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ABSTRACT

There is more and more evidence that machine learning can be successfully applied in materials
science and related fields. However, datasets in these fields are often quite small (� 1000 samples). It
makes the most advanced machine learning techniques remain neglected, as they are considered to be
applicable to big data only. Moreover, materials informatics methods often rely on human-engineered
descriptors, that should be carefully chosen, or even created, to fit the physicochemical property that
one intends to predict. In this article, we propose a new method that tackles both the issue of small
datasets and the difficulty of task-specific descriptors development. The SMILES-X is an autonomous
pipeline for molecular compounds characterisation based on a {Embed-Encode-Attend-Predict}
neural architecture with a data-specific Bayesian hyper-parameters optimisation. The only input
to the architecture — the SMILES strings — are de-canonicalised in order to efficiently augment
the data. One of the key features of the architecture is the attention mechanism, which enables the
interpretation of output predictions without extra computational cost. The SMILES-X shows new

state-of-the-art results in the inference of aqueous solubility (RMSEtest ' 0.57 ± 0.07 mols/L),

hydration free energy (RMSEtest ' 0.81± 0.22 kcal/mol, which is ∼ 24.5% better than molecular

dynamics simulations), and octanol/water distribution coefficient (RMSEtest ' 0.59 ± 0.02 for
LogD at pH 7.4) of molecular compounds. The SMILES-X is intended to become an important asset
in the toolkit of materials scientists and chemists. The source code for the SMILES-X is available at
github.com/GLambard/SMILES-X.

Keywords Cheminformatics · Small molecules · SMILES · Descriptors · Natural language
processing · Machine learning · Neural architecture · Attention mechanism · Small datasets

1 Introduction

In the fields of bio- and cheminformatics, machine learning
(ML) algorithms combined with human-engineered molec-
ular descriptors1,2 have shown great potential in tasks of
predicting physicochemical properties of molecular com-
pounds. In practice, however, it is often necessary to run a
blind scan through a large number of such combinations
in order to find the most accurate inference model, which

still may not lead to success. Most of the descriptors are
task- or domain-specific, which makes their use impossi-
ble for more general problems, such as virtual screening,
similarity searching, clustering and structure-activity mod-
elling3–6.

For these purposes molecular fingerprints have been devel-
oped. Fingerprint is a binary representation of a molecule:
its structural or functional features are translated into a
string of bits in the way to keep the fingerprint invariant
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to rotations, translations and property-preserving atomic
permutations (see, e.g., extended circular fingerprints7).
Even though molecular fingerprints are known to be help-
ful to drugs discovery or compounds search among various
databases, they may as well be detrimental to materials
characterisation and design. Therefore, while both descrip-
tors and fingerprints may be beneficial, they come along
with restrictions.

In fields like materials science it is common to have
datasets with � 1000 samples, which is considered to
be too small for a direct deep learning application. Some
research groups use neural architectures (NAs) for sec-
ondary tasks such as to build novel high-level features
as non-linear combinations of molecular descriptors8–10.
Others use NA to automatically learn features based on
2D/3D images11,12, molecular graphs13, SMILES (sim-
plified molecular input line entry system)14–16, N-gram
graphs17 or a combination of mentioned inputs18, similar
to computer vision (CV). Still, none of them intends to
design an NA for property prediction on small datasets.
There are some works on transfer learning11,19,20, but the
results vary greatly depending on the correlation between
the tasks – which is often unknown a priori. Moreover,
most of the NAs used in the fields of CV or natural lan-
guage processing (NLP) are trained on big data and impose
architectures that do not fit small datasets.

Aside from the lack of data, another bottleneck on the way
of using NAs in physics and chemistry is the lack of in-
terpretability. A method for explaining neural networks
has been recently proposed15. It consists in training an
additional neural network to generate a mask identifying
the most important SMILES characters. Despite the re-
spectable coherence in the interpretation of the chemical
solubility, the explanation network is entirely correlated
to its prediction network, which forces the training phase
to be doubled for each dataset. Moreover, even though
the explanation network allows to identify the groups hav-
ing the highest weight in the property prediction, there is
no evidence that the original prediction network has also
learned the known chemistry concepts in order to make
proper characterisation.

