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Micelles are highly attractive nano-drug delivery systems for targeted cancer therapy.

While they have been demonstrated to significantly alleviate the side-effects of their

cargo drugs, the therapy outcomes are usually suboptimal partially due to ineffective

drug release and endosome entrapment. Stimulus-responsive nanoparticles have

allowed controlled drug release in a smart fashion, and we want to use this concept

to design novel micelles. Herein, we reported pH-sensitive paclitaxel (PTX)-loaded poly

(ethylene glycol)-phenylhydrazone-dilaurate (PEG-BHyd-dC12) micelles (PEG-BHyd-

dC12/PTX). The micelles were spherical, with an average particle size of ∼135 nm

and a uniform size distribution. The pH-responsive properties of the micelles were

certified by both colloidal stability and drug release profile, where the particle size was

strikingly increased accompanied by faster drug release as pH decreased from 7.4 to

5.5. As a result, the micelles exhibited much stronger cytotoxicity than the pH-insensitive

counterpart micelles against various types of cancer cells due to the hydrolysis of

the building block polymers and subsequent rapid PTX release. Overall, these results

demonstrate that the PEG-BHyd-dC12 micelle is a promising drug delivery system for

cancer therapy.

Keywords: pH-sensitive, micelles, cancer, paclitaxel, endosomal escape

INTRODUCTION

With the development of nanotechnology, various materials such as polymers, lipid, and metals
(oxides), have been widely applied to design drug delivery system, especially for cancer therapy
(Farokhzad and Langer, 2009). Nanoparticles based on the abovematerials have been demonstrated
to realize controlled drug release and effectively targeting drug delivery (Wilczewska et al., 2012).
To this end, micelles composed of amphipathic copolymers have received wide attention owing
to their attractive features, such as small and uniform size, tumor targeting ability via the
enhanced permeability and retention (EPR) effect, high stability in aqueous solution and excellent
biocompatibility (Felber et al., 2012; Liu J. et al., 2014; Wang et al., 2018).

However, albeit with the extensive research efforts, the clinical translations of micelles from
bench to bedsides are rather limited, partially due to their suboptimal therapy outcomes caused by
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the inefficient drug release at the tumor site and the endosomal
entrapment of micelles (Kanamala et al., 2016). Plain micelles
exhibit relatively slow drug release rate, which may result in
ineffective drug concentration inside targeted cells (Wu et al.,
2013). To mitigate these issues, smarter micelles are desired to be
equipped with endosomal escape and rapid drug release abilities,
which could be able to provide sufficient drug concentration for
effective killing of the tumor cells.

To achieve such goals, environmentally sensitive polymers
that can respond to different stimuli to trigger drug release have
been extensively investigated, such as light (Liu et al., 2012; Cao
et al., 2013), temperature (Kim et al., 2010; Wang et al., 2014),
ultrasound (Yin et al., 2013; Ahmed et al., 2015), magnetic field
(Ao et al., 2014; Deng et al., 2015), pH (Liu Y. et al., 2014; Yuba
et al., 2017), redox properties (Yin et al., 2015; Zhang et al., 2016),
and enzyme activity (Rao and Khan, 2013; Harnoy et al., 2014).
Among of them, the pH-sensitive polymeric micelle appears to
be a highly appealing candidate due to the intrinsic differences
between solid tumors and the surrounding normal tissues in
terms of their relative acidity. The pH-sensitive polymer micelles
were devised based on copolymers composed of hydrophobic
and hydrophilic polymers linked via acid-liable bonds, including
hydrazone (Mo et al., 2012), benzoic imine (Yuan et al., 2012),
oxime (Liu B. et al., 2014), acetal (Li et al., 2016), ester (Gao
et al., 2018) and orthoester (Tang et al., 2011). Hydrolysis of the
acid-labile bonds leads to rapid drug release at an acidic pH.

