

Intolerance of uncertainty does not significantly predict decisions about delayed, probabilistic rewards

Short title: *A FAILURE TO REPLICATE LUHMANN, C. C., ISHIDA, K., & HAJCAK, G. (2011).*

Pedro L. Cobos^{1,2}, María J. Quintero^{1,2}, Francisco J. López^{1,2}, David Luque^{1,2}, Luis F. Ciria³ y Joaquín Morís^{1,2}

1 Universidad de Málaga, Málaga, Spain, 2 Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain, 3 Mind, Brain and Behavior Research Center (CIMCYC), Universidad de Granada, Granada, Spain.

Corresponding authors:

*Joaquín Morís, Facultad de Psicología (Universidad de Málaga), 29010, Spain
(jmoris@uma.es)

*Pedro L. Cobos, Facultad de Psicología (Universidad de Málaga), 29010, Spain
(p_cobos@uma.es)

20 **Abstract**

21 Intolerance of Uncertainty (IU) is thought to lead to maladaptive behaviours and dysfunctional
22 decision making, both in the clinical and healthy population. The seminal study reported by
23 Luhmann and collaborators in 2011 showed that IU was negatively associated with choosing a
24 delayed, but more certain and valuable, reward over choosing an immediate, but less certain
25 and valuable, reward. These findings have been widely disseminated across the field of
26 personality and individual differences because of their relevance to understand the role of IU in
27 maladaptive behaviours in anxiety-related disorders. We conducted a study to replicate and
28 extend Luhmann et al.'s results with a sample of 313 participants, which exceeded the size
29 necessary ($N = 266$) to largely improve the statistical power of the original study by using the
30 *small telescopes approach*. The results of our well powered study strongly suggest that the
31 relationship between IU and the tendency to prefer an immediate, but less certain and less
32 valuable reward is virtually negligible. Consequently, although this relationship cannot be
33 definitely discarded, we conclude that it cannot be detected with Luhmann et al.'s (2011)
34 decision-making task.

35

36 **Keywords:**

37 intolerance of uncertainty; decision making; delayed reward; inefficient behaviour

38

39

40

41

Introduction

42 Intolerance of uncertainty (IU) has been defined as “an individual’s dispositional
43 incapacity to endure the aversive response triggered by the perceived absence of salient, key,
44 or sufficient information, and sustained by the associated perception of uncertainty” [2]. A
45 distinctive feature of IU is that uncertainty involves a future-oriented unpredictable component,
46 a hallmark that makes a difference with intolerance of ambiguity, which would involve
47 unpredictability regarding the “here and now” [3]. Unadjusted reactions to uncertain future
48 relevant events have been claimed to be crucial to understand the relationship between IU and
49 pathological anxiety, as this condition has been related to maladaptive anticipatory reactions to
50 unpredictable future threats [4]. Consequently, it is not surprising that IU has been found to
51 play a crucial role in several anxiety-related disorders [5–9], as well as a transdiagnostic
52 vulnerability factor for the development and maintenance of anxiety and depression symptoms
53 [7, 10, 11].

54 Studies about IU have greatly improved our knowledge about the concept itself, its
55 assessment, its relationship with different mental disorders as well as with other dispositional
56 factors [12]. However, there is insufficient knowledge about the expression of IU in terms of
57 behaviour and decision-making [12]. Therefore, the assessment of IU has to rely mostly on self-
58 report measures that may be more prone to subjective biases. Additionally, a better
59 understanding about how IU relates to behaviour and decision-making is warranted if we are to
60 find out the causal mechanisms through which IU promotes the development and maintenance
61 of symptoms in different psychopathology conditions.

62 One extended idea about IU is that the incapacity to endure uncertainty in some
63 individuals makes them engage in behaviours and decisions intended to turn uncertain situations
64 into more predictable ones or to enhance perceived control [2, 5, 13, 14]. Consistently, high IU
65 individuals have been described as risk avoiders [2] who, if needed, may sometimes behave to

66 gain a feeling of predictability even at the cost of efficiency [15–17]. However, Luhmann et al.
67 [1] proposed that decision-making guided by IU may not always aim at avoiding risk or enhance
68 perceived predictability. According to them, the motivation driving behaviour and decision-
69 making in high IU people is the urgent need to escape from (or avoid) the distress caused by
70 uncertainty. This hypothesis slightly differs from the previous one in that it explicitly states that
71 the aversion to uncertainty-related distress is greater than the aversion to uncertainty itself.
72 Interestingly, this idea has empirical implications. In some circumstances, high IU people may
73 choose more uncertain outcomes of lower value to avoid, or escape from, longer periods of
74 distress waiting for less uncertain outcomes of higher value.

75 Luhmann et al. [1] provided evidence supporting their hypothesis in an experiment with
76 50 non-clinical participants. They went through 100 trials in each of which they had to decide
77 between selecting an immediate choice with a 50% chance of receiving 4 cents or waiting to
78 select a delayed choice with a 70% chance of receiving 6 cents. In both cases, participants knew
79 right after their response if they had obtained the reward or not. Luhmann et al. predicted that
80 high IU participants, compared with low IU participants, would show a higher preference for
81 the immediate but more uncertain and less valuable outcome over the delayed but less uncertain
82 and more valuable outcome. Consistently, they found a negative association between IU scores
83 and willingness to wait for the second stimulus, after controlling for trait anxiety (TA) and
84 monetary delay discounting, as measured through Kirby and Marakovic's Delay-Discounting
85 questionnaire [18].

86 Luhmann et al.'s [1] study has been cited very often, as their results have important
87 implications about the role of IU in some psychopathologies, and the conception of IU.
88 However, as far as we know, Tanovic et al.'s study [19] is the only attempt to replicate Luhmann
89 et al.'s results. Unfortunately, both the analyses conducted and the results found by Tanovic et
90 al. [19] were considerably different from Luhmann et al.'s. First, Tanovic et al. only found a

91 relationship between inhibitory IU (I-IU, one of the two factors of the IU scale) and willingness
92 to wait, whereas Luhmann et al. did not include the IU factors in the analyses. Second, Tanovic
93 et al. did not conduct any analysis to assess the specificity of the relationship found between I-
94 IU and willingness to wait. Finally, Tanovic et al. used a rather small sample size of 56
95 participants, which may explain the differences between their results and those found by
96 Luhmann et al. To ascertain the true relationship between IU and willingness to wait under
97 uncertainty, we decided to carry out a considerably strict replication and extension of Luhmann
98 et al.'s study.

99 Our replication differed from the original study in a few respects. First, the sample size
100 was larger than the original study to be able to detect a smaller effect. Second, the behavioural
101 task was slightly modified to monitor participants' engagement and to have an additional
102 control of their performance. As in the original study, we tested if the referred association is
103 observed after controlling for trait anxiety. Another concern regarding the task used by
104 Luhmann et al. [1] is that the ability to refrain from choosing immediate small rewards to get
105 delayed and more valuable rewards may be related to impulsivity [20]. Therefore, as Luhmann
106 et al. [1], we performed statistical analyses to test if the association between IU and willingness
107 to wait is found after controlling for a delay discount factor calculated from participants'
108 responses in a questionnaire based on decisions between monetary rewards differing in
109 magnitude and delay. To extend the original findings, participants in our study fulfilled the
110 Spanish version of the short UPPS-P impulsive behaviour scale (SUPPS-P) [21]. This way, we
111 could assess the specificity of the relationship between IU and willingness to wait after
112 controlling also for impulsivity, in addition to trait anxiety and delay discount.

113 **Method**

114 Except for a few minor details referred below in the Method section, we stuck to the
115 specifications made in our previously published registered report protocol [22].

