

1 **Postharvest partial dehydration of blueberries enhanced blueberry wine aroma via**
2 **upregulating phenylalanine metabolism and terpene biosynthesis**

3 Yu Wang ^{1*}, Qi Zhang ¹, Qin Yang, Chen Bian, Shu-Qin Huang, Lu-Lu Zhao, Ya-Qiong Huang,
4 Shan-Shan Shen, Qi Chen, Hai-Wei Zhang, Xue-Ling Gao ^{*}

5 Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of
6 Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value
7 Utilization of Characteristic Agricultural Products, School of Tea and Food Science &
8 Technology, Anhui Agricultural University, Hefei 230036, China

9 ¹ These authors contributed equally to the paper.

10 * Corresponding author: yuwang0919@ahau.edu.cn (Y. Wang); sharling@ahau.edu.cn (X. Gao).

11 **Abstract**

12 Postharvest partial dehydration of blueberries can enhance blueberry wine aroma, while the
13 underlying mechanisms remain unclear. In this study, the key odor-active volatiles in blueberry
14 wines fermented from dehydrated blueberries (30% weight loss) were identified via aroma
15 extract dilution analysis. Results showed that increased levels of phenylalanine-derived
16 compounds such as phenylethanol, and terpenes such as linalool and geraniol, primarily led to
17 the enhancement of sweet, floral and fruity aromas of blueberry wines. Postharvest partial
18 dehydration increased the contents of these compounds, which could be linked to the
19 upregulation of *VcGOT2* and *VcPAR* involved in phenylalanine metabolism, and the upregulation
20 of *VcDXS*, *VcHDR* and *VcTPS* involved in terpene biosynthesis. Notably, the upregulated *VcTPS*
21 encoded a monoterpene synthase responsible for producing linalool. These findings provided
22 insight into the impact of postharvest dehydration on phenylalanine and terpene metabolism in
23 blueberries, offering a reference for improving blueberry wine aroma through postharvest partial
24 dehydration techniques.

25 **Keywords:** Blueberry wine; Water loss; Phenylalanine; Terpene; Sensory

26

27 **1. Introduction**

29 Blueberry is known for its great health potential and unique flavor, and its production has
30 been rapidly increasing in recent years in China. However, blueberry is perishable and has a
31 relatively short shelf life because of high water content and thin pericarp (Yuan et al., 2020). As
32 blueberry production increases, blueberry processing has attracted rising attention, aiming at
33 avoiding the massive damage and spoilage and improving the economic value and availability of
34 blueberries. Blueberry wine remains abundant bioactive compounds and typical flavors of
35 blueberries, satisfying consumers' preference of fruit wines, in particular the health potential and
36 diverse flavor. However, the weak pleasant aromas and less complex flavor of blueberry wines
37 limit the development of blueberry winemaking (Wang et al., 2023a). Our previous research
38 suggested that postharvest partial dehydration of blueberries substantially enhanced aroma of
39 blueberry wines, especially sweet, floral and fruity odors, showing the possibility in innovating
40 blueberry wine products and improving their flavor quality (Wang, et al., 2023b). However, the
41 contribution of odor-active components to the aroma enhancement of blueberry wines should be
42 further investigated.

43 Phenylalanine-derived volatiles in blueberry wines primarily include phenylacetaldehyde,
44 phenylethanol, phenethyl acetate, etc., mainly contributing to honey/sweet and rose-like odors
45 (Lan et al., 2019). Theoretically, phenylalanine can be converted to phenylacetaldehyde by
46 aromatic amino acid decarboxylase (AADC) or phenylacetaldehyde synthase (PAAS), and
47 further be transformed into phenylethanol by phenylacetaldehyde reductase. Phenylethanol can
48 be transesterified to phenethyl acetate via the action of alcohol acyltransferase (AAT). Notably,
49 albeit several key genes and enzymes involved in the formation of phenylalanine-derived
50 volatiles have been characterized in some species (Maoz, Lewinsohn, & Gonda, 2022) such as
51 tomato fruits, *Petunia* and rose flowers etc., the structural and molecular regulatory mechanisms
52 leading to the phenylalanine-derived volatiles *in-planta* are still unknown in many cases such as
53 blueberry. It has been reported that phenylacetaldehyde and phenylethanol have important
54 biological functions in plants, and their synthesis can be induced by multiple stresses (Tieman et
55 al., 2006). Our previous study found that phenylalanine content significantly decreased in

56 partially dehydrated blueberries, while phenylacetaldehyde, phenylethanol and phenethyl acetate
57 levels increased (Wang et al., 2023b). Similarly, Chen et al. (2019) reported that off-vine grapes
58 underwent postharvest dehydration retained higher content of phenylethanol. Therefore, we
59 proposed that postharvest dehydration promoted phenylalanine metabolism, favoring the
60 biosynthesis of benzeneacetaldehyde and phenylethyl alcohol and phenethyl acetate in
61 blueberries, consequently leading to the enhancement of sweet note of blueberry wine. However,
62 the regulation mechanism of postharvest partial dehydration on phenylalanine metabolism
63 remains unclear, in particularly the expression profiles of key genes involved.

64 The floral and fruity aromas of blueberry wines are highly associated with the terpenoids,
65 which is largely determined by terpenes derived from blueberry fruits. Previous studies have
66 identified the odor-active components of blueberries from different cultivars (Du et al., 2011; Du
67 & Rouseff, 2014; Pico, Gerbrandt, & Castellarin, 2022). The primary odorant terpenes in
68 blueberries included linalool, α -terpineol, geraniol, limonene, eucalyptol, and carveol, etc.
69 Recently, Ferrão et al. (2022) combined information from consumer sensory perception of
70 blueberry flavor and the knowledge of volatile compounds presented in blueberry fruits,
71 revealing that the terpenes largely determined the aroma typicality and overall preference of
72 blueberries and their derivative products. Liu et al. (2019) confirmed that terpenes derived from
73 blueberries can be gradually extracted into the blueberry wines, shaping the terpenoid profile of
74 blueberry wines. Our previous study also suggested that the enhancement of floral and fruity
75 aroma of blueberry wines produced from the dehydrated blueberries was highly associated with
76 the increased terpene content (Wang et al., 2023b).

77 The terpene increase in dehydrated berries and the resultant blueberry wines can not only be
78 attributed to the concentration effects but also the upregulated terpene biosynthesis induced by
79 water loss (Mencarelli & Bellincontro, 2020; Sanmartin et al., 2021). Terpenes in blueberries are
80 produced from two biosynthetic pathways, namely the cytosol-localized mevalonic acid (MVA)
81 and the plastid-localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathways. The key odorant
82 monoterpenes are derived from MEP pathways catalyzed by a series of key enzymes, including

83 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-deoxy-D-xylulose-5-phosphate
84 reductoisomerase (DXR), 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase (HDR), and
85 terpene synthase (TPS). Terpenes are presented in free or glycosylated forms in blueberries, and
86 the latter is formed by the action of glycosyl transferase (Lin, Massonnet, & Cantu, 2019).
87 Several previous research has reported that postharvest dehydration upregulated the expressions
88 of *TPS* genes in grapes (Zenoni et al., 2016; Zenoni et al., 2020), subsequently promoted the
89 accumulation of terpenes. In blueberries, the biological function of key candidate structural
90 genes involved in the terpene biosynthesis needs to be further reviewed, and the regulatory
91 effects of postharvest dehydration on their expressions remains unclear.

92 In this study, we first evaluated the effects of postharvest partial dehydration on aroma
93 profiles of blueberry wines, and further identified odor-active components by aroma extract
94 dilution analysis. Subsequently, we tracked the dynamic changes of phenylalanine-derived
95 volatiles and terpenes, and the responses of relevant genes to postharvest dehydration in
96 blueberries, aiming to identify the key genes controlling the metabolite changes. And on this
97 basis, we studied the potential biological function of a key terpene synthas. This study would
98 provide new insights into phenylalanine metabolism and terpenoid metabolism in blueberries
99 during postharvest dehydration, assisting blueberry wineries to better apply postharvest
100 dehydration technology to improve blueberry wine sensory.

101 **2. Material and methods**

102 **2.1 Postharvest dehydration of blueberries**

103 The fully ripened fresh blueberries (the whole berry turned blue) of *Vaccinium corymbosum*
104 L. ‘Lanmei 1’ were manually harvested in a commercial blueberry orchard in Huaining, Anhui,
105 China (N30°20', E116°28') in 2023. Berry samples were precooled in an air-conditioned room at
106 approximately 20 °C for 30 min to remove the field heat. Subsequently, the blueberries were
107 divided into six perforated boxes (1000 g per box). Each box was used as a replicate. Three
108 boxes of fresh blueberries with 0% wight loss were directly used for blueberry winemaking as
109 control (CK), and the rest were stored at 20 °C and ~70% relative humidity for postharvest

110 partial dehydration. During postharvest dehydration period, the weight loss and the health status
111 of blueberries was monitored daily, the healthy blueberries were sampled every two days.
112 Sampled berries were immediately frozen in liquid nitrogen for further analysis. When the
113 weight loss of blueberries reached ~30% (WL30), the dehydrated blueberries were used for
114 blueberry winemaking following the same procedure as CK.

115 2.2 Laboratory scale fermentation of blueberry wines

116 Firstly, the blueberries were manually crushed, and 50 mg/kg pectinase and 50 mg/L
117 equivalent SO₂ (as potassium metabisulfite) were subsequently added to the blueberry must. The
118 blueberry must was put into a sterilized glass fermenter (500 mL) and maintained at room
119 temperature in darkness for 24 hours, allowing for maceration and pectin hydrolysis. The total
120 soluble solids of the blueberry must were adjusted to 20 °Brix by the addition of sucrose prior to
121 alcoholic fermentation, followed by an inoculation with activated *Saccharomyces cerevisiae*
122 Zymaflore RX60 (Laffort, Bordeaux, France). The fermentation temperature was maintained at
123 25 °C in an incubator. When the total sugar of blueberry wine was below 4 g/L, the pomace was
124 separated, and the blueberry wine was filtered with addition of 30 mg/L equivalent SO₂ (as
125 potassium metabisulfite).

126 2.3 Determination of physiochemical compositions

127 A digital pocket handheld refractometer (Atago PAL-1, Tokyo, Japan) and a pH meter
128 (Mettler-Toledo S220, Greifensee, Switzerland) were used to determine total soluble solids (TSS)
129 and pH values, respectively. Sugar content, titratable acidity, ethanol level, and total SO₂ in
130 blueberry juice and wine were determined according to “Compendium of International Methods
131 of Analysis of Wines and Musts (Edition 2020, Volume 1)” established by the International
132 Organization of Vine and Wine. Total phenol content was determined by the Folin-Ciocalteu
133 method and was expressed as gallic acid equivalents. Total anthocyanin content was determined
134 by pH-differential method and was expressed as equivalent cyanidin-3-glucoside. The color of
135 blueberry juice and wines was expressed by the CIELab parameters, including brightness (L*),
136 red/green component (a*) and yellow/blue component (b*). A 10° standard observer and a

137 standard light source D65 were used. Absorbance values of the wine samples were recorded at
138 450, 520, 570 and 630 nm by UV-vis spectrophotometer (Perkin Elmer Lambda35, Waltham,
139 USA).

140 2.4 Aroma assessment of blueberry wines

141 A sensory panel consisted of ten assessors (eight females and two males) from the School of
142 Tea and Food Science & Technology at Anhui Agricultural University, and they aged between 21
143 and 25 with an average of 23. Each panel member was trained for at least 40 hours for odor and
144 intensity recognition using a “Le Nez du Vin” 54 Wine Aroma kit (supplied by Ease Sent Wine
145 Education Co., Ltd, Beijing, China). The wine samples (15 mL per glass) were served in standard
146 wine-tasting glasses labeled with a three-digit random code, and they were presented to the
147 assessors in random order. Firstly, each assessor was asked to provide odor descriptors of
148 blueberry wines as much as possible. Subsequently, a group discussion was performed to
149 compile the descriptors with similar interpretations and remove the descriptors with less
150 agreement. The final odor descriptors of blueberry wines included floral, fruity, honey, butter-
151 like, toasty, herbaceous, jam-like, and hawthorn-like. Finally, the assessors were instructed to
152 rate the intensity of each attribute on a continuous 0-5 scale (0, none; 1, very weak; 2, weak; 3,
153 medium; 4, strong; 5 very strong) after sniffing blueberry wine samples. Each sample evaluation
154 was performed three times.

155 2.5 Aroma extract dilution analysis of blueberry wines

156 Volatile compounds in blueberry wines were extracted using a headspace solid phase
157 microextraction (HS-SPME) method. Samples were agitated at 2000 r/min for 5 min at 50 °C,
158 and a 2 cm pre-conditioned (250 °C for 1 h) DVB/CAR/PDMS 50/30 µm SPME fiber (Supelco,
159 Belletfonete, USA) was inserted into the headspace of the vial to absorb volatiles at 50 °C for 30
160 min. Afterward, the SPME fiber was inserted into the gas chromatography (GC) injector for 5
161 min at 230 °C (Wang et al., 2023c).

162 Blueberry wine samples were analyzed using an Agilent 7890B-5977B gas
163 chromatograph/mass spectrometry (Agilent, Santa Clara, USA) coupled with an Gerstel ODP3

164 olfactometry system (Gerstel, GmbH&Co.KG, Germany). The volatile components were
165 separated by a DB-5 capillary column (30 m × 0.25 mm × 0.25 µm, Agilent, CA, USA) using
166 high-purity helium as carrier gas with a 1.5 mL/min flow rate. The flow of the carrier gas was
167 split between a mass detector and the olfactometry system in a 1:1 ratio. The injection
168 temperature was set at 230 °C. The oven temperature was programmed at the successive
169 temperature: 40 °C for 5 min, increased to 180 °C at a rate of 3 °C /min, and then increased to
170 300 °C at a rate of 30 °C /min and held for 2 min. Mass spectra were generated in the electron
171 ionization mode at 70 eV with a scan range of m/z 35-300. The ion source and quadrupole
172 temperature were set at 230 °C and 150 °C, respectively.

