

1 Disrupting Homologous Recombination or Single-Strand Annealing
2 Significantly Hinders CRISPR-Cas12a-Assisted Nonhomologous
3 End-Joining Gene Editing Efficiency in *Mycobacterium abscessus*

4 Sanshan Zeng,^{a,b,c,d} Yanan Ju,^{a,b,c,e} Md Shah Alam,^{a,b,c,d} Ziwen Lu,^{a,b,c,d} H.M. Adnan
5 Hameed,^{a,b,c} Lijie Li,^{a,b,c,e} Xirong Tian,^{a,b,c,d} Cuiting Fang,^{a,b,c,d} Xiang Fang,^{a,b,c,d} Jie
6 Ding,^{a,b,c,f} Xinyue Wang,^{g,h} Jinxing Hu,^h Shuai Wang,^{a,b,c,h*} Tianyu Zhang^{a,b,c,d,e,f,g *}

7

8 ^a State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
9 and Health, Chinese Academy of Sciences, Guangzhou, China

10 ^b Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases,
11 Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,
12 Guangzhou, China

13 ^c China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou
14 Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou,
15 China

16 ^d University of Chinese Academy of Sciences, Beijing, China

17 ^e School of Basic Medical Sciences, Division of Life Science and Medicine,
18 University of Science and Technology of China, Hefei, China

19 ^f Institute of Physical Science and Information Technology, Anhui University, Hefei,
20 China

21 ^g Guangzhou National Laboratory, Guangzhou, China

22 ^h State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital,
23 Guangzhou, China

24 * Corresponding authors: Shuai Wang, E.mail: wshuai1@163.com, Tel:
25 +86-20-32015266; Tianyu Zhang, E.mail: zhang_tianyu@gibh.ac.cn, Tel:
26 +86-20-32015270.

27 Running title: Influence of HR and SSA on *M. abscessus* Gene Editing Efficiency

28 **ABSTRACT** *Mycobacterium abscessus*, a fast-growing, non-tuberculous
29 mycobacterium resistant to most antimicrobial drugs, poses a significant public health
30 challenge because of its ability to cause many types of serious infections in humans.
31 While genetic manipulation tools for *M. abscessus* are still being developed, the
32 clustered regularly interspaced short palindromic repeats
33 (CRISPR)-CRISPR-associated protein (Cas) systems have shown promise in
34 generating highly specific double-strand breaks (DSBs) in its genome. These DSBs
35 can be repaired by the error-prone nonhomologous end joining (NHEJ) mechanism,
36 facilitating targeted gene editing. Here, our study marks a pioneering application of
37 the CRISPR-NHEJ strategy in *M. abscessus*. Moreover, our research uncovered an
38 unexpected finding: contrary to previous observations in *Mycobacterium tuberculosis*
39 and other species, the inhibition of RecA or disruption of key genes in the
40 homologous recombination or single-strand annealing pathways resulted in a
41 significant decrease in NHEJ repair efficiency in *M. abscessus*. This discovery
42 challenges the established perspectives and offers new insights into the interaction
43 among the three DSB repair pathways in Mycobacterium species.

44

45 **IMPORTANCE** There are still very few genetic manipulation tools available for
46 *Mycobacterium abscessus*. Here we report the successful application of
47 CRISPR-Cas12a-assisted nonhomologous end joining (NHEJ) in efficient gene
48 editing in *M. abscessus*. Contrary to previous research suggesting that homologous
49 recombination (HR) inhibition may enhance such editing efficiency in other
50 Mycobacterium species, our results showed that disruption of either HR or
51 single-strand annealing (SSA) DNA double-strand breaks (DSBs) repair pathways not
52 only failed to enhance but also significantly reduced the gene editing efficiency in *M.*
53 *abscessus*. This suggests that NHEJ repair in *M. abscessus* may require components
54 from both HR and SSA pathways, highlighting a complex interaction among the DSB
55 repair pathways in *M. abscessus*.

