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Abstract  

The surge in genome data, with ongoing efforts aiming to sequence 1.5M eukaryotes in a decade, 

could revolutionise genomics, revealing the origins, evolution, and genetic innovations of biological 

processes. Yet, traditional genomics methods scale poorly with such large datasets. Addressing this, 

<FastOMA= provides linear scalability, enabling the processing of thousands of eukaryotic genomes 

within a day. FastOMA maintains the high accuracy and resolution of the well-established OMA 

approach in benchmarks. FastOMA is available at https://github.com/DessimozLab/FastOMA/. 

Main 

Within the decade, the Earth BioGenome initiative aims to sequence 1.5M eukaryotes1. This paves 

the way for understanding how all species evolved from life9s common origin. Yet due to processing 

limitations, even the thousands of genomes we have access to today are only studied piecemeal in 

practice. A fundamental step to comparative genomics analyses is to identify orthologs, genes of 

common ancestry that originated by speciation events2. When performed systematically, orthology 

delineation conveys how sequences were gained, lost or duplicated, assuming that their basic mode 

of inheritance is vertical descent. Deriving orthology allows for many types of downstream analysis, 

such as annotation propagation, phylogenomics, or phylogenetic profiling3.  
 

State-of-the-art orthology methods face acute scalability issues4. Their underlying algorithms, relying 

on all-against-all sequence comparisons, can no longer keep up with today9s data, let alone 

tomorrow9s. For state-of-the-art pipelines such as our own OMA algorithm and database5,6, this 

translates to >10 million CPU hours to derive the orthology relationships of >2000 genomes that have 

been processed thus far. While <small-scale= comparative genomics has achieved remarkable 

progress, a more integrated, large-scale approach would be transformative.  
 

To address this challenge, we introduce FastOMA, which dramatically speeds up orthology inference 

without sacrificing accuracy or resolution.  

 

FastOMA is a complete rewrite of the OMA algorithm focused on scalability from the ground up 

(Figure 1). By combining ultrafast homology clustering using k-mers, taxonomy-guided 

subsampling, and a highly efficient parallel computing approach, it achieves linear performance in 

the number of input genomes. First, we leverage our current knowledge of the sequence universe 

(with its evolutionary information stored in the OMA database) to efficiently place new sequences 

into coarse-grained families (Hierarchical Orthologous Groups 8HOGs9 at the root level) using the 

alignment-free k-mer-based OMAmer tool7. In an attempt to detect homology among unplaced 
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sequences (which could belong to families which are absent from our reference database), we then 

perform a round of clustering using the highly scalable Linclust software8. Next, we resolve the nested 

structure of the HOGs (Supplementary information S1) corresponding to each ancestor, in an efficient 

leaf-to-root traversal of the species tree. By avoiding sequence comparisons across different families, 

the number of computations is drastically reduced compared to conventional approaches (see Online 

Methods for details). 

 

Figure 1. FastOMA algorithm overview. Input proteomes are mapped to reference gene families using OMAmer followed 

by inferring nested structure of HOGs (Supplementary information  & Online Methods section). HOGs are inferred using 

a <bottom-up= approach starting from the leaves of the species tree and merging the HOGs stepwise until the root. At 

each level, sequences of child HOGs are used to calculate a multiple sequence alignment followed by gene tree inference 

on which speciation/duplication events are inferred. Child HOGs are merged if their genes evolved through speciation 

(see Methods section for details).  
 

 

FastOMA has unprecedented scalability without sacrificing accuracy in a diverse range of 

benchmarks. A key achievement of FastOMA is its linear scaling behaviour (Figure 2c), which opens 

up the possibility of processing extensive datasets rapidly. FastOMA inferred orthology among all 
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2,086 eukaryotic UniProt reference proteomes in under 24 hours, using 300 CPUs. In the same 

timespan, the original OMA algorithm could only process 50 genomes. Even methods optimised for 

speed such as OrthoFinder9 or SonicParanoid10 still exhibit quadratic time complexity (Figure 2c). 

Thus FastOMA's linear scalability breaks new ground. 
 