173 The extracts were stepwise diluted by setting the split ratio of the oven at 1:1 ratio up to a
174 1024 dilution factor until the odor is not felt at the sniffing port. Each diluted sample was
175 repeatedly sniffed by three sniffing panel members until no odorous compounds were detected in
176 the olfactometry system. The flavor dilution factor (FD) for each volatile compound in blueberry
177 wines was defined as the final dilution at which the odor-active zone could be smelled by two or
178 more panelists.

179 2.6 Determination of volatile compounds in blueberries and blueberry wines

180 Since volatile compounds in blueberries were presented in free and bound forms. In this
181 study, the total volatile compounds (free + bound) were analyzed followed by a direct enzyme
182 hydrolysis. Briefly, one g of fine grinded blueberry sample was diluted with 9 mL of citrate
183 buffer (0.2 M, pH 5.0) in a 20 mL vial. Subsequently, 100 µL Rapidase AR2000 (DMS Food
184 Specialties, Delft, Netherlands) enzyme solution (0.07 g/mL) were added into the mixture, which
185 was incubated at 40 °C for 16 h in a tightly capped vial. After the solution was cooled to room
186 temperature, 3 g NaCl and 20 µL internal standard (22.71 µg/mL 3-nonenone) were added into
187 the mixture. The extraction of volatile compounds from blueberry and blueberry wines were
188 performed following the same HS-SPME method as described above.

189 Volatile compounds were analyzed using an Agilent 6890 GC coupled with an Agilent
190 5975C MS (Agilent, Santa Clara, USA). Volatile compounds were separated by an HP-5MS

191 capillary column (30 m × 0.25 mm, 0.25 μm thickness, J&W Scientific, Folsom, USA). The flow
192 rate of high-purity helium carrier gas was 1.0 mL/min. The injection temperature was set at
193 230 °C in splitless mode. The oven temperature was programmed at the successive temperature:
194 35 °C for 5 min, increased to 130 °C at a rate of 4 °C/min and held for 3 min, and then increased
195 to 230 °C and held for 1 min. The ion source and quadrupole temperature were set at 230 °C and
196 150 °C, respectively. The ionization voltage was 70 eV. Full scan mode was applied to collect
197 electron ionization mass data from m/z 30-350. The identification and quantification of volatile
198 compounds in blueberries and blueberry wines were followed the methods described by Wang et
199 al (2023b).

200 2.7 Extraction of RNA and RT-qPCR analysis

201 Total RNA of blueberries was extracted using a Spin Column Plant Total RNA Purification
202 Kit (Sangon Biotech, Shanghai, China). The concentration and purity of RNA was determined
203 using a Thermo NanoDrop ND-2000 spectrophotometer (Wilmington, DE, USA). The integrity
204 of RNA was verified via electrophoresis on 1.0 % agarose gel. cDNA library was obtained via
205 reverse transcription using the MightyScript First Strand cDNA Synthesis Master Mix Kit
206 (Sangon Biotech, Shanghai, China).

207 Quantitative real-time PCR was conducted to assess the relative expressions of genes
208 involved in phenylalanine metabolism and terpene biosynthesis with a Bio-Rad CFX96
209 instrument (Bio-Rad, Shanghai, China). The gene-specific primers used for qRT-PCR was listed
210 in Table S1, and *VcUBC28* was applied as the reference gene (Die & Rowland, 2013). Each qRT-
211 PCR reaction (20 μL) contains 1 μL of cDNA template, 0.4 μL of 10 mM forward primer, 0.4 μL
212 of 10 mM reverse primer, 8.2 μL of ddH₂O, and 10 μL of 2 × SGExcel FastSYBR qPCR Mix
213 solution (Sangon Biotech, Shanghai, China). The cycling conditions were as follows: 95 °C for 3
214 min, followed by 40 cycles of 95 °C for 5 s, 60 °C for 20 s. Relative fold differences were
215 calculated using the $2^{-\Delta\Delta C_t}$ method.

216 2.8 Identification and classification of *VcTPS* genes in the *Vaccinium corymbosum*

217 PF01397 and PF03936, representing the TPS N-terminal domain and the TPS C-terminal

218 domain from PFAM1, respectively, were used as queries to search the recent *Vaccinium*
219 *corymbosum* L. protein database (Colle et al., 2019). An HMM (Hidden Markov Model) search
220 was used in this study with an e-value cut at 10^{-3} by using Tbtools softwar. To avoid missing
221 potential TPS genes, 32 known TPS sequences from *Arabidopsis thaliana* were also used to
222 screen the *Vaccinium corymbosum* protein database using BLASTP (built-in Tbtools software).
223 The candidate TPS genes were checked manually by NCBI batch CDD search and InterPro
224 online tools to verify putative full-length TPS genes, and TPS genes with incomplete/partial
225 conserved domain or lacking either PF03936 or PF01397 were excluded. The molecular weight
226 (Mw), isoelectric points (pI), aliphatic index (AI), grand average of hydrophobicity (GRAVY),
227 and instability index (II) of the TPS proteins were predicted by the ExPASy database (Artimo et
228 al., 2012).

229 To classify the evolutionary relationships of the *VcTPS* gene family, the TPS protein
230 sequences of *Arabidopsis thaliana*, tomato (*Solanum lycopersicum*), grape (*Vitis vinifera*), and
231 blueberry (*Vaccinium corymbosum*) were aligned using the ClustW algorithm and MEGA11
232 software. Phylogenetic analysis based on amino acid sequence alignment was performed using
233 the neighbor-joining (NJ) method with Bootstrap tests on 1000 resamples, and maximum
234 likelihood (ML) was considered for more reliable phylogenetic analysis. The final phylogenetic
235 relationship was based on the results obtained from the two methods and visualized by iTOL
236 online software.

237 2.9 Protein expression in *E. coli* and terpene synthase assays

238 The ORF of *VcTPS15* was synthesized and ligated to into pET-22b vector. Subsequently, the
239 recombinant plasmid was transformed into *Escherichia coli* *DH5α* competent cells (Abiocenter,
240 Wuxi, China). Positive colonies were selected and fully sequenced to assess identity by DNA
241 amplification. Selected clones were transformed to *E. coli* *BL21 (DE3)* strain (Abiocenter, Wuxi,
242 China). For induction of protein expression, single colonies were inoculated in 5 mL LB medium
243 (Abiocenter, Wuxi, China) and grew overnight at 37 °C. Aliquots of 200 µL were inoculated in
244 200 mL fresh LB medium, and cultures were grown at 37 °C with shaking at 250 rpm until

245 $OD_{600} = 0.6$. For induction of recombinant protein expression, IPTG (isopropyl β -D-thiogalacto-
246 pyranoside) was first added to a final concentration of 0.5 mM and cultures were maintained at
247 18 °C for 16-18 h with shaking. The cells were harvested by centrifugation at 1,2000 rpm for 15
248 min at 4 °C. The precipitate was resuspended in lysis buffer (50 mM Tris, 0.5 M NaCl) and
249 disrupted by ultrasonic treatment (work 3 s, off 2 s) for 15 min. Cell debris were removed by
250 centrifugation at 1,2000 rpm for 30 min at 4 °C. The precipitate was resolved into assay buffer
251 (50 mM Tris, 0.15 M NaCl, and 8 M urea, pH 7.4), and protein was purified by immobilized
252 affinity metal chromatography and then examined by SDS-PAGE. Enzyme assays were
253 performed in 1 mL assay buffer (30 mM HEPES, 5 mM DTT, 25 mM MgCl₂, pH 7.5) containing
254 60 μ M geranyl diphosphate (GPP), and 10 μ g purified VcTPS15 protein. The mixture was
255 incubated at 30 °C for one hour and then 45 for 15 min (Falara et al., 2011). Subsequently, the
256 reaction products were determined by SPME-GC/MS following the procedure described above.

257 **2.10 Statistical analysis**

258 One-way analysis of variance (ANOVA) employing Duncan's multiple range test at $p <$
259 0.05 was performed using "agricolae" in the R environment (4.0.1). Sensory assessment data was
260 processed using PanelCheck software v1.4.2 (Nofima, Norway). Barplots and line plots were
261 conducted using Origin 2021 (Originlab, USA). Heatmap was prepared using the
262 "ComplexHeatmap" package in the R environment (4.0.1).

263 **3. Results and discussions**

264 **3.1 Physicochemical parameters of blueberries and blueberry wines**

265 Table S2 showed the effects of postharvest partial dehydration on the basic physicochemical
266 parameters of 'Lanmei 1' blueberries and resulting wines. As expected, total soluble solids and
267 sugar content of blueberries were significantly increased by postharvest dehydration treatment
268 due to the concentration effects. In agreement with our previous findings, the titratable acidity
269 showed a marked decrease in juice and final wines produced from dehydrated blueberries. These
270 decreases could be attributed to the enhanced conversion and catabolism of malic acid and citric
271 acid, two primary organic acid presented in blueberries, induced by cellular oxidative

272 decomposition or gluconeogenesis. Notably, total anthocyanins and phenols in dehydrated
273 blueberries and resulting wines were significantly higher than controls. Beside concentration
274 effects, postharvest dehydration might also induce the upregulation of key genes involved in
275 anthocyanin biosynthesis. Additionally, dehydrated berries might lead to the internal degradation
276 of the pericarp cell layer, consequently enhancing the extractability of anthocyanins and phenols.
277 However, when total anthocyanin content was expressed on a per berry basis, it was decreased in
278 WL30 blueberries. Besides, when total phenol content was expressed on a per berry basis, no
279 significant differences were observed between WL30 blueberries and controls. These results
280 indicated that increases in total anthocyanins and phenols in blueberry wines fermented from
281 dehydrated blueberries could be mainly ascribed to the concentration effects caused by water loss.
282 The color of blueberry wine was largely dependent on the phenol components, especially
283 anthocyanins. A significant shift towards redness and darkness was observed in blueberry wines
284 produced from dehydrated berries. There were no significant differences in residual sugar,
285 ethanol level and SO₂ content between WL30 blueberry wines and controls.

286 **3.2 Aroma profiles of blueberry wines**

287 Eight descriptors were given by the trained panelist to shape the blueberry wine aroma
288 profile, namely floral, fruity, honey, butter-like, toasty, herbaceous, jam-like, and hawthorn-like
289 (Figure 1). Postharvest partial dehydration of blueberries significantly increased the intensity of
290 floral, fruity, honey and jam-like aromas but decreased herbaceous aroma intensity ($p < 0.01$). In
291 agreement with our results, previous research also reported that wines derived from the
292 dehydrated grapes were characterized by stronger honey/sweet, floral, and fruity notes (Lan et al.,
293 2019; Ma et al, 2021). The odor-active compounds, contributing to these typical aromas needed
294 to be identified, and the regulatory effects of postharvest dehydration on these compounds in
295 blueberries should be further investigated.

296 **3.3 Identification of key odor-active volatile compounds in blueberry wines**

297 A total of 37 odor active regions were detected in WL30 and control blueberry wines by the
298 olfactory senses of two or more experienced judges (Table 1). A total of 29 odorants were further

299 identified by comparing the retention indices (RIs), mass spectrometry, and odor quality with the
300 corresponding reference compounds. These compounds can be divided into 7 groups, including
301 esters, terpenes, phenylalanine derivatives, and volatile phenols. WL30 and CK blueberry wines
302 had similar odorant compositions, sharing 32 common odor active regions. Notably, 1,4-cineol,
303 *p*-tolualdehyde, *cis*- β -farnesene, and ethyl isobutyrate were only detected in WL30 but not in
304 controls (Table 1), mainly contributing to floral, fruity and sweet aromas.

305 FD factors were calculated to evaluate the contribution of each odor-active compounds to
306 blueberry wine aroma. In CK, only 2 odor substances, linalool and γ -terpinene, had FD values
307 equal to 1024, lower than those in WL30 blueberry wines. By contrast, there are 17 odor
308 substances in WL30 with FD values greater than or equal to 1024 (Table 1), including linalool
309 (>1024; floral), β -pinene (>1024; floral, sweet), γ -terpinene (>1024; floral, sweet), β -ocimene
310 (>1024; floral), *cis*-geraniol (>1024; floral, mint-like), phenylethanol (>1024; rose), phenyl
311 acetate (>1024; honey-like, sweet), *trans*- β -damascenone (1024; floral, honey-like), camphor
312 (1024; floral, mint-like), *endo*-borneol (1024; floral, mint-like), 4-ethylguaiacol (1024; jam-like,
313 sweet), *p*-menth-1-en-9-ol (1024; mint-like), engenol (1024; lilac), isoamyl acetate (1024;
314 banana-like, sweet), ethyl hexanoate (1024; fruity), and ethyl decanoate (1024; fruity). FD
315 factors of all these compounds in WL30 blueberries were increased by at least 100% compared
316 to CK (Table 1). Additionally, most of these compounds contribute to three aroma attributes of
317 blueberry wines, namely sweet, floral, and fruity notes.

318 It was noted that phenylalanine derivatives such as phenylethanol and phenyl acetate, and
319 terpenes such as linalool, β -pinene, γ -terpinene, β -ocimene and *cis*-geraniol had the highest FD
320 factors, higher than 1024, in WL30 blueberry wines (Table 1). In general, these results revealed
321 the large differences in FD factors between blueberry wines produced from dehydrated and fresh
322 blueberries, which were primarily caused by terpenes and phenylalanine derivatives, contributing
323 to the sweet, floral, and fruity aromas. Consistently, several studies have also reported that the
324 honey/sweet, tropical fruit and floral aromas of wines produced from dehydrated grapes were
325 characterized by phenylacetaldehyde, phenethyl alcohol, phenyl acetate, β -damascenone, linalool

326 and geraniol (Lan, et al., 2019; Ma, Xu, & Tang, 2021; Moreno et al., 2008; Urcan et al., 2017).
327 Therefore, we mainly determined phenylalanine-derived compounds and terpenes in blueberries
328 and resulting wines in the subsequent analysis.

