

1

2 **Slow running benefits: Boosts in mood and facilitation of prefrontal 3 cognition even at very light intensity**

4 Chorphaka Damrongthai^{1,2,3,#}, Ryuta Kuwamizu^{1,4,#}, Yudai Yamazaki^{1,2}, Naoki Aoike^{1,2}, Dongmin
5 Lee¹, Kyeongho Byun^{2,5}, Ferenc Torma², Worachat Churdchomjan³, Michal A. Yassa^{2,6,7}, Kazutaka
6 Adachi⁸ and Hideaki Soya^{1,2,*}

7

8 ¹Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sci-
9 ences, University of Tsukuba, Ibaraki 305-8574, Japan

10 ²Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and
11 Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan

12 ³Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathum Thani 12000 Thai-
13 land

14 ⁴Graduate School of Letters, Kyoto University, Kyoto 606-8501, Japan

15 ⁵Division of Sport Science, Sport Science Institute and Health Promotion Center, College of Arts
16 and Physical Education, Incheon National University, Incheon, Republic of Korea

17 ⁶Department of Neurobiology and Behavior, University of California, Irvine, CA 92679-3800,
18 USA

19 ⁷Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA
20 92679-3800, USA

21 ⁸Department of Health Sciences, SBC Tokyo Medical University, Chiba, 279-8567, Japan

22

23 **#Co-first authors**

24 ***Correspondence to:** Hideaki Soya, Ph.D. <https://orcid.org/0000-0002-3061-4375>
25 Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human
26 High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology,
27 Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki
28 305-8574, Japan; Telephone/Fax: +81-29-853-2620; E-mail: soya.hideaki.gt@u.tsukuba.ac.jp

29

30

1 **ABSTRACT**

2 Although running upright has been reported to have positive effects on both physical and mental
3 health, the minimum running intensity/speed that would benefit mood and prefrontal cognition is
4 not yet clear. For this reason, we aimed to investigate the acute effect of very slow running, which
5 is classified as a very light intensity exercise, on mood, executive function (EF), and their neural
6 substrates in the prefrontal cortex (PFC). Twenty-four healthy participants completed a 10-minute
7 very slow running session on a treadmill at 35% $\dot{V}\text{O}_{2\text{peak}}$ and a resting control session in randomized
8 order. EF was measured using the Stroop task and the mood state was measured using the Two-
9 Dimensional Mood Scale (TDMS) before and after both sessions. Cortical hemodynamic changes
10 while performing the task were monitored using functional near-infrared spectroscopy (fNIRS).
11 The results show that ten minutes of very slow running significantly enhanced mood, reduced
12 Stroop interference time (i.e., enhanced EF), and elicited left lateral PFC activation. Moreover,
13 head acceleration, the magnitude of up-and-down oscillations, was measured during running, and
14 a significant positive correlation with pleasant mood was found. Head acceleration is a remarkable
15 characteristic of running and may be one of the factors related to a pleasant mood induced by very
16 slow running. In conclusion, the current study reveals that a single bout of running, even at very
17 slow speed, elicits a pleasant mood and improved executive function with enhancing activation in
18 prefrontal subregions. This shed light on the slow running benefits to brain health.

19

20 **Keywords:** executive function, functional near-infrared spectroscopy, mild exercise, pleasant
21 mood, prefrontal cortex

22

23 **Running title:** Slow running benefits to brain

24

25

26

27

28

29

30

31

1 INTRODUCTION

2 Running has an extremely long history as a means of locomotion for humans. Human beings can
3 navigate long distances through bipedal running (Bramble & Lieberman, 2004). It is interesting to
4 hypothesize that human upright bipedal running is also strongly tied to the evolutionary expansion
5 of the *Homo sapiens*' frontal lobes and higher cognitive functions (Schulkin, 2016). While, in
6 modern times, physical inactivity is a common problem in most developed countries, running has
7 been gaining popularity since the 70s and has been proposed as the most popular democratic, which
8 is to say universally accessible, sport in the world. Its connection to human evolution and its rising
9 popularity lead us to believe that running is a fundamental and engaging physical activity with
10 high adherence.

11 Running decreases not only the risk of cardiovascular diseases in general but also has
12 positive effects on mental and brain health. Our previous neuroimaging study showed that
13 moderate-intensity running exercise (50% $\dot{V}\text{O}_{2\text{peak}}$) activated lateral prefrontal cortex (PFC) of both
14 hemisphere and enhances executive function (Damrongthai *et al.*, 2021). This resembles results
15 from previous pedaling studies (Yanagisawa *et al.*, 2010; Byun *et al.*, 2014b; Kujach *et al.*, 2018).
16 Furthermore, Damrongthai *et al.* demonstrated a notable induction of a pleasant mood, although
17 in previous cycling studies no such effect was found (Yanagisawa *et al.*, 2010; Byun *et al.*, 2014b;
18 Kujach *et al.*, 2018; Yamazaki *et al.*, 2018; Damrongthai *et al.*, 2021; Suwabe *et al.*, 2021).
19 However, moderate-intensity exercise is the intensity at which the hypothalamic stress response
20 occurs (Soya *et al.*, 2007). As such, vulnerable individuals, such as those with low fitness levels
21 or the elderly, may find it difficult to adhere to a moderate-intensity exercise routine since
22 moderate running is quite fast and generates a higher load on joints, which may lead to injury,
23 compare to pedaling exercise. It is an intriguing challenge to see if a comparable effect can be
24 achieved at a stress-free lower intensity, near walking speed. Our animal-to-human studies have
25 shown that light-intensity exercise below the lactate threshold enhances the function of brain
26 regions involved in cognition. In previous studies, pedaling exercise activated the left lateral PFC
27 and improved executive function without significant changes in mood (Byun *et al.*, 2014b;
28 Kuwamizu *et al.*, 2023). Based on this study, it is expected that even very slow running can
29 improve executive function. Furthermore, if mood improves even with very light-intensity running
30 (i.e., very slow running) as it does with moderate-intensity running, we can propose that very slow
31 running is a beneficial exercise mode that has a positive effect on both mood and executive

1 function with minimal effort. Although very slow running may enhance executive function while
2 also improving mood, its exact beneficial effects on mood and executive function, and the specific
3 brain loci that activate to provide a neural basis remain to be determined.