Herein, we synthesized the amphiphilic polymer PEG-BHyd-
dC12 via an acid-labile hydrazone bond and constructed pH-
responsive micelles. The hydrophilic PEG segment on micelles
surface affords high colloidal stability in vitro and long circulation
time in vivo, while it is readily departed from micelles at the
tumor site under acid conditions, which is beneficial for cellular
uptake (Du et al., 2011). Paclitaxel (PTX), one of the most
effective antitumor drugs, was encapsulated into micelles due to
its hydrophobic nature, and released in a pH-responsive manner.
For comparison, the pH-insensitive counterpart polymer of PEG-
BAmi-dC12 was also synthesized for micelles preparation. The
physicochemical characterization, colloidal stability, drug release,
cellular uptake, and in vitro cytotoxicity of the micelles were
evaluated.

MATERIALS AND METHODS

Chemicals and Reagents
Paclitaxel (PTX), 1-ethyl-3-[3-dimethylaminopropyl]
carbodiimide hydrochloride (EDC), N-hydroxysulfosuccinimide
(NHS), 4-dimethylaminopyridine (DMAP), lauroyl chloride,
α-methoxy-x-amino-poly(ethylene glycol) (Mn = 2000) (MeO-
PEG2000-NH2) were purchased from Shanghai Aladdin Reagent
Co. Ltd. (Shanghai, China). mPEG-hydrazide (Mn = 2000)
was from Seebio Biotech, Inc. (Shanghai, China), and 3,5-
dihydroxybenzaldehyde was from Bide Pharmatech Ltd.
(Shanghai, China). 3,5-Dihydroxybenzoic acid was obtained
from Saen Chemical Technology Co. Ltd. (Shanghai, China).
Potassium hydroxide (KOH), tetrahydrofuran (THF), dimethyl
sulfoxide (DMSO), petroleum ether, ethyl acetate were purchased

from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT), coumarine (Cou-6) and 4′,6-diamidino-2-phenylindole
(DAPI) were obtained from Sigma-Aldrich Co. (St. Louis, MO,
United States). Lysotracker red was supplied from Beyotime
Institute of Biotechnology (Jiangsu, China). Dulbecco’s modified
Eagle’s medium (DMEM), RPMI 1640, penicillin, streptomycin,
phosphate buffered saline (PBS), fetal bovine serum (FBS)
were purchased from Gibco Life Technologies, Inc. (Carlsbad,
CA, United States). Human lung cancer cells (A549), human
breast cancer cells (MDA-MB-231), human ovarian cancer cells
(A2780) were obtained from Xiangya cell center (Changsha,
China). PTX-resistant human lung cancer cells (A549/T) was
bought from Gefan Biotechnology Co., Ltd. (Shanghai, China).

Synthesis of the pH-Sensitive Copolymer
PEG-BHyd-dC12
3,5-Dihydroxybenzaldehyde was dissolved in THF, followed by
the addition of KOH. Lauroyl chloride was added dropwise into
the above mixture and vigorously stirred for 6 h to yield 3,5-
dilaurate benzaldehyde. The purified 3,5-dilaurate benzaldehyde
and mPEG-hydrazide were dissolved in ethyl alcohol and stirred
for 24 h. After purification, the final amphiphilic polymer PEG-
BHyd-dC12 was obtained.

Synthesis of the pH-Insensitive
Copolymer PEG-BAmi-dC12
First, lauroyl chloride was added dropwise to a mixture of 3,5-
dihydroxybenzoic acid with KOH in anhydrous acetone at 0◦C
under stirring to obtain 3,5-dilaurate benzoic acid. Then, 3,5-
dilaurate benzoic acid, EDC, DMAP and NHS were dissolved
into DMSO and stirred at room temperature for 2 h, followed
by the addition of MeO-PEG2000-NH2. The resulting solution
was dialyzed and subsequently lyophilized to obtain PEG-BAmi-
dC12.

Characterization of Copolymers
The 1H-NMR spectra of PEG-BHyd-dC12 and PEG-BAmi-
dC12 were recorded using a Bruker Avance 400 MHz NMR
spectrometer (Varian, United States) with deuterated chloroform
(CDCl3) as the solvent. The self-assembly behavior of polymers
was investigated by the fluorescence probe technique (Xiong
et al., 2017). First, 100 µL of pyrene in acetone (2.9 × 10−2 mM)
was evaporated to form a thin film on the flask bottom. Then,
various concentrations of polymer solutions (from 0.1 µg/mL to
200 µg/mL) were added to the pyrene-coated vials and stored in
the dark overnight. The fluorescence intensity ratio of I337/I334 in
the emission spectra of pyrene was calculated and plotted against
the logarithm of the polymer concentrations. The CMC value
was obtained based on the fluorescence excitation spectra of the
mixed solution.