In this article we propose a method allowing to overpass
the issues of data scarcity, descriptors engineering and
the prediction interpretation ambiguity at the same time.
The algorithm benefits from the natural ability of NAs to
learn a suitable and task-specific representation of the data.
It designs a simple yet effective NA dedicated to small
datasets based on attention mechanism21–23. To achieve
this, we borrowed the latest techniques from the CV and
NLP fields to build an entirely autonomous system – the
SMILES-X. To the best of our knowledge, this is the first
time in materials science related fields when an NA is
specifically designed to manage small datasets, and the
first attempt to integrate a NLP-based attention mechanism
for predicting physicochemical properties of molecular
compounds. This mechanism allows to reduce the number
of trainable parameters, and provides the interpretation

Figure 1: The SMILES-X pipeline.

of the results at no extra cost. The SMILES-X achieves
the state-of-the-art results, predicting any physicochemical
property given the molecule’s SMILES24,25 as the sole
input.

The structure of the article is as follows. First, we de-
scribe the entire pipeline of the SMILES-X in Section 2.
The SMILES augmentation and formatting are detailed in
subsections 2.1, 2.2, respectively, while the procedures of
building the NA frame and its data-specific optimisation
are presented in the subsection 2.3. The subsection 3.1
is dedicated to the performance of the SMILES-X based
on three benchmark datasets for regression tasks from the
MoleculeNet26: ESOL27, FreeSolv28 and Lipophilicity29.
There are three modes of interpretation of the results of
the SMILES-X, which are discussed in the subsection 3.2.
Finally, we conclude and discuss further possible improve-
ments of the SMILES-X, as well as propose more potential
target properties to be inferred using the algorithm in Sec-
tion 4.

2 The SMILES-X pipeline

The SMILES-X has been conceived to meet the following
requirements: (i) to use the SMILES format as the only
representation of a molecular compound; computable char-
acteristics, such as the fingerprints or physical descriptors,
are left out. (ii) Remove the SMILES canonicalization24

in order to exploit the full capacity of the molecular com-
pound representation. (iii) The core architecture is simple
enough to handle small datasets without sacrificing the
prediction accuracy. (iv) Outcomes of the SMILES-X are
interpretable.

Figure 1 is a sketch of the main steps within the SMILES-
X pipeline. The primary input is a list of SMILES strings
with corresponding property values. Then, a splitting into
training, validation and test sets is performed via equiprob-
able sampling. The subsequent steps are detailed below.
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2.1 Augmentation

It has been shown in CV that data augmentation approaches
such as flipping, rotation, scaling, cropping and other im-
age transformations are effective to reduce the error rate
on classification tasks and improve generalisation30. Here,
we introduce a technique called SMILES augmentation,
similar to Bjerrum14. The first step consists in removing
canonicalization24 of the SMILES. Canonicalization is
the default procedure to standardise the SMILES across
the databases, therefore removing it leads to an expanded
number of SMILES individual representations. Then, aug-
mentation is done by iterating over the following two steps:
(i) Renumber the atoms of a given SMILES by rotation
of their index. (ii) For each renumbering, reconstruct
grammatically correct SMILES under the condition of
conserving the initial molecule’s isomerism and prohibit-
ing kekulisation24,25. In the end, one obtains an expanded
list of SMILES together with their corresponding property
and cardinality naugm(si) (number of augmentations for
a SMILES si), if any. Duplicated SMILES are removed.
The SMILES augmentation is individually performed after
splitting into training, validation and test sets to avoid any
information leakage. The procedure is performed using
the RDKit library31.