329 **3.4 Relative quantitation analysis of phenylalanine-derived compounds and terpenes in
330 blueberry wines**

331 Seven phenylalanine-derived compounds were identified in blueberry wines via SPME-
332 GC/MS analysis, and the concentrations of all these compounds were significantly increased by
333 postharvest dehydration (Figure 2A). Among these compounds, phenethyl alcohol, phenethyl
334 acetate and methyl salicylate were also detected via GC/MS-O, showing higher FD factors in
335 WL30 blueberry wines than in controls (Table 1). The rOAVs of methyl salicylate, phenylethanol,
336 phenethyl acetate, ethyl phenylacetate and phenylacetaldehyde was increased by at least 47% in
337 WL30 blueberry wines, greater than 0.1, especially that the concentrations of ethyl phenylacetate
338 and phenylacetaldehyde exceeded their corresponding olfactory thresholds in WL30 (Table S3).
339 Most of these compounds imparted rose-like and honey/sweet aromas, thus the above findings
340 confirmed the positive roles of postharvest dehydration in enhancement of floral and sweet
341 aromas of blueberry wines via increasing phenylalanine derivative content. Consistently, several
342 previous studies also characterized phenylalanine derivatives as key active odorants in wines
343 produced from dehydrated berries (Ossola, et al., 2017). The formation of phenylalanine
344 derivatives in wines could be originated either from those precursors presented in fruits, or from
345 the degradation of phenylalanine during fermentation via yeast metabolism. The associations
346 between the effects of postharvest dehydration on phenylalanine metabolism in blueberries and
347 the final phenylalanine derivatives in blueberry wines needed to be further investigated.

348 A total of 26 terpene compounds were identified in blueberry wines. It was noted that the
349 concentrations of 19 terpenes in WL30 were significantly higher than in controls (Figure 2),
350 showing the marked positive effects of postharvest partial dehydration on terpenes in blueberry
351 wines. Linalool was the most abundant terpenes, followed by α -terpineol, carvone, citronellol,
352 and geraniol (Table S3). Among these compounds, only α -terpineol and carvone were not

353 detected by GC/MS-O, which might be linked to their olfactory thresholds. According to rOAVs,
354 linalool exceeded its olfactory thresholds in both CK and WL30 blueberry wines, and its rOAV
355 was increased by 5.5 by postharvest dehydration. The rOAV of geraniol in WL30 were higher
356 than 1 but not in CK, and rOAV of citronellol in WL30 was increased by 1.2 folds, reaching to
357 0.91. The highest rOAV was observed on β -damascenone because of its extremely low olfactory
358 thresholds, and its rOAV was increased by 51% by postharvest dehydration (Table S3).
359 Consistently, several studies also reported that sweet wines and ice wines produced from
360 dehydrated grapes possessed higher content of β -damascenone than those made from fresh
361 grapes harvested at maturity (Bowen & Reynolds, 2012; Lan, et al., 2019; Qian et al., 2024). The
362 most significant change was recorded for terpinen-4-ol which was increased by 63 folds in
363 WL30 blueberry wines (Table S3). In agreement with our findings, previous studies have
364 characterized terpinen-4-ol as a marker of grape postharvest dehydration (Negri et al., 2017;
365 Shmulevitz et al., 2023). Furthermore, the rOAV of terpinen-4-ol in CK was lower than 0.1 but
366 higher than 1 in WL30 blueberry wines, suggesting that the aroma contribution of terpinen-4-ol
367 was substantially enhanced in blueberry wines produced from dehydrated berries (Table S3). In
368 general, the above findings revealed that linalool, geraniol, citronellol, β -damascenone, and
369 terpinen-4-ol were the key odor-active terpenes in blueberry wines, which was consistent with
370 previous studies (Qian et al., 2021; Sater, Bizzio, Tieman, & Muñoz, 2020). Higher rOAVs of
371 these compounds in WL30 blueberry wines were in accordance with the increases in
372 corresponding FD factors via GC/MS-O analysis, contributing to the enhancement of floral and
373 fruity notes of blueberry wines produced from dehydrated berries.

374 **3.5 Dynamic changes phenylalanine-derived compounds in blueberries during postharvest
375 dehydration process**

376 Four phenylalanine-derived compounds were detected in blueberries, including benzyl
377 alcohol, benzaldehyde, phenylethanol, and ethyl phenylacetate (Figure 3, Table S4), which were
378 also found in the resulting blueberry wines (Figure 2). The content of benzyl alcohol and
379 benzaldehyde showed similar increasing trends during postharvest dehydration process either on

380 a per fresh weight basis or on a per berry basis (Figure 3, Table S5). The highest concentrations
381 of benzyl alcohol and benzaldehyde were observed in WL30 blueberries, increased by 3.6 and
382 29.7 folds compared to fresh blueberries on a per fresh weight basis, respectively (Table S4).
383 These results indicated that the increases in benzyl alcohol and benzaldehyde can not only be
384 attributed to concentration effects but also upregulated biosynthesis. Benzyl alcohol and
385 benzaldehyde could be derived from the β -oxidation of cinnamoyl-CoA, the Co-A ligation
386 product of cinnamic acid which was converted from phenylalanine catalyzed by phenylalanine
387 ammonia-lyase (PAL). However, in blueberry wines, the rOAVs of benzyl alcohol was lower
388 than 0.1. Besides, neither benzyl alcohol nor benzaldehyde was detected via GC/MS-O analysis,
389 showing their limited contributions to blueberry wine aroma.

390 Phenylethanol has been characterized as a key odorant in blueberry wines by GC/MS-O and
391 GC/MS analysis (Table 1, Table S3), and its higher content in WL30 blueberry wines could lead
392 to the enhancement of sweet and floral notes. Phenylethanol in blueberry wines could be
393 produced either from blueberries or from phenylalanine degradation via yeast metabolism during
394 fermentation. Our previous studies suggested that phenylalanine content in dehydrated
395 blueberries was significantly decreased by postharvest dehydration (Wang et al., 2023b).
396 Consistently, a previous study also reported a declining trend of phenylalanine content in
397 'Beibinghong' grapes during postharvest on-vine dehydration (Li et al., 2023). Therefore, we
398 speculated that the higher phenylethanol content in WL30 blueberry wines could be primarily
399 attributed to the increases in phenethyl alcohol in dehydrated blueberries. In this study, the
400 content of phenylethanol was significantly increased at 6, 8, and 10 days of dehydration,
401 increased by 3 folds in WL30 blueberries than in controls on a per fresh weight basis (Table S4).
402 Similar results were also observed when phenylethanol content was expressed on a per berry
403 basis (Table S5), indicating the upregulated phenylethanol biosynthesis.

404 Phenylethanol in plants is derived from the reduction of phenylacetaldehyde catalyzed by
405 phenylacetaldehyde reductase (PAR). Phenylacetaldehyde could be produced via several
406 pathways. One is from phenylalanine by phenylacetaldehyde synthase (PAAS) or aromatic

407 amino acid decarboxylase, which has been functionally characterized in rose and *Petunia* flowers
408 and *Arabidopsis* (Maoz, Lewinsohn, & Gonda, 2022). Another phenylacetaldehyde biosynthesis
409 pathway is from phenylalanine via phenylethylamine catalyzed by aromatic amino acid
410 decarboxylase and monoamine oxidase (MAO), which has been characterized in tomato fruits
411 (Tieman et al., 2006). In addition, phenylethylamine can be converted to phenylpyruvate by
412 aspartate aminotransferase (GOT2), and the latter can be transformed to phenylacetaldehyde by
413 phenylpyruvate decarboxylase (PDC). Several studies also reported that phenylpyruvate were the
414 precursors of benzaldehyde and benzyl alcohol (Wang, et al., 2019). In blueberries, the specific
415 route of phenylacetaldehyde and phenylethanol biosynthesis remains unclear.

416 To investigate the further reason behind the increases in phenylethanol content in
417 dehydrated blueberries, we determined the expression profiles of *VcGOT2* and *VcPAR* genes via
418 qRT-PCR, since these genes have been characterized as key differentially expressed genes via
419 transcriptome analysis between dehydrated and control blueberries (RNA-seq data has been
420 deposited into NCBI with accession number PRJNA974910). Two *VcGOT2* genes,
421 *VaccDscaff38-augustus-210.26* and *VaccDscaff39-processed-236.3*, showed different expression
422 trends during postharvest dehydration. The first one was significantly upregulated at 6, 8 and 10
423 days compared to fresh blueberries, while the expressions of the latter one drastically
424 upregulated at 2 and 4 days of dehydration, significantly higher than controls, followed by a
425 decreasing trend. The upregulation of *VcGOT2* genes during postharvest dehydration could favor
426 the accumulation of phenylpyruvate, as a precursor of phenylacetaldehyde. The expressions of
427 two *VcPAR* genes, *VaccDscaff38-augustus-210.26* and *VaccDscaff39-processed-236.3*, gradually
428 increased during postharvest dehydration. The first one was significantly upregulated from 4 to
429 10 days of dehydration, and its expression level was increased by over two folds at 10 d. The
430 latter one was significantly upregulated from 6 to 10 days of dehydration, and its expression
431 levels was increased by over five folds at 8 and 10 days of dehydration. The upregulated *VcPAR*
432 genes in partially dehydrated blueberries would promote the conversion of phenylacetaldehyde
433 to phenylethanol. Consistently, a previous study also reported that the postharvest spreading

434 treatment upregulated the expressions of *CsPAR* genes in green tea, thus improving the
435 production and release of phenylethanol (Yu et al, 2021). Overall, the above findings suggested
436 that postharvest dehydration upregulated the expressions of *VcGOT2* and *VcPAR* genes, leading
437 to the significant increases in phenylethanol level in blueberries, contributing to the enhancement
438 of sweet and floral aroma of resulting blueberry wines.

439 **3.6 Dynamic changes of terpenes in blueberries during postharvest dehydration process**

440 A total of 20 terpenes were detected in blueberries (Table S4), and 12 of them were
441 consistently identified in the final blueberry wines (Table S3). Among these compounds, linalool,
442 geraniol, β -pinene, *o*-cymene, *trans*- β -ocimene, β -ocimene, *endo*-borneol and terpinene-4-ol
443 were identified as the key odorants in blueberry wines via GC/MS-O and GC/MS analysis,
444 mainly contributing to floral and fruity aromas. A gradual increasing trend was observed in the
445 concentrations of these compounds, except for terpinene-4-ol, during postharvest dehydration on
446 a per fresh weight basis (Figure 4, Table S4). These findings suggested that the higher terpene
447 content in WL30 blueberry wines could be mainly attributed to the significant increases in
448 corresponding terpenes in blueberries caused by postharvest partial dehydration.

449 Previous studies reported that the increases in terpene content was an integrative
450 consequence of balance between concentration, biosynthesis, degradation, and oxidation, where
451 concentration effect was more significant (Lan et al., 2016). The contents of linalool, geraniol, β -
452 pinene, *o*-cymene and *trans*- β -ocimene expressed on a per berry basis in WL30 blueberries were
453 also significantly higher than in controls (Table S5), showing that the increases of these terpenes
454 in dehydrated blueberries can also be attributed to the upregulated biosynthesis besides
455 concentration effects. Our previous study also confirmed that postharvest dehydration
456 upregulated expressions of key genes involved in the MEP pathway in blueberries via
457 transcriptome analysis, including *VcDXS*, *VcHDR*, *VcGGPS* and *VcTPS* (Wang et al., 2023). In
458 this study, we conducted qPCR analysis to determine the dynamic changes of relative
459 expressions of these genes during postharvest dehydration process. *VcDXS* and *VcHDR* are the
460 key genes in the upstream of MEP pathway, controlling the biosynthesis of IPP and DMAPP, the

461 precursors of monoterpenes and diterpenes/carotenoids respectively. The expressions of *VcDXS*
462 (VaccDscuff-snap-85.24) were significantly upregulated at 6 and 8 days compared to fresh
463 blueberries, followed by a significant downregulation. A significant upregulation of *VcHDR1*
464 (VaccDscuff2-augustus-421.30) was observed at 8 and 10 days, and upregulation of *VcHDR2*
465 (VaccDscuff14-augustus-366.23) was observed at day 6, 8, and 10 (Figure 4). *VcGGPS* is
466 responsible for the biosynthesis of GGPP, the precursor of carotenoids, which can be further
467 converted to norisoprenoids such as β -damascenone. The expressions of two *VcGGPS* genes
468 were assessed, and *VcGGPS1* (VaccDscuff12-snap-75.22) was significantly upregulated at 8 and
469 10 days, while *VcGGPS2* (VaccDscuff23-snap-336.32) were upregulated at 6 and 8 days
470 followed by a downregulation (Figure 4). TPS catalyze the final step of terpene biosynthesis, and
471 it is regarded as a key rate-limiting enzyme. Our results showed that a *VcTPS* gene
472 (VaccDscuff4-snap-178.35) was significantly upregulated after 6 days of dehydration (Figure 4).
473 Notably, the above findings suggested that *VcDXS*, *VcHDR*, *VcGGPS* and *VcTPS* were
474 upregulated on the mid/late dehydration stages (6 days later). The downregulation of *VcDXS*,
475 *VcGGPS1*, and *VcGGPS2* at day 10 highlighted the importance of partial dehydration level,
476 implying that terpene biosynthesis would cease in over-dehydrated berries where degradation
477 and oxidation might be more significant.

478 Overall, the above findings suggested that postharvest partial dehydration could upregulate
479 terpene biosynthesis in blueberries, consequently leading to the higher terpene levels in
480 dehydrated blueberries and the resulting blueberry wines. The upregulation of *VcDXS* and
481 *VcHDR* genes in the upstream of MEP pathway could partially explain the terpene increases, and
482 the upregulation of *VcGGPS* genes could be linked to the higher β -damascenone content.
483 Although we found a *VcTPS* gene which was significantly upregulated by postharvest
484 dehydration, its final product remained unknown. The direct relationships between the
485 upregulated *VcTPS* and the increased individual terpenes in dehydrated blueberries needed to be
486 further investigated via functional characterization.