Preparation of Micelles
PTX-loaded micelles were prepared by a thin-film hydration
method. In brief, PEG-BHyd-dC12 or PEG-BAmi-dC12 (20.0 mg)
and PTX (1 mg) were dissolved in dichloromethane (4 mL).
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The solution was evaporated under reduced pressure to form
a uniform film. Deionized water (10 mL) was added and
rotated for another 1 h. The obtained colloidal solution
was then centrifuged at 3,000 rpm for 10 min and filtered
through 0.45 µm pore size filter, followed by lyophilization.
Blank micelles were prepared in a similar way in the absence
of PTX.

Characterization of Micelles
The particle size, PDI, and zeta potential measurement were
determined by dynamic light scattering (DLS) method using a
Malvern Zeta Sizer Nano series (Nano ZS, Malvern Instruments,
United Kingdom) at 25◦C. Themorphologies of themicelles were
observed using transmission electron microscopy (TEM) (Titan
G2-F20, FEI, United States).

The determination of PTX was carried out using a high-
performance liquid chromatography (HPLC) system (LC-2010,
Shimadzu, Tokyo, Japan). The chromatographic column was an
ODS C18 (250 × 4.6 mm, 5 µm, Diamonsil, Beijing, China).
The mobile phase consisted of mixtures of acetonitrile and
water (55:45, v/v). The flow rate was 1 mL·min−1, and the
detection wavelength was 227 nm. Micelles were centrifuged in
an ultrafiltration tube (MWCO 10 kDa) at 5,000 rpm for 10 min
and filtered through 0.22 µm filter to remove the unloaded
PTX. PTX-loaded micelles were disrupted by methanol. The
PTX loading content (LC) and encapsulated efficiency (EE) were
calculated using the following formulae:

EE (%) = Amount of PTX in micelles/

Amount of PTX fed initially × 100%

LC (%) = Amount of PTX in micelles/

Amount of PTX-loaded micelles × 100%

Colloidal Stability
Micelles were incubated with 10% FBS or 10 mM phosphate
buffer solutions (pH 7.4, 6.5, and 5.5) at 37◦C for 72 h, and the
size was measured by DLS at different intervals.

In vitro Drug Release
The release study was assessed by the dialysis method. The
release media was PBS solutions containing 0.5% Tween-80 with
different pH values (5.5, 6.5, and 7.4). Typically, 2 mL of PTX-
loaded micelles was placed in a dialysis bag (MWCO 3500) and
dialyzed against 25 mL of buffer medium under mechanical
shaking (100 rpm) at 37◦C. At predetermined time intervals,
2 mL of release medium was withdrawn and replenished with an
equal volume of freshmedium. The released PTXwas detected by
HPLC.

Cell Culture
A549 and A549/T cells were maintained in RPMI 1640
medium supplemented with 10% FBS, penicillin (50 U/mL)
and streptomycin (50 U/mL) in a 5% CO2 atmosphere at

37◦C. MDA-MB-231 and A2780 were maintained in DMEM
medium supplemented with 10% FBS, penicillin (50 U/mL) and
streptomycin (50 U/mL) in a 5% CO2 atmosphere at 37◦C.

Intracellular Distribution
Cou-6 loaded micelles were constructed according to the above
method, except the drug was replaced with Cou-6. A549 cells
were seeded on glass coverslips in the 24-well plates at a density
of 4 × 104 per well. After culturing for 24 h, Cou-6 loaded
micelles ([Cou-6] = 200 ng/mL) were added and incubated for
1 h. Alternatively, the cells were incubated with Cou-6 loaded
micelles for 1 h, then washed and cultured in fresh media
for another 3 h. Then, the medium was replaced with 70 nM
lysotracker red and incubated for another 1 h. Afterward, the
cells were fixed with 4% formaldehyde for 20 min at room
temperature and visualized using a CLSM (LSM 780, Carl Zeiss,
Jena, German).

Cellular Uptake
A549 cells were seeded in 6-well plates with a density of 3 × 105

cells per well and incubated overnight, and then, the mediumwas
replaced with Cou-6 loaded micelles at final Cou-6 concentration
of 200 ng/mL. After 1 h or 4 h of incubation, the cells were
harvested and quantified by flow cytometry (FACSVerse, BD,
United States).

