been reported to contribute to memory CD8⁺ T cell formation¹⁷. Our results add
510 to this, showing that mitophagy contributes to the decision for memory CD8⁺ T cell fate commitment as
511 early as the first mitosis following CD8⁺ T cell stimulation, as directly measured by the loss of young
512 mitochondria generated after the first mitosis in MitoSnap- cells.

513 Finally, to obtain an unbiased overview of the differences between MitoSnap- and MitoSnap+ cells
514 following the first mitosis post naïve CD8⁺ T cell activation, we performed both bulk proteomics and
515 single cell transcriptomics of these two populations. In line with our expectations, we observed proteins
516 linked to effector cell fate decision in MitoSnap+ cells and proteins linked to DNA health and
517 mitochondrial biogenesis in MitoSnap- cells. It also came to our attention that a long list of kinesins (Kif
518 genes) was enriched in effector-like MitoSnap+ daughters. Kinesins are motor proteins directly involved
519 in intracellular trafficking of cell components along microtubules, which is important for organelle
520 movement and for cell division events⁵¹, which fits with their less quiescent status and with the
521 polarization of autophagosomes and mitochondria towards MitoSnap+ cells. Single cell transcriptomics
522 allowed us to identify clusters that were enriched in MitoSnap+ and MitoSnap- cells. The presence of a
523 memory-like cluster enriched in MitoSnap- cells, where this signature was stronger than in MitoSnap+
524 cells, further cements this cell type as the one inheriting the memory potential.

525 We became particularly interested in a cluster with a signature enriched in MitoSnap+ cells with higher
526 expression of genes involved in 1C metabolism. 1C metabolism comprises methionine and folate cycles
527 that provide 1C units to boost *de novo* synthesis of nucleotides and promote amino acid homeostasis
528 and redox defence, particularly important in dividing cells such as cancer cells⁵². Enzymes involved in
529 1C metabolism can be found in the cytoplasm and the mitochondria, and both sets were upregulated in
530 MitoSnap+ cells. Serine is an important donor of the 1C units when it is converted to glycine and in
531 CD8⁺ T cells this amino acid has been shown to be important for clonal expansion of effector cells⁵³.
532 1C metabolism has also been directly investigated in different CD4⁺ T cell subsets and results support
533 its role in mTOR activation and the establishment of pro-inflammatory and highly proliferative
534 populations⁴⁵. Because expression of several amino acid transporters, including serine transporters, is
535 upregulated in MitoSnap+ cells, which also exhibit defective translation upon C1 metabolism inhibition,
536 our results provide further evidence of the role of this pathway as a regulator of cell fate decision.

537 Collectively, our results support the notion that organelle inheritance plays an important role in CD8⁺ T
538 cell fate decision and contributes to the metabolic status of cell progenies. In cells from the
539 haematopoietic lineage, the polarized presence of organelles during mitosis followed by long-term
540 quantitative single-cell imaging has been reported, with the caveat that they were identified by dyes or
541 probes that limit interpretation about their inheritance⁵⁴. In CD8⁺ T cells, asymmetric mTOR activity in
542 effector-like daughter cells has been linked to its translocation to lysosomes and amino acid sensing,
543 but *in vivo* function readouts relied on correlative CD8 expression⁴³. Concerning the asymmetric
544 partitioning of degradation pathways, proteasome activity has been shown to contribute to distinct T-

545 bet distribution between daughter cells, but results were not directly linked to *in vivo* T cell fates²⁴. Here
546 we show that organelle inheritance results from both degradation and segregation and that mitophagy
547 and ACD work synergistically to form early memory-like cells and effector-like cells. As cells inheriting
548 (or not) aged organelles are endowed with distinct metabolic signatures, our results suggest that
549 therapeutic modulation of T cells can have different outcomes depending on when it is performed. Pre-
550 mitotic modulation will globally impact on T cell differentiation, and post-mitotic approaches can
551 selectively target a certain cell type, memory or effector, by inhibiting or improving its function. We
552 anticipate that these findings will be relevant to a better understanding of how T cell diversity is early-
553 imprinted and to foster the development of more efficient therapeutic strategies in the context of
554 regenerative medicine and vaccination, which are particularly important in the context of ageing.

555 **Methods**

556 Study design

557 This study aimed to evaluate whether organelle inheritance controls CD8⁺ T cell differentiation. To
558 achieve that, we investigated the role of asymmetric cell division and autophagy in patterns of
559 mitochondria inheritance. The novel MitoSnap model was used to allow specific tracking of old vs.
560 young organelles. We used imaging analysis of mitotic CD8⁺ T cells, flow cytometry readouts that allow
561 single cell resolution, metabolic analysis and unbiased OMICS approaches to measure differences in
562 phenotype and function between MitoSnap- and MitoSnap+ progenies. We used adoptive cell transfers
563 of TCR-transgenic OT-I MitoSnap cells coupled to *Listeria monocytogenes*-OVA infections as a tool to
564 assess immune responses and the impact of old organelle inheritance *in vivo*. All conclusions rely on
565 at least two experiments. Every group consisted of at least two mice. No randomization or blinding was
566 used.

567 Animal models

568 All animal work was reviewed and approved by Oxford Ethical committee and the UK Home office under
569 the project licenses PPL30/3388 and P01275425. Mice were bred under specific pathogen-free (SPF)
570 conditions in-house, housed on a 12 h dark:light cycle, with a 30 min period of dawn and dusk and fed
571 ad libitum. The temperature was kept between 20 and 24 °C, with a humidity level of 45–65%. Housing
572 cages were individually ventilated and provided an enriched environment for the animals. MitoSnap
573 mice (MGI:6466976; *Omp25-SnapTag*^{f/f}) were kindly provided by the lab of Prof. Pekka Katajisto. This
574 strain was then bred with CD45.1 *Atg16l1*^{f/f} *Ert2*^{Cre} OT-I mice expressing a TCR specific for OVA_{257–264}
575 SIINFEKL peptide³⁷, and maintained as CD45.1 or CD45.1/2 mice. Host mice in adoptive transfer
576 experiments were either B6.SJL.CD45.1 or C57BL/6 naïve mice. Six-to-sixteen-week-old mice were
577 considered young and > 100 week-old mice were considered aged.

