

32 **SUMMARY**

33 Selective pressures have given rise to a number of SARS-CoV-2 variants during the
34 prolonged course of the COVID-19 pandemic. Recently evolved variants differ from
35 ancestors in additional glycosylation within the spike protein receptor-binding domain
36 (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human
37 adaptation are not clearly understood. Here, we dissected the role of N354-linked
38 glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control
39 element in attenuating viral infectivity. The reduced infectivity could be recovered in
40 the presence of heparin sulfate, which targets the “N354 pocket” to ease restrictions of
41 conformational transition resulting in a “RBD-up” state, thereby conferring an
42 adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and
43 cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together
44 with reduced immunogenicity in hybrid immunity background, these indicate a single
45 spike amino acid glycosylation event provides selective advantage in humans through
46 multiple mechanisms.

47

48 **HIGHLIGHTS**

49 N354 glycosylation acts as a conformational control element to modulate infectivity
50 Reduced infectivity could be recovered by altered binding mode of heparin sulfate
51 N354 glycosylation improved fusogenicity and conferred escape from ADCC
52 antibodies

53 N354 glycosylation reduced immunogenicity and conferred immune evasion

54

55 **KEYWORDS**

56 Coronavirus glycosylation, Viral fitness, Adjustable infectivity, Co-factor usage, Viral
57 evolution, Conformational modulator

58

59 INTRODUCTION

60 The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe
61 acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has lasted for nearly four
62 years. A number of variants with improved fitness and immune evasion capabilities
63 have been documented during the course of the pandemic ^{1,2}. The emergence and
64 circulation of Omicron represents a significant shift in the evolution trajectory of
65 SARS-CoV-2 because this variant has over 30 mutations in its spike (S). Subsequently,
66 several Omicron descendants, such as BA.2, BA.5, BQ.1 and XBB, have caused
67 multiple waves of infections globally ^{3,4}. The successive selection of these sublineages
68 is primarily driven by immune pressure exerted by neutralizing antibodies present in
69 human sera as a result of mass vaccinations or natural infections or breakthrough
70 infections ⁵. However, immune evasion often comes at the cost of impairment in
71 functionality and selection for antibody-escaping variants as well as accumulation of
72 near-neutral mutations have led to suboptimal codon usage, thereby impacting
73 functionality ⁶. Upon boosting with updated (Omicron-based) vaccine or single
74 Omicron infection, immune responses to Omicron variants have been shown to be
75 attenuated owing to the “original antigenic sin”. However, repeated Omicron
76 exposures override ancestral SARS-CoV-2 immune imprinting, yielding high
77 neutralizing titers against Omicron variants, including XBB sublineages ⁷. Given the
78 extent of herd immunity raised by repeated Omicron exposures today, evolution of the
79 virus by more nuanced human adaptation to overcome immune imprinting might be
80 already under way.

81
82 Though decorated with fewer glycans than the HIV-1 Envelope protein, the dense
83 glycan shield consisting of 22-23 *N*-glycosylation sequons per protomer is an essential
84 feature of SARS-CoV-2 S architecture. The glycans have been shown to play intrinsic
85 and extrinsic roles in protein folding, modulating conformational activation and
86 immune evasion ^{8,9}. Pathogenesis and selective sweeps analysis reveal that the
87 evolution of glycosylation sites in SARS-CoV-2 S is intertwined with adaptive
88 mutations of the amino acid sequence for successful cross-species transmission ¹⁰. For
89 instance, loss of *N*-glycosylation at position 370 has been demonstrated to increase the

90 receptor binding domain (RBD) in the up conformation, and thereby its exposure and
91 accessibility for receptor recognition, improving viral infectivity in humans ^{11,12}.
92 Distinct from roles played by N370 glycosylation, many other glycans simply form a
93 sugary barrier that shields antigenic epitopes vulnerable to neutralizing antibodies and
94 immunogenic epitopes capable of eliciting neutralizing antibodies. Glycan shield
95 density analysis reveals a strong correlation that viruses historically classified as
96 “evasion strong” ¹³ had significantly elevated glycan shield densities ¹⁴. Consequently,
97 sites of glycosylation are often positively selected during viral evolution in human host
98 to increase glycan shield density. These assist the virus in evading the immune system,
99 with impacts on infectivity ¹⁵. Therefore, acquisition of extra glycans that presumably
100 improves viral fitness and adaptation in humans might have occurred over the long
101 course of the SARS-CoV-2 pandemic.

102
103 Phylogenetic analysis of sarbecoviruses based on their S sequences reveals four clades:
104 clade 1a (e.g. SARS-CoV-1), clade 1b (e.g. SARS-CoV-2), clade 2 (e.g. Rf1) and clade
105 3 (e.g. BtKY72) ¹⁶, among which coronaviruses from different clades display distinct
106 clade-specific sequence characteristics at key sites shown to play roles in modulating
107 viral infectivity, antigenicity and cross-species transmission (Figure 1A). In contrast to
108 SARS-CoV-1, which emerged in 2002, was under control in 2003 and disappeared
109 in 2004, SARS-CoV-2 seems to coexist with humans. After a prolonged period of
110 nearly-complete global dominance of XBB subvariants, substantially mutated lineages,
111 designated BA.2.86 sublineages, have quickly spread worldwide, out-competing XBB
112 (Figure 1B) ¹⁷⁻¹⁹. BA.2.86 sublineages contain more than 30 mutations in the S when
113 compared to XBB or its parental BA.2, and some of these mutations have been rarely
114 observed in previously circulating variants (Figure 1C) ¹⁷⁻¹⁹. Surprisingly, Δ483, a key
115 sequence feature of clade 1a viruses, has only recently been observed in SARS-CoV-2
116 variants. The substitution P621S is also a feature of SARS-CoV-1 variants. P681R is a
117 fusion-enhancing modulator contained in Delta. Both P621S and P681R have been
118 selected in the BA.2.86 lineage (Figures 1A and S1A). The mutation K356T, predicted
119 to acquire glycosylation at N354 due to the formation of a standard N-linked
120 glycosylation site motif (NXT/S) occurred only in recently emerging SARS-CoV-2

121 variants, rather than in early SARS-CoV-2 variants and sarbecoviruses from other
122 clades (Figures 1A and S1A). In addition, the new substitution of H245N in BA.2.86
123 yields one extra glycan at N245, further suggesting a gradual accumulation of a glycan
124 shield. Coincidentally, a distinct footprint of positive selection located around a new
125 non-synonymous change (A1067C; K356T) within the RBD was found through
126 scanning over 180,000 SARS-CoV-2 genomes deposited from 1st Sep 2023 to 1st Jan
127 2024, indicating a selective sweep (Figure 1D). Details of how the acquisition of
128 glycosylation sites impacts the fitness of the virus are not clearly understood.

129

130 **Results**

131 **N354 glycosylation modulates RBD conformation**

132 To explore the putative acquisition of glycosylation at N245 and N354 in more recent
133 variants, we determined the asymmetric cryo-EM reconstructions of the BA.2.86 and
134 JN.1 S-trimer at pH 7.4, to mimic the physiological conditions, at atomic resolution
135 (Figures 2A, S2A, S2B and Table S1). In contrast to S-trimers from most variants
136 ranging from WT, D614G through Alpha, Delta, Omicron to XBB and XBB.1.5, which
137 sample the RBD-up conformation more frequently (>50%), BA.2.86 and JN.1 S-trimers
138 dominantly adopt a closed state with all three RBDs in the down configuration (Figure
139 2A), similar to structural observations of VAS5, a highly attenuated SARS-CoV-2
140 vaccine candidate ²⁰. In line with these structural observations, BA.2.86 was previously
141 reported to have compromised infectivity and attenuated pathogenicity in animal
142 models ^{21,22}. Compared to other variants, there are two additional glycosylation related
143 modifications at N245 and N354 in BA.2.86 sublineages, among which N245 glycan
144 lies at outermost region of each NTD around the triangular vertices of the S-trimer
145 (Figure 2B). Notably, the N354 glycan resides in a cleft formed by the NTD and RBD
146 from two neighboring subunits, and establishes hydrogen bonds with T167 of NTD and
147 with E340 of RBD, respectively, acting like a “bolt” to lock the S-trimer in “RBD-
148 down” state (Figures 2B and 2C). This is akin to roles played by LA, a polyunsaturated
149 fatty acid found in the RBD in stabilizing the RBD-down state by locking the
150 conformation of the S-trimer ²³. In line with this, the N354 glycosylation confers a more
151 compact architecture in the region formed by the three NTDs and RBDs (Figure 2C).

152 When the closed S-trimers were superimposed with its counterparts from XBB.1.5, the
153 NTD, RBD and SD1 from BA.2.86 moved inward to the three-fold axis with the shift
154 distances of 6Å, 3Å and 2Å, respectively (Figure 2D), forming a tight packing between
155 NTD and RBD.

156

157 To further verify the role of N354 glycosylation in modulating RBD up/down
158 disposition, four additional modified constructs, BA.2.86-T356K, predicted to remove
159 glycosylation at N354, XBB.1.5-K356T and BA.2.75-K356T, predicted to acquire
160 N354 glycan, together with BA.2.86-ins483V as a control, were characterized, and their
161 structural features were compared with the ancestral strain (Figures 2E and S2C). We
162 observed N354 glycosylation dramatically increased the proportion of the “closed”
163 form from 19% to 79% in BA.2.86, 50% to 75% in BA.2.75 and 45% to 90% in
164 XBB.1.5, making the ‘closed’ form being the dominant population (Figure 2E).
165 However, the insertion of V483 had little effect on the modulation of the RBD
166 conformation (Figure 2E), suggesting the ‘closed’ and ‘open’ form transition was not
167 due to the general effects of mutations in RBD but the specific presence of N354
168 glycosylation. Results of our studies together with previous studies on N-glycans at
169 N165, N234 and N370 (not found in all SARS-CoV-2 variants) capable of participating
170 in RBD up/down disposition ^{8,11,24}, allows us to propose detailed molecular basis for
171 RBD conformation modulation, in which compact inter-subunit (S1/S1) arrangements
172 relay a cascade of interactions mediated by specific N-glycans via tight connections
173 with neighboring subunits or intrinsic packing modes, facilitating the RBD-down
174 switch (Figure 2F). To further decipher the relationship between inter-subunit contacts
175 and “RBD-down” rate, we systematically analyzed the S1/S1 or RBD/RBD or NTD-
176 RBD/NTD-RBD interactions and calculated the “RBD-down” rates of available SARS-
177 CoV-2 S-trimer structures (n=21), including ours in this study. We found that contact
178 areas between RBDs determine the “RBD-down” rate with a compelling correlation of
179 0.92 (Figures 2F and S2D). Of note, RBD/RBD contact areas of over 400 Å² drive the
180 S-trimer to be in the closed state only, which is a common feature in animal derived
181 sarbecoviruses, such as bat RaTG13, pangolin PCoV_GX and BANAL-20-52.
182 However, those sarbecoviruses are able to bind ACE2, but with decreased infectivity in

183 human cells ²⁵⁻²⁷. These results promoted us to hypotheses that the N354 glycan, nestled
184 between the NTD and RBD interface may function as a conformational control element
185 for modulating infectivity.

186

187 **N354 glycosylation decreases infectivity irrespective of comparable
188 hACE2 binding**

189 Given the fact that the presence of the N354-linked glycan favors the closed state in
190 BA.2.86 sublineages, this presumably leads to a compromised infectivity and
191 attenuated pathogenicity. To verify this, we first compared the infectivity of BA.2.86
192 and representative SARS-CoV-2 variants by using pseudotyped viruses in HEK293T
193 cells overexpressing hACE2 (293T-ACE2) or TMPRSS2 (293T-TMPRSS2) or both
194 hACE2 and TMPRSS2 (293T-ACE2-TMPRSS2) and in widely used cell lines, such
195 as Vero, H1299, Huh-7 and Calu-3. Like Omicron variants, BA.2.86 can enter cells via
196 endosomes as well as through TMPRSS2 but prefers ACE2-mediated infection (Figure
197 [S3A](#)) in concordance with authentic BA.2.86 infection results ²⁸. Overall BA.2.86
198 exhibited a partially decreased infectivity compared to most Omicron variants (Figures
199 [3A](#) and [S3A](#)), which largely matches with recent studies ¹⁷⁻¹⁹, albeit improved entry in
200 lung cells rather than other cells relative to specific variants being observed as well ^{29,30}.
201 These *in vitro* findings correlate to *in vivo* clinical observations that currently there are
202 no reports of elevated disease severity associated with this variant ³¹. Virus-host
203 receptor engagement and membrane fusion directly affect viral infection efficiency. To
204 further investigate if the RBD-dynamics modulator (N354 glycosylation) and putative
205 fusion-related mutation (P621S) impact infectivity, we constructed
206 BA.2/XBB.1.5/BA.2.86 derivatives that bear respective mutations and measured their
207 infectivity in 293T-ACE2, Vero and Huh-7 cells (Figure 3B). As expected, acquisition
208 of N354 glycosylation generated by the K356T mutation in BA.2 and XBB.1.5
209 decreased their infectivity and loss of N354 glycosylation raised by the reverse
210 mutation T356K in BA.2.86 increased its infectivity (Figure 3B). Surprisingly, the
211 substitution of P621S predicted to affect fusion activity in BA.2 and XBB.1.5
212 contributed to the increased infectivity; in turn the reverse substitution of S621P in
213 BA.2.86 resulted in a further decreased infectivity (Figure 3B). Coincidentally, the

214 N354 glycosylation (K356T mutation) first emerged in BA.2.75.5 and then in
215 XBB.1.5.44, but they did not display growth advantages compared to the prevalent
216 variants, presumably due to the dramatically reduced infectivity ([Figure S1A](#)). S621P
217 to a large extent compensated the decreased infectivity conferred by the N354
218 glycosylation.

219

220 We next sought to examine the possibility that the N354 glycosylation mediated
221 impaired infectivity may be related to decreased binding affinity to hACE2. For this,
222 three paired groups of six variants (BA.2.75/BA.2.75.5; XBB.1.5/XBB.1.5.44;
223 BA.2.86/BA.2.86-T356K) were carefully selected due to the only difference being the
224 N354 glycosylation or not in their RBDs. Surface plasmon resonance (SPR) results
225 demonstrated that RBDs with or without the N354 glycosylation showed comparable
226 binding affinities to hACE2, indicating that the N354 glycosylation does not impact
227 hACE2 binding ([Figure 3C](#)), despite N354 glycosylation promoting the S-trimer “RBD
228 down” state. To further structurally verify this, we determined the cryo-EM structure of
229 the BA.2.86 S-trimer in complex with hACE2 ([Figures 3D and S3B; Table S1](#)). Like
230 most complex structures, one or two copies of hACE2 are bound to the RBDs in the up
231 configuration ([Figure 3D](#)). Consistent with binding results, both the N354 glycan and
232 T356 are located far away from the interface ([Figure S3C](#)). However, we noted that
233 variants with the N354 glycosylation exhibited very high affinities to hACE2, reflecting
234 that tight binding might be required to further recover the compromised infectivity
235 ([Figure 3E](#)). To further explore the contribution on hACE2 tight binding exemplified
236 by BA.2.86, we evaluated the individual substitution (including reverse mutation) of
237 N354Q, T356K, K403R, D450N, H445V, W452L, L455S, K481N, ins483V, K484A or
238 P486F in BA.2.86 RBD on the hACE2 affinity. Surprisingly, all single mutations except
239 for L455S identified in JN.1 displayed, to some extent, increased binding affinities and
240 single reverse mutation of D450N, H445V and P486F induced an approximately 3-fold
241 affinity increase ([Figure 3F](#)). Furthermore, mutations identified in key variants were
242 also evaluated, among which a reverse-mutated combination of N417K and H505Y, as
243 well as a pair of Flip-mutations of L455F and F456L synergistically enhanced hACE2
244 binding ([Figure 3G](#)). Structural comparisons revealed that the substitutions of N417K

245 and Y505 established extra hydrogen bonds with D30 and E37 on ACE2, and
246 mutations, including P486F, H445V, W452L and L455F-F456L augmented hydrophilic
247 interactions of microenvironment, increasing the binding capabilities (Figure S3D).
248 These suggest that successful selection for acquisition of the N354 glycosylation
249 possibly needs to be accompanied by tighter ACE2 binding together with the P621S
250 substitution, co-manipulating the infectivity.

251

252 **Decreased infectivity by N354 glycosylation can be restored by HS**

253 Viruses like influenza and coronavirus use glycans as entry factors. In particular, the
254 initial interaction with host cells is mediated by glycans ^{32,33}. Growing evidence
255 supports a role for negatively charged glycans, such as heparin sulfate (HS) as entry co-
256 factors for SARS-CoV-2 ³⁴. More importantly, these entry co-factors and furin
257 expression are specially more abundant in nasal epithelial cells and upper airway cells
258 compared to those in lungs ³⁵. Perhaps correlated with this, Omicron variants display
259 gradual increase in binding affinity to HS compared to early VOCs ³⁶, presumably
260 leading to a tropism alteration during SARS-CoV-2 evolution. Together with increased
261 positive charges (Figure S4A) and nearly all closed S-trimmers mediated by the N354
262 glycosylation (Figure 2A), these raise a possibility of altered entry factor usage in nasal
263 epithelial and upper airway microenvironments. To mimic authentic virus infection at
264 multiple steps of viral life cycles in nasal and upper airway tracks, we evaluated co-
265 factor usage efficiency in representative variants via pre-treatment of virus-like
266 particles (SC2-VLPs) ³⁷ with various concentrations of free HS prior to infection by
267 using 293T-ACE2-furin cells (Figure 4A). We observed that free HS displayed a dose-
268 dependent reduced infection of BA.5, BA.2.75 and XBB.1.5, consistent with previously
269 reported inhibition in S binding and infection by authentic SARS-CoV-2 ³⁴.
270 Surprisingly, HS treatment dramatically increased BA.2.86 infection, exceeding
271 XBB.1.5 infectivity (Figure 4A), which suggests that abundant HS and furin aided the
272 recovery of the decreased infectivity for BA.2.86. To further decipher the underlying
273 mechanism, we constructed BA.5-K356T, BA.2.75-K356T, XBB.1.5-K356T and
274 BA.2.86-T356K SC2-VLPs to gain or remove the N354 glycosylation, respectively,
275 and compared the effect in HS treatment with their parental SC2-VLPs. Strikingly, all

276 the N354 glycosylated SC2-VLPs exhibited a dose-dependent enhanced infectivity
277 upon HS treatment, reaching up to the infectivity level for their parental variants and
278 loss of the N354 glycosylation largely eliminated BA.2.86 HS-treated infectious
279 enhancement (Figure 4A), indicative of differential usage of HS as a cofactor for
280 modulating infectivity of the N354 glycosylated variants in furin/hACE2 enriched
281 microenvironments, which has recently been reflected by experimental observations of
282 potent infections for BA.2.86 in nasal epithelial cells ³⁸. In line with these results, the
283 N354 glycosylation partially impaired binding of HS to RBDs (Figure 4B). Intriguingly,
284 HS mediated enhancements of infectivity for the N354 glycosylated variants became
285 marginal by using pseudo-typed viruses in 293T-ACE2 cells, while HS dose-dependent
286 inhibitions of infectivity for variants without the N354 glycosylation were still
287 straightforward (Figure S4B). The possible reason for differences yielded from two
288 systems might lie in excessive redundancy of spikes decorated on VSV-based
289 pseudoviruses, in which limited numbers of the “open” spikes can initialize a successful
290 infection even though majority in the closed state, largely diluting roles played by HS
291 in modulating infectivity of the N354 glycosylated variants via promoting the RBD-up
292 transition. Collectively, these revealed that HS and furin enriched microenvironment
293 might offset the impaired infectivity caused by the N354 glycosylation and even
294 possibly support the shift in tropism towards HS-abundant cells.