487 **3.7 Identification and functional characterization of upregulated *VcTPS* gene in**

488 **dehydrated blueberries**

489 To investigate the function of upregulated *VcTPS* gene in dehydrated blueberries, we first
490 conducted a bioinformatic analysis to identify and classify the *VcTPS* genes in blueberry. A total
491 of 141 *VcTPS* genes were finally identified, and they were renamed according to their position
492 on the chromosome as shown in Table S6. Among these genes, the upregulated *VcTPS* gene
493 (VaccDscuff4-snap-178.35) in dehydrated blueberries in this study was defined as *VcTPS15*, with
494 a 3640 bp in length, encoding 577 amino acids with 65.95 kDa molecular weight. The pI,
495 aliphatic coefficients, instability index and hydrophilic coefficient of *VcTPS15* protein were 5.91,
496 80.97, 43.44 and -0.391, respectively, indicating that *VcTPS15* was an acidic, unstable protein,
497 and was rich in aliphatic amino acids (Table S6).

498 Phylogenetic tree was constructed based on a multiple sequence alignment of the blueberry
499 TPSs, *Arabidopsis thaliana* TPSs, *Solanum lycopersicum* TPSs, and *Vitis vinifera* TPSs, to
500 discover the evolutionary relationships among the blueberry *VcTPS* genes. *VcTPS* genes in
501 blueberry could be divided into five sub-families, and TPS-a, TPS-b, TPS-c, TPS-e/f and TPS-g
502 sub-families contained 33, 49, 29, 12, and 18 *VcTPS* genes, respectively (Figure S1, Table S6).
503 However, no TPS-d and TPS-h subfamily gene were identified in *Vaccinium corymbosum*.
504 Consistently, previous studies reported that the TPS-d subfamily mainly distributed in
505 gymnosperms species, and the TPS-h subfamily only existed in *Selaginella moellendorffii* (Chen,
506 et al., 2011; Jiang et al., 2019). It has been reported that TPS-a genes mainly encode
507 sesquiterpene synthases and diterpene synthases in various plants (Keilwagen et al., 2017),
508 which was consistent with the function prediction of TPS-a proteins in this study (Table S6). It
509 was noticed that TPS-b was the most expanded category in *Vaccinium corymbosum*, in parallel
510 with the patterns in *D. officinale*, *V. planifolia*, *D. catenatum*, and *C. faberi*, having more genes
511 in TPS-b (Yu et al., 2020; Huang et al., 2021). Furthermore, the angiosperm-specific TPS-b and
512 TPS-g family encode monoterpene synthases, and the TPS-b and TPS-g members accounted for
513 ~50% of *VcTPS* genes in blueberry, which could be related to the more biosynthesis of
514 monoterpenes and emission of floral scent in blueberry. In this study, the upregulated *VcTPS15*

515 in dehydrated blueberries was classified as TPS-g sub-family (Figure S1, Table S6). We aligned
516 the multiple sequence to analyze the conserved motifs of VcTPS15. The alignment showed that
517 VcTPS15 contained R(X8)W, DDXXD and NSE/DTE motifs (Figure S2). In particular,
518 DDXXD and NSE/DTE motifs play an important role in the metal-dependent ionization of the
519 prenyl diphosphate, and R(X8)W is essential in the cyclization of monoterpene synthase (Jiang et
520 al., 2019). According to the protein function prediction, VcTPS15 was annotated as a
521 monoterpene synthase.

522 An RNA-seq database of root, leaves (day and light), buds, flowers (FL and PF), and the
523 fruits of different developmental stages (green fruit, pink fruit, and ripe ripe) was established to
524 study the expression patterns of *VcTPS* genes in different organs (Figure S3). Notably,
525 expressions of *VcTPS* gene in blueberry fruits showed developmental stage dependent and organ
526 dependent patterns. Among these genes, *VcTPS15* was mainly expressed in pink and ripe fruit,
527 and the highest expression was observed in ripe blueberries (Figure S3), suggesting that
528 *VcTPS15* still played important roles in terpene biosynthesis in ripe blueberries. Our results
529 further confirmed that *VcTPS15* would response to postharvest dehydration.

530 In order to investigate the biochemical function of terpene synthase, VcTPS15 protein was
531 expressed in *E. coli*, and the terpene synthase activity of recombinant protein was determined.
532 Figure 5 showed that VcTPS15 protein catalyzed GPP to β -linalool as the major product along
533 with three minor monocyclic monoterpene products, including β -pinene, D-limonene and α -
534 terpineol. The results indicated the biochemical function of VcTPS15 as monoterpene synthase.
535 Consistently, the linalool, D-limonene and α -terpineol concentrations were significantly
536 increased by postharvest partial dehydration, and the carry-on effects were also observed in the
537 resulting blueberry wines. In particular, linalool was identified as a major aroma active
538 compounds in blueberry wines contributing to floral aroma. Taken together, postharvest partial
539 dehydration of blueberries upregulated the expressions of *VcTPS15*, leading to higher linalool
540 concentrations in dehydrated blueberries and the resulting wines, thus enhancing the floral aroma
541 of blueberry wines.

542 **4. Conclusions**

543 In this study, postharvest partial dehydration (~30% weight loss) was applied to blueberries
544 to improve the resulting blueberry wine sensory. Blueberry wines fermented from dehydrated
545 blueberries had stronger sweet, floral and fruity aroma. The enhancement of sweet, floral and
546 fruity aromas of blueberry wines fermented from dehydrated berries could be a consequence of
547 the increases in phenylalanine-derived compounds such as phenylethanol, and terpenes such as
548 linalool and geraniol, which were mainly derived from blueberries. The content of
549 phenylalanine-derived compounds and terpenes in blueberries showed an increasing trend during
550 postharvest dehydration process. Notably, postharvest dehydration upregulated the expressions
551 of *VcGOT2* and *VcPAR*, leading to the significant increases in phenethyl alcohol level in
552 blueberries. In addition, the upregulations of *VcDXS*, *VcHDR* and *VcTPS* could be linked to the
553 higher terpene levels in dehydrated blueberries compared with controls. The function of the
554 upregulated *VcTPS* was further characterized *in vitro*, it encoded a monoterpene synthase,
555 catalyzing the production of linalool, β -pinene, D-limonene and α -terpineol from GPP. These
556 finding provided insight into understanding the phenylalanine and terpene metabolism in
557 blueberries in response to postharvest water loss, which laid theoretical basis for applying
558 postharvest dehydration technology to improve blueberry wine sensory especially sweet, floral
559 and fruity aromas. However, the underlying mechanisms regulating the key genes involved in
560 phenylalanine and terpene metabolism in blueberries remains unknown, which should be further
561 investigated in the future.

562 **Declaration of interest**

563 The authors declare no known competing financial interests or personal relationships with
564 other people or organizations that could inappropriately influence this work.

565 **Ethical approval**

566 The sensory evaluation of blueberry wines in this study has been approved by the Ethics

567 Committee of Anhui Agricultural University (Approval No.: KJLL2023020). Participants gave
568 informed consent via the statement “I am aware that my responses are confidential, and I agree
569 to participate in this sensory evaluation” where an affirmative reply was required to enter the
570 sensory evaluation. They were able to withdraw from the sensory evaluation at any time without
571 giving a reason.

572 **Acknowledgment**

573 This work was supported by the Anhui Agricultural University Foundation for Stability and
574 Introduction of Talent (rc352111), the Natural Science Research Project in Anhui Universities
575 (2023AH051046), the Anhui Province Natural Science Foundation (Grant No. 2108085MC118),
576 and the Special Fund for Anhui Province Academic and Technological Leader (2021D297).

577 **Author contributions**

578 Yu Wang: Conceptualization; Supervision; Funding acquisition; Writing - Original draft. Qi
579 Zhang, Investigation; Formal analysis; Visualization. Qin Yang, Investigation. Chen Bian,
580 Investigation. Shu-Qin Huang, Investigation. Lu-Lu Zhao, Investigation. Ya-Qiong Huang,
581 Investigation. Shan-Shan Shen, Formal analysis. Qi Chen, Formal analysis. Hai-Wei Zhang,
582 Formal analysis. Xue-Ling Gao: Project administration; Funding acquisition; Writing - review &
583 editing.

584 **Tables**

585 **Table 1** Key odor-active compounds identified in blueberry wines fermented from fresh
586 blueberries and partial dehydrated blueberries by AEDA-GC/MS-O.

587 **Figure captions**

588 **Figure 1** Sensory analysis of blueberry wines fermented from fresh (CK) and partially
589 dehydrated blueberries (WL30). Significance levels were analyzed by LSD as follows: * $p < 0.05$,

590 ** $p < 0.01$.

591 **Figure 2** Heatmap visualization of the concentrations of phenylalanine-derived volatiles (A) and
592 terpenes (B) in blueberry wines fermented from fresh (CK) and partially dehydrated blueberries
593 (WL30).

594 **Figure 3** Heatmap visualization of the dynamic changes in the concentrations of phenylalanine-
595 derived volatiles (A), and the dynamic changes in the relative expressions of *VcGOT2* and
596 *VcPAR* genes involved in phenylalanine metabolism in blueberries during postharvest
597 dehydration (B). Significance levels were analyzed by LSD as follows: * $p < 0.05$, ** $p < 0.01$,
598 *** $p < 0.001$, **** $p < 0.0001$.

599 **Figure 4** Heatmap visualization of the dynamic changes in the concentrations of terpenes (A),
600 and the dynamic changes in the relative expressions of *VcDXS*, *VcGGPS*, *VcHDR*, and *VcTPS*
601 genes involved in phenylalanine metabolism (B) in blueberries during postharvest dehydration.
602 Significance levels were analyzed by LSD as follows: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$,
603 **** $p < 0.0001$.

604 **Figure 5** Selected ion chromatograms (m/z 93) of the products of the recombinant *VcTPS15*
605 protein using geranyl diphosphate (GPP) as substrate.

606 **Supplementary materials**

607 **Table S1** Primers used for qRT-PCR.

608 **Table S2** Effects of postharvest dehydration on basic physiochemical parameters of blueberry,
609 juice and wine.

610 **Table S3** Concentrations and relative odor activity values (rOAVs) of phenylalanine-derived
611 compounds and terpene identified in blueberry wines fermented from fresh blueberries and
612 partial dehydrated blueberries by HS-SPME-GC/MS.

613 **Table S4** Concentrations of phenylalanine-derived compounds and terpenes on a per fresh
614 weight basis (μg/kg FW) in blueberries during postharvest dehydration process.

615 **Table S5** Concentrations of phenylalanine-derived compounds and terpenes on a per berry basis

616 (ng/berry) in blueberries during postharvest dehydration process.

617 **Table S6** The information of *VcTPS* genes identified in blueberries.

618 **Figure S1** Phylogenetic tree of full-length TPS from *Arabidopsis thaliana*, *Solanum*
619 *lycopersicum*, *Vitis vinifera*, and *Vaccinium corymbosum*.

620 **Figure S2** Comparison of amino acid sequences of *VcTPS15* in *Vaccinium corymbosum* and
621 other TPS-g proteins in *Arabidopsis thaliana*, *Solanum lycopersicum* and *Vitis vinifera*.

622 **Figure S3** Expression profiles of *VcTPS* genes in different tissues during blueberry development.

623 LD, leaf day. LN, leaf night. FL, flower at anthesis. PF, flower post-fertilization. Grnfrt, green
624 blueberry fruit. Pinkfrt, pink blueberry fruit. Ripe, ripe blueberry fruit. Data sourced from
625 <http://gigadb.org/dataset/view/id/100537>.

626 **References**

627 Bowen, A. J., & Reynolds, A. G. (2012). Odor potency of aroma compounds in Riesling and
628 Vidal blanc table wines and icewines by gas chromatography-olfactometry-mass
629 spectrometry. *Journal of Agricultural and Food Chemistry*, 60(11), 2874-2883.
630 <https://doi.org/10.1021/jf203314j>

631 Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthases in
632 plants: a mid-size family of genes for specialized metabolism that is highly diversified
633 throughout the kingdom. *The Plant Journal*, 66(1), 212-229. <https://doi.org/10.1111/j.1365-313X.2011.04520.x>

635 Chen, K., Wen, J., Ma, L., Wen, H., & Li, J. (2019). Dynamic changes in norisoprenoids and
636 phenylalanine-derived volatiles in off-vine Vidal blanc grape during late harvest. *Food*
637 *Chemistry*, 289, 645-656. <https://doi.org/10.1016/j.foodchem.2019.03.101>

638 Colle, M., Leisner, C. P., Wai, C. M., Ou, S., Bird, K. A., ... & Edger, P. (2019). Haplotype-
639 phased genome and evolution of phytonutrient pathways of tetraploid blueberry.
640 *GigaScience*, 8(3), giz012. <https://doi.org/10.1093/gigascience/giz012>

641 Die, J. V., & Rowland, L. J. (2013). Superior cross-species reference genes: A blueberry case

642 study. *Plos One*, 8(9), e73354. <https://doi.org/10.1371/journal.pone.0073354>

643 Du, X., Plotto, A., Song, M., Olmstead, J., & Rouseff, R. (2011). Volatile composition of four
644 southern highbush blueberry cultivars and effect of growing location and harvest date.
645 *Journal of Agricultural and Food Chemistry*, 59(15), 8347-8357.
646 <https://doi.org/10.1021/jf201184m>

647 Du, X., & Rouseff, R. (2014). Aroma active volatiles in four southern highbush blueberry
648 cultivars determined by gas chromatography-olfactometry (GC-O) and gas
649 chromatography-mass spectrometry (GC-MS). *Journal of Agricultural and Food Chemistry*,
650 62(20), 4537-4543. <https://doi.org/10.1021/jf500315t>

651 Falara, V., Akhtar, T. A., Nguyen, T. T., Spyropoulou, E. A., Bleeker, P. M., Schauvinhold, I.,
652 Matsuba, Y., Bonini, M. E., Schilmiller, A. L., Last, R. L., Schuurink, R. C., & Pichersky, E.
653 (2011). The tomato terpene synthase gene family. *Plant Physiology*, 157(2), 770-789.
654 <https://doi.org/10.1104/pp.111.179648>

655 Ferrão, L. F. V., Sater, H., Lyrene, P., Amadeu, R. R., Sims, C. A., Tieman, D. M., & Munoz, P. R.
656 (2022). Terpene volatiles mediates the chemical basis of blueberry aroma and consumer
657 acceptability. *Food Research International*, 158, 111468.
658 <https://doi.org/10.1016/j.foodres.2022.111468>