4 Running strengthens cardiopulmonary function, muscles, and bones by supporting one's
5 body weight alternately on each foot in a regular rhythm (Garofolini & Taylor, 2019). The
6 mechanical impact of each rhythmic foot strike on the muscles of the entire body, especially the
7 legs, has been shown to lead to physiological change (e.g., improved peripheral and central blood
8 circulation) (Palatini *et al.*, 1989; Lyngeraa *et al.*, 2013). One rodent study has demonstrated that
9 mechanical stress from vertical head acceleration (HA; the rate of vertical change in head velocity)
10 during running induces the internalization of serotonin receptors in the PFC and corresponding
11 behavioral changes (Ryu *et al.*, 2020). Mechanical stress from vertical HA, caused by adequate
12 rhythmic up-and-down oscillations, is a characteristic of running not present in pedaling. Walking
13 upright while always having at least one foot on the ground at all times is expected to produce a
14 similar but partial effect; however, the up and down motion resulting from each foot striking the
15 ground with a large impact force caused by body weight is unique to running. These running
16 characteristics may have a connection with running-specific beneficial effects on mood and PFC
17 function.

18 Activation in the PFC can be measured using functional near-infrared spectroscopy
19 (fNIRS), a non-invasive brain imaging instrument. fNIRS is compact enough that it can be used in
20 real-life environments, such as a gym, or in a laboratory setting next to, for example, a large
21 treadmill, allowing the measurement of activated brain regions even during acute running. In the
22 last two decades, fNIRS has contributed to research on brain activity during locomotion, including
23 walking (Miyai *et al.*, 2001; Vitorio *et al.*, 2017). Importantly, however, methodological
24 difficulties must be considered: motion artifacts and skin blood flow may contaminate the fNIRS
25 signals measured during locomotion (Miyazawa *et al.*, 2013; Vitorio *et al.*, 2017), making it
26 challenging to measure pure cortical activity based on neuro-vascular coupling. To solve this
27 problem, one of our previous studies focused on the enhancement of executive function post-
28 treadmill-running (Damrongthai *et al.*, 2021). We developed an experimental protocol to minimize
29 non-cortical fNIRS signals by examining in detail the decay of relevant indicators after exercise
30 (Yanagisawa *et al.*, 2010; Byun *et al.*, 2014b, 2014a; Kujach *et al.*, 2018; Damrongthai *et al.*,
31 2021). We have been testing how the prefrontal sub-region that coincides with the Color-word

1 Stroop test (CWST), a representative task of inhibitory control, is affected by exercise using the
2 virtual registration method (Tsuzuki *et al.*, 2007; Yanagisawa *et al.*, 2010; Tsuzuki & Dan, 2014;
3 Damrongthai *et al.*, 2021). Thus, here we hypothesize that this approach will enable us to elucidate
4 the neural basis of how very slow running enhances executive function.

5 This study aims to elucidate the effects of acute very slow running on mood and executive
6 function, and on prefrontal sub-region activation as a neural basis. In addition, we will quantify
7 HA as a candidate causal factor for the beneficial effects of very slow running.

8

9 **METHODS**

10 **Participants**

11 Participants included 24 young adults who were Japanese native speakers. All of them were
12 nonsmokers, were right-hand dominant, had normal or corrected-to-normal vision, and had normal
13 color vision. No participant reported a history of neurological or psychiatric disorders or had any
14 conditions requiring medical care. One additional participant was tested but was excluded from
15 the final analyses because her behavioral data change (Stroop interference reaction-time difference
16 during her participation in the running condition) fell outside the range of 3 standard deviations
17 from the mean. The demographic data of the participants is shown in Table 1. The study was
18 approved by the Institutional Ethics Committee of the University of Tsukuba (approval number:
19 tai020-120) where the protocol corresponded to the latest version of the Helsinki Declaration.
20 Written informed consent was obtained from all participants. This sample size was confirmed to
21 be acceptable: post-hoc sensitivity analysis, computed using G*Power 3.1, was performed based
22 on the current sample size (24 participants) and resulted in an alpha of 0.05 and power of 80%,
23 demonstrating sufficient sensitivity for detecting *t*-test differences exceeding $d = 0.60$ (with a two-
24 tailed alpha), which is consistent with our previous studies (Yanagisawa *et al.*, 2010; Byun *et al.*,
25 2014b; Damrongthai *et al.*, 2021).

26

27

28

29

30

31

1 **Table 1.** Participant demographics data (n = 24).

	Male (n = 13)	Female (n = 11)
Age (yr)	23.38 \pm 1.76	20.55 \pm 2.07
Weight (kg)	65.31 \pm 11.65	49.12 \pm 4.05
Height (cm)	172.15 \pm 5.34	159.06 \pm 4.03
BMI (kg/m ²)	22.03 \pm 3.92	19.40 \pm 1.39
Graded exercise test		
$\dot{V}\text{O}_{2\text{peak}}$ (mL/kg/min)	48.24 \pm 6.25	40.03 \pm 3.84
HR _{max} (bpm)	191.15 \pm 8.43	190.00 \pm 7.25
R	1.14 \pm 0.03	1.13 \pm 0.06
RPE	19.23 \pm 0.60	19.27 \pm 1.01
Final treadmill speed (km/h)	16.54 \pm 2.40	13.55 \pm 1.97

2 Presented values are mean \pm SD.

3 BMI = Body Mass Index; $\dot{V}\text{O}_{2\text{peak}}$ = Peak oxygen uptake; HR_{max} = Maximal Heart Rate; R = Respiratory exchange
4 ratio; RPE = Rate of Perceived Exertion

5

6 **Procedure for main experiment**

7 The main experiment had three phases. First, the maximal oxygen uptake ($\dot{V}\text{O}_{2\text{peak}}$) of each
8 participant was measured to appropriately personalize the very light exercise intensity, which is to
9 say treadmill speed, for very slow running. The target was 35% $\dot{V}\text{O}_{2\text{peak}}$ in accordance with the
10 American College of Sports Medicine (Pescatello *et al.*, 2014). Second, the proper timing for
11 reassessing fNIRS measurements was determined since very slow running might induce non-
12 cortical physiological signals, such as skin blood flow, that could consequently interfere with the
13 fNIRS signal. It was determined that 5 min after very slow running was appropriate because within
14 that time all physiological variables completely returned to baseline. Details of the first and second
15 phases are provided in Supplemental Material 1 and Supplemental Material 2, respectively. Third,
16 the effects of very slow running on mood, executive function, neural substrate, and HA were
17 determined. All participants took part in two sessions, control (CON) and very slow running
18 (SRUN), on separate days. The sessions were randomized and conducted with a counterbalance
19 measure design. During the SRUN session, prefrontal hemodynamic changes during the CWST
20 were measured using fNIRS before and 5 min after very slow running to avoid non-cortical