578 CD8⁺ T cell isolation and activation

579 Spleen and inguinal lymph nodes were harvested. Single-cell suspensions were used for naïve CD8⁺
580 T cell isolation using EasySep™ Mouse Naïve CD8⁺ T Cell Isolation Kit (Stemcell™ Technologies)
581 following manufacturer's instructions. Purified populations were cultured (at 37°C, 5% CO₂) in T cell
582 medium: RPMI-1640 containing HEPES and l-glutamine (R5158, Sigma-Aldrich) supplemented with
583 10% filtered fetal bovine serum (Sigma-Aldrich), 1× Penicillin-Streptomycin (Sigma-Aldrich), 1× non-
584 essential amino acids (Gibco), 50 µM β-mercaptoethanol (Gibco), and 1 mM sodium pyruvate (Gibco).
585 T cell activation was done on anti-CD3 (5 µg/ml) (145-2C11, BioLegend), anti-CD28 (5 µg/ml) (37.51,
586 BioLegend) and recombinant human or murine Fc-ICAM-1 (10 µg/ml) (R&D Systems) coated plates.
587 36–40h post activation cells were used in downstream assays. Autophagy deletion and/or SnapTag
588 expression were induced by culturing cells in presence of 500 nM (Z)-4-hydroxytamoxifen (Sigma-
589 Aldrich, H7904-5MG). To determine cell division events, cells were stained with CellTrace Violet™ (Life
590 Technologies) following manufacturer's guidelines.

591 SnapTag labelling protocol

592 MitoSnap CD8⁺ T cells were labelled in 1 or 3 steps. Labelling of old organelles was done by harvesting
593 CD8⁺ T cells 12–16 h post-activation and washing them in PBS (500 xg). Cells were incubated in T cell
594 medium containing the first SnapSubstrate for 30 min at 37°C, washed in PBS and put back in culture

595 in their original wells for further 20-24 h. When young organelle labelling was also performed, cells were
596 harvested, washed and incubated with T cell medium containing 5 μ M (Snap-Cell Block S9106S, New
597 England Biolabs, NEB) for 30 min at 37°C. After washing, cells rested for 30-60 min in T cell medium
598 and then incubated with the second SnapSubstrate for 30 min at 37°C. Fluorescent cell permeable
599 Snap-Cell substrates (NEB) were used in the following concentrations: 3 μ M (Snap-Cell 647-SiR
600 S9102S), 3 μ M (Snap-Cell TMR-Star S9105S), 5 μ M (Snap-Cell Oregon Green S9104S).

601 Cell survival and proliferation assays

602 Following activation, isolated MitoSnap CD8⁺ T cells (wild type vs. ATG16L1-deficient or MitoSnap+ vs.
603 Mito Snap- first-daughter cells) were cultured in T cell medium supplemented with murine IL-2, IL-7 and
604 IL-15 (5 ng/ml). Cell proliferation was evaluated 3 days later and cell survival was assessed 7 days
605 later.

606 Adoptive transfer and immunization

607 5-50 \times 10³ FACS-purified MitoSnap+ or MitoSnap- cells (equal numbers in the same experiment to allow
608 comparison between the two groups) were intravenously injected into naïve recipients. In the following
609 day, mice were infected with 2 \times 10³ colony-forming units (cfu) of *Listeria monocytogenes* expressing
610 ovalbumin (LM-OVA) intravenously. LM-OVA was kindly provided by Prof. Audrey Gerard (Kennedy
611 Institute of Rheumatology, University of Oxford). LM-OVA growth was done from frozen aliquots in Brain
612 Heart Infusion (BHI) broth (Sigma, #53286-100G). Bacteria were used for infections when reaching
613 exponential growth. Immune responses were tracked in the blood and at the memory phase spleens
614 were harvested.

615 Immunofluorescence staining and confocal microscopy

616 At different timepoints post-stimulation (pre-mitotic or mitotic/post-mitotic), CD8⁺ T cells were harvested.
617 In some experiments, cells were incubated with 1-2 μ M MitoSOX™ Mitochondrial Superoxide Indicator
618 (Invitrogen) for 15 min at 37°C prior to harvesting. Cells were washed in PBS and transferred on Poly-
619 L-Lysine (Sigma-Aldrich) treated coverslips, followed by incubation for 45-60 min at 37 °C. Attached
620 cells were fixed with 2% methanol-free paraformaldehyde (PFA) in PBS (ThermoScientific) for 10 min,
621 permeabilized with 0.3% Triton X-100 (Sigma-Aldrich) for 10 min and blocked in PBS containing 2%
622 bovine serum albumin (BSA, Sigma-Aldrich) and 0.01% Tween 20 (Sigma-Aldrich) for 1 h at room
623 temperature. The following antibodies were used to perform immunofluorescence stainings in murine
624 cells: mouse anti- β -tubulin (Sigma-Aldrich), anti-mouse IgG AF488 (Abcam), anti-CD8 APC 53-6.7,
625 BioLegend), anti-LC3B (D11) XP® Rabbit mAb PE (Cell Signalling). DAPI (Sigma-Aldrich) was used to
626 detect DNA. ProLong™ Gold Antifade Mountant (ThermoScientific) was used as mounting medium.
627 Mitotic cells (late anaphase to cytokinesis) were identified by nuclear morphology and/or presence of
628 two microtubule organizing centres (MTOCs) and a clear tubulin bridge between two daughter cells.
629 Forty to eighty Z-stacks (0.13 μ M) were acquired with a ZEISS 980 Airyscan 2 with a C-Apochromat
630 63x/1.2 W Corr magnification objective and the ZenBlue software. Data were analyzed using
631 Fiji/ImageJ. Thresholds for quantification were setup individually for each fluorophore. Asymmetry rates
632 were calculated based on the integrated density (volume and fluorescence intensity measurements
633 were considered) of cell cargoes inherited by each daughter cell. This was done by using the following
634 calculation: (P1-P2)/(P1+P2), where P1 is the daughter cell with higher integrated density of CD8 or old
635 mitochondria. Any values above 0.2 or below -0.2 were considered asymmetric, which corresponds to
636 one daughter-cell inheriting at least 1.5 \times more of a cell cargo than its sibling.

637 Planar Supported Lipid Bilayers (PSLB)

638 Planar supported lipid bilayers were made as described previously ⁵⁵. Briefly, glass coverslips were
639 plasma-cleaned and assembled into disposable six-channel chambers (Ibidi). SLB were formed by
640 incubation of each channel with small unilamellar vesicles containing 12.5 mol% 1,2-dioleoyl-sn-
641 glycero-3-[(N-(5-amino-1-carboxypentyl) iminodiacetic acid) succinyl] (nickel salt) and 0.05 mol% 1,2-
642 dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (sodium salt) in 1,2-dioleoyl-sn-glycero-3-
643 phosphocholine at total phospholipid concentration 0.4 mM. Chambers were filled with human serum
644 albumin (HSA)-supplemented HEPES buffered saline (HBS), subsequently referred to as HBS/HSA.
645 Following blocking with 5% casein in PBS containing 100 μ M NiSO₄, to saturate NTA sites, fluorescently

646 labelled streptavidin was then coupled to biotin head groups. Biotinylated 2C11-fab fragments (30
647 molecules/μm²) and His-tagged ICAM-1 (200 molecules/μm²), and CD80 (100 molecules/μm²) were
648 then incubated with the bilayers at concentrations to achieve the indicated site densities. Bilayers were
649 continuous liquid disordered phase as determined by fluorescence recovery after photobleaching with
650 a 10 μm bleach spot on an FV1200 confocal microscope (Olympus).