We assessed the accuracy of FastOMA on the Quest for Orthologs suite of benchmarks11. While being 

much faster, FastOMA retains OMA9s high precision accuracy, and even improves upon it in terms 

of recall, positioning it on the Pareto frontier of orthology inference methods. For instance, on the 

SwissTree reference gene phylogeny benchmark, FastOMA outperforms other methods with a 

precision of 0.955 in reference gene phylogenies (Figure 2a). With a recall in line with most state-

of-the-art methods (0.69), the balance of these metrics indicates a well-tuned approach to orthology 

inference, with a focus on minimising false positives. Likewise, on the Generalised Species Tree at 

the Eukaryota level, FastOMA is amongst those with the lowest topological error, with a normalised 

Robinson-Foulds distance of 0.225 to the reference tree, at moderate recall (Figure 2b and 

Supplementary information S2-6). 
 

The initial sequence placement step using OMAmer helps FastOMA achieve its speed, but the 

subsequent alignment and tree inference steps are critical for its accuracy. Indeed, sequence 

placement alone is considerably less accurate than state-of-the-art methods in benchmarks 

(Supplementary information S3). 
 

FastOMA exploits known taxonomic relationships to reduce the number of sequence comparisons. 

By default, it relies on the commonly used NCBI taxonomy12, but users can specify any reference 

species phylogeny as input. To assess the impact of the resolution of the input tree on orthology 

accuracy, we compared FastOMA9s performance on UniProt reference proteomes with a more 

resolved species tree derived from the TimeTree resource13. Compared with the NCBI taxonomy, this 

resulted in improved ortholog predictions, with more parsimonious gene family evolution history, 

lowering the number of implied gene losses across all gene families (Figure 2d). FastOMA can thus 

use advances in taxonomic knowledge for better orthology predictions. 
 

FastOMA contains additional features that make it easier to deal with complex and noisy genomic 

data. It is designed to handle multiple isoforms for the genes resulting from alternative splicing and 

select the most evolutionary conserved ones, and can also deal with fragmented gene models. Both 

features lead to noticeable improvements in FastOMA inferences (Supplementary Information S7-8). 

As it uses the same data structure as OMA, FastOMA benefits from its rich ecosystem of downstream 

applications which includes phylogenetic profiling, efficient gene family visualisation, ancestral 

synteny inference, and advanced phylostratigraphy, enabling researchers to trace gene family 

histories and understand gene emergence, duplication, and loss events5,14. 
 

In conclusion, the FastOMA algorithm offers a unique solution for accurate orthology inference, 

making it possible to study evolutionary history at the scale of massive genomics projects. 
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Figure 2. FastOMA is not only fast but also accurate: a) Quest for Orthologs (QFO) benchmark, agreement with 

SwissTree reference phylogeny; b) QFO benchmarking of generalised species discordance test on Eukaryota clade; c) 

computation time comparison of FastOMA and state-of-the-art alternatives; d) impact of species tree resolution on 

evolutionary events in terms of implied gene losses (truncated; version with all data in Supplementary Figure 15).  
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Online Methods 

FastOMA algorithm outline  

FastOMA is a method for inferring orthology relationships. The input to FastOMA includes the 

proteome sets of species and the species tree. The FastOMA algorithm consists of two main steps: 

finding rootHOGs and inferring the nested structure of HOGs (Figure 1a).  

 

Step 1) FastOMA gene family inference  

The FastOMA algorithm infers gene families from the provided proteomes. The process begins by 

mapping the input proteomes onto the reference HOGs (Supplementary information S1) using the 

OMAmer tool (Figure 1a). Proteins mapped to the same reference HOG are then grouped together, 

forming query rootHOGs, with the exclusion of proteins already present in the database. 
   

While each rootHOG ideally represents a single gene family, instances may arise where a gene family 

of query proteomes is split among multiple rootHOGs. To address this, FastOMA tries to find those 

query rootHOGs that are associated with the same gene family. FastOMA leverages the ability of 

OMAmer to report multiple rootHOGs to which the sequences could be mapped, along with their 

score. This score (8family_p9) is the p-value of having as many or more k-mers in common between 

the protein sequence and the HOG under a binomial distribution, reported in negative natural 

logarithm. Considering a minimum threshold of 70 (by default), we construct a graph of rootHOGs, 

where each node represents a query rootHOG. In such a graph, we add an edge between two nodes 

(rootHOGs) when a minimum of 10 proteins (by default) are mapped to both query rootHOGs and it 

represents at least either 80% of all proteins mapping to the bigger rootHOG or 90% of those mapping 

to the smallest one. This ensures a high overlap of protein content of the merged rootHOG. Finally, 

we group the members of all HOGs in each highly connected component15 of this graph in a single 

query rootHOG. 
 