1 physiological signal contamination. Participants were asked to slowly run on a treadmill at a
2 personalized speed for 10 min. HA during running was assessed later, and the details are included
3 in Supplemental Material 3. Mood state was assessed before and after very slow running. In the
4 CON session, participants were asked to sit on a chair on the treadmill instead of running for 10
5 min (Fig. 1). In addition, pupillometry was performed as an exploratory measurement item using
6 a glass-type eye tracker, and the details can be found in Supplemental Material 4. It should be
7 noted, however, that pupil measurements were limited to a small sample size due to device errors
8 related to body movement.

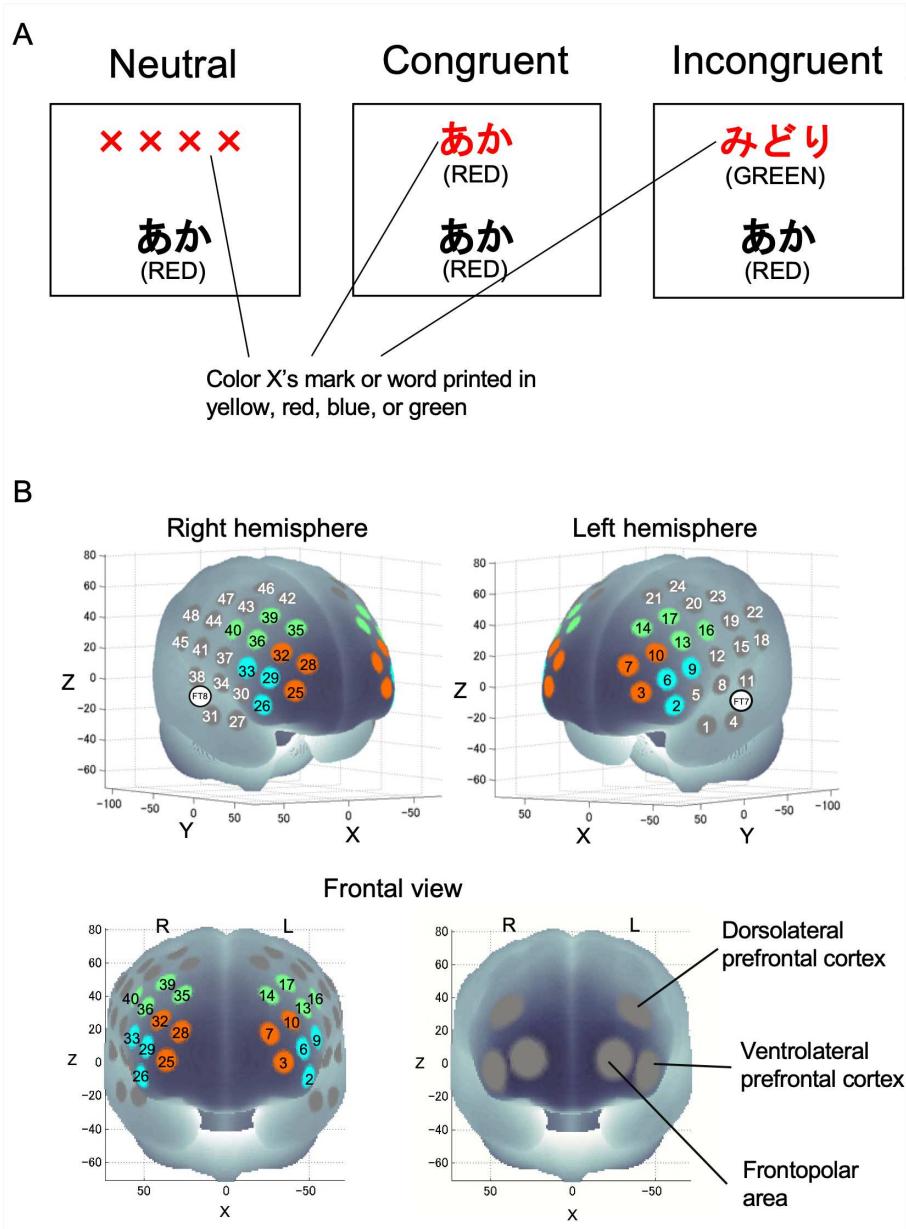
9

		fNIRS					
CON	CWST 6 min 30 s	T D	Rest 10 min	T D	Rest 5 min		
	SRUN	M S	Very slow running 10 min	M S	Rest 5 min	CWST 6 min 30 s	HA 2 min

10

11 **Figure 1.** Experimental design for investigating the acute effect of very slow running on prefrontal cortical executive
12 function. CON = control session, SRUN = very slow running session, CWST = color-word Stroop task, TDMS =
13 Two-Dimensional Mood Scale, fNIRS = Functional near-infrared spectroscopy, HA = Head acceleration

14


15

16 **Mood measurements.** The Two-Dimensional Mood Scale (TDMS) was adopted to evaluate mood
17 state before and after both SRUN and CON conditions. The TDMS is a momentary mood scale
18 consisting of eight words describing arousal and pleasure states: energetic, lively, lethargic, listless,
19 relaxed, calm, irritated, and nervous. The participants used a 6-point Likert scale ranging from 0
20 = not at all to 5 = extremely to describe their feelings. Subsequently, the scores were calculated
21 and interpreted to determine arousal and pleasure levels.