116 Participants

117 Initially, we planned to recruit participants from several Spanish universities [22], but
118 finally, only participants from University of Málaga were recruited. 345 undergraduate students
119 from the referred university participated in the experiment in exchange for a monetary reward
120 and course credit. The amount of money earned depended on their performance during the
121 decision-making task itself. We included participants with normal or corrected-to-normal
122 vision. Recruitment started on 15 February 2022, and finished on 22 November 2022. Before
123 being recruited, participants read and signed the informed consent by ticking an “Accept” box.
124 Participants were naïve to the aim of the study to avoid expectation effects. 313 participants
125 (254 females) from the initial sample were selected for data analyses as they met the selection
126 criteria described in our previously published registered report protocol (see below in the Data
127 selection section). The experimental procedure was approved by the Ethics Committee of
128 University of Málaga (CEUMA-46-2020-H), complying with the Declaration of Helsinki [23].
129 The target sample size was calculated by executing an R [24] script (<https://osf.io/va5db/>) that
130 uses the packages pwr (version 1.3–0) [25] and MBESS (version 4.6.0) [26, 27]. Following the
131 small-telescopes approach proposed by Simonsohn [28], we estimated a target effect size based
132 on the original experiment. According to Simonsohn’s proposal, the target effect size would be
133 the effect size that can be detected with a power of 33% in the original study. In Luhmann et
134 al.’s study, the main results were obtained from a multiple regression analysis where IU and
135 TA scores, and the delay discount factor were included as predictors, and the percentage of
136 trials in which a delayed choice was made, $p(\text{Wait})$, was included as the dependent variable.
137 This analysis yielded significant regression coefficients for IU and delay discount, but not for
138 TA. Based on this result, we considered two possible sample sizes to choose the most
139 conservative one. In the original study, that multiple regression model had 3 degrees of freedom
140 in the numerator and 45 in the denominator. For the omnibus regression, the effect size that

141 could be detected with a 33% power in the original study is $f_2 = 0.081$. The sample size required
142 to detect that effect size in a multiple regression with a power of 95%, using an $\alpha = .05$, would
143 be of 215 participants. However, the main theoretical point is the relation between IU and the
144 behavioural task, as measured by $p(\text{Wait})$. Focusing on the targeted correlation coefficient
145 between IU and $p(\text{Wait})$, the effect size that can be detected with a 33% power in the original
146 study is $f_2 = 0.049$, and the sample size required to detect this effect with a power of 95% would
147 be $n = 266$.

148 As mentioned before, we chose the most conservative sample size, $n = 266$. This sample
149 would be 5.4 times the original sample, and lead to a highly powered experiment. In our
150 previous registered report [22], we stated that recruitment would stop as soon as a size of 266
151 participants were reached after excluding from the analyses the data from those participants
152 who did not meet the selection criteria (see below). Instead of this procedure, we recruited a
153 number of participants well over the target sample size to ensure that the final sample for data
154 analyses have a size of 266 or greater.

155 **Questionnaires**

156 Following Luhmann et al. [1], all participants completed the IU, TA, and delay
157 discounting questionnaires. As discussed in the introduction section, an impulsivity test was
158 also included. Specifically, we used the following questionnaires:

159 **The Spanish adaptation of the Intolerance of Uncertainty Scale**

160 The IUS [29, 30] is a 27-item self-report measure that assesses the degree to which
161 individuals find uncertainty to be distressing and undesirable (internal consistency of .91 and
162 test-retest reliability of .78; [31]). The IUS includes two subscales known as Prospective
163 Intolerance of Uncertainty (11-items) and Inhibitory Intolerance of Uncertainty (16-items).
164 Items are rated on a five-point Likert scale ranging from 1 (*not at all characteristic of me*) to 5
165 (*extremely characteristic of me*).

166 **The Spanish adaptation of the trait subscale of the State Trait Anxiety Inventory, Form**

167 **Y**

168 This subscale of the STAI [32, 33] is a 20-item self-report questionnaire with good
169 psychometric properties (internal consistency between .90 and .95, and test-retest reliability
170 between .84 and .91). STAI includes two subscales known as Trait Anxiety (20 items) and State
171 Anxiety (20 items), but participants only completed the Trait Anxiety (TA) subscale. Items in
172 the TA subscale are rated on a four-point Likert scale ranging from 0 (*nothing*) to 3 (*a lot*).

173 **The Spanish adaptation of the Delay-Discounting Test**

174 This test [34, 35] is a 27-item monetary-choice questionnaire asking for individual
175 preferences between smaller, immediate rewards and larger, delayed rewards varying on their
176 value and time to be delivered (test-retest reliability between .63 and .77). After reading each
177 item (e.g., “Would you prefer 55€ today, or 75€ in 61 days?”), participants have to indicate
178 which alternative they would prefer to receive by marking the alternative in the questionnaire.

179 **The Spanish adaptation of the SUPPS-P Impulsive Behavior Scale**

180 This test [21, 36] is a 20-item inventory designed to measure five distinct personality
181 facets of impulsive behaviour: Positive urgency, negative urgency, lack of perseverance, lack
182 of premeditation, and sensation seeking (internal consistency between .61 and .81). Items are
183 rated on a four-point Likert scale ranging from 1 (*strongly agree*) to 4 (*strongly disagree*).
184 Previous studies have shown weak correlations between the Delay-Discounting Test and
185 different trait measures of impulsivity [34, 37]. This indicates that this test might be capturing
186 only some aspects of impulsivity. Because of this, we expected that including SUPPS-P in the
187 analysis, compared to using only the Delay-Discounting Test, would provide additional
188 information, and allow a better interpretation of the results obtained (see below).

189 **Procedure**

190 Although the study was run using Google Forms and a JavaScript-coded program that
191 were designed to conduct the study online [22], we finally decided to use our laboratory for the
192 sake of comparability between our experiment and Luhmann et al.'s (2011). Our laboratory is
193 equipped with IBM-compatible PCs and participants' responses were registered through a
194 standard QWERTY keyboard. Participants entered our laboratory in groups of different sizes
195 (up to a maximum of 20 per session) and read an informed consent that had to be signed to
196 participate. Then they completed the series of questionnaires and performed a decision-making
197 task. Questionnaires were completed online using Google Forms. Answering the whole set of
198 items of each questionnaire was compulsory. The decision-making task was coded in JavaScript
199 using Psychopy (version 2020.1) [38] and jsPsych (version 5.0.3) [39] and was hosted and
200 deployed online on a secure server at University of Málaga. The task is available at the OSF
201 repository <https://osf.io/qyk87/>.

202 After completing all the questionnaires, participants accessed the online platform to
203 perform the decision-making task described in Luhmann et al.'s study. In this task, each trial
204 began with the presentation of two empty rectangles displayed on a grey background, side by
205 side at the centre of the computer screen, for a minimum period of time of 0.5 s (see below).
206 Then, the left rectangle was filled in with two colours (red and green). The colours in the
207 rectangles provided information about the probability of being and not being rewarded (see Fig
208 1), which is represented by the size of the green and red areas, respectively (e.g., if both areas
209 had the same size, the likelihood of receiving the reward was 50%). Simultaneously, the
210 monetary value of the reward was displayed above the rectangle. Selecting this first option (i.e.,
211 the immediate choice) always led to a 50% chance of receiving a 4 cents reward. Alternatively,
212 participants could wait for the appearance of a delayed choice indicated by the display of the
213 green and red areas in the right rectangle and the offset of these colours in the left rectangle.
214 This delayed choice always led to a 70% chance of receiving 6 cents. Immediately after

215 participants select any choice by pressing the spacebar, the rectangle was completely filled in
216 with only one colour for 1000 ms, green or red, indicating whether or not, respectively, the
217 reward was gained. Participants also received additional information through text messages
218 telling whether they received the reward or not, and the money accumulated so far. The duration
219 of the feedback was 1 s. To prevent large deviations from the probabilities described to the
220 participants, reward events followed a pseudorandom distribution. In each block of ten choices
221 of the same type, the number of wins and losses was fixed (5 and 5 in the case of immediate
222 choices, and 7 and 3 in the case of delayed choices, respectively), being order randomized
223 within blocks.

224 ----- INSERT FIGURE 1 -----

225 We also added a new type of trial to enhance and assess the participants' engagement
226 with the task. Ten check trials were included in which the only choice was a 100% chance of
227 receiving 10 cents, which was indicated by the display of a new rectangle at the centre of the
228 screen completely filled in with green colour. Participants were allowed to select this choice by
229 pressing key "E" on their keyboard within three seconds after the rectangle onset. If this choice
230 was not selected in time, or another key was pressed, a message was displayed telling
231 participants that they missed the possibility of gaining 10 cents. Note that participants had to
232 press key "E", instead of the spacebar (i.e., the selection key in normal trials), to prevent them
233 from performing the task in an automatic or inattentive way. Check trials were scheduled to
234 occur pseudo-randomly so that only one appeared among the last 5 trials of each 10-trial block.
235 This new type of trials constitutes a modification of the original task that was meant not only
236 to enhance the engagement with the task, but also to discard from further analysis the results
237 from those participants who were not adequately paying attention to the stimuli.