651 T cell immunological synapse formation on PSLB

652 Naïve murine CD8⁺ T cells were incubated at 37°C on SLB. After 10 min, cells were fixed with 4%
653 methanol-free formaldehyde in PHEM buffer (10 mM EGTA, 2 mM MgCl₂, 60 mM Pipes, 25 mM
654 HEPES, pH 7.0) and permeabilized with 0.1% Triton X-100 for 20 min at RT. Anti-CD3 staining was
655 used to identify TCR regions and actin was labelled with fluorescent phalloidin.

656 Total internal reflection fluorescence microscopy (TIRFM)

657 TIRFM was performed on an Olympus IX83 inverted microscope equipped with a 4-line (405 nm, 488
658 nm, 561 nm, and 640 nm laser) illumination system. The system was fitted with an Olympus UApON
659 150 × 1.45 numerical aperture objective, and a Photometrics Evolve Delta EMCCD camera to provide
660 Nyquist sampling. Quantification of fluorescence intensity was performed with ImageJ.

661 Flow Cytometry

662 Blood samples used for kinetics analysis were obtained from the tail vein at weeks 1, 2 and 3 post-LM-
663 OVA challenge. At end-timepoints, spleens were harvested and single-cell splenocytes were prepared
664 by meshing whole spleens through 70 μm strainers using a 1 ml syringe plunger. When cytokine
665 production was assessed, splenocytes were incubated at 37 °C for 1 h with 1 μM of SIINFEKL peptide,
666 followed by 4 h in presence of SIINFEKL peptide + 10 μg/ml of brefeldin A (Sigma-Aldrich). Specific
667 CD8⁺ T cells were evaluated by incubation with SIINFEKL₂₅₇₋₂₆₄-APC-Labeled or SIINFEKL₂₅₇₋₂₆₄-
668 BV421-Labeled tetramers (NIH Tetramer Core Facility at Emory University). Erythrocytes were lysed
669 by Red Blood Cell (RBC) Lysis buffer (Invitrogen). Conjugated antibodies used for surface staining
670 were: anti-CD127 A7R34, anti-CD25 PC61 (AF700, PE Cy7, Biolegend; APC, eBioscience), anti-CD44
671 IM7 (AF700, BV785, PE, PerCPCy5.5, Biolegend), anti-CD45.1 A20 (BV785, FITC, PB, Biolegend),
672 anti-CD45.2 104 (AF700, BV711, FITC, Biolegend), anti-CD62L MEL-14 (FITC, Biolegend; eF450,
673 eBioscience), anti-KLRG1 2F1 (BV711, BV785, Biolegend), anti-CD8 53-6.7 (BV510, BV605, FITC, PE,
674 Biolegend), anti-TCRβ H57-597 (APC-Cy7, PerCPCy5.5, Biolegend). Cells were incubated for 20 min
675 at 4 °C. When intracellular staining was performed, cells were fixed/permed with 2× FACS Lysis Solution
676 (BD Biosciences) with 0.08% Tween 20 (Sigma-Aldrich) for 10 min at RT, washed in PBS and incubated
677 for 1 h at RT with anti-IL2 JES6-5H4 (APC, Biolegend), anti-IFNγ XMG1.2 (BV421, Biolegend) and anti-
678 TNF MP6-XT22 (PE-Cy7, ThermoFischer). Identification of viable cells was done by fixable near-IR
679 dead cell staining (Life Technologies). All samples were washed and stored in PBS containing 2% FBS
680 (Sigma-Aldrich) and 5 mM of EDTA (Sigma-Aldrich) before acquisition. Stained samples were acquired
681 on a FACS LSR II (R/B/V) or a Fortessa X20 (R/B/V/YG) flow cytometer (BD Biosciences) with
682 FACSDiva software. Data analysis was done using FlowJo software (FlowJo Enterprise, version 10.10,
683 BD Biosciences).

684 Cell sorting (FACS)

685 After activation, CTV- and SnapSubstrate-labelled MitoSnap CD8⁺ T cells were harvested and stained
686 for phenotypical markers (anti-CD44 IM7, anti-CD45.1 A20, anti-CD45.2 104, anti-CD8 53-6.7
687 conjugated to different fluorophores depending on experiment, all Biolegend). Dead cells were excluded
688 by staining cells with a fixable Live/Dead dye (Invitrogen, L34993 or L34957). Subpopulations of interest
689 were sorted on a FACS Aria III cell sorter (BD Biosciences).

690 Metabolic reliance measured by protein translation

691 We used a modified version of the Scenith assay³⁹, which describes a high correlation between protein
692 translation and ATP production. New protein synthesis was measured using the Click-iT Plus OPP
693 Protein Synthesis Assay (Thermo Fisher, C10456) according to manufacturer's protocol. In short, cells
694 were incubated in T cell medium for 30 min at 37°C without any metabolic inhibitors or in presence of

695 1 μ M oligomycin (Merck), 100 mM 2DG (Merck), a combination of both or 1 μ M of SHIN1 (Cambridge
696 Bioscience). This was followed by incubation with 10 μ M of alkynylated puromycin analog OPP for 30
697 min at 37°C. Click Chemistry was performed with Alexa Fluor 488™ dye picolyl azide. Metabolic
698 reliance was assessed by comparing the OPP gMFI, used as an indicator of the relative translation rate,
699 of inhibited samples to the vehicle control.