22

23 **Behavioral measurements.** An event-related version of the CWST was used to evaluate executive
24 function. The test was displayed on a monitor with two rows of letters. The participants were
25 instructed to decide whether the color of the letters in upper row corresponded to the color name
26 in the lower row. They were also asked to place their index fingers on “yes” and “no” buttons and

1 to respond to the test by pressing the correct button as quickly as they could. Subsequently, reaction
2 time (RT) and error rate (ER) were calculated. The CWST consisted of three conditions: neutral,
3 congruent, and incongruent. For the neutral condition, the upper row displayed a row of X's
4 (XXXX) printed in red, green, blue, or yellow, and the lower row displayed the word 'RED',
5 'GREEN', 'BLUE', or 'YELLOW' printed in black. For the congruent condition, the upper row
6 displayed the word 'RED', 'GREEN', 'BLUE', or 'YELLOW' printed in the congruent color (e.g.,
7 'BLUE' was printed in blue), and the lower row displayed the same words as in the lower row of
8 the neutral condition. For the incongruent condition, the upper row displayed a color word printed
9 in an incongruent color to produce interference between the color word and the color name (e.g.,
10 'YELLOW' was printed in red), and the lower row displayed the same words as in the lower row
11 of the neutral and congruent conditions (Fig. 2A). Each experimental session consisted of 30 trials,
12 made up of 10 neutral, 10 congruent, and 10 incongruent trials, which appeared in random order.
13 The upper row was presented 100 ms before the lower row in order to shift visual attention. Each
14 trial remained on the screen until the participant responded or for 2 s, whichever was shorter. Then,
15 a fixation cross appeared on the screen as an inter-stimulus interval for 10-12 s to avoid prediction
16 of the timing of the subsequent trial. Stroop interference, an index of executive function in the PFC,
17 was calculated as the difference in reaction time between the incongruent and neutral conditions.
18 All words were written in Japanese. The participants performed three practice sessions to ensure
19 that they understood and were familiarized with the CWST well before starting the experiment.
20
21
22
23

1
2 **Figure 2.** (A) Examples of the color-word Stroop test neutral, congruent, and incongruent conditions. The presented
3 words were written in Japanese. English translations are shown in parentheses. (B) Spatial profiles of fNIRS channels
4 used. Two sets of probe holders were placed to cover both lateral prefrontal activation foci as in our previous studies.
5 Colors indicate each region of interest (ROI) in the lateral part of the PFC.

6
7 **fNIRS measurements.** Cortical hemodynamic changes were monitored using the multichannel
8 fNIRS optical topography system ETG-7000 (Hitachi Medical Corporation, Japan) with two
9 wavelengths of near-infrared light (785 and 830 nm). The optical data from fNIRS was analyzed
10 based on the modified Beer-Lambert Law as previously described. With this method, we were able

1 to calculate signals reflecting the oxygenated hemoglobin (oxy-Hb) concentration changes in
2 millimolar-millimeters (mM·mm). The sampling rate was set at 10 Hz. For fNIRS probe placement,
3 two sets of 4×4 multichannel probe holders, which consist of 8 illuminative and 8 detective probes
4 arranged alternately at an inter-probe distance of 3 cm resulting in 24 channels (CH) per set, were
5 placed to cover both lateral prefrontal activation foci as in previous studies. The left probe holder
6 was placed such that probe 5 (between CH4 and CH11) was placed over FT7, with the medial edge
7 of the probe column parallel to the medial line. The right probe holder was symmetrically placed
8 on the left hemisphere (Fig. 2B). We adopted a virtual registration method to register fNIRS data
9 to Montreal Neurological Institute (MNI) standard brain space. With this method, we were able to
10 place a virtual probe holder on the scalp by stimulating the holder's deformation and by registering
11 probes and channels onto a reference brain in the magnetic resonance image (MRI) database. We
12 probabilistically estimated the MNI coordinate values for fNIRS in order to obtain the most likely
13 microanatomical predictions for locations of the given channels as well as the spatial variability of
14 the estimation. Finally, a MATLAB function was used to label the estimated locations in a macro-
15 anatomical brain atlas.

16

17 **Analysis of fNIRS data.** Prefrontal Oxy-Hb changes that occurred while performing the CWST
18 were calculated as shown in our previous studies. Individual timeline data for each channel were
19 preprocessed with a band-pass filter using a high-pass filter (0.04 Hz) to remove baseline drift and
20 a low-pass filter (0.30 Hz) to screen out heartbeat pulsations. The motion artifacts were checked
21 by using the optical topography analysis tools (POTATO) (Hitachi, Ltd., Japan). Then, channel-
22 wise and subject-wise contrasts were calculated by the inter-trial mean of differences between peak
23 (4-11 s after trial onset) and baseline (0-2 s before trial onset) periods (Byun *et al.*, 2014b;
24 Damrongthai *et al.*, 2021; Kuwamizu *et al.*, 2021). The contrasts obtained were subsequently
25 subjected to a second level of random effects group analysis. This study adopted LBPA40, a widely
26 used method among anatomical labeling systems, to combine 3 to 4 neighboring channels to form
27 each region of interest (ROI). The regions included the left dorsolateral PFC (l-DLPFC; CHs 13,
28 14, 16, and 17), the right DLPFC (r-DLPFC; CHs 35, 36, 39, and 40), the left ventrolateral PFC
29 (r-VLPFC; CHs 2, 6, and 9), the right VLPFC (r-VLPFC; CHs 26, 29, and 33), the left frontopolar
30 area (l-FPA; CHs 3, 7, and 10), and the right FPA (r-FPA; CHs 25, 28, and 32). LBPA40 is
31 considered valid because optical properties of neighboring channels are known to be similar.

1 However, with this method, optical properties in different ROIs can cause systematic bias during
2 statistical analysis. Therefore, we limited the analyses to ROI-wise and used a false discovery rate
3 (FDR) to control the low proportion of false positives.