238 A critical detail of the task was that the delay between the onset of the immediate choice
239 and the delayed choice varied between 5 and 20 seconds according to a truncated exponential

240 distribution to maximise uncertainty about the time for the second choice to appear. Crucially,
241 participants were explicitly told that they could not move on to the next trial any sooner by
242 selecting the immediate choice since this action would simply extend the following inter-trial
243 interval (ITI). The ITI followed the same variable time schedule as the delays between choice
244 options. Thus, if in a given trial the programmed delay between choice options was, for instance,
245 11 s, and the participant took 2 s to select the first choice, the next ITI lasted for 9.5 s, i.e., the
246 result of adding the 11 s of programmed delay minus the 2 s response time to the minimum ITI
247 duration of 0.5 s. Participants completed 10 practice trials to familiarize with the task procedure.
248 In these trials, they were instructed to make specific choices (i.e., on half of the practice trials,
249 they were requested to select the immediate choice, while on the other half, they had to select
250 the delayed choice) to ensure that they were exposed to the full range of possible outcomes.
251 Two additional practice trials were also added to get participants familiar with the check trials.
252 In both of them, they were instructed to press key "E" within three seconds. After practice trials,
253 a total of 100 trials (plus 10 check trials) were administered. The task lasted for, approximately,
254 25 minutes.

255 **Data selection**

256 As planned in our registered report protocol [22], participants not completing the entire
257 session and the questionnaires were excluded from analyses ($n = 3$). In addition, participants
258 responding incorrectly on more than two check trials ($n = 21$), or with more than 10% of
259 reaction times (RTs) below 200 ms when choosing the immediate choice ($n = 0$), or more than
260 10% of RTs greater than 3000 ms when choosing the delayed choice ($n = 8$), or more than 20
261 responses to space bar or key "E" during ITI ($n = 1$), were excluded from analyses. Note that
262 one of the participants met more than one exclusion criterion. As a result, the data from 32
263 participants were removed from the analyses, leaving a final sample of 313 participants [254
264 females; $M_{age} = 19.55$ ($Min_{age} = 17$, $Max_{age} = 59$)].

265 **Statistical analysis**

266 The behavioural data and questionnaire scores, completely anonymized, are available at
267 the OSF repository at <https://osf.io/qyk87/>, with unrestricted access. The analyses performed
268 were straightforwardly derived from Luhmann et al. (2011). The R script with all of the analyses
269 described in this section are available at <https://osf.io/b8hfc/>. The packages lm.beta (version
270 1.7-2) [40], (version 0.1.1) [41], patchwork (version 1.1.2) [42] and tidyverse (version 2.0.0)
271 [43] were used in this script.

272 We calculated the descriptives and zero-order correlations of the variables probability
273 of waiting in the behavioural task [p(Wait)], IUS score, TA score, and discount factor [the
274 natural logarithm of the k parameter in the delay discount factor used by Luhmann et al. (1/1+k),
275 Delay-Discount¹]. We also included SUPPS-P scores from the Impulsive Behaviour Scale in
276 the referred analysis. As in the case of Luhmann et al., the main analysis consisted of a
277 hierarchical linear regression (see Table 1). Using p(Wait) as the dependent variable, two
278 models were considered: The first one included TA and Delay-Discount as predictors (Model
279 1), and the second model included IU as an additional predictor (Model 2). Extending Luhmann
280 et al.'s study, an additional hierarchical linear regression analysis was planned. Model 1, that
281 has TA and Delay-Discount as predictors was compared with a model that included SUPPS-P
282 as an additional predictor (Model 3), and this model, in turn, was compared with a final model
283 that also included IU (Model 4). In both hierarchical regression analyses, the difference between
284 the models were tested using an ANOVA.

285
286

¹ We used this logarithmic transformation after observing that the parameter distribution was heavily skewed. The transformation ensured a correct fit of the linear models, as shown by the diagnostic plots mentioned below.

287

Table 1. Summary of the regression models.

Models	Predictors	Compared with
Model 1	TA, Delay-Discount	
Model 2	TA, Delay-Discount, IU	Model 1
Model 3	TA, Delay-Discount, SUPPS-P	Model 1
Model 4	TA, Delay-Discount, SUPPS-P, IU	Model 3

288

289 The comparison between Model 1 and Model 2 would indicate if there is a relationship
290 between IU and $p(\text{Wait})$ after controlling for TA and Delay-Discount scores. This is the same
291 comparison that was carried out by Luhmann et al. (2011), who found a significant positive
292 association between IU and $p(\text{Wait})$. The comparison between Model 1 and Model 3 tested a
293 possible relationship between SUPPS-P and $p(\text{Wait})$ after controlling for TA and Delay-
294 Discount scores. Finally, the comparison between Model 3 and Model 4 assessed the
295 relationship between IU and $p(\text{Wait})$ after controlling, additionally, for SUPPS-P. These two
296 final comparisons are an extension of Luhmann et al.'s study, as described before.

297 As in Luhmann et al., the association between the same predictors and the median
298 reaction time in trials with an immediate choice was tested with the same hierarchical regression
299 analyses just described using the median response time in trials with an immediate choice as
300 the dependent variable. This analysis would provide an additional chance of finding a
301 relationship between IU and avoidance of waiting for the delayed choice. For each participant,
302 the median response time was calculated using the reaction time of all the immediate choice
303 trials of the original condition of the behavioural task (i.e., excluding the check trials).

304 Two diagnostic plots were also developed for each model: a scatterplot of the residuals
305 and predicted values, and a Q-Q plot. If the diagnostic plots showed that the linear regression

306 assumptions are not met, a robust linear regression technique (MM-estimates, as implemented
307 by the MASS package in R) was planned to be used. After performing the logarithmic
308 transformation of the delay discount parameter (see footnote 1) the plots showed a good fit of
309 the models and a standard linear regression was used.

310 Two variables were calculated considering the proportion of delayed choices. The first
311 one was the proportion of delayed choices when the previous trial was a nonreinforced, delayed-
312 choice trial. The second one was the proportion of delayed choices after any other type of
313 standard trial (i.e., trials after a checking trial were ignored). As in Luhmann et al., a paired *t*-
314 test between these two variables was calculated, as well as the Pearson correlation between the
315 difference of these two proportions and the participants' scores in each questionnaire.

316 **Exploratory analysis**

317 Exploratory analyses [44, 45] were carried out to separately study the role of the
318 different factors of the SUPPS-P scale [46], as well as the prospective and the inhibitory factors
319 of the IU scale [47]. We did not have any specific hypothesis regarding these analyses.

320 **Results**

321 Table 2 shows the mean, median, standard deviation, and range of all the dependent
322 variables analysed in this study, and Table 3 shows the Pearson correlation coefficients between
323 IU, TA, Delay-Discount, SUPPS-P, and p(Wait).

324

325

326 **Table 2.** Mean, median, standard deviation, and range of all the variables analysed in the present
327 study.

	Mean	Median	SD	Range
IU	71.7	71	19.0	[31, 121]
TA	49.6	49	11.2	[24, 76]
Delay-Discount	-5.5	-5.6	1.39	[-8.8, -1.4]
SUPPS-P	46.1	46	8.8	[25, 71]
p(Wait)	.69	.71	0.25	[0, 1]
Median RT Im	1.4	1.12	1.15	[0.32, 10.3]
p(Wait Loss)	.57	.62	0.36	[0, 1]
p(Wait no Loss)	.72	.76	0.24	[0, 1]

328 *Note:* IU = intolerance of uncertainty, TA = trait anxiety, SUPPS-P = Short UPPS-P Impulsive
329 Behaviour Scale, p(Wait) = probability of selecting the delayed choice, Median RT Im =
330 Median of response times in trials in which the immediate choice was selected, p(Wait | Loss)
331 = probability of selecting the delayed choice after losing the reward when the delayed choice
332 was selected in the previous trial, p(Wait | no Loss) = probability of selecting the delayed choice
333 conditional upon any other possibility.

