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Abstract
Spatial metabolomics using imaging mass spectrometry (MS) enables untargeted and label-free
metabolite mapping in biological samples. Despite the range of available imaging MS protocols
and technologies, our understanding of metabolite detection under specific conditions is limited
due to sparse empirical data and predictive theories. Consequently, challenges persist in
designing new experiments, and accurately annotating and interpreting data. In this study, we
systematically measured the detectability of 172 biologically-relevant metabolites across
common imaging MS protocols using custom reference samples. We evaluated 24
MALDI-imaging MS protocols for untargeted metabolomics, and demonstrated the applicability
of our findings to complex biological samples through comparison with animal tissue data. We
showcased the potential for extending our results to further analytes by predicting metabolite
detectability based on molecular properties. Additionally, our interlaboratory comparison of 10
imaging MS technologies, including MALDI, DESI, and IR-MALDESI, showed extensive
metabolite coverage and comparable results, underscoring the broad applicability of our findings
within the imaging MS community. We share our results and data through a new interactive web
application integrated with METASPACE. This resource offers an extensive catalogue of
detectable metabolite ions, facilitating protocol selection, supporting data annotation, and
benefiting future untargeted spatial metabolomics studies.

Introduction
Spatial metabolomics is an emerging field focused on detecting metabolites in tissues and cells
in their native spatial context, offering valuable insights in biology, medicine, and pharmacology1.
To comprehensively map metabolic phenotypes in a sample, a wide range of metabolites must
be measured in an untargeted manner. This comprehensive metabolite profiling is vital for
enabling complex applications, such as discovering novel metabolic interactions2, understanding
metabolic reprogramming in disease3, or analysing metabolic states at the single-cell level4.
Among the technologies used for spatial metabolomics, matrix-assisted laser
desorption/ionisation mass spectrometry (MALDI-MS) imaging is recognised as a key tool.5

However, the untargeted analysis of metabolites using MALDI-MS presents challenges related
to two factors: the ability to detect diverse metabolites, and confidently annotating the resulting
data. Firstly, analyte detectability varies depending on the specific protocol used, including the
ionisation mode, organic solvent, and the MALDI matrix. Although numerous matrices have
been described, there is no universal protocol optimal for all metabolites due to their high
chemical diversity. The lack of comprehensive empirical data on metabolite detectability in
MALDI-MS, coupled with the absence of quantitative ion formation theories, hinders our ability
to predict the most suitable protocol for specific metabolites. Secondly, without detailed
knowledge of the range of metabolites detectable with a given protocol, there is a risk of ion
misannotation when relying solely on full scan (MS1) data predominantly used in imaging MS.
Similar challenges exist across other imaging MS technologies like desorption electrospray
ionisation (DESI) and infrared laser matrix-assisted laser desorption electrospray ionisation
(IR-MALDESI). The limited understanding of the disparity in the results between different
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protocols and technologies makes it difficult to establish result reproducibility and compare
outcomes across studies. Addressing these challenges is crucial for enhancing experiment
design, reducing uncertainty in data interpretation, and advancing untargeted spatial
metabolomics research effectively.

Efforts have been made in the past to tackle similar challenges, including cataloguing analytes
detected by various MALDI matrices, including lipids6 and small molecules7. However,
comprehensive information on metabolite detectability remains limited, with many novel
matrices8 yet to be evaluated for spatial metabolomics. Additionally, studies attempting to
explain ion yields in terms of matrix-analyte chemistry have not yet found consistent
relationships for predicting analyte detectability.9–12 Empirical studies have measured the
detectability of lipid classes using different MALDI-MS protocols in tissue sections and
homogenates spiked with chemical standards.13,14 However, these studies have limited
scalability to more diverse analyte classes and may not generalise to other sample types, as ion
yields can vary depending on the tissue used.15

In this study, we systematically measured the detectability of metabolites representative of
biological samples by common imaging MS technologies, focusing primarily on MALDI-MS. A
procedure was established to produce a reference sample comprising 172 chemical standards.
A computational pipeline was developed to process imaging MS data from the reference
samples, allowing us to compare 24 MALDI-MS protocols and determine their suitability for
untargeted spatial metabolomics. Chemical standards were used to avoid ion suppression
effects typically present in complex biological samples and determine metabolite detectability
under ideal conditions. We demonstrated the relevance of our results to biological sample
imaging by comparison with metabolite detectabilities in animal tissues for selected protocols.
Additionally, an interlaboratory survey involving 10 imaging MS technologies provided insights
into metabolite detection within the wider imaging MS community. The results showed that an
extensive metabolite coverage is achievable and comparable across different technologies,
highlighting that untargeted spatial metabolomics is accessible on a wide range of instruments
and that the results presented in this work are informative beyond MALDI-MS. To facilitate the
design of future untargeted metabolite experiments by imaging MS, the results and data were
made openly accessible through an interactive web resource integrated into the METASPACE
online platform. This community resource provides the information on detectability and
intensities of individual metabolite ion species, helping to select appropriate protocols and
understand their limitations, thereby facilitating data annotation in untargeted metabolite
imaging. Furthermore, our methodology and the reference samples could be used to benchmark
other imaging MS protocols and instrumentation, as well as assess the detectability of different
sets of analytes.
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Results and Discussion

Workflow to measure analyte detectability and intensity by
imaging MS

Figure 1. Experimental and computational workflow to measure detectability and
intensities of 172 biologically-relevant metabolites using reference samples.
a, Schematic representation of the experimental protocol used to prepare the reference
samples. An automatic compound dispenser was used to deposit solutions of individual
chemical standards onto glass slides, supported by a removable polymer template.
b, Experimental and computational workflow for the reference sample analysis.
c, Schematic representation of the computational pipeline used for the analysis of imaging MS
data. m/z channels were queried against a custom database, converted to ion images, and
filtered to remove false-positive annotations. Then, the detectabilities and intensities of selected
ions were calculated.

Our study aimed to evaluate the effectiveness of imaging MS protocols and technologies for
untargeted spatial metabolomics experiments. To achieve this, we developed an experimental
and computational procedure to measure the detectability and intensities of up to 180 molecules
simultaneously in a controlled manner (Fig. 1b).
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First, we created a reference sample compatible with common soft ionisation imaging MS
instruments (Fig. 1a). Individual solutions of chemical standards were deposited on a glass slide
in a regular pattern, using an automatic thin-layer chromatography (TLC) sample dispenser. To
prevent cross-contamination, we used a custom-made removable polymer template that formed
leak-tight microwells when placed on the glass slide. This yielded a spatially and chemically
defined array of 180 analyte spots, each of 1 mm in diameter, covering a total area of
approximately 800 mm2. In total, we prepared 150 reference sample replicates.