295
296 To understand SARS-CoV-2 engagement of HS cofactor and how the N354 glycan
297 alters HS usage at molecular level, we determined cryo-EM structures of XBB.1.5,
298 BA.2.86, JN.1 and BA.2.86-T356K in complex with HS at 3.2–3.8 Å (Figures 4C and
299 S4C). Interestingly, incubation with HS led to marked conformational alteration,
300 yielding substantially increased “RBD-up” state in the N354 glycosylated S-trimers,
301 but had limited impact in RBD conformation modulation for S-trimers without the
302 N354 glycosylation (Figure 4D). Due to structural heterogeneity and flexibility of HS,
303 only the density for the part of HS basic unit, IdoA(2S) (2-O-sulfo- α -L-iduronic acid)
304 is straightforward, allowing identification of the location of major binding site and
305 detailed interactions (Figure 4C). In contrast to binding of sialoglycan to the domain A
306 (corresponding to the NTD in SARS-CoVs) in HKU1 and MERS-CoV ^{39,40}, HS mainly

307 targets a semi-open, shallow, elongated cavity composed of a number of positively
308 charged residues on RBD, downstream within a deep groove, named the N354 pocket,
309 constructed by the residues N354, R355, K356T and R357 from RBD and T157 and
310 F168 from neighboring NTD, is occupied by the HS fragment (Figure 4C). The HS
311 fragment is poised to directly interact with R355 and R357 through hydrogen bonds
312 and a salt bridge, meanwhile residues K356, N354, R346 and R466 might contribute to
313 further coordinate the oligosaccharide (Figure 4C). Notably, the absence of the N354
314 glycan in the immediate vicinity of the binding groove probably facilitates unobstructed
315 engagement of HS, in line with the observed affinity; however, the presence of the N354
316 glycan together with the bound HS widens the binding groove by 3 Å, pushing the
317 neighboring NTD outwards and thereby conferring a relatively relaxed upper
318 arrangement (Figure 4E). The high proportion of the “3-RBD-down” state led by the
319 N354 glycan mediated compact upper architecture could be partially converted to the
320 “RBD-up” state upon HS binding, which explained the experimental observation that
321 HS treatment increased infectivity for the N354 glycosylated variants.

322

323 **N354 glycosylation affects S cleavage and fusogenicity**

324 We next sought to examine the possibility that the impaired infectivity caused by the
325 N354 glycosylation in some cells might be related to differential S cleavage. For
326 instance, Delta, which is known to show higher infectivity, is associated with a highly
327 cleaved S protein and more efficient TMPRSS2 usage for entry ⁴¹. Furin cleavage
328 dependent on the polybasic cleavage site (PBCS) between S1 and S2 is a key step in
329 regulating virus infectivity and fusion activity ⁴¹⁻⁴³. Alterations at P681 in PBCS have
330 been observed in multiple SARS-CoV-2 lineages, H681 in Alpha and most Omicron
331 variants; R681 in Delta and BA.2.86 (Figure 5A). To evaluate the cleavage efficiency,
332 we first tested the cells used for WT, BA.2 and BA.2.86 pseudoviruses production by
333 western blot analysis. We found substantially improved cleavage in BA.2.86 compared
334 with BA.2 as evidenced by the ratio of S1/S2 to full-length S, despite slightly lower
335 than that in WT and Delta (Figures 5B and 5C), suggesting that mutation at P681
336 contributes non-exclusively to S cleavage. To further investigate putative contribution
337 on enhanced cleavage, we also evaluated S-cleavage in BA.2.86-T356K and BA.2.86-

338 S621P. Interestingly, the loss of N354 glycosylation dramatically through T356K
339 mutation decreased cleavage efficiency and the reversion of S621P moderately
340 increased S cleavage (Figure 5C), indicative of BA.2.86 S-trimers being more likely in
341 a postfusion conformation under furin enriched microenvironments. Given our data
342 showing inefficient TMPRSS2 usage for BA.2.86 sublineages, N354 glycosylation
343 appears to contribute to the negative correlation between cleavage efficiency and
344 infectivity (Figures 3B and 5C).

345

346 The ability of SARS-CoV-2 S to induce cell–cell fusion that could provide an additional
347 route for viral dissemination and promote immune evasion correlates with the PBCS, S
348 cleavage efficiency and the usage of TMPRSS2 ⁴¹. Given the requirement of TMPRSS2
349 and S cleavage for optimal cell–cell fusion, Delta displayed the highest fusion activity;
350 on the contrary BA.1 had quite low fusogenicity ^{42,43}. We hypothesized based on the
351 increased cleavage efficiency the fusion efficiency is altered in BA.2.86 in comparison
352 to BA.2. To examine this, we used a split GFP system ⁴¹ to monitor cell–cell fusion in
353 real time. We observed that BA.2.86 showed an increment in cell-cell fusion compared
354 to BA.2, but was still demonstrably lower than WT and Delta (Figure 5D). The
355 efficiency in fusion is reversely correlated with the stabilities of S-trimers (Figure S5A),
356 which can be explained by the fact that structural transitions from the prefusion to the
357 postfusion stage involve a series of conformational changes between domains and
358 subunits, a prerequisite for viral fusion. Structural comparisons with BA.1 revealed
359 reduced interactions between domains, including NTD-RBD, RBD-SD1/SD1-S2 and
360 S2-S2 in BA.2.86, structurally explaining compromised stability (Figure S5B). Not
361 surprisingly, either the loss of the N354 glycan or substitution R681P/H in BA.2.86
362 substantially reduced the cell-cell fusion activity; on the contrary acquisition of the
363 N354 glycan or the mutation H681R based on XBB.1.5 contributed to increased fusion
364 activity (Figure 5E). The improved S processing and fusion might be related to the
365 structural observation that the N354 glycan tightly cements the NTD and RBD from
366 adjacent subunits together presumably aiding in S1 shedding. As expected, the single
367 mutation S621P based on BA.2.86 improved the fusion activity and the mutation P621S
368 in XBB.1.5 dramatically decreased its fusion efficiency (Figure 5E). In line with

369 functional observations, the mutation P621S facilitates formation of an α -helix in the
370 630 loop, a key modulator for fusion ^{1,44}, that would be adopted as a partially disordered
371 loop in P621 variants, to some extent structurally impeding structural rearrangements
372 for subsequent fusion (Figure 5F). These data indicate that the N354 glycosylation
373 coupled with P621S alters multiple virological characteristics, in which cell-cell fusion
374 activity renders the N354 glycosylated variants difficult to be neutralized by antibodies.

375

376 **N354 glycosylation specially escapes a subset of ADCC antibodies**

377 Major selective pressures for previous VOCs, such as Delta, BA.2, BA.5 and XBB
378 causing waves of infections globally, came from specific-classes of antibodies driven
379 immune evasion ³. Compared to FLip and other XBB variants, BA.2.86 did not show
380 substantial humoral immune escape, while JN.1 with one additional mutation (L455S)
381 on BA.2.86 became more immune-evasive due to extensive resistance across three
382 types of antibodies ⁴⁵. Previously, we determined the escape mutation profiles and
383 epitope distribution of a total of 3051 antibodies isolated from vaccinated or break
384 through infection (BTI) individuals by deep mutational scanning (DMS), which were
385 classified into 12 subgroups (Figure 6A). Immune evasion pattern assays revealed that
386 BA.2.86 sublineages specifically escaped A2, D3, part D4 and many E antibodies when
387 compared to XBB.1.5 (Figure 6B). Strikingly, acquisition of the N354 glycosylation by
388 the K356T substitution largely inactivated group E1, E2.1 and E2.2 antibodies,
389 although these antibodies displayed relatively low but broad neutralizing activities
390 (Figures 6B and S6A). Class E antibodies from E1 to E3 target epitopes on the RBD
391 ranging from left flank through chest to right flank, and most E1, E2.1 and E2.2
392 antibodies extensively associate with K356 and N354, which has been validated by
393 complex structures, including S309 (E1) (Figures 6C and S6B) ⁴⁶. The mutation K356T
394 could decrease charge/hydrophilic interactions and the N354 glycan fatally induced
395 steric clashes, disabling the binding of most E1, E2.1 and E2.2 antibodies (Figure
396 S6B). Fc-dependent effector mechanisms, e.g., antibody-dependent cell cytotoxicity
397 (ADCC) mediated by natural killer cells, could facilitate viral clearance from infectious
398 individuals. Remarkably, we observed efficient E antibodies-mediated ADCC of
399 SARS-CoV-2 S-transfected cells (Figures 6D and S6C), revealing that the N354

400 glycosylated variants specially escapes one subset of ADCC antibodies. Together with
401 improved cell-cell fusion, these possibly make the N354 glycosylated variants difficult
402 to be cleared from individuals infected with virus.

403

404 **N354 glycosylation reduces immunogenicity in hybrid immunity**
405 **background**

406 In addition to immune escape, viruses generally evolve to acquire new glycosylation
407 sites on the protein surface, a natural phenomenon of glycan shielding, which alters
408 their glycoproteins immunogenicity ⁴⁷. To investigate if the N354 glycosylation may
409 affect its immunogenicity, we first assessed humoral immune responses in naive (non-
410 immunized) BALB/c mice following two-dose primary series immunization with
411 variant S proteins (Figure 7A). All S proteins contained six proline substitutions (S6P)
412 and mutations in the PBCS to stabilize them in the prefusion conformation ¹³. Groups
413 of mice (n = 10 per group) were inoculated intramuscularly with 10 µg of variant S
414 proteins, including BA.5, XBB.1.5, EG.5.1, BA.2.86 and BA.2.86-T356K, on days 0
415 and 14, and sera were collected at day 28 (2 weeks after the second dose).
416 Administration of BA.5, XBB.1.5 and EG.5.1 S proteins exhibited very low serum 50%
417 neutralizing titers (NT₅₀) against BA.2.86, BA.2.86-T356K and JN.1 (using vesicular
418 stomatitis virus-based pseudovirus), meanwhile immunization of BA.2.86 and
419 BA.2.86-T356K resulted in quite limited neutralizing titers against Omicron
420 sublineages, suggesting a large antigenic distance between Omicron and BA.2.86 from
421 single immunity background analysis (Figures 7B and 7C). Notably, the N354
422 glycosylation decreased BA.2.86 immunogenicity by approximately 40% in
423 comparison with BA.2.86-T356K, rendering BA.2.86 a relatively lower
424 immunogenicity among SARS-CoV-2 variants (Figure 7C).

425

426 To further evaluate the effects of the N354 glycosylation in SARS-CoV-2 immune
427 imprinting induced by breakthrough infections, we modeled a real-world mimicry
428 immunity background in mice. To accomplish this, two doses of 0.3 µg CoronaVac
429 (1/10 human dose, an inactivated vaccine derived from WT) were used as primary
430 immunization, then one dose of 0.3 µg inactivated BA.5 vaccine was administrated at

431 3.5 months after the second dose to mimic BA.5 BTI, and one dose of 10 µg variant S
432 protein at 4 months after the third dose was used to mimic BTI + reinfection (Figure
433 7A). Compared to single immunity background, single-dose administration of Omicron
434 BA.5, XBB.1.5 and EG.5.1 S proteins under hybrid immunity background displayed
435 ~5-20-fold improved cross neutralization against BA.2.86 sublineages and single-dose
436 immunization of BA.2.86 and BA.2.86-T356K could produce ~50-200-fold increased
437 neutralizing titers against Omicron subvariants (Figures 7D and 7E), suggesting
438 existence of hybrid immune imprinting facilitates cross-reactive B cell recall and
439 shortens antigenic distance. As ongoing evolution, an intrinsic trend in gradually
440 decreased immunogenicity for variant S proteins was observed and acquisition of the
441 N354 glycan further induced a ~2-fold reduction in the immunogenicity under hybrid
442 immunity background, consequently conferring alleviated immune imprinting (Figure
443 7E). Nonetheless, one-dose booster of BA.2.86, in particular BA.2.86-T356K, under
444 real-world mimicry of immunity background could elicit high levels of neutralizing
445 antibodies against BA.2.86 sublineages, including the currently prevalent JN.1 (Figure
446 7E), revealing that immune responses can be fine-turned to the BA.2.86 sublineages by
447 boosting with a tweaked (BA.2.86-based) vaccine. These indicate an altered evolution
448 trajectory towards more sophisticated adaptation in humans through acquisition of the
449 N354 glycan.

450

451 **Discussion**

452 A selectively favorable mutation spreading all or part of the way through the population
453 generally causes a decrease in the level of sequence variability at nearby genomic sites
454 ⁴⁸, which can be manifested as a selective sweep signature. By using OmegaPlus ⁴⁹ and
455 RAiSD ⁵⁰, we mapped putative sweep regions in 184,224 SARS-CoV-2 genomes
456 deposited in the past 4 months (from 1st Sep 2023 to 1st Jan 2024) from GISAID EpiCoV
457 database. Four similar selective sweep regions were detected in the S from both datasets
458 regardless of whether wild type or BA.2 or BA.5 or XBB was used as a reference
459 (Figure 1D). Two non-synonymous changes (A1067C and A1114G) within the codons
460 for residues 356 (K→T) and 372 (T→A) of RBD were centrally located in one of the
461 sweep regions, leading to acquisition and loss of N354 and N370 glycosylation,

462 respectively (Figure 1D). Loss of the N370 glycosylation has been shown to be an
463 important evolutionary event for SARS-CoV-2 emergence from animal reservoirs and
464 the enhanced human-to-human transmission during the early stages of the pandemic
465 ^{10,11}. Our findings suggest that the N354 glycosylation acquired by variants during the
466 course of the prolonged SARS-CoV-2 pandemic likely confers selective advantage for
467 optimal adaptation in humans through shift in tropism with adjustable infectivity,
468 reduced immunogenicity and elimination-escaped immune evasion.

469

470 The conformational dynamics of RBD, and modulation thereof, would render
471 sarbecoviruses cunning to balance host cell attachment and immune escape. The
472 transition to the up state exposes RBD for the binding to hACE2 and is also a
473 prerequisite for S-mediated viral fusion, directly correlating with the infectivity. Thus
474 S proteins from most circulating SARS-CoV-2 variants have been observed in the RBD-
475 up state with a reasonable proportion (>50%). Remarkably, however, recently prevalent
476 BA.2.86 sublineages dominate their S protein in the RBD-down state up to 100% for
477 JN.1 due to acquisition of the N354 glycosylation, shielding RBD from neutralizing
478 antibodies and preventing RBD-hACE2 engagement. These observations suggest a
479 viral evolution trade-off by compromising infectivity in exchanging for a greater
480 evasion of immunity and lower immune imprinting for a goal of co-existence with
481 humans. Surprisingly, the decreased infectivity could be recovered by altered binding
482 mode of HS co-factor to promote the RBD-up conformational transition, apparently
483 through an allosteric mechanism, conferring an adjustable infectivity and a shift in
484 tropism towards HS-abundant cells.

485

486 During the process of viral evolution, viruses develop different glycosylation
487 modifications, yielding appreciable impacts on the survival, transmissibility and fitness.
488 In general, the majority of N-glycan adding mutants show decreased infectivity and
489 transmission efficiency ⁵¹, in turn, immune-shielding glycans are beneficial for immune
490 evasion, which reflects a sophisticated and balanced evolution strategy for N-glycan
491 site accumulation. Further evidence for this has been documented in the viral evolution
492 of Influenza A with additional N-glycan sites every 5–7 years ⁵². Whether the limited

493 glycan shield density observed on SARS-CoV-1, SARS-CoV-2 and Middle East
494 syndrome coronaviruses (MERS) is correlated to the zoonosis of the pathogens is
495 unknown. Notably, among *betacoronavirus* genus, seasonal human coronaviruses
496 HKU1 and OC43 have long co-existed with humans and possess 26-31 N-glycan sites
497 per S monomer, versus 22-23 N-linked glycan sequons in SARS- and MERS-CoVs
498 (Figure S1B). Remarkably, N-glycan sites on OC43 S were accumulated in the past 60
499 years with approximately 2 N-glycan sites added every 20 years (Figure S1C). A
500 marginal trend in the relationship between N-glycan sites and prevalent time in humans
501 was also observed in HKU1 presumably due to its first isolation and identification in
502 2004. It's tempting to speculate that adequate prevalent time might be required to
503 monitor the glycan shield accumulation or HKU1 has evolved to enter a relatively
504 mature stage, bearing ~30 and 5 N-glycan sites in S monomer and RBD, respectively
505 (Figure S1C). Even so, N-glycan modifications of coronavirus S proteins do not
506 constitute a *bona fide* and effective shield, when compared to the glycan dense of other
507 viruses such as HIV, influenza and Lassa, which may be reflected by overall structure,
508 sparsity, oligomannose abundance and immune evasion ⁵³. Although it's difficult to
509 directly compare viruses in terms of immunogenic responses, SARS-CoVs readily elicit
510 robust neutralizing antibodies that target S proteins following infection or
511 immunization ^{54,55}. In contrast, the effective glycan shield of HIV hinders to produce
512 sufficient immune responses and broadly neutralizing antibodies ⁵⁶. We speculated that
513 the high plasticity of SARS-CoV-2 spike RBD may limit the accumulation of glycans
514 on itself. The biological importance of the N354 glycosylation in modulation of SARS-
515 CoV-2 infectivity and immune responses could be applied in coronavirus vaccine
516 research.