It is worth noting that some proteins may not be assigned to any reference HOGs due to no 

recognisable homologs in the reference database. Additionally, there is a scenario where only one 

protein is mapped to the rootHOG, referred to as a singleton, representing an individual rather than a 

group5. To ensure those genes are not lost to FastOMA9s orthology inference, these singletons and 

unmapped sequences are combined into a FASTA file on which we run Linclust, the clustering tool 

from the MMseqs package8. This yields new query rootHOGs.  
 

Critically, assigning proteins to rootHOGs (gene families) allows us to avoid unnecessary all-against-

all comparisons of unrelated proteins (those without homology), thanks to the speed of OMAmer and 

Linclust. All of the query rootHOGs are written as FASTA files to be used in the next step and can 

be handled in parallel.  

  

Step 2) FastOMA orthology inference  

For every query rootHOG, FastOMA infers the nested structure of the HOG (as depicted in Figure 

1b). The objective is to identify the genes that are grouped together at each taxonomic level as a 

HOG; which means they descended from a single gene at that specific level. Note that the number of 

HOGs at each level reflects the number of copies of the gene present in the ancestral species. 
 

To achieve this, FastOMA follows a bottom-up approach by traversing the species tree. Starting from 

the leaves of the tree (extant species), each gene in the species' proteome is treated as a HOG. At each 
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level in the traversal, certain HOGs from the child level are combined. The determination of which 

HOGs will be merged is guided by a gene tree containing the proteins of species descending from 

this node. The merging is done for all HOGs that descended from the same common ancestor by a 

speciation event. The entire process is detailed below: 

 

Gene tree inference 

All the proteins in HOGs at the child level are collectively used for generating a multiple sequence 

alignment (MSA) using the MAFFT package16. The MSA undergoes column-wise trimming with a 

default threshold of 0.2. Those aligned sequences (rows in MSA) that exceed a default threshold of 

>50% gaps are subsequently removed. However, we keep them in the HOG but they are not used for 

tree inference. Subsequently, we employ FastTree17 to infer the gene tree, and this tree is rooted using 

the midpoint approach18. 
 

To expedite the orthology inference process at deeper levels of the trees where the number of children 

is prohibitively high, we implement a subsampling approach, retaining only a specified number of 

proteins per HOG (by default 20 proteins are randomly selected) used for the multiple sequence 

alignment (MSA) and tree inference.  

 

Duplication and speciation event labelling  

Each internal node in the gene tree is classified as either a duplication or a speciation event using the 

species overlap method19. For each node in the gene tree, this involves calculating the ratio of the 

number of shared species between its two subtrees divided by the number of all species (union). If 

the ratio equals zero, the node is labelled as a speciation event; otherwise, it is labelled as a duplication 

event. When the species overlap ratio is less than 0.1 (as per default settings), indicating very low 

support for a duplication event, all leaves from the child subtree with the least number of proteins are 

excluded from merging decisions. This is done to ensure that errors in gene annotation or inaccurate 

tree inference minimally affect the orthology inference.  

 

HOG merging 

Starting from the root of the gene tree, evidence of a speciation event (i.e., the internal node annotated 

as a speciation event due to no species overlap) prompts the merging of the HOGs of the leaves 

descending from the nodes. This is achieved by constructing a HOG graph, where each node 

represents a HOG. An edge is introduced between HOG1 and HOG2 if protein1 (located in HOG1) 

and protein2 (in HOG2) coalesce at a speciation event in the gene tree. Subsequently, each connected 

component within this graph constitutes a HOG at the current level of the species tree. 

 

Inferring orthology relationship 

Once the species tree traversal is complete, the nested structure of the query HOG is fully resolved. 

From the HOG structure inferred this way, all orthology and paralogy relationships can be efficiently 

deduced.  

 

Note on parallelisation 

FastOMA is optimised to process taxonomic levels in parallel (when possible) by inferring HOGs at 

all taxonomic levels, accounting for dependencies among child HOGs3 i.e., a node will be processed 

after all its child nodes are processed. To optimise parallelization efficiency by avoiding unnecessary 

overheads of Nextflow and Slurm management workflows, FastOMA groups approximately 150 
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small to medium-sized query rootHOGs together, treating them as a single job. Conversely, large 

rootHOGs are processed individually (to infer nested structure of HOGs) for optimal performance 

using python-future for which taxonomic parallelization is activated. The default rootHOG file size 

threshold for this purpose is 400k bytes (~500 proteins). 