700 Western Blot

701 Following (Z)-4-hydroxytamoxifen (Sigma-Aldrich, H7904-5MG) treatment for 24 h and/or baflomycin
702 A1 (BafA) treatment (10 nM) for 2 h or not, cells were washed with PBS and lysed in RIPA lysis buffer
703 (Sigma-Aldrich) supplemented with complete Protease Inhibitor Cocktail (Roche) and PhosSTOP
704 (Roche). Protein concentration was calculated by using the BCA Assay (ThermoFisher). Samples were
705 diluted in 4x Laemmli Sample Buffer (Bio-Rad) and boiled at 100 °C for 5 min. 20 μ g protein per sample
706 were used for SDS-PAGE analysis. NuPAGE Novex 4%–12% Bis-Tris gradient gel (Invitrogen) with
707 MOPS running buffer (Invitrogen) was used. Proteins were transferred to a PVDF membrane (Merck
708 Millipore) and blocked with 5% skimmed milk-TBST (TBS 10x [Sigma-Aldrich] diluted to 1x in distilled
709 water containing 0.1% Tween 20 [Sigma-Aldrich]) for 1h. Membranes were incubated at 4°C overnight
710 with primary antibodies diluted in 1% skimmed milk-TBST and at room temperature for 1 h with
711 secondary antibodies diluted in 1% skimmed milk-TBST supplemented 0.01% SDS. Primary antibodies
712 used were: anti-ATG16L1, clone EPR15638 (Abcam, ab187671) and anti-GAPDH, clone 6C5 (Sigma-
713 Aldrich, MAB374). Secondary antibodies used were: IRDye 680LT Goat anti-Mouse IgG (H + L) (Licor,
714 926-680-70) and IRDye 800CW Goat anti-Rabbit IgG (H + L) (Licor, 926-322-11). Images were acquired
715 using the Odyssey CLx Imaging System. Data were analyzed using Image Studio Lite or Fiji.

716 Mitochondrial isolation and flow cytometry (MitoFlow)

717 Autophagy-sufficient (*Atg16l1*^{fl/fl} *Omp25*^{fl/fl} *Ert2*^{Cre}) and -deficient (*Atg16l1*^{fl/fl} *Omp25*^{fl/fl} *Ert2*^{Cre}) MitoSnap
718 CD8⁺ T cells were activated, labelled for old (SNAP-Cell® TMR-Star, NEB) and young organelles
719 (SNAP-Cell® Oregon Green, NEB), as previously described in the methods section, and after 40h
720 washed with complete T cell medium. Cell pellets were resuspended in ice-cold mitochondria isolation
721 buffer (320 mM sucrose, 2 mM EGTA, 10 mM Tris-HCl, at pH 7.2 in water) and homogenized with a
722 Dounce homogenizer with a 2 ml reservoir capacity (Abcam). We performed 20 strokes with a type B
723 pretzel. The homogenizer was rinsed with distilled water before each sample was processed to avoid
724 cross-contamination. Differential centrifugation of homogenates was done at 1,000 xg (4 °C for 8 min),
725 which resulted in a pellet containing whole cells and isolated nuclei first. The supernatant containing
726 the mitochondria was then transferred into new tubes and centrifuged at 17,000 xg (4 °C for 15 min).
727 Enriched mitochondria, which appeared as brown-colored pellets, were fixed in 1% PFA in 0.5 ml PBS
728 on ice for 15 min, followed by a wash with PBS. Mitochondria were resuspended in blocking buffer
729 containing anti-Tom20-BV421 antibody for 20 min at RT. After washing with PBS, mitochondria were
730 resuspended in 250 μ l filtered (0.2 μ m) PBS and acquired using a BD Fortessa X-20 flow cytometer.
731 The threshold for SSC-A (log-scale) was set to the minimum value (20,000) to allow acquisition of
732 subcellular particles. Submicron Particle Size Reference Beads (0.5 μ m, 1 μ m and 2 μ m, Thermo Fisher
733 Scientific) were also used to identify mitochondria.

734 Metabolic flux analysis

735 MitoSnap+ and MitoSnap- cells were purified by FACS and their oxygen consumption rates (OCR) were
736 measured using a XF96 MitoStress Test (Seahorse Agilent, 103015-100). Activated CD8⁺ T cells were
737 washed in RPMI 1640 without sodium bicarbonate, 10 mM glucose, 1% FCS, 2 mM pyruvate and
738 seeded in a XF plate (Agilent, 103793-100) coated with poly-L-lysine (Sigma-Aldrich) at equal densities
739 in corresponding assay medium (XF Assay Medium, 103680-100) pH 7.4 supplemented with 10 mM
740 glucose, 1 mM sodium pyruvate and 2 mM L-glutamine. Test compounds were sequentially injected to
741 obtain the following concentrations: 1 μ M oligomycin, 1.5 μ M FCCP, 1 μ M rotenone and 1 μ M antimycin
742 A. OCRs were normalized to cell number using CyQuant (Molecular Probes).

743 ATP synthesis assay

744 Sorted MitoSnap+ and MitoSnap- CD8⁺ T cells were boiled in 100 mM Tris, 4 mM EDTA, pH 7.74 buffer
745 for 2 min at 100°C. Following centrifugation, the supernatant was used for analysis. ATP levels were

746 assessed using the ATP Bioluminescence Assay Kit CLS II (Roche) following the manufacturer's
747 instructions. The samples and ATP standard mixtures were swiftly combined with an equal volume of
748 luciferase and promptly measured in a luminometer (BMG CLARIOstar Plus microplate reader).
749 Normalization was performed by adjusting values based on the total number of sorted cells. Experiment
750 was performed twice. Each experiment was done with 2 samples/group (each one pooled from 2
751 biological replicates) and at least four technical replicates per group.

752 Proteomics

753 Proteomics analysis was done as previously described⁵⁶. CD8^{hi} and CD8^{lo} or MitoSnap+ and MitoSnap-
754 daughter-cells following naïve CD8⁺ T cell activation were purified by FACS. Cell pellets were washed
755 2x in PBS before being stored at -80°C prior to proteomics analysis. Samples were resuspended in 200
756 µl of S-Trap lysis buffer (10% SDS, 100mM Triethylammonium bicarbonate) and sonicated for 15 min
757 (30 s on, 30 s off, 100% Amplitude, 70% Pulse). Samples were centrifuged and supernatants were
758 transferred to fresh tubes. Protein quantification was done using the Micro BCA Protein Assay Kit
759 (ThermoFisher). 150 µg of protein was processed using S-Trap mini columns (Protifi, #CO2-mini-80).
760 The samples were digested overnight with 3.75 µg of trypsin (ThermoFisher, Pierce Trypsin Protease
761 MS-Grade, #90057) with a second digest with the same amount of trypsin for 6 h the following day.
762 Peptides were extracted, dried under vacuum and resuspended to 50 µl with 1% Formic Acid
763 (ThermoFisher, #85178) and quantified using the Pierce Quantitative Fluorometric Peptide Assay
764 (ThermoFisher, #23290).

