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Zebrafish have become a popular organism for the study of verte-
brate gene function'” The virtually transparent embryos of this
species, and the ability to accelerate genetic studies by gene knock-
down or overexpression, have led to the widespread use of zebrafish
in the detailed investigation of vertebrate gene function and increas-
ingly, the study of human genetic disease*>. However, for effective
modelling of human genetic disease it is important to understand
the extent to which zebrafish genes and gene structures are related to
orthologous human genes. To examine this, we generated a high-
quality sequence assembly of the zebrafish genome, made up of an
overlapping set of completely sequenced large-insert clones that were
ordered and oriented using a high-resolution high-density meiotic
map. Detailed automatic and manual annotation provides evidence
of more than 26,000 protein-coding genes®, the largest gene set of
any vertebrate so far sequenced. Comparison to the human reference
genome shows that approximately 70% of human genes have at least
one obvious zebrafish orthologue. In addition, the high quality of
this genome assembly provides a clearer understanding of key genomic
features such as a unique repeat content, a scarcity of pseudogenes,

an enrichment of zebrafish-specific genes on chromosome 4 and
chromosomal regions that influence sex determination.

The zebrafish (Danio rerio) was first identified as a genetically tract-
able organism in the 1980s. The systematic application of genetic
screens led to the phenotypic characterization of a large collection of
mutations". These mutations, when driven to homozygosity, can pro-
duce defects in a variety of organ systems with pathologies similar to
human disease. Such investigations have also contributed notably to
our understanding of basic vertebrate biology and vertebrate deve-
lopment. In addition to enabling the systematic definition of a large
range of early developmental phenotypes, screens in zebrafish have
contributed more generally to our understanding of the factors con-
trolling the specification of cell types, organ systems and body axes of
vertebrates”™.

Although its contributions have already been substantial, zebrafish
research holds further promise to enhance our understanding of the
detailed roles of specific genes in human diseases, both rare and com-
mon. Increasingly, zebrafish experiments are included in studies of
human genetic disease, often providing independent verification of
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Table 1 | Assembly and annotation statistics for the Zv9 assembly
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Assembly Annotation
Total length (bp) 1,412,464,843 Protein-coding genes 26,206
Total clone length (bp) 1,175,673,296 Pseudogenes 218
Total WGS31 contig length (bp) 234,099,447 RNA genes 4,556
Placed scaffold length (bp) 1,357,051,643 Immunoglobulin/T-cell receptor gene segments 56
Unplaced scaffold length (bp) 55,413,200 Total transcripts 53,734
Maximum scaffold length (bp) 12,372,269 Total exons 323,599
Scaffold N50 (bp) 1,551,602 - -
No. of clones 11,100 - -
No of WGS31 contigs 26,199 - -
No. of placed scaffolds 3,452 - -
No. of unplaced scaffolds 1,107 - -

Data are based on Ensembl version 67. N50, the scaffold size above which 50% of the total length of the sequence assembly can be found.

the activity of a gene implicated in a human disease®>'°. Essential to
this enterprise is a high-quality genome sequence and complete anno-
tation of zebrafish protein-coding genes with identification of their
human orthologues.

The zebrafish genome-sequencing project was initiated at the
Wellcome Trust Sanger Institute in 2001. We chose Tiibingen as the
zebrafish reference strain as it had been used extensively to identify
mutations affecting embryogenesis®. Our strategy resembled the clone-
by-clone sequencing approach adopted previously for both the human
and mouse genome projects. The Zv9 assembly is a hybrid of high-
quality finished clone sequence (83%) and whole-genome shotgun (WGS)
sequence (17%), with a total size of 1.412 gigabases (Gb) (Table 1). The
clone and WGS sequence is tied to a high-resolution, high-density meiotic
map called the Sanger AB Tiibingen map (SATmap), named after the
strains of zebrafish used to make the map (Supplementary Information).