 

FastOMA outputs 

The main output of FastOMA is an OrthoXML file which stores HOGs and their nested structures, 

allowing to reconstruct their evolutionary histories. Furthermore, FastOMA reports the protein list in 

each rootHOG (gene family) in TSV format. A final FastOMA output is a list of proteins in strict 

orthologous groups, wherein all genes within the group are orthologous to each other, which can be 

used as marker genes for phylogenetic analyses20,21.  

 

Isoform selection  

FastOMA is capable of handling proteomes that feature multiple protein isoforms for a gene due to 

alternative splicing. Users can provide an isoform file where each row lists comma-separated protein 

IDs associated with a gene. FastOMA selects the isoform with the highest 8family_p9 score, the one 

with the best fit to known proteins in the reference rootHOG based on k-mer content. For the 

evaluation of isoform selection, we used the UniProt reference proteomes and their splice information 

https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes/E

ukaryota. 

 

FastOMA Software 

The FastOMA codebase is composed of multiple subpackages written in Python. FastOMA benefits 

from the Nextflow workflow22 to parallelize different steps and subpackages considering the 

dependencies modelled as a direct acyclic graph (Supplementary information S9). The software is 

publicly available at https://github.com/DessimozLab/FastOMA and on DockerHub 

https://hub.docker.com/r/dessimozlab/fastoma.  

 

Time comparison on Eukaryotic dataset 

We considered all the 2181 eukaryotic UniProt reference proteomes (accessed on 25 January 2023), 

and filtered them to keep those with a minimum BUSCO Completeness of 50%, resulting in 2086 

proteomes in total. We ran SonicParanoid10, OrthoFinder9, and FastOMA on datasets with different 

sizes ranging from 10 to 2086 species. OrthoFinder 2.5.4 was run in two steps. First, to generate all-

against-all sequence comparisons, we used the -op parameter to generate and execute command lines 

for Diamond. Then, the rest of OrthoFinder was conducted. SonicParanoid 2.0.4 was used with 

default parameters using 48 CPUs with a limit of 3 days wall clock. It is neither possible to parallelize 

SonicParanoid2 on different computation nodes nor feed it with the result of Diamond, hence we 

could not obtain compute time for the larger datasets during the mentioned time limit. For FastOMA, 

the NCBI tree was used by downloading via the ete3 package23. 

 

Analysis on tree resolution  

We ran FastOMA on both the TimeTree and the NCBI tree. For the TimeTree analysis, we uploaded 

the list of species names to the TimeTree webserver13 (https://timetree.org). This resulted in a species 

tree with 1757 leaves since some of the species were not available in TimeTree. We ran FastOMA 
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with default parameters on the dataset of 1757 proteomes and with both the TimeTree tree and NCBI 

tree as the species tree. We used pyHAM24 for calculating the implied gene losses.  
 

To calculate the estimated proportion of proteomes composed of fragments, we ran OMArk25 v0.3 on 

all proteomes. We used the BUSCO statistics downloaded from the UniProt website for the full 

Eukaryotic dataset. 

 

Benchmarking against the QFO reference proteome set 

We ran FastOMA on the 78 reference proteomes used in the QFO benchmark and the associated 

standard species trees as input. We then submitted the results to the Quest for Orthologs 

benchmarking service4,11,26 and obtained the results on the 11 available benchmarks. In these 

benchmarks, FastOMA is compared to several state-of-the-art methods that are available in the QFO 

public resource including EnsemblCompara27, Domainoid28, OrthoMCL29, Ortholnspector30, 

sonicparanoid31, PANTHER32, OrthoFinder9, Hieranoid33 and the OMA family34336,40. QFO analysis 

is described in detail in the Supplementary information S2.  

