

1 Event-Related Potential Markers of Subject Cognitive 2 Decline and Mild Cognitive Impairment during a sus- 3 tained visuo-attentive task

4
5 A. A. Vergani^{1,2}, S. Mazzeo^{3,4}, V. Moschini⁴, R. Burali³, M. Lassi^{1,2}, L. G. Amato^{1,2}, J. Carpaneto^{1,2}, G. Salves-
6 trini³, C. Fabbiani^{3,4}, G. Giacomucci⁴, C. Morinelli⁴, F. Emiliani⁴, M. Scarpino³, S. Bagnoli⁴, A. Ingannato⁴, B.
7 Nacmias^{3,4}, S. Padiglioni⁵, S. Sorbi^{3,4}, V. Bessi⁴, A. Grippo³, A. Mazzoni^{1,2*}

8
9 * Corresponding author: alberto.mazzoni@santannapisa.it

10
11 ¹The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy

12 ²Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, Pisa, Italy

13 ³IRCSS Fondazione Don Carlo Gnocchi, Florence, Italy

14 ⁴Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-universitaria
15 Careggi, Florence, Italy

16 ⁵ Research and Innovation Centre for Dementia-CRIDE, Azienda Ospedaliero-universitaria Careggi, Florence,
17 Italy

18 Abstract

19 INTRODUCTION. Subjective cognitive decline (SCD), mild cognitive impairment (MCI), or
20 severe Alzheimer's disease stages are still lacking clear electrophysiological correlates.

21 METHODS. In 145 subjects (86 SCD, 40 MCI, and 19 healthy subjects (HS)), we analysed
22 event-related potentials observed during a sustained visual attention task, aiming to distin-
23 guish biomarkers associated with group conditions and performance.

24 RESULTS. We observed distinct patterns among group conditions in the occipital P1 and N1
25 components during the stimulus encoding phase, as well as in the central P3 component
26 during the stimulus decision phase. The order of ERP components was non-monotonic, indi-
27 cating a closer resemblance between MCI and HS. ERP features from occipital channels
28 exhibited greater differences between SCD and MCI. Task performance was significantly
29 enhanced in the central channels during the decision phase.

30 DISCUSSION. Those results support evidence of early stage, neural anomalies linked to
31 visuo-attentive alterations in cognitive decline as candidate EEG biomarkers.

32 Research in context

33 THE SYSTEMATIC REVIEW. The researchers examined existing literature by referring to
34 conventional sources like PubMed, Scopus, and Google Scholar. Keywords used: e.g.,
35 "EEG & Dementia"; "Visual Evoked Potential & SCD or MCI". References are properly cited
36 and almost half of them are from the last ten years.

37 THE INTERPRETATION. Results proposed early dynamics of visual processing ERP being
38 insightful biomarkers for SCD and MCI patients. Those components reflect evoked potential
39 patterns, suggesting the power of few milliseconds in being informative about the underlying
40 neural dysfunctions associated with visuo-attentive mechanisms.

41 FUTURE DIRECTIONS. We enrolled 100+ subjects. By even expanding the sample size
42 and conducting follow-up assessments, we aim to assess the extracted ERP features, as
43 well as by training and testing machine learning algorithms. The goal is to support clinical
44 decision-making, and to prioritise patients with an abnormal neural signal over manifest cog-
45 nitive symptomatology, tracking the cognitive decline trajectory effectively.

46 **Background**

47 Neurocognitive disorders affect 6-50 million people worldwide, with prevalence doubling every
48 five years, particularly among those aged 50-80. This trend poses a significant societal
49 burden, with various factors contributing to dementia, including neurological, systemic, and
50 psychiatric conditions. Alzheimer's disease (AD) is the most prevalent cause of neurocognitive
51 decline.

52 AD involves the accumulation of beta-amyloid plaques and neurofibrillary tangles, leading to
53 neurodegeneration and cognitive decline, eventually resulting in dementia. This process un-
54 folds over decades, with amyloid buildup occurring years before symptoms. Stages range
55 from subtle cognitive changes to full-blown dementia. The initial stage, Subjective Cognitive
56 Decline (SCD), involves self-reported cognitive decline while performance on standardized
57 tests remains within the normal range when adjusted for age, sex, and education (1).

58 Mild Cognitive Impairment (MCI) occurs when pathological scores on neuropsychological
59 tests are present without a significant impact on daily life activities. It serves as a transitional
60 stage between normal aging and the more severe cognitive decline seen in dementia.

61 In the realm of dementia research, SCD and MCI hold paramount significance as they fall
62 within the spectrum of AD. Patients affected by these conditions present an opportunity for
63 intervention with recently developed Disease-Modifying Therapies (DMTs) approved for AD
64 (2,3). Indeed, it is widely acknowledged that DMTs should be administered during the early
65 stages of the disease, prior to the onset of neurodegeneration (4).

66 Seeking reliable biomarkers for early AD diagnosis is crucial. Common biomarkers like MRI,
67 FDG-PET, and CSF are invasive and not widely available. Hence, researchers explore ac-
68 cessible options, with EEG showing promise (5). Nevertheless, despite these efforts, only a
69 limited number of studies have delved into this promising avenue (e.g., biomarking condi-
70 tions as SCD against MCI (6,7), MCI against AD (8), across CSF (9) and ApoE ϵ -4 allele
71 (10))

72 Additionally, in dementia EEG studies, sensory event-related potentials are examined (e.g.,
73 auditory (11) and visual (12-14)). Specifically, visual event-related potentials suggest a
74 compelling hypothesis about brain alterations in the visual system that could help detect early
75 structural changes linked to anomalies in ERPs (15-17). For example, by recording EEG
76 during a visuo-memory task, Waninger et al (18) found amplitude suppression of late pos-
77 tive potentials (~400ms) in MCI against healthy subjects over right occipital and temporal
78 channels. Other studies enquired early phase of visual processing as the encoding of stimu-
79 lus: Krasodomska et al (19) found N95 wave dynamics alterations in AD, as other colleagues
80 in last decays detect visual evoked potential anomalies in dementia patients (20,21). Hence,
81 an unresolved critical aspect is how visual alterations manifest across various stages of cog-
82 nitive decline.

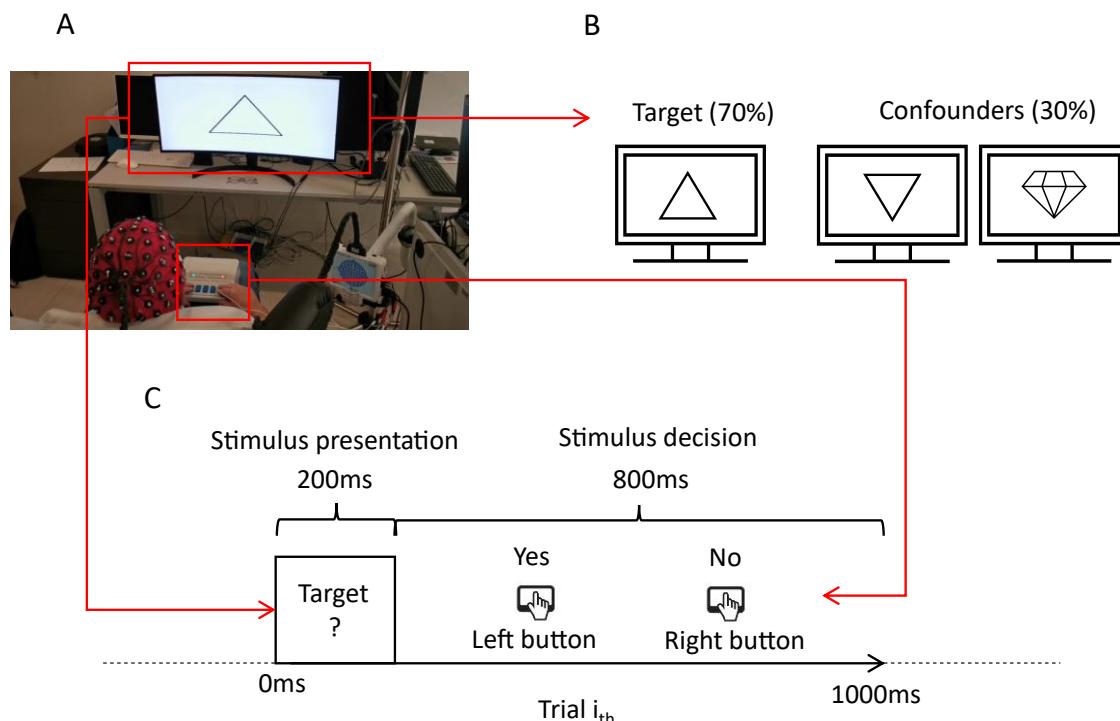
83 In this study, we aimed to uncover EEG correlates of a sustained visuo-attentive task para-
84 digm. Our goal was to quantitatively characterize patients with SCD and MCI, thereby en-
85 hancing our understanding of electrophysiology in the dementia continuum.