Cytotoxicity Assay
The cytotoxicity of micelles with or without an anticancer
drug was determined by MTT assay. The cells were seeded
in a 96-well plate at a density of 6,000 cells per well and
maintained for 24 h. The medium was then replaced with
the micelles and further incubated for 72 h. Then, 20 µL
of MTT solution (5 mg/mL) was added to each well of the
plate for another 4 h. Subsequently, 100 µL of DMSO was
added to dissolve the formazan crystals, and the absorbance
was measured at 570 nm by a microplate reader (ELX800,
Bio-Tek, United States). The untreated cells were used as
controls.

Hemolysis Tests
The hemocompatibility of micelles was evaluated by hemolysis
assay (Yang et al., 2016). First, fresh rabbit blood was extracted
from the heart of a rabbit. Subsequently, erythrocytes were
obtained by centrifugation at 3,000 rpm for 15 min and washed
with normal saline (NS). Serial dilutions of micelles were then
added to the 2% erythrocytes (v/v) and incubated for 2 h at
37◦C in a thermostatic water bath. Finally, the mixtures were
centrifuged at 3,500 rpm for 15 min, and the supernatant of
all samples was measured for UV absorbance (A) at 540 nm.
NS and 0.5% Triton X-100 were regarded as the negative and
positive controls, respectively. The hemolysis ratio was calculated
as follows:

Hemolysis (%) = (Asample − Acontrol(−))/

(Acontrol(+) − Acontrol(−))
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Statistical Analysis
The data were expressed as the mean ± standard deviation (SD).
Statistical analysis was performed using a two-tailed Student’s
t-test and analysis of variance (ANOVA) with the aid of SPSS
23.0 software. Differences were considered statistically significant
when p-values were less than 0.05.

RESULTS AND DISCUSSION

Synthesis and Characterizations of
Copolymers
The synthesis schemes of PEG-BHyd-dC12 and PEG-BAmi-
dC12 were illustrated in Figures 1A,B. To synthesize the PEG-
BHyd-dC12 di-block amphiphilic polymer, the hydrophobic
fragment of 3,5-dilaurate benzaldehyde was conjugated with the
hydrophilic fragment of PEG through the linkage of hydrazone.
The 3,5-dihydroxybenzaldehyde was first reacted with lauroyl
chloride to form a 3,5-dilaurate benzaldehyde intermediate
with a yield of 90%, and then the aldehyde group on 3,5-
dilaurate benzaldehyde reacted with the hydrazine groups on
mPEG-hydrazide to give PEG-BHyd-dC12 with a final yield
was 69%. All of the synthetic compounds were characterized
by 1H-NMR spectra (Figures 1C,D), which were in good
agreement with their depicted structures as described in the
following:

1H NMR of intermediate compound 3,5-dilaurate
benzaldehyde: 1H NMR (400 MHz, CDCl3) δ (ppm) 0.91
(6H, t, -CH3), 1.21–1.45 (32H, m, -(CH2)n), 1.75 (4H, m,
CO-βH), 2,59 (4H, t, CO-αH), 7.20 (1H, t, 4-ArH), 7.52 (2H, d,
2,6-ArH), 9.98 (1H, s, -CHO).

1H NMR of PEG-BHyd-dC12:
1H NMR (400 MHz, CDCl3) δ

(ppm) 0.89 (6H, t, -CH3), 1.22–1.45 (32H, m, -(CH2)n), 1.74 (4H,
m, CO-βH), 2,54 (4H, t, CO-αH), 3.39 (3H, s, -OCH3 from PEG),
3.50–3.84 ((-OCH2CH2-)n), 4.19 (2H, s, CO-αH, fromPEG), 6.94
(1H, t, 4-ArH), 7.41 (2H, d, 2,6-ArH), 8.24 (1H, s, -NH), 10.5 (1H,
s, -CH = N).

As for PEG-BHyd-dC12, the characteristic peaks at 3.5–
3.84 ppm were from PEG, and the proton peak at 10.5 ppm
indicated the formation of the hydrazone bond. In addition,
the absence of proton peak of aldehyde (9.98 ppm) suggested
that free 3,5-dilaurate benzaldehyde was removed in the purified
PEG-BHyd-dC12.