 

Computations 

All the analyses were conducted on the high performance computer cluster of the University of 

Lausanne using 96 computation nodes, each with 48 AMD CPUs. Data was written and read on a 150 

TB SSD scratch drive. For the QFO analysis, most steps of FastOMA needed less than 10 GB of 

memory and it peaked at 32 GB. 
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Data availability 

UniProt reference proteomes and splice information (_additional.fasta.gz) were downloaded from 

https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes/E

ukaryota. The 2020 version of QFO proteomes was downloaded from the EBI repository at 

http://ftp.ebi.ac.uk/pub/databases/reference_proteomes/previous_releases/qfo_release-

2020_04_with_updated_UP000008143/. The OMAmer database used in this study is available at 

https://omabrowser.org/All/LUCA-v2.0.0.h5. The OMAmer database, an archive of FastOMA code, 

the Time tree with annotation of internal nodes of 1757 species in Newick format, the UniProt IDs, 

and the inferred HOG for 1757 Eukaryotic species in OrthoXML format are all deposited at 

www.doi.org/10.5281/zenodo.10403053/.  

 

Code availability 

FastOMA is free open-source software (Mozilla Public License 2.0) available at 

https://github.com/DessimozLab/FastOMA. We used the publicly available code for the QFO 

benchmarking test which is available at https://github.com/qfo/benchmark-webservice  
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Supplementary information 

S1. A note on the definition of HOG 

S2. Full benchmarking results for QFO 

S3. Comparing FastOMA results with OMAmer mapping 

S4. Impact of reference HOG database on FastOMA results 

S5. FastOMA robustness on threshold 

S6. The group benchmarking for the clade Bilateria 

S7. FastOMA9s ability to select isoforms 

S8. FastOMA9s ability to find split genes 

S9. FastOMA Nextflow DAG 

 

 

S1. A note on the definition of HOG 

A HOG comprises all the present-day genes that have descended from a single gene in a reference 

ancestor40. Hence, HOGs relate present-day genes in terms of those of ancestral species. For instance, 

all mammalian insulin genes descended from a single insulin at the root of the mammals. There is 

thus one insulin HOG at the mammalian level. But within rodents, where insulin is duplicated, the 

two copies belong to distinct rodent HOGs, nested into the first one (Supplementary Figure 1). 

HOGs have several conceptual advantages: HOGs provide a precise definition for the useful but 

vague concepts of gene families and subfamilies. Because each HOG corresponds to an ancestral 

gene in a given ancestor, they collectively give the gene repertoires of said ancestor. HOGs are a 

scalable alternative to gene trees, which tend to be hard to infer and interpret. 

 

 

Supplementary Figure 1. An example of HOG structure41. 

 

The <rootHOG= corresponds to the deepest ancestral gene and defines a gene family. Of note, 

rootHOG may correspond to a specific taxonomic level of the species tree (not necessarily the root 

of the species tree) where it appeared first over the course of evolution. When multiple HOGs exist 

in a descendant, they represent distinct gene subfamilies. In a nutshell, HOG is the fundamental 

underlying evolutionary concept which ties in the concepts of present-day or ancestral genes (HOGs), 

gene families (rootHOGs), and gene subfamilies (child HOGs). 

The standard for reporting HOGs (and most orthology inferences) is the orthoXML format 

(https://orthoxml.org/) which allows to describe nested orthologs and paralogs groups 
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(Supplementary Figure 2). Thus, an orthoXML file is the primary output of FastOMA.  

 

 

Supplementary Figure 2. An example of HOG structure and orthoXML format. 

 

 

S2. Full benchmarking results for QFO.  

The accuracy of FastOMA was evaluated using the 2020 version of the Quest For Orthologs (QFO) 

benchmarking dataset4,26. This includes 78 species across the tree of life with 984,137 protein 

sequences for which state-of-the-art orthology inference methods were run. The QFO benchmarks 

are a series of 11 different tests in three categories including the species discordance test, agreement 

with reference phylogeny, and functional analysis which are presented below.  

 

S2.1 Species tree discordance test 

As one usage of orthology is to infer species trees, as part of the QFO benchmarking, we conducted 

the species tree discordance test. This evaluates ortholog accuracy by assessing the accuracy of the 

species tree reconstructed based on it. To decrease the gene-species tree discrepancies due to 

incomplete lineage sorting, orthologs are sampled from species separated by more than 10 million 

years37. This test is designed for three clades including Eukaryota, Bacteria and Fungi. The results 

are provided in Supplementary Figure 3. The subplots a-c in this figure are dedicated to the number 

of trees that were completed (using orthologous pairs as a proxy for recall) and for which Robinson-

Foulds distance (to compare the topological differences between two trees) were calculated. The 

subplots d-f in Supplementary Figure 3 show the number of orthologous pairs and the fraction of 
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incorrect completed trees. In this benchmark, FastOMA performs well, with low average Robinson-

Foulds distance (higher precision) with moderate recall reflected in the number of completed tree 

sampling and number of orthologous pairs. This places FastOMA close to the Pareto frontier for three 

clades of Eukaryota, Fungi, and Bacteria. Since the number of species under study in this test is 

limited, the variance is high. This leads to the generalised species tree discordance test described 

below.  