86 **Methods**

87 The protocol of the PREVIEW project (ClinicalTrials.gov Identifier: NCT05569083) has been
88 published previously (22). In brief, PREVIEW is a longitudinal study on Subjective Cognitive
89 Decline started in October 2020 with the aim to identify features derived from easily accessi-
90 ble, cost-effective and non-invasive assessment to accurately detect SCD patients who will

91 progress to AD dementia. All participants were collected in agree with the Declaration of
92 Helsinki and with the ethical standards of the Committee on Human Experimentation of Ca-
93 reggi University Hospital (Florence, Italy). The study was approved by the local Institutional
94 Review Board (reference 15691oss).

95 Participants


96 We enrolled 145 individuals (92F), including 86 SCD patients (59F), 40 MCI patients (25F),
97 and 19 age-matched healthy individuals (8F). All participants underwent thorough family and
98 clinical history evaluations, neurological examinations, extensive neuropsychological as-
99 sessments, premorbid intelligence estimation, and depression evaluations.

100 The following inclusion criteria were adopted: satisfied criteria for SCD (23) or MCI (24); Mini
101 Mental State Examination (MMSE) score >24, corrected for age and education; normal func-
102 tioning on the Activities of Daily Living (ADL) and the Instrumental Activities of Daily Living
103 (IADL) scales unsatisfied criteria for AD diagnosis according to National Institute on Aging-
104 Alzheimer's Association (NIA-AA) criteria (25). Exclusion criteria were history of head injury,
105 current neurological and/or systemic disease, symptoms of psychosis, major depression,
106 substance use disorder; complete data loss of patients' follow-up; use of any medication with
107 known effects on EEG oscillations, such as benzodiazepines or antiepileptic drugs. In addition,
108 an exclusion criterion was for subjects with outliers (>3.5 sigma) for multiple ERP fea-
109 tures (see Methods).

110 A subset of 44 patients underwent CSF collection for assessment of A β ₄₂, A β ₄₂/A β ₄₀, total-
111 tau (t-tau) and phosphorylated-tau (p-tau). Among these, 44 patients (25 SCD, 19 MCI) also
112 underwent cerebral amyloid-PET. Normal values for CSF biomarkers were: A β ₄₂>670 pg/ml,
113 A β ₄₂/A β ₄₀ ratio>0.062, t-tau<400 pg/ml and p-tau<60 pg/ml (26). Methods used CSF collec-
114 tion, biomarker analysis, and amyloid-PET acquisition and rating are described in further de-
115 tail elsewhere (22,27). Patients who underwent AD biomarker assessment, were classified
116 as A+ if at least one of the amyloid biomarkers (CSF A β ₄₂, A β ₄₂/A β ₄₀ or amyloid PET) indi-
117 cated the presence of A β pathology, and as A- if none of the biomarkers indicated the pres-
118 ence of A β pathology. In cases where there were conflicting results between CSF and Amy-
119 loid PET, only the pathological result was considered. Patients were classified as T+ or T-
120 based on whether their CSF p-tau concentrations were higher or lower than the cut-off value,
121 respectively. Similarly, patients were classified as N+ or N- depending on whether their t-tau
122 concentrations were higher or lower than the cut-off value. Using this initial classification, we
123 applied the NIA-AA Research Framework (28) to define the following groups: ATN 0 (28 of
124 44; 17 SCD + 11 MCI): normal AD biomarkers (A-/T-/N-) and non-AD pathologic change (A-
125 /T+/N-, A-/T-/N+, and A-/T+/N+); ATN 1 (6 of 44; 4 SCD + 2 MCI): Alzheimer's pathologic
126 change (A+/T-/N- and A+/T-/N+); ATN 2 (10 of 44; 4 SCD + 6 MCI): AD (including A+/T+/N-
127 and A+/T+/N+).

128 Visuo-attentive task

129 The 3-Choice Vigilance Test (3CVT) requires identifying a target shape (upward triangle)
130 among two distractor shapes (downward triangle and diamond) (29) (Fig1A). Shapes are
131 shown for 0.2 seconds with varied interstimulus intervals in the 20-minute task. Participants
132 press left for targets (70%) and right for distractors (30%) (Fig1B/C). Performance is eval-
133 uated using reaction time, accuracy, and F-Measure, considering both reaction time and ac-
134 curacy (29).

135

136 *Figure 1. 3CVT experimental paradigm. Panel A shows both experiment and EEG settings while subjects must*
137 *push left button in the presence of the target stimulus, while must push right button in the presence of confound*
138 *stimuli. Panel B shows the target stimulus (upward triangle) and the confounders (downward triangle and dia-*
139 *mond). Target stimulus is presented 70% of the time, while non-target stimuli are presented 30% of the time.*
140 *Panel C shows an exemplificative trial temporal structure with 200ms of stimulus presentation and 800ms for*
141 *making the decision.*

142 EEG devices

143 EEG data were collected from eligible subjects at IRCCS Don Gnocchi (Florence, Italy) us-
144 ing the 64-channel Galileo-NT system (E.B. Neuro S.p.a.). Sensor placement followed the
145 extended 10/20 system (30). Signals were recorded unipolarly at 512 Hz. Electrode impedi-
146 nances were maintained between 7 and 10 KOhm; if exceeded, electrodes were readjusted,
147 and affected segments were removed.

148 EEG preprocessing and computation

149 EEG processing included band-pass filtering (1-45 Hz), noisy channel interpolation, average
150 re-referencing, and artefactual component exclusion via ICA. Trials lasted 1000 ms, with 200
151 ms for stimulus presentation and 800 ms for response. ERPs were epoch-aligned with cor-
152 rect responses to the target stimulus, segmented from 0 to 750 ms with a -100 ms baseline.
153 Average EEG signals from occipital (PO7, PO8, O1, Oz, O2) and central channels (FC1,
154 FCz, FC2, C1, Cz, C2) were computed for encoding and decision-making analysis, respec-
155 tively.

156 ERP components definitions

157

158 We examined occipital and central channel signals, identifying canonical components. Oc-
159 cipital channels revealed P1 (60-80ms) and N1 (110-170ms). Central channels showed P2
160 (300-500ms) and P3 (470-650ms), also called P300 (31) and Late Positive Potentials (LPP)
161 (32) respectively. P2 and P3 together formed Extended Central Potential, named based on
162 voltage polarity (P=positive, N=negative) and appearance order.