4

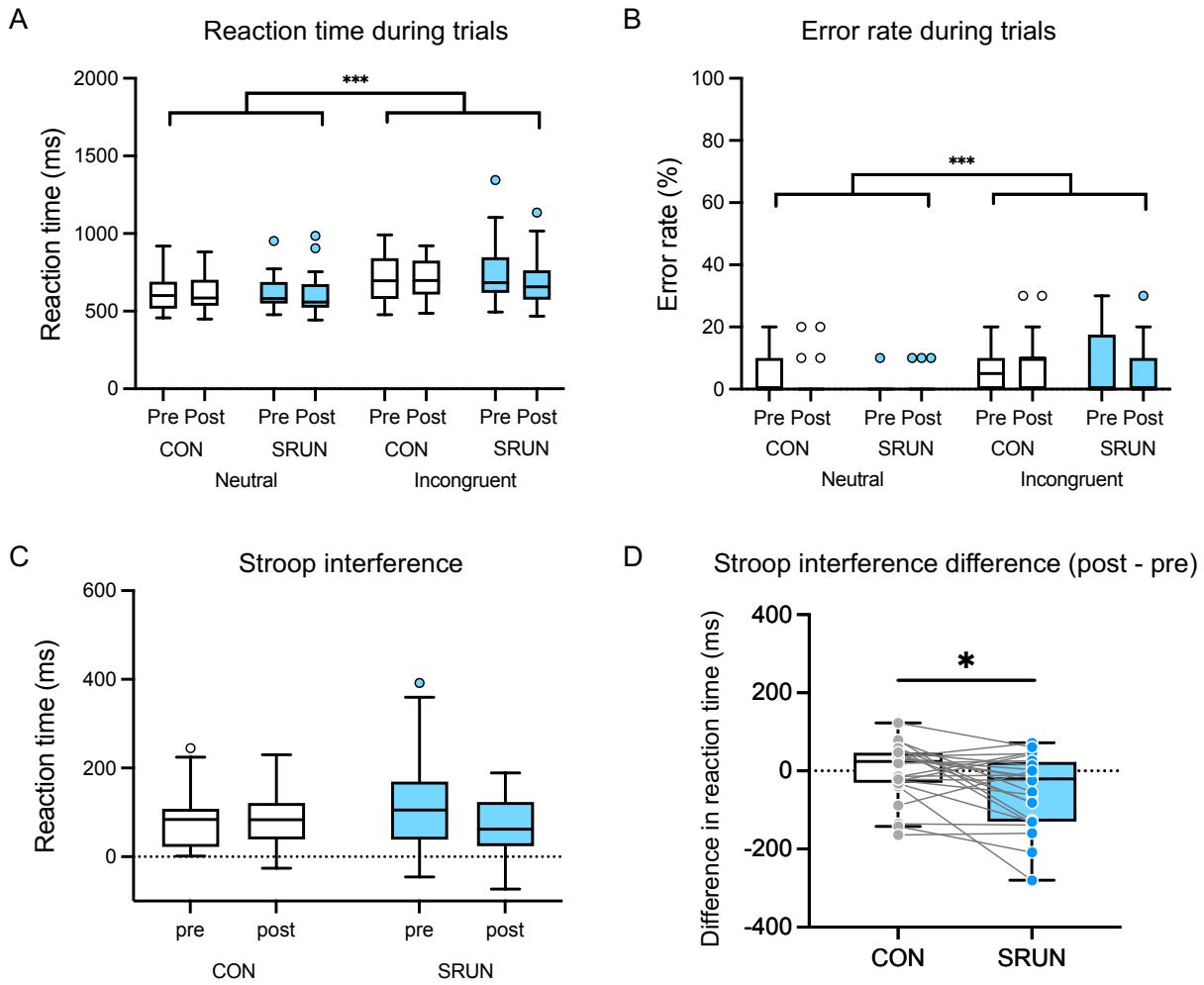
5 **Head acceleration measurements.** An AS-20GB acceleration sensor was connected to a strain
6 amplifier DPM-600A (both are products of Kyowa Electronic Instruments Co., Ltd.). This output
7 signal was recorded by a personal computer after real-time conversion to a digital signal using
8 PowerLab/16SP (ADInstruments). The sensor was attached on the top of the head with a
9 lightweight bracket so that the acceleration detection direction was perpendicular to the floor. Very
10 slow running was executed on a treadmill for two minutes. Vertical HA was measured and
11 recorded while very slow running was executed on a treadmill for two minutes. The head moves
12 up and down vertically once with each step, causing acceleration of the head. The incremental
13 difference between the minimum and maximum acceleration values for ten steps were
14 standardized (see Supplemental Material 3). HA was assessed separately after the SRUN condition
15 because the accelerometer, which was rigidly attached to the head to maintain high validity, could
16 interfere with the pleasant sensations of running or resting for 10 minutes.

17

18 **Statistical analysis.** Psychological mood state was subjected to repeated-measures two-way
19 analysis of variance (ANOVA) with session (CON, SRUN) and time (pre, post) as within-subject
20 factors. Behavioral Stroop performance was first tested to determine whether there was significant
21 Stroop interference using repeated-measures three-way ANOVA with condition (neutral,
22 incongruent), session (CON, SRUN), and time (pre, post) as within-subject factors. Then, the
23 effect of running on Stroop task performance was analyzed using repeated-measures two-way
24 ANOVA with session (CON, SRUN) and time (pre, post) as within-subject factors. Cortical
25 activation during pre-sessions for CON and SRUN, which were free from any effect of running,
26 were first examined to determine whether the Stroop interference effect could be observed using
27 one-sample *t*-test with FDR correction. Only significant ROIs for Stroop interference were
28 subsequently analyzed for the effect of running on prefrontal activation using repeated-measures
29 two-way ANOVA with session (CON, SRUN) and time (pre, post) as within-subject factors
30 followed by FDR correction. Additionally, Pearson's correlation coefficient was adopted to
31 analyze the relationship between HA during SRUN and changes in variables to determine whether

1 significant changes could be observed: [(post-session) - (pre-session)] for SRUN and [(post-
2 session) - (pre-session)] for CON. The statistical significance level was set *a priori* at $p < 0.05$.
3 The SPSS Statistical Package version 24 (SPSS, Inc., USA) was used for statistical analyses.

4


5 RESULTS

6 **Verification of very slow running.** To verify whether the participants could perform very slow
7 running or a very light-intensity exercise, we monitored HR and RPE during exercise. During 10
8 min of very slow running, average HR and RPE were 104.84 ± 7.61 bpm and 8.50 ± 1.95 points,
9 respectively, for males and 107 ± 9.39 bpm and 8.68 ± 1.27 points, respectively, for females. Based
10 on the guideline of the American College of Sports Medicine, these values were determined to fall
11 within the range of very light-intensity exercise. In addition, average treadmill speeds for males
12 and females were 5.46 ± 1.77 km/h and 3.86 ± 0.87 km/h, respectively.