Zebrafish are members of the teleostei infraclass, a monophyletic
group that is thought to have arisen approximately 340 million years
ago from a common ancestor''. Compared to other vertebrate species,
this ancestor underwent an additional round of whole-genome dupli-
cation (WGD) called the teleost-specific genome duplication (TSD)'*.
Gene duplicates that result from this process are called ohnologues
(after Susumu Ohno who suggested this mechanism of gene duplica-
tion)"*. Zebrafish possess 26,206 protein-coding genes®, more than
any previously sequenced vertebrate, and they have a higher number
of species-specific genes in their genome than do human, mouse or
chicken. Some of this increased gene number is likely to be a con-
sequence of the TSD.

A direct comparison of the zebrafish and human protein-coding
genes reveals a number of interesting features. First, 71.4% of human
genes have at least one zebrafish orthologue, as defined by Ensembl
Compara' (Table 2). Reciprocally, 69% of zebrafish genes have at least
one human orthologue. Among the orthologous genes, 47% of human
genes have a one-to-one relationship with a zebrafish orthologue. The
second largest orthology class contains human genes that are assoc-
iated with many zebrafish genes (the ‘one-human-to-many-zebrafish’
class), with an average of 2.28 zebrafish genes for each human gene,
and this probably reflects the TSD. A few notable human genes have no
clearly identifiable zebrafish orthologue; for example, the leukaemia
inhibitory factor (LIF), oncostatin M (OSM) or interleukin-6 (IL6)
genes, although the receptors lifra, lifrb, osmr and il6r are clearly
present in the zebrafish genome. It is possible that zebrafish proteins

Table 2 | Comparison of human and zebrafish protein-coding genes
and their orthology relationships

Relationship type Human Core relationship Zebrafish Ratio
One to one - 9,528 - -

One to many 3,105 - 7,078 1:2.28
Many to one 1,247 - 489 2.55:1
Many to many 743 233 934 1:1.26
Orthologous total 14,623 13,355 18,029 1:1.28
Unique 5,856 - 8,177 -
Coding-gene total 20,479 - 26,206 -

Data and orthology relationship definitions are based on Ensembl Compara version 67 (http://
www.ensembl.org/info/docs/compara/homology_method.html).

with functionally similar activities to LIF, OSM and IL-6 exist, but that
their sequence divergence is so great that they cannot be recognized as
orthologues. Similarly, the zebrafish genome has no BRCA1I orthologue,
but does have an orthologue of the BRCAI-associated BARDI gene,
which encodes an associated and functionally similar protein and a
brea2 gene, which plays an important role in oocyte development,
probably reflecting its role in DNA damage repair'®.

Zebrafish have been used successfully to understand the biological
activity of genes orthologous to human disease-related genes in greater
detail’”. To investigate the number of potential disease-related genes,
we compared the list of human genes possessing at least one zebrafish
orthologue with the 3,176 genes bearing morbidity descriptions that
are listed in the Online Mendelian Inheritance in Man (OMIM) data-
base. Of these morbid genes, 2,601 (82%) can be related to at least one
zebrafish orthologue. A similar comparison identified at least one
zebrafish orthologue for 3,075 (76%) of the 4,023 human genes impli-
cated in genome wide association studies (GWAS).

Zv9 shows an overall repeat content of 52.2%, the highest reported
so far in a vertebrate. All other sequenced teleost fish exhibit a much
lower repeat content, with an average of less than 30%. This result
suggests that the evolutionary path leading to the zebrafish experienced
an expansion of repeats, possibly facilitated by a population bottleneck.
Alternatively, the repeat content of the other sequenced teleost species
may be under-represented, as these assemblies are mostly WGS'®.

The majority of transposable elements found in the human genome
are type I (retrotransposable elements), with more than 4.3 million
placements covering 44% of the sequence, whereas only 11% of the
zebrafish genome sequence is covered by type I elements in less than
500,000 instances. In contrast, the zebrafish genome contains a marked
excess of type II DNA transposable elements. Indeed, 2.3 million
instances of type II DNA transposable elements cover 39% of the
zebrafish genome sequence (Supplementary Table 12), whereas type
II repeats cover only 3.2% of the human genome.