To analyse the imaging MS data from reference samples, we developed a computational
pipeline that quantified the detectability and intensity of the anticipated analyte ions in each spot
of the array (Fig. 1c). For every metabolite, we examined up to 70 theoretical ions, consisting of
all permutations of an adduct (+H+, +Na+, +K+, [M]+ in positive ionisation mode, and -H+, +Cl-,
[M]- in negative ionisation mode), and up to one commonly observed neutral loss (water, carbon
dioxide, ammonia, dihydrogen, phosphate) or neutral gain (dihydrogen or respective MALDI
matrix). All ion images were generated using the custom database functionality of METASPACE
and resulted in approximately 4000 images per reference sample. Since some theoretical ions
were not chemically plausible or isobaric with matrix peaks, some generated ion images were
suspected to be false-positive annotations and were excluded from analysis in the following
way. First, we used a grid-fitting algorithm to identify the coordinates of the metabolite spots in
each ion image. For every metabolite ion in the corresponding spot, several metrics, such as the
intensity ratio between the spot area and the surrounding background, were computed.
Subsequently, these metrics were used to train a machine-learning classification model to filter
out false positive annotations.

As a result, our approach generates a table with identities and intensities of the ions detected in
each spot of the array. Using our pipeline, we were able to perform the analysis of tens of
thousands of ion images from multiple data sets, providing the throughput necessary for a
comprehensive comparison of metabolite detectability and intensities of various MS imaging
protocols and technologies.

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.29.577354doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577354
http://creativecommons.org/licenses/by-nd/4.0/


Reference metabolites are representative of a typical metabolome

Figure 2. Function, structure and natural abundance of reference metabolites.
a, KEGG map of common metabolic pathways shows the distribution of reference metabolites
across different biochemical pathways. The nodes represent metabolites and the lines represent
reactions. Here and in panel b reference metabolites are coloured according to the chemical
class.
b, Structural similarities between 172 reference metabolites (coloured) and metabolites from the
BiGG iMM1865 genome-scale mouse model (in grey). The chemical space is visualised using
Principal Component Analysis of metabolite extended-connectivity fingerprints.

To enable the evaluation of untargeted spatial metabolomics methods, a reference sample was
created using 172 chemical standards that represent the diversity of primary metabolites found
in mammals, bacteria and yeast. Comprehensive coverage of various biological functions was
ensured by selecting metabolites from a wide range of biochemical pathways, as illustrated in
the KEGG metabolic pathways map (Fig. 2a, SI Fig. 4). We included multiple intermediates per
pathway, covering the metabolism of amino acids, carbohydrates, lipids, nucleotides, vitamins
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and cofactors (SI Fig. 5, SI Table 9). Additionally, we selected the metabolites from a wide
range of chemical classes using a two-level classification (“class” and “subclass”) derived from
ClassyFire24 (SI Fig. 6, SI Table 10). The structural diversity of the reference metabolites was
compared to that of the metabolome used in the genome-scale metabolic mouse model BiGG
iMM186521. For this, we converted the molecular structure of each metabolite to a binary
extended-connectivity fingerprint25. Then, we mapped all metabolites from BiGG iMM1865
together with our 172 metabolites into a chemical space by applying Principal Component
Analysis to their fingerprints (Fig. 2b). We found that the reference metabolites span the entire
chemical space occupied by the BiGG iMM1865 metabolome. Metabolites assume a wide range
of concentrations in living cells. To ensure that we included the most abundant metabolites in
our reference sample, we compared our selection to the data set of absolute abundances of
over 100 metabolites in Escherichia coli (data not available for cells of other organisms).26 Our
reference sample incorporates a majority of the most abundant metabolites, including 15 of the
top 20. (SI Fig. 7). In summary, our carefully selected set of 172 reference metabolites is
representative of the biochemical, chemical, and structural diversity found in a typical
metabolome.

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.29.577354doi: bioRxiv preprint 

https://paperpile.com/c/fjkorM/np01P
https://paperpile.com/c/fjkorM/vj9Ms
https://paperpile.com/c/fjkorM/wfJwO
https://paperpile.com/c/fjkorM/3uXGH
https://doi.org/10.1101/2024.01.29.577354
http://creativecommons.org/licenses/by-nd/4.0/


Metabolite detectability and intensities for 24 different MALDI-MS
protocols

Figure 3. Metabolite detectability by AP-MALDI imaging mass spectrometry
a, Number of MALDI-MS protocols detecting each reference metabolite. One bar represents
one metabolite.
b, Number of reference metabolites detected in each chemical class by at least one protocol,
coloured by polarity.
c, Numbers of reference metabolites detected per MALDI matrix, coloured by polarity.
d-e, PCA comparing MALDI-MS protocols, coloured by polarity (d) and matrix (e), based on the
detectabilities and intensities of reference metabolites.
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f, Detection of metabolites in chemical classes and subclasses by different MALDI-MS
protocols. Dot size shows the fraction of metabolites detected in a given class among those
considered; colour shows the average intensity among the detected ions.

Using our reference samples, 24 MALDI-MS protocols for untargeted spatial metabolomics were
compared. We selected 12 MALDI matrices known for detecting low molecular weight
compounds, including some commonly used in over 7000 METASPACE public datasets (SI
Table 4, https://metaspace2020.eu/datasets/summary, SI Fig. 13). The matrices were sprayed
onto the reference samples with a consistent matrix-to-analyte ratio, and the samples were
imaged using atmospheric pressure (AP-) MALDI-MS in both positive and negative ionisation
modes. We used matrices commonly deployed in positive ion mode DHB, CHCA, DHAP,
ClCCA, and CMBT, matrices commonly deployed in negative ion mode 9AA, NEDC, and MAPS,
as well as dual-mode matrices DAN, NOR, pNA, and PNDI.