659 Huang, L. M., Huang, H., Chuang, Y. C., Chen, W. H., Wang, C. N., & Chen, H. H. (2021).
660 Evolution of terpene synthases in *Orchidaceae*. *International Journal Molecular Science*,
661 22, 6947. <https://doi.org/10.3390/ijms22136947>

662 Jiang, S. Y., Jin, J., Sarojam, R., & Ramachandran, S. A. (2019). Comprehensive survey on the
663 terpene synthase gene family provides new insight into its evolutionary patterns. *Genome
664 Biology and Evolution*, 11(8), 2078-2098. <https://doi.org/10.1093/gbe/evz142>

665 Keilwagen, J., Lehnert, H., Berner, T., Budahn, H., Nothnagel, T., Ulrich, D., & Dunemann, F.,
666 2017. The terpene synthase gene family of carrot (*Daucus carota* L.): Identification of
667 QTLs and candidate genes associated with terpenoid volatile compounds. *Frontiers in Plant
668 Science*, 8, 1930. <https://doi.org/10.3389/fpls.2017.01930>

669 Lan, Y.-B., Qian, X., Yang, Z.-J., Xiang, X.-F., Yang, W.-X., Liu, T., Zhu, B.-Q., Pan, Q.-H., &
670 Duan, C.-Q. (2016). Striking changes in volatile profiles at sub-zero temperatures during
671 over-ripening of 'Beibinghong' grapes in Northeastern China. *Food Chemistry*, 212, 172-
672 182. <https://doi.org/10.1016/j.foodchem.2016.05.143>

673 Lan, Y.-B., Xiang, X.-F., Qian, X., Wang, J.-M., Ling, M.-Q., Zhu, B.-Q., Liu, T., Sun, L.-B., Shi,
674 Y., Reynolds, A. G., & Duan, C.-Q. (2019). Characterization and differentiation of key
675 odor-active compounds of 'Beibinghong' icewine and dry wine by gas chromatography-
676 olfactometry and aroma reconstitution. *Food Chemistry*, 287, 186-196.
677 <https://doi.org/10.1016/j.foodchem.2019.02.074>

678 Li, P., Jia, Y., Cai, D., Wang, X., Liu, J., Zhu, R., Wang, Z., He, Y., & Wen, L. (2023). Study on
679 the relationship between flavor components and quality of ice wine during freezing and
680 brewing of 'beibinghong' grapes. *Food Chemistry: X*, 20, 101016.
681 <https://doi.org/10.1016/j.fochx.2023.101016>

682 Lin, J., Massonnet, M., & Cantu, D. (2019). The genetic basis of grape and wine aroma.
683 *Horticulture Research*, 6(1), 81. <https://doi.org/10.1038/s41438-019-0163-1>

684 Liu, F., Li, S., Gao, J., Cheng, K., & Yuan, F. (2019). Changes of terpenoids and other volatiles
685 during alcoholic fermentation of blueberry wines made from two southern highbush
686 cultivars. *LWT - Food Science and Technology*, 109, 233-240.
687 <https://doi.org/10.1016/j.lwt.2019.03.100>

688 Ma, Y., Xu, Y., & Tang, K. (2021). Aroma of icewine: A review on how environmental,
689 viticultural, and oenological factors affect the aroma of icewine. *Journal of Agricultural and*
690 *Food Chemistry*, 69(25), 6943-6957. <https://doi.org/10.1021/acs.jafc.1c01958>

691 Maoz, I., Lewinsohn, E., & Gonda, I. (2022). Amino acids metabolism as a source for aroma
692 volatiles biosynthesis. *Current opinion in plant biology*, 67, 102221.
693 <https://doi.org/10.1016/j.pbi.2022.102221>

694 Mencarelli, F., & Bellincontro, A. (2020). Recent advances in postharvest technology of the wine
695 grape to improve the wine aroma. *Journal of the Science of Food and Agriculture*, 100(14),

696 5046-5055. <https://doi.org/10.1002/jsfa.8910>

697 Moreno, J. J., Cerpa-Calderón, F., Cohen, S. D., Fang, Y., Qian, M., & Kennedy, J. A. (2008).

698 Effect of postharvest dehydration on the composition of Pinot noir grapes (*Vitis vinifera* L.)

699 and wine. *Food Chemistry*, 109(4), 755-762.

700 <https://doi.org/10.1016/j.foodchem.2008.01.035>

701 Negri, S., Lovato, A., Boscaini, F., Salvetti, E., Torriani, S., Commissio, M., Danzi, R., Ugliano,

702 M., Polverari, A., Tornielli, G. B., & Guzzo, F. (2017). The Induction of noble rot (*Botrytis*
cinerea) infection during postharvest withering changes the metabolome of grapevine

703 berries (*Vitis vinifera* L., cv. Garganega). *Frontiers in Plant Science*, 8, 1002.

704 <https://doi.org/10.3389/fpls.2017.01002>

705 Ossola, C., Giacosa, S., Torchio, F., Río Segade, S., Caudana, A., Cagnasso, E., Gerbi, V., &

706 Rolle, L. (2017). Comparison of fortified, sfursat, and passito wines produced from fresh

707 and dehydrated grapes of aromatic black cv. Moscato nero (*Vitis vinifera* L.). *Food*

708 *Research International*, 98, 59-67. <https://doi.org/10.1016/j.foodres.2016.11.012>

709 Pico, J., Gerbrandt, E. M., & Castellarin, S. D. (2022). Optimization and validation of a SPME-

710 GC/MS method for the determination of volatile compounds, including enantiomeric

711 analysis, in northern highbush blueberries (*Vaccinium corymbosum* L.). *Food Chemistry*,

712 368, 130812. <https://doi.org/10.1016/j.foodchem.2021.130812>

713 Qian, X., Ling, M., Sun, Y., Han, F., Shi, Y., Duan, C., & Lan, Y. (2024). Decoding the aroma

714 characteristics of icewine by partial least-squares regression, aroma reconstitution, and

715 omission studies. *Food Chemistry*, 440, 138226.

716 <https://doi.org/10.1016/j.foodchem.2023.138226>

717 Qian, Y. L., Zhang, D., An, Y., Zhou, Q., & Qian, M. C. (2021). Characterization of aroma-active

718 compounds in northern highbush blueberries “Bluecrop” (*Vaccinium corymbosum*

719 “Bluecrop”) and “Elliott” (*Vaccinium corymbosum* “Elliott”) by gas chromatography-

720 olfactometry dilution analysis and odor activity value. *Journal of Agricultural and Food*

721 *Chemistry*, 69(20), 5691-5701. <https://doi.org/10.1021/acs.jafc.1c01044>

722

723 Sanmartin, C., Modesti, M., Venturi, F., Brizzolara, S., Mencarelli, F., & Bellincontro, A. (2021).
724 Postharvest water loss of wine grape: When, what and why. *Metabolites*, 11(5).
725 <https://doi.org/10.3390/metabo11050318>

726 Sater, H. M., Bizzio, L. N., Tieman, D. M., & Muñoz, P. D. (2020). A review of the fruit volatiles
727 found in blueberry and other *Vaccinium* species. *Journal of Agricultural and Food
728 Chemistry*, 68(21), 5777-5786. <https://doi.org/10.1021/acs.jafc.0c01445>

729 Shmuleviz, R., Amato, A., Commisso, M., D'Incà, E., Luzzini, G., Ugliano, M., Fasoli, M.,
730 Zenoni, S., & Tornielli, G. B. (2023). Temperature affects organic acid, terpene and stilbene
731 metabolisms in wine grapes during postharvest dehydration. *Frontiers in Plant Science*, 14,
732 1107954. <https://doi.org/10.3389/fpls.2023.1107954>

733 Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006). Tomato
734 aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-
735 phenylethanol and 2-phenylacetaldehyde. *Proceedings of the National Academy of Sciences*,
736 103(21), 8287-8292. <https://doi.org/10.1073/pnas.0602469103>

737 Urcan, D. E., Giacosa, S., Torchio, F., Río Segade, S., Raimondi, S., Bertolino, M., Gerbi, V.,
738 Pop, N., & Rolle, L. (2017). 'Fortified' wines volatile composition: Effect of different
739 postharvest dehydration conditions of wine grapes cv. Malvasia moscata (*Vitis vinifera* L.).
740 *Food Chemistry*, 219, 346-356. <https://doi.org/10.1016/j.foodchem.2016.09.142>

741 Wang, X., Zeng, L., Liao, Y., Zhou, Y., Xu, X., Dong, F., & Yang, Z. (2019). An alternative
742 pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via
743 phenylpyruvic acid in tea (*Camellia sinensis* (L.) O. Kuntze) leaves. *Food Chemistry*, 270,
744 17-24. <https://doi.org/10.1016/j.foodchem.2018.07.056>

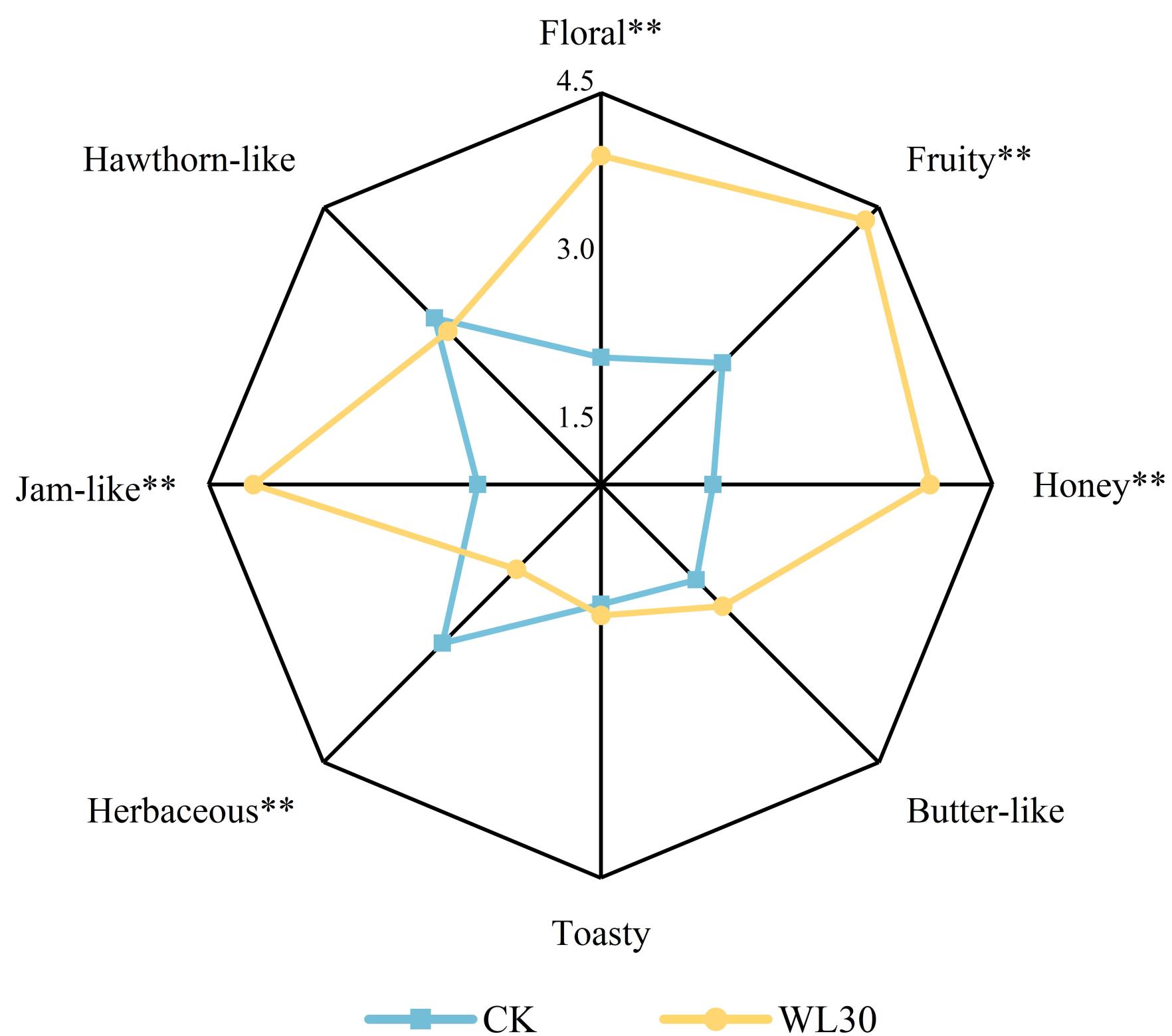
745 Wang, Y., Cui, M.-Y., Zhang, Q., Zhu, Y., Yang, Q., Fu, Y., Bi, H.-J., Yang, X.-H., & Gao, X.-L.
746 (2023a). Enhancing blueberry wine aroma: Insights from cultivar selection and berry sorting.
747 *Current Research in Food Science*, 7, 100643. <https://doi.org/10.1016/j.crfs.2023.100643>