517

518 **Acknowledgments**

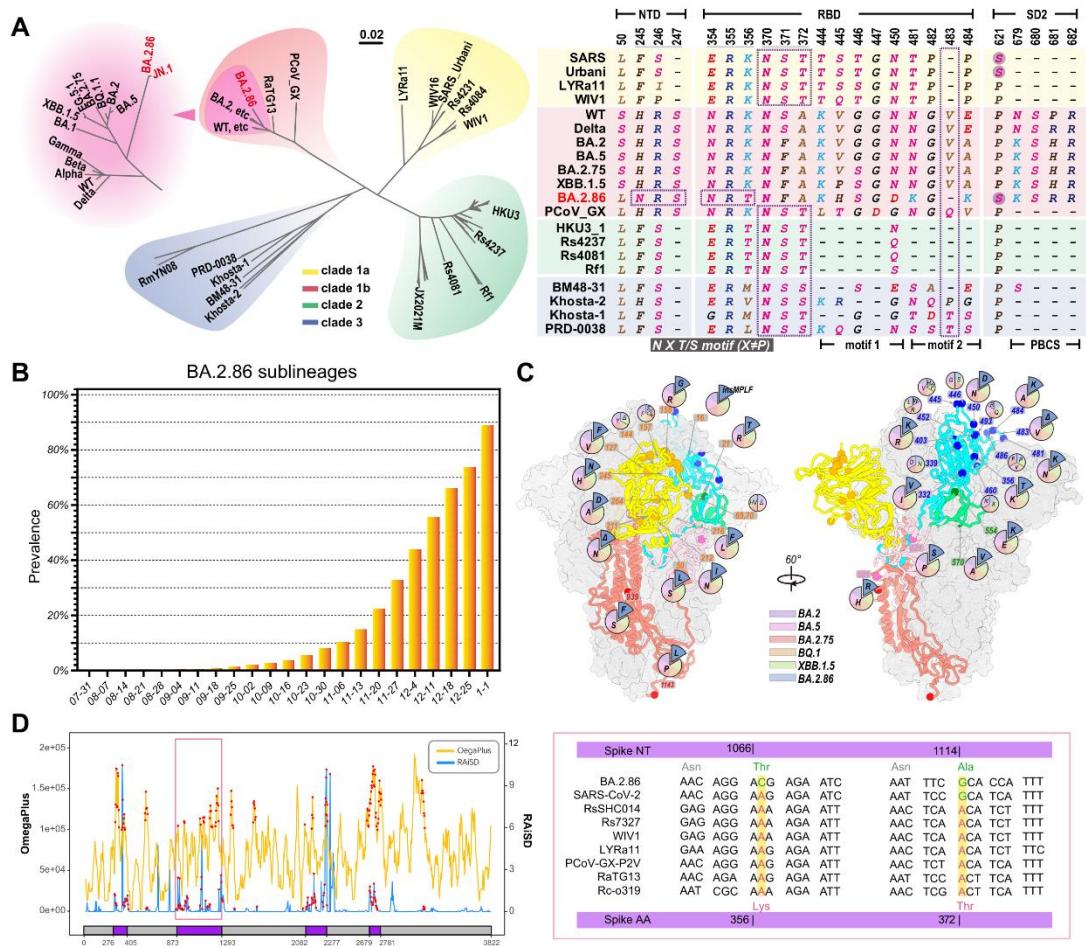
519 We thank Dr. Xiaojun Huang, Dr. Boling Zhu, Dr. Lihong Chen and Dr. Xujing Li for
520 Cryo-EM data collection at the Center for Biological Imaging (CBI) in the Institution
521 of Biophysics, CAS. We also thank Dr. Yuanyuan Chen, Bingxue Zhou and Zhenwei
522 Yang for technical support on surface plasmon resonance (SPR). Work was supported
523 by Ministry of Science and Technology of China (CPL-1233 and SRPG22-003),

524 National Key Research and Development Program (2018YFA0900801), CAS (YSBR-
525 010) and the National Science Foundation Grants (12034006, 32325004 and T2394482).
526 Xiangxi Wang was supported by National Science Fund for Distinguished Young
527 Scholar (No. 32325004) and the NSFS Innovative Research Group (No. 81921005).

528

529 **Authors Contributions**

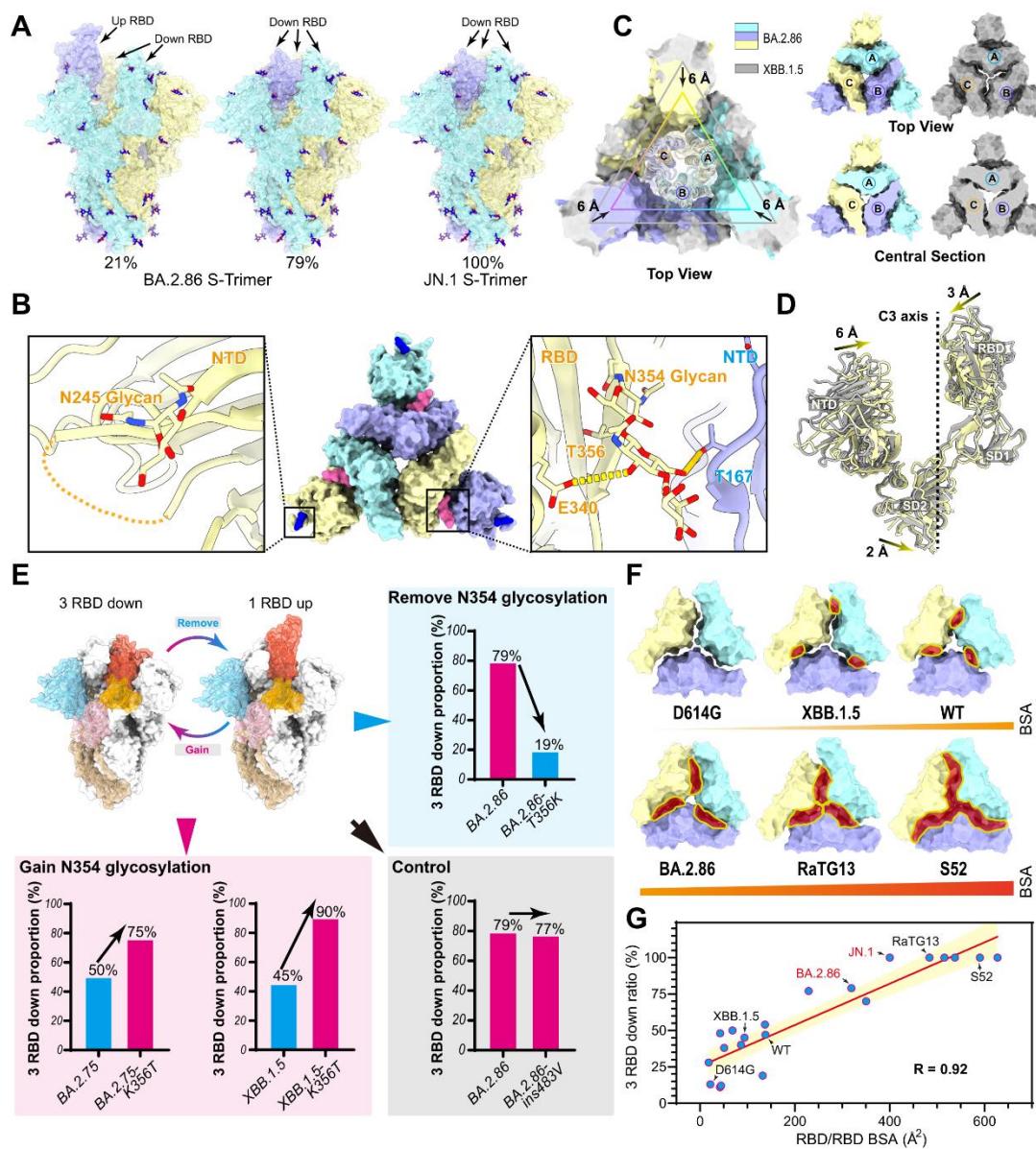
530 X.W., Y.C., R.K.G., Y.W. and B.M. designed the study; P.L., C.Y., B.M., T.X., S.Y., S.L.,
531 F.J., Q.Z., Y.Y., Y.R., P.W., Y.L., J.W., X.M. and F.S. performed experiments; P.L., C.Y.
532 and Q.Z. prepared the cryo-EM samples and determined the structures; all authors
533 analyzed data; X.W., Y.C., and R.K.G. wrote the manuscript with input from all co-
534 authors.


535

536 **Declaration of interests**

537 Y.C. is one of inventors on the patent application of GC series antibodies. Y.C. is one
538 of founders of Singlomics Biopharmaceuticals Inc. Other authors declare no competing
539 interests.

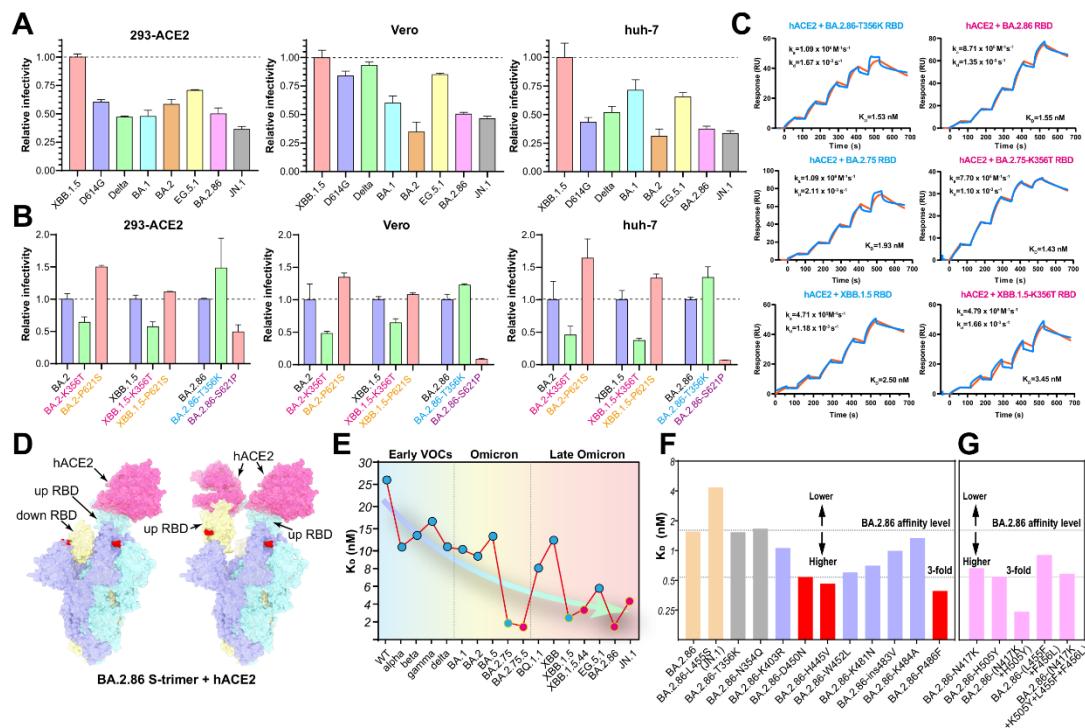
540


541 Figures

542

543 **Figure 1: Selective advantages in the Spike gene.** (A) Phylogenetic tree of
544 sarbecoviruses based on S sequences and sequence features of S protein of selected
545 variants from four clades. At the left panel, four clades are shadowed in yellow (clade
546 1a), red (clade 1b), green (clade 2) and blue (clade 3), respectively. For clade 1b,
547 lineages of SARS-CoV-2 are zoomed in. Some typical variants are labeled and BA.2.86
548 and JN.1 are highlighted. At the right panel, motifs satisfying N-glycosylation (NXS/T,
549 X≠P) are circled and residue 483 and 621 on S are highlighted. (B) Bar chart of the
550 relative prevalence of BA.2.86 sublineages as of the first week of 2024. (C) Locations
551 and residue diversities of mutations carried by BA.2.86 spike. Only residues on S
552 differing from BA.2 are selected. Mutations unique to BA.2.86 are highlighted by larger
553 detached sector diagram. For color scheme, NTD, RBD, SD1, SD2 and S2 are colored
554 in yellow, cyan, green, pink and light red. The CA atoms of mutated residues are shown
555 as spheres. (D) Selective sweep regions (shown as purple blocks) identified in SARS-

556 CoV-2 genomes using OmegaPlus (yellow lines) and RAiSD (blue lines). Important
557 non-synonymous differences are highlighted at the right panel.
558



559

560 **Figure 2: N354 glycosylation modulates RBD conformation.** (A) Surface
 561 characterization of S-trimer of BA.2.86 and JN.1 in “up” and “closed” conformational
 562 states. The three subunits of S protein were colored in yellow, light blue, and purple
 563 respectively, and the N-glycans were highlighted with sticks. (B) The glycosylation
 564 modifications at N245 and N354 in BA.2.86 sublines were shown in detail. (C) RBD
 565 of the “closed” conformation of BA.2.86 S-trimer was superimposed with the XBB.1.5
 566 S-trimer (color scheme same as Figure 2A). Top view (top right) and center section
 567 (bottom right) show intersubunit contacts of BA.2.86 and XBB.1.5 S-trimers. (D) The
 568 conformational change details between BA.2.86 (yellow) and XBB.1.5 (gray) in S1

569 subunit. The shift distances and directions of NTD, RBD and SD2 towards the 3-fold
570 axis are labeled. (E) The role of N354 glycosylation in regulating changes in the “up”
571 and “down” conformational ratio of the RBD. Three groups (“Remove N354
572 glycosylation”, “Gain N354 glycosylation” and “Control”) are located in the upper right
573 corner, the lower left corner and lower right corner, respectively. In each group, the
574 proportion of “RBD down” conformation are displayed with bar chart. Blue and pink
575 bars represent variants without and with N354 glycosylation. (F) The contact areas
576 between RBDs of D614G, XBB.1.5, WT, BA.2.86, RaTG13, and S52 were compared.
577 (G) A correlation plot was created between the contact area between RBD subunits and
578 the “RBD-down” rate.

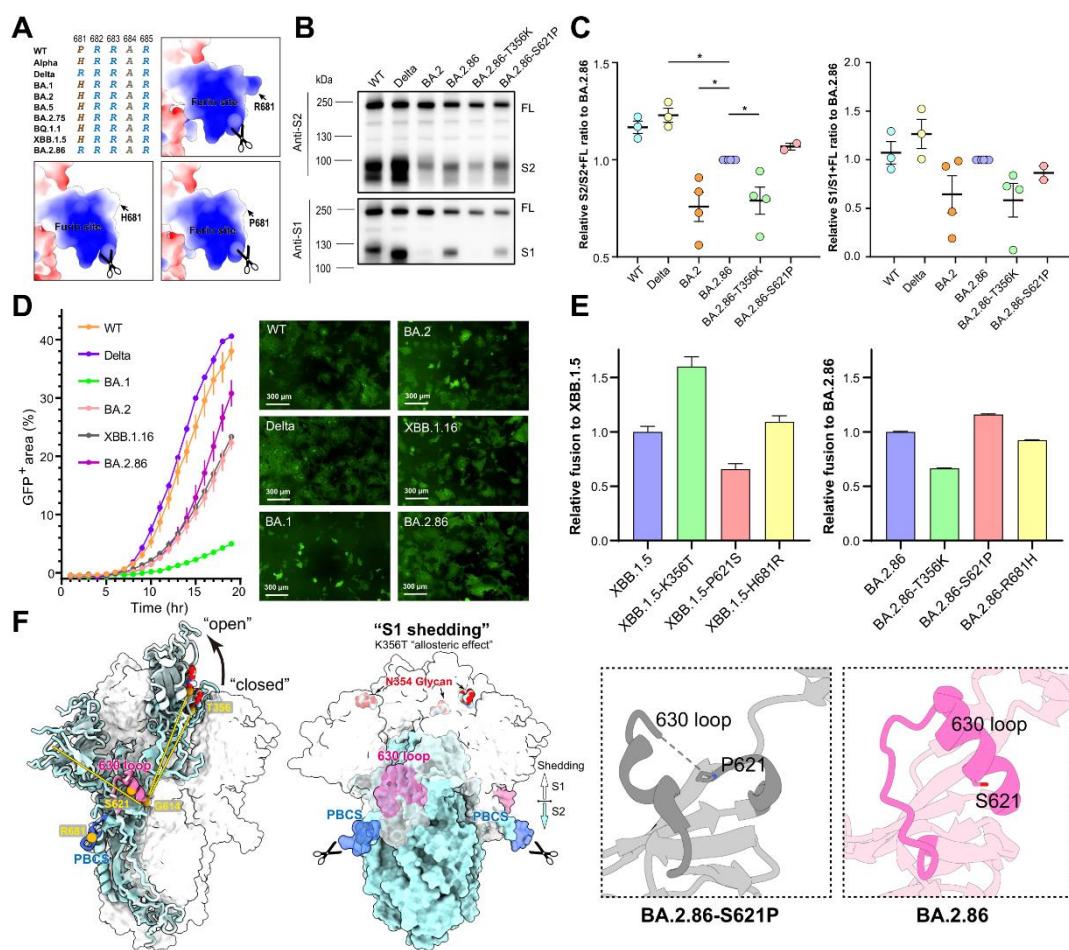
579

580

581 **Figure 3: N354 glycosylation decreases infectivity and binding affinity to hACE2.**

582 (A) Relative infectivity of XBB.1.5, D614G, Delta BA.1, BA.2, EG.5.1, BA.2.86 and
583 JN.1. Vesicular stomatitis virus-based pseudoviruses were used to test the efficiency of
584 infecting 293T-ACE2, Vero, Huh-7 cells. Error bars represent the mean \pm SD of three
585 replicates. All raw data of infectivity are normalized by XBB.1.5. (B) Relative
586 infectivity of BA.2, XBB.1.5, and BA.2.86 variants with mutations at positions 356 and
587 621, compared to their respective wild types, was evaluated in 293T-ACE2, Vero, and
588 Huh-7 cells. This evaluation was done using a pseudovirus system based on the
589 vesicular stomatitis virus. Error bars represent the mean \pm SD of three replicates. (C)
590 The impact of glycosylation at position 356 of BA.2.86, BA.2.75, and XBB.1.5 RBDs
591 on the binding affinity to hACE2 was assessed by SPR. (D) Surface characterization
592 two “up” RBD conformations of BA.2.86 S-trimer binding to hACE2 determined by
593 Cryo-EM. The color scheme for three subunits of S are consistent with figure 2A and
594 hACE2 is colored in pink. (E) Changes in affinity of binding hACE2 from early SARS-
595 CoV-2 variants of concern (VOCs) and omicron variants to late omicron variants. (F)
596 The effect of a single substitution on the binding affinity to hACE2 was assessed using
597 SPR. Mutations that greatly enhance, moderately enhance and decrease the affinity to

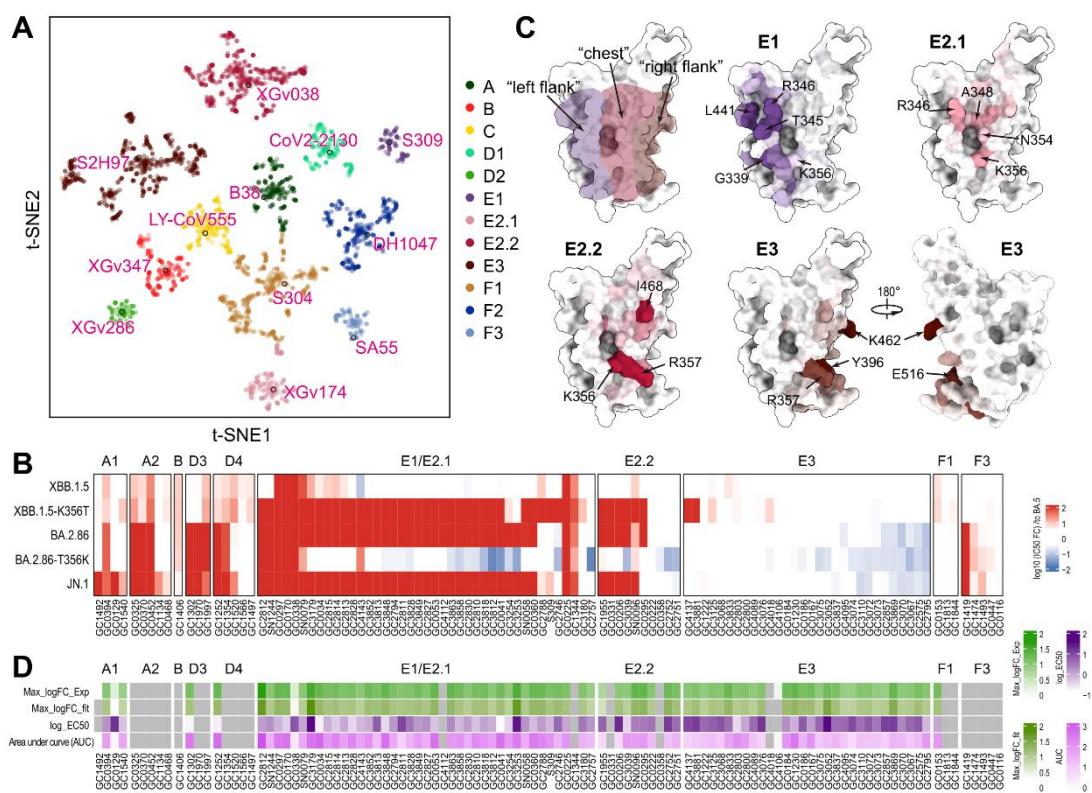
598 hACE2 are indicated in red, light purple and yellow. The cutoff value of greatly
599 increasing affinity is set as 3-fold change in K_D value relative to BA.2.86. (G)
600 Evaluation of binding affinity to hACE2 of the variants with 1-2 mutations on the RBM
601 of BA.2.86 by SPR. These variants are based on predictions of increased binding
602 affinity to hACE2.