13

14 **Behavioral results.** RT and ER had significant main effects of condition (neutral/incongruent;
15 $F(1, 23) = 63.59, p < 0.001$ (Fig. 3A) and $F(1, 23) = 20.03, p < 0.001$ (Fig. 3B), respectively;
16 repeated-measures three-way ANOVA), showing that the Stroop interference effect was basically
17 found between the neutral and incongruent conditions in all sessions of this study. Next, the effects
18 of running on Stroop interference RT and ER were examined. Stroop interference RT revealed
19 significant interaction between session (CON, RUN) and time (pre, post) ($F(1, 23) = 7.66, p <$
20 0.05; repeated-measures two-way ANOVA; Fig. 3C), whereas Stroop interference ER did not
21 reveal significant interaction ($F(1, 23) = 2.09, p = 0.162$). Finally, changes in Stroop interference
22 RT were investigated and the results showed that Stroop interference RT after the SRUN session
23 was significantly more reduced than that after the CON session ($t(23) = 2.77, p < 0.05$, Cohen's d
24 = 0.57; paired t -test; Fig. 3D).

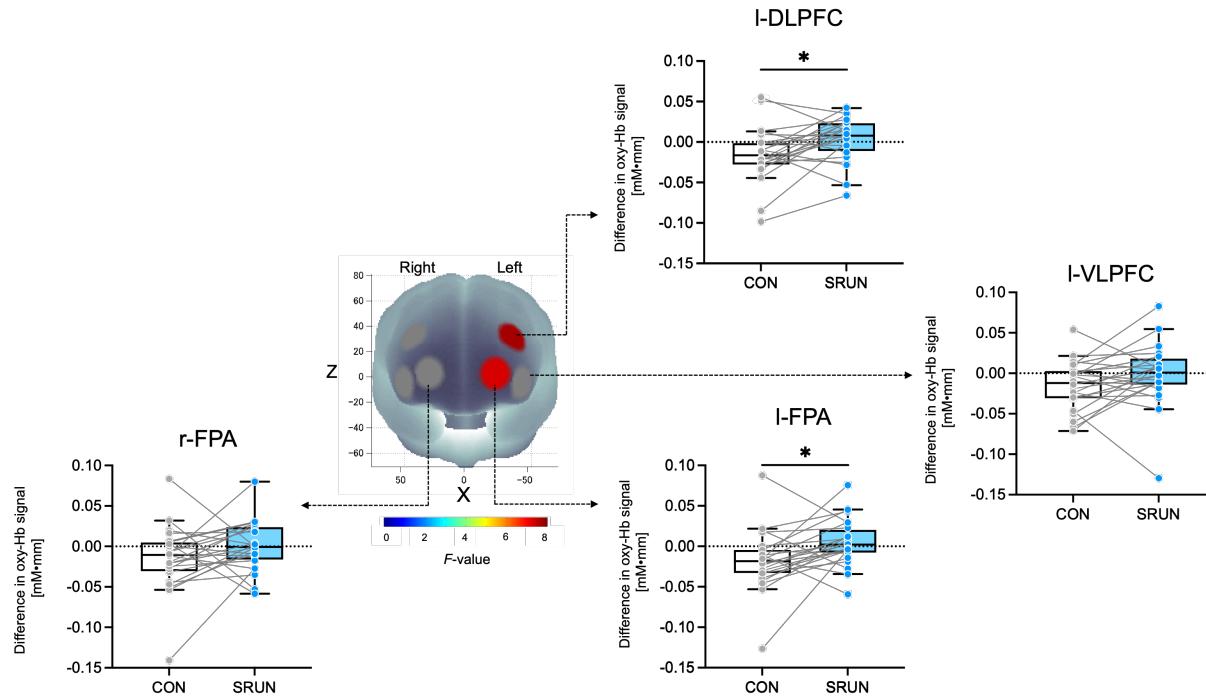
25

1 **Figure 3.** Comparison of Stroop task performance for (A) reaction time and (B) error rate between neutral
2 and incongruent conditions. (C) Difference in Stroop interference [incongruent - neutral] between control and running
3 sessions. (D) Contrast in Stroop interference difference ([incongruent - neutral of post-session] - [incongruent - neutral
4 of pre-session]) between control and running. The box-and-whisker plots are drawn in the Tukey manner. Line plots
5 represent individual data. *** = $p < 0.001$, * = $p < 0.05$

7
8 **Prefrontal activation.** There were no significant differences in pre-session Stroop-interference-
9 related cortical activation between CON and SRUN conditions in any ROIs. The pre-session data
10 for the CON and SRUN sessions, which were free from any effect of exercise, were averaged and
11 served as substrates for a ROI-wise analysis. Significant Stroop-interference-related cortical
12 activations were found in 4 ROIs, l-DLPFC, l-VLPFC, l-FPA, and r-FPA ($p < 0.05$, one-sample t -
13 test, FDR correction), indicating that the Stroop interference effect was observable in this study
14 (Fig. 4).

1

2 **Figure 4.** Cortical activation patterns during performance of the CWST for the CON and SRUN pre-sessions.
 3 Presented data are comparisons of averaged values between the CON pre-session and the SRUN pre-session. Baseline
 4 (2s before trial onset) was set at zero and peak periods were from 4 s to 11 s after trial onset. (A) *t*-map of (Oxy-Hb)
 5 signal change; *t*-values are as indicated by the color bar. Significant Stroop-interference-related cortical activations
 6 [incongruent - neutral] were found in 4 ROIs: the left dorsolateral prefrontal cortex (B), the left ventrolateral prefrontal
 7 cortex (C), the right frontopolar area (D), and the left frontopolar area (E). Data are mean \pm SE.


8

9 The effect of very slow running on prefrontal activation in these 4 ROIs was subsequently
 10 determined and the results reveal that Stroop-interference-related cortical activations had
 11 significant interactions between session (CON, SRUN) and time (pre, post) in the l-DLPFC ($F(1, 23) = 7.73, p < 0.05$) and the l-FPA ($F(1, 23) = 7.34, p < 0.05$) (repeated-measures two-way
 12 ANOVA). Finally, oxy-Hb change with Stroop interference in the l-DLPFC and the l-FPA were
 13 examined. The results reveal that the SRUN session had a significantly greater increase of oxy-Hb
 14 with Stroop interference than did the CON session in the l-DLPFC ($t(23) = 2.78, p < 0.05$, Cohen's
 15