765 Peptides were injected onto a nanoscale C18 reverse-phase chromatography system (UltiMate 3000
766 RSLC nano, ThermoFisher) and electrosprayed into an Orbitrap Exploris 480 Mass Spectrometer (MS)
767 (ThermoFisher). For liquid chromatography the following buffers were used: buffer A (0.1% formic acid
768 in Milli-Q water (v/v)) and buffer B (80% acetonitrile and 0.1% formic acid in Milli-Q water (v/v)). Samples
769 were loaded at 10 µL/min onto a trap column (100 µm × 2 cm, PepMap nanoViper C18 column, 5 µm,
770 100 Å, ThermoFisher) equilibrated in 0.1% trifluoroacetic acid (TFA). The trap column was washed for
771 3 min at the same flow rate with 0.1% TFA then switched in-line with a ThermoFisher, resolving C18
772 column (75 µm × 50 cm, PepMap RSLC C18 column, 2 µm, 100 Å). Peptides were eluted from the
773 column at a constant flow rate of 300 nl/min with a linear gradient from 3% buffer B to 6% buffer B in 5
774 min, then from 6% buffer B to 35% buffer B in 115 min, and finally from 35% buffer B to 80% buffer B
775 within 7 min. The column was then washed with 80% buffer B for 4 min. Two blanks were run between
776 each sample to reduce carry-over. The column was kept at a constant temperature of 50°C. The data
777 was acquired using an easy spray source operated in positive mode with spray voltage at 2.60 kV, and
778 the ion transfer tube temperature at 250°C. The MS was operated in DIA mode. A scan cycle comprised
779 a full MS scan (m/z range from 350-1650), with RF lens at 40%, AGC target set to custom, normalised
780 AGC target at 300%, maximum injection time mode set to custom, maximum injection time at 20 ms,
781 microscan set to 1 and source fragmentation disabled. MS survey scan was followed by MS/MS DIA
782 scan events using the following parameters: multiplex ions set to false, collision energy mode set to
783 stepped, collision energy type set to normalized, HCD collision energies set to 25.5, 27 and 30%,
784 orbitrap resolution 30000, first mass 200, RF lens 40%, AGC target set to custom, normalized AGC
785 target 3000%, microscan set to 1 and maximum injection time 55 ms. Data for both MS scan and MS/MS
786 DIA scan events were acquired in profile mode.

787 Analysis of the DIA data was carried out using Spectronaut Biognosys, AG (version 14.7.201007.47784
788 for CD8^{hi} and CD8^{lo} cells obtained from young, *Atg16l1*-deficient and old mice; version
789 17.6.230428.55965 for MitoSnap+ and MitoSnap- cells). Data was analysed using the direct DIA
790 workflow, with the following settings: imputation, profiling and cross run normalization were disabled;
791 data Filtering to Qvalue; Precursor Qvalue Cutoff and Protein Qvalue Cutoff (Experimental) set to 0.01;
792 maximum of 2 missed trypsin cleavages; PSM, Protein and Peptide FDR levels set to 0.01; cysteine
793 carbamidomethylation set as fixed modification and acetyl (N-term), deamidation (asparagine,
794 glutamine), oxidation of methionine set as variable modifications. The database used for CD8^{hi} and
795 CD8^{lo} cells was mouse_swissprot_isoforms_extra_trembl_06_20.fasta (2020-06) and for mitosnap
796 samples was the *Mus musculus* proteome obtained from uniprot.org (2022-02). Data filtering, protein
797 copy number and concentration quantification was performed in the Perseus software package, version
798 1.6.6.0. Copy numbers were calculated using the proteomic ruler as described³¹. Samples were

799 grouped according to the condition. P values were calculated via a two-tailed, unequal-variance t-test
800 on log-normalized data. Elements with P values < 0.05 were considered significant, with a fold-change
801 cut-off > 1.5 or < 0.67.

802 **Single cell transcriptomics**

803 Single cell RNA sequencing libraries were prepared using the Chromium Single Cell 3' GEX v3.1 assay
804 (10X Genomics). In short, cell suspensions were encapsulated into Gel Beads in Emulsion (GEMs)
805 using the Chromium Controller. Within each GEM, cell lysis and barcoded reverse transcription of RNA
806 occurred, followed by cDNA amplification. The amplified cDNA underwent library construction via
807 fragmentation, end-repair, A-tailing, adaptor ligation, and index PCR. Final libraries were sequenced on
808 an Illumina NovaSeq 6000 system. Initial data processing was conducted with Cell Ranger 7.2.0.

809 Filtered output matrices were processed using Seurat. After loading the data and assigning unique
810 identifiers to each dataset, cells with more than 30% mitochondrial gene content were excluded to
811 ensure data quality (we used a less strict threshold because we were also interested in mitochondrial
812 gene expression). The datasets were normalized using SCTransform, and PCA was conducted for
813 dimensionality reduction. Integration of the datasets was achieved using the Harmony algorithm,
814 followed by clustering and differential expression analysis. Finally, the integrated data were visualized
815 using UMAP (down sampled to 13,000 cells per group). This methodology enabled a robust analysis
816 while accounting for technical variations and maintaining biological integrity.

817 **Statistical analysis**

818 To test if data point values were in a Gaussian distribution, a normality test was performed before
819 applying parametric or non-parametric statistical analysis. When two groups were compared, unpaired
820 Student's t test or Mann-Whitney test were applied. When comparisons were done across more than
821 two experimental groups, analysis were performed using One-Way ANOVA or Two-Way ANOVA with
822 post hoc Tukey's test multiple testing correction. P values were considered significant when < 0.05, and
823 exact P values are provided in the figures. All analyses were done using GraphPad Prism 9 software.

824 **Data availability**

825 The datasets generated or analyzed in this study are available from the corresponding lead author on
826 reasonable request.

827 **Acknowledgments**

828 We thank Dr. T. Youdale, Dr. L. Sinclair and Prof. D. Cantrell CBE, FRSE, FRS, FMedSci and the
829 FingerPrints Proteomics Core Facility of the University of Dundee for their support with proteomics
830 analysis. We thank T. Conrad, C. Fischer, C. Dietrich, F. Solinas and C. Braeuning from the BIH/MDC
831 Genomics Platform for their support in generating the scRNASeq data. We thank E. Johnson (Dunn
832 School, University of Oxford) for performing electron microscopy experiments. We thank P. C. Moreira,
833 D. Andrew and M. Medghalchi (Kennedy Institute of Rheumatology BSU staff) for their support. We also
834 thank L. Uhl for helping with LM-OVA infections. This work was funded by grants from the Wellcome
835 Trust (Investigator award 103830/Z/14/Z and 220784/Z/20/Z to A.K.S., Sir Henry Wellcome Fellowship
836 220452/Z/20/Z to M.B., and PhD studentship award 203803/Z/16/Z to F.C.R.), the Helmholtz association
837 (Helmholtz Distinguished Professorship Funding to recruit top-level international female scientists (W3)
838 to A.K.S.), the European Union's Horizon 2020 (Marie Skłodowska-Curie grant agreement number
839 893676 to M.B. and ERC-2021-SyG_951329 to E.C.B. and M.L.D.), the Swiss National Science
840 Foundation (Early Postdoc.Mobility P2E2P3_188074 to M.B.), the European Molecular Biology
841 Organization (EMBO LT postdoctoral Fellowship - ALTF1155-2019 to A.V.L.V.) and the Kennedy Trust
842 for Rheumatology Research (KTTR) to Y.F.Y. and M.L.D. Flow cytometry and microscopy facilities were
843 supported by KTTR.