2.2 Tokenisation

Tokenisation consists in dividing the SMILES into unique
tokens, each token being a set of characters. The procedure
of SMILES tokenisation is as follows24,25: (i) Aliphatic
and aromatic organic atoms (B, C, N, O, S, P, F, Cl, Br,
I, b, c, n, o, s, p), bounds, branches and rings (-, =, #, $,
/, \, ., (, ), %digits, digit) are set as individual tokens. (ii)
The characters between squared brackets, that may include
inorganic and aromatic organic atoms, isotopes, chirality,
hydrogen count, charges or class number, form a single
token (brackets included, e.g., [NH4+]). (iii) Unlike the
NLP analysis, the beginning token is not different from
the termination one: both of them are represented by a
whitespace, which is added at both ends of a tokenized
SMILES. This is important to keep its reading direction in-
variant. Finally, a set of unique tokens is extracted to form
the representative chemical vocabulary for a given dataset.
To become an interpretable NA input, this vocabulary is
then mapped into integers, and is conserved into memory
for future usage.

2.3 Architecture search

The neural architecture search has recently reached a new
milestone in finding the optimal NA for a given task, by
using, e.g., reinforcement learning techniques32,33 or evolu-
tionary algorithms34. However, not only these techniques
are computationally expensive but also they do not nec-
essarily deal with the recurrent blocks. It has therefore
been decided to fix the overall NA geometry (Figure 2)
and search for the best set of the hyperparameters through
the Bayesian optimisation35. As it was mentioned ear-

Figure 2: Fixed skeleton of the neural architecture in the
SMILES-X.

lier in Section 2, this geometry is NLP-oriented and treats
SMILES strings as sentences in the chemical language; it
has low complexity so as to be applicable to small datasets,
and its outcomes are interpretable. Inspired by the hierar-
chical neural architecture36, which allows to get cutting
edge results on document classification, we have built the
SMILES-X frame based on a four-step formula: {Embed,
Encode, Attend, Predict}37.

1. Embed The embedding layer38 transforms the
tokens, derived from the dataset’s vocabulary in
form of integers, into dense nembed-dimensional
float vectors. Unlike arbitrary ordinal numbers,
these vectors encapsulate the semantic meaning
of tokens and their relations. This operation trans-
forms SMILES into series of nembed × 1 vectors,
or ntokens × nembed tensor, where ntokens corre-
sponds to the number of tokens in a tokenised
SMILES string.

2. Encode The encoding phase is responsible for
modifying the embedding, so that it captures the
relationships between tokens in the context of the
dataset. It consists of two neural layers: a bidirec-
tional CuDNN long short-term memory (LSTM)
layer39,40 is followed by a time-distributed fully
connected one. The former consists of nLSTM

LSTM blocks and maps the input SMILES, rep-
resented now by a ntokens × nembed tensor, into
a context-aware ntokens × nLSTM tensor. After
training, each row of the tensor represents the
meaning of a given token within the context of
the rest of the SMILES string containing it. The
bidirectionality forces the embedded SMILES to
be sequentially passed forwards and backwards,
conserving the invariance of their reading direc-

3



A PREPRINT - JULY 5, 2019

tion. The forward and backward encodings of
a SMILES are then concatenated, resulting in
a ntokens × 2nLSTM output tensor. The time-
distributed dense layer is then applied to each of
ntokens tokens. This allows to capture the relation-
ships between tokens in greater detail, or in other
words to deepen the LSTM layer (similar to the
effect of adding an extra dense layer to a vanilla
neural network). Given that the number of hidden
units in this layer is ndense, the output after encod-
ing is a ntokens×ndense tensor. It should be noted
that we specifically use CuDNN LSTM41 blocks
for efficient optimization and training phases on
GPU from NVIDIA Corporation. Without the
CuDNN version of LSTM, the speed of training
would drop by a factor of ∼ 10, making the opti-
misation phase intractable.