163 Neural features computations

164 We extracted neural features from defined ERP components, including voltage peaks, latencies, and integrals. To explore visual processes' impact on cognitive decline and understand 165 visual decision-making, we introduced a seed-based correlation measure using Spearman 166 rank-order correlation coefficient (33–35). Two seeds, from occipital and central channels, 167 were utilized to compute correlations within encoding (0-200ms) and decision (200-750ms) 168 time windows, yielding median values representing overall EEG signal relationships. 169

170 Patients' descriptors

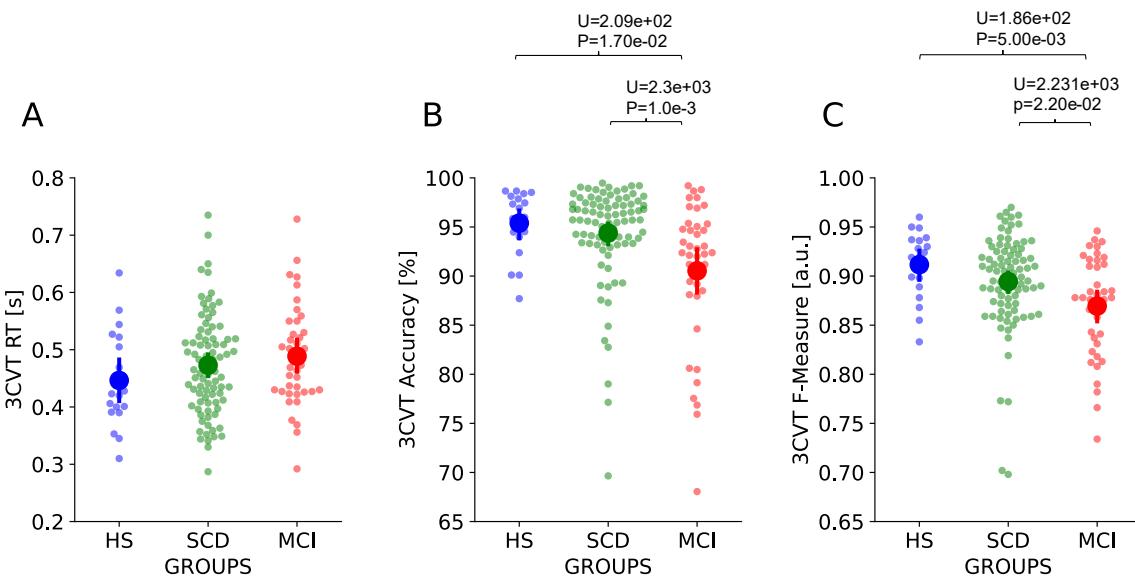
171 Patients underwent an extensive neuropsychological examination (see specific references in 172 (22)), including global measurements (MMSE), attention (TMTA, TMTB, TMTAB, visual 173 search, MFTC FR, MFTC Time), executive function (TMT B), and premorbid intelligence es- 174 timation (TIB). Personality traits were assessed using the BFFQ, and participation in intellec- 175 tual, social, and physical activities was evaluated. Patient descriptors also included perfor- 176 mance on the 3CVT task (accuracy, reaction time, and F-Measure; see detailed equations in 177 (18)).

178 Computational notes

179 Non-parametric analysis was employed, with statistics presented as mean values and 95% 180 confidence intervals (CI). Group comparisons utilized the Kruskal-Wallis H test, with post- 181 hoc analysis conducted using the Mann-Whitney U test. Differences in ERP voltage dynam- 182 ics were assessed by comparing voltage values at each time point across channels (central 183 or occipital). Effect size was measured using the eta squared index, and p-values were cor- 184 rected using Bonferroni correction for multiple comparisons. Data preprocessing utilized 185 EEGLAB (36), while postprocessing and visualization were performed using Python libraries. 186 Scripts and data are available upon request.

187 Results

188 Relation between medical scales and task performance results


189 Medical scale results revealed significant differences in several patient descriptors between 190 the two diagnostic groups (details in Tab1). Patients with SCD were younger and more edu- 191 cated than those with MCI. In neuropsychological assessments, SCD outperformed MCI in 192 global cognition (MMSE) and premorbid intelligence (TIB). While SCD performed better than 193 MCI in visuo-attentive tests, results were not statistically significant. SCD patients also exhib- 194 ited higher emotional stability, extraversion, agreeableness, and openness compared to MCI 195 patients. Additionally, SCD patients were more engaged in mental, social, and physical activi- 196 ties compared to MCI patients.

197 Group analysis of task performance showed significant differences for accuracy 198 ($H=7.33e+02$; $p=2.42e-03$) and F-Measure ($H=6.29.50e+02$; $p=7.04e-03$), but not for reac- 199 tion time ($H=0.33+e1$; $p=5.48e-01$; see Fig2A)). Post-hoc analysis showed significant differ- 200 ences in accuracy (Fig2B) between MCI and SCD ($U=2.3e+03$; $p=1.0e-03$) and between 201 MCI and HS ($U=2.09e+03$; $p=1.7e-02$), but not between SCD and HS ($U=7.3e+02$ with 202 $p=8.4e-1$). Post-hoc analysis of F-Measure (Fig2C) showed significant difference between 203 MCI and SCD ($U=2.2e+03$; $p=2.20e-02$) and between MCI and HS ($U=1.86e+02$; $p=5.00e- 204 03$; Fig2C), but not between SCD and HS ($U=6.28e+02$; $p=3.53e-01$).

205 *Table 1 Task performance and medical scale results. Values regarded features as 3CVT behaviour performance,* 206 *clinical scales, demography, leisure time, personality traits scales and neuropsychological scales of visuo-* 207 *attention. P-value in bold is <0.05. Features values are indicated with mean and 95% confidence level (CI). Ab-* 208 *Abbreviations: H is the Kruskal-Wallis statistics; Eta-squared is the statistics effect size; HS, healthy controls; SCD,* 209 *subject cognitive decline; MCI, mild cognitive impairment.*