56

57 **KEYWORDS** *Mycobacterium abscessus*, CRISPR-Cas12a, DSB repair, NHEJ

58 The prevalence of lung infections caused by non-tuberculous mycobacteria
59 (NTM) has been rising annually, posing an escalating threat to public health. Among
60 these NTM, *Mycobacterium abscessus* is one of the primary causative agents, second
61 only to *Mycobacterium avium* complex in both the United States and the humid
62 regions of southern coastal China (1-3). Besides contagious pulmonary infections, *M.*
63 *abscessus* can infect the skin, soft tissues, central nervous system, eyes, and various
64 other parts of the human body (4). The intrinsic resistance of *M. abscessus* to a broad
65 spectrum of antibiotics not only complicates the treatment, but often requires the use
66 of multidrug regimens and prolonged therapies (5). The threat posed by *M. abscessus*
67 necessitates the urgent development of genetic tools for drug target identification,
68 resistance mechanism elucidation, and vaccine research.

69 Various attempts have been made at genetic manipulation in *Mycobacterium*
70 species, such as the expression of *gp60* and *gp61* from the mycobacteriophage Che9c
71 to enhance recombination in *Mycobacterium smegmatis*, *Mycobacterium tuberculosis*
72 (6), and *M. abscessus* (7). CRISPR-assisted recombineering has further enabled the
73 effectual construction of marker-free recombinants in *Mycobacterium* spp. After
74 successful implication in *M. smegmatis* (8), this technique has recently been applied
75 successfully for the first time by us in *M. abscessus* (9). Additionally, nonhomologous
76 end joining (NHEJ), another DNA double-strand break (DSB) repair mechanism,
77 presents the potential for genetic manipulation together with CRISPR, owing to its
78 template-independent and error-prone repair characteristics (10, 11). The combined
79 use of CRISPR and NHEJ for genetic manipulation has been proven effective in *M.*
80 *smegmatis* and *M. tuberculosis*, with inhibition of the host's homologous
81 recombination (HR) system by overexpressing RecX or disrupting *recA* gene (12).
82 RecX, known to antagonize RecA, impedes the HR process by negatively regulating
83 the array of biochemical reactions facilitated by RecA (13). However, attempts to
84 apply these strategies to *M. abscessus* have not been reported so far. Here, we report
85 that gene editing by the CRISPR-NHEJ strategy was successful and efficient in *M.*
86 *abscessus*. Interestingly, on the contrary to previous findings, gene editing efficiency
87 significantly decreased in *M. abscessus* once RecX was overexpressed or key genes in
88 HR or single-strand annealing (SSA) were knocked-out.

89 We tried to apply the CRISPR-NHEJ strategy to *M. abscessus*, and used *M.*
90 *smegmatis* as a control. The pNHEJ-Cpf1 plasmid containing *Mycobacterium*
91 *marinum* NHEJ elements (*ligD*, *ku* and *nrgA*) as well as *cpf1* (*cas12a*) or the
92 pNHEJX-Cpf1 plasmid additionally expressing *recX^{Msm}* (*recX* gene of *M. smegmatis*,
93 Fig. S1) were transduced into *M. abscessus* GZ002 (14, 15) and *M. smegmatis* MC²
94 155 by electroporation, respectively. Transformants were selected on
95 kanamycin-containing 7H10 plates. Strains carrying the corresponding plasmids were
96 cultured in 3 mL of 7H9 medium supplemented with 10% OADC, 0.2% glycerol,
97 0.05% Tween 80, and 100 µg/mL kanamycin for *M. abscessus* or 50 µg/mL for *M.*
98 *smegmatis*. Then 1 mL of the starter culture was inoculated into a 125 mL shake flask
99 containing 40 mL of 7H9 complete broth, and incubated at 37°C until OD₆₀₀=0.8-1.0.
100 After that, the bacteria were harvested for preparation of competent cells as
101 previously described (16). About 500 ng of the plasmid expressing crRNA (primers
102 for constructing crRNA are listed in Table S1) was mixed with 100 µL of competent
103 cells, transferred to a 2 mm electroporation cuvette, and incubated on ice for 10 min.
104 Then the cuvette was placed into an electroporation chamber for electroporation at a
105 voltage of 2,500 V, a capacitance of 25 µF, and a resistance of 1,000 Ω. After
106 electroporation, 2 mL of 7H9 medium was added to the electroporation cuvette to
107 resuspend the bacteria, which was then transferred to a 50 mL tube and incubated at
108 30°C for 4 to 5 hours. Then, cultures were plated separately on 7H11 agar
109 supplemented with the appropriate antibiotics and 200 ng/mL anhydrotetracycline
110 (ATc) for *M. abscessus* or 50 ng/mL for *M. smegmatis*. The editing efficiency was
111 determined by the ratio of colonies with altered target sequences to the total number
112 of randomly picked colonies. For each assessment, at least 20 colonies were randomly
113 selected for PCR (primers are shown in Table S1) and sequencing analysis. The
114 colonies that either lacked the target bands in PCR or showed sequencing results
115 deviating from the wild-type sequence were identified as colonies that had undergone
116 gene editing.