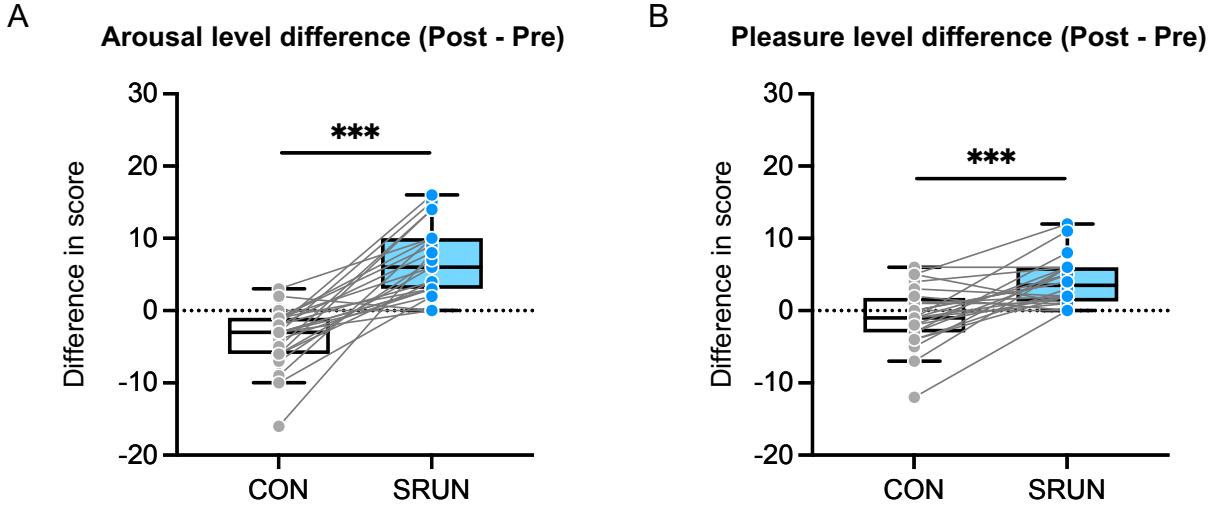
1 $d = 0.57$) and l-FPA ($t(23) = 2.71, p < 0.05$, Cohen's $d = 0.55$) (paired t -test, FDR correction; Fig.

2 5).

3

4

5


6 **Figure 5.** Very slow running elicits prefrontal activation in response to Stroop interference ([incongruent - neutral of
7 post-session] - [incongruent - neutral of pre-session]). For the F -map of (Oxy-Hb) signal change, F -values are as
8 indicated by the color bar. Among the 4 ROIs, significant differences are found in the left dorsolateral prefrontal
9 cortex and the left frontopolar area. The box-and-whisker plots are drawn in the Tukey manner. Line plots represent
10 individual data. $*p < 0.05$

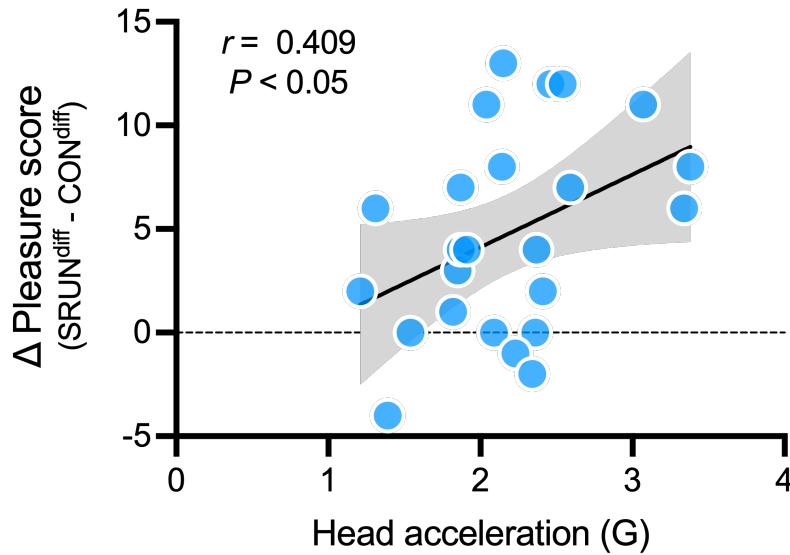
11

12

13 **Psychological mood.** Arousal and pleasure were found to have significant interactions between
14 session (CON, SRUN) and time (pre, post) ($F(1, 23) = 55.84, p < 0.001$ and $F(1, 23) = 22.96, p <$
15 0.001 , respectively; repeated-measures two-way ANOVA). Changes of arousal and pleasure were
16 subsequently examined revealing that the SRUN session had a significantly greater increase of
17 arousal and pleasure than did the CON session ($t(23) = 7.47, p < 0.001$, Cohen's $d = 1.53$ [Fig.
18 6A] and $t(23) = 4.79, p < 0.001$, Cohen's $d = 0.98$ [Fig. 6B], respectively; paired t -test).

19

1 **Figure 6.** Comparison of mood change [(post-session) - (pre-session)] between CON and SRUN: (A) arousal level
2 differences and (B) pleasure level differences. CON = control session, SRUN = very slow running session. The box-
3 and-whisker plot is drawn in the Tukey manner. Line plots represent individual data. *** = $p < 0.001$
4


5

6

7 **Relationship between head acceleration and significantly changed variables with running.**

8 At the individual very slow running speed, the vertical HA averages in males and females were
9 2.14 ± 0.48 G and 2.22 ± 0.67 G respectively. HA influenced by very slow running was positively
10 correlated with exercise-induced pleasure levels ($r = 0.409$, $p < 0.05$, Pearson correlation; Fig. 7).
11 However, there was no significant association between HA and other variable changes induced by
12 very slow running: Stroop interference reaction time ($r = -0.03$), l-DLPFC activation ($r = -0.04$),
13 l-FPA activation ($r = -0.34$), and arousal level ($r = -0.04$); p -values for all variables were > 0.05 ,
14 Pearson correlation. In addition, there was no significant correlation between HA and other
15 potential covariate factors: treadmill speed ($r = 0.20$), $\dot{V}\text{O}_{2\text{peak}}$ ($r = 0.17$), height ($r = -0.05$) and
16 weight ($r = -0.22$): p -values for all variables was > 0.3 , Pearson correlation.