Our computational pipeline determined the detectability of each metabolite ion with each
protocol (see SI files). A metabolite was considered to be detected if any of its intact ions were
detected (excluding neutral losses/gains). The majority of metabolites were detected by at least
one MALDI matrix (91% in positive mode, 82% in negative mode). Among the 11 undetected
metabolites, some could be detected after a neutral loss (cholesterol, cholesteryl acetate), some
were obscured by isobaric background peaks (pyruvic, lactic, butyric and acetoacetic acids,
dihydroxyacetone), or were only detectable from concentrated solutions (arachidonic acid,
phosphoserine, carbamoyl phosphate). Indole was undetectable, likely due to its volatility. In
each polarity, half of the metabolites were detected by at least half of the protocols (Fig. 3a, SI
Fig. 8). In positive polarity, most metabolites in the considered chemical classes were detected
by at least one protocol, while in negative polarity, analytes that are also known to poorly ionise
as deprotonated species in liquid-chromatography MS (amines, glycerolipids, and positively
charged metabolites) were not detected (Fig. 3b, SI Fig. 9). The number of metabolites
detected per protocol ranged from 16 to 154 (Fig. 3c). DHB, CHCA, and ClCCA performed best
in positive mode, while 9AA resulted in the highest number of detections in negative mode. The
dual-mode matrices (DAN, NOR, and pNA) achieved good coverage in both polarities, making
them attractive for applications in which the sample amounts are limited but analysis in both
ionisation modes is desired. The NEDC, MAPS, and PNDI protocols detected fewer than 50
metabolites each, indicating their limited suitability for untargeted spatial metabolomics at the
matrix-to-analyte ratio used. However, given their reported advantages27–29, further research is
needed to determine the optimal protocols and applications.

We compared the protocols based on the detectabilities and intensities of reference metabolites
(Fig. 3d-e). As expected, polarity significantly drove orthogonal differences between protocols,
as seen by the separation of data sets acquired with the same matrix along PC2. Within each
polarity, the protocols varied based on the matrix used (along PC1). Some groups of matrices
notably exhibited similar performance, for instance, DHB, CHCA, and ClCCA in positive mode.

In a detailed comparison of chemical classes (Fig. 3f), most metabolites were detectable in both
polarities but many showed a preferred ionisation mode. Amines were predominantly detected
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in positive mode but not in negative mode, regardless of the matrix. Intact carbohydrate ions
were better detected in negative ionisation mode, especially with the 9AA and NOR matrices.
Carboxylic acids had higher intensities in negative mode as carboxylate ions, however were
also observed in positive mode as sodiated ions. Amino acids produced intense ions in both
polarities, as expected from their ability to form zwitterions, with the differences driven by the
chemical properties of the side chain. For example, arginine and creatine with guanidine
functional groups were better detected in positive mode, while the acidic amino acids were
better detected in negative mode. Among lipids, ions from a wider variety of subclasses were
detected in positive mode, with glycerolipids and prenol lipids being almost exclusively detected
in this polarity. The detectability of lipid metabolites in glycerolipid and sphingolipid subclasses is
often influenced by the lipid headgroup. Members of these classes were found to be detected
with high coverage and ion intensities by most MALDI matrices. In particular, acidic or
carbohydrate groups led to higher ion intensities in negative polarity, for example, for cholic acid,
phosphoinositol or glycosyl cholesterol. Conversely, lipids containing quaternary amines, such
as phosphatidylcholine and acylcarnitine, were preferentially detected in positive mode.
Nucleotides and derivatives showed similar intensities in both polarities, except for those with
phosphate groups (e.g. UDP-glucose, coenzyme A, FAD), which had higher intensities in
negative mode.

Some chemical classes showed comparable detection across most tested matrices in each
polarity, such as quaternary ammonium amines, glycerophospholipids, and sphingolipids in
positive mode. However, optimal matrix-polarity combinations were required for other chemical
classes to achieve high ion intensities. For example, carbohydrates in negative polarity were
best detected with 9AA and NOR matrices. Among these, carbohydrate phosphates including
fructose-, glucose-, and glycerol phosphates showed poor detection with other matrices. A
follow-up experiment confirmed that fructose-1,6-bisphosphate and glucose-6-phosphate could
not be detected in a mixture with DAN, but yielded strong deprotonated peaks with 9AA. Our
results suggest that the "top 3" matrices in each polarity (DHB, ClCCA, and CHCA in positive
mode; 9AA, NOR, and DAN in negative mode) provide better metabolite detectability and ion
yield compared to other protocols, making them best-suited matrices for untargeted spatial
metabolomics. It should be noted that other factors such as matrix vacuum stability, crystal size,
optical absorption at the laser wavelength used, and chemical safety should also be considered
in matrix selection.

Finally, we grouped our results by biochemical pathway, which can be instructive for biological
applications requiring targeted analysis of specific metabolic aspects (SI Fig. 10). Note that our
study did not cover all intermediates in every pathway. We found that positive mode protocols
effectively detected metabolites of amino acid metabolism (e.g. urea cycle, polyamine
biosynthesis and creatine metabolism), one-carbon cycle (including folate and methionine cycle,
and vitamins riboflavin and pyridoxine), and intermediates of carnitine biosynthesis and fatty
acid oxidation. Negative mode protocols provided superior coverage of carbohydrate
metabolism (e.g. glycolysis, pentose phosphate pathway, and the citric acid cycle), the
nucleotide sugars of the hexosamine pathway, and intermediates of nucleotide biosynthesis.
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Negative mode protocols were also better suited for detecting RedOx intermediates (e.g. NAD,
NADH, FMN, and FAD).

Overall, our results provide insight into the detectability of metabolites by 24 MALDI-MS imaging
protocols, emphasise the importance of matrix and polarity choice for obtaining orthogonal or
comparable results, and serve as a guide for both untargeted spatial metabolomics and targeted
analysis of metabolic pathways or chemical classes.

Figure 4. Applicability of reference sample results obtained using AP-MALDI to other
samples and metabolites
a-b, Fraction of metabolites detected per subclass in the reference sample, and in biological
tissues (average across multiple tissue data sets), using DHB positive mode protocol (a) and
DAN negative mode protocol (b). Each dot represents a chemical subclass, coloured by
chemical class.
c, Accuracy of classifiers predicting metabolite detectability for a specific MALDI matrix and
polarity. Left to right: global F1-scores for predictions from all classifiers; scores for each
individual classifier.
c-d, Mean values and confidence intervals (+-standard deviation) after repeating the training
process 10 times are shown. For the baseline model, the input features were randomly shuffled
across all data points.
d, Accuracy of regression models predicting intensities of metabolites. Left to right: global
Pearson’s correlation scores for predictions from all models; scores for each individual model.
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The number in brackets shows the number of detected metabolites considered in each model.
Triangle symbols indicate the significance (p-value<0.05) of the calculated correlation.