603
604 **Figure 4: Mechanism of the ability of heparan sulfate recovering decreased**
605 **infectivity by N354 glycosylation.** (A) The ability of BA.5, BA.2.75, XBB.1.5,
606 BA.2.86-T356K (blue) and their corresponding K356T (pink) mutant virus-like
607 particles (SC2-VLPs) to infect HEK293T cells overexpressing ACE2 and Furin (293T-
608 ACE2/Furin) treated with various concentrations of free heparin sulfate (HS). (B)
609 Binding affinity of RBDs of BA.5, BA.2.75, XBB.1.5, BA.2.86-T356K and their
610 corresponding K356T mutant to HS tested by SPR. (C) The Cryo-EM structures of
611 BA.2.86 and BA.2.86-T356K S-trimer bound to HS are showed on the upper and lower
612 panels, respectively. In each panel's left corner, HS was docked to S-trimer by MOE.
613 The binding grooves of HS are indicated by “dotted zones” on the electrostatic surface
614 of S-trimer. pink surface of N354 glycosylation on BA.2.86 is highlighted by yellow
615 stars. On the upper right corner, the explicit binding location of HS “N354 pocket” in
616 groove is zoomed in and indicated by light yellow shadow. HS determined by Cryo-

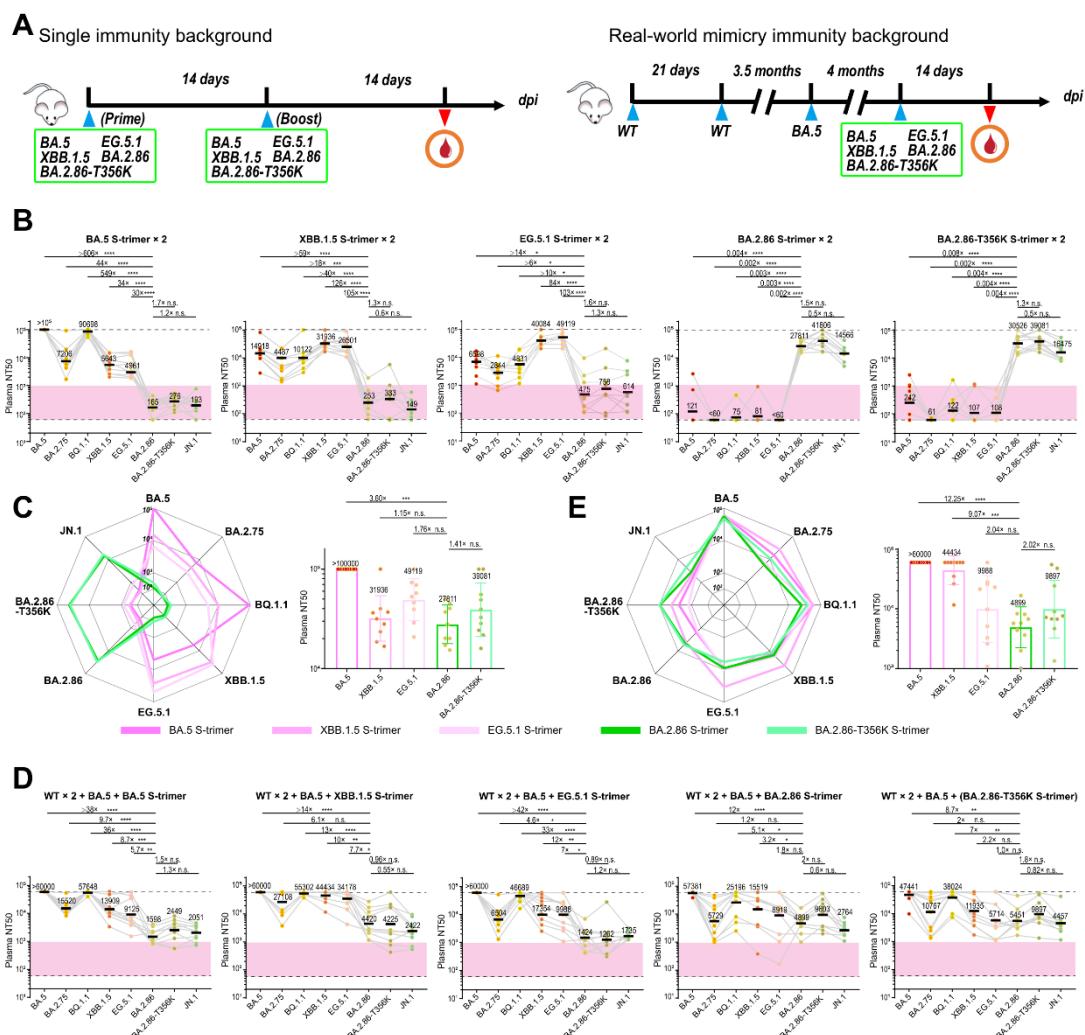
617 EM and docked by MOE are colored in green and white, respectively. On the lower
618 right corner, interface details of HS determined by Cryo-EM with S-trimer are shown.
619 Hydrogen bonds are displayed by yellow dashed lines. The unit of the value for color
620 bar is kcal/(mol·e) at 298 K. (D) Influence of co-incubation with HS on the “RBD-up”
621 conformational proportion within the S-trimer of BA.2.86, JN.1, BA.2.86-T356K, and
622 XBB.1.5. BA.2.86 and JN.1, which are glycosylated at position N354, are represented
623 by red bars, while BA.2.86-T356K and XBB.1.5, which lack glycosylation at position
624 N354, are represented by blue bars. (E) Surface and cartoon representation of HS
625 binding grooves consisting of a pair of spatially adjacent RBD (purple) and NTD (cyan)
626 from different subunits for BA.2.86 (upper panel) and BA.2.86-T356K (lower panel).
627 In each panel, apo state and bound HS state are showed on the left and right. Distance
628 of HS binding grooves is indicated by orange dashed curves.

629


630

631 **Figure 5: S cleavage and fusogenicity of BA.2.86.** (A) Sequence alignment and
632 modeled charge surface representation of PBCS of P681, H681 and R681 SARS-CoV-
633 2 variants. S cleavage efficiency evaluated by Western blotting (B) and image grayscale
634 analysis (C) for WT, Delta, BA.2, BA.2.86, BA.2.86-T356K and BA.2.86-S621P. (D)
635 Fusogenicity comparation among WT, Delta, BA.1, BA.2, XBB.1.16 and BA.2.86
636 by using a split GFP system. (E) Fusogenicity of variants with K356T, P621S and
637 H681R mutation on XBB.1.5 relative to XBB.1.5 (left) and variants with T356K,
638 S621P and R681H mutation on BA.2.86 relative to BA.2.86 (right). (F) The location
639 of N354 glycan (red), 630 loop (pink) and PBCS (blue) on S-trimer is shown on the
640 left. T356, G614, S621 and R681 are displayed as orange spheres. Pattern diagram
641 of K356T increasing S1 shedding by allosteric effect is shown in the middle. Cartoon
642 representations of 630 loop of BA.2.86-S621P and BA.2.86 are zoomed in on the
643 right.

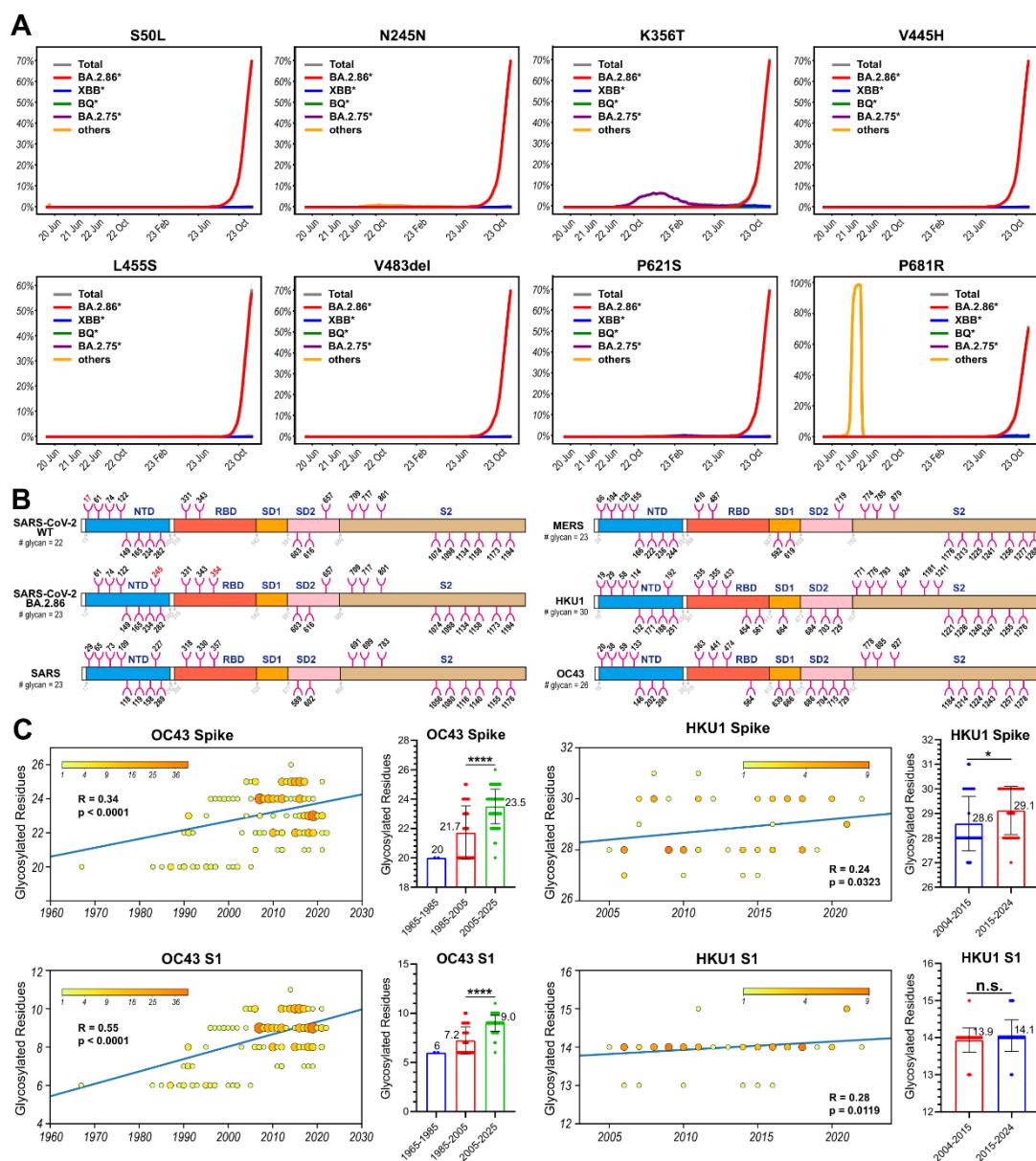
644


645

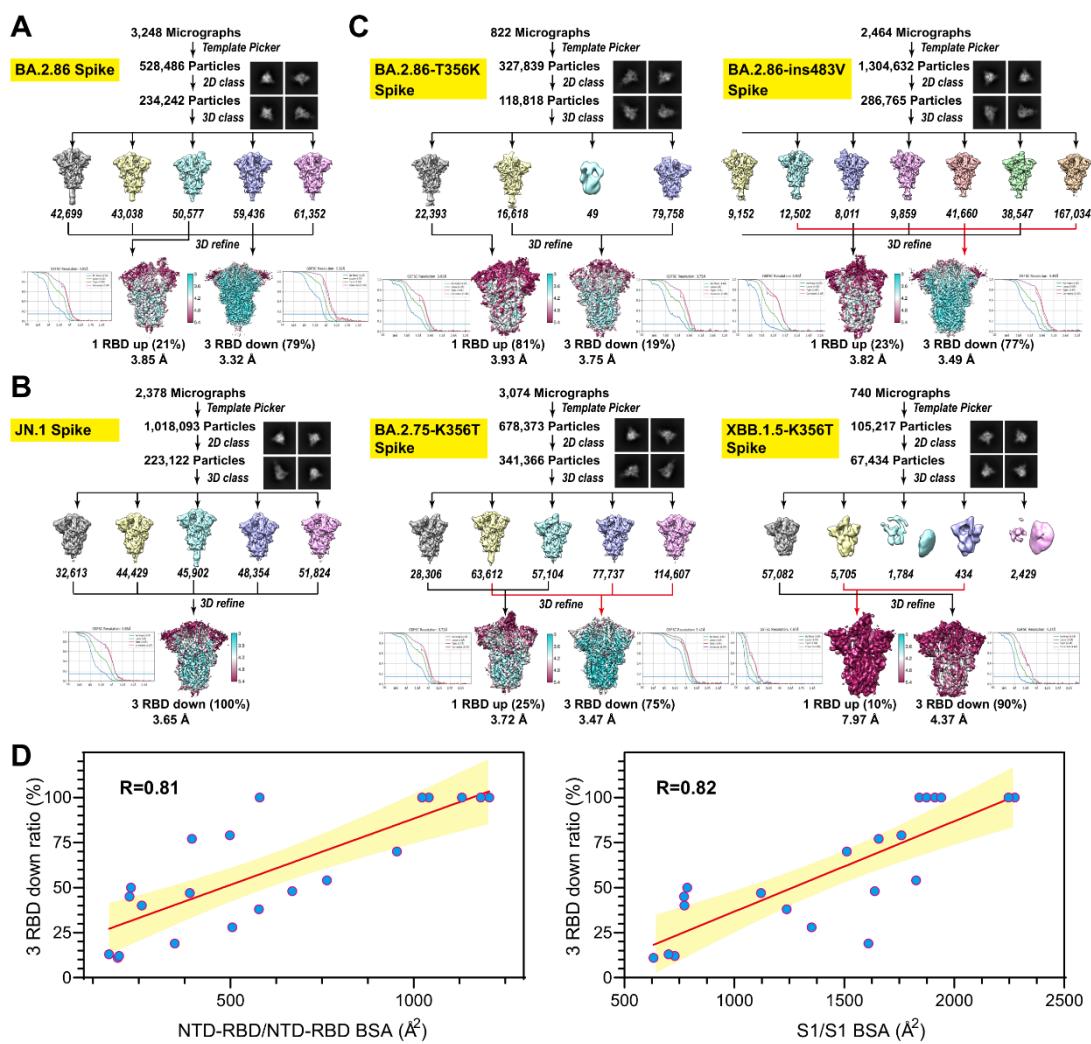
646 **Figure 6: N354 glycosylation specially escapes a subset of ADCC antibodies. (A)**
647 t-SNE and unsupervised clustering of antibodies that bind SARS-CoV-2 RBD.
648 Twelve epitope groups were identified from DMS dataset (3051 antibodies). (B)
649 Heatmap of neutralizing activity against XBB.1.5, XBB.1.5-K356T, BA.2.86,
650 BA.2.86-T356K and JN.1 of representative antibodies from 10 epitope groups,
651 relative to BA.5. (C) Mapping of escape scores for antibodies from epitope group E1
652 ('left flank'), E2.1 ('chest'), E2.2 ('chest') and E3 ('right flank') on SARS-CoV-2
653 RBD (PDB: 6M0J). (D) Heatmap of ADCC effect of RBD antibodies. Four types of
654 color bars represent the base 10 logarithm of the maximum of experiment curve, the
655 base 10 logarithm of the maximum of the fitting curve by 4 parameters fitting, the
656 base 10 logarithm of EC50 and area under curve from Figure S6C.