This pronounced abundance of type II transposable elements is
unique among the sequenced vertebrate genomes, and the genome
sequence shows evidence of recently active type II transposable ele-
ments. The closest vertebrate species in terms of the abundance of type
II transposable elements is Xenopus tropicalis (25% type II transpos-
able elements), whereas the sequenced and annotated teleost fish (the
pufferfish Takifugu and Tetraodon, the three-spined stickleback (Gas-
terosteus aculeatus) and the medaka (Oryzias latipes)) each possess
type II transposable element coverage of less than 10%, which may
relate to the fact that the zebrafish genome diverges basally from the
other sequenced and annotated teleost genomes'. Zebrafish type 11
transposable elements are divided into 14 superfamilies with 401
repeat families in total (Supplementary Table 12). The DNA and
hAT superfamilies are the most abundant and diverse in the zebrafish
genome, together covering 28% of the sequence. The type II transpos-
able element abundance of zebrafish, or lack of retrotransposable ele-
ments, may provide an explanation for the low zebrafish pseudogene
content (Supplementary Table 14).

The long arm of chromosome 4 is unique among zebrafish genomic
regions, owing to its relative lack of protein-coding genes and its extensive
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heterochromatin. Chromosome 4 is known to be late-replicating and
hybridization studies suggest that genomic copies of 5S ribosomal DNA
(rDNA), which are not notably present on any other chromosome, are
scattered along the long arm at high redundancy'®. Immediately after

Figure 1 | Landscape of chromosome 4. a, Exon coverage (blue), stacked with
coverage by snRNA exons (black). b, Stacked repeat coverage, divided into type
I transposable elements (red), type II transposable elements (grey) and other
repeat types (blue), including dust, tandem and satellite repeats. ¢, Sequence
composition (grey bars, clones; blue bars, WGS contigs). d, Genetic marker
placements (red, SATmap markers; blue, heat shock meiotic map markers;
black, Massachusetts General Hospital meiotic map markers). Marker
placements have been normalized so that the maps can be compared. Near-
centromeric clones are positioned at 20 Mb (BX537156),20.2 Mb (210280) and
24.4 Mb (Z20450)**. The x axis shows the chromosomal position in Mb. a and
b were calculated as percentage coverage over 1-Mb overlapping windows

(y axis), with a 100-kb shift between each window. ¢ and d were calculated over
100-kb windows. The y axis for d shows the normalization of marker positions
relative to the span of the individual map. Similar graphs for the other
chromosome are provided in the Supplementary Information.

the presumed centromere at approximately 24 megabases (Mb), the
sequence landscape (Fig. 1 and Supplementary Fig. A4) shows a
remarkable increase in repeat content, which continues through to
the telomere of the long arm. At approximately 27 Mb, the otherwise
uniform presence of the satellite repeat SAT-2 on the long arm ends
abruptly. This location is also the starting point of uniform MOSAT-2
distribution, a satellite repeat that is nearly absent from all other chro-
mosomes but highly enriched on the long arm of chromosome 4. The
subtelomeric region of the long arm shows a distinct distribution of
repeat elements, with relatively fewer interspersed elements and an