3. Attend The attention layer detects the salient to-
kens, compressing tensor H ∈ R

ntokens×ndense

into an ndense vector c with minimum informa-
tion loss23:

e = tanh(H ·Wa + ba) ,

α =
exp(e)

∑ntokens

i=1 exp(ei)
,

c = HT · α , (1)

where Wa ∈ R
ndense×1 and ba ∈ R

ntokens×1 are
trainable parameters, α ∈ R

ntokens×1 is the at-
tention vector and c ∈ R

ndense×1 is the output.
Thus, the attention layer performs two important
tasks at once: (1) it collapses the representation
H of a variable length chain of tokens into a fixed
length vector c by applying a weighted sum over
the tokens to fit the final property best, with (2)
the weights in α which represent the importance
of each token towards the final property predic-
tion, bringing to a straightforward interpretation.
Therefore, the attention layer has two modes, one
returning the output vector c, and the other – the
attention vector α (see Section 3). The two modes
are switchable at will without extra computational
cost.

4. Predict The final NA layer transforms the atten-
tion layer output c into a single property value
Prop(si) by a simple linear operation:

Prop(si) = WT
p · c + bp , (2)

The interpretation from α in Equation 1 and the
prediction are thus linearly connected and are
accessible without any additional treatments on
the input data or NA, unlike the pipelines in other
works15,42,43.

It should be noted that all the above tensors or vectors have
one additional dimension, nSMILES, omitted for the sake

of simplicity. This dimension corresponds to the batch
size of a single iteration passed to the network, i.e. the
maximum number of SMILES that it processes at once.
All of the steps above are implemented in Keras API44 and
Tensorflow45 with GPU support.

3 Results & discussion

To evaluate the regression performance of the SMILES-
X, it was chosen to test it on three benchmark physical
chemistry datasets issued from the MoleculeNet26. These
datasets are considered as small, with less than 5000
compound-property pairs, and therefore present a chal-
lenge to machine learning models. The ESOL27 dataset
contains the logarithmic aqueous solubility (mols/L) for
1128 organic small molecules; the FreeSolv28 consists
of the calculated and experimental hydration free ener-
gies (kcal/mol) for 642 small neutral molecules in water;
and the Lipophilicity29 stores the experimental data on
octanol/water distribution coefficient (logD at pH 7.4) for
4200 compounds.

In present report the splitting ratio for train-
ing/validation/test is set to 0.8/0.1/0.1. Following
the procedure from MoleculeNet26, we performed 8 splits,
each time using new seed for the Monte-Carlo sampling.
The seeds have been fixed for the sake of reproducibility.
We use the averaged RMSE over the 8 test sets as the
comparison metric of performance.

The optimal model architecture is determined
via Bayesian optimisation individually for each
split. We used the python library GPyOpt46

for this purpose. The search bounds are as fol-
lows: (nembed, nLSTM, ndense and nSMILES) ∈
{8, 16, 32, 64, 128, 512, 1024}, γ ∈ [2; 4] with a step of
0.1, where γ is related to the optimiser learning rate as
lr ≡ 10−γ , making a total of 50421 configurations. For
the Lipophilicity dataset, nSMILES and learning rate are
fixed to 1024 and 10−3, respectively, leaving 343 potential
architectures to search among. First, 25 architectures are
randomly sampled and trained. Then, a maximum of 25
architectures are proposed via the expected improvement
acquisition function47. Each of the architectures are
sequentially trained for 30 epochs for ESOL and FreeSolv,
and 10 for the Lipophilicity set (these values have been
chosen based on the speed/efficiency ratio). The best
proposed architecture is finally trained using a standard
Adam optimiser48 with checkpoint and early stopping.
The early stopping is configured to stop the training if the
validation loss is not improving for 50 consecutive epochs,
and a checkpoint saves the parameters of the model with
the minimal validation loss. The maximum number of
epochs is set to 300, but because of the early stopping
condition this value has never been reached. Depending
on whether the SMILES augmentation is requested or not,
the code needs from 1 to 4 GPUs running in parallel.
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Table 1: Comparison of physicochemical properties predictions from the SMILES-X (Can, Augm) to the best per-
formances in MoleculeNet26 on the ESOL27, FreeSolv28 and Lipophilicity29 datasets, and to molecular dynamics
calculations28 for the FreeSolv dataset only

Datasets
Method ESOL FreeSolv Lipophilicity

MoleculeNet 26
0.58± 0.03 1.15± 0.12 0.65± 0.04

Molecular dynamics 28 — 1.51± 0.07 —
SMILES-X (Can) 0.70± 0.05 1.14± 0.17 0.68± 0.05

SMILES-X (Augm) 0.57± 0.070.57± 0.070.57± 0.07 0.81± 0.220.81± 0.220.81± 0.22 0.60± 0.040.60± 0.040.60± 0.04

Figure 3: Number of tokens per SMILES for the datasets
ESOL27, FreeSolv28, and Lipophilicity29.