334

335 **Table 3.** Bivariate Pearson correlation coefficients between the main measures of the study

	IU	TA	Delay-Discount	SUPPS-P
TA	.76**			
Delay-Discount	.03	.00		
SUPPS-P	.13*	.24**	.00	
p(Wait)	.01	.01	-.25**	.08

336 *Note:* * stands for significance below .05; ** stands for significance below .001.

337

338 **Relationship between IU and p(Wait)**

339 We started by performing a regression analysis taking p(Wait) as the dependent variable
340 and the predictors comprised in Model 1 (TA and Delay-Discount). The results revealed that
341 the variance explained by the model was significant, [$R^2 = .07$, $F(2, 310) = 10.81$, $p < .001$], as

342 well as the regression coefficient of Delay-Discount, [$\beta = -.25$, $t(310) = -4.64$, $p < .001$]. The
343 regression coefficient of TA was not significant ($\beta = .01$, $p = .786$). The analysis based on
344 Model 2, which added IU to Model 1, yielded almost identical results regarding Delay-Discount
345 [$\beta = -.26$, $t(309) = 4.63$, $p < .001$], and the non-significant regression coefficients of TA [$\beta =$
346 $.01$, $t(309) = 0.11$, $p = .91$] and IU [$\beta = .01$, $t(309) = 0.09$, $p = .932$]. Consistently, Model 2 did
347 not improve significantly the variance explained by Model 1 [$\Delta R^2 < .001$, $F(1, 309) = 0.01$, $p =$
348 $.932$]. Finally, we added SUPPS-P to Model 1 to assess the association between impulsivity
349 and p(Wait) (Model 3) finding almost identical results regarding Delay-Discount [$\beta = -.26$,
350 $t(309) = 4.65$, $p < .001$] and the non-significant regression coefficients of TA [$\beta = -.004$, $t(309)$
351 $= 0.08$, $p = .938$] and SUPPS-P [$\beta = .082$, $t(309) = 1.46$, $p = .146$]. Consistently, Model 3 did
352 not significantly improve the variance explained by Model 1 [$\Delta R^2 = .006$, $F(1, 309) = 2.12$, $p =$
353 $.146$]. Following the results reported above concerning the association between IU and p(Wait),
354 the comparison between Model 3 and Model 4 was not significant [$\Delta R^2 < .001$, $F(1, 309) =$
355 0.04 , $p = .85$].

356 **Relationship between IU and median RTs in immediate choice
357 trials**

358 The same regression analyses considered in the previous section were conducted taking
359 the participants' median response times in immediate choice trials as the dependent variable.
360 None of the models or their coefficients were significant. The analysis based on Model 1 yielded
361 non-significant regression coefficients for Delay-Discount [$\beta = -.025$, $t(277) = 0.42$, $p = .677$]
362 and TA [$\beta = -.077$, $t(277) = 1.28$, $p = .201$], as well as a non-significant R^2 [$R^2 = .007$, $F(2, 277)$
363 $= 0.91$, $p = .405$]. Adding IU (Model 2) did not significantly improve the variance explained
364 [$\Delta R^2 < .001$, $F(1, 276) = 0.05$, $p = .822$], and revealed a non-significant regression coefficient
365 for IU [$\beta = .02$, $t(276) = 0.22$, $p = .822$]. Finally, adding SUPPS-P to Model 1, did not either

366 improve the variance explained [$\Delta R^2 = .004, F(1, 276) = 1.14, p = .286$], nor did it reveal any
367 significant regression coefficient for SUPPS-P [$\beta = -.06, t(276) = 1.05, p = .295$]. Equivalent
368 results were found in the case of Model 4 [IU $\beta = .01, t(276) = 0.12, p = .905$], and its
369 comparison with Model 3 [$\Delta R^2 < .001, F(1, 275) = 0.01, p = .905$].

370 **Relationship between IU and outcome sensitivity**

371 Instead of calculating outcome sensitivity as $p(\text{Wait} \mid \text{Loss after delayed choice}) -$
372 $p(\text{Wait} \mid \text{no Loss after delay choice})$ (see Luhmann et al., 2011), we calculated $p(\text{Wait} \mid \text{no Loss}$
373 $\text{after delay choice}) - p(\text{Wait} \mid \text{Loss after delay choice})$ (i.e., the probability of selecting the
374 delayed choice after losing the reward when the delayed choice was selected in the previous
375 trial was subtracted to the probability of selecting the delayed choice conditional upon any other
376 possible outcome and choice selection in the previous trial). This change was meant to test for
377 a positive correlation between self-report measures and outcome sensitivity, which could be
378 interpreted in a more intuitive way than a negative correlation. The analyses of the correlations
379 planned in our previous registered report yielded the significant correlation between Delay-
380 Discount and outcome sensitivity ($r = .2, p < .001$), and the non-significant correlation between
381 outcome sensitivity and IU ($r = .01, p = .811$), TA ($r = -.03, p = .602$) and SUPPS-P ($r = .003,$
382 $p = .946$). Consequently, the participants scoring high, compared with low, on Delay-Discount
383 (those for whom monetary reward tended to lose value more quickly as delay time increases)
384 were more likely to select the immediate choice after losing the delayed reward in the previous
385 trial.

386 **Exploratory analyses**

387 As explained in our previously published registered report protocol [22], we conducted
388 exploratory analyses to assess the relationship between our main dependent measures [$p(\text{Wait})$,
389 median RTs in immediate choice, and outcome sensitivity] and the two subscales of IU

390 (prospective intolerance of uncertainty, P-IU, and inhibitory intolerance of uncertainty, I-IU)
391 and the five subscales of SUPPS-P (negative urgency, positive urgency, lack of premeditation,
392 lack of perseverance, and sensation seeking). Regarding p(Wait), we only found a significant
393 correlation with lack of perseverance, $r = .13$, $t(311) = 2.25$, $p = .025$ (largest correlation with
394 the remaining subscales = $-.075$). However, this correlation became non-significant when using
395 the Bonferroni correction to protect against Type-I error. As for median RTs in immediate
396 choice and outcome sensitivity, we did not find any significant correlation (largest $r = -.11$,
397 smallest $p = .064$).

398 **Discussion**

399 IU has been widely postulated in the literature as a main source of maladaptive and
400 inefficient behaviour and decision making that may severely affect people suffering from
401 anxiety-related mental disorders, but this claim lacks substantial empirical support [2]. As far
402 as we know, Luhmann et al.'s study [1] provides the clearest evidence showing that people
403 scoring high on IU tend to choose options that are riskier and less valuable in exchange for less
404 time waiting under uncertainty. This strongly suggests that many examples of costly behaviour
405 in anxiety-related psychopathologies, such as excessive avoidance, may be understood as
406 instances of decisions aimed to avoid time enduring uncertainty [see also 13, 14]. Given the
407 relevance of this claim and the potential of Luhmann et al.'s results to lead future research, we
408 decided to replicate and extend their study by conducting a highly powered experiment whose
409 actual sample size ($N = 313$) was 6.3 times the size of the original study. Although our study
410 was designed to detect an effect size 3 times smaller than the effect found in the original study
411 with a statistical power above 95%, we failed to replicate Luhmann et al.'s (2011) results
412 concerning the role of IU. This vulnerability trait for anxiety-related disorders was not found to
413 be significantly associated with the probability of selecting the delayed choice, the time spent
414 before selecting the immediate choice, or with outcome sensitivity. Moreover, all the

415 correlations and standardised regression coefficients found for IU in all the analyses were
416 negligible (greatest value = .02). Consequently, our results strongly suggest that IU is far from
417 playing a significant role in choosing between the immediate and delayed rewards in Luhmann
418 et al.'s task. In other words, we could not find convincing evidence supporting the claim that
419 the increase in IU is associated with more costly responses, i.e., less valuable and less certain
420 rewards, in exchange for less time waiting under uncertainty.