Reference metabolite detectability is relevant for spatial
metabolomics of biological tissues
The analysis of pure chemical standards offers precise control over sample composition,
prevents signal suppression by other analytes, and simplifies result interpretation. However, it
primarily reflects metabolite detectability in idealised conditions, which may differ from
untargeted spatial metabolomics experiments with biological samples. To assess the relevance
of our results for biological applications, we compared metabolite detectability between
reference samples and biological tissue data sets acquired on the same instrument. We
selected 38 mouse tissue data sets from the public knowledge base METASPACE, analysed
using two commonly used protocols: DHB in positive mode and DAN in negative mode. This
included healthy tissues (brain, lungs, liver, intestine), lung tumour, and inflamed liver tissue. For
each tissue data set, we generated ion images corresponding to metabolites present in the
reference samples. We manually filtered out false-positive annotations, retaining only the ions
detected within the tissue sections. Then, we compared the fractions of detected metabolites in
the tissue and reference sample data sets for each chemical class (Fig. 4a-b, SI Fig. 11). Based
on the assumption that the reference sample represents metabolite detectability under ideal
conditions, we hypothesised that all ions detectable in biological tissues would also be detected
in the reference samples, and that ions undetectable in the reference samples would not be
found in biological tissues. Our results supported this hypothesis, with 95% of DHB-detected
and 78% of DAN-detected metabolites in biological tissues also found in corresponding
reference samples. Most chemical classes had higher detectability in reference samples than in
biological tissues, which is expected given that some metabolites may not be present in the
tissues at concentrations exceeding the limit of detection. Notably, the subclasses "Flavins" and
"CoA and derivatives" were exclusively present in the reference sample in both protocols. In a
small subset of cases (13% with DHB, 24% with DAN), metabolites were found in biological
tissues but not in reference samples, e.g. in the subclasses “Keto acids” and “Glycerolipids” in
negative mode DAN protocol. The discrepancy in these cases may be attributed to false positive
metabolite annotation in biological tissues, as the use of MS1-based metabolite annotation in
complex samples can result in misidentification due to naturally occurring isomers, isobars or
fragments. Additional methods (such as LC-MS/MS, ion mobility separation, or comparing
annotation scores of isobars) may be necessary to confirm metabolite identities in these cases.
Our analysis demonstrates an agreement between metabolite detectability in reference samples
and animal tissue sections, highlighting the informative and relevant nature of our findings for
untargeted spatial metabolomics of tissues using MALDI-MS.

Machine learning predicts metabolite detectability and intensities
To explore the generalisability of our results to a wider range of metabolites, we used machine
learning to predict metabolite detectability and intensities in a two-step procedure. First, we
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trained classifiers predicting metabolite detectability for every protocol individually. For model
training, we used the data obtained from the reference samples, along with metabolite
physicochemical properties as input features. The properties were obtained from HMDB and
included pKa of the most acidic and most basic sites, polar surface area, polarisability, donor
and acceptor count and physiological charge. The classifiers were evaluated using F1-scores,
and three summary scores were computed by considering predictions from all models: for the
positive polarity, negative polarity and both polarities together (Fig. 4c). We achieved high
accuracy in predicting metabolite detectabilities, with a global F1-score close to 0.75,
outperforming a baseline predictor with an F1-score below 0.6. The baseline predictor was
trained on the same data, except that the physicochemical property values were randomly
shuffled among all metabolites. Next, we trained regression models to predict intensities of all
metabolites classified as detected (Fig. 4d). Our approach accurately predicted intensities,
achieving a global Pearson correlation above 0.6 compared to below 0.3 for the baseline model.
Although regression models were trained with limited data points for individual matrix-polarity
combinations (numbers in brackets on the X-axis of Fig. 4d), they demonstrated robust
predictive capability for the majority of protocols in estimating metabolite intensities. It should be
noted that the direct comparison between protocols was only possible because the data was
collected on the same instrument with a standardised set of parameters and cannot be
extrapolated to other MALDI-MS instruments. To determine the impact of individual
physicochemical properties on the regression, we employed SHAP (SHapley Additive
exPlanations) analysis (SI Fig. 12). Higher polarisability values were associated with higher
predicted ion intensities in the majority of models. In positive mode, ions with stronger basic
sites were predicted to have higher intensities, likely because stronger bases can form more
stable, and thus more abundant cations. In negative mode, ions with lower physiological charge
were predicted to have higher intensities, a plausible explanation for which is that physiological
charge reflects the stability of metabolite anions.
Our proof-of-concept investigation showed that physicochemical properties can be predictive of
metabolite detectability and intensities using data from pure chemical standards. Future studies
could expand on these findings. We anticipate that using data sets including more analytes and
additional molecular properties would result in better predictive models, enabling predictions for
metabolites beyond our reference sample and furthering understanding of analyte ionisation
mechanisms.
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Figure 5. Interlaboratory survey of metabolite detectabilities and signal dilution across 13
imaging MS instruments.
a-b, Comparison of imaging MS technologies based on the detectability of reference
metabolites in positive and negative polarities.
c, Detectabilities of reference metabolites across chemical classes and technologies. Heatmap
represents the fraction of metabolites detected in each chemical class. Data sets generated
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using the same technology as in Fig. 3 are marked with black arrows. Dendrograms show
cosine distances between individual classes and technologies. Dots show the same
technologies as in panel a.
d, Proportional contribution of different ion types to total detected metabolite signal, averaged
per chemical class across all technologies. Contributions below 5% are labelled as "Other".
e, Contribution of ion types to total detected metabolite signal (as in panel a) for three selected
technologies.
f, Relative abundance of the most intense ion peak per metabolite compared to the total signal
detected per that metabolite in each considered imaging MS technology. Violin plot and box plot
(25th, 50th, and 75th percentiles) depict values for detected reference metabolites.