 

S2.2 Generalised species tree discordance test 

The generalised species tree discordance test (GSTD) includes Eukaryota, Vertebrata, Fungi and 

LUCA levels. The results reported in Supplementary Figure 4 are measured in terms of number of 

orthologous pairs, number of completed tree sampling (as proxies for recall), Robinson-Fold distance, 

and the fraction of incorrect completed trees (as proxies for precision). In this test, OMA-groups has 

the highest precision and lowest recall; OrthoMCL and Ensembl Compara are at the other extreme 

with the highest recall and lowest precision overall. FastOMA consistently has a better recall than 

other OMA predictions with a higher RF distance compared to OMA-GETHOGs2. Over the 

benchmark of different clades, it ranks at or close to the Pareto frontier, between the other OMA 

predictions and most of the other included methods. The relative ranking varies between clades, with 

FastOMA having slightly lower recall in Vertebrates but higher sensitivity than some OMA 

predictions for example, but stays true to the general trend overall. 

 

S2.3 Reference gene phylogenies  

Another orthology benchmark we exploited is based on the reference gene phylogenies38. We used 

SwissTree, which is a small collection of large- and high-confidence gene family phylogenies with 

different types of challenges for orthology prediction and species from all domains. In this 

benchmark, FastOMA performs comparably to other methods, with one of the highest precision (true 

positive rate: 0.95), but a moderate recall (positive predictive value: 0.69). We also calculated the test 

for the TreeFam-A reference gene phylogeny which is a larger set of metazoan gene trees covering a 

taxonomically restricted but wider range of protein families. In this benchmark, FastOMA ranks close 

to other OMA predictions, with a higher prediction than other tree-based approaches but lower 

precision and recall than other graph-based predictions. These are reported in Supplementary Figure 

5. 

 

S2.4 Gene ontology conservation benchmark 

The Gene Ontology (GO) conservation benchmark shows how well the Gene Ontology annotations 

are conserved among the predicted orthologs. This test is based on studies that have demonstrated 

that orthologs exhibit significant (but moderate) conservation in terms of GO annotation similarity as 

opposed to paralogs11. Therefore, accurate inference of orthology is expected to be associated with 

gene pairs that are functionally similar at a given evolutionary distance. We assessed functional 

similarity based on experimentally-backed annotations from the UniProt3Gene Ontology Annotation 

(GOA) database and Enzyme Commission (EC) numbers from the ENZYME database. To 

benchmark, we calculated the average Schlicker semantic similarity between GO and EC terms of 

predicted orthologous pairs as a measure of precision and the number of predicted ortholog 

relationships as recall11. The average Schlicker of FastOMA is 0.465 (0.925) in GO (EC), placing it 

close to the Pareto frontier.  
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Supplementary Figure 3. The result of species tree discordance test (a-c) in terms of average Robinson-

Foulds distance vs number of completed tree samples. (d-f) in terms of fraction of incorrect trees and number 

of orthologs. The other methods of OMA are in blue and the new FastOMA is in black. Graph-based methods 

(OrthoMCL, ORthoInspector, InParanoid, Sonicparanoid, and Domainoid+) are in purple and the tree-based 

methods are in cyan. The hybrid methods which use both gene tree and graph structure are in green.  
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Supplementary Figure 4. The result of generalised species tree discordance test (a-d) in terms of average 

Robinson-Foulds distance vs number of completed tree samples. (e-h) in terms of fraction of incorrect trees 

and number of orthologs. The other methods of OMA are in blue and the new FastOMA is in black. Graph-

based methods (OrthoMCL, OrthoInspector, InParanoid, Sonicparanoid, and Domainoid+) are in purple and 

the tree-based methods are in cyan. The hybrid methods which use both gene tree and graph structure are in 

green.   
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Supplementary Figure 5. (a-b) The result of agreement with reference gene phylogeny in terms of 

positive predictive value and true positive rate. (c-d) The result of the Functional GO and EC tests in 

terms of average Schilcker (a similarity score) and number of orthologs. 
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S3. Comparing FastOMA results with OMAmer mapping.  