844 **Authors contributions**

845 M.B., A.V.L.V. and A.K.S., designed the experiments. M.B., A.V.L.V., E.B.C. and F.C.R. performed the
846 experiments. H.B., M.L.D., P.K. provided expert assistance and guidance. M.B., A.V.L.V., A.H.K.
847 analyzed the experiments. M.B. and A.K.S. wrote the manuscript.

848 **References**

- 849 1. Stemberger, C., Huster, K.M., Koffler, M., Anderl, F., Schiemann, M., Wagner, H., and Busch, D.H. (2007). A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. *Immunity* 27, 985-997. 10.1016/j.jimmuni.2007.10.012.
- 850 2. Gerlach, C., Rohr, J.C., Perie, L., van Rooij, N., van Heijst, J.W., Velds, A., Urbanus, J., Naik, S.H., Jacobs, H., Beltman, J.B., et al. (2013). Heterogeneous differentiation patterns of individual CD8+ T cells. *Science* 340, 635-639. 10.1126/science.1235487.
- 851 3. Moller, S.H., Hsueh, P.C., Yu, Y.R., Zhang, L., and Ho, P.C. (2022). Metabolic programs tailor T cell immunity in viral infection, cancer, and aging. *Cell Metab* 34, 378-395. 10.1016/j.cmet.2022.02.003.
- 852 4. Chang, J.T., Wherry, E.J., and Goldrath, A.W. (2014). Molecular regulation of effector and memory T cell differentiation. *Nat Immunol* 15, 1104-1115. 10.1038/ni.3031.
- 853 5. Henning, A.N., Roychoudhuri, R., and Restifo, N.P. (2018). Epigenetic control of CD8(+) T cell differentiation. *Nat Rev Immunol* 18, 340-356. 10.1038/nri.2017.146.
- 854 6. Alsaleh, G., Panse, I., Swadling, L., Zhang, H., Richter, F.C., Meyer, A., Lord, J., Barnes, E., Kleneman, P., Green, C., and Simon, A.K. (2020). Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. *Elife* 9. 10.7554/elife.57950.
- 855 7. Mittelbrunn, M., and Kroemer, G. (2021). Hallmarks of T cell aging. *Nat Immunol* 22, 687-698. 10.1038/s41590-021-00927-z.
- 856 8. Han, S., Georgiev, P., Ringel, A.E., Sharpe, A.H., and Haigis, M.C. (2023). Age-associated remodeling of T cell immunity and metabolism. *Cell Metab* 35, 36-55. 10.1016/j.cmet.2022.11.005.
- 857 9. Quinn, K.M., Fox, A., Harland, K.L., Russ, B.E., Li, J., Nguyen, T.H.O., Loh, L., Olshanksy, M., Naeem, H., Tsyanov, K., et al. (2018). Age-Related Decline in Primary CD8(+) T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8(+) T Cells. *Cell Rep* 23, 3512-3524. 10.1016/j.celrep.2018.05.057.
- 858 10. Mogilenko, D.A., Shpynov, O., Andhey, P.S., Arthur, L., Swain, A., Esaulova, E., Brioschi, S., Shchukina, I., Kerndl, M., Bambouskova, M., et al. (2021). Comprehensive Profiling of an Aging Immune System Reveals Clonal GZMK(+) CD8(+) T Cells as Conserved Hallmark of Inflammaging. *Immunity* 54, 99-115 e112. 10.1016/j.jimmuni.2020.11.005.
- 859 11. Henson, S.M., Lanna, A., Riddell, N.E., Franzese, O., Macaulay, R., Griffiths, S.J., Puleston, D.J., Watson, A.S., Simon, A.K., Tooze, S.A., and Akbar, A.N. (2014). p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. *J Clin Invest* 124, 4004-4016. 10.1172/JCI75051.
- 860 12. Borsig, M., Barandun, N., Grabnitz, F., Barnstorf, I., Baumann, N.S., Pallmer, K., Baumann, S., Stark, D., Balaz, M., Oetiker, N., et al. (2021). Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. *Nat Commun* 12, 2715. 10.1038/s41467-021-22954-y.
- 861 13. Sturmlechner, I., Jain, A., Mu, Y., Weyand, C.M., and Goronzy, J.J. (2023). T cell fate decisions during memory cell generation with aging. *Semin Immunol* 69, 101800. 10.1016/j.smim.2023.101800.
- 862 14. Clarke, A.J., and Simon, A.K. (2019). Autophagy in the renewal, differentiation and homeostasis of immune cells. *Nat Rev Immunol* 19, 170-183. 10.1038/s41577-018-0095-2.
- 863 15. Puleston, D.J., Zhang, H., Powell, T.J., Lipina, E., Sims, S., Panse, I., Watson, A.S., Cerundolo, V., Townsend, A.R., Kleneman, P., and Simon, A.K. (2014). Autophagy is a critical regulator of memory CD8(+) T cell formation. *Elife* 3. 10.7554/elife.03706.
- 864 16. Xu, X., Araki, K., Li, S., Han, J.H., Ye, L., Tan, W.G., Konieczny, B.T., Bruinsma, M.W., Martinez, J., Pearce, E.L., et al. (2014). Autophagy is essential for effector CD8(+) T cell survival and memory formation. *Nat Immunol* 15, 1152-1161. 10.1038/ni.3025.

897 17. Franco, F., Bevilacqua, A., Wu, R.M., Kao, K.C., Lin, C.P., Rousseau, L., Peng, F.T., Chuang, 898 Y.M., Peng, J.J., Park, J., et al. (2023). Regulatory circuits of mitophagy restrict distinct modes 899 of cell death during memory CD8(+) T cell formation. *Sci Immunol* 8, eadf7579. 900 10.1126/sciimmunol.adf7579.

901 18. Pua, H.H., Guo, J., Komatsu, M., and He, Y.W. (2009). Autophagy is essential for mitochondrial 902 clearance in mature T lymphocytes. *J Immunol* 182, 4046-4055. 10.4049/jimmunol.0801143.

903 19. Sunchu, B., and Cabernard, C. (2020). Principles and mechanisms of asymmetric cell division. 904 *Development* 147. 10.1242/dev.167650.