Figure 2 | Sex determination signal on
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increased content of satellite, simple and tandem repeats that do not
harbour 55 rDNA sequences. Moreover, the gene content is reduced on
the long arm and the guanine-cytosine content is slightly increased.
The long arm of chromosome 4 also has a special structure with
respect to gene orthology and synteny. Approximately 80% of the
genes present have no identifiable orthologues in human. In fact,
110 genes (out of 663) have no identifiable orthologues in any other
sequenced teleost genome and indeed seem to be zebrafish-specific
genes. The genes in this region are highly duplicated, with 31 ancestral
gene families alone providing 77.5% of the genes, the largest of which
contains no less than 109 duplicates in this region. The largest of these
families correspond to NOD-like receptor proteins'’® with putative
roles in innate immunity and zinc finger proteins. We also observed
a very high density of small nuclear RNAs (snRNAs) on chromosome
4, and in particular those that encode spliceosome components. The
cohort of snRNAs carried on the long arm of chromosome 4 accounts
for 53.2% of all snRNAs in the zebrafish genome. In addition, in a
specific group of zebrafish derived recently from a natural population,
the subtelomeric region of the long arm of chromosome 4 has been
found to contain a major sex determinant with alleles that are 100%
predictive of male development and 85% predictive of female develop-
ment, suggesting that this chromosome may be, might have been, or
may be becoming, a sex chromosome in this particular population®.
In addition to the chromosome 4 sex determinant, three other sepa-
rate genomic regions have been identified as influencing sex deter-
mination, and these vary between the strains and even within the
families studied**?'. Our meiotic map, SATmap, which was generated
to anchor the genomic sequence, provided an opportunity to examine
whether there are any strong signals for sex determination. To generate
SATmap we took advantage of the fact that it is possible to create
double haploid individuals that contain only maternally derived
DNA, that are homozygous at every locus and that can be raised until
they are fertile*® (Fig. 2a). To investigate the interesting finding that
SATmap F, fish could be either male or female while being genetically
identical and heterozygous at every polymorphic locus, we sought a
genetic signal for sex determination in the F, generation, in which
these polymorphisms segregate. Using morphological secondary sex-
ual traits, we were able to score the sex of 332 genotyped F, individuals.
Although most chromosomes showed no significant genetic bias for a
particular sex, we found that most of chromosome 16 carried a strong
signal (P=9.1 X 10~7) with a broad peak around the centromere
(Fig. 2b, c). Homozygotes for the Tibingen (grandmaternal) allele
had a very high probability of being female, whereas homozygotes for
the AB (grandpaternal) allele were very unlikely to be female (Fig. 2).
The number of protein-coding genes among vertebrates is rela-
tively stable, although even closely related species may show great dis-
parities in the nature of their protein-coding gene content. We carried
out a four-way comparison between the proteome of two mammals
(human and mouse), a bird (chicken) and the zebrafish to quantify the
fraction of shared and species-specific genes present in each genome
(Fig. 3a). A core group of 10,660 genes is found in all four species and
probably approximates an essential set of vertebrate protein-coding
genes. This number is somewhat less than the core set of 11,809 ver-
tebrate genes identified previously as being common to three fish
genomes (Tetraodon, medaka, zebrafish) and three amniotes (human,
mouse, chicken)'’, but the discrepancy probably reflects the improved
annotation of these genomes that often results in fusing fragmented
gene structures. Each taxon has between 2,596 and 3,634 species-
specific genes. The notable excess observed in zebrafish may be a
consequence of the WGD, because pairs of duplicated genes that arose
from the WGD, but with no orthologue in amniotes, are counted as
two specific genes. Furthermore, 2,059 genes are found in human,
mouse and zebrafish but not in chicken, and this number is two times
higher than the number of genes that are found in all amniotes but
not in zebrafish (892). It is unclear whether these genes have been
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lost along the evolutionary branch leading to the chicken, or whether
this is due to annotation or orthology assignation errors in the chi-
cken genome.

We identified double-conserved synteny (DCS) blocks between all
sequenced tetrapods and four fish genomes (zebrafish, medaka, stickle-
back and Tetraodon). DCS blocks are defined as runs of genes in the
non-duplicated species that are found on two different chromosomes
in the species that underwent a WGD?, although the genes may not be
adjacent in the duplicated species**. The DCS between zebrafish and
human are represented on either side of each human chromosome
(Supplementary Fig. 15). Using DCS blocks, we identified zebrafish
paralogous genes that are part of DCS blocks and consistent with the
locally alternating chromosomes, hence with an origin at the TSD. We
identified 3,440 pairs of such ohnologues (26% of the all genes), for a
total of 8,083 genes when subsequent duplications are taken into
account. It is notable that although true pairs of ohnologues may exist