1H NMR of intermediate compound 3,5-dilaurate benzoic
acid: 1H NMR (400 MHz, CDCl3) δ (ppm) 0.90 (6H, t, -CH3),
1.21–1.44 (32H, m, -(CH2)n), 1.71 (4H, m, CO-βH), 2,61 (4H, t,
CO-αH), 7.20 (1H, t, 4-ArH), 7.72 (2H, d, 2,6-ArH).

1H NMR of PEG-BAmi-dC12:
1H NMR (400 MHz, CDCl3)

δ (ppm) 0.90 (6H, t, -CH3), 1.22–1.45 (32H, m, -(CH2)n), 1.75
(4H, m, CO-βH), 2,58 (4H, t, CO-αH), 3.40 (3H, s, -OCH3 from
PEG), 3.50–3.84 ((-OCH2CH2-)n), 7.06 (1H, t, 4-ArH), 7.45 (2H,
d, 2, 6-ArH), 7.79 (1H, d, -CONH).

The characteristic peaks of PEG (3.50–3.84 ppm) were
obvious, and the peak of new amide bond can be seen at 7.79 ppm
for PEG-BAmi-dC12.

CMC Measurement
As amphiphilic materials, a key parameter for their applications
as a nanocarrier is their CMC. Micelles can be formed at
concentrations above the CMC. The CMC values of PEG-BHyd-
dC12 and PEG-BAmi-dC12 were determined by a well-established
method using pyrene as a fluorescence probe, resulting in

FIGURE 1 | Synthesis and characterization of PEG-BHyd-dC12 (A,C) and PEG-BAmi-dC12 (B,D). The synthesis of PEG-BHyd-dC12 (A) and PEG-BAmi-dC12

(B), H1-NMR spectrum of PEG-BHyd-dC12 (C), and PEG-BAmi-dC12 (D).
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7.5 µg/mL for PEG-BHyd-dC12 and 5.6 µg/mL for PEG-BAmi-
dC12 (Figure 2). These CMC values were within the typical
concentration range for most polymeric micelle CMCs, which
can be directly applied in vivo (Maysinger et al., 2007; Diezi
et al., 2010; Owen et al., 2012). It is reasonable that these two
polymers have comparable CMC values, as their structures are
nearly identical; they only differed at the junction between the
hydrophobic and hydrophilic blocks (one with a hydrazone bond

FIGURE 2 | The CMC curve of PEG-BHyd-dC12 and PEG-BAmi-dC12.

and the other with an amide bond). Therefore, PEG-BAmi-dC12

is an excellent control to study the pH-responsive property of
PEG-BHyd-dC12 for drug delivery.

Preparation and Characterization of
Micelles
From the above experiments, we have demonstrated that
both PEG-BHyd-dC12 and PEG-BAmi-dC12 were able to self-
assemble into micelles at very low concentrations, implying
their applicability for the development of a nano-drug delivery
system. We next used these polymers to prepare micelles, and
the hydrophobic PTX was used a model to encapsulate into
the hydrophobic core of the micelles (Figure 3A). The pH-
sensitive micelles (PEG-BHyd-dC12/PTX) were prepared using a
standard thin-film hydrationmethod. After removing the organic
solvents, the solution appeared to be semi-transparent with
light-blue opalescence (Inset in Figure 3B, left), suggesting the
successful preparation of nano-sized micelles. The particle size
was approximately 135 nm as determined by DLS (Figure 3B,
left); this size is suitable for passive accumulation in the tumor
tissue through the EPR effect (Danhier et al., 2010). From TEM,
themicelles were well dispersed with spherical morphology (Inset
in Figure 3B, left). The LC efficiency of PEG-BHyd-dC12/PTX
was 3% (Figure 3C), which was comparable to many other
PTX-loading micelles reported previously, and was sufficient for
subsequent in vitro/in vivo therapeutic applications (Lee et al.,
2003; Zhu et al., 2010; Mei et al., 2015).