905 20. Cobbold, S.P., Adams, E., Howie, D., and Waldmann, H. (2018). CD4(+) T Cell Fate Decisions 906 Are Stochastic, Precede Cell Division, Depend on GITR Co-Stimulation, and Are Associated 907 With Uropodium Development. *Front Immunol* 9, 1381. 10.3389/fimmu.2018.01381.

908 21. Chang, J.T., Palanivel, V.R., Kinjyo, I., Schambach, F., Intlekofer, A.M., Banerjee, A., 909 Longworth, S.A., Vinup, K.E., Mrass, P., Oliaro, J., et al. (2007). Asymmetric T lymphocyte 910 division in the initiation of adaptive immune responses. *Science* 315, 1687-1691. 911 10.1126/science.1139393.

912 22. Grabnitz, F., Stark, D., Shlesinger, D., Petkidis, A., Borsig, M., Yermanos, A., Carr, A., 913 Barandun, N., Wehling, A., Balaz, M., et al. (2023). Asymmetric cell division safeguards 914 memory CD8 T cell development. *Cell Rep* 42, 112468. 10.1016/j.celrep.2023.112468.

915 23. King, C.G., Koehli, S., Hausmann, B., Schmaler, M., Zehn, D., and Palmer, E. (2012). T cell 916 affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. 917 *Immunity* 37, 709-720. 10.1016/j.jimmuni.2012.06.021.

918 24. Chang, J.T., Ciocca, M.L., Kinjyo, I., Palanivel, V.R., McClurkin, C.E., DeJong, C.S., Mooney, 919 E.C., Kim, J.S., Steinel, N.C., Oliaro, J., et al. (2011). Asymmetric proteasome segregation as 920 a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte 921 division. *Immunity* 34, 492-504. 10.1016/j.jimmuni.2011.03.017.

922 25. Polizzi, K.N., Sun, I.H., Patel, C.H., Lo, Y.C., Oh, M.H., Waickman, A.T., Tam, A.J., Blosser, 923 R.L., Wen, J., Delgoffe, G.M., and Powell, J.D. (2016). Asymmetric inheritance of mTORC1 924 kinase activity during division dictates CD8(+) T cell differentiation. *Nat Immunol* 17, 704-711. 925 10.1038/ni.3438.

926 26. Verbist, K.C., Guy, C.S., Milasta, S., Liedmann, S., Kaminski, M.M., Wang, R., and Green, D.R. 927 (2016). Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. 928 *Nature* 532, 389-393. 10.1038/nature17442.

929 27. Liedmann, S., Liu, X., Guy, C.S., Crawford, J.C., Rodriguez, D.A., Kuzuoglu-Ozturk, D., Guo, 930 A., Verbist, K.C., Temirov, J., Chen, M.J., et al. (2022). Localization of a TORC1-eIF4F 931 translation complex during CD8(+) T cell activation drives divergent cell fate. *Mol Cell* 82, 2401- 932 2414 e2409. 10.1016/j.molcel.2022.04.016.

933 28. Borsig, M., Barnstorff, I., Baumann, N.S., Palmer, K., Yermanos, A., Grabnitz, F., Barandun, N., 934 Hausmann, A., Sandu, I., Barral, Y., and Oxenius, A. (2019). Modulation of asymmetric cell 935 division as a mechanism to boost CD8(+) T cell memory. *Sci Immunol* 4. 936 10.1126/sciimmunol.aav1730.

937 29. Metz, P.J., Arsenio, J., Kakaradov, B., Kim, S.H., Remedios, K.A., Oakley, K., Akimoto, K., 938 Ohno, S., Yeo, G.W., and Chang, J.T. (2015). Regulation of asymmetric division and CD8+ T 939 lymphocyte fate specification by protein kinase Czeta and protein kinase Clambda/ iota. *J Immunol* 194, 2249-2259. 10.4049/jimmunol.1401652.

941 30. Quezada, L.K., Jin, W., Liu, Y.C., Kim, E.S., He, Z., Indralingam, C.S., Tysl, T., Labarta-Bajo, 942 L., Wehrens, E.J., Jo, Y., et al. (2023). Early transcriptional and epigenetic divergence of CD8+ 943 T cells responding to acute versus chronic infection. *PLoS Biol* 21, e3001983. 944 10.1371/journal.pbio.3001983.

945 31. Wisniewski, J.R., Hein, M.Y., Cox, J., and Mann, M. (2014). A "proteomic ruler" for protein copy
946 number and concentration estimation without spike-in standards. *Mol Cell Proteomics* 13, 3497-
947 3506. 10.1074/mcp.M113.037309.

948 32. Buck, M.D., O'Sullivan, D., Klein Geltink, R.I., Curtis, J.D., Chang, C.H., Sanin, D.E., Qiu, J.,
949 Kretz, O., Braas, D., van der Windt, G.J., et al. (2016). Mitochondrial Dynamics Controls T Cell
950 Fate through Metabolic Programming. *Cell* 166, 63-76. 10.1016/j.cell.2016.05.035.

951 33. Pearce, E.L., Walsh, M.C., Cejas, P.J., Harms, G.M., Shen, H., Wang, L.S., Jones, R.G., and
952 Choi, Y. (2009). Enhancing CD8 T-cell memory by modulating fatty acid metabolism. *Nature*
953 460, 103-107. 10.1038/nature08097.

954 34. Emurla, H., Barral, Y., and Oxenius, A. (2021). Role of mitotic diffusion barriers in regulating
955 the asymmetric division of activated CD8 T cells. *bioRxiv*, 2021.2009.2010.458880.
956 10.1101/2021.09.10.458880.

957 35. Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H., and Johnsson, K. (2003). A
958 general method for the covalent labeling of fusion proteins with small molecules in vivo. *Nat
959 Biotechnol* 21, 86-89. 10.1038/nbt765.

960 36. Katajisto, P., Dohla, J., Chaffer, C.L., Pentinmikko, N., Marjanovic, N., Iqbal, S., Zoncu, R.,
961 Chen, W., Weinberg, R.A., and Sabatini, D.M. (2015). Stem cells. Asymmetric apportioning of
962 aged mitochondria between daughter cells is required for stemness. *Science* 348, 340-343.
963 10.1126/science.1260384.

964 37. Hogquist, K.A., Jameson, S.C., Heath, W.R., Howard, J.L., Bevan, M.J., and Carbone, F.R.
965 (1994). T cell receptor antagonist peptides induce positive selection. *Cell* 76, 17-27.
966 10.1016/0092-8674(94)90169-4.