421 The only factor that was found to play a significant role in our study was the Delay-
422 Discount factor. Specifically, we found a significant negative association between Delay-
423 Discount and $p(\text{Wait})$, and a significant positive association between Delay-Discount and
424 outcome sensitivity. Therefore, those participants who tend to devalue rewards more quickly as
425 they are delayed had a greater tendency to select the immediate-reward choice, and to switch
426 from a delayed choice to an immediate choice selection if the delayed choice selection was
427 unrewarded in the previous trial. This result is interesting in itself because it indicates that
428 Luhmann et al.'s decision making task is suitable as a tool to detect the behavioural expression
429 of individual differences in delay discounting. At first glance one may think that this result is
430 not surprising given that participants are asked to choose between an immediate, less valuable
431 reward, and a delayed, more valuable reward. However, the sensitivity of the task performance
432 to delay discounting may seem less obvious if we consider that participants only have to wait
433 for a few seconds to select the more valuable choice, and that selecting the immediate choice
434 does not have any effect on the amount of time waiting for the next selection. It only shifts the
435 waiting time from the inter-stimulus interval to the inter-trial interval.

436 A possible explanation for our failure to replicate Luhmann et al.'s (2011) results could
437 be related to homogeneity regarding IU scores. Given the much larger sample size used in our
438 study, we did not expect to find less variability in our data than in Luhmann et al.'s (2011)
439 study. In fact, the standard deviation found in our study ($SD_{IU} = 19$, $Range_{IU} = [31, 121]$) was

440 larger than that found in Luhmann et al. ($SD_{IU} = 14.32$). The difference in mean IU between
441 our study and Luhmann et al.'s could also potentially explain the different results found.
442 Participants in our study scored higher on IU ($M_{IU} = 71.7$) than Luhmann et al.'s (2011)
443 participants ($M_{IU} = 61.12$). According to Luhmann et al.'s hypothesis, higher scores on IU
444 should lead to lower scores in p(Wait). In an extreme case, having a sample with very low
445 p(Wait) scores may hinder the finding of a relationship between IU and p(Wait) as a result of a
446 sort of floor effect. However, contrary to what Luhmann et al.'s hypothesis predicts, the mean
447 p(Wait) found in our study ($M = .69$) was, if any, higher than in the original study ($M = .6$).
448 Moreover, p(Wait) was found to significantly correlate with Delay-Discount, which debunks
449 any argument based on lack of sensitivity of p(Wait) to explain the absence of a significant
450 association with IU.

451 Another feature of our sample that deserves some consideration is the unbalanced
452 proportion of males (18.8%) and females (81.2%). Interestingly, exploratory analyses revealed
453 that male participants tended to wait for the more valuable and likely option ($M_{p(Wait)} = .8$)
454 substantially more than female participants ($M_{p(Wait)} = .66$), $t(311) = 4.1$, $p < .001$, $d = 0.6$,
455 although the differences between males and females in IU ($M = 70.14$ vs $M = 72.06$,
456 respectively) and Delay-Discount ($M = -5.51$ vs $M = -5.54$, respectively) were not significant
457 (smallest $p = .48$). Unfortunately, it is difficult to assess the relevance of the proportion of males
458 and females to explain the differences between our results and those by Luhmann et al. (2011)
459 because they did not report such demographic data. Assuming that their sample was rather
460 balanced, our results suggest that the high proportion of females in our sample could not explain
461 the higher mean p(Wait) found in our study compared with Luhmann et al.'s study. At the same
462 time, our results also suggest that whatever may be the reason for the impact of sex on p(Wait),
463 it seems that it is related neither to IU nor to Delay-Discount. Therefore, although the difference
464 in p(Wait) between males and females may be interesting in itself and may deserve future

465 research, it is very unlikely to be the cause of the conflict between our results and those by
466 Luhmann et al. (2011).

467 A final consideration relates to the period in which the study was carried out. The
468 experiment started near after the lift of COVID-19 restrictions such as the lockdown. Although
469 the participants have been recruited until November of 2022, many of them answered the
470 questionnaires and performed the decision-making task in early 2022. According to recently
471 published papers [48-51], the exacerbation of intolerance of uncertainty during the pandemic
472 has played a role in the increase of the presence and intensity of a good number of mental-
473 disorder symptoms, including symptoms of anxiety-related mental disorders. In fact, this
474 circumstance may explain the high scores on IU and TA ($M_{TA} = 49.56$) in our sample compared
475 with Luhmann et al. (2011) ($M_{TA} = 43.08$). Although this particularity of our study has to be
476 taken into account, the considerations made above regarding the role of differences in IU
477 between our sample and the sample in Luhmann et al.'s study lead us to cast serious doubts on
478 the possible impact of the pandemic situation on our results.

479 To conclude, our results suggest that the task designed by Luhmann et al. may not be
480 suitable for detecting a relationship between IU and the preference for immediate, less certain,
481 and less valuable rewards over delayed, more certain, and more valuable rewards. This does
482 not mean that Luhmann et al.'s hypothesis that people with high IU prefer to take costly actions
483 to avoid waiting under uncertainty is necessarily wrong. We think that this hypothesis deserves
484 more chances to find empirical support as it fits our daily-life experience regarding the effects
485 of uncertainty. Students waiting for exam results, for instance, frequently report a strong desire
486 for receiving immediate information even if it is to be informed that they failed the exam.
487 However, even if Luhmann et al.'s hypothesis is correct, their decision-making task has to be
488 improved to provide evidence supporting it.

489

490

491

Acknowledgements

492

493 This research has been supported by grants PID2021-126767NB-I00 and PGC2018-096863-
494 BI00 from the Spanish Ministry of Science, Innovation, and Universities (AEI/FEDER, UE),
495 and grants UMA18-FEDERJA-051 and ProyExcel_00287 (Junta de Andalucía). MJQ has
496 been supported by a predoctoral grant from the Spanish Ministry of Science, Innovation, and
497 Universities (FPU Programme, FPU18/00917).

498

499

References

500 1. Luhmann, C. C., Ishida, K., & Hajcak, G. (2011). Intolerance of uncertainty and decisions
501 about delayed, probabilistic rewards. *Behavior Therapy*, 42(3), 378–386. [https://doi:
502 10.1016/j.beth.2010.09.002](https://doi:10.1016/j.beth.2010.09.002)

503 2. Carleton, R. N. (2016). Into the unknown: A review and synthesis of contemporary models
504 involving uncertainty. *Journal of Anxiety Disorders*, 39, 30–43. [https://doi:
505 10.1016/j.janxdis.2016.02.007](https://doi:10.1016/j.janxdis.2016.02.007)

506 3. Grenier, S. Barrette, A. M., & Ladouceur, R. (2005). Intolerance of uncertainty and
507 intolerance of ambiguity: Similarities and differences. *Personality and Individual
508 Differences*, 39, 593–600. <https://doi.org/10.1016/j.paid.2005.02.014>

509 4. Grupe, D. W. & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: an integrated
510 neurobiological and psychological perspective. *Nature Reviews Neuroscience*, 14, 488–
511 501. <https://doi.org/10.1038/nrn3524>

512 5. Boswell, J. F., Thompson-Hollands, J., Farchione, T. J., & Barlow, D. H. (2013). Intolerance
513 of uncertainty: A common factor in the treatment of emotional disorders. *Journal of
514 Clinical Psychology*, 69, 630–645. <https://doi:10.1002/jclp.21965>

515 6. Carleton, R. N. (2012). The intolerance of uncertainty construct in the context of anxiety
516 disorders: Theoretical and practical perspectives. *Expert Review of Neurotherapeutics*,
517 12, 937–947. <https://doi:10.1586/ern.12.82>

518 7. Carleton, R. N., Mulvogue, M. K., Thibodeau, M. A., McCabe, R. E., Antony, M. M., &
519 Asmundson, G. J. G. (2012). Increasingly certain about uncertainty: Intolerance of
520 uncertainty across anxiety and depression. *Journal of Anxiety Disorders*, 26, 468–479.
521 <https://doi:10.1016/j.janxdis.2012.01.011>

522 8. Mahoney, A. E., & McEvoy, P. M. (2012). Changes in intolerance of uncertainty during
523 cognitive behavior group therapy for social phobia. *Journal of Behavior Therapy and*
524 *Experimental Psychiatry*, 43, 849–854. <https://doi: 10.1016/j.jbtep.2011.12.004>