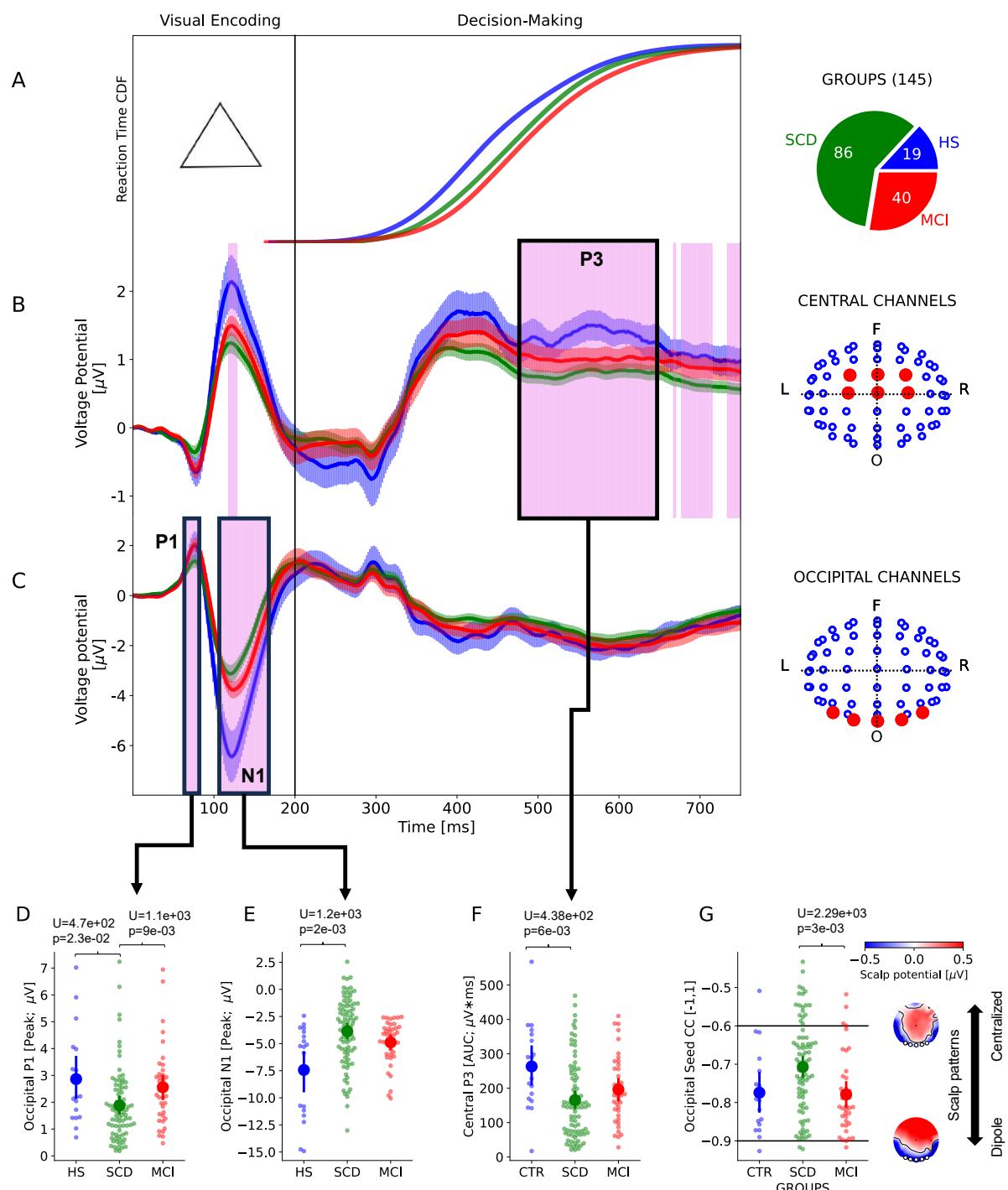
Class	Feature	HS (Mean & CI)	SCD (Mean & CI)	MCI (Mean & CI)	H	p-value	Eta-squared
3CVT Performances	F-Measure [a.u.]	0.91 (0.90, 0.93)	0.89 (0.88, 0.90)	0.87 (0.85, 0.89)	6.29E+02	7.05E-03	7.80E-02
3CVT Performances	Accuracy [%]	95.39 (93.92, 96.86)	94.38 (93.30, 95.47)	90.53 (88.27, 92.79)	7.33E+02	2.42E-03	9.10E-02
3CVT Performances	Reaction Time [s]	0.45 (0.41, 0.48)	0.47 (0.45, 0.49)	0.49 (0.46, 0.52)	3.40E+00	5.49E-01	2.30E-02
Clinical	Age at onset of symptoms	-	55.97 (53.91, 58.02)	62.92 (59.67, 66.18)	1.21E+01	1.48E-03	8.90E-02
Clinical	TIB [a.u.]	-	113.71 (112.94, 114.49)	108.38 (103.74, 113.01)	7.54E+00	1.81E-02	5.70E-02
Clinical	MMSE [a.u.]	14.95 (13.42, 16.48)	27.94 (27.53, 28.36)	27.61 (26.06, 29.17)	1.63E+03	7.13E-12	2.72E-01
Demography	Education [years]	29.15 (28.65, 29.66)	13.73 (13.00, 14.46)	10.80 (9.55, 12.05)	0.00E+00	6.13E-14	3.03E-01
Demography	Age [Years]	-	65.42 (63.41, 67.42)	72.42 (69.82, 75.03)	1.42E+01	3.22E-04	1.03E-01
Leisure Time	Mental [a.u.]	-	19.09 (18.26, 19.91)	15.55 (13.96, 17.14)	2.00E+01	2.36E-05	1.39E-01
Leisure Time	Social [a.u.]	-	9.21 (8.49, 9.94)	7.40 (6.61, 8.19)	1.71E+01	1.06E-04	1.21E-01
Leisure Time	Physical [a.u.]	-	6.85 (6.24, 7.47)	5.52 (4.91, 6.12)	1.35E+01	7.33E-04	9.80E-02
Psychological	Openness of mind [a.u.]	-	47.48 (45.88, 49.07)	40.40 (38.49, 42.31)	2.22E+01	1.22E-05	1.52E-01
Psychological	Emotive stability [a.u.]	-	49.52 (47.77, 51.27)	48.30 (45.96, 50.64)	7.47E+00	3.14E-02	5.70E-02
Psychological	Agreeableness [a.u.]	-	51.95 (50.17, 53.74)	46.65 (44.82, 48.48)	2.74E+01	8.25E-07	1.81E-01
Psychological	Extraversion [a.u.]	-	46.70 (45.34, 48.06)	42.85 (40.98, 44.72)	2.24E+01	1.11E-05	1.53E-01
Psychological	Conscientiousness [a.u.]	-	48.53 (46.66, 50.41)	47.00 (44.84, 49.16)	4.66E+00	1.54E-01	3.60E-02
Visuo-Attentive	MFTC Time [s]	-	69.94 (64.43, 75.45)	74.22 (66.64, 81.81)	2.55E+00	7.73E-01	2.00E-02
Visuo-Attentive	MFTC FR [a.u.]	-	0.24 (0.00, 0.49)	2.42 (-1.93, 6.78)	9.11E-01	8.46E-01	7.00E-03
Visuo-Attentive	MFTC [a.u.]	-	97.73 (97.15, 98.32)	94.38 (89.56, 99.19)	4.43E+00	2.47E-01	3.50E-02
Visuo-Attentive	TMT AB [a.u.]	-	37.63 (29.98, 45.28)	47.75 (36.18, 59.32)	2.89E+00	6.24E-01	2.30E-02
Visuo-Attentive	TMT B [a.u.]	-	66.51 (56.79, 76.23)	79.38 (63.82, 94.93)	2.48E+00	8.06E-01	2.00E-02
Visuo-Attentive	TMT A [a.u.]	-	30.56 (27.36, 33.76)	44.67 (29.74, 59.61)	3.92E+00	3.34E-01	3.10E-02
Visuo-Attentive	Visual search [a.u.]	-	48.86 (47.47, 50.26)	45.96 (43.56, 48.37)	4.81E+00	1.98E-01	3.70E-02

210

211

212 *Figure 2. Task performance features. Panel A: reaction time stratified by groups. Panel B: accuracy values stratified by groups. Panel C: F-Measure stratified by groups. Small dots are subject specific values, while the big dot for each group is the mean value. Reported U statistics are significative ($p<0.05$). Colour code: SCD patients (86) are in green, MCI (40) in red and healthy subjects (19) in blue. Abbreviations: HS, healthy controls; SCD, subject cognitive decline; MCI, mild cognitive impairment.*

217 ERPs revealed precise temporal anomalies in occipito-central channels


218 ERPs recorded in central and occipital channels exhibited significant group differences
 219 (Fig3). Decision speed representation (Fig3A) explicitly showed that reaction time aligned
 220 with cognitive decline ordering. During the decision phase (Fig3B), significant temporal dif-
 221 ferences ($p<0.01$) in the late window (>400 ms) indicated prolonged attenuation (>100 ms) of
 222 the P3 component in SCDs and MCIs compared to HSs. In the encoding phase (Fig3C), sig-
 223 nificant temporal differences ($p<0.01$) were observed at the P1 and N1 canonical deflections,
 224 showing attenuation of P1 in SCDs compared to MCI and HS, and overall attenuation of N1
 225 in SCDs and MCIs compared to controls.

226 Significant temporal windows (violet lines in Fig3B/C) were identified for ERP component
227 peaks and integrals extraction. Non-parametric seed-to-scalp correlations based on occipital
228 and central seeds were computed. Group analysis (see detailed statistics in Tab2; single-
229 feature outliers excluded) showed significant differences in occipital regions for N1 and P1
230 component peaks and integrals, and in central regions for P3 component peaks and inte-
231 grals. Occipital seed-based correlations exhibited significant group differences, while central
232 seed-based correlations did not.

233 Post-hoc analyses of significative features revealed that occipital P1 peak (Fig3D) was sta-
234 tistically different between SCD and MCI ($U=1.109e+03$; $p=9.000e-03$) and between SCD
235 and HS ($U=4.780e+02$; $p=2.300e-02$), but not between MCI and HS ($U=3.520e+02$;
236 $p=8.697e-01$); occipital N1 peak (Fig3E) between was not different between SCD and MCI
237 ($U=2.165e+03$; $p=5.900e-02$) and between MCI and HS ($U=5.100e+02$; $p=1.070e-01$), but
238 was statistically different between SCD and HS ($U=1.230e+03$; $p=2.000e-03$); central P3 in-
239 tegral (Fig3F) was statistically different between SCD and HS ($U=4.380e+02$; $p=6.000e-03$),
240 but not between SCD and MCI ($U=1.300e+03$; $p=1.640e-01$) and between MCI and HS
241 ($U=2.450e+02$; $p=1.150e-01$); occipital seed based correlation (Fig3G) was statistically dif-
242 ferent between SCD and MCI ($U=2.290e+03$; $p=3.000e-03$), but not between MCI and HS
243 ($U=3.530e+02$; $p=9.130e-01$) and between SCD and HS ($U=9.980e+02$; $p=1.020e-01$); oc-
244 cipital N1 integral was statistically different between SCD and HS ($U=4.460e+02$; $p=6.000e-03$),
245 but not between SCD and MCI ($U=1.343e+03$; $p=1.450e-01$) and between MCI and HS
246 ($U=2.590e+02$; $p=1.520e-01$); occipital P1 integral was statistically different between SCD
247 and MCI ($U=1.129e+03$; $p=1.000e-02$) and between SCD and HS ($U=5.140e+02$; $p=4.800e-02$),
248 but not between MCI and HS ($U=3.790e+02$; $p=9.510e-01$); central P3 peak was statis-
249 tically different SCD and HS ($U=4.510e+02$; $p=8.000e-03$), but not between SCD and MCI
250 ($U=1.335e+03$; $p=2.490e-01$) and between MCI and HS ($U=2.630e+02$; $p=2.290e-01$).