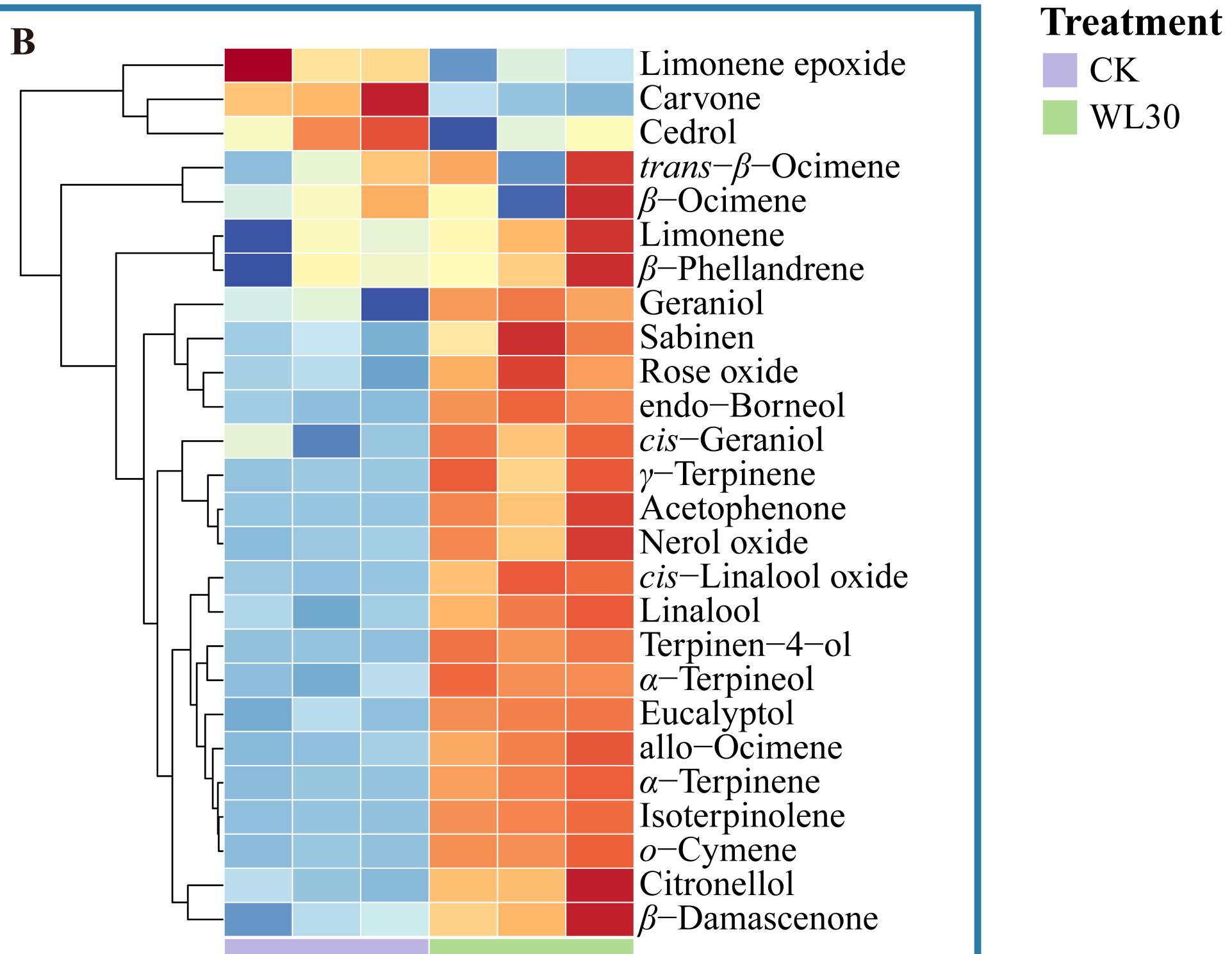
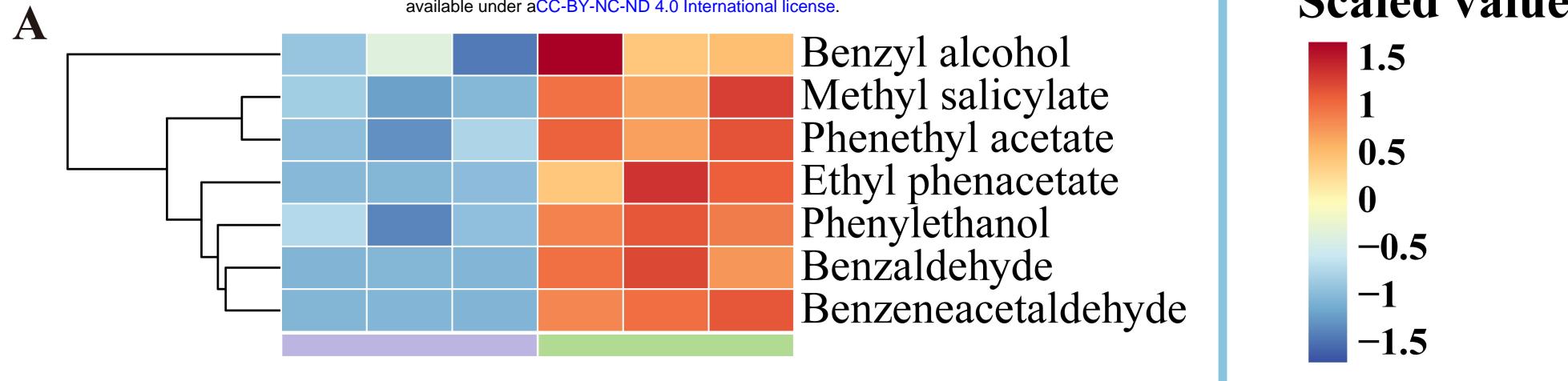
748 Wang, Y., Zhang, Q., Cui, M.-Y., Fu, Y., Wang, X.-H., Yang, Q., Zhu, Y., Yang, X.-H., Bi, H.-J.,
749 & Gao, X.-L. (2023b). Aroma enhancement of blueberry wine by postharvest partial

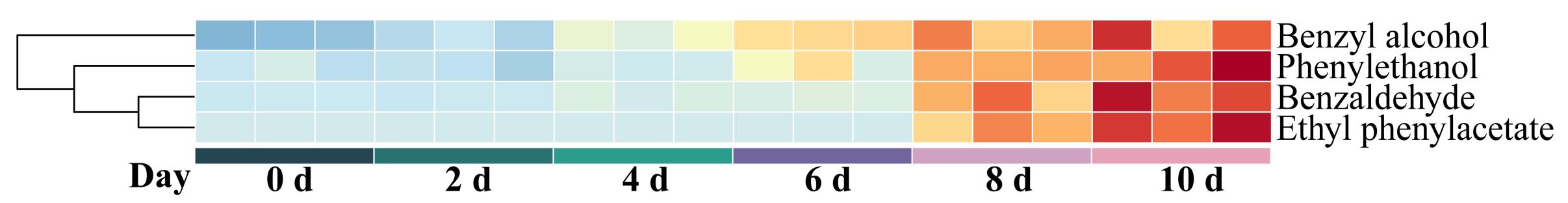
750 dehydration of blueberries. *Food Chemistry*, 426, 136593.

751 <https://doi.org/10.1016/j.foodchem.2023.136593>

752 Wang, Y., Qi, X.-Y., Fu, Y., Zhang, Q., Wang, X.-H., Cui, M.-Y., Ma, Y.-Y., & Gao, X.-L.
753 (2023c). Effects of *Torulaspora delbrueckii* co-fermented with *Saccharomyces cerevisiae* on
754 physicochemical and aromatic profiles of blueberry fermented beverage. *Food Chemistry*,
755 409, 135284. <https://doi.org/10.1016/j.foodchem.2022.135284>

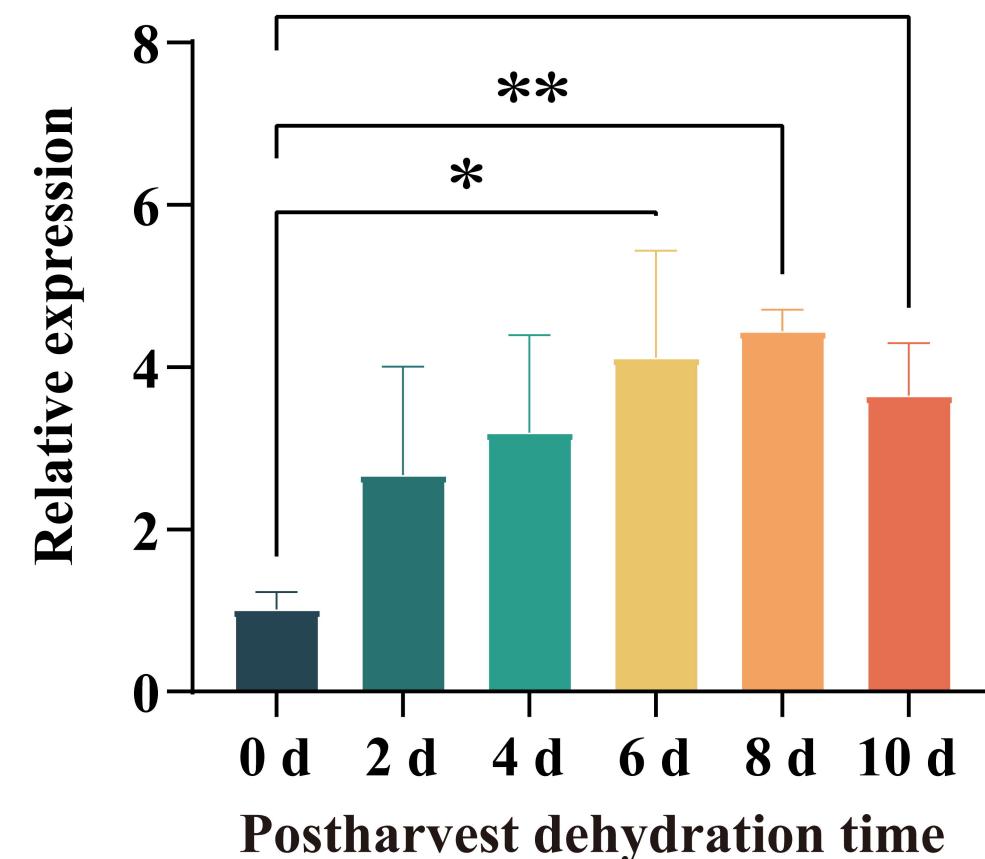

756 Yuan, F., Yan, J., Yan, X., Liu, H., & Pan, S. (2020). Comparative transcriptome analysis of
757 genes involved in volatile compound synthesis in blueberries (*Vaccinium virgatum*) during
758 postharvest storage. *Postharvest Biology and Technology*, 170, 111327.
759 <https://doi.org/10.1016/j.posthavbio.2020.111327>

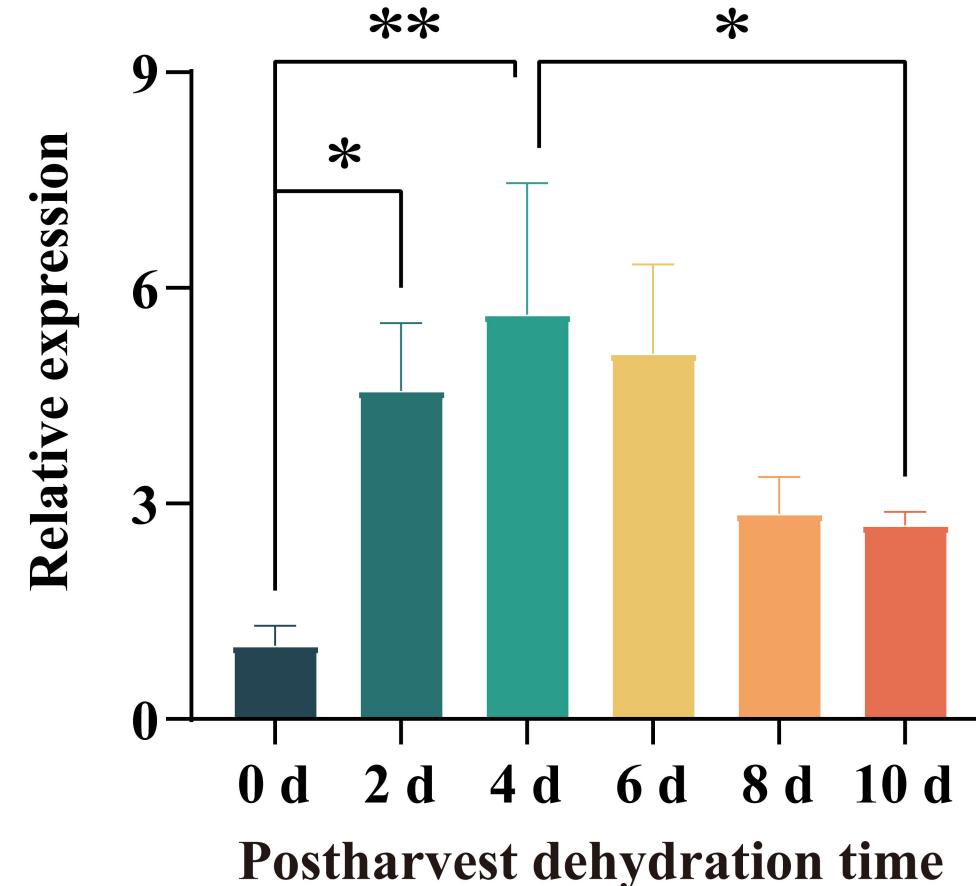


760 Yu, X., He, C., Li, Y., Zhou, J., Chen, Y., Yu Z., Wang, Y., & Ni, D. (2021). Effects of different
761 spreading treatments on the formation of aroma quality in green tea. *Beverage Plant
762 Research*, 1, 14. <https://doi.org/10.48130/BPR-2021-0014>


763 Yu, Z., Zhao, C., Zhang, G., Teixeira da Silva, J. A., & Duan, J. (2020). Genome-wide
764 identification and expression profile of TPS gene family in *Dendrobium officinale* and the
765 role of *DoTPS10* in linalool biosynthesis. *International Journal Molecular Science*, 21, 1-22.
766 <https://doi.org/10.3390/ijms21155419>

767 Zenoni, S., Amato, A., D'Incà, E., Guzzo, F., & Tornielli, G. B. (2020). Rapid dehydration of
768 grape berries dampens the post-ripening transcriptomic program and the metabolite profile
769 evolution. *Horticulture Research*, 7(1), 141. <https://doi.org/10.1038/s41438-020-00362-5>