525 9. McEvoy, P. M. & Mahoney, A. E. J. (2012). To be sure, to be sure: Intolerance of uncertainty
526 mediates symptoms of various anxiety disorders and depression. *Behavior Therapy*, 43,
527 533–545. <https://doi: 10.1016/j.beth.2011.02.007>

528 10. Gentes, E. L., & Ruscio, A. M. (2011). A meta-analysis of the relation of intolerance of
529 uncertainty to symptoms of generalized anxiety disorder, major depressive disorder, and
530 obsessive-compulsive disorder. *Clinical Psychology Review*, 31, 923–933. <https://doi: 10.1016/j.cpr.2011.05.001>

532 11. Hong, R. Y., & Cheung, M. W. L. (2015). The Structure of Cognitive Vulnerabilities to
533 Depression and Anxiety: Evidence for a Common Core Etiologic Process Based on a
534 Meta-Analytic Review. *Clinical Psychological Science*, 3, 892–912. <https://doi: 10.1177/2167702614553789>

536 12. Shihata, S., McEvoy, P. M., Mullan, B. A., & Carleton, R. N. (2016). Intolerance of
537 uncertainty in emotional disorders: What uncertainties remain? *Journal of Anxiety*
538 *Disorders*, 41, 115–124. <https://doi.org/10.1016/j.janxdis.2016.05.001>

539 13. Flores, A., López, F. J., Vervliet, B., & Cobos, P. L. (2018). Intolerance of uncertainty as a
540 vulnerability factor for excessive avoidance behavior. *Behaviour Research and*
541 *Therapy*, 104, 34–43. <https://doi.org/10.1016/j.brat.2018.02.008>

542 14. Flores, A., López, F. J., Vervliet, B., & Cobos, P. L. (2020). Prospective intolerance of
543 uncertainty is associated with maladaptive temporal distribution of avoidance
544 responses: An extension of Flores, López, Vervliet, and Cobos (2018). *Journal of*
545 *Behavior Therapy and Experimental Psychiatry*, 68.
546 <https://doi.org/10.1016/j.jbtep.2019.101527>

547 15. Jacoby, R. J., Abramowitz, J., Buck, B. E., & Fabricant, L. E. (2014). How is the Beads
548 Task related to intolerance of uncertainty in anxiety disorders? *Journal of Anxiety
549 Disorders*, 28, 495–503. <https://doi: 10.1016/j.janxdis.2014.05.005>

550 16. Jacoby, R. J., Abramowitz, J. S., Reuman, L., & Blakey, S. M. (2016). Enhancing the
551 ecological validity of the Beads Task as a behavioral measure of intolerance of
552 uncertainty. *Journal of Anxiety Disorders*, 41, 43–49. <https://doi: 10.1016/j.janxdis.2016.02.003>

554 17. Thibodeau, M. A., Carleton, R. N., Gómez-Pérez, L., & Asmundson, G. J. (2013). "What if
555 I make a mistake?": intolerance of uncertainty is associated with poor behavioral
556 performance. *Journal of Nervous and Mental Disease*, 201, 760–766. <https://doi: 10.1097/NMD.0b013e3182a21298>

558 18. Kirby, K. N., & Marakovic, N. N. (1996). Delay-discounting probabilistic rewards: Rates
559 decrease as amounts increase. *Psychonomic Bulletin and Review*, 3, 100–104.
560 <https://doi.org/10.3758/BF03210748>

561 19. Tanovic, E., Hajcak, G., & Joormann, J. (2018). Hating waiting: Individual differences in
562 willingness to wait in uncertainty. *Journal of Experimental Psychopathology*, 9(1), 1–
563 12. <https://doi.org/10.1177/2043808718778982>

564 20. Verdejo-García, A., Lozano, Ó., Moya, M., Alcázar, M. Á., & Pérez-García, M. (2010).
565 Psychometric properties of a Spanish version of the UPPS–P impulsive behavior scale:
566 Reliability, validity and association with trait and cognitive impulsivity. *Journal of
567 Personality Assessment*, 92(1), 70–77. <https://doi.org/10.1080/00223890903382369>

568 21. Cándido, A., Orduña, E., Perales, J. C., Verdejo-García, A., & Billieux, J. (2012). Validation
569 of a short Spanish version of the UPPS-P impulsive behaviour scale. *Trastornos
570 Adictivos*, 14(3), 73–78. [http://doi.org/10.1016/S1575-0973\(12\)70048-X](http://doi.org/10.1016/S1575-0973(12)70048-X)

571 22. Ciria, L. F., Quintero, M. J., López, F. J., Luque, D. Cobos, P. L, & Morís, J. (2021).
572 Intolerance of uncertainty and decisions about delayed, probabilistic rewards: A
573 replication and extension of Luhmann, C. C., Ishida, K., & Hajcak, G. (2011). *PLoS*
574 *ONE* 16(9): e0256210. <https://doi.org/10.1371/journal.pone.0256210>

575 23. World Medical Association. (2001). World Medical Association Declaration of Helsinki.
576 Ethical principles for medical research involving human subjects. *Bulletin of the World*
577 *Health Organization*, 79(4), 373–374.

578 24. R Core Team (2019). R: A language and environment for statistical computing. R
579 Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

580 25. Champely, S. (2020). pwr: Basic Functions for Power Analysis. R package version 1.3-0.
581 [Computer software and manual]. <https://CRAN.R-project.org/package=pwr>

582 26. Kelley, K. (2007). Methods for the Behavioral, Educational, and Social Sciences: An R
583 Package. *Behavior Research Methods*, 39, 979–984.
584 <https://doi.org/10.3758/BF03192993>

585 27. Kelley, K. (2019). MBESS: The MBESS R Package. R package version 4.6.0. [Computer
586 software and manual]. <https://CRAN.R-project.org/package=MBESS>

587 28. Simonsohn, U. (2015). Small telescopes: Detectability and the evaluation of replication
588 results. *Psychological Science*, 26(5), 559–569. doi.org/10.1177/0956797614567341

589 29. Freeston, M. H., Rhéaume, J., Letarte, H., Dugas, M. J. & Ladouceur, R. (1994). Why do
590 people worry? *Personality and Individual Differences*, 17(6), 791–802.
591 [https://doi.org/10.1016/0191-8869\(94\)90048-5](https://doi.org/10.1016/0191-8869(94)90048-5)

592 30. González-Rodríguez, M., Cubas-León, R., Rovella, A. T., & Darías-Herrera, M. (2006).
593 Spanish adaptation of the Intolerance of Uncertainty Scale: Cognitive processes, anxiety
594 and depression. *Psychology and Health*, 16, 219–233. *Psychological Science*, 3, 892–
595 912. <https://doi: 10.1177/2167702614553789>

596 31. Dugas, M. J., Freeston, M. H., & Ladouceur, R. (1997). Intolerance of uncertainty and
597 problem orientation in worry. *Cognitive Therapy and Research*, 21, 596–606.
598 <https://doi.org/10.1023/A:1021890322153>

599 32. Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E., Vagg, P. R., & Jacobs, G. A. (1970).
600 *Manual for the state-trait inventory*. Palo Alto, CA: Consulting Psychologists Press.

601 33. Spielberger, C.D., Gorsuch, R.L., y Lushene, R. (1982). *Manual del Cuestionario de*
602 *Ansiedad Estado/Rasgo (STA)*. Madrid, España: TEA Ediciones.

603 34. Kirby, K. N., Petry, N. M., & Bickel, W. K. (1999). Heroin addicts have higher discount
604 rates for delayed rewards than non-drug-using controls. *Journal of Experimental*
605 *Psychology: General*, 128(1), 78.

606 35. Perales, J. C., Verdejo-García, A., Moya, M., Lozano, Ó., & Pérez-García, M. (2009).
607 Bright and dark sides of impulsivity: Performance of women with high and low trait
608 impulsivity on neuropsychological tasks. *Journal of Clinical and Experimental*
609 *Neuropsychology*, 31(8), 927–944. <https://doi.org/10.1080/13803390902758793>

610 36. Billieux, J., Rochat, L., Ceschi, G., Carré, A., Offerlin-Meyer, I., Defeldre, A. C., ... & Van
611 der Linden, M. (2012). Validation of a short French version of the UPPS-P Impulsive
612 Behavior Scale. *Comprehensive Psychiatry*, 53(5), 609–615.
613 <https://doi.org/10.1016/j.comppsych.2011.09.001>

614 37. de Wit, H., Flory, J. D., Acheson, A., McCloskey, M., & Manuck, S. B. (2007). IQ and
615 nonplanning impulsivity are independently associated with delay discounting in middle-
616 aged adults. *Personality and Individual Differences*, 42(1), 111–121.
617 <https://doi.org/10.1016/j.paid.2006.06.026>

618 38. Peirce, J. W., Gray, J. R., Simpson, S., MacAskill, M. R., Höchenberger, R., Sogo, H.,
619 Kastman, E., Lindeløv, J. (2019). PsychoPy2: experiments in behavior made easy.