3.1 Predictions

We compare the performance of SMILES-X against the
best-to-date results from MoleculeNet26, and for the Free-
Solv additionally to the calculations based on the molecular
dynamics simulations28 (Table 1). The results in Molecu-
leNet26 are reported for the molecular graph-based models
that achieved the best results on a given dataset: concretely,
a message passing neural network49 for the ESOL and
FreeSolv datasets, and a graph convolutional model50 for
the Lipophilicity dataset. Bayesian optimisation is also
used there for the layers size, batch size and learning rate.
We include both the results on canonicalised SMILES
(Can) and on SMILES that have been augmented (Augm)
(see Section 2.3). When a SMILES string si is augmented
to naugm strings, its predicted property value is averaged
over naugm predictions. Table 1 shows that the SMILES-X
reaches the best results for the FreeSolv and Lipophilicity
datasets, improving the prediction accuracy by 30% and
9%, respectively, while having a comparable performance
on the ESOL data. It is unclear why our algorithm fails to
improve on the ESOL data. We thought that the number of
tokens per SMILES may be the culprit. However, Figure
3 shows that this is not the case. Note that even using the
standard canonicalised SMILES strings, the property can
be predicted quite well without employing any chemical
knowledge (i.e., using no descriptors). Interestingly, ma-
chine learning allows to achieve a better accuracy than the
molecular dynamics simulations.

Figure 4: Visualisation of a representation of SMILES to-
kens from the embedding layer for the FreeSolv28 dataset.

There are the three main reasons that we think permitted
SMILES-X to achieve these results:

i. The success is mainly attributed to the attention layer,
that shows similar improvements in document clas-
sification tasks36. Comparing our performance to a
similar NA without an attention layer15, we see some
32.5% improvement on accuracy.

ii. Bayesian optimisation is a valuable tool that allows
to efficiently find the best hyper-parameters in a short
time.

iii. It is obvious that SMILES augmentation shows great
improvement (Can versus Augm in Table 1), and was
necessary to achieve the best current results. Also,
one can note that a graph-based NA would not allow
such data augmentation.

3.2 Interpretability

As it was mentioned before, one of the great advantages
of our method is its interpretability. The Figure 4 shows
an example of the trained token embeddings. We used
a principal component analysis (PCA51,52) to reduce di-
mensionality from nembed = 1024 down to two, for the

5
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(a)

(b)

(c)

Figure 5: Visualisation of the importance of each token
within the SMILES towards the final prediction of the prop-
erty of interest. The illustration is done on the structure
Cc1ccc(O)cc1C from the FreeSolv dataset, with hydra-
tion free energy as the corresponding property. The 1D
(a) and 2D (b) attention maps show the projections of the
attention vector α on the SMILES string and molecular
graph, respectively. The redder and darker the colour is,
the stronger is the attention on a given token. The temporal
relative distance Tdist is shown in (c). The closer to zero is
the distance value, the closer is the temporary prediction
on the SMILES fragment to the whole SMILES prediction.

purpose of visualisation. The tokens that are not included
in the training set, and are therefore randomly assigned,
are represented by a cross. One can see that halogens
Br, F, Cl are located near each other. Other distinguish-
able sets are, for example, {[C@@], [S + 2], c,C, [C@]}
and {n,N}, that have the same valence and bonds type
within the group. The model also puts {[N+], [O−]} close
to each other, which reveals their regular coexistence in
compounds within the FreeSolv data. Some other tokens
placements, however, are not obvious to chemically qual-
ify. In any case, the principle aim of clustering is to smooth
out the chemical relations; it serves as a trainable look-up
table for the further context-aware processing of tokens.
We should not, thus, expect too great a degree of inter-
pretability at this step. Representation of the individual

tokens out of their chemical context is not the objective of
the SMILES-X.