FIGURE 3 | Preparation and characterization of micelles. Schematic preparation (A), appearance, size distribution, and TEM images (B, left presents

PEG-BHyd-dC12/PTX, right presents PEG-BAmi-dC12/PTX), characterization (C). Data were presented as mean ± standard deviation (SD; n = 3).
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By using the same method, the pH-insensitive PEG-BAmi-
dC12/PTX micelles were also prepared and characterized
(Figure 3B, right; Figure 3C). Interestingly, these two types
of micelles displayed quite similar properties in terms of
appearance, particle size, morphology and drug loading
efficiency. Therefore, a parallel comparison between these
micelles can be made for their in vitro/in vivo biological
performance, which can be rationalized by the pH-responsive
bond linkage.

Colloidal Stability
The colloidal stability of the micelles was first studied under
different buffer solutions. Interestingly, with pH decrease from
7.4 to 6.5 and 5.5, the particle size of PEG-BHyd-dC12/PTX
markedly increased, while it remained unchanged for PEG-
BAmi-dC12/PTX (Figure 4A). This can be rationalized by the
pH-responsive property of the PEG-BHyd-dC12/PTX, which
could swell and then collapse at lower pH (Li et al., 2016; Qiu
et al., 2017). We also challenged the micelles with 10% FBS, and
both types of micelles were quite stable even after 72 h incubation
(Figure 4B). Therefore, the pH-sensitive micelles were stable in
blood circulation and can rapidly collapse to release the payload
under acidic conditions.

In vitro Drug Release
The release behavior of PTX from polymeric micelles was
evaluated under various conditions at 37◦C. Different buffer
solutions were employed to simulate the micro-environment
of the blood circulation (pH 7.4), tumor tissue (pH 6.5),
and endosome (pH 5.5). We first studied the performance
of pH-sensitive PEG-BHyd-dC12/PTX micelles. At pH 7.4,
almost no PTX was released in the initial 4 h, which was
followed by a sustained release phase with only 38% PTX
release after 48 h (Figure 5A, black trace). Therefore, the
micelles can stably encapsulate PTX for a long time, which
is important for decreasing the side effects and increasing
the drug accumulation in tumor sites. By lowering the pH
to 6.5, a notable increase in drug release was observed
at each time point (Figure 5A, blue trace). With further
decrease of the pH to 5.5, the micelles showed an even
higher rate of drug release (Figure 5A, red trace). After 48 h,
the cumulative drug release was 50% and 65%, respectively,
significantly higher than that at pH 7.4 (∼40%), indicating
a good pH-responsive capability. This pH-responsive drug
release profile can be ascribed to the hydrazone bond between
the hydrophilic and hydrophobic chains of the polymer. As
the pH decreases, the hydrazone bond tends to hydrolyse

FIGURE 4 | Colloidal stability of micelles. Size change of PEG-BHyd-dC12/PTX micelles and PEG-BAmi-dC12/PTX micelles in phosphate buffers with different pH

values (A) and 10% FBS (B) at 37◦C for 72 h. The pHs were buffered by disodium hydrogen phosphate and sodium dihydrogen phosphate with total phosphate

concentration of 10 mM. Data were shown as mean ± SD (n = 3). ∗p < 0.05.

FIGURE 5 | Release profiles of PEG-BHyd-dC12/PTX micelles (A) and PEG-BAmi-dC12/PTX micelles (B) at different pHs at 37◦C. The pHs were buffered by

disodium hydrogen phosphate and sodium dihydrogen phosphate with total phosphate concentration of 10 mM. Data were shown as mean ± SD (n = 3).
∗p < 0.05, ∗∗p < 0.01.
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and thus the micelles collapse, resulting in burst drug
release.

As a control, we also performed the drug release experiment
with pH-insensitive PEG-BAmi-dC12/PTX micelles. In this case,

slow and sustained drug release was seen under different
conditions, and pH had little effect on the rate of drug
release, giving a cumulative drug release of less than 40%
after 48 h (Figure 5B). Considering the structural difference

FIGURE 6 | Cellular uptake studies of PEG-BHyd-dC12/Cou-6 and PEG-BAmi-dC12/Cou-6 in A549 cells by using CLSM (A), flow cytometry (B), fluorescence

intensities quantified from B (C). The (a) indicated PEG-BAmi-dC12/Cou-6 while the (b) represented PEG-BHyd-dC12/Cou-6. The scale bar is 25 µm.