Interlaboratory survey achieved comparable metabolite
detectability across imaging MS technologies
Imaging MS can be performed using a variety of instruments capable of spatial sampling,
regardless of ionisation and detection principles. However, the overlap in detected ions across
different technologies and the intercomparability of results in the context of untargeted spatial
metabolomics remain unclear. To address this, we conducted an interlaboratory survey involving
10 expert laboratories and compared the metabolite detection capabilities of 13 instruments. We
selected instruments representing the diversity and state-of-the-art in imaging MS, focusing on
soft ionisation technologies capable of detecting intact metabolite ions across a wide mass
range. (SI Table 7). Further requirements were the ability to generate complete images of the
reference sample compatible with METASPACE annotation (centroided spectra with a mass
accuracy better than 10 ppm for all peaks and resolving power of at least 50,000 at m/z 200).
Our selection included major technologies represented in public METASPACE data sets (SI Fig.
13): MALDI, DESI, and IR-MALDESI sources, with Orbitrap, FTICR, or QTOF analysers.
We aimed to provide an overview of potential variations in spatial metabolomics results when
analysing the same sample with different technologies, provided that each technology is
operated by an experienced user with the most suitable protocol. Thus, all participants were
asked to choose protocols best suited for wide-range spatial metabolomics on their system, and
acquire images of the reference samples in positive and negative ionisation modes. The
resulting data was submitted to METASPACE and processed through our computational
pipeline, as previously explained.

Due to inherent differences in technologies, such as variations in the amount of material
sampled and ionised, and differences in mass analysers and acquisition settings, direct
comparison of raw ion abundances was not feasible. Instead, technologies were evaluated
based on their ability to detect individual metabolites. Our analysis showed no systematic
differences in metabolite coverage between technologies based on ion source, mass analyser,
pressure mode, matrix choice or participant, except for DESI data sets in positive polarity, which
stood apart from other data (Fig. 5a-b, SI Fig. 14) likely due to differences in detection of
metabolites in classes such as lipids, carbohydrates, vitamins and cofactors (Fig. 5c). However,
a cluster of technologies with similar metabolite detectability was identified in positive mode
(shown with dashed line), encompassing a diverse set of instruments. Further analysis revealed
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that this cluster exhibited the most extensive metabolite coverage, including data sets acquired
with AP-MALDI-Orbitrap, IR-MALDESI-Orbitrap, MALDI-FTICR, MALDI2-Orbitrap, and
MALDI-qTOF protocols (see 7J, 8A, 9A, 12C 4F and 13G in Fig. 5c). In negative mode, the
individual data sets acquired with DESI-Orbitrap, IR-MALDESI-Orbitrap, and
AP-MALDI-Orbitrap achieved best overall metabolite coverage (see 1C, 9E and 7A in Fig. 5c). It
should be noted that protocol choice alone can significantly impact the results, therefore
protocol optimisation for a sample of interest is strongly recommended (e.g. matrix-to-analyte
ratio, polarity of the matrix solvent, wetness of the spray, or sublimation conditions may be
especially important for complex samples). Overall, most metabolite classes were well-detected
by all technologies, and high coverage was achievable by all instruments. Differences in
chemical class coverage were noted depending on polarity, consistent with previous findings
from AP-MALDI protocol comparison (Fig. 3). For example, basic amines in negative ionisation
mode and carboxylic acids in positive mode presented challenges for detection across most
technologies. Within each polarity, we did not observe direct orthogonality of metabolite
detection profiles among technologies. Notably, differences between results from instruments
with the highest metabolite coverage were smaller than differences between individual chemical
classes. This suggests that the detectability of sufficiently abundant metabolites is primarily
determined by their chemistry, and differences in instrumentation alone are unlikely to be the
sole cause of contradictory results in similar untargeted spatial metabolomics experiments.
Selecting the right technology, however, is important for particular research questions. For
example, MALDI2 was shown to have increased sensitivity for specific glycerophospholipids in
complex biological samples with low-abundant analytes or notable ion suppression.30

Additionally, DESI’s sampling approach allows imaging of bacterial colonies on agar without
sample destruction, facilitating subsequent subculturing.

Our survey demonstrates that common imaging MS technologies offer extensive and
comparable coverage of metabolites in reference samples. This highlights the accessibility of
untargeted spatial metabolomics and positions our metabolite detectability results as a valuable
resource for the broader imaging MS community.

Investigation into the formation of different ion types
To accurately interpret untargeted spatial metabolomics data, establishing confidence in ion
annotation is crucial. One of the challenges in imaging MS is the division of signal from a single
analyte between multiple mass channels, e.g., arising through different ionising adducts or
fragmentation reactions. The increased spectral complexity from such “signal dilution” can lead
to false positive identifications due to m/z overlaps with isomeric or isobaric ions, or missed
annotations due to reduced sensitivity for the target analyte ion. Here, we used the data from
the interlaboratory survey to estimate the extent of signal dilution, and determine the prevalent
ion types across different imaging MS technologies. For this, we considered all permutations of
6 common adducts and 10 neutral losses/gains and compared intensities of detected ions for
every reference metabolite.
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Our analysis revealed intact metabolite ions produced through protonation, deprotonation, or
metal cation adduction were the most abundant ions across all technologies (Fig. 5d). In
positive mode, sodium adduction [M+Na]+ was the primary ionisation mechanism for classes
containing oxygen as the only heteroatom, such as carboxylic acids and carbohydrates, while
direct protonation [M+H]+ was more prevalent for nitrogen-containing metabolites like
non-quaternary amines and amino acids. Molecular ions without adducts, [M]+ and [M]-, were
also detected, some as a result of radical formation, and others due to databases only listing
charged formulas (e.g. thiamine). Furthermore, characteristic ions formed by the loss of neutral
molecules were observed, particularly in metabolites with good leaving groups. In positive
polarity, the most prevalent neutral losses were the loss of water from amino acids,
carbohydrates, carboxylic acids, and lipids, and the loss of ammonia from amines and amino
acids. In negative polarity, the loss of carbon dioxide from carboxylic acids, and the loss of
phosphoric acids from phosphate-containing metabolites were observed. Certain metabolites
exhibited a neutral gain of a matrix unit, especially with uncommon matrix-polarity combinations,
such as 9AA in positive mode or DHAP in negative mode. However, the intensity of these ions
was generally low. Technology-specific differences were also observed (SI Fig. 15). For
example, AP-MALDI-Orbitrap and DESI-Orbitrap showed similar ion formation patterns,
whereas IR-MALDESI-Orbitrap exhibited a higher abundance of protonated cations compared
to the total metabolite signal across all chemical classes (Fig. 5e). This finding aligns with prior
research demonstrating the preferential production of protonated cations by IR-MALDESI.31