117 Here, we observed a surprising phenomenon. In the *M. abscessus* transformed
118 with pNHEJ-Cpf1 group, the gene editing efficiency of the randomly selected
119 nonessential gene *MAB_3513c* was $63.35 \pm 4.738\%$ (Fig. 1A). However, the gene
120 editing efficiency in the *M. abscessus* transformed with pNHEJX-Cpf1 group was
121 only $18.35 \pm 2.333\%$. The editing efficiency in the pNHEJ-Cpf1 group was

122 approximately threefold higher than that in the strain with additional *recX^{Msm}*
123 expression (Fig. 1A, $P = 0.0068$), which is completely opposite to a previous research
124 in *M. smegmatis* showing that it is necessary either to introduce additional *recX^{Msm}*
125 gene or to knock-out the *recA* gene to suppress HR to edit gene efficiently when using
126 the CRISPR-NHEJ strategy (12). Consequently, researchers hypothesized that in *M.*
127 *smegmatis*, HR and NHEJ are competing pathways (12). To verify this hypothesis, we
128 repeated their study by editing the *MSMEG_1946* gene in *M. smegmatis* to compare
129 the editing efficiency with or without expressing additional *recX^{Msm}* gene. Although
130 the gene editing efficiency remained high at $85 \pm 7.071\%$ in *M. smegmatis* containing
131 pNHEJX-Cpf1 with overexpressed *recX^{Msm}*, in the group containing pNHEJ-Cpf1
132 without additional *recX^{Msm}*, the gene editing efficiency was still $78.35 \pm 11.31\%$. We
133 did not observe an obvious decrease in editing efficiency (Fig. 1A, $P = 0.5650$). These
134 results were clearly different from the earlier report (12).

135 Unlike HR, NHEJ repair was characterized by deletions of base pairs of random
136 lengths (Fig. S2). To further validate the broad applicability of this strategy, we tried
137 to edit other *M. abscessus* genes only using pNHEJ-Cpf1 without additional
138 expression of *recX^{Msm}*. To date, we have successfully knocked-out over 30 genes
139 (partially listed in Table S2) in *M. abscessus* using this method. A limitation of this
140 study is that we did not edit more genes to compare the efficiencies with and without
141 additional expression of the *recX^{Msm}* widely. However, the overall efficiency range of
142 editing different genes by different researchers using this method in *M. abscessus* was
143 30% - 90% which was generally sufficient for a common gene editing. This strategy
144 has significantly improved our efficiency in acquiring mutants.