Instead, we are interested in the interpretation of the net-
work property prediction. With the SMILES-X, we are
able to visualise the importance of each single token to-
wards the final prediction of the property of interest (Figure
5).

There are three ways of visualisation available: (a) a 1D
map built from the attention vector α (see Equation 1) jux-
taposed with the SMILES string, (b) a similar 2D version
for the molecular graph and (c) temporal relative distance
Tdist to the predicted property. For the first two, the redder
and darker the colour is the stronger is the attention on a
given token.

Tdist(n) shows the evolution of the prediction for the
SMILES while reading it token by token from left to right.
It is inspired by Lanchantin53 and defined as:

Tdist(n) =
Prop(n)− Prop(ntokens)

|Prop(ntokens)|
, (3)

where Prop(n) is the property predicted value based on the
first n tokens of the SMILES for n ∈ [1, ..., ntokens]. Note
that it converges to the final prediction Prop(ntokens) ≡
Prop(si) (prediction based on the entire SMILES). This
also allows to judge as to how much a token influences the
property of a compound. In this example, the prediction
based on fragment ’Cc1ccc(O’ is almost identical to the
final prediction on the whole structure.

For the compound that we used as an example, the oxygen
atom (’O’) is considered to be the most influential element
of the molecule for the hydration free energy prediction,
which reflects chemical reality.

4 Conclusions

A new neural architecture for the chemical compounds
characterisation, the SMILES-X, has been developed. In
this article, we have presented the pipeline and perfor-
mance of the SMILES-X. We demonstrate its aptitude
to provide state-of-the-art results on the inference of sev-
eral physicochemical properties, concretely the logarithmic

aqueous solubility (RMSEtest ' 0.57±0.07 mols/L), hy-

dration free energy (RMSEtest ' 0.81± 0.22 kcal/mol)

and octanol/water distribution coefficient (RMSEtest '
0.60± 0.04 for LogD at pH 7.4). These results prove that
it is now possible to successfully predict a physicochemi-
cal property employing no chemical intuition, even with
a small dataset at hand. The success of the SMILES-X
rides on three key factors: (i) The Embed-Encode-Attend-
Predict architecture, that allows to simplify the whole ar-
chitecture thanks to the attention mechanism (i.e., to have
less trainable parameters), and therefore reduces the risk
of over-fitting. (ii) The Bayesian optimisation of the neural
network’s hyper-parameters allows to achieve close-to-
optimal representation of the molecular compounds, per
task and dataset. (iii) The use of SMILES strings as a
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sole input representation of chemical compounds allows
efficient data augmentation.

Thanks to the attention mechanism, the SMILES-X comes
with three modes of interpretation of the inference out-
comes. This provides the end-user with the insights on
which fragments of the chemical structure have the highest
(or the lowest) influence on the property of interest. This
kind of artificial intuition is a valuable asset not only for the
tasks of characterisation and design of novel compounds,
but also to re-purpose already-known materials.

As for the future improvement on the SMILES-X, we plan
to use BERT-like54 NA’s skeleton for the sake of reducing
the accuracy gap existing between the ESOL, FreeSolv
and Lipophilicity datasets studied here. The LSTM blocks
are known to have memory problems with very distant de-
pendencies within long sentences, and an architecture that
is entirely based on the attention mechanism, i.e. free from
LSTM blocks, like BERT, may overcome this weakness.
Another way to improve the inference accuracy may be via
informative sampling55.

In our forthcoming article we will address the tasks of clas-
sification, still using the MoleculeNet’s datasets26. That
means that the SMILES-X will be modified in order to
handle single-to-many, many-to-many and many-to-single
classification tasks.
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