Overall, signal dilution was more prominent in positive mode across all technologies, primarily
due to the split between sodiated and protonated ions. On average, the most abundant ion
accounted for 62-90% of total metabolite intensity in positive mode and 83-97% in negative
mode. This highlights the potential loss of significant spectral information if only the primary
peak is considered (Fig. 5f). For a few metabolites, the dilution effect was more severe. For
example, over 50% of the adenosine triphosphate signal was split due to fragmentation,
cholesterol was predominantly detected as a dehydrated carbocation, and retinoic acid formed
multiple abundant ions such as radical cation in positive mode (SI Fig. 16). It is important to
note that our figures may underestimate the extent of signal dilution, as we only considered
common adduct and neutral loss combinations. Additionally, signal dilution observed in
biological samples may differ depending on the availability of ionising adducts.15,32

In summary, our data helped estimate the extent of signal dilution and identified prevalent ion
types across different imaging MS technologies. This provides a basis for improving
measurement sensitivity and annotation confidence in untargeted imaging MS analysis. Further
research can build upon our findings by exploring additional adducts, neutral losses, and
fragments in the data.
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Web application for interactive visualisation of metabolite
detectabilities

Figure 6. Interactive web application facilitates access to study results and data
a,Web application interface displays customisable options and filters for visualising the results
of AP-MALDI-MS protocol comparison and interlaboratory survey.
b, Example: Intensities of ions of two isomeric lipids, LysoPE(18:0) and LysoPC(15:0), detected
using AP-MALDI technology. Both isomers are detected in positive mode. However, they can be
distinguished by examining the deprotonated ion in negative polarity, as only LysoPC(18:0)
forms this ion species. Permanent URL:
https://metaspace2020.eu/detectability?filter=nL,name&filterValue=None%7CLyso%20PC%201
5%3A0%23Lyso%20PE%2018%3A0&xAxis=a&yAxis=name&agg=log10_intensity&metric=2&p
age=1&pageSize=5&src=EMBL&vis=2

We developed an interactive web application (http://metaspace2020.eu/detectability) to
enhance the accessibility of study results and data (Fig. 6a). The application visualises
metabolite ion detectabilities and intensities as dot plots or heatmaps. Users can aggregate
results by various parameters such as metabolite, chemical class, biochemical pathway, polarity,
MALDI matrix, and technology, exploring fractions and average intensities of detected
metabolites within specific groups of interest. Additional filters can be applied to visualise
subsets of results, for example by selecting specific metabolites (Fig. 6b). The application
includes three “Data Source” tabs: "EMBL" for data sets used in the AP-MALDI-MS protocol
comparison (Fig. 3), "INTERLAB" for data sets from the interlaboratory comparison (Fig. 5), and
"ALL" displaying all data reprocessed for comparability.
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Our web resource is particularly valuable for scientists new to spatial metabolomics, aiding in
the selection of appropriate polarity and MALDI matrix for untargeted spatial metabolomics or
targeted detection of specific metabolites, chemical classes, or biochemical pathways. The
application also identifies the most abundant ion species for a given metabolite, highlighting the
potential loss of measurement sensitivity due to signal dilution. Additionally, it can point out the
differences between various imaging MS technologies. SI Table 11 provides links to example
plots generated with our application. The web resource not only presents metabolite
detectabilities and intensities but also connects the results to the original data sets. Users can
access relevant data sets on METASPACE by clicking on dots in the dot plots or cells in the
heatmaps, verifying ion image and mass spectrometry signal quality in the “Diagnostics” section
of METASPACE, exploring potential isomers or isobars, and accessing experimental metadata
and analysis parameters. The downloadable data in the centroided imzML format, can be
further utilised for generating new hypotheses and addressing unexplored questions.

Outlook
The main accomplishment of our study is an openly accessible and comprehensive account of
metabolite detectability in a diverse range of imaging MS protocols and technologies. Using
defined reference samples, we provided an unbiased empirical basis for evaluating common
assumptions and situating our findings within the broader context of untargeted metabolite
analysis. Beyond the shared results, our data holds potential for further analysis. Exploring
unaddressed aspects of metabolite ionisation, such as in-source fragmentation and its
comparison with MS/MS databases, could enhance compound identification based on MS1
data, as was demonstrated recently in a limited scope.33 Investigating the molecular properties
of metabolites and MALDI matrices and observed detectabilities across atmospheric pressure
and vacuum instruments, could offer new insights into the ion formation mechanisms in
MALDI-MS and contribute to predictive theories for metabolite ionisation. Additionally, the
reference samples could serve as a valuable benchmarking tool for future studies, aiding in the
evaluation of new MALDI matrices and the assessment of imaging MS instrument performance
following hardware or software updates. Future investigations could utilise our experimental and
computational procedure to expand findings to other compounds of interest, such as plant
metabolites or drugs. With further validation, the preparation of reference samples with analytes
deposited on alternative substrates, like sections of homogenised tissue34, could facilitate the
study of suppression effects observed in biological tissues. By promoting the use of
standardised reference samples, we believe their availability in various formats, including
commercial, would greatly enhance reproducibility and facilitate result inter-comparability in the
research community. We are confident that the outcomes of this work and the opportunities they
provide will significantly benefit the imaging MS community by making untargeted spatial
metabolomics more effective, interpretable, and impactful.
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Methods

Materials
Analytical standards were purchased from MetaSci, Toronto, ON, Canada; Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany; Avanti Polar Lipids, Inc., Birmingham, AL, U.S.A.;
GLSynthesis Inc., Worcester MA, U.S.A.(SI Table 1). LC-MS grade acetonitrile, methanol and
water; ACS grade chloroform; sodium hydroxide (aqueous, 2M); hydrochloric acid (aqueous,
37%), nitric acid (conc.) were purchased from Fisher Scientific, Schwerte, Germany. SYLGARD
184 silicone resin and curing agent were purchased from Biesterfeld, Hamburg, Germany.
Nitrogen, argon and oxygen gas of 99.999% or higher purity were from EMBL internal supply.
PNDI was purchased from Ossila BV, Leiden, The Netherlands. 4-maleicanhydridoproton
sponge (MAPS) was kindly provided by Prof. Dr. Karsten Niehaus, Bielefeld University,
Bielefeld, Germany. Other MALDI matrix substances were purchased from Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany.