FastOMA benefits from OMAmer mapping. However, mapping tools can not provide enough 

information for orthology inference. To showcase the superiority of FastOMA against OMAmer 

mapping, we compared the results of QFO benchmarking tests. Note that the OMAmer tool is solely 

attributing genes to HOGs (gene family) and thus only predicts homology to other members of the 

gene family. It cannot differentiate paralogs from orthologs. To find the <orthologous= pairs using 

OMAmer mapping, we selected the gene with the highest OMAmer score of each species, for each 

HOG, and we generated orthologous pairs between genes from different species when they are 

attributed to the same HOG. Gene pairs from the same species are excluded since they are paralogous. 

We also generated orthologous pairs of genes where one is from a HOG and the other is from its 

parent HOGs. The results of the QFO species tree discordance benchmarking for such mapping alone 

show poor performance, with both lower recall and precision than FastOMA and most other orthology 

methods (Supplementary Figures 6-8). This shows the benefit of FastOMA9s post-OMAmer-mapping 

orthology inference algorithm. 

 

 

S4. Impact of reference HOG database on FastOMA results  

Some of the QFO proteomes are already included in the OMAmer database of reference HOGs, which 

could introduce a bias in FastOMA9s favour. To study this effect, we removed such proteomes from 

the OMAmer database on which we run FastOMA, and used the species discordance benchmark to 

measure the extent of the bias. Overall, using a database where those proteomes are not present does 

not significantly affect the results from FastOMA, with most of the difference between versions being 

within error bars. The QFO results are reported in Supplementary Figures 6-8. 
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Supplementary Figure 6. The result of species tree discordance tests comparing OMAmer (pink) 

and FastOMA including (red)/excluding (cyan) QFO species in the reference set. 
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Supplementary Figure 7. The result of generalised species tree discordance tests comparing 

OMAmer (pink) and FastOMA including (red)/excluding (cyan) QFO species in the reference set. 
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Supplementary Figure 8. The result of the agreement with reference gene phylogeny tree tests and 

functional tests comparing OMAmer (pink) and FastOMA including (red)/excluding (cyan) QFO 

species in the reference set. 

 

 

 

 

S5. FastOMA robustness on threshold  

To study the impact of threshold parameters used in FastOMA, we used different parameters and 

evaluated the results with the QFO species tree discordance tests. Specifically, we changed the 

thresholds of MSA trimming (row- and column-wise), and the score of species overlap method for 

detecting duplication events. Results are reported in Supplementary Figures 9-11. The threshold 

changes only had a minimal effect on the results, with all results being between error bars. FastOMA 

with default parameters in most cases provide a better tradeoff in terms of precision and recall 

compared to the other tested parameters.  
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Supplementary Figure 9. The result of species tree discordance tests considering different MSA 

trimming for rows and columns (with threshold of either 0.1 or 0.6) and species overlap scores of 

0.2 or 0.05.  FastOMA with default values is shown in black; MSA rows trimmed at 0.5, columns 

trimmed at 0.3, and a species overlap of 0.1. 
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Supplementary Figure 10. The result of generalised species tree discordance tests considering 

different MSA trimming for rows and columns (with threshold of either 0.1 or 0.6) and species 

overlap scores of 0.2 or 0.05.  FastOMA with default values is shown in black; MSA rows trimmed 

at 0.5, columns trimmed at 0.3, and a species overlap of 0.1. 
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Supplementary Figure 11. The result of agreement with reference gene phylogeny tree tests and 

functional tests considering different MSA trimming for rows and columns (with threshold of either 

0.1 or 0.6) and species overlap scores of 0.2 or 0.05.  FastOMA with default values is shown in black; 

MSA rows trimmed at 0.5, columns trimmed at 0.3, and a species overlap of 0.1. 

 

 

 

 

S6. The group benchmarking for the clade Bilateria. 