620 *Behavior Research Methods*, 51, 195–203. <https://doi.org/10.3758/s13428-018-01193->

Y

622 39. De Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments
623 in a Web browser. *Behavior Research Methods*, 47, 1–12.
624 <https://doi.org/10.3758/s13428-014-0458-y>

625 40. Behrendt, S. (2023). lm.beta: Add Standardized Regression Coefficients to lm-Objects. R
626 package version 1.7-2. Retrieved from <https://CRAN.R-project.org/package=lm.beta>

627 41. Aust, F. & Barth, M. (2022). Prepare reproducible APA journal articles with R
628 Markdown. R package version 0.1.1, retrieved from <https://github.com/crsb/papaja>

629 42. Pedersen, T. L. (2022). patchwork: The Composer of Plots. R package version 1.1.2.
630 Retrieved from <https://CRAN.R-project.org/package=patchwork>

631 43. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., ... & Yutani,
632 H. (2019). Welcome to the tidyverse. *Journal of Open Source Software*, 4(43),
633 1686. <https://doi.org/10.21105/joss.01686>

634 44. De Groot, A. D. (1956/2014). The meaning of “significance” for different types of research.
635 Translated and annotated by Eric-Jan Wagenmakers, Denny Borsboom, Josine
636 Verhagen, Rogier Kievit, Marjan Bakker, Angelique Cramer, Dora Matzke, Don
637 Mellenbergh, and Han L. J. van der Maas. *Acta Psychologica*, 148, 188–194.
638 <https://doi.org/10.1016/j.actpsy.2014.02.001>

639 45. Wagenmakers, E. J., Wetzels, R., Borsboom, D., van der Maas, H. L., & Kievit, R. A.
640 (2012). An agenda for purely confirmatory research. *Perspectives on Psychological
641 Science*, 7(6), 632–638. <https://doi.org/10.1177%2F1745691612463078>

642 46. Cyders, M. A., Littlefield, A. K., Coffey, K., & Karyadi, K. A. (2014). Examination of a
643 short English version of the UPPS-P Impulsive Behavior Scale. *Addictive Behaviors*,
644 39, 1372–1376. <https://doi.org/10.1016/j.addbeh.2014.02.013>

645 47. Birrell, J., Meares, K., Wilkinson, A., & Freeston, M. (2011). Toward a definition of
646 intolerance of uncertainty: A review of factor analytical studies of the intolerance of
647 uncertainty scale. *Clinical Psychology Review*, 31, 1198–1208.

648 <https://dx.doi.org/10.1016/j.cpr.2011.07.009>

649 48. Yuniardi, M. S., Cant, M., & Akhta, H. (2021). Intolerance of uncertainty, anxiety, and
650 depression in the context of COVID-19 in Indonesia. *Journal of Evidence-Based
651 Psychotherapies*, 21, 37–60. <https://doi.org/10.24193/jebp.2021.2.10>

652 49. Satici, B., Saricali, M., Satici, S. A., Griffiths, M. D. (2020). Intolerance of uncertainty
653 and mental wellbeing: Serial mediation by rumination and fear of COVID-19.
654 *International Journal of Mental Health and Addiction*, 20, 2731–2742.

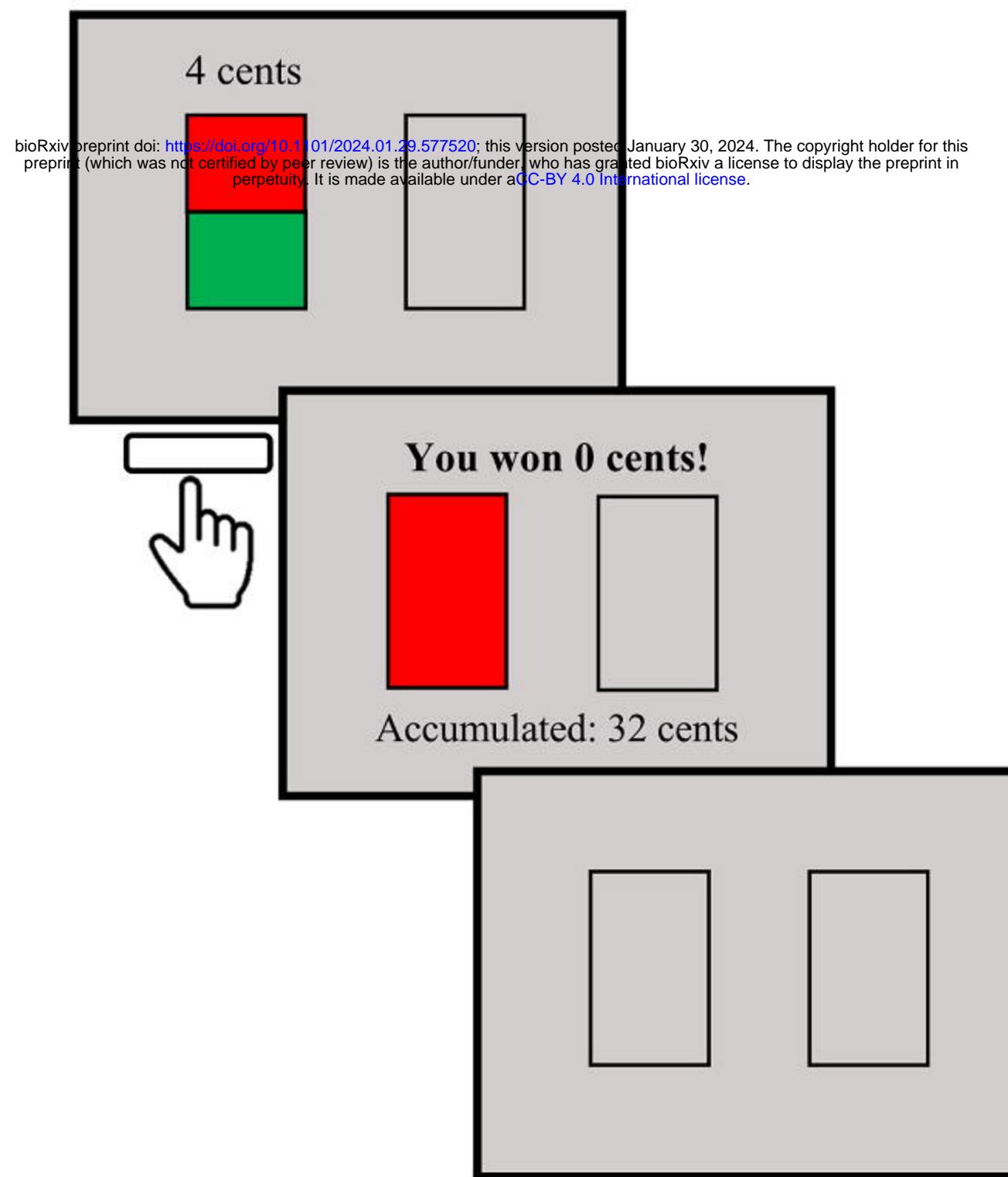
655 <https://doi.org/10.1007/s11469-020-00305-0>

656 50. Reizer, A., Geffen, L., & Koslowsky, M. (2021). Life under the COVID-19 lockdown: On
657 the relationship between intolerance of uncertainty and psychological distress.
658 *Psychological Trauma: Theory, Research, Practice, and Policy*, 13, 432–437.