Preparation of metabolite solutions
A two-step procedure was used to prepare metabolite solutions. First, a stock solution was
prepared in a solvent system suitable for a given metabolite. Next, the stock solution was diluted
to the final concentration in a volatile solvent to produce a quick-drying nanospray and ensure
uniform deposition. All metabolite standards were prepared to 200 µM final concentration,
except for four lipid standards that were available in limited quantities. For these, concentrations
of 50 or 10 µM were used as specified in the preparations table (SI Table 2). After preparation,
all solutions were stored in HPLC vials at -80℃ until use.

Production of reference samples
A custom mould with 180 regularly spaced columns was precision-cut from a solid
polyoxymethylene block (SI Fig. 1). The 3D design is provided in Supplementary Data 1.
Sylgard 184, a two-component PDMS silicone, was mixed according to the manufacturer’s
instructions, and 4 g was poured into each mould. The moulds were placed to de-gas under
vacuum for 30 min before being set to cure at 65℃ for 2 h. Any visible burrs or defects were
manually trimmed, and freshly cured polymer templates were placed on regular glass slides that
had been pre-cleaned using an acid-cleaning protocol16 or on indium tin oxide (ITO)-coated
slides (Bruker Daltonics GmbH, Bremen, Germany). Indexing strips included in the mould
design enabled the reproducible alignment of the polymer templates to standard-sized glass
slides (25 x 75 mm). The templates created slides with leak-tight microwells arranged in 20 rows
and 9 columns, each well measuring 1 mm in diameter. Metabolite solutions were dispensed
into the microwells using an ATS4 automatic TLC sampler (CAMAG, Muttenz, Switzerland). A
compatible 3D-printed sample holder for 10 glass slides was designed to fit on the stage in
place of the normal silica plate. This allowed registration of well positions to the stage
coordinates, requiring only a brief manual 3-point recalibration for each slide to ensure correct
spray positioning across the slide surface. Calibration was verified by depositing a solution of
rhodamine B and caffeine into three dedicated microwells. The dispenser was then programmed
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to deposit 2 µl of a single compound solution into each microwell. The programs were prepared
as coordinate lists, then imported and run in “free mode” using the instrument software Wincats
v. 1.4.4.6337 (SI Fig. 2). The complete slide layout used can be found in the SI material (SI Fig.
3, SI Table 3). After compound deposition and drying, polymer templates were removed, and
finished slides were vacuum-packed under an argon atmosphere, to minimise the risk of sample
oxidation, and stored at -80℃ until use.

AP-MALDI mass spectrometry imaging
On the day of analysis, the reference sample slides were brought to room temperature for at
least 1 h before breaking the vacuum seal. Matrix substances (SI Table 4) were sprayed onto
the reference samples using a TM Sprayer (HTX Technologies, Chapel Hill, NC, U.S.A.)
following the protocols in SI Table 5. The reference samples were imaged using an
AP-SMALDI5 AF ion source (TransMIT, Giessen, Germany) coupled to a QExactive Plus mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany). Instrument parameters are listed in
SI Table 6. Each slide was imaged separately in both ion polarities, as well as in low and high
mass ranges (following instrument guidelines to ensure that data is acquired in the mass range
where Orbitrap mass analyser can maintain high resolution and accuracy), resulting in a total of
four sequential acquisitions. To prevent repeated sampling of the same locations, the imaging
raster was manually offset by 50 μm between each acquisition.

Mass spectrometry imaging by interlaboratory survey participants
The experimental protocols used by the interlaboratory survey participants can be found in SI
Supplementary Methods.

Data preprocessing
AP-MALDI data were converted from the vendor raw format to mzML using MSConvert17 with
the vendor-supplied method for spectrum centroiding. The mzML format was then converted to
imzML using imzMLConverter18. External collaborator data was converted separately by each
participant and uploaded to METASPACE19 as centroided imzML files. In cases where the same
sample slide had been imaged separately in lower and higher mass ranges for a given polarity,
the two datasets were merged pixel-by-pixel through a Python script utilising the pyimzML
library to form a wide mass range spectrum per pixel. If merging was not possible, lower- and
higher-mass-range data sets were processed separately, and only their result tables were
merged. All images were submitted to METASPACE with the following processing parameters:
positive mode adducts [M]+, [M+H]+, [M+Na]+, [M+K]+; negative mode adducts [M]-, [M-H]-,
[M+Cl]-; neutral losses -H2O, -2H, -CO2, -CH2O3, -CH2O2, -HPO3, -H3PO4, -NH3; neutral gains
+2H, +matrix (C13H10N2, C10H7NO3, C10H6ClNO2, C10H10N2, C10H8N2, C8H8O3, C7H6O4, C18H18N2O3,
C12H14N2, C11H8N2, C6H6N2O2, C7H4ClNS2); mass tolerance of 3 ppm (for AP-MALDI protocol
comparison) or 10 ppm (for interlaboratory technology comparison). Data annotation was
performed against a custom database containing only the reference metabolites, and only one
adduct and up to one either neutral loss or neutral gain per ion was considered.
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Data analysis

Ion image classification and determining metabolite ion detection
For each data set, we determined which spectra were sampled in each metabolite spot by fitting
reference points to image features using an in-house interactive grid-fitting tool developed in
Python. A significant number of ion images exhibited spatial patterns that did not correspond to
the expected spots, indicating the presence of spatially distributed ions unrelated to the
reference metabolites (e.g. matrix ions or other chemical noise). To differentiate between ion
images representing “real signal” and those containing “background noise”, we developed a
machine learning-based classifier using CatBoost20. We manually annotated a total of 284 ion
images to train the classifier to identify ion images with the localised intensity of a putative
metabolite ion in its expected well location. The model was trained using a set of pre-computed
metrics for each pair of metabolite well and ion image, where at least one peak in the ion image
appeared inside the well. The model features were: the average TIC-normalised intensity of the
pixels inside the spot, the percentage of pixels with a non-zero intensity (further referred to as
occupancy) in the spot, the ratio between the occupancy in the spot and occupancy in the "far
background" (background area at least 4 spot-radii away from the spot), the ratio between the
average intensities inside the spot and in the far background, and the ratio between the average
intensities inside the spot and in other spots. The classifier provided a probability score, which
we used to classify ions as detected or undetected. Ions with a probability score of 80% or
higher were considered "real signal" and treated as "detected" for further analysis. The
remaining ions were classified as "not detected." Among the undetected ions, we designated
certain ions as “matrix-obscured” to indicate difficulty in determining whether the analyte was
detected or not due to the high signal both within and outside the metabolite spot. Specifically,
any undetected ions with intensity and occupancy ratios exceeding 0.95, as well as background
occupancy rates greater than 40%, were categorised as matrix-obscured.