657

658

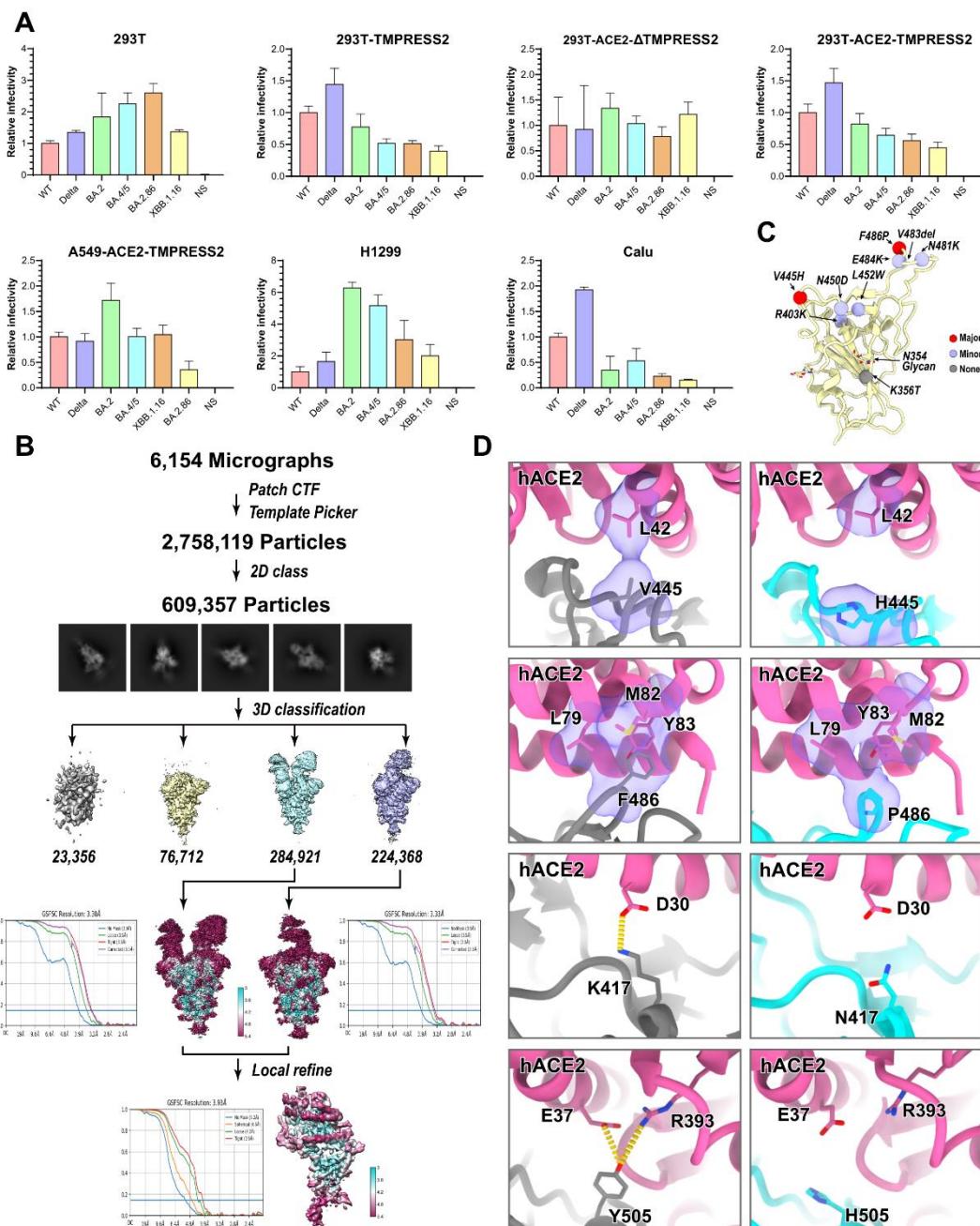


659 **Figure 7: N354 glycosylation reduces immunogenicity in hybrid immunity**
 660 **background.** (A) Two cohorts of mice evaluating the immunogenic of various SARS-
 661 CoV-2 variants. One cohort consisted of non-immunized BALB/c mice that received
 662 two doses of spike proteins (BA.5, XBB.1.5, EG.5.1, BA.2.86, BA.2.86-T356K), with
 663 a 14-day interval between each dose. The other cohort mimicked a real-world immunity
 664 background, where BALB/c mice were immunized with an inactivated vaccine (two
 665 doses of WT + one dose of BA.5) in addition to a single dose of spike protein (BA.5,
 666 XBB.1.5, EG.5.1, BA.2.86, BA.2.86-T356K). Blood samples were collected 14 days
 667 after immunization. (B) The 50% neutralizing titer (NT50s) against Omicron variants
 668 (BA.5, XBB.1.5, EG.5.1, BA.2.86, BA.2.86-T356K) in plasma from non-immunized
 669 BALB/c mice background (B) and from BALB/c mice simulating a real-world immune
 670 background (D). The p-values were calculated via a two-tailed Wilcoxon signed-rank


671 test for paired samples. Radar plots of the spectrum of neutralization and bar charts of
672 the immunogenicity of the 5 types of immunogens from single immunity background
673 (C) and real-world mimicry immunity background (E).

674

675


676 **Figure S1. Proportion of typical mutations carried by BA.2.86 spike and**
677 **distribution of coronavirus glycosylation residues on spike, related to Figure 1.**
678 (A) Proportion of SARS-CoV-2 spike residue mutations S50L, H245N, K356T,
679 L455S, V455H, V483del, P621S and P681R from January 2020 to January 2024. (B)
680 A schematic diagram of sequence glycosylation site on SARS-CoV-2 WT, SARS-
681 CoV-2 BA.2.86, SARS, MERS, HKU1 and OC43 spike predicted by “NXS/T” rule.
682 (C) Correlation between the number of glycosylated residues on Spike and S1 over
683 time for OC43 and HKU1.
684

685

686 **Figure S2. Cryo-EM structures of S-trimer of 6 SARS-CoV-2 variants and linear**
 687 **regression analysis of “RBD down” conformation ratio to buried surface areas**
 688 **(BSA), related to Figure 2.**

689 Flow charts, FSC curves and local resolutions of Cryo-EM structure BA.2.86 S-
 690 trimer (A), JN.1 S-trimer (B), BA.2.86-T356K S-trimer, BA.2.86-ins483V S-trimer,
 691 BA.2.75-K356T S-trimer and XBB.1.5-K356T S-trimer (C). (D) Correlation plots of
 692 ratio of spike with “3 RBD down” conformation with NTD-RBD/NTD-RBD BSA
 693 and S1/S1 BSA.

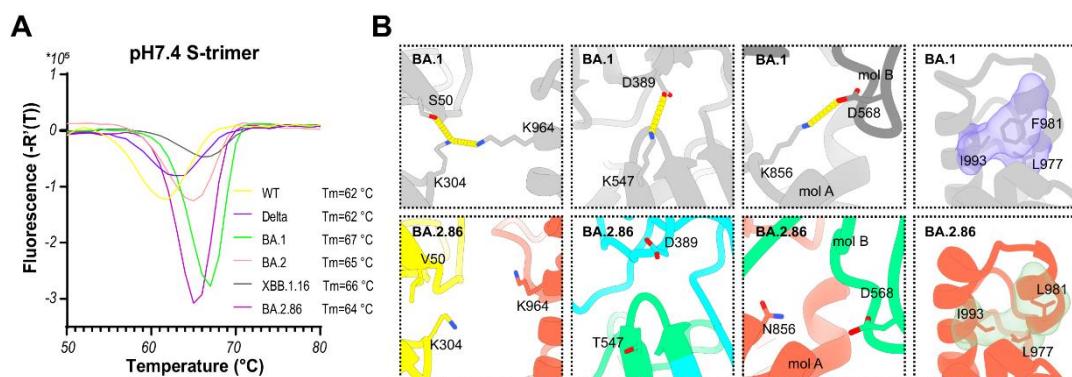
694

695 **Figure S3. Relative infectivity of SARS-CoV-2 variants in 7 cell lines, cryo-EM**
 696 **structure of BA.2.86 S-trimer in complex with hACE2 and interface details**
 697 **between hACE2 and RBD, related to Figure 3.**

698 (A) Normalized SARS-CoV-2 variants pseudoviruses entry in HEK293T cells (293T),
 699 HEK293T TMPRSS2-overexpressing cells (293T-TMPRSS2), HEK293T cells
 700 overexpressing ACE2 and deleted for TMPRSS2 (293T-ACE2- Δ TMPRSS2),
 701 HEK293T cells overexpressing ACE2 and TMPRSS2 (293T-ACE2-TMPRSS2),

702 A549 cells overexpressing ACE2 and TMPRSS2 (A549-ACE2-TMPRSS2), H1299
703 lung cells and Calu-3 lung cells. Error bars represent the mean \pm SD of three replicates.
704 (B) Flow chart, FSC curve and local resolution of Cryo-EM structure of BA.2.86 S-
705 trimer in complex with hACE2. (C) Locations of residues on BA.2.86 RBD that play
706 a major (red), minor (light purple) and no (gray) role in binding affinity to hACE2.
707 (D) Structure interpretation of mutation H445V, P486F, N417K and H505Y on
708 BA.2.86 RBD increasing the binding affinity to hACE2. Residues associated with
709 affinity change are shown as sticks. Hydrophobic network is highlighted in light
710 purple and hydrogen bonds are presented as yellow dashed lines. Oxygen atoms are
711 colored in red and nitrogen atoms are colored in blue.

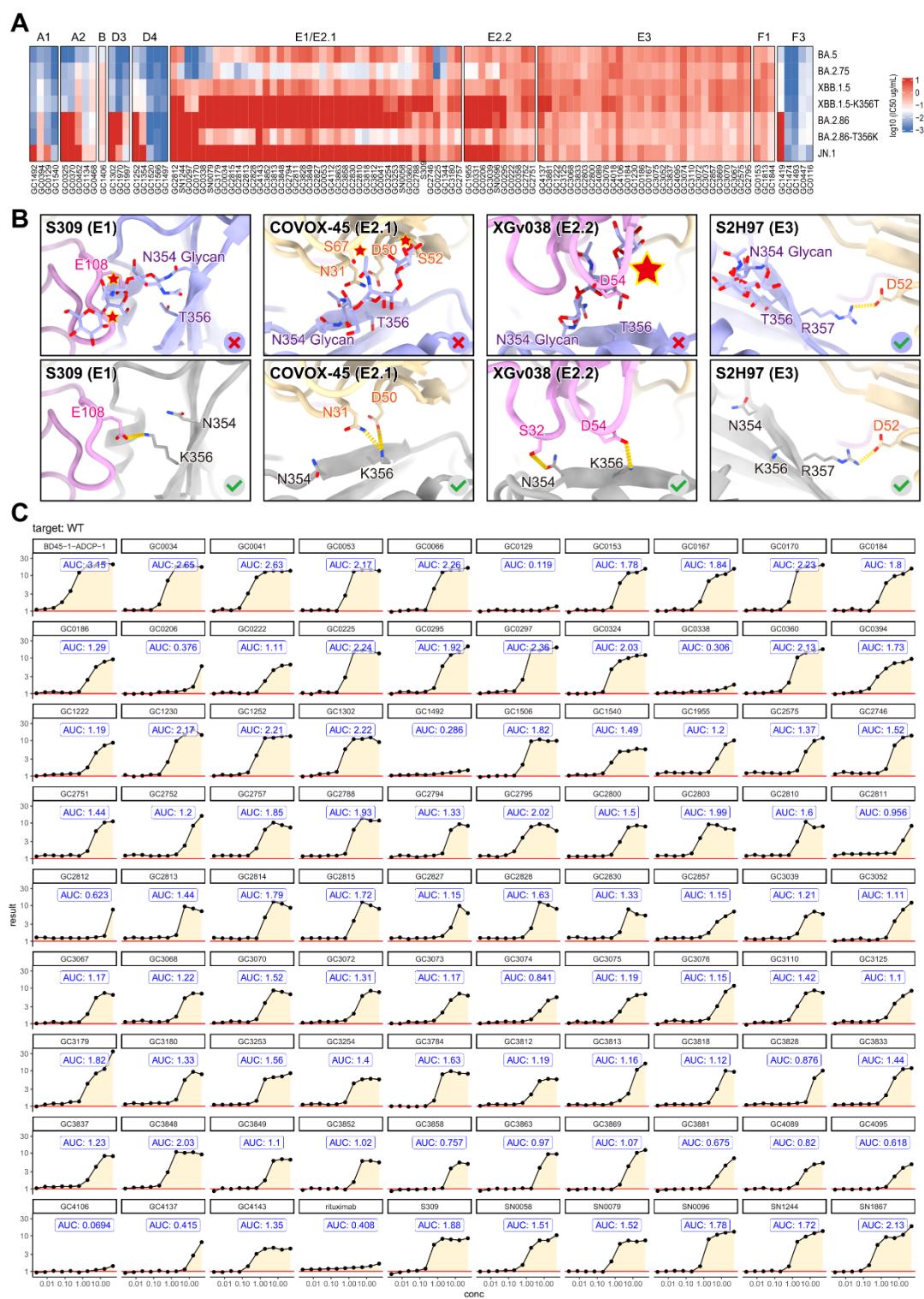
712



713

714 **Figure S4. Electrostatic surface of S1 subunit, infectivity with HS treatment and**
 715 **Cryo-EM structure of S-trimer bound to HS, related to Figure 4.**

716 (A) Electrostatic surface of BA.2.86 (left) and XBB.1.5 (right) S1 subunit. Yellow
 717 circle marked a single RBD. Key residues are labeled and diverse residues are
 718 highlighted in red. Electrostatic surface of motif 2 on RBD of BA.2.86, XBB.1.5,
 719 and SARS are zoomed in. (B) BA.5, BA.2.75, XBB.1.5, BA.2.86-T356K and their
 720 corresponding K356T mutant VSV-based pseudoviruses entry HEK293T cells
 721 overexpressing ACE2 (293T-ACE2) treated with various concentrations of free HS.
 722 Error bars represent the mean \pm SD of three replicates. (C) Flow charts and FSC curves
 723 of Cryo-EM structure of S-trimer of BA.2.86, JN.1, BA.2.86-T356K and XBB.1.5 in
 724 complex with HS. The density belonging to HS are highlighted in red.
 725

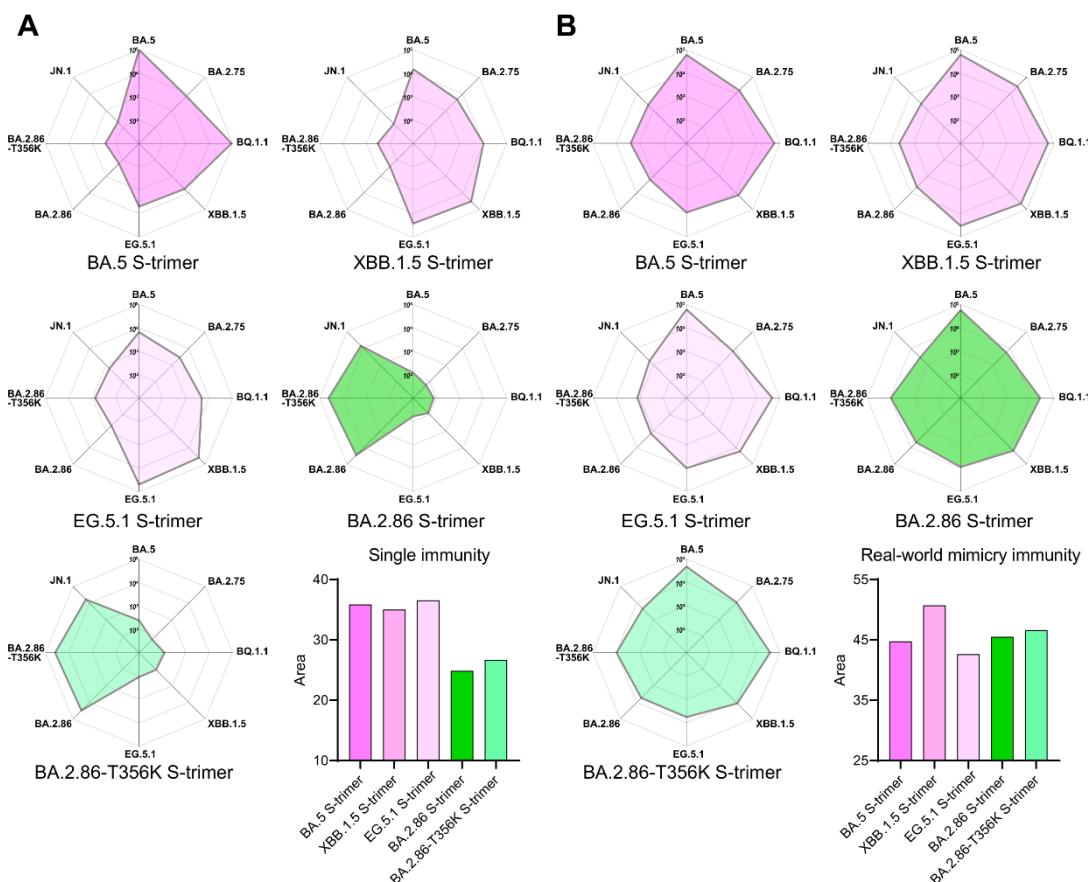

726

727 **Figure S5. Thermal stability analysis of S-trimer of SARS-CoV-2 variants,**
728 **related to Figure 5.**

729 (A) Thermal stability of WT, Delta, BA.1, BA.2, XBB.1.16 and BA.2.86 S-trimer
730 measured by ThermoFluor Assay at neutral pH. (B) Zoomed-in view of the inter- and
731 intra-subunits of S-trimer interaction details of BA.1 (top) and BA.2.86 (bottom).
732 The residues involved in the interactions are shown as sticks. The hydrogen bonds
733 are shown as yellow dashed lines and hydrophobic network is highlighted in light
734 purple and light green. Different monomers on the same S-trimer are defined as mol
735 A and mol B, respectively.

736

737


738 **Figure S6. Pseudovirus neutralization assay, structural interpretation of the**
 739 **evasion of antibodies and ADCC assay of antibodies, related to Figure 6.**

740 (A) Heatmap of log10 IC50 of antibodies from A1, A2, B, D3, D4, E1, E2.2,
 741 E3, F1 and F3 epitope groups against BA.5, BA.2.75, XBB.1.5, XBB.1.5-K356T,

742 BA.2.86, BA.2.86-T356K and JN.1 pseudovirus. (B) Cartoon representation of RBD
743 with N354 glycosylation (top) and without N354 glycosylation (bottom) in complex
744 with antibodies S309 (E1), COVOX-45 (E2.1), XGv038 (E2.2) and S2H97 (E3). The
745 key residues of RBDs and antibodies participating interactions are shown as sticks.
746 Atom clashes are shown as red star. The hydrogen bonds are shown as yellow dashed
747 lines. For color scheme, RBD with and without N354 glycosylation are colored in
748 light gray and gray, respectively. Light and heavy chain of antibodies are colored in
749 light yellow and light pink, respectively. (C) The raw data of antibodies ADCC.

750

751

752 **Figure S7. Immunogenicity of BA.2.86 relative to BA.5, XBB.1.5, EG.5.1, and**
753 **BA.2.86-T356K S-trimer, related to Figure 7.**

754 Radar plot of immunogenicity of BA.5, XBB.1.5, EG.5.1, BA.2.86 and BA.2.86-
755 T356K S-trimer under single immunity background (A) and real-world mimicry
756 immunity background (B). The serum neutralizing titers (NT_{50}) against 8 pseudovirus
757 (BA.5, BA.2.75, BQ.1.1, XBB.1.5, EG.5.1, BA.2.86 and BA.2.86-T356K) are log10-
758 scaled to generate the radar plot and to calculate the area of the radar plot, which is
759 displayed by bar chart. Color schemes are consistent with figure 7.