We also used the revisited Orthobench for benchmarking of orthologous groups39, which has been 

adapted as part of the QFO benchmarks. This benchmark assesses the ability of orthology inference 

to accurately predict 70 curated orthologous groups at the Bilateria level. As many of the tools in the 

QFO benchmark only report the orthology pairs, we could only include Panther and OMA-

GETHOGs2 for comparison with FastOMA since these were the only two available as groups of 

proteins on the QFO public repository. FastOMA has a precision of 0.758 and 0.46 recall; this is a 
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lower precision than OMA-GETHOGs2 with a slightly higher recall, but a higher precision than 

Panther which has a higher recall. 

 

 

Supplementary Table 1. The result of group-based benchmarking for the clade Bilateria. 

 Panther OMA-GETHOGs2 FastOMA 

PPV (Positive predictive value, 

precision) 
0.58 0.876 0.802 

TPR (True positive rate, recall, 

sensitivity) 
0.56 0.43 0.518 

 

 

S7. FastOMA9s ability to select isoforms  

In contrast to most other orthology methods, FastOMA considers multiple input alternative splicing 

isoforms and aims to identify the evolutionary best-conserved one for orthology inference. FastOMA 

selects the isoform with the highest OMAmer family score, i.e., the one with the best k-mer similarity 

with its closest gene family given its length. We compared the results of FastOMA using different 

ways to select isoforms: choosing the longest one as is often done by other methods, selecting the 

UniProt reference isoform, and FastOMA9s selection. The analysis on UniProt reference proteomes 

showed that FastOMA9s selection resulted in the most parsimonious results, i.e., the least number of 

rootHOGs and total implied losses (Supplementary Figure 12) when reconstructing gene family 

evolutionary histories. FastOMA selection resulted in the non-longest isoforms being selected for 

35% of the proteins with multiple isoforms. 

 

 
 

Supplementary Figure 12.  Impact of selecting the isoforms on the number of rootHOGs and the 

total number of implied losses comparing FastOMA9s selection with the UniProt Canonical and 

longest isoforms.  
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S8. FastOMA9s ability to find split genes 

FastOMA is capable of finding split genes, i.e., parts of the same gene predicted as multiple different 

genes, and merging them in the multiple sequence alignment (MSA). This is done to correct issues 

that might arise due to errors in genome annotation; two complementary parts of the same gene being 

included in an MSA would result in an incorrect tree and incorrect labelling of speciation events. Split 

genes (gene fragments) are found by comparing pairs of genes (rows) in the MSA and those row pairs 

with complementary gaps and with an overlap in the MSA of less than 15% of alignment length are 

considered as candidates. These candidate pairs are reported as split genes if they are closer to each 

other on the gene tree than one fifth of the maximum distance between two leaves of the gene tree, to 

avoid merging fragments of distant paralogs. They are then merged and considered as a single 

sequence from the rest of the FastOMA inference, and are reported as such in FastOMA9s OrthoXML 

output. In the UniProt Eukaryote reference proteomes, FastOMA identified 40,297 pairs of sequences 

(out of 34.4 million sequences) that are likely fragments of split genes, most often found in species 

with a high proportion of fragments as detected by OMArk and BUSCO. Flagging these split genes 

aids in cleaning genomic datasets for orthology inference by using more reliable sequences, which in 

turn will result in a better understanding of genomic architecture and evolution (Supplementary 

Figure 13).  

 

 

Supplementary Figure 13. FastOMA9s ability to find split genes. The y-axis shows the percentage 

of fragments in proteomes estimated by BUSCO (left) and OMArk (right), partitioned into two groups 

of proteomes with higher or lower than 0.05% fragments found and merged by FastOMA. The result 

of the Mann-Whitney U rank test is reported on top of each figure.  
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S9. FastOMA Nextflow DAG 

FastOMA benefits from four sub-packages, written in Python. These include check-input, infer-

roothogs, batch-roothogs, infer-subhogs, and collect-subhogs. These subpackages are used in a 

Nextflow pipeline and are dependent on each other through a Directed acyclic graph, visualised 

below. 

 

 

 

Supplementary Figure 14. Subpackages of the FastOMA software. 
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Supplementary Figure 15. The impact of species tree resolution on evolutionary events in terms of implied 

losses. This is the full data of the figure shown in Figure 2d. Each point corresponds to a rootHOG. Number 

of rootHOGs that FastOMA found using the NCBI tree is 39,4516 and 38,5697 with the TimeTree.  
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