Assessment of chemical diversity of reference metabolites
To construct the chemical space, we used the chemical structures of all metabolites in the
mouse genome-scale metabolic model (iMM186521) from the BiGG open-source repository22.
First, we obtained the Simplified Molecular Input Line Entry System (SMILES) notation for the
considered metabolites from the Human Metabolome Database (HMDB, v.4) or by converting
chemical structures to SMILES using Marvin software. The SMILES were then used to calculate
"Morgan/Circular fingerprint" vectors using the RDkit Python library. The resulting vectors were
visualised as 2D and 3D PCA score plots, with the metabolites used in the reference samples
highlighted.

Visualisation
All data visualisations (dot plots, bar plots, line plots, scatter plots, and heatmaps) were
performed in Python. A map of common biochemical pathways with highlighted reference
metabolites was created using IPath v.323 and KEGG identifiers obtained from HMDB (lipids
without KEGG identifiers were excluded from the visualisation).
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To compare metabolite detectabilities between AP-MALDI protocols and other imaging MS
technologies, only detected ions without neutral losses or neutral gains were considered. If at
least one ion was detected for a metabolite, it was considered detected. For each dataset, the
fraction of metabolites detected per chemical subclass or biochemical pathway was calculated,
along with the mean intensity of detected ions.
To compare metabolite detectability between reference samples and biological tissues, we
chose 38 tissue data sets acquired on the same instrument as described for AP-MALDI mass
spectrometry imaging using either DHB matrix in positive polarity or DAN matrix in negative
polarity, and available on METASPACE. Data annotation was performed in the same manner as
for reference sample data, except we considered only main ion types: [M+H]+, [M+Na]+, and
[M+K]+ in positive polarity and [M-H]- and [M+Cl]- in negative polarity. We obtained 15550 ion
images of reference metabolites, and manually annotated each ion as detected or not detected.
Every metabolite for which at least one ion was detected, was considered detected. For each
data set, we calculated the fraction of metabolites detected per chemical subclass. Then, we
averaged the detectability values per chemical subclass across tissue data sets. In the final
comparison, only ions with the same adducts were considered in the reference samples.
To calculate the average signal composition in a dataset, all considered ions, including those
with neutral losses and neutral gains, were taken into account. First, we calculated the relative
abundances of detected ions for each metabolite. Next, the average abundances of detected
ions per chemical class in each data set were determined. The obtained values were further
averaged across imaging MS technologies for the summary plots.

Predicting metabolite detectability and intensities
Machine learning was used to predict metabolite intensities for AP-MALDI-MS. First, we trained
a CatBoost classifier to predict the detectability of a given molecule for a combination of the
MALDI matrix and polarity. As described in the Methods, we defined a metabolite to be detected
if at least one of its ions achieved a probability score of 80% or higher. Matrix-obscured ions
were excluded from the analysis. Seven predicted molecular properties from HMDB were used
as features for each metabolite: "pka_strongest_acidic", "pka_strongest_basic",
"polar_surface_area", "polarizability", "acceptor_count", "donor_count", "physiological_charge".
These feature values were normalised using a power transform to achieve Gaussian
distribution. Next, we trained a regression model to predict the sum intensities of only detected
metabolites using a neural network with one layer (100 features), ReLu activation function, and
Adam optimizer. The model was trained using scikit-learn (v1.1.1, class
sklearn.neural_network.MLP) with default parameters, employing the Binary Cross-Entropy loss
function for classification and the Mean Squared Error loss function for regression. The model's
performance was validated using 10-fold cross-validation, ensuring diverse folds by stratifying
the data points based on all features. We compared our model's performance to a baseline
predictor using the same data with randomly shuffled features across all metabolites and
reported the average scores plus standard deviations over 10 repetitions.
After training the models, we computed and plotted the SHAP (SHapley Additive exPlanations)
values to determine how much each molecular property contributed to the model output.
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Web application
We developed a web application to provide interactive access to the results generated in this
study. The application was built as a Single Page Application using the Vue.JS framework and
the eCharts chart library. It allows users to create visualisations in the form of heatmaps or dot
plots by specifying various parameters. The web application offers the following options for the
X and Y axes: adduct, chemical class, chemical subclass, dataset ID, MALDI matrix, metabolic
pathway, molecule, neutral losses, polarity and sample name. Users can choose to visualise
properties such as raw or mean intensity, log10-transformed intensity, and the fraction of
detected metabolites per category as the size and/or colour. The results can be further filtered
by adding one or multiple filters (e.g. to view a specific metabolite in a polarity of interest). The
application provides three data tabs: EMBL, INTERLAB, and ALL. The EMBL tab contains data
sets used for AP-MALDI protocol comparison (see Fig. 3), processed with 3 ppm mass
tolerance, and provides information on both detectabilities and intensities of the metabolite ions.
The INTERLAB contains data sets used for interlaboratory comparison (see Fig. 5), processed
with 10 ppm mass tolerance. The ALL tab includes all datasets processed with a 10 ppm mass
tolerance. Both the tab INTERLAB and ALL provide only ion detectability information as the
intensities are not directly comparable across different technologies.

Data availability
The imaging MS data collected in this study are publicly available on METASPACE
(https://metaspace2020.eu/project/saharuka-2024) for browsing and download. The individual
data set metadata and links are provided (SI Table 8, Supplementary Data 2). The results of
the study are also provided in a comma-separated values (CSV) file format as SI material
(Supplementary data 3). The source code for the data analysis can be accessed on GitHub
(https://github.com/saharuka/metabolite_detectability and
https://github.com/alexandrovteam/predicting-APMALDI-response). The web application
developed for this study is open-source and available as a part of the METASPACE platform at
https://metaspace2020.eu/detectability, with the codebase available on GitHub
(https://github.com/metaspace2020/metaspace).
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