760
761

762 **Table S1. Cryo-EM data collection, processing, and validation statistics**

Data collection

Complex	BA.2.86 Spike (3 RBD down)	BA.2.86 Spike (1 RBD up)	JN.1 Spike (3 RBD down)
Microscope	FEI Talos Arctica	FEI Talos Arctica	FEI Talos Arctica
Camera	Gatan K2	Gatan K2	Gatan K2
Voltage (kV)	200	200	200
Total dose (e ⁻ /Å ²)	60	60	60
Micrographs (total)	3,248	3,248	2,378
Micrographs (used)	2,342	2,342	2,103
Particles selected	528,486	528,486	1,018,093
Particles included in final reconstruction	174,806	59,436	223,122
sampling, Å per pixel	1	1	1
Defocus range (μm)	-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0
Symmetry	C3	C1	C3
Resolution (Å) (FSC=0.143 criterion)	3.32	3.85	3.65
Model refinement			
Ramachandran statistics (%)			
Most favored	91.86	91.42	91.58
Allowed	7.95	8.23	8.29
Outliers	0.19	0.35	0.13
Bonds (RMSD)			
Bond lengths (Å)	0.011	0.006	0.009
Bond angles (°)	0.902	0.834	0.949
MolProbity score	2.2	2.27	2.2
Clash score	15.95	18.49	15.68
Rama-Z			
Rotamer outliers (%)	0.79	1.01	0.32
Cβ outliers (%)	0	0	0.07
Deposit			
PDB	8WHV	8WHW	8X4H
EMDB	EMD-37549	EMD-37550	EMD-38049

763

764

BA.2.86-T356K Spike (3 RBD down)	BA.2.86-T356K Spike (1 RBD up)	BA.2.86- ins483V Spike (3 RBD down)	BA.2.86- ins483V Spike (1 RBD up)	BA.2.75-K356T Spike (3 RBD down)
FEI TITAN	FEI TITAN	FEI TITAN	FEI TITAN	FEI Talos Arctica
Gantan K2	Gantan K2	Gantan K2	Gantan K2	Gatan K2
300	300	300	300	200
60	60	60	60	60
822	822	2,464	2,464	3,074
822	822	2,464	2,464	3,074
327,839	327,839	1,304,632	1,304,632	678,373
96,376	22,393	221,196	65,569	163,826
1.04	1.04	1.04	1.04	1
-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0
C3	C1	C3	C1	C3
3.75	3.93	3.49	3.82	3.47
<hr/>				
92.5	92.72	92.25	92	90.94
7.38	7.19	7.65	7.91	8.69
0.13	0.09	0.09	0.09	0.37
<hr/>				
0.004	0.005	0.004	0.004	0.012
0.739	0.756	0.74	0.721	0.999
2.11	2.16	2.07	2.19	2.19
13.42	15.83	12.05	15.82	14.61
<hr/>				
0.36	0.36	0.47	0.36	0.82
0	0	0	0	0.03
<hr/>				
8X55	8X56	8X4Z	8X50	8X5Q
EMD-38063	EMD-38064	EMD-38056	EMD-38057	EMD-38072

765

766

BA.2.75-K356T	XBB.1.5-K356T	XBB.1.5-K356T	BA.2.86	BA.2.86
Spike (1 RBD up)	Spike (3 RBD down)	Spike (1 RBD up)	Spike+hACE2 (bound to 1 ACE2)	Spike+hACE2 (bound to 2 ACE2)
FEI Talos	FEI Talos	FEI Talos	FEI TITAN	FEI TITAN
Arctica	Arctica	Arctica		
Gatan K2	Gatan K2	Gatan K2	Gatan K3	Gatan K3
200	200	200	300	300
60	60	60	60	60
3,074	740	740	6,154	6,154
3,074	740	740	6,154	6,154
678,373	105,217	105,217	2,758,119	2,758,119
93,276	57,082	6,139	224,368	284,921
1	1	1	1.07	1.07
-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0
C1	C3	C1	C1	C1
3.72	4.37	7.97	3.33	3.3
<hr/>				
90.38	--	--	92.26	93.07
9.21	--	--	7.52	6.88
0.4	--	--	0.21	0.05
<hr/>				
0.005	--	--	0.007	0.014
0.911	--	--	0.897	1.202
2.27	--	--	2.1	2.21
17.2	--	--	12.83	18.6
<hr/>				
0.53	--	--	0.88	0.1
0	--	--	0.06	0.02
<hr/>				
8X5R	--	--	8WHS	8WHU
EMD-38073	EMD-38701	EMD-38700	EMD-37546	EMD-37548

767

768

BA.2.86 Spike+hACE2 (local refinement)	BA.2.86 Spike + HS	JN.1 Spike + HS	BA.2.86-T356K Spike + HS (local refine)	XBB.1.5 Spike + HS
FEI TITAN	FEI TITAN	FEI Krios G4	FEI TITAN	FEI Krios G4
Gatan K3	Gatan K3	Falcon 4	Gatan K2	Falcon 4
300	300	300	300	300
60	60	60	60	60
6,154	1,954	4,475	3,881	6,528
6,154	1,964	4,475	3,881	6,528
2,758,119	1,440,453	1,263,148	1,035,622	1,249,829
157,447	215,534	301,841	315,372	257,757
1.07	1.07	1.036	1.04	1.036
-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0	-1.2 ~ -2.0
C1	C1	C1	C1	C3
3.93	3.85	3.18	3.69	3.2
95.81	91.92	91.26	88.12	88.63
4.07	7.58	8.1	11.16	11.14
0.13	0.51	0.63	0.71	0.23
0.005	0.01	0.008	0.005	0.011
1.058	0.9	0.85	0.806	1.124
1.93	2.45	2.13	2.2	2.43
13.69	16.5	12.7	12.28	22.7
0.14	1.05	0.47	0.26	0.04
0	0	5.4	0	0.1
8WHZ EMD-37553	8XUR EMD-38681	8XUS EMD-38682	8XUU EMD-38684	8XUT EMD-38683

769

770

771 **STAR METHOD**

772

773 **KEY RESOURCE TABLE**

774

REAGENT or RESOURCES	SOURCE	IDENTIFIER
Bacterial and virus strains		
DH5 α Chemically Competent Cell	Invitrogen	Cat#12034013
G* Δ G-VSV	Kerafast	Cat#EH1020-PM
SC2-VLPs	NIFDC	N/A
Cell lines		
HEK293F cells	Thermo Fisher	Cat # 11625019
Huh7 cells	NIFDC	N/A
HEK293T cells	ATCC	Cat#CRL-3216
HEK293T-ACE2-Furin cells	NIFDC	N/A
Vero cells	NIFDC	N/A
293T-TMPRSS2 cells	Leo James	N/A
293T-ACE2- Δ TMPRSS2 cells	Leo James	N/A
293T-ACE2-TMPRSS2 cells	Leo James	N/A
A549-ACE2-TMPRSS2 cells	Massimo Palmarini	N/A
Calu-3 cells	Paul Lehner	N/A
NCI-H1299 cells	Simon Cook	N/A
Chemicals, peptides, and Recombinant Proteins		
RPMI 1640 Medium	Thermo Fisher	Cat # 12633012
Trypsin	Thermo Fisher	Lot# TG269188
DMEM	Thermo Fisher	Cat#11965092
1x PBS, pH 7.4	Thermo Fisher	Cat # 10010031
Fetal bovine serum (FBS)	Thermo Fisher	Cat # 10099
D-luciferin	Thermo Fisher	Cat # L2916
Heparan sulfate (HS)	TargetMol	Cat #T19355
Critical Commercial Reagents		
Superose 6 Increase 10/300 GL	Cytiva	Cat # 29091596
Superdex 200 Increase 10/300 GL	Cytiva	Cat # 28990944
SYPRO protein gel stain	Thermo Fisher	Cat # S6650
CM5 Biosensor	Cytiva	Lot # 10310113
Recombinant DNA		
SARS-CoV-2 Omicron/BA.2.86 S gene, 6P and 2A mutations (R683A and R685A), T19I, R21T, L24S, Δ 25-27, S50L, Δ 69-70, V127F, G142D, Δ 144,	This manuscript	GenBank: WMV03218.1

F157S, R158G, N211I, Δ212, V213G, L216F, H245N, A264D, I332V, G339H, K356T, S371F, S373P, S375F, T376A, R403K, D405N, R408S, K417N, N440K, V445H, G446S, N450D, L452W, N460K, S477N, T478K, N481K, Δ483, E484K, F486P, Q498R, N501Y, Y505H, E554K, A570V, D614G, P621S, H655Y, N679K, P681R, N764K, D796Y, S939F, Q954H, N969K, P1143L T4 fibritin trimerization motif, 2xStrep, 6xHis, pcDNA		
SARS-CoV-2 Omicron/JN.1 S gene, BA.2.86-L455S	This manuscript	N/A
SARS-CoV-2 Omicron/BA.2.75 S gene, 6P and 2A mutations (R683A and R685A), T19I, L24S, Δ25-27, G142D, K147E, W152R, F157L, I210V, V213G, G257S, G339H, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, G446S, N460K, S477N, T478K, E484A, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K, T4 fibritin trimerization motif, 2xStrep, 6xHis, pcDNA	This manuscript	N/A
SARS-CoV-2 Omicron/XBB.1.5 S gene, 6P and 2A mutations (R683A and R685A), T19I, L24S, DEL25/27, V83A, G142D, DEL144/144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, N460K, S477N, T478K, E484A, F486P, F490S, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K, T4 fibritin trimerization motif, 2xStrep, 6xHis, pcDNA	This manuscript	N/A
SARS-CoV-2 Omicron/BA.5 S gene, 6P and 2A mutations (R683A and	This manuscript	N/A

R685A), T19I, L24S, Δ25-27, Δ69-70, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K, T4 fibritin trimerization motif, 2xStrep, 6xHis, pcDNA		
SARS-CoV-2 BA.2.75-K356T S gene	This manuscript	N/A
SARS-CoV-2 XBB.1.5-K356T S gene	This manuscript	N/A
SARS-CoV-2 BA.5-K356T S gene	This manuscript	N/A
SARS-CoV-2 BA.2.86-T356K S gene	This manuscript	N/A
SARS-CoV-2 BA.2.86- <i>ins483V</i> S gene	This manuscript	N/A
Deposited Data		
BA.2.86 Spike (3 RBD down)	This manuscript	PDB ID 8WHV, EMD-37549
BA.2.86 Spike (1 RBD up)	This manuscript	PDB ID 8WHW, EMD-37550
BA.2.86-T356K Spike (3 RBD down)	This manuscript	PDB ID 8X55, EMD-38063
BA.2.86-T356K Spike (1 RBD up)	This manuscript	PDB ID 8X56, EMD-38064
BA.2.86- <i>ins483V</i> Spike (3 RBD down)	This manuscript	PDB ID 8X4Z, EMD-38056
BA.2.86- <i>ins483V</i> Spike (1 RBD up)	This manuscript	PDB ID 8X50, EMD-38057
JN.1 Spike (3 RBD down)	This manuscript	PDB ID 8X4H, EMD-38049
BA.2.75-K356T Spike (3 RBD down)	This manuscript	PDB ID 8X5Q, EMD-38072
BA.2.75-K356T Spike (1 RBD up)	This manuscript	PDB ID 8X5R, EMD-38073
BA.2.86 Spike+hACE2 (bound to 1 ACE2)	This manuscript	PDB ID 8WHS, EMD-37546
BA.2.86 Spike+hACE2 (bound to 2 ACE2)	This manuscript	PDB ID 8WHU, EMD-37548
BA.2.86 Spike+hACE2 (local refinement)	This manuscript	PDB ID 8WHZ, EMD-37553
BA.2.86 Spike + HS	This manuscript	PDB ID 8XUR, EMD-38681

JN.1 Spike + HS	This manuscript	PDB ID 8XUS, EMD-38682
BA.2.86-T356K Spike + HS (local refine)	This manuscript	PDB ID 8XUU, EMD-38684
XBB.1.5 Spike + HS	This manuscript	PDB ID 8XUT, EMD-38683
XBB.1.5-K356T Spike (3 RBD down)	This manuscript	EMD-38701
XBB.1.5-K356T Spike (1 RBD up)	This manuscript	EMD-38700
Software		
OmegaPlus	Alachiotis et al., 2012	https://cme.h-its.org/exelixis/web/software/omegaplus/index.html
RAiSD	Alachiotis and Pavlidis, 2018	https://github.com/alahins/raisd
Minimap 2	Li, 2018	https://github.com/lh3/minimap2
MAFFT	Katoh and Standley, 2013	https://mafft.cbrc.jp/alignment/software/
RELION (v3.0.8)	Zivanov et al., 2018	https://www2.mrc-lmb.cam.ac.uk/relion
SerialEM software	Mastronarde, 2005	http://bio3d.colorado.edu/SerialEM
MotionCor2	Zheng et al., 2017	https://emcore.ucsf.edu/ucsfmotioncor2
ResMap	Kucukelbir et al., 2014	http://resmap.sourceforge.net
Gctf program (v1.06)	Zhang, K., 2016	https://www.mrc-lmb.cam.ac.uk/kzhang/Gctf
UCSF Chimera	Pettersen et al., 2004	https://www.cgl.ucsf.edu/chimera
UCSF ChimeraX	Goddard et al., 2018	https://www.rbvi.ucsf.edu/chimerax/
PHENIX	Adams et al., 2010	https://www.phenix-online.org
Coot	Emsley et al., 2010	https://www2.mrc-lmb.cam.ac.uk/Personal/pemsley/coot
cryoSPARC 4.3.0	Ali et al. 2017	https://cryosparc.com

Molecular operating environment (MOE) software	Chemical Computing Group	https://www.chemcomp.com/index.htm
Prism 8	Graphpad	https://www.graphpad.com/
ImageJ	Schneider et al., 2012	https://imagej.net/ij/

775

776

777 **RESOURCE AVAILABILITY**

778

779 **Lead contact**

780 Further information and requests for resources and reagents should be directed to and
781 will be fulfilled by the Lead Contact, Xiangxi Wang (xiangxi@ibp.ac.cn)

782

783 **Materials Availability**

784 All plasmids generated in this study are available from the Lead Contact with a
785 completed Materials Transfer Agreement.

786

787 **Data and code availability**

788 The density maps of the BA.2.86 S-trimer with 3 RBDs down conformation, BA.2.86
789 S-trimer with 1 RBD up conformation, JN.1 S-trimer with 3 RBDs down conformation,
790 BA.2.86-T356K S-trimer with 3 RBDs down conformation, BA.2.86-T356K S-trimer
791 with 1 RBD up conformation, BA.2.86-ins483V S-trimer with 3 RBDs down
792 conformation, BA.2.86-ins483V S-trimer with 1 RBD up conformation, BA.2.75-
793 K356T S-trimer with 3 RBDs down conformation, BA.2.75-K356T S-trimer with 1
794 RBD up conformation, BA.2.86 S-trimer bound to 1 hACE2, BA.2.86 S-trimer bound
795 to 1 hACE2, BA.2.86 S-trimer bound to 2 hACE2s, local refinement of BA.2.86 S-
796 trimer in complex with hACE2, BA.2.86 S-trimer bound to HS, JN.1 S-trimer bound to
797 HS, BA.2.86-T356K S-trimer bound to HS and XBB.1.5 S-trimer bound to HS have
798 been deposited in the Electron Microscopy Data Bank under the accession codes of
799 EMD-37549, EMD-37550, EMD-38049, EMD-38063, EMD-38064, EMD-38056,
800 EMD-38057, EMD-38072, EMD-38073, EMD-37546, EMD-37548, EMD-37553,
801 EMD-38681, EMD-38682, EMD-38684 and EMD-38683, respectively. The
802 corresponding structural coordinates have been deposited in the Protein Data Bank:
803 8WHV, 8WHW, 8X4H, 8X55, 8X56, 8X4Z, 8X50, 8X5Q, 8X5R, 8WHS, 8WHU,
804 8WHZ, 8XUR, 8XUS, 8XUU and 8XUT. For XBB.1.5-K356T S-trimer with 3 RBDs
805 down conformation and XBB.1.5-K356T S-trimer with 1 RBD up conformation, only
806 density maps have been deposited in the Electron Microscopy Data Bank under the
807 accession codes of EMD-38701 and EMD-38700.

808 EXPERIMENTAL MODEL AND SUBJECT DETAILS

809

810 Cell lines

811 HEK293F cells were cultured in StarFect 293 Transient Transfection Medium.
812 HEK293T and its derivative cell lines including 293T-ACE2 Δ TMPRSS2, 293T-ACE2-
813 TMPRSS2, 293T-TMPRSS2 were cultured in Dulbecco's Modified Eagle's Medium
814 (DMEM) supplemented with 10% fetal bovine serum (FBS). The cultures were
815 maintained at 37 °C in an incubator supplied with 5% CO₂. Calu-3 cells were
816 maintained in Eagle's minimum essential medium containing 10% FBS and 1% PS.
817 Vero cells, Huh-7 cells, A549-ACE2-TMPRSS2 were maintained in Dulbecco's
818 modified Eagle's medium (DMEM) containing 10% FBS and 1% PS. NCI-H1299 cells
819 were maintained in RPMI containing 10% FBS and 1% PS.

820

821 SARS-CoV-2 pseudovirus

822 The SARS-CoV-2 pseudovirus was constructed as previously described using VSV
823 pseudotyped virus (G* Δ G-VSV) and VLP pseudotyped virus (SC2-VLPs). For VSV
824 pseudotyped virus, D614G, BA.2, BA.2-K356T, BA.2-P621S, BA.5, BA.5-K356T,
825 BA.2.75, BA.2.75-K356T, XBB.1.5, XBB.1.5-K356T, XBB.1.5-P621S, EG.5.1,
826 BA.2.86, BA.2.86-T356K, BA.2.86-S621P and JN.1 were constructed and used. For
827 VLP pseudotyped virus, BA.5, BA.5-K356T, BA.2.75, BA.2.75-K356T, XBB.1.5,
828 XBB.1.5-K356T, BA.2.86 and BA.2.86-T356K were constructed and used.

829

830 METHOD DETAILS

831

832 Putative Selective Sweep Region Detection

833 Genomic scans for selective sweeps were performed by two programs. The one is
834 OmegaPlus v3.0.3 ⁴⁹ and the other is RAiSD v2.9 ⁵⁰. A total of 184,224 SARS-CoV-2 spike
835 protein sequences were retrieved from the GISAID EpiCov database
836 (<https://www.gisaid.org/>) from Sep.01,2023 to Dec.31,2023. Sequence reads were aligned
837 to SARS-CoV-2 WT (NCBI Reference Sequence/NC_045512.2), BA2 (BA.2_hCoV-
838 19/France/IDF-IPP08725/2022|EPI_ISL_10071318), BA5 (BA.5_hCoV-

839 19/South_Africa/NCV1255/2022|EPI_ISL_12587877), XBB (XBB_hCoV-19/USA/NY-
840 NYULH8854/2022|EPI_ISL_15427610) reference using Minimap2 ⁵⁷. Sequences with
841 aligned lengths less than 3200 were excluded from the analysis, leaving 163,500 sequences
842 for alignment using MAFFT ⁵⁸. OmegaPlus was performed with the following parameters:
843 SARS-CoV-2 spike sequence was divided into 1000 bins (-grid 1000). The calculation of
844 linkage disequilibrium values between SNPs utilized a defined window range, specifically
845 set at 20bp as the minimum and 200bp as the maximum (-minwin 20 -maxwin 200). RAiSD
846 was performed with the following parameters: The grid size to specify the total number of
847 evaluation points was set to be 1000 (-G 1000); Missing data imputation was enabled (-M
848 1; per SNP). The sliding window size was set to be 200bp (-w200). Combination statistics
849 of both programs, the top 20% intersecting regions detected were selected as the candidate
850 sweep regions (-COT 0.2).