FIGURE 7 | Cell viability of blank micelles after incubating with A549 (A), A549/T (B), MDA-MB-231 (C), and A2780 (D) cells for 72 h. Data were shown as

mean ± SD (n = 4).
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FIGURE 8 | Cell viability of PTX-loaded micelles and free PTX after incubating with A549 (A), A549/T (B), MDA-MB-231 (C), and A2780 (D) cells for 72 h. Data were

shown as mean ± SD (n = 4).

FIGURE 9 | Compatibility studies of micelles (pH 7.4). PEG-BHyd-dC12 (A) and PEG-BAmi-dC12 (B). “+” represents positive control by using 0.5% Triton X-100,

and “–” represents negative control of non-treatment.

TABLE 1 | IC50 value of the micelles and free PTX to A549, A549/T,

MDA-MB-231, and A2780 cells for 72 h incubation (mean ± SD, n = 4).

IC50 (µg/mL)

A549 A549/T MDB-MA-231 A2780

PTX 1.87 ± 0.08 11.17 ± 1.15 2.99 ± 0.37 2.01 ± 0.04

PEG-BHyd-

dC12/PTX

0.57 ± 0.16∗N 3.04 ± 1.13∗N 1.16 ± 0.06∗N 0.75 ± 0.08∗∗N

PEG-BAmi-

dC12/PTX

1.10 ± 0.06# 6.77 ± 0.30# 1.64 ± 0.13# 1.33 ± 0.13#

PTX vs. PEG-BHyd-dC12/PTX, ∗p < 0.05, ∗∗p < 0.01; PTX vs. PEG-BAmi-

dC12/PTX, #p < 0.05; PEG-BHyd-dC12/PTX vs. PEG-BAmi-dC12/PTX, Np < 0.05.

between PEG-BHyd-dC12/PTX and PEG-BAmi-dC12/PTX, these
results further demonstrated critical role of the hydrazone

bond for the pH-sensitive property of the PEG-BHyd-dC12/PTX
micelles.

Intracellular Uptake Study
Having demonstrated the pH-responsive property of the PEG-
BAmi-dC12/PTX micelles, we next studied the performance of
the micelles inside cells. To conveniently track the micelles inside
cells, Cou-6 (a hydrophobic green fluorophore) instead of PTX
was encapsulated into micelles, and the acidic organelles (i.e.,
lysosomes and endosomes) were stained by Lysotracker red.
A549 cancer cell line was used as a model since PTX has been
widely used in clinic for lung cancer therapy (Singla et al., 2002).
From confocal laser scanning microscopy (CLSM), substantial
green fluorescence was observed for both types of micelles after
1 h incubation (Figure 6A), indicating a high level of cellular
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internalization. To visualize the co-localization of micelles and
endo/lysosomes, we merged the green and red channels, and
the emergence of orange spots indicated the localization of
micelles in the endo/lysosomes. Both PEG-BHyd-dC12/Cou-6
and PEG-BAmi-dC12/Cou-6 micelles showed obvious spots after
1 h of incubation, consistent with the endocytosis pathway of the
micelles (Zhang et al., 2017).

We next studied the intracellular performance of the micelles.
To do this, the cells were washed and cultured in fresh
media so that further internalization of micelles was avoided.
After 4 h incubation, the pH-insensitive micelles were still
largely entrapped into the endo/lysosomes. In contrast, the
orange spots of pH-sensitive micelles were weakened, and green
color was evenly distributed throughout the cytoplasm, which
showed minimal co-localization with the red fluorescence of the
endo/lysosomes. The micelles detached from endosome due to
hydrolysis of copolymer under acidic organelles, which facilitated
efficient release of drug. Therefore, successful endo/lysosomal
escape of pH-sensitive micelles was indicated. It is known
that the successful escape of a nano-delivery system from
the intracellular endosome/lysosome for drug release is a key
issue in determining their therapeutic efficiency (Qiu et al.,
2017). After cellular uptake, micelles were first entrapped into
endosome/lysosome (Chou et al., 2011; Varkouhi et al., 2011).
Once entering the endo/lysosomes, the pH-sensitive micelles
were disassembled because of pH-triggered hydrolysis of the
acid-labile chemical linkage, and the drug rapidly escaped from
the endosome/lysosome, resulting in pH-triggered intracellular
burst release (Fang et al., 2016).