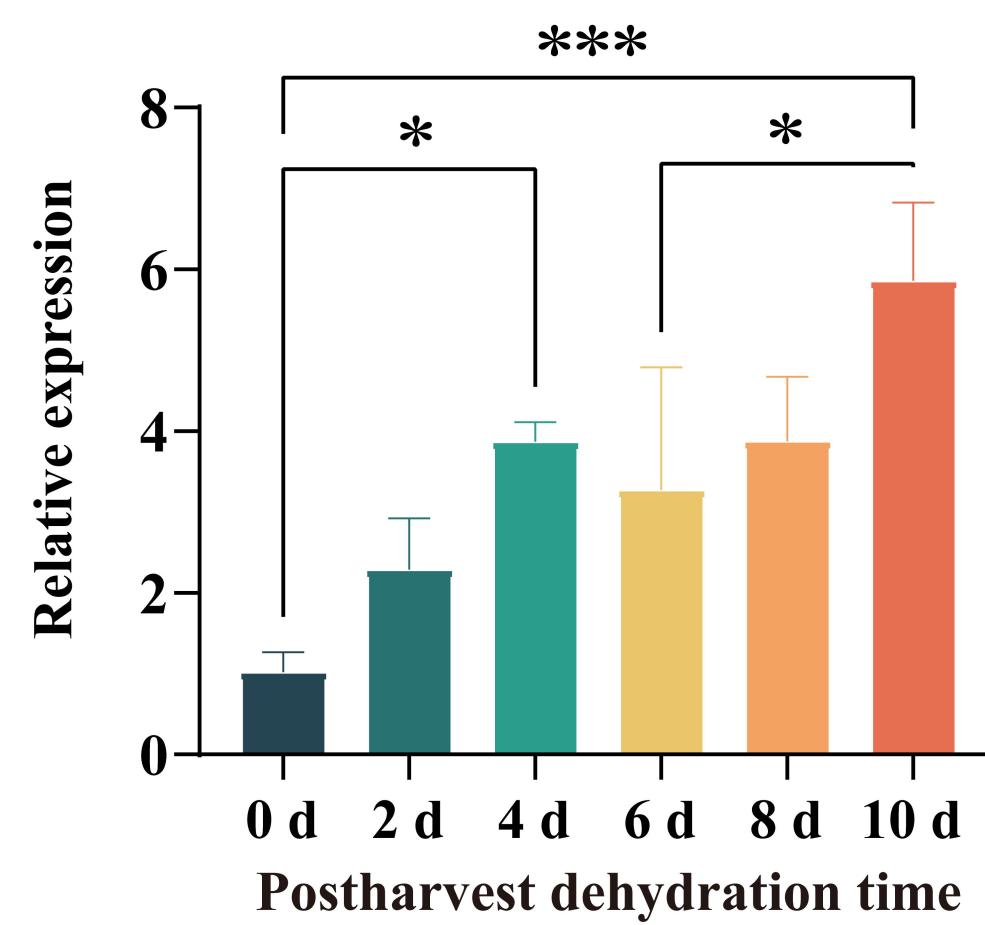
770 Zenoni, S., Fasoli, M., Guzzo, F., Dal Santo, S., Amato, A., Anesi, A., Commissio, M., Herderich,
771 M., Ceoldo, S., & Avesani, L. (2016). Disclosing the molecular basis of the postharvest life
772 of berry in different grapevine genotypes. *Plant Physiology*, 172(3), 1821-1843.
773 <https://doi.org/10.1104/pp.16.00865>



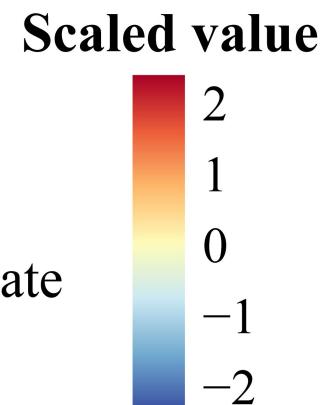
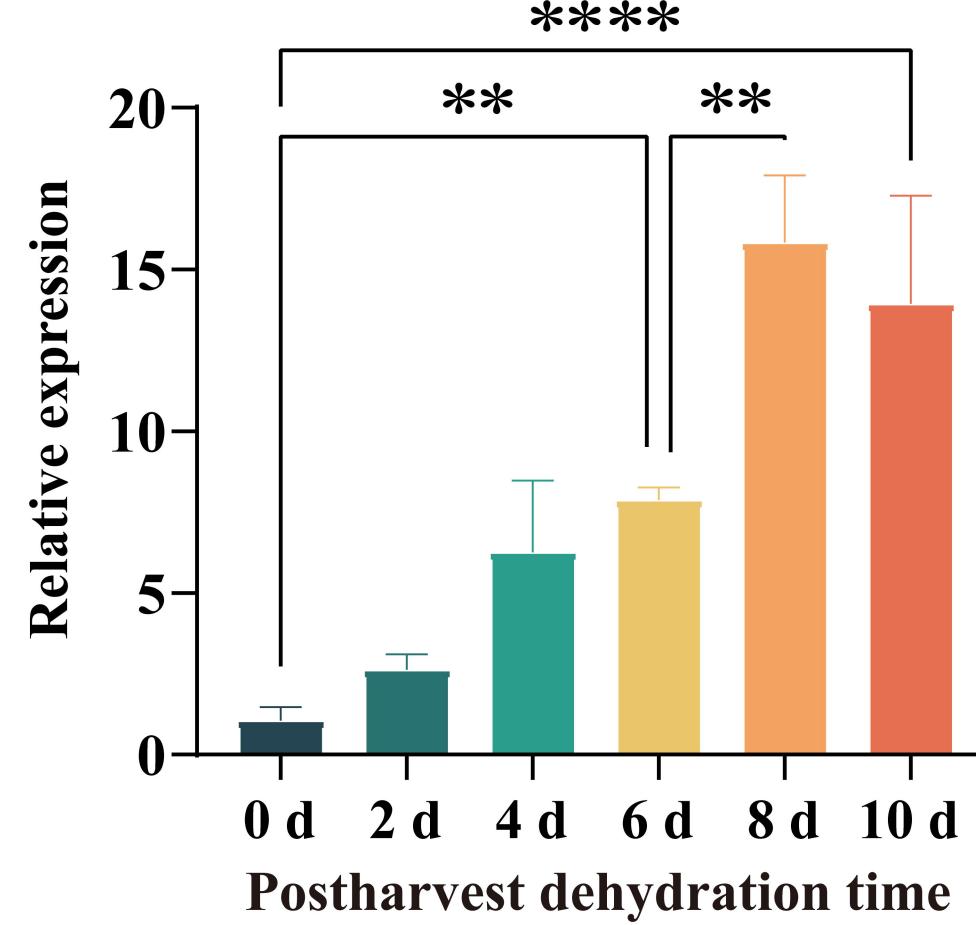

A**B**

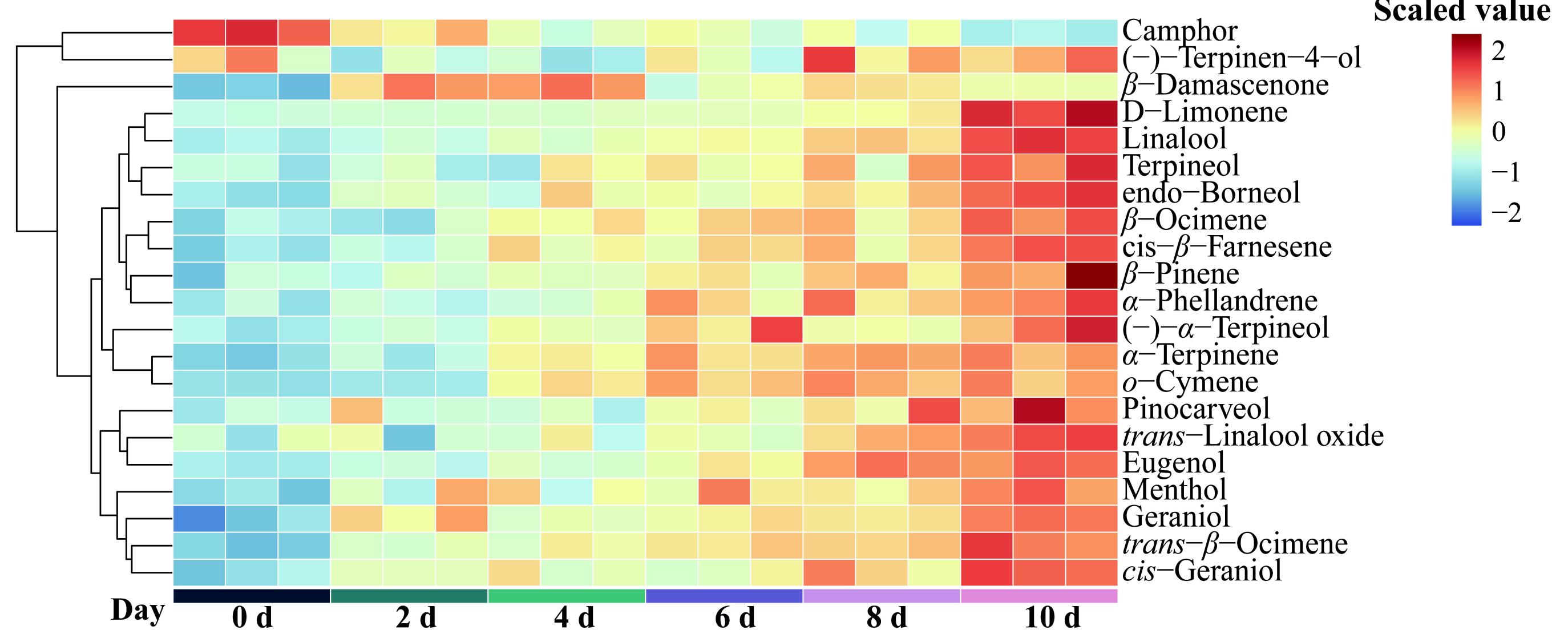
VcGOT2
(VaccDscaff38-augustus-210.26)

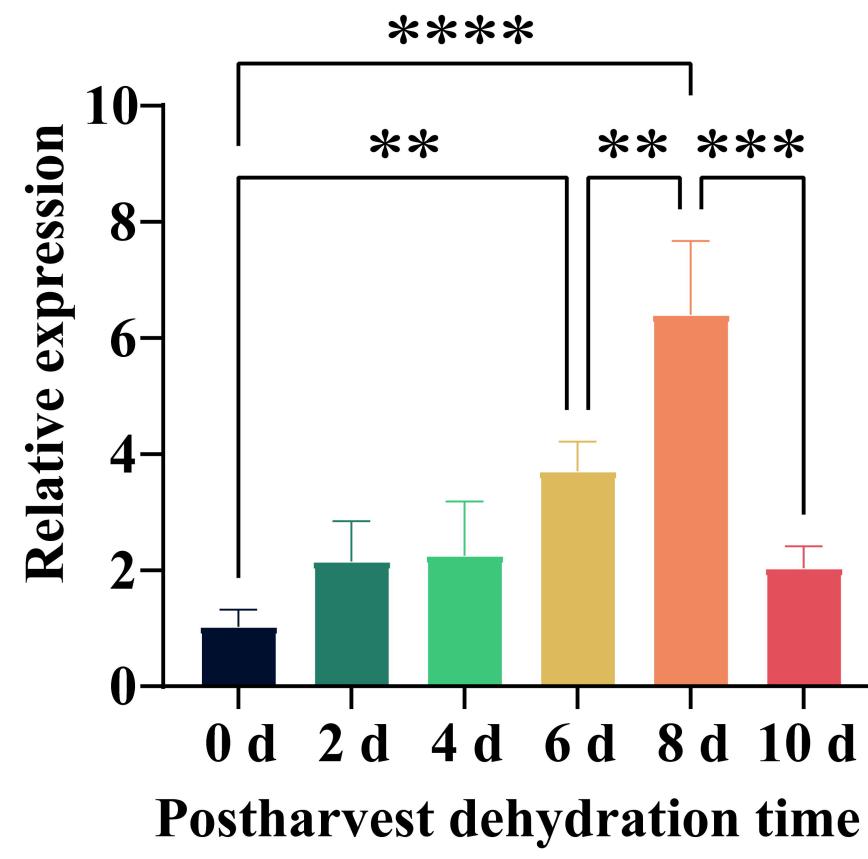
bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.29.577155>; this version posted January 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



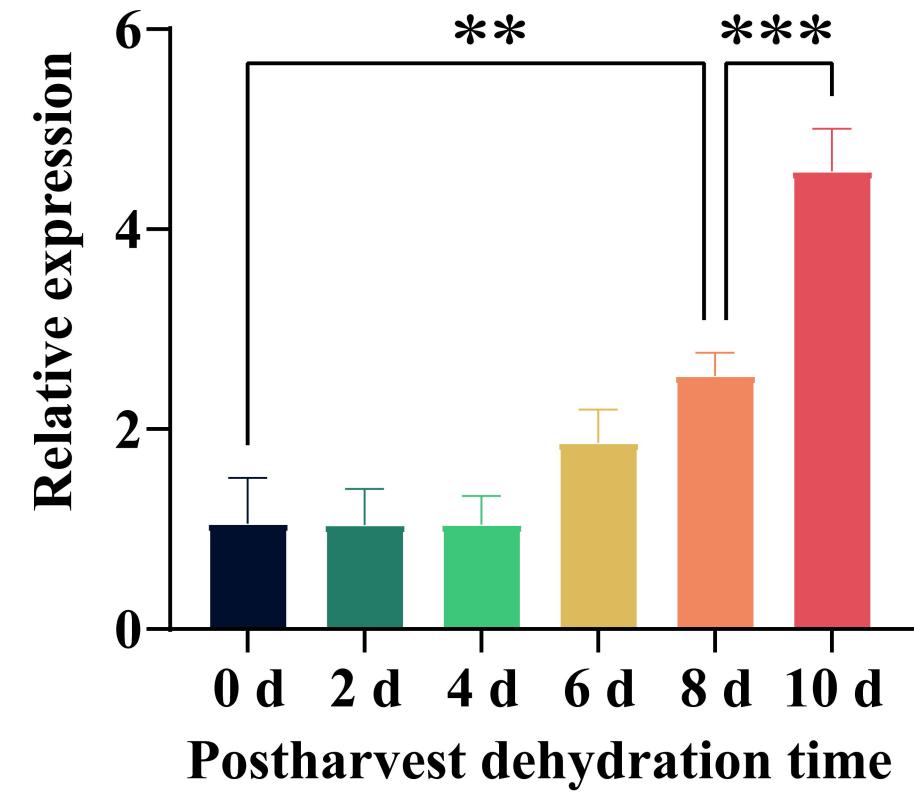
VcGOT2
(VaccDscaff39-processed-236.3)