145 The surprising results spurred our further investigation. On the one hand, we
146 tried the gene editing in the HR-disrupted *M. abscessus* strain as reported in *M.*
147 *smegmatis* (11). On the other hand, though it was reported that the inhibition of SSA
148 can enhance HR (17), but no study has been reported on whether disruption of SSA
149 would affect the NHEJ-dependent gene editing in Mycobacteria, so, we tried to
150 investigate whether blocking SSA or disrupting HR and SSA both would impact the
151 NHEJ-dependent gene editing efficiency in *M. abscessus*.

152 We constructed selection-marker free, in-frame deletion knock-out strains of
153 *recA*, *recC* or *recO* gene in *M. abscessus* (unpublished) using the CRISPR-assisted

154 recombineering method as described in our previous study (9). The RecA plays a key
155 role in HR, while the RecBCD complex composed of RecC plays an important role in
156 SSA independently of the RecA-dominated HR. In addition, it was shown that
157 deletion of the *recO* gene would result in defective repair of both HR and SSA (18-20).
158 Next, in these HR and SSA repair-deficient strains, we repeated the gene editing
159 experiments performed in the wild-type strain as described above to observe the
160 potential impact of HR (*recA*) or SSA (*recC*) or both (*recO*) repair defects on the gene
161 editing efficiency.

162 Our results showed that the gene editing efficiencies were $3.33 \pm 2.877\%$, $17.5 \pm$
163 3.536% and $7.5 \pm 3.536\%$ in the *recA*, *recC* or *recO* knock-out strains, respectively
164 (Fig. 1B). As expected, the gene editing efficiency in the *recA* gene knock-out strain
165 was much lower than that in the wild-type strain ($P = 0.0004$) and even significantly
166 lower than that in the wild-type strain overexpressing *recX^{Msm}* gene ($P = 0.009$, Fig.
167 1A and Fig. 1B). Similarly, the gene editing efficiencies in the *recC* or *recO* gene
168 knock-out strains were significantly lower than that in the wild-type strain ($P =$
169 0.0082 and $P = 0.0056$, respectively, Fig. 1B). All these results supported that
170 disruption of the HR or SSA repairing pathway would decrease the
171 CRISPR-Cas12a-assisted NHEJ gene editing efficiency.

172 Interestingly, the ranking of editing efficiencies in the knock-out strains was *recA*
173 (HR) \leq *recO* (HR&SSA) \leq *recC* (SSA). The significant difference in editing
174 efficiencies between two of the three knock-out strains was only observed between
175 *recA* and *recC* ($P = 0.0156$, Fig. 1B). This indicated that the gene editing efficiency
176 was influenced differently by the different genes in the HR or SSA DSB repair
177 pathways, and suggested that those in the HR pathway or gene playing a key role in
178 the two pathways might have a stronger influence than that only affects SSA. Even
179 though *recO* may influence both HR and SSA, it only affects a branch pathway of HR
180 unlike RecA which plays a key role in HR (21). However, the influence of each gene
181 in either HR or SSA pathways on the gene editing efficiency needs further
182 investigation.

183 Previous studies largely indicated that the three DSB repair mechanisms might
184 be competitive with each other for gene editing efficiency (12, 17), which contrasts
185 sharply with our findings that they cooperate for the completion of gene editing. Here

186 we report for the first time the successful application of the NHEJ-CRISPR strategy
187 for the efficient gene editing but without inhibiting the HR pathway in *M. abscessus*,
188 and also reveal a potential synergistic interaction between HR or SSA and NHEJ
189 within this bacterium. For *M. smegmatis*, a study showing that disruption of HR
190 would not enhance the DSB repair efficiency through the NHEJ pathway supports
191 what we found here that disruption of HR did not affect the CRISPR-Cas12a-assisted
192 NHEJ gene editing efficiency (Fig. 1A) (22). Our novel finding offers a new
193 perspective for further exploration of the interrelationships between DSB repair
194 mechanisms in mycobacteria and paves the way for future enhancement of specific
195 repair pathway efficiencies by manipulating these relationships. More refined
196 mechanism research of the relationship among HR, SSA, and NHEJ and their impact
197 on the CRISPR-Cas12a-assisted NHEJ gene editing efficiency requires further
198 investigation.