967 38. Plambeck, M., Kazeroonian, A., Loeffler, D., Kretschmer, L., Salinno, C., Schroeder, T., Busch,
968 D.H., Flossdorf, M., and Buchholz, V.R. (2022). Heritable changes in division speed accompany
969 the diversification of single T cell fate. *Proc Natl Acad Sci U S A* 119.
970 10.1073/pnas.2116260119.

971 39. Arguello, R.J., Combes, A.J., Char, R., Gigan, J.P., Baaziz, A.I., Bousiquot, E., Camosseto, V.,
972 Samad, B., Tsui, J., Yan, P., et al. (2020). SCENITH: A Flow Cytometry-Based Method to
973 Functionally Profile Energy Metabolism with Single-Cell Resolution. *Cell Metab* 32, 1063-1075
974 e1067. 10.1016/j.cmet.2020.11.007.

975 40. Jia, W., He, M.X., McLeod, I.X., Guo, J., Ji, D., and He, Y.W. (2015). Autophagy regulates T
976 lymphocyte proliferation through selective degradation of the cell-cycle inhibitor
977 CDKN1B/p27Kip1. *Autophagy* 11, 2335-2345. 10.1080/15548627.2015.1110666.

978 41. Pichierri, P., Ammazzalorso, F., Bignami, M., and Franchitto, A. (2011). The Werner syndrome
979 protein: linking the replication checkpoint response to genome stability. *Aging (Albany NY)* 3,
980 311-318. 10.18632/aging.100293.

981 42. Araki, K., Turner, A.P., Shaffer, V.O., Gangappa, S., Keller, S.A., Bachmann, M.F., Larsen,
982 C.P., and Ahmed, R. (2009). mTOR regulates memory CD8 T-cell differentiation. *Nature* 460,
983 108-112. 10.1038/nature08155.

984 43. Polizzi, K.N., Patel, C.H., Sun, I.H., Oh, M.H., Waickman, A.T., Wen, J., Delgoffe, G.M., and
985 Powell, J.D. (2015). mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation.
986 *J Clin Invest* 125, 2090-2108. 10.1172/JCI77746.

987 44. Kakaradov, B., Arsenio, J., Widjaja, C.E., He, Z., Aigner, S., Metz, P.J., Yu, B., Wehrens, E.J.,
988 Lopez, J., Kim, S.H., et al. (2017). Early transcriptional and epigenetic regulation of CD8(+) T
989 cell differentiation revealed by single-cell RNA sequencing. *Nat Immunol* 18, 422-432.
990 10.1038/ni.3688.

991 45. Sugiura, A., Andrejeva, G., Voss, K., Heintzman, D.R., Xu, X., Madden, M.Z., Ye, X., Beier,
992 K.L., Chowdhury, N.U., Wolf, M.M., et al. (2022). MTHFD2 is a metabolic checkpoint controlling
993 effector and regulatory T cell fate and function. *Immunity* 55, 65-81 e69.
994 10.1016/j.immuni.2021.10.011.

995 46. Franco, F., Jaccard, A., Romero, P., Yu, Y.R., and Ho, P.C. (2020). Metabolic and epigenetic
996 regulation of T-cell exhaustion. *Nat Metab* 2, 1001-1012. 10.1038/s42255-020-00280-9.

997 47. van der Windt, G.J., Everts, B., Chang, C.H., Curtis, J.D., Freitas, T.C., Amiel, E., Pearce, E.J.,
998 and Pearce, E.L. (2012). Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell
999 memory development. *Immunity* 36, 68-78. 10.1016/j.jimmuni.2011.12.007.

1000 48. O'Sullivan, D., van der Windt, G.J., Huang, S.C., Curtis, J.D., Chang, C.H., Buck, M.D., Qiu, J.,
1001 Smith, A.M., Lam, W.Y., DiPlato, L.M., et al. (2014). Memory CD8(+) T cells use cell-intrinsic
1002 lipolysis to support the metabolic programming necessary for development. *Immunity* 41, 75-
1003 88. 10.1016/j.jimmuni.2014.06.005.

1004 49. Corrado, M., Samardzic, D., Giacomello, M., Rana, N., Pearce, E.L., and Scorrano, L. (2021).
1005 Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts
1006 mature memory T cell metabolism. *Cell Death Differ* 28, 2194-2206. 10.1038/s41418-021-
1007 00747-6.

1008 50. Girotra, M., Chiang, Y.H., Charmoy, M., Ginefra, P., Hope, H.C., Bataclan, C., Yu, Y.R., Schyrr,
1009 F., Franco, F., Geiger, H., et al. (2023). Induction of mitochondrial recycling reverts age-
1010 associated decline of the hematopoietic and immune systems. *Nat Aging* 3, 1057-1066.
1011 10.1038/s43587-023-00473-3.

1012 51. Endow, S.A., Kull, F.J., and Liu, H. (2010). Kinesins at a glance. *J Cell Sci* 123, 3420-3424.
1013 10.1242/jcs.064113.

1014 52. Ducker, G.S., and Rabinowitz, J.D. (2017). One-Carbon Metabolism in Health and Disease.
1015 *Cell Metab* 25, 27-42. 10.1016/j.cmet.2016.08.009.

1016 53. Ma, E.H., Bantug, G., Griss, T., Condotta, S., Johnson, R.M., Samborska, B., Mainolfi, N., Suri,
1017 V., Guak, H., Balmer, M.L., et al. (2017). Serine Is an Essential Metabolite for Effector T Cell
1018 Expansion. *Cell Metab* 25, 345-357. 10.1016/j.cmet.2016.12.011.

1019 54. Loeffler, D., Schneiter, F., Wang, W., Wehling, A., Kull, T., Lengerke, C., Manz, M.G., and
1020 Schroeder, T. (2022). Asymmetric organelle inheritance predicts human blood stem cell fate.
1021 *Blood* 139, 2011-2023. 10.1182/blood.2020009778.

1022 55. Alpert, A., Pickman, Y., Leipold, M., Rosenberg-Hasson, Y., Ji, X., Gaujoux, R., Rabani, H.,
1023 Starosvetsky, E., Kveler, K., Schaffert, S., et al. (2019). A clinically meaningful metric of immune
1024 age derived from high-dimensional longitudinal monitoring. *Nat Med* 25, 487-495.
1025 10.1038/s41591-019-0381-y.

1026 56. Jenkins, B.J., Blagih, J., Ponce-Garcia, F.M., Canavan, M., Gudgeon, N., Eastham, S., Hill, D.,
1027 Hanlon, M.M., Ma, E.H., Bishop, E.L., et al. (2023). Canagliflozin impairs T cell effector function
1028 via metabolic suppression in autoimmunity. *Cell Metab* 35, 1132-1146 e1139.
1029 10.1016/j.cmet.2023.05.001.

1030