251 Occipital seed scalp correlation (Fig3G) showed average topographic features: high anticor-
252 relation values (~ -1) suggested occipito-frontal dipole effect, while low anti-correlation ($\sim -$
253 0.5) indicated more centralized scalp activation. ERP component features displayed non-
254 monotonic ordering between groups (Fig3D-G), highlighting SCD as a distinct group com-
255 pared to MCI and HS.

256
257 *ERP dynamics stratified by ATN classification in patients*
258 We examined ERP correlates in patients stratified by the ATN marker. No significant differ-
259 ences were found in canonical components in central and occipital channel groups (S-Fig1).
260 However, when crossing diagnostic categories with ATN classes, SCD-ATN1 patients dis-
261 played an abnormal negative flection centred at 200ms in central channels (S-Fig2). In con-
262 trast, MCI-ATN2 patients showed suppression of central P3 potential around 580ms (S-
263 Fig3). ATN taxonomy mainly correlates with central channels. Fragmentary subgroup num-
264 bering (pie plots in S-Fig2 and S-Fig3) lacks statistical power for further analysis.

265

266 *Figure 3. Target stimulus locked ERP wavefronts in patients behaving the 3CVT task. Panel A presents the Cu-*

267 *mulative Density Function (CDF) of reaction time, with a triangle denoting the target stimulus presentation within*

268 *the 0-200ms window. Panels B and C display Event-Related Potentials (ERPs) recorded in central and occipital*

269 *channels, respectively, with bold lines representing group means and shaded areas indicating standard errors.*

270 *Violet vertical lines in Panels B and C highlight significant voltage dynamics ($p<0.01$), particularly associated with*

271 *the central channel ERP late positive component (P3) and occipital channel ERP early visual components (P1*

272 *and N1). Panels D, E, F, and G further illustrate group-specific features: Occipital P1 and N1 peaks, Central P3*

273 *integral, and Occipital Seed Correlation Coefficient (Spearman), respectively. Occipital Seed Correlations (Panel*

274 *G) also shows the average scalp topography in relation to extremes values of correlation (max anticorrelation,*

275 *i.e., close to -1, associates with dipole voltage patterning on the scalp, while weak anticorrelation, i.e., close to -*

276 *0.5, associates with centralized voltage patterning on the scalp). U statistics in Panels D-G are significant*

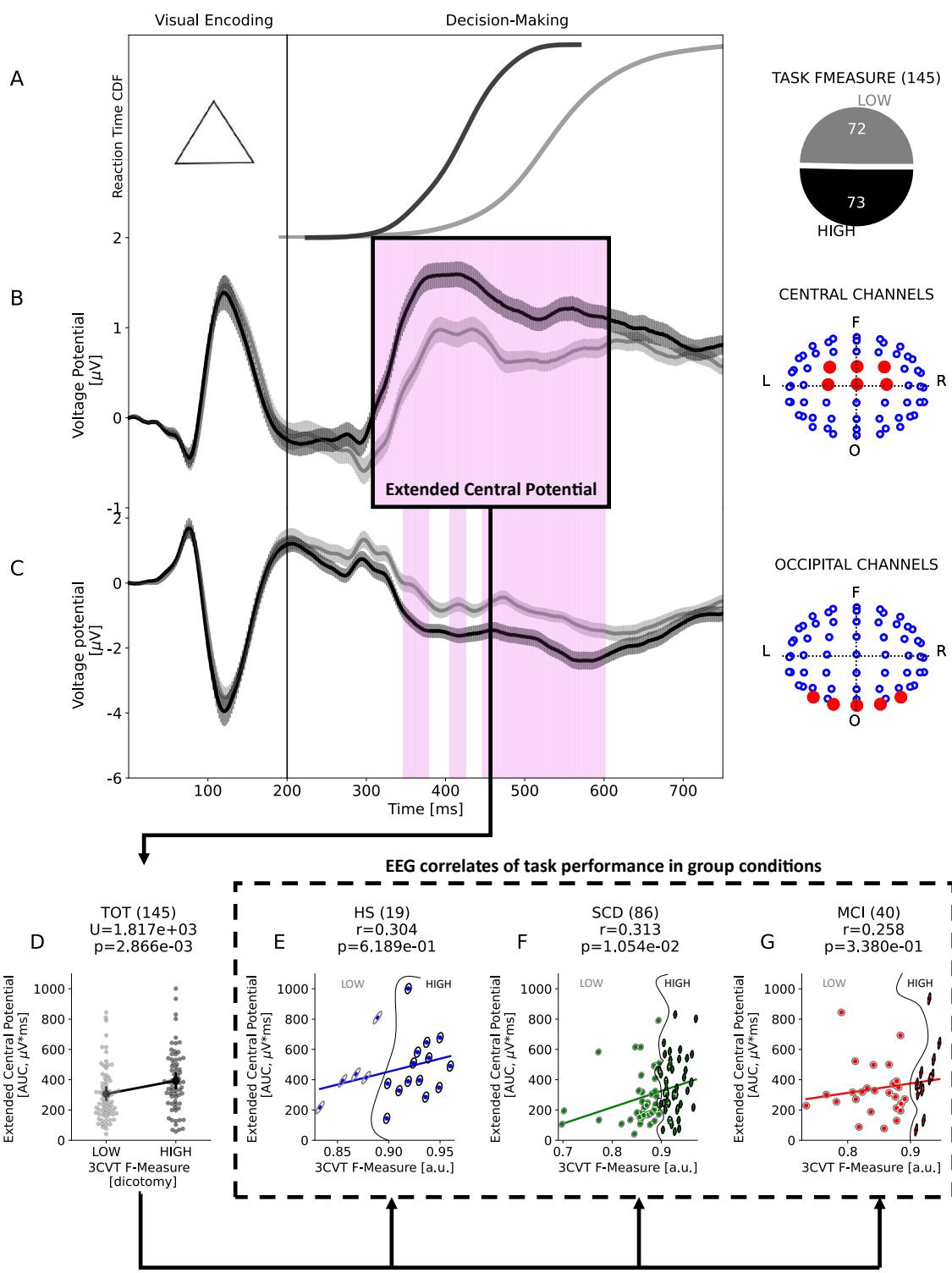
277 *($p<0.05$). Small dots represent individual subject values, while large dots denote the group mean. Abbreviations*

278 *include HS (healthy controls), SCD (subject cognitive decline), MCI (mild cognitive impairment), and colour cod-*

279 *ing distinguishes patient groups (SCD in green, MCI in red, and healthy subjects in blue).*

280
281 *Table 2* *ERP features extracted from ERP dynamics. Neural features are the peak, integral and latencies of occipital P1 and N1*
282 *and central P1, P2 and P3; others are the correlation of the scalp with occipital and central seeds. P-value in bold is <0.05.*
283 *Features values are indicated with mean and 95% confidence level (CI). Abbreviations: H is the Kruskal-Wallis statistics; Eta-*
squared *is the statistics effect size; HS, healthy controls; SCD, subject cognitive decline; MCI, mild cognitive impairment.*