851

852 **Protein expression and purification**

853 The full-length sequence information of Spike (S) from BA.2.86 was obtained from the
854 NCBI (GenBank: WMV03218.1). The BA.2.86 spike and RBD protein genes were
855 obtained by using the BA.2.75 gene as a template and performing overlapping PCR.
856 The JN.1, BA.2.86-T356K, BA.2.86-ins483V Spike and JN.1, BA.2.86-T356K,
857 BA.2.86-N354Q, BA.2.86-K403R, BA.2.86-D450N, BA.2.86-H445V, BA.2.86-
858 W452L, BA.2.86-K481N, BA.2.86-ins483V, BA.2.86-K484A, BA.2.86-P486F,
859 BA.2.86-N417K, BA.2.86-H505Y, BA.2.86-(N417K+H505Y), BA.2.86-
860 (L455F+F456L), BA.2.86-(N417K+H505Y+L455F+F456L) RBD protein genes were
861 obtained by using the BA.2.86 Spike and RBD genes as a template and performing
862 overlapping PCR. The BA.2.75-K356T Spike and RBD protein genes were obtained by
863 using the BA.2.75 gene as a template and performing overlapping PCR. The
864 XBB.1.5-K356T Spike and RBD protein genes were obtained by using the XBB.1.5
865 gene as a template and performing overlapping PCR. To improve protein expression
866 and stabilize the trimeric conformation, proline substitution was performed at residues
867 817, 892, 899, 942, 986, and 987 in all Spike gene constructs. And all spikes were
868 modified to incorporate 2A mutations (R683A and R685A). Additionally, the C-
869 terminus of the constructs was modified by adding the T4 fibritin folding domain. To

870 facilitate protein purification, His or Strep II tags were attached at the C-terminus of all
871 gene constructs. The spike and RBD proteins were obtained using a eukaryotic
872 expression system. Plasmids containing the target protein were transiently transfected
873 into suspended HEK293F cells and cultured at 37°C in a constant-temperature shaker
874 with 8% CO₂ for 72 hours. After collecting the cell supernatant, preliminary purification
875 was performed using Ni-NTA or affinity StrepTactin resin chromatography. The
876 proteins were further purified using Superdex 200 10/300GL (Cytiva) or Superose 6
877 10/300 (Cytiva) in phosphate-buffered saline (PBS) at pH 7.4 to obtain high-purity
878 proteins.

879

880 **Surface Plasmon Resonance**

881 Surface plasmon resonance (SPR) was utilized for quantifying the binding affinity
882 between the antigen and receptor, as well as the antigen and heparan sulfate (HS). In
883 investigating interactions between the receptor and antigen, human ACE2 (hACE2) was
884 immobilized as the stationary phase, while the SARS-CoV-2 RBDs acted as the mobile
885 phase. For evaluating the affinity between HS and RBDs, the RBDs were immobilized
886 as the stationary phase, and HS molecules were used as the mobile phase. These
887 experiments were conducted at a temperature of 25°C, employing the Biacore8K
888 biosensor on the S series CM5 chip (Cytiva) for data detection and recording. The raw
889 data curves were analyzed and fitted using the Biacore 8K evaluation software (GE
890 Healthcare) employing a 1:1 binding model.

891

892 **Determination of Spike stability**

893 The stability of spike protein trimers of WT, Delta, BA.1, BA.2, BA.2.86, and
894 XBB.1.16 at neutral pH (pH = 7.4) was evaluated using the ThermoFluor Assay. 5 µg
895 sample of the spike protein was added to a 25 µL reaction system containing a final
896 concentration of 1× SYPRO Orange dye (Invitrogen, USA) as a fluorescence probe.
897 The protein was heated from 25°C to 99°C at a rate of 1°C/min using the QuantStudio™
898 6 Flex Real-Time PCR System instrument (Applied Biosystems, USA), and changes in
899 fluorescence signals were recorded during this temperature gradient. Data analysis and
900 curve plotting were performed using GraphPad Prism 9.4.0 (GraphPad Software Inc.).

901

902 **Cryo-EM sample preparation and data collection and model building**

903 Purified Spike trimer protein samples from SARS-CoV-2 variants BA.2.86, JN.1,
904 BA.2.86-T356K, BA.2.86-Ins483V, BA.2.75-K356T, and XBB.1.5-K356T were
905 diluted to a concentration of 1.0 mg/mL in PBS buffer, pH 7.4. Similarly, to prepare the
906 spike/hACE2 complex sample, the BA.2.86 Spike protein was mixed with hACE2 at a
907 molar ratio of 1:1.2, and the Spike/HS complex were mixed at a molar ratio of 1:1000,
908 while maintaining a constant concentration of 1.0 mg/mL for the Spike. 3 μ L of the
909 sample was pipetted onto pre-treated porous carbon-coated gold grid (C-flat, 300 mesh,
910 1.2/1.3, Protochips Inc.). The Vitrobot (FEI) was operated in a no-force mode to blot
911 the sample for 6 seconds under 100% relative humidity and room temperature
912 conditions. Subsequently, the sample was rapidly plunge frozen into liquid ethane.

913 Cryo-EM datasets were collected using a 200 kV FEI Krios ARCTICA or 300 kV FEI
914 Titan microscope (Thermo Fisher) equipped with K2, K3, or Falcon 4 detectors. Movies
915 were recorded with 32 frames at an exposure time of 0.2 seconds per frame, resulting
916 in a total dose of 60 e⁻ Å⁻². The automated single-particle data collection using
917 SerialEM resulted in a final pixel size of 1 Å, 1.036 Å, 1.04 Å or 1.07 Å.

918 Data processing was performed using cryoSPARC (v4.3.0) and Relion (v3.0.8). The
919 data underwent several steps including Motion Correction, CTF Estimation, Create
920 Templates, Template Picker, Extract from Micrographs, 2D classification, 2D selection
921 for Ab-initio Reconstruction, and subsequent Homogeneous Refinement. To enhance
922 the density around the RBD/RBD-ACE2 region, local refinement was conducted using
923 UCSF Chimera (v1.13.1) and CryoSPARC (v3.2.1). Structural modeling and
924 refinement were performed using WinCoot (v0.9.8.1) and Phenix (v1.20.1). Figures
925 were generated using UCSF ChimeraX (v1.6.1).

926

927 **Molecular Docking**

928 Electrostatic potential maps of the BA.2.86 S-trimer and BA.2.86-T356K S-trimer were
929 generated in UCSF ChimeraX (v1.6.1). A heparan sulfate fragment was docked to the
930 BA.2.86 and BA.2.86-T356K RBD using the Molecular operating environment (MOE)
931 software (Version 2020.09). The docking was done with default parameters.

932

933 **Infectivity assay**

934 Spike-pseudotyped VSV are prepared as described previously ⁵⁹. The spike genes
935 (D614G, Delta, BA.1, BA.2, BA.5, BA.5-K356T, BA.2.75, BA.2.75-K356T, XBB.1.5,
936 XBB.1.5-K356T, EG.5.1, BA.2.86, BA.2.86-T356K, JN.1) were optimized using
937 mammalian codons and inserted into the pcDNA3.1 vector. Afterwards, the plasmids
938 were transfected into 293T cells using Lipofectamine 3000 (Invitrogen). These cells
939 were separately infected with G*ΔG-VSV pseudotyped virus (Kerafast) and virus-like
940 particles (SC2-VLPs) pseudovirus. After incubation, the supernatant containing the
941 pseudovirus was collected, filtered through a 0.45 μm filter membrane, and stored at -
942 80°C for future use.

943 We used HEK293T-hACE2 cells, Vero cells and Huh-7 cells as targets in infectivity
944 assays. After quantification using RT-PCR, 100 ul aliquots of the diluted virus were
945 introduced into individual wells of 96-well cell culture plates. Chemiluminescence
946 monitoring was conducted following a 24-hour incubation period with a temperature of
947 37°C and a CO₂ concentration of 5%. The supernatant for each sample was adjusted to
948 a volume of 100 ul to ensure consistency. A mixture of luciferase substrate and cell lysis
949 buffer (PerkinElmer, Fremont, CA) was prepared and added to each well at a volume
950 of 100 ul. 150 ul of the resulting lysate was transferred to opaque 96-well plates after 2
951 min. 2 PerkinElmer Envision luminometer was used to detect the luminescence signal,
952 and the data was recorded in terms of relative luminescence unit (RLU) values. Each
953 experimental group consisted of two replicates and the entire set of experiments was
954 repeated three times. For infectivity assay related to heparin sulfate (HS), Virus-like
955 particles (SC2-VLPs) were selected to infect HEK293T cells overexpressing ACE2 and
956 Furin (293T-ACE2/Furin) treated with various concentrations of free heparin sulfate
957 (HS).

958

959 **Western blot analysis**

960 Cell-cell fusion assays were described previously ⁶⁰. At 48 h of infection, cells and
961 culture medium were collected. The culture media were centrifuged and the
962 supernatants were collected. After that, an equal volume of clarified supernatants was

963 mixed with 20% PEG6000 in PBS and centrifuged at 12,000g for 30 min at 4 °C,
964 followed by pellet resuspension in 1× SDS sample buffer.

965 For cell lysates, the collected cells were washed and lysed in lysis buffer (Cell
966 Signalling) and the lysates were diluted with 4 × sample buffer (Bio-Rad) and boiled
967 for 10 min before analysed using western blotting. The following antibodies were used
968 for protein detection: mouse anti-SARS-CoV-2 S1 antibodies (MAB105403, R&D
969 systems), rabbit anti-SARS-CoV-2 S monoclonal antibodies (PA1-41165, Thermo
970 Fisher Scientific), horseradish peroxidase (HRP)-conjugated anti-rabbit and anti-mouse
971 IgG polyclonal antibodies (Cell Signalling). The ChemiDoc Touch Imaging System
972 (Bio-Rad) was used to detected Chemiluminescence. The cleavage ratio of S1 or S2 to
973 FL in virions was determined by densitometry using ImageJ software (NIH).

974

975 **Cell-cell fusion assay**

976 Cell-cell fusion assays were described previously ⁴¹. In brief, HEK293T GFP11 and
977 Vero-GFP1-10 cells were seeded at 80% confluence at a 1:1 ratio in 48-well plates the
978 day before. Cells were co-transfected with 0.5 µg of spike expression plasmids. An
979 Incucyte was used to measure cell–cell fusion and fusion was determined as the
980 proportion of green area to total phase area. To measure cell surface spike expression,
981 HEK293 cells were transfected with S expression plasmids and stained with rabbit anti-
982 SARS-CoV-2 S S1/S2 polyclonal antibodies (Thermo Fisher Scientific, PA5-112048,
983 1:100). Negative control is normal rabbit IgG (SouthernBiotech, 0111-01, 1:100), and
984 Secondary antibodies are APC-conjugated goat anti-rabbit IgG polyclonal antibodies
985 (Jackson ImmunoResearch, 111-136-144, 1:50). The surface expression level of S
986 proteins was analysed using FACS Canto II (BD Biosciences) and FlowJo v.10.7.1 (BD
987 Biosciences).

988

989 **Antibody expression and purification**

990 SARS-CoV-2 RBD-specific mAbs were synthesized as described previously. Briefly,
991 antibody heavy and light chain genes were synthesized by GenScript, inserted into
992 pCMV3-CH, pCMV3-CL or pCMV3-CK vector plasmids by infusion (Vazyme), and
993 co-transfected into Expi293F cells (Thermo Fisher) using polyethylenimine.

994 Transfected cells were cultured at 36.5°C in 5% CO₂ and 175 rpm for 6-10 days.
995 Expression fluid was then collected and centrifuged, and the supernatants containing
996 monoclonal antibodies were purified with Protein A magnetic beads (GenScript).
997 Purified antibodies were verified by SDS-PAGE.

998

999 **Pseudovirus neutralization assay**

1000 SARS-CoV-2 variants (BA.5, BA.2.75, BQ.1.1, XBB.1.5, XBB.1.5-K356T, EG.5.1,
1001 BA.2.86, BA.2.86-T356K, JN.1) spike-pseudotyped virus was constructed based on a
1002 vesicular stomatitis virus (VSV) pseudovirus packaging system, as described
1003 previously. Spike gene is inserted into pcDNA3.1 vectors. G*ΔG-VSV virus (VSV G
1004 pseudotyped virus, Kerafast) and spike plasmids were transfected to HEK293T cells
1005 (American Type Culture Collection [ATCC], CRL-3216). After culture, the pseudovirus
1006 in the supernatant was harvested, filtered, aliquoted, and frozen at -80°C for further
1007 use.

1008 We used Huh-7 cells (Japanese Collection of Research Bioresources [JCRB], 0403) as
1009 targets in pseudovirus neutralization assays. Plasma samples or mAbs were serially
1010 diluted in culture media and mixed with pseudovirus, and incubated for 1 h in a 37°C
1011 incubator with 5% CO₂. Digest Huh-7 cells were seeded in the antibody-virus
1012 mixture. After 1 day incubation, the supernatant was discarded. D-luciferin reagent
1013 (PerkinElmer, 6066769) was added into the plates and incubated in the dark for 2 min,
1014 and cell lysis was transferred to plates for detection. The luminescence values were
1015 measured by a microplate spectrophotometer (PerkinElmer, HH3400). IC₅₀ values for
1016 mAbs and NT₅₀ values for plasma were determined by fitting a logistic regression
1017 model.

1018

1019 **ADCC assays**

1020 The full-length spike gene sequence of SARS-CoV-2 (GenBank: MN908947) was
1021 synthesized, with mutations for prefusion stabilization and modification on the furin
1022 cleavage site (Spike-6P2A or Spike-6P/GSAS). The Spike gene was inserted into the
1023 pLVX-puro vector. HEK293T cells(10 million) were transfected with 20.7 μg helper

1024 plasmid (pSPAX2), 13.8 μ g VSV-G expression plasmid (pMD2.G) and 1 μ g full-length
1025 spike expression vector (pLVX-puro) using the PEI transfection system(Yeasen,
1026 40816ES03) to generate the lentivirus. Cell supernatant containing lentivirus was
1027 collected 48 hours after transfection, centrifuge at 500 g at 4 °C for 10 min and filtered
1028 through a surfactant-free cellulose acetate 0.45 mm syringe filter. 5 ml lentivirus was
1029 used to infect 1 million low passage HEK293T cells. At 72 hours post infection, cells
1030 were stained with SA55-FITC for RBD labeling, single cell clone was sorted into a 96-
1031 well plate containing selective medium (DMEM+10 % FBS + 10 μ g/ml puromycin +
1032 1 % penicillin-streptomycin solution) using BD Aria II cell sorter in FITC channel.
1033 Single clone cell was expanded and tested for the Spike expression level via continuous
1034 puromycin selection and flow cytometry cell sortings. The clone with the highest Spike
1035 expression level (target cells) for amplification and used to evaluate the ADCC effect
1036 of antibodies.

1037 The ADCC effector cells (Human CD16a Jurkat reporter cells) are gift from Youchun
1038 Wang, which were engineered to express both the NFAT response element driving
1039 luciferase expressing systems and human CD16a receptor with 158V mutation for
1040 higher affinity to IgG1 and IgG3 isotypes. Similarly, we used flow cytometry to analyze
1041 the expression of human CD16 on the effector cells. Cells were incubated with BD
1042 Pharmingen PE Mouse Anti-Human CD16 and subjected for FACS analyses using BD
1043 Aria II cell sorter.

1044 To detect antibodies' potency to mediate ADCC, mAbs were pre-diluted in a reaction
1045 medium of 1640 medium (HyClone) containing 10% FBS (Gibco) and 1% penicillin-
1046 streptomycin solution. Add serial dilutions of antibodies in 10 μ L to wells. Meanwhile,
1047 add 10 μ L of reaction medium to the unstimulated control wells. Digest target cells and
1048 plate the target cells at a density of 1.67×10^6 cells/ml in 384-well culture plates in
1049 10 μ L of reaction medium, then aliquots of pre-diluted antibodies were incubated with
1050 target cells in 384-well culture plates for 10 minutes at 37 °C in the 5% CO₂ incubator.
1051 Subsequently, add the effector cells (Human CD16a Jurkat reporter cells) at a density
1052 of 1.67×10^6 cells/ml in 10 μ L of reaction medium to the culture wells. The mixtures
1053 were further incubated at 37°C in the 5% CO₂ incubator for 18 hours. Finally, add 30 μ L
1054 reagent of Stable-Lite Luciferase Assay System (Vazyme, DD1202) to each well and

1055 incubate in the dark for 2 minutes. The chemiluminescence signals were collected by
1056 PerkinElmer EnSight. The ADCC luciferase (luc) fold induction was calculated by the
1057 fold change of the relative light unit (RLU) values of test wells to control blank wells.
1058 The area under curve (AUC, log-concentration v.s. log-fold-change) values are
1059 calculated and used as a metric to evaluate the capability of each antibody to mediate
1060 ADCC. ADCC assays for all mAbs were conducted in two replicates.

1061

1062 **Protein vaccine preparation and mouse immunization**

1063 The spike proteins, including BA.5, EG.5.1, XBB.1.5, BA.2.86 and BA.2.86-T356K
1064 were used for mouse immunization. All of these proteins were purified as previously
1065 described.

1066 Animal experiments were carried out under study protocols approved by Rodent
1067 Experimental Animal Management Committee of Institute of Biophysics, Chinese
1068 Academy of Sciences (SYXK2023300) and Animal Welfare Ethics Committee of HFK
1069 Biologics (HFK-AP-20210930). Six- to eight-week-old female BALB/c mice were
1070 used for experiments. The mice were kept under a 12-hour light and 12-hour dark cycle,
1071 with room temperatures maintained between 20 °C and 26 °C. The humidity levels in
1072 the housing area ranged from 30% to 70%. Mice were immunized according to schemes
1073 in Fig. 7. Briefly, two cohorts of BALB/c mice were established to evaluate the
1074 immunogenic of various SARS-CoV-2 variants. For the first cohort, mice had a pre-
1075 existing immune background and received 0.3 ug SARS-CoV-2 WT inactivated vaccine
1076 (CoronaVac, against SARS-CoV-2 wild-type) as the primary vaccination at six- to eight
1077 weeks age, followed by a booster dose after 14 days. When these mice reached 5.5
1078 months of age, they were given an additional boost using the omicron (BA.5)
1079 inactivated vaccine (against SARS-CoV-2 BA.5 variant) with a dose of 0.3 ug as well.
1080 For the last dose of this cohort, the mice were intramuscularly administered 10 µg, 1
1081 mg/ml of spike protein from 5 different variants (BA.5, XBB.1.5, EG.5.1, BA.2.86 and
1082 BA.2.86-T356K) as immunogen. For the other cohort, mice did not undergo any form
1083 of immunization. They were intramuscularly administered 2 doses of 10 ug, 1 mg/ml
1084 of 5 types of spike proteins as described before. The interval between the two injections
1085 is 14 days. The adjuvants for inactivated vaccines and proteins are Al+CpG. Blood
1086 samples were collected on the 14th day post-immunization, and serum was obtained

1087 through centrifugation.

1088

1089 **QUANTIFICATION AND STATISTICAL ANALYSIS**

1090

1091 The statistical analyses were performed using Prism 8 (GraphPad). All experiments
1092 were conducted three times or more, as stated in the figure legends. When comparing
1093 two groups, unpaired t-tests were used for statistical evaluation; for multiple
1094 comparisons, one-way ANOVA was employed without post hoc correction. Non-linear
1095 regression analysis was performed using the inhibitor versus responder least-squares fit
1096 approach to calculate IC₅₀ values and confidence intervals. The mean plus standard
1097 deviation (SD) values are represented by error bars in the figures. The methods section
1098 and figure captions provide a list of the specific statistical tests utilized. Statistical
1099 significance was determined according to the following framework: ns: p > 0.05, *: p
1100 ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001.