VcPAR

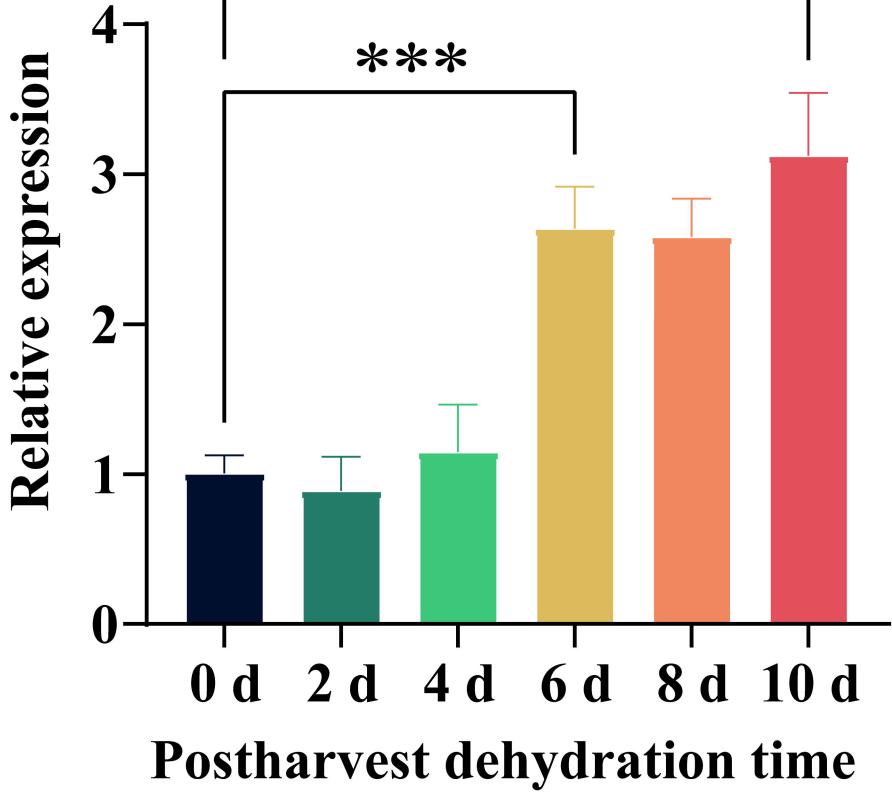

(VaccDscaff11-snap-49.32)


VcPAR

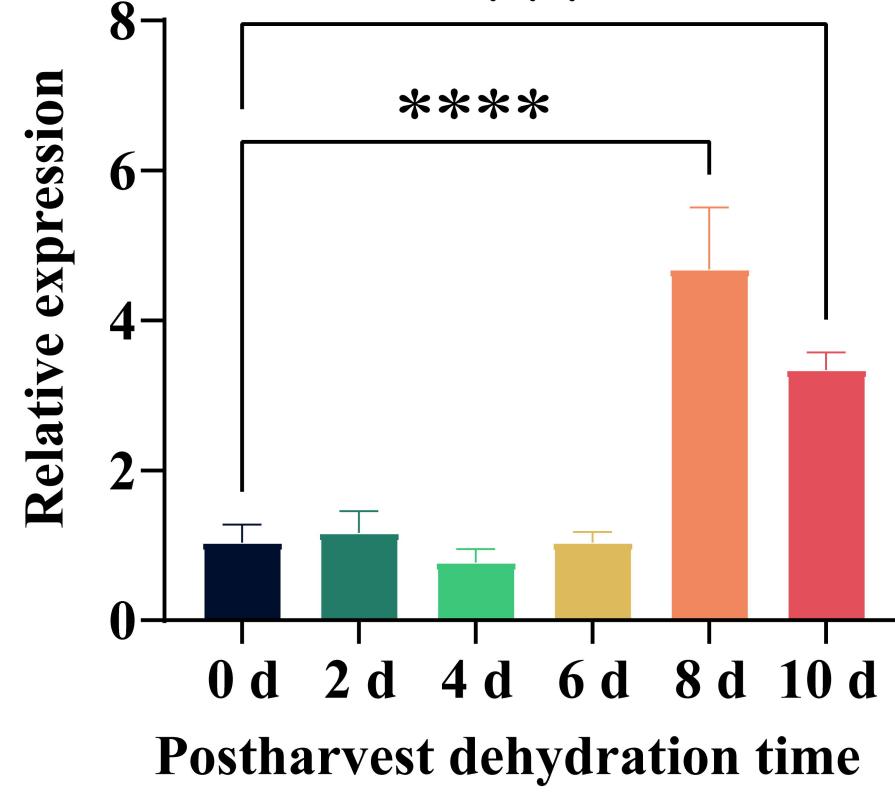
(VaccDscaff15-snap-57.22)



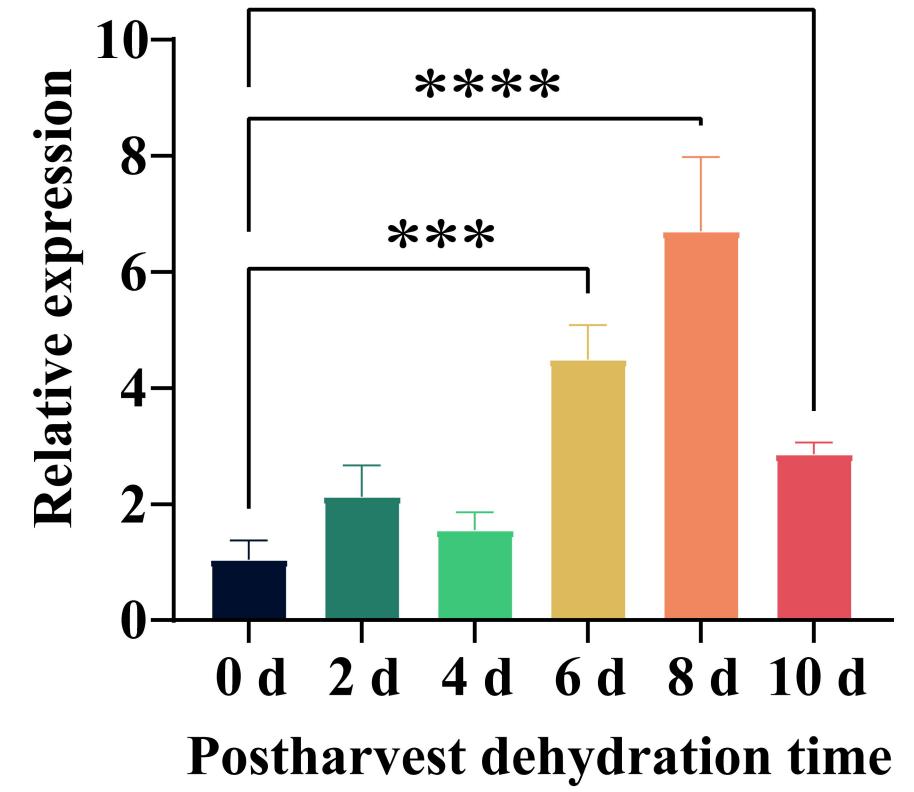
A**B** *VcDYS*


(VaccDscaff1-snap-85.24)

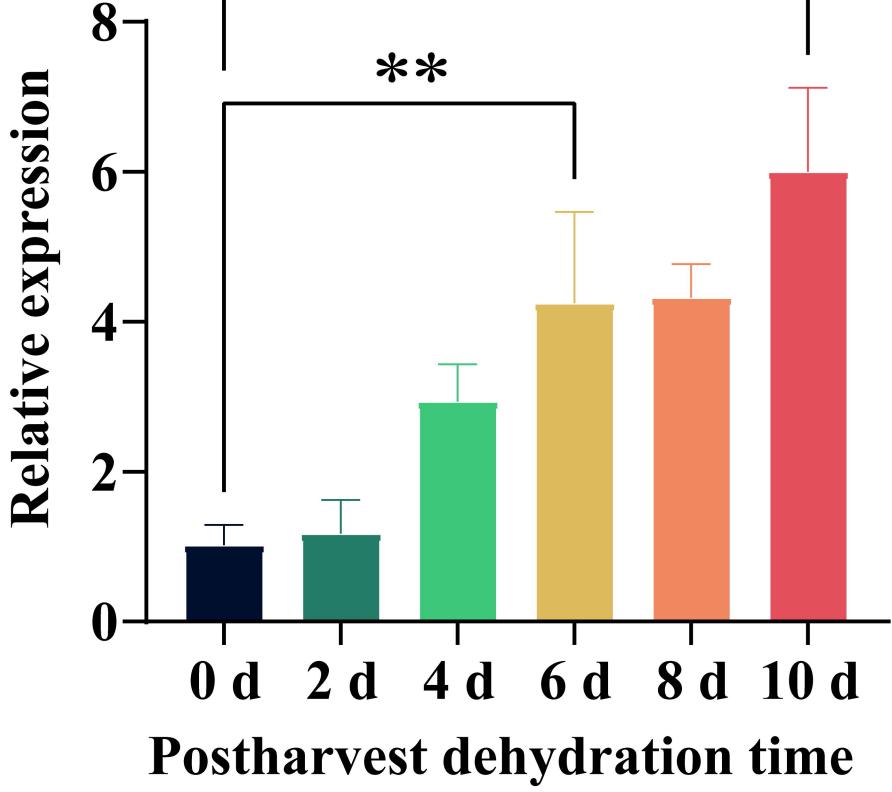
VcHDR

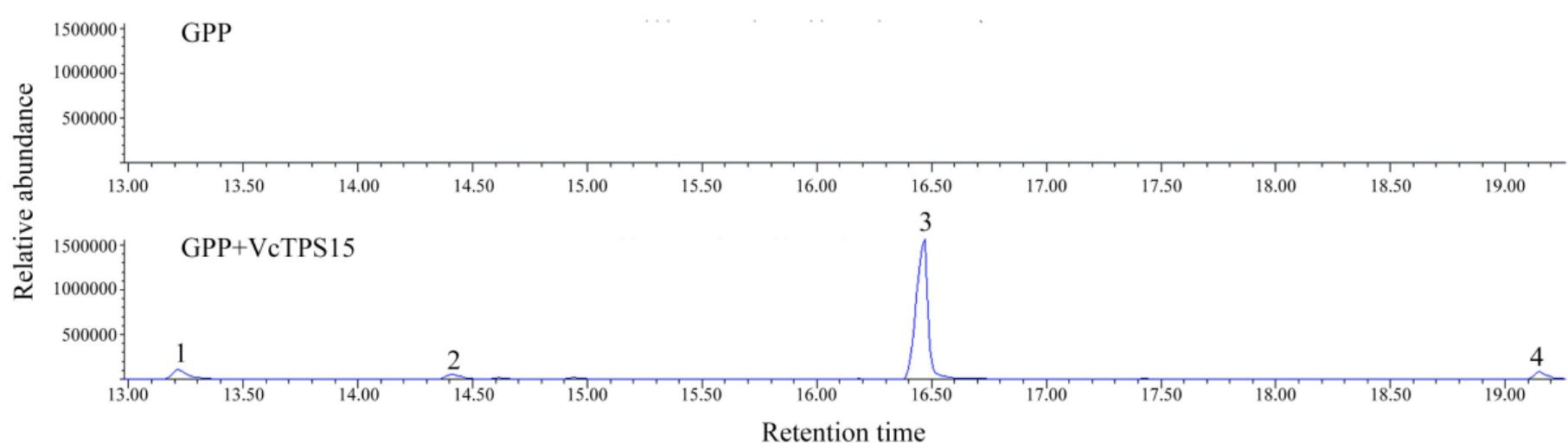

(VaccDscaff2-augustus-421.30)

VcHDR

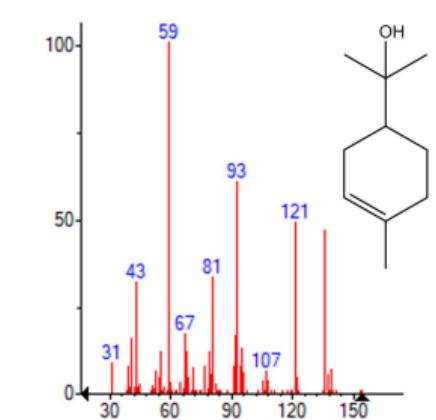
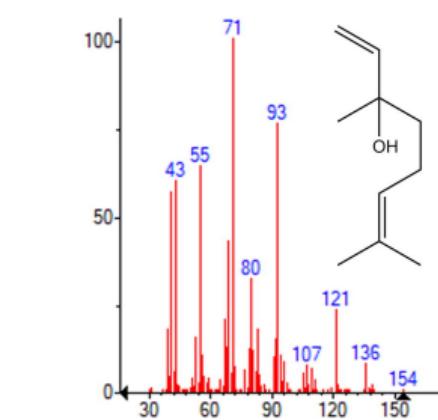
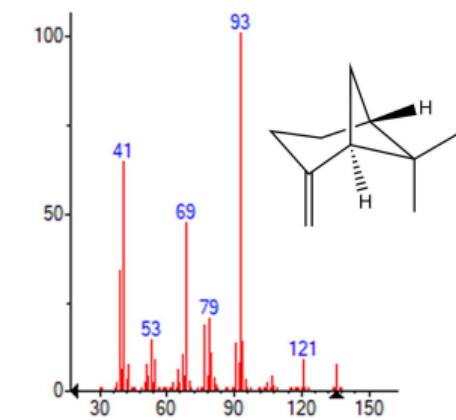

(VaccDscaff14-augustus-366.23)

VcGPPS


(VaccDscaff12-augustus-75.22)


VcGPPS

(VaccDscaff23-snap-336.32)




VcTPS

(VaccDscaff4-snap-178.35)

Peak 1: β -Pinene (RI = 993.2) Peak 2: D-Limonene (RI = 1032) Peak 3: β -Linalool (RI = 1102) Peak 4: α -Terpineol (RI = 1188)