Neural Feature	HS (Mean & CI)	SCD (Mean & CI)	MCI (Mean & CI)	H	p-value	Eta-squared
Occipital N1 (Peak; μ V)	-7.44 (-9.29, -5.58)	-3.86 (-4.52, -3.21)	-4.89 (-5.51, -4.27)	1.51E+01	3.20E-03	7.70E-01
Occipital Seed CC (-1,1)	-0.77 (-0.83, -0.72)	-0.71 (-0.73, -0.68)	-0.78 (-0.81, -0.75)	1.25E+01	3.80E-03	7.58E-01
Occipital P1 (Peak; μ V)	2.86 (2.10, 3.63)	1.88 (1.59, 2.16)	2.56 (2.11, 3.00)	1.29E+01	9.50E-03	8.77E-01
Occipital N1 (AUC; μ V*ms)	280.34 (207.44, 353.23)	161.04 (137.71, 184.37)	187.00 (158.31, 215.68)	1.18E+01	1.61E-02	7.82E-01
Occipital P1 (AUC; μ V*ms)	34.68 (23.99, 45.36)	22.79 (18.93, 26.64)	31.40 (25.75, 37.05)	1.17E+01	1.70E-02	7.62E-01
Central P3 (AUC; μ V*ms)	263.28 (208.06, 318.49)	165.53 (141.53, 189.54)	196.39 (165.17, 227.61)	1.19E+01	2.30E-02	7.60E-01
Central P3 (Peak; μ V)	2.12 (1.76, 2.49)	1.54 (1.36, 1.72)	1.78 (1.54, 2.02)	1.05E+01	4.83E-02	8.97E-01
Central P2 (Peak; μ V)	2.85 (2.36, 3.33)	2.09 (1.87, 2.32)	2.19 (1.86, 2.52)	9.31E+00	8.55E-02	8.96E-01
Central Seed CC (-1,1)	-0.01 (-0.16, 0.14)	0.03 (-0.04, 0.10)	0.16 (0.06, 0.27)	5.83E+00	1.08E-01	8.75E-01
Central P2 (AUC; μ V*ms)	326.38 (261.40, 391.36)	234.56 (203.00, 266.11)	229.82 (189.80, 269.84)	8.03E+00	1.62E-01	7.60E-01
Central P3 (Lat; ms)	557.17 (526.63, 587.70)	553.06 (538.86, 567.25)	560.15 (538.78, 581.52)	5.35E-01	7.27E-01	7.59E-01
Occipital P1 (Lat; ms)	73.49 (70.75, 76.23)	74.02 (72.66, 75.38)	74.80 (72.94, 76.66)	1.06E+00	7.63E-01	7.59E-01
Central P2 (Lat; ms)	420.02 (396.87, 443.17)	409.10 (399.60, 418.60)	426.48 (412.09, 440.88)	3.47E+00	8.06E-01	7.59E-01
Central P1 (Peak; μ V)	2.15 (1.51, 2.79)	1.74 (1.50, 1.99)	1.84 (1.54, 2.13)	1.96E+00	8.50E-01	8.97E-01
Central P1 (Lat; ms)	122.26 (119.33, 125.19)	120.44 (118.97, 121.91)	120.15 (118.10, 122.20)	1.39E+00	8.54E-01	7.59E-01
Central P1 (AUC; μ V*ms)	32.26 (22.13, 42.40)	25.91 (21.76, 30.06)	26.67 (22.03, 31.30)	1.81E+00	8.88E-01	7.59E-01
Occipital N1 (Lat; ms)	128.53 (122.56, 134.50)	125.53 (122.31, 128.75)	131.98 (126.30, 137.67)	3.76E+00	9.17E-01	7.59E-01


284

285 Task performance correlates with amplitude in central scalp EEG potentials

286 We examined how group categories in ERPs relate to task performance. We focused on F-
287 Measure, combining accuracy and reaction time. Splitting at the median (0.896), we formed
288 two balanced groups: low (n=72) below median, high (n=73) above. Subjects belonging to
289 the high F-Measure category are characterised by higher accuracy (mean=95.3%,
290 std=2.87%; H=8.20, p=4e-03) and shorter reaction times (mean=0.41s, std=0.04s;
291 H=7.34e+1, p=1.05e-17), compared to subjects in the low F-Measure category, having lower
292 accuracy (mean=91.5%, std=7.35%) and longer reaction time (mean=0.53s, std=0.07s). Re-
293 action time had a smaller p-value than accuracy, indicating F-Measure's focus on decision
294 speed. Both accuracy and reaction time are significant, so we analysed dichotomous F-
295 Measure for overall performance.

296 ERPs analysed for performance revealed significant time-extended differences, particularly
297 in central channels (FIG4). Decision speed (FIG4A) showed high-performance anticipation
298 by approximately 100ms compared to low performance. Central channels (Fig4B) exhibited
299 significant scalp potential differences during the decision window (~300ms wide). This signif-
300 icant time window (p<0.01), termed Extended Central Potential, includes P2 and P3 poten-
301 tials. However, occipital channels (Fig4A) did not show significant differences during the en-
302 coding phase.

303 Computation of the integral for Extended Central Potential showed a significant difference
304 between the low and high performance categories ($U=1.8e+03$; $p=2.86e-03$; Fig4D). Subse-
305 quently, we studied the non-parametric association by means of Spearman-rank correlations
306 between the F-Measure and the integral of the Extended Central Potential. The results
307 showed that in HS (Fig4E) the correlation was positive but not significant ($r=0.304$;
308 $p=6.189e-01$), whereas in SCD patients it was positive and significant ($r=0.313$; $p=1.05e-02$),
309 and in MCI patients it was positive but not significant ($r=0.258$; $p=3.38e-01$). Therefore, the
310 statistical difference observed in the two categories of low and high F-Measure (Fig. 4D) is
311 mainly driven by SCD patients.

312

313 *Figure 4. Target stimulus locked ERP wavefronts in performance groups behaving the 3CVT task. Panel A illustrates the Cumulative Density Function (CDF) of reaction time, with a triangle marking the presentation of the target stimulus within the 0-200ms window. Panels B and C showcase Event-Related Potentials (ERPs) recorded in central and occipital channels, respectively. Bold lines represent group means, while shaded areas depict standard errors. Panel D introduces the Extended Central Potentials, differentiated by two performance classes. Panels E-F-G present the Extended Central Potentials relationship with continuous F-Measure for each group condition. Inside scatterplots the circles in grey and black overlaid on scatter points indicates low and high dichotomized F-Measure. Abbreviations include TOT (all the group conditions), HS (healthy controls), SCD (subject cognitive decline), MCI (mild cognitive impairment).*

322 **Ageing check**

323 Since the subjects are of different ages, we asked whether ERP features extracted are af-
324 fected by effects due to senescence. To this end, we conducted a non-parametric correlation
325 study (Spearman-rank metrics) to highlight possible confounding associations. Analyses
326 showed that the association is only present in HS individuals with the integral of the occipital
327 component N1 ($r=0.65$; $p=8e-03$) and the scalp correlation based on occipital seed ($r=-$
328 0.571 ; $p=4e-02$). In contrast, the other features were not significantly associated with age in
329 the groups analysed (see S-Fig4 for statistical details).

330 **Discussion**

331 Study investigated electrophysiological aspects of sustained visual attention in SCD and MCI
332 compared to HS. Anomalies observed in occipital P1 and N1, and central P3 potentials.
333 Non-monotonic ordering highlighted distinctions in SCD compared to HS and MCI. Task per-
334 formance correlated with central channels' scalp potential intensity, particularly in SCD pa-
335 tients.

336 These findings support the hypothesis that visual sensory abnormalities characterize SCD
337 and MCI patients to varying degrees. For example, occipital P1 and N1 potentials are
338 thought to represent aspects of visual-attentive processes, including their cost (P1) and ben-
339 efit (N1) (37–39). Open hypotheses suggest that P1 and N1 may not solely originate from
340 the primary visual cortex, with N1 potentially linked to occipito-parietal/temporal/frontal gen-
341 erators (40), whereas P1 from extra V1 regions (V2,V3, dorsal V4) (41). Therefore, the rec-
342 orded abnormalities in early visual components between SCD and MCI may indicate a
343 broader visual-attentional impairment specific to these patients.

344 The most significant neural difference between SCDs and MCIs was EEG scalp correlation
345 with occipital seed, marked by predominantly negative values indicating a basic occipital
346 channels' anticorrelation with others. This results in a dipole topography at the scalp level,
347 characterized by occipital negativity and frontal positivity. SCD patients exhibit less anticorre-
348 lation, indicating a reduced dipole effect on the scalp. This occipito-frontal dipole pattern re-
349 sembles EEG microstate classes C and D (42), which have been associated with AD and
350 non-AD conditions in recent research (43). Future investigations should integrate the theo-
351 retical framework of microstates into ERP paradigms in cognitively impaired individuals to
352 explore topographic changes along the occipito-frontal axis.