199

200 **ACKNOWLEDGMENTS**

201 This study was supported by the National Key R&D Program of China
202 (2021YFA1300900), the National Natural Science Foundation of China
203 (21920102003), the State Key Lab of Respiratory Disease, Guangzhou Institute of
204 Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University
205 (SKLRD-Z-202301, SKLRD-Z-202412), and Guangzhou Science and Technology
206 (2024A04J4273), the Chinese Academy of Sciences, President's International
207 Fellowship Initiative (2023VBC0015). The funders had no role in study design, data
208 collection and analysis, decision to publish, or preparation of the manuscript. All
209 authors read and approved the final version of the manuscript.

210 We also extend our sincere appreciation to Professor Yichen Sun from the
211 Chinese Academy of Medical Sciences and Peking Union Medical College for
212 generously providing the pJV53-Cpf1 and pCR-ZEO plasmids for our study.

213

214

215

216 **REFERENCES**

217 1. Victoria L, Gupta A, Gómez JL, Robledo J. 2021. *Mycobacterium abscessus* complex: A
218 Review of Recent Developments in an Emerging Pathogen. *Front Cell Infect Microbiol*
219 11:659997.

220 2. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann J-L, Nick JA, Noone PG, Bilton D,
221 Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Sermet-Gaudelus I, Smyth AR,
222 Van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, Haworth CS. 2016. US Cystic Fibrosis
223 Foundation and European Cystic Fibrosis Society consensus recommendations for the
224 management of non-tuberculous mycobacteria in individuals with cystic fibrosis. *Thorax*
225 71:88-90.

226 3. Liu C-F, Song Y-M, He W-C, Liu D-X, He P, Bao J-J, Wang X-Y, Li Y-M, Zhao Y-L. 2021.
227 Nontuberculous mycobacteria in China: incidence and antimicrobial resistance spectrum from
228 a nationwide survey. *Infect Dis Poverty* 10:59.

229 4. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM,
230 Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace
231 RJ, Winthrop K. 2007. An official ATS/IDSA statement: diagnosis, treatment, and prevention
232 of nontuberculous mycobacterial diseases. *Am J Respir Crit Care Med* 175:367-416.

233 5. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. 2012. *Mycobacterium abscessus*: a
234 new antibiotic nightmare. *J Antimicrob Chemother* 67:810-818.

235 6. van Kessel JC, Hatfull GF. 2007. Recombineering in *Mycobacterium tuberculosis*. *Nat
236 Methods* 4:147-152.

237 7. Wang S, Cai X, Yu W, Zeng S, Zhang J, Guo L, Gao Y, Lu Z, Hameed HMA, Fang C, Tian X,
238 Yusuf B, Chhotaray C, Alam MDS, Zhang B, Ge H, Maslov DA, Cook GM, Peng J, Lin Y,
239 Zhong N, Zhang G, Zhang T. 2022. Arabinosyltransferase C Mediates Multiple Drugs
240 Intrinsic Resistance by Altering Cell Envelope Permeability in *Mycobacterium abscessus*.
241 *Microbiol Spectr* 10:e0276321.

242 8. Yan M-Y, Yan H-Q, Ren G-X, Zhao J-P, Guo X-P, Sun Y-C. 2017. CRISPR-Cas12a-Assisted
243 Recombineering in Bacteria. *Appl Environ Microbiol* 83:e00947-17.

244 9. Wang S, Zhang J, Hameed HMA, Ding J, Guan P, Fang X, Peng J, Su B, Ma S, Tan Y, M
245 Cook G, Zhang G, Lin Y, Zhong N, Hu J, Liu J, Zhang T. 2023. Amino acid 17 in QRDR of
246 Gyrase A plays a key role in fluoroquinolones susceptibility in mycobacteria. *Microbiol Spectr*
247 11:e0280923.