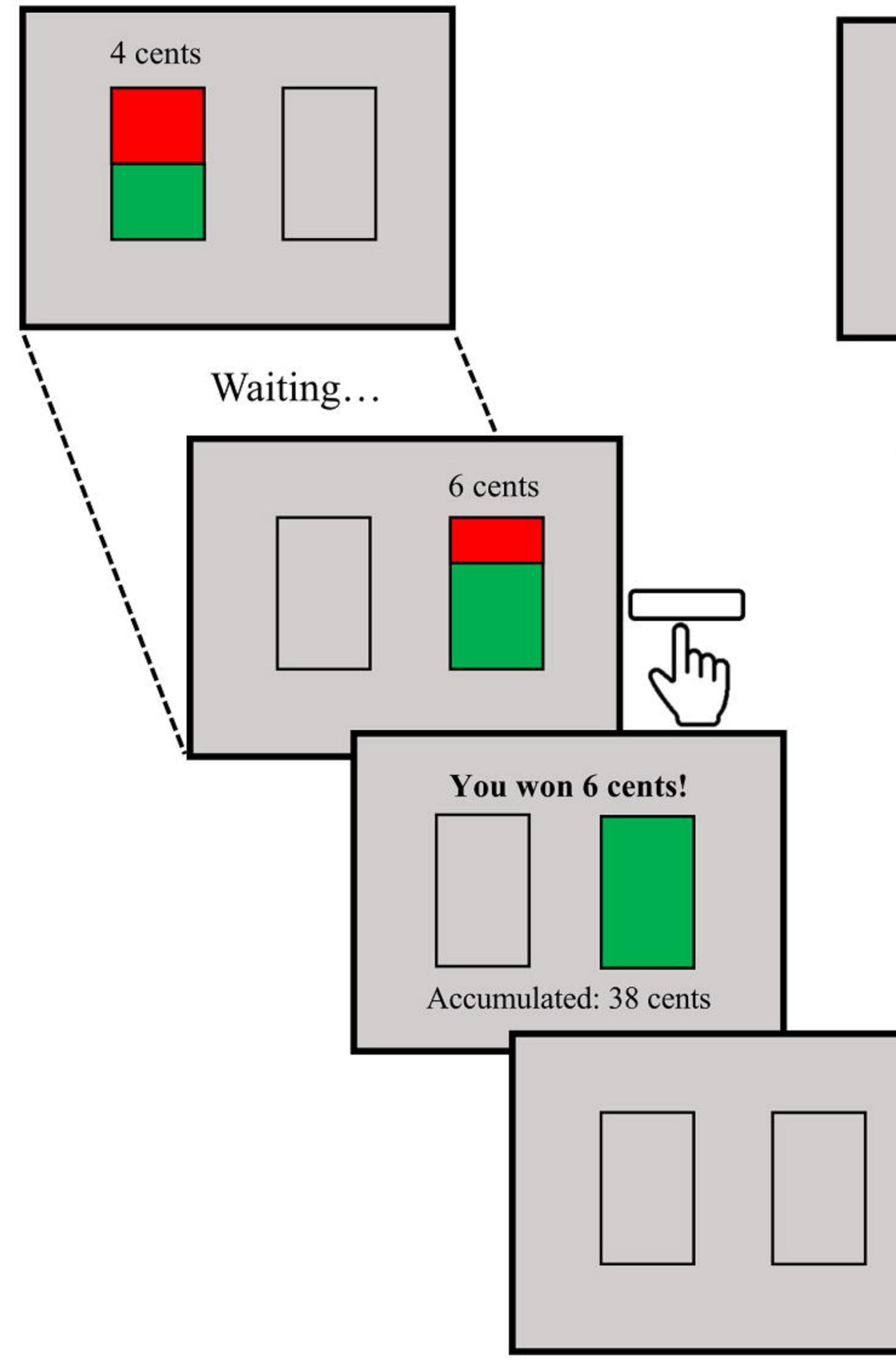
659 <https://doi.org/10.1037/tra0001012>

660 51. Oral, M. & Karakurt, N. (2021). The impact of psychological hardiness on intolerance of
661 uncertainty in university students during the COVID-19 pandemic. *Journal of
662 Community Psychology*, 50, 3574–3589. <https://doi.org/10.1002/jcop.22856>

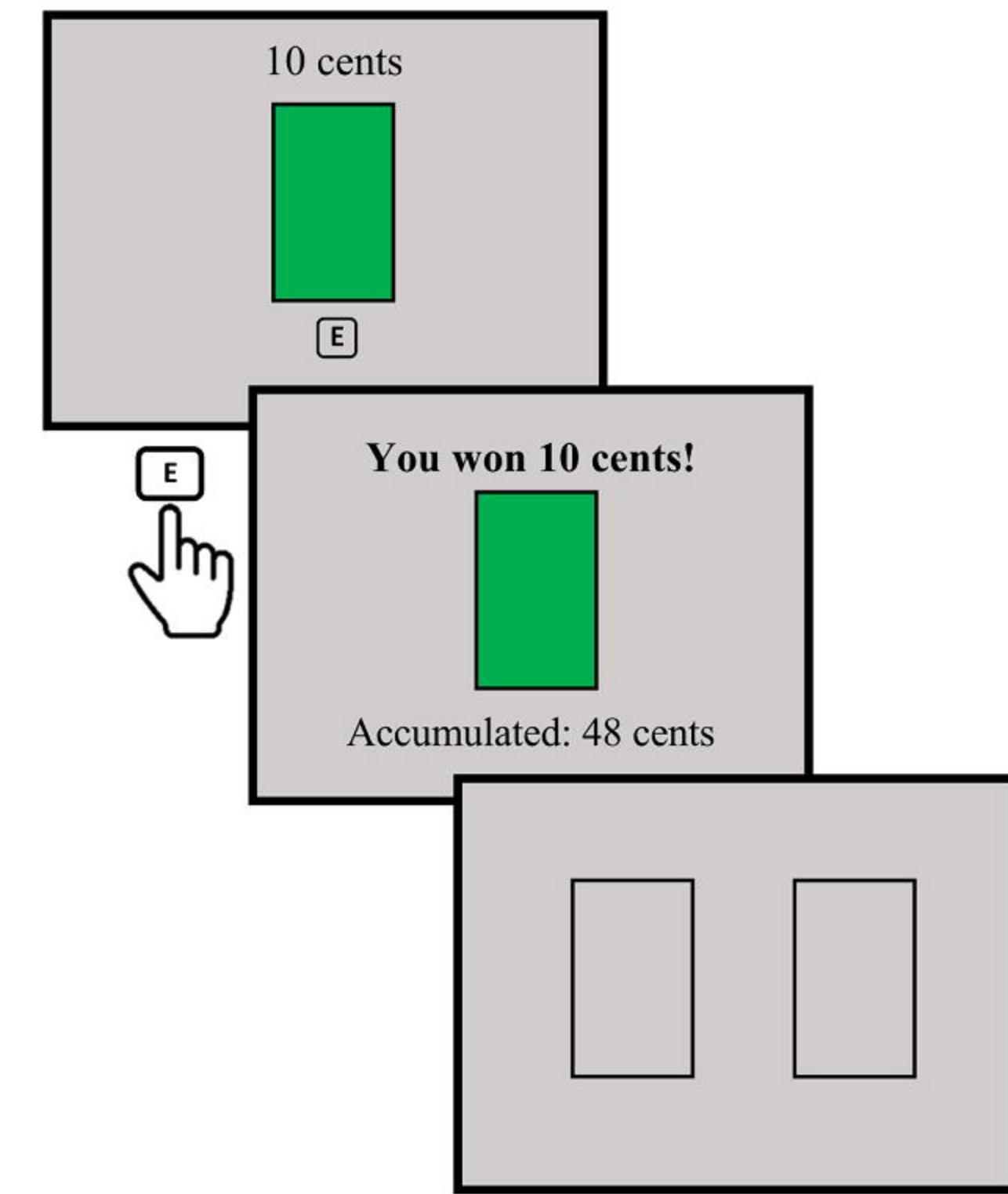
663


664

665


Figure captions

666 Fig 1: Sequence of the decision-making task. Left: Trial in which the immediate choice is
667 selected, but no reward is won. Centre: Trial in which the delayed choice is selected, and the
668 reward is won. Right: Check trial to monitor the participant's engagement, in which an
669 appropriate response is provided, and the reward is won.


Immediate Choice

Delayed Choice

Check Trials