1101

1102

1103 References

- 1104 1. Zhang, J., Cai, Y., Xiao, T., Lu, J., Peng, H., Sterling, S.M., Walsh, R.M., Jr., Rits-Volloch, S.,
1105 Zhu, H., Woosley, A.N., et al. (2021). Structural impact on SARS-CoV-2 spike protein by
1106 D614G substitution. *Science*. *372*, 525-530.
- 1107 2. Starr, T.N., Greaney, A.J., Hannon, W.W., Loes, A.N., Hauser, K., Dillen, J.R., Ferri, E., Farrell,
1108 A.G., Dadonaite, B., McCallum, M., et al. (2022). Shifting mutational constraints in the SARS-
1109 CoV-2 receptor-binding domain during viral evolution. *Science*. *377*, 420-424.
- 1110 3. Cao, Y., Yisimayi, A., Jian, F., Song, W., Xiao, T., Wang, L., Du, S., Wang, J., Li, Q., Chen, X.,
1111 et al. (2022). BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection.
1112 *Nature*. *608*, 593-602.
- 1113 4. Yue, C., Song, W., Wang, L., Jian, F., Chen, X., Gao, F., Shen, Z., Wang, Y., Wang, X., and Cao,
1114 Y. (2023). ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. *Lancet*
1115 *Infect Dis*. *23*, 278-280.
- 1116 5. Cao, Y., Jian, F., Wang, J., Yu, Y., Song, W., Yisimayi, A., Wang, J., An, R., Chen, X., Zhang,
1117 N., et al. (2023). Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD
1118 evolution. *Nature*. *614*, 521-529.
- 1119 6. Liu, Y. (2023). Attenuation and Degeneration of SARS-CoV-2 Despite Adaptive Evolution.
1120 *Cureus*. *15*, e33316.
- 1121 7. Yisimayi, A., Song, W., Wang, J., Jian, F., Yu, Y., Chen, X., Xu, Y., Yang, S., Niu, X., Xiao, T.,
1122 et al. (2024). Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting.
1123 *Nature*. *625*, 148-156.
- 1124 8. Harbison, A.M., Fogarty, C.A., Phung, T.K., Satheesan, A., Schulz, B.L., and Fadda, E. (2022).
1125 Fine-tuning the spike: role of the nature and topology of the glycan shield in the structure and
1126 dynamics of the SARS-CoV-2 S. *Chem Sci*. *13*, 386-395.
- 1127 9. Starr, T.N., Greaney, A.J., Hilton, S.K., Ellis, D., Crawford, K.H.D., Dingens, A.S., Navarro,
1128 M.J., Bowen, J.E., Tortorici, M.A., Walls, A.C., et al. (2020). Deep Mutational Scanning of
1129 SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding.
1130 *Cell*. *182*, 1295-1310.e1220.
- 1131 10. Kang, L., He, G., Sharp, A.K., Wang, X., Brown, A.M., Michalak, P., and Weger-Lucarelli, J.
1132 (2021). A selective sweep in the Spike gene has driven SARS-CoV-2 human adaptation. *Cell*.
1133 *184*, 4392-4400.e4394.
- 1134 11. Zhang, S., Liang, Q., He, X., Zhao, C., Ren, W., Yang, Z., Wang, Z., Ding, Q., Deng, H., Wang,
1135 T., et al. (2022). Loss of Spike N370 glycosylation as an important evolutionary event for the
1136 enhanced infectivity of SARS-CoV-2. *Cell Res*. *32*, 315-318.
- 1137 12. Chawla, H., Fadda, E., and Crispin, M. (2022). Principles of SARS-CoV-2 glycosylation. *Curr*
1138 *Opin Struct Biol*. *75*, 102402.
- 1139 13. Burton, D.R. (2017). What Are the Most Powerful Immunogen Design Vaccine Strategies?
1140 Reverse Vaccinology 2.0 Shows Great Promise. *Cold Spring Harb Perspect Biol*. *9*.
- 1141 14. Watanabe, Y., Berndsen, Z.T., Raghwani, J., Seabright, G.E., Allen, J.D., Pybus, O.G.,
1142 McLellan, J.S., Wilson, I.A., Bowden, T.A., Ward, A.B., et al. (2020). Vulnerabilities in
1143 coronavirus glycan shields despite extensive glycosylation. *Nat Commun*. *11*, 2688.
- 1144 15. Casalino, L., Gaieb, Z., Goldsmith, J.A., Hjorth, C.K., Dommer, A.C., Harbison, A.M., Fogarty,
1145 C.A., Barros, E.P., Taylor, B.C., McLellan, J.S., et al. (2020). Beyond Shielding: The Roles of
1146 Glycans in the SARS-CoV-2 Spike Protein. *ACS Cent Sci*. *6*, 1722-1734.

- 1147 16. Starr, T.N., Zepeda, S.K., Walls, A.C., Greaney, A.J., Alkhovsky, S., Veesler, D., and Bloom,
1148 J.D. (2022). ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. *Nature*. *603*,
1149 913-918.
- 1150 17. Sheward, D.J., Yang, Y., Westerberg, M., Öling, S., Muschiol, S., Sato, K., Peacock, T.P.,
1151 Karlsson Hedestam, G.B., Albert, J., and Murrell, B. (2023). Sensitivity of the SARS-CoV-2
1152 BA.2.86 variant to prevailing neutralising antibody responses. *Lancet Infect Dis*. *23*, e462-e463.
- 1153 18. Uriu, K., Ito, J., Kosugi, Y., Tanaka, Y.L., Mugita, Y., Guo, Z., Hinay, A.A., Jr., Putri, O., Kim,
1154 Y., Shimizu, R., et al. (2023). Transmissibility, infectivity, and immune evasion of the SARS-
1155 CoV-2 BA.2.86 variant. *Lancet Infect Dis*. *23*, e460-e461.
- 1156 19. Yang, S., Yu, Y., Jian, F., Song, W., Yisimayi, A., Chen, X., Xu, Y., Wang, P., Wang, J., Yu, L.,
1157 et al. (2023). Antigenicity and infectivity characterisation of SARS-CoV-2 BA.2.86. *Lancet*
1158 *Infect Dis*. *23*, e457-e459.
- 1159 20. Li, X.F., Cui, Z., Fan, H., Chen, Q., Cao, L., Qiu, H.Y., Zhang, N.N., Xu, Y.P., Zhang, R.R.,
1160 Zhou, C., et al. (2022). A highly immunogenic live-attenuated vaccine candidate prevents
1161 SARS-CoV-2 infection and transmission in hamsters. *Innovation (Camb)*. *3*, 100221.
- 1162 21. Herder, V., Mendonca, D.C., Upfold, N., Furnon, W., Kerr, K., Ilia, G., Allan, J., Sigal, A., Patel,
1163 A.H., and Palmarini, M. (2023). The SARS-CoV-2 Omicron sub-variant BA.2.86 is attenuated
1164 in hamsters. *bioRxiv*. <https://doi.org/10.1101/2023.11.10.566576>.
- 1165 22. Tamura, T., Mizuma, K., Nasser, H., Deguchi, S., Padilla-Blanco, M., Uriu, K., Tolentino,
1166 J.E.M., Tsujino, S., Suzuki, R., Kojima, I., et al. (2023). Virological characteristics of the SARS-
1167 CoV-2 BA.2.86 variant. *bioRxiv*. <https://doi.org/10.1101/2023.11.02.565304>.
- 1168 23. Toelzer, C., Gupta, K., Yadav, S.K.N., Borucu, U., Davidson, A.D., Kavanagh Williamson, M.,
1169 Shoemark, D.K., Garzoni, F., Staufer, O., Milligan, R., et al. (2020). Free fatty acid binding
1170 pocket in the locked structure of SARS-CoV-2 spike protein. *Science*. *370*, 725-730.
- 1171 24. Henderson, R., Edwards, R.J., Mansouri, K., Janowska, K., Stalls, V., Kopp, M., Haynes, B.F.,
1172 and Acharya, P. (2020). Glycans on the SARS-CoV-2 Spike Control the Receptor Binding
1173 Domain Conformation. *bioRxiv*. <https://doi.org/10.1101/2020.06.26.173765>.
- 1174 25. Ou, X., Xu, G., Li, P., Liu, Y., Zan, F., Liu, P., Hu, J., Lu, X., Dong, S., Zhou, Y., et al. (2023).
1175 Host susceptibility and structural and immunological insight of S proteins of two SARS-CoV-2
1176 closely related bat coronaviruses. *Cell Discov*. *9*, 78.
- 1177 26. Zhang, S., Qiao, S., Yu, J., Zeng, J., Shan, S., Tian, L., Lan, J., Zhang, L., and Wang, X. (2021).
1178 Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2
1179 evolution. *Nat Commun*. *12*, 1607.
- 1180 27. Wrobel, A.G., Benton, D.J., Xu, P., Roustan, C., Martin, S.R., Rosenthal, P.B., Skehel, J.J., and
1181 Gamblin, S.J. (2020). SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on
1182 virus evolution and furin-cleavage effects. *Nat Struct Mol Biol*. *27*, 763-767.
- 1183 28. Khan, K., Lustig, G., Römer, C., Reedoy, K., Jule, Z., Karim, F., Ganga, Y., Bernstein, M., Baig,
1184 Z., Jackson, L., et al. (2023). Evolution and neutralization escape of the SARS-CoV-2 BA.2.86
1185 subvariant. *Nature Communications*. *14*, 8078.
- 1186 29. Zhang, L., Kempf, A., Nehlmeier, I., Cossmann, A., Richter, A., Bdeir, N., Graichen, L.,
1187 Moldenhauer, A.-S., Dopfer-Jablonka, A., Stankov, M.V., et al. (2024). SARS-CoV-2 BA.2.86
1188 enters lung cells and evades neutralizing antibodies with high efficiency. *Cell*,
1189 <https://doi.org/10.1016/j.cell.2023.12.025>.
- 1190 30. Qu, P., Xu, K., Faraone, J.N., Goodarzi, N., Zheng, Y.-M., Carlin, C., Bednash, J.S., Horowitz,

- 1191 J.C., Mallampalli, R.K., Saif, L.J., et al. (2024). Immune evasion, infectivity, and fusogenicity
1192 of SARS-CoV-2 BA.2.86 and FLip variants. *Cell*, <https://doi.org/10.1016/j.cell.2023.12.026>.
- 1193 31. WHO (2023). Tracking SARS-CoV-2 variants. <https://www.who.int/activities/tracking-SARS-CoV-2-variants>.
- 1195 32. Koehler, M., Delguste, M., Sieben, C., Gillet, L., and Alsteens, D. (2020). Initial Step of Virus
1196 Entry: Virion Binding to Cell-Surface Glycans. *Annu Rev Virol.* 7, 143-165.
- 1197 33. Stencel-Baerenwald, J.E., Reiss, K., Reiter, D.M., Stehle, T., and Dermody, T.S. (2014). The
1198 sweet spot: defining virus-sialic acid interactions. *Nature reviews Microbiology.* 12, 739-749.
- 1199 34. Clausen, T.M., Sandoval, D.R., Spliid, C.B., Pihl, J., Perrett, H.R., Painter, C.D., Narayanan,
1200 A., Majowicz, S.A., Kwong, E.M., McVicar, R.N., et al. (2020). SARS-CoV-2 Infection
1201 Depends on Cellular Heparan Sulfate and ACE2. *Cell.* 183, 1043-1057.e1015.
- 1202 35. Kumlin, U., Olofsson, S., Dimock, K., and Arnberg, N. (2008). Sialic acid tissue distribution
1203 and influenza virus tropism. *Influenza Other Respir Viruses.* 2, 147-154.
- 1204 36. Conca, D.V., Bano, F., Wirén, J.v., Scherrer, L., Svirelis, J., Thorsteinsson, K., Dahlin, A., and
1205 Bally, M. (2024). Variant-specific interactions at the plasma membrane: Heparan sulfate's
1206 impact on SARS-CoV-2 binding kinetics. *bioRxiv*. <https://doi.org/10.1101/2024.01.10.574981>.
- 1207 37. Syed, A.M., Taha, T.Y., Tabata, T., Chen, I.P., Ciling, A., Khalid, M.M., Sreekumar, B., Chen,
1208 P.Y., Hayashi, J.M., Soczek, K.M., et al. (2021). Rapid assessment of SARS-CoV-2-evolved
1209 variants using virus-like particles. *Science.* 374, 1626-1632.
- 1210 38. Planas, D., Staropoli, I., Michel, V., Lemoine, F., Donati, F., Prot, M., Porrot, F., Guivel-
1211 Benhassine, F., Jeyarajah, B., Brisebarre, A., et al. (2023). Distinct evolution of SARS-CoV-2
1212 Omicron XBB and BA.2.86 lineages combining increased fitness and antibody evasion.
1213 *bioRxiv*. <https://doi.org/10.1101/2023.11.20.567873>.
- 1214 39. Park, Y.J., Walls, A.C., Wang, Z., Sauer, M.M., Li, W., Tortorici, M.A., Bosch, B.J., DiMaio, F.,
1215 and Veesler, D. (2019). Structures of MERS-CoV spike glycoprotein in complex with sialoside
1216 attachment receptors. *Nat Struct Mol Biol.* 26, 1151-1157.
- 1217 40. Pronker, M.F., Creutznacher, R., Drulyte, I., Hulswit, R.J.G., Li, Z., van Kuppeveld, F.J.M.,
1218 Snijder, J., Lang, Y., Bosch, B.J., Boons, G.J., et al. (2023). Sialoglycan binding triggers spike
1219 opening in a human coronavirus. *Nature.* 624, 201-206.
- 1220 41. Meng, B., Abdullahi, A., Ferreira, I., Goonawardane, N., Saito, A., Kimura, I., Yamasoba, D.,
1221 Gerber, P.P., Fatih, S., Rathore, S., et al. (2022). Altered TMPRSS2 usage by SARS-CoV-2
1222 Omicron impacts infectivity and fusogenicity. *Nature.* 603, 706-714.
- 1223 42. Mlcochova, P., Kemp, S.A., Dhar, M.S., Papa, G., Meng, B., Ferreira, I., Datir, R., Collier, D.A.,
1224 Albecka, A., Singh, S., et al. (2021). SARS-CoV-2 B.1.617.2 Delta variant replication and
1225 immune evasion. *Nature.* 599, 114-119.
- 1226 43. Willett, B.J., Grove, J., MacLean, O.A., Wilkie, C., De Lorenzo, G., Furnon, W., Cantoni, D.,
1227 Scott, S., Logan, N., Ashraf, S., et al. (2022). SARS-CoV-2 Omicron is an immune escape
1228 variant with an altered cell entry pathway. *Nat Microbiol.* 7, 1161-1179.
- 1229 44. Cui, Z., Liu, P., Wang, N., Wang, L., Fan, K., Zhu, Q., Wang, K., Chen, R., Feng, R., Jia, Z., et
1230 al. (2022). Structural and functional characterizations of infectivity and immune evasion of
1231 SARS-CoV-2 Omicron. *Cell.* 185, 860-871.e813.
- 1232 45. Jian, F., Feng, L., Yang, S., Yu, Y., Wang, L., Song, W., Yisimayi, A., Chen, X., Xu, Y., Wang,
1233 P., et al. (2023). Convergent evolution of SARS-CoV-2 XBB lineages on receptor-binding
1234 domain 455-456 synergistically enhances antibody evasion and ACE2 binding. *PLoS Pathog.*

- 1235 19, e1011868.
- 1236 46. Pinto, D., Park, Y.J., Beltramello, M., Walls, A.C., Tortorici, M.A., Bianchi, S., Jaconi, S.,
1237 Culap, K., Zatta, F., De Marco, A., et al. (2020). Cross-neutralization of SARS-CoV-2 by a
1238 human monoclonal SARS-CoV antibody. *Nature*. 583, 290-295.
- 1239 47. Deimel, L.P., Xue, X., and Sattentau, Q.J. (2022). Glycans in HIV-1 vaccine design - engaging
1240 the shield. *Trends Microbiol.* 30, 866-881.
- 1241 48. Smith, J.M., and Haigh, J. (2007). The hitch-hiking effect of a favourable gene. *Genet Res.* 89,
1242 391-403.
- 1243 49. Alachiotis, N., Stamatakis, A., and Pavlidis, P. (2012). OmegaPlus: a scalable tool for rapid
1244 detection of selective sweeps in whole-genome datasets. *Bioinformatics*. 28, 2274-2275.
- 1245 50. Alachiotis, N., and Pavlidis, P. (2018). RAiSD detects positive selection based on multiple
1246 signatures of a selective sweep and SNP vectors. *Commun Biol.* 1, 79.
- 1247 51. Tate, M.D., Brooks, A.G., and Reading, P.C. (2011). Specific sites of N-linked glycosylation on
1248 the hemagglutinin of H1N1 subtype influenza A virus determine sensitivity to inhibitors of the
1249 innate immune system and virulence in mice. *J Immunol.* 187, 1884-1894.
- 1250 52. Altman, M.O., Angel, M., Košík, I., Trovão, N.S., Zost, S.J., Gibbs, J.S., Casalino, L., Amaro,
1251 R.E., Hensley, S.E., Nelson, M.I., et al. (2019). Human Influenza A Virus Hemagglutinin Glycan
1252 Evolution Follows a Temporal Pattern to a Glycan Limit. *mBio*. 10.
- 1253 53. Watanabe, Y., Bowden, T.A., Wilson, I.A., and Crispin, M. (2019). Exploitation of glycosylation
1254 in enveloped virus pathobiology. *Biochim Biophys Acta Gen Subj.* 1863, 1480-1497.
- 1255 54. Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., et al.
1256 (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. *Science*. 369, 77-
1257 81.
- 1258 55. Wang, K., Cao, Y., Zhou, Y., Wu, J., Jia, Z., Hu, Y., Yisimayi, A., Fu, W., Wang, L., Liu, P., et
1259 al. (2021). A third dose of inactivated vaccine augments the potency, breadth, and duration of
1260 anamnestic responses against SARS-CoV-2. *medRxiv*, 2021.2009.2002.21261735.
- 1261 56. Wagh, K., Kreider, E.F., Li, Y., Barbian, H.J., Learn, G.H., Giorgi, E., Hraber, P.T., Decker, T.G.,
1262 Smith, A.G., Gondim, M.V., et al. (2018). Completeness of HIV-1 Envelope Glycan Shield at
1263 Transmission Determines Neutralization Breadth. *Cell Rep.* 25, 893-908.e897.
- 1264 57. Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*. 34,
1265 3094-3100.
- 1266 58. Katoh, K., and Standley, D.M. (2013). MAFFT Multiple Sequence Alignment Software Version
1267 7: Improvements in Performance and Usability. *Molecular Biology and Evolution*. 30, 772-780.
- 1268 59. Li, Q., Wu, J., Nie, J., Zhang, L., Hao, H., Liu, S., Zhao, C., Zhang, Q., Liu, H., Nie, L., et al.
1269 (2020). The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity.
1270 *Cell*. 182, 1284-1294.e1289.
- 1271 60. Meng, B., Datir, R., Choi, J., Baker, S., Dougan, G., Hess, C., Kingston, N., Lehner, P.J., Lyons,
1272 P.A., Matheson, N.J., et al. (2022). SARS-CoV-2 spike N-terminal domain modulates
1273 TMPRSS2-dependent viral entry and fusogenicity. *Cell Reports*. 40, 111220.
- 1274