248 10. Singh A. 2017. Guardians of the mycobacterial genome: A review on DNA repair systems in
249 *Mycobacterium tuberculosis*. *Microbiology (Reading)* 163:1740-1758.

250 11. Glickman MS. 2014. Double-Strand DNA Break Repair in Mycobacteria. *Microbiol Spectr* 2.

251 12. Yan M-Y, Li S-S, Ding X-Y, Guo X-P, Jin Q, Sun Y-C. 2020. A CRISPR-Assisted
252 Nonhomologous End-Joining Strategy for Efficient Genome Editing in *Mycobacterium*
253 *tuberculosis*. *mBio* 11:e0280923.

254 13. Prasad D, Muniyappa K. 2020. The extended N-terminus of *Mycobacterium smegmatis* RecX
255 potentiates its ability to antagonize RecA functions. *Biochim Biophys Acta Proteins Proteom*
256 1868:140468.

257 14. Guo J, Wang C, Han Y, Liu Z, Wu T, Liu Y, Liu Y, Tan Y, Cai X, Cao Y, Wang B, Zhang B,
258 Liu C, Tan S, Zhang T. 2016. Identification of Lysine Acetylation in *Mycobacterium abscessus*
259 Using LC-MS/MS after Immunoprecipitation. *J Proteome Res* 15:2567-78.

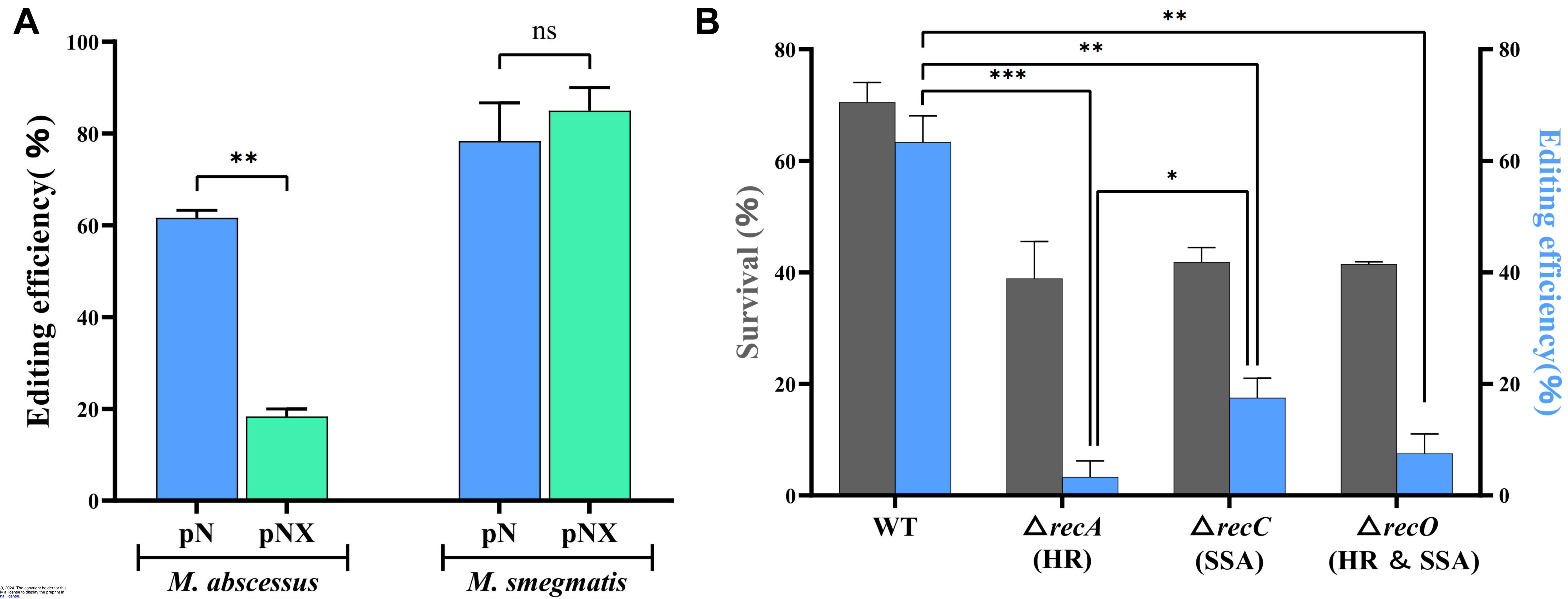
260 15. Chhotaray C, Wang S, Tan Y, Ali A, Shehroz M, Fang C, Liu Y, Lu Z, Cai X, Hameed HMA,
261 Islam MM, Surineni G, Tan S, Liu J, Zhang T. 2020. Comparative Analysis of Whole-Genome
262 and Methylome Profiles of a Smooth and a Rough *Mycobacterium abscessus* Clinical Strain.
263 *G3 (Bethesda)* 10:13-22.