353 Assuming a continuous cognitive decline hypothesis (Fig1 in (44)), i.e., according to an in-
354 creasing gradient of impairment between SCD and MCI patients, an ordering of neural fea-
355 ture values in line with this gradient is to be expected. Instead, a non-monotonic ordering
356 between these features was evidenced, showing greater similarity between controls and
357 MCIs, and thus differentiating SCDs to a greater extent. This non-monotonic characteristic
358 opens questions as to why the electrophysiological correlate does not follow a gradient of
359 change in line with the continuous gradient of cognitive decline. A cause-effect paradigm as
360 a modelling framework (45,46) of pathological AD-type neural degeneration could explain
361 the causal mechanisms underlying the observed non-monotonicity in scalp potentials.

362 Furthermore, cognitive reserve is recognized for its role in influencing cognitive decline, po-
363 tentially shielding against dementia symptoms despite existing brain alterations (47). SCD
364 patients exhibited higher proxy scores of cognitive reserve compared to MCI patients, as ev-
365 idenced by measures of leisure activities and clinical scales. This suggests a potentially
366 greater capacity for brain resilience in supporting cognitive functions among SCD patients.

367 Patients showed cognitive decline in task performance, with higher performance correlating
368 with increased central scalp recruitment, particularly in SCDs. The Extended Central Poten-
369 tial combines the canonical P2 and P3 central potentials, with P2 reflecting a P300 potential
370 known in the literature as a correlate of decision quality (31). Furthermore, the third positive
371 peak of the central channels (P3), that is also known as late positive potential (LPP), was
372 found suppressed in MCI cohort versus control by Waninger (18), but in right temporo-
373 occipito channels (T4 channel the most significative). Moreover, Waninger et al detected
374 performance correlations with LPP recorded on parietal channels, but during a more working
375 load visual memory test that is the Standardized Image Recognition test (SIR). Therefore, it
376 will be interesting, in future, to extend our analysis by including such a visual memory test to
377 validate prior observations investigating SCD and MCI differences.

378 Strengths include large sample size, multimodal data (EEG and patient descriptors), and in-
379 clusion of CSF markers in a subset. Weaknesses: limited robustness of CSF markers' statis-
380 tical significance, low healthy subject number (focused on SCD vs. MCI), monocentric study
381 without follow-ups (ongoing in PREVIEW study).

382 A direct application of the neural features identified in this study is training machine learning
383 algorithms to classify patients based on learned diagnostic categories. Current Alzheimer's
384 disease (AD) biomarkers, such as PET neuroimaging (48) or CSF biomarkers (49), are cost-
385 ly, invasive, and impractical for large-scale use. Our study aims to overcome these limita-
386 tions by exploring features obtainable through clinical assessments, neuropsychological
387 evaluations, and non-invasive methods like EEG and blood tests. Validating multiple neural
388 features from EEG is crucial to establish their preventive and diagnostic potential.

389 Acknowledgements

390 We thank Ahmet Kaymak, Niccolo Meneghetti, Fabio Taddeini, Giovanni Vecchiato, Giaco-
391 mo Privato and Salvatore Falciglia for their relevant comments which have improved the
392 quality of the research work.

393 Conflicts

394 The authors declared no conflict of interest.

395 Funding Sources

396 This project was funded by Tuscany Region - PRediciting the EVolution of SubjectivE Cogni-
397 tive Decline to Alzheimer's Disease With machine learning - PREVIEW - CUP.
398 D18D20001300002. Funder: Project funded under the National Recovery and Resilience
399 Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15/03/2022
400 of Italian Ministry of University and Research funded by the European Union – NextGenera-
401 tionEU Award Number: Project code PE0000006, Concession Decree No. 1553 of
402 11/10/2022 adopted by the Italian Ministry of University and Research, CUP
403 D93C22000930002, "A multiscale integrated approach to the study of the nervous system in
404 health and disease" (MNESYS).

405 Key Words

406 Subjective Cognitive Decline (SCD); Mild Cognitive Impairment (MCI); EEG; Event-Related
407 Potentials

408 Bibliography

- 409 1. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, et al. A conceptual
410 framework for research on subjective cognitive decline in preclinical Alzheimer's disease. *Alz-
411 heimers Dement.* 2014 Nov;10(6):844–52.
- 412 2. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in Early Alz-
413 heimer's Disease. *New England Journal of Medicine.* 2023 Jan 5;388(1):9–21.
- 414 3. Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two Randomized Phase
415 3 Studies of Aducanumab in Early Alzheimer's Disease. *J Prev Alzheimers Dis.* 2022;9(2):197–210.
- 416 4. Guest FL, Rahmoune H, Guest PC. Early Diagnosis and Targeted Treatment Strategy for Improved
417 Therapeutic Outcomes in Alzheimer's Disease. In: Guest PC, editor. *Reviews on New Drug Targets*
418 in Age-Related Disorders [Internet]. Cham: Springer International Publishing; 2020 [cited 2022
419 Nov 27]. p. 175–91. (Advances in Experimental Medicine and Biology). Available from:
420 https://doi.org/10.1007/978-3-030-42667-5_8
- 421 5. Rossini PM, Miraglia F, Vecchio F. Early dementia diagnosis, MCI-to-dementia risk prediction, and
422 the role of machine learning methods for feature extraction from integrated biomarkers, in par-
423 ticular for EEG signal analysis. *Alzheimer's & Dementia.* 2022;18(12):2699–706.
- 424 6. Alexander DM, Arns MW, Paul RH, Rowe DL, Cooper N, Esser AH, et al. Eeg markers for cognitive
425 decline in elderly subjects with subjective memory complaints. *J Integr Neurosci.* 2006
426 Mar;05(01):49–74.
- 427 7. Babiloni C, Visser PJ, Frisoni G, De Deyn PP, Bresciani L, Jelic V, et al. Cortical sources of resting
428 EEG rhythms in mild cognitive impairment and subjective memory complaint. *Neurobiology of Ag-
429 ing.* 2010 Oct 1;31(10):1787–98.
- 430 8. Paitel ER, Samii MR, Nielson KA. A systematic review of cognitive event-related potentials in mild
431 cognitive impairment and Alzheimer's disease. *Behavioural Brain Research.* 2021 Jan
432 1;396:112904.
- 433 9. Smailovic U, Koenig T, Kåreholt I, Andersson T, Kramberger MG, Winblad B, et al. Quantitative
434 EEG power and synchronization correlate with Alzheimer's disease CSF biomarkers. *Neurobiol Ag-
435 ing.* 2018 Mar;63:88–95.
- 436 10. Cintra MTG, Ávila RT, Soares TO, Cunha LCM, Silveira KD, de Moraes EN, et al. Increased
437 N200 and P300 latencies in cognitively impaired elderly carrying ApoE ε-4 allele. *International
438 Journal of Geriatric Psychiatry.* 2018;33(2):e221–7.
- 439 11. Morrison C, Rabipour S, Knoefel F, Sheppard C, Taler V. Auditory Event-related Potentials in
440 Mild Cognitive Impairment and Alzheimer's Disease. *Current Alzheimer Research.* 2018 Jul
441 1;15(8):702–15.
- 442 12. Harding GFA, Wright CE, Orwin A. Primary Presenile Dementia: The Use of the Visual Evoked
443 Potential as a Diagnostic Indicator. *The British Journal of Psychiatry.* 1985 Nov;147(5):532–9.
- 444 13. Kolev V, Yordanova J, Basar-Eroglu C, Basar E. Age effects on visual EEG responses reveal
445 distinct frontal alpha networks. *Clinical Neurophysiology.* 2002 Jun 1;113(6):901–10.

446 14. Karamacoska D, Barry RJ, De Blasio FM, Steiner GZ. EEG-ERP dynamics in a visual Continuous
447 Performance Test. *International Journal of Psychophysiology*. 2019 Dec 1;146:249–60.

448 15. Chapman RM, Bragdon HR. Evoked Responses to Numerical and Non-Numerical Visual Stim-
449 uli while Problem Solving. *Nature*. 1964 Sep;203(4950):1155–7.