a Mouse Chicken

Zebrafish

€l [

Figure 3 | Evolutionary aspects of the zebrafish genome. a, Orthologue
genes shared between the zebrafish, human, mouse and chicken genomes, using
orthology relationships from Ensembl Compara 63. Genes shared across
species are considered in terms of copies at the time of the split. For example, a
gene that exists in one copy in zebrafish but has been duplicated in the human
lineage will be counted as only one shared gene in the overlap. b, The ohnology
relationships between zebrafish chromosomes. Chromosomes are represented
as coloured blocks. The position of ohnologous genes between chromosomes
are linked in grey (for clarity, links between chromosomes that share less than
20 ohnologues have been omitted). The image was produced using Circos™.
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within the same chromosome owing to post-TSD rearrangements,
we excluded such cases as we cannot reliably distinguish them from
segmental duplications. This number of ancestral genes retained as
duplicates in zebrafish is higher, both in absolute number and
in proportion, than in other fish genomes (chi-squared test, all
P<3X107°).

We compared the 8,083 zebrafish TSD ohnologues with human
ohnologues originating from the two rounds of WGD that are com-
mon to all vertebrates and find that the two sets overlap strongly (chi-
squared test, P <2 X 10 16). In general, zebrafish ohnologous pairs are
enriched in specific functions (neural activity, transcription factors)
and are orthologous to mammalian genes under stronger evolutionary
constraint than genes that have lost their second copy.

A circular representation of ohnologue pairs (Fig. 3b) highlights
chromosomes, or parts of chromosomes, that descended from the
same pre-duplication ancestral chromosome (for example, chromo-
somes 3 and 12,17 and 20, 16 and 19). Among zebrafish chromosomes,
chromosome 16 and chromosome 19 are unique in their one-to-one
conservation of synteny. Consistent with the conservation of synteny,
chromosome 16 and chromosome 19 possess clusters of orthologues
of genes associated with the mammalian major histocompatibility
complex (MHC) as well as the hoxab and hoxaa clusters, respectively,
which are each orthologous to the human HOXA cluster™.

Since the earliest whole-genome shotgun-only assembly became
public in 2002, the zebrafish reference genome sequence has enabled
many new discoveries to be made, in particular the positional cloning
of hundreds of genes from mutations affecting embryogenesis, beha-
viour, physiology, and health and disease. Moreover, the annotated
reference genome has enabled the generation of accurate whole-exome
enrichment reagents, which are accelerating both positional cloning
projects and new genome-wide mutation discovery efforts*>”. Although
the zebrafish reference genome sequencing is complete, a few poorly
assembled regions remain, which are being resolved by the Genome
Reference Consortium (http://genomereference.org).

METHODS SUMMARY

We generated cloned libraries of large fragments of genomic DNA, assembled a
physical map of large-insert clones and completely sequenced a set of minimally
overlapping clones. In addition, we generated WGS sequences by end-sequencing
a mixture of large- and short-insert libraries. Overlapping clone sequences were
combined with WGS sequences and tied to the meiotic map, SATmap, which
enabled independent placement and orientation of clones in the genome sequence.
The sequence data can be found in the BioProject database, under accession
number PRJNA11776.

To obtain evidence for a more complete description of protein-coding genes, we
used high-throughput short-read complementary DNA sequencing and obtained
a deep-coverage data set for messenger RNAs expressed in zebrafish at various
stages of development and in adult tissues®. Finally, a standard Ensembl gene build,
incorporating filtered elements from the complementary DNA sequencing gene
build, was merged with the manually curated gene models to produce a compre-
hensive annotation in Ensembl version 67 (http://may2012.archive.ensembl.org/
Danio_rerio/Info/Index). Detailed descriptions of all the methods used for this
project are available in the Supplementary Information.
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