264 16. Goude R, Roberts DM, Parish T. 2015. Electroporation of mycobacteria. *Methods Mol Biol*
265 1285:117-130.

266 17. Tufariello JM, Malek AA, Vilchèze C, Cole LE, Ratner HK, González PA, Jain P, Hatfull GF,
267 Larsen MH, Jacobs WR. 2014. Enhanced Specialized Transduction Using Recombineering in
268 *Mycobacterium tuberculosis*. *mBio* 5:e01179-14.

269 18. Cox MM. 1999. Recombinational DNA repair in bacteria and the RecA protein. *Prog Nucleic
270 Acid Res Mol Biol* 63:311-366.

271 19. Gorna E, Alina, Bowater P, Richard, Dziadek J. 2010. DNA repair systems and the
272 pathogenesis of *Mycobacterium tuberculosis*: varying activities at different stages of infection.
273 *Clin Sci* 119:187-202.


274 20. Gupta R, Barkan D, Redelman-Sidi G, Shuman S, Glickman MS. 2011. Mycobacteria exploit
275 three genetically distinct DNA double-strand break repair pathways. *Mol Microbiol*
276 79:316-330.

277 21. Gupta R, Ryzhikov M, Koroleva O, Unciuleac M, Shuman S, Korolev S, Glickman MS. 2013.
278 A dual role for mycobacterial RecO in RecA-dependent homologous recombination and
279 RecA-independent single-strand annealing. *Nucleic Acids Res* 41:2284-95.

280 22. Gupta R, Barkan D, Redelman-Sidi G, Shuman S, Glickman MS. 2011. Mycobacteria exploit
281 three genetically distinct DNA double-strand break repair pathways. *Mol Microbiol*
282 79:316-30.

283

284

FIG 1 CRISPR-Cas12a-NHEJ-assisted gene editing in *M. abscessus* and *M. smegmatis*. (A) Overexpression of the *recX^{Msm}* gene has different effects on the editing efficiency of *M. smegmatis* and *M. abscessus*. The plasmid expressing crRNA targeting *MSMEG_1946* or *MAB_3513c* was introduced into *M. smegmatis* or *M. abscessus* strains harboring pNHEJ-Cpf1 or pNHEJX-Cpf1, respectively. pN: pNHEJ-Cpf1, pNX: pNHEJX-Cpf1. (B) CRISPR-Cas12a-NHEJ gene editing efficiency in *M. abscessus* and its derivatives. Knocking out the *recA* (disruption of HR), *recC* (disruption of SSA), *recO* (disruption of HR and SSA) genes all resulted in a significant decrease in gene editing efficiency in *M. abscessus*. Editing efficiency was calculated by measuring the proportion of colonies with mutations at the target site among the total randomly selected clones and survival rate was defined as the ratio of the number of CFUs obtained from plates with ATc to the number of CFUs obtained from plates without ATc. ns, not significant. *, $p < 0.05$. **, $p < 0.01$. ***, $p < 0.001$.