450 16. Armstrong RA. Alzheimer's Disease and the Eye. *Journal of Optometry*. 2009 Jan 1;2(3):103–
451 11.

452 17. Javitt DC, Martinez A, Sehatpour P, Beloborodova A, Habeck C, Gazes Y, et al. Disruption of
453 early visual processing in amyloid-positive healthy individuals and mild cognitive impairment. *Alz-
454 heimers Res Ther*. 2023 Feb 28;15(1):42.

455 18. Waninger S, Berka C, Meghdadi A, Karic MS, Stevens K, Aguero C, et al. Event-related poten-
456 tials during sustained attention and memory tasks: Utility as biomarkers for mild cognitive im-
457 pairment. *Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring*. 2018 Jan
458 1;10:452–60.

459 19. Krasodomska K, Lubiński W, Potemkowski A, Honczarenko K. Pattern electroretinogram
460 (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer's disease. *Doc
461 Ophthalmol*. 2010 Oct 1;121(2):111–21.

462 20. Pollock VE, Schneider LS, Chui HC, Henderson V, Zemansky M, Sloane RB. Visual evoked po-
463 tentials in dementia: A meta-analysis and empirical study of Alzheimer's disease patients. *Biologi-
464 cal Psychiatry*. 1989 Apr 15;25(8):1003–13.

465 21. Mangun GR. Neural mechanisms of visual selective attention. *Psychophysiology*.
466 1995;32(1):4–18.

467 22. Mazzeo S, Lassi M, Padiglioni S, Vergani AA, Moschini V, Scarpino M, et al. Predicting the
468 Evolution of Subjective Cognitive Decline to Alzheimer's Disease With machine learning: the PRE-
469 VIEW study protocol. *BMC Neurology*. 2023 Aug 12;23(1):300.

470 23. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, et al. A conceptual
471 framework for research on subjective cognitive decline in preclinical Alzheimer's disease. *Alz-
472 heimer's & Dementia*. 2014;10(6):844–52.

473 24. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of
474 mild cognitive impairment due to Alzheimer's disease: recommendations from the National Insti-
475 tute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's dis-
476 ease. *Alzheimers Dement*. 2011 May;7(3):270–9.

477 25. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis
478 of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-
479 Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimer's
480 & Dementia*. 2011 May 1;7(3):263–9.

481 26. Alcolea D, Pegueroles J, Muñoz L, Camacho V, López-Mora D, Fernández-León A, et al.
482 Agreement of amyloid PET and CSF biomarkers for Alzheimer's disease on Lumipulse. *Annals of
483 Clinical and Translational Neurology*. 2019;6(9):1815–24.

484 27. Giacomucci G, Mazzeo S, Bagnoli S, Casini M, Padiglioni S, Polito C, et al. Matching Clinical
485 Diagnosis and Amyloid Biomarkers in Alzheimer's Disease and Frontotemporal Dementia. *Journal
486 of Personalized Medicine*. 2021 Jan;11(1):47.

487 28. Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: An unbi-
488 ased descriptive classification scheme for Alzheimer disease biomarkers. *Neurology*. 2016 Aug
489 2;87(5):539–47.

490 29. Stikic M, Johnson RR, Levendowski DJ, Popovic DP, Olmstead RE, Berka C. EEG-derived esti-
491 mators of present and future cognitive performance. *Front Hum Neurosci*. 2011;5:70.

492 30. Danjou P, Viardot G, Maurice D, Garcés P, Wams EJ, Phillips KG, et al. Electrophysiological
493 assessment methodology of sensory processing dysfunction in schizophrenia and dementia of the
494 Alzheimer type. *Neuroscience & Biobehavioral Reviews*. 2019 Feb 1;97:70–84.

495 31. Polich J. Updating P300: An integrative theory of P3a and P3b. *Clinical Neurophysiology*.
496 2007 Oct 1;118(10):2128–48.

497 32. Friedman D, Johnson Jr. R. Event-related potential (ERP) studies of memory encoding and
498 retrieval: A selective review. *Microscopy Research and Technique*. 2000;51(1):6–28.

499 33. Siems M, Pape AA, Hipp JF, Siegel M. Measuring the cortical correlation structure of sponta-
500 neous oscillatory activity with EEG and MEG. *NeuroImage*. 2016 Apr 1;129:345–55.

501 34. Spearman C. *The Proof and Measurement of Association Between Two Things*. East Norwalk,
502 CT, US: Appleton-Century-Crofts; 1961. 45 p. (Studies in individual differences: The search for in-
503 telligence).

504 35. Tan A, Hu L, Tu Y, Chen R, Hung YS, Zhang Z. N1 Magnitude of Auditory Evoked Potentials
505 and Spontaneous Functional Connectivity Between Bilateral Heschl's Gyrus Are Coupled at Inter-
506 individual Level. *Brain Connectivity*. 2016 Jul;6(6):496–504.

507 36. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynam-
508 ics including independent component analysis. *J Neurosci Methods*. 2004 Mar 15;134(1):9–21.

509 37. Luck SJ, Hillyard SA, Mouloua M, Woldorff MG, Clark VP, Hawkins HL. Effects of spatial cuing
510 on luminance detectability: Psychophysical and electrophysiological evidence for early selection.
511 *Journal of Experimental Psychology: Human Perception and Performance*. 1994;20:887–904.

512 38. Luck SJ, Heinze HJ, Mangun GR, Hillyard SA. Visual event-related potentials index focused
513 attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components.
514 *Electroencephalography and Clinical Neurophysiology*. 1990 Jun 1;75(6):528–42.

515 39. Mangun GR, Hillyard SA. Modulations of sensory-evoked brain potentials indicate changes in
516 perceptual processing during visual-spatial priming. *J Exp Psychol Hum Percept Perform*. 1991
517 Nov;17(4):1057–74.

518 40. Clark VP, Fan S, Hillyard SA. Identification of early visual evoked potential generators by reti-
519 notopic and topographic analyses. *Human Brain Mapping*. 1994;2(3):170–87.

520 41. Woldorff M g., Fox P t., Matzke M, Lancaster J l., Veeraswamy S, Zamarripa F, et al. Retino-
521 topic organization of early visual spatial attention effects as revealed by PET and ERPs. *Human
522 Brain Mapping*. 1997;5(4):280–6.

523 42. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, et al. Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages. *NeuroImage*. 2002 May 1;16(1):41–8.

526 43. Lassi M, Fabbiani C, Mazzeo S, Burali R, Vergani AA, Giacomucci G, et al. Degradation of EEG 527 microstates patterns in subjective cognitive decline and mild cognitive impairment: Early 528 biomarkers along the Alzheimer's Disease continuum? *Neuroimage Clin*. 2023;38:103407.

529 44. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the 530 preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging- 531 Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimer's 532 & Dementia*. 2011;7(3):280–92.

533 45. Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, et al. The virtual aging 534 brain: a model-driven explanation for cognitive decline in older subjects [Internet]. *bioRxiv*; 2022 535 [cited 2023 Jul 13]. p. 2022.02.17.480902. Available from: 536 <https://www.biorxiv.org/content/10.1101/2022.02.17.480902v2>

537 46. Amato LG, Vergani AA, Lassi M, Fabbiani C, Mazzeo S, Burali R, et al. Personalized modeling 538 of neurodegeneration determines dementia severity from EEG recordings [Internet]. *medRxiv*; 539 2023 [cited 2023 Nov 12]. p. 2023.11.06.23298149. Available from: 540 <https://www.medrxiv.org/content/10.1101/2023.11.06.23298149v1>

541 47. Stern Y. Cognitive reserve. *Neuropsychologia*. 2009 Aug 1;47(10):2015–28.

542 48. Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging 543 to detect amyloid beta plaques in Alzheimer's disease: phase 3 study. *Alzheimers Dement*. 2015 544 Aug;11(8):964–74.

545 49. Buerger K, Ewers M, Pirttilä T, Zinkowski R, Alafuzoff I, Teipel SJ, et al. CSF phosphorylated 546 tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. *Brain*. 547 2006 Nov;129(Pt 11):3035–41.

548

549

550

551

552

553

554

555

556

557

558

559