To have a quantitative understanding, we next performed flow
cytometry experiments to study the uptake of micelles by A549
cells (Figures 6B,C). After 1 h incubation, there was no difference
in intensity between pH-sensitive and pH-insensitive micelles.
Interestingly, after 4 h, the fluorescence from pH-responsive
micelles was considerably higher than that of pH-insensitive
micelles (Figure 6C), in agreement with a previous report (Qiu
et al., 2017). While the pH-responsiveness of micelles has little
effect on cell uptake process, the relative lower fluorescence
for PEG-BAmi-dC12/PTX was likely due to the efflux of the
micelles from cells to medium. As has been demonstrated, the
endo/lysosome entrapped micelles can be pumped out by ATP-
binding cassette protein B1 (ABCB1) transporter (Sakai-Kato
et al., 2012). Since the pH-responsive micelles collapse faster in
endo/lysosome, relatively less micelles were cleared from cells by
this pump-out process, resulting in stronger fluorescence inside
cells.

Cytotoxicity Assay
Cytotoxicity studies were performed by incubating micelles with
different types of cells for 72 h, and cell viability was measured
by MTT assay. The cytotoxicity of the polymers was tested by
incubating the cells with blank micelles (without PTX loading),
and all types of cells remained >90% viability with concentration
up to 800 µg/mL, indicating high biocompatibility (Figure 7).
As for A549, at the highest PTX concentration (16 µg/mL), the
viabilities of cells incubated with PEG-BHyd-dC12/PTX, PEG-
BAmi-dC12/PTX and free PTX dropped to 11%, 22%, and 28%,

respectively, showing high toxicity to cancer cells (Figure 8A).
The anti-cancer capability was quantified by measuring the
half-maximal inhibitory concentration (IC50), which was in
order of PEG-BHyd-dC12/PTX (0.57 µg/mL) < PEG-BAmi-
dC12/PTX (1.1 µg/mL) < free PTX (1.87 µg/mL) (Table 1).
Therefore, PEG-BHyd-dC12/PTX exhibited the highest activity,
which was attributable to the pH-responsive property for
rapid endo/lysosome drug escape to enhance the antitumor
effect.

To test the generality, we further performed the anti-
tumor assay by using MDA-MB-231 and A2780 cells, and
analogous results were observed (Figures 8C,D). The PEG-
BHyd-dC12/PTX displayed the best anti-cancer activity, followed
by PEG-BAmi-dC12/PTX and then free PTX. Therefore, such
micelles can be implemented for different types of cancer therapy.
As one limitation of PTX for long-term cancer treatment is the
acquired drug resistance by cancer cells (Yusuf et al., 2003),
we also tested whether the nano-systems could reverse drug
resistance by using PTX-resistant A549/T cells as a proof-
of-concept. The cytotoxicity of PTX and micelles was also
dose dependent (Figure 8B), while the overall IC50 value was
much higher due to the drug resistance (Table 1). Notably,
cytotoxicity of PEG-BHyd-dC12/PTX was 3.7-fold higher than
that of free PTX, which may be useful to reverse drug
resistance.

Hemolysis Assay
The biocompatibility of polymeric micelles is the prerequisite
for biomedical application. We studied this property by using
hemolysis assay. Typically, the micelles were incubated with
erythrocytes, and the release of hemoglobin was measured to
quantify the erythrocyte-damaging properties (Nogueira et al.,
2013). The positive control of 0.5% Triton X-100 showed obvious
hemolysis, as high as 100%, while the micelles produced less than
2% at different concentration (Figure 9). Therefore, the micelles
were highly biocompatible and can be directly administrated by
intravenous injection.

CONCLUSION

In this work, pH-sensitive PTX-loaded PEG-BHyd-dC12 micelles
were constructed and characterized. These nanoparticles
exhibited pH-dependent drug release profile and endosomal
escape ability after intracellular delivery, and displayed
enhanced anti-tumor activity compared with the pH-insensitive
counterpart micelles and the free PTX. All of these results
suggested that the PEG-BHyd-dC12 micelles-based drug
delivery system is a promising drug carrier for targeted cancer
treatment.
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