17

1
2 **Figure 7.** Correlation between running-generated head acceleration and running-enhanced pleasure level. The black
3 line represents linear regression and the gray band represents 95% confidence bands.
4
5

6 DISCUSSION

7 The current study confirmed the hypothesis that a single bout of very slow running, a very light-
8 intensity exercise at 35% $\dot{V}o_{2\text{peak}}$, enhances executive function with activation in lateral prefrontal
9 subregions. Moreover, very slow running elicited an improvement in mood and 17% of the
10 variance in mood enhancement was explained by inter-individual HA. The current results suggest
11 that acute very slow running has a positive effect on both executive function enhancement and
12 mood improvement with minimal effort; part of this mechanism may originate from up-and-down
13 oscillations of the body in addition to the comparable mechanisms of pedaling exercise.

14 Stroop interference (longer RT with higher ER in the incongruent condition compared to the
15 neutral condition) was found across all sessions. Subsequently, the Stroop interference time was
16 compared between conditions, and the results support the hypothesis that very slow running
17 shortens Stroop interference time compared to resting control. This result is consistent with
18 previous results on very light- or moderate-intensity pedaling (Yanagisawa *et al.*, 2010; Byun *et*
19 *al.*, 2014b; Kujach *et al.*, 2018) and moderate-intensity running (Damrongthai *et al.*, 2021).
20 Therefore, the present findings build upon the results of previous studies by suggesting that even
21 very slow running benefits executive function.

1 Subsequently, we focused on investigating the neural substrates for Stroop interference. In
2 response to Stroop interference (Incongruent - Neutral), Oxy-Hb signal significantly increased in
3 the 4 ROIs: l-DLPFC, l-VLPFC, l-FPA, and r-FPA during pre-sessions. These results are
4 consistent with previous neuroimaging studies, including fNIRS, electrostimulation, and lesions,
5 which have reported that Stroop interference is consistently associated with the PFC, and more
6 specifically l-PFC (Perret, 1974; MacDonald *et al.*, 2000; Yanagisawa *et al.*, 2010; Byun *et al.*,
7 2014b; Frings *et al.*, 2018; Kuwamizu *et al.*, 2021). The effect of running on prefrontal activation
8 was subsequently determined, and the results show that very slow running elicits significant
9 increases in activation in the l-DLPFC and l-FPA. The l-DLPFC, a brain locus implicated in
10 inhibitory control and mood regulation, had increased Oxy-Hb response to Stroop interference
11 (Leung *et al.*, 2000; MacDonald *et al.*, 2000; Song & Hakoda, 2015). Furthermore, the FPA, a
12 brain region which generally activates with the DLPFC in response to tasks involving manipulation
13 and monitoring, such as planning for action, has been found to have significant activation on the
14 left side (Christoff & Gabrieli, 2000). These results are consistent with a previous study, which
15 demonstrated that 10 min of very-light-intensity pedaling elicits activation of the l-DLPFC and l-
16 FPA with Stroop interference processing (Byun *et al.*, 2014b; Kuwamizu *et al.*, 2023). It is
17 suggested that the neural basis on which very slow running improves executive function is similar
18 to that of pedaling exercises at the same intensity. On the other hand, previous studies on acute
19 moderate-intensity running have shown extensive activation of the r-PFC in addition to the left
20 side with Stroop interference processing (Damrongthai *et al.*, 2021). This difference in prefrontal
21 activation patterns may depend on exercise intensity (very slow vs. moderate). Very slow running
22 may have minimal hypothalamus–pituitary–adrenal axis stress responses and distinct differences
23 in the level of activation of the arousal system compared to moderate or more intense efforts
24 (Ohiwa *et al.*, 2006; Soya *et al.*, 2007), which may be related to the prefrontal activation area
25 elicited by running. This requires further investigation.

26 Our previous study showed that moderate-intensity running causes mood changes related to
27 arousal and pleasure that coincide with the facilitation of PFC function (Damrongthai *et al.*, 2021).
28 Based on these previous findings, we tested whether acute very slow running would improve mood.
29 As we hypothesized, very slow running improved both arousal and pleasure levels compared to
30 resting control as well as the moderate-intensity running of the previous study did (Damrongthai
31 *et al.*, 2021). Previous pedaling studies have shown that very light-intensity exercise increases

1 psychological arousal (Byun *et al.*, 2014b; Suwabe *et al.*, 2018), possibly associated with the
2 catecholaminergic system which originates from the locus coeruleus (Kuwamizu *et al.*, 2022,
3 2023; Yamazaki *et al.*, 2023). The current study also attempted to measure pupillometry and
4 confirmed pupil dilation during running. However, the data was limited to a small sample size due
5 to device errors related to body movement (see Supplemental Material 4). Understandably, the
6 brain's catecholaminergic arousal system is activated during very slow running, comparably to
7 pedaling, and might contribute to the elicitation of prefrontal cortex activation and to improved
8 executive function.

9 Interestingly, previous studies have shown that very light-intensity pedaling exercise
10 increases arousal but has only a small effect on pleasure levels. Our exploratory analysis suggested
11 that the positive impact of very slow running on pleasure exceeded the impact produced with a
12 comparable intensity pedaling (Supplemental Material 5). This increase in pleasure level seen with
13 very slow running may be characteristic of this exercise. In addition, HA, a property of running,
14 during very slow running, was examined. Interestingly, the magnitude of HA was positively
15 correlated only with changes in pleasure levels induced by running, and this may indicate a
16 running-specific effect, as discussed above. Additional experiments confirmed that HA does not
17 vary much during pedaling exercise, even if participants pedal at a high rate (Supplemental
18 Material 6). This suggests that, in addition to the common exercise effects of pedaling and running
19 (oxygen uptake level, heart rate, arousal level, and RPE are common to the two exercises),
20 rhythmic up-and-down oscillations contribute to mood improvement. This is a new and
21 challenging hypothesis, and the exact neural circuitry involved in the positive effect of HA on
22 mood has not been identified and needs further investigation. A recent animal study demonstrated
23 that HA modulates behavior and the serotonergic system in the prefrontal cortex (Ryu *et al.*, 2020).
24 As the brain's serotonergic system is involved in emotion regulation, this is one candidate
25 mechanism of running- and head-acceleration-induced mood enhancement. This mechanism may
26 work in addition to the arousal system alone (i.e., with no HA) and may form a running-specific
27 arousal state. As other candidate factors, physiological changes due to foot strike (Palatini *et al.*,
28 1989; Lyngeraa *et al.*, 2013) and high tempo rhythm sensation with foot beats might also be related
29 to mood changes and PFC activity (Fukuie *et al.*, 2022). The current results represent a starting
30 point, and further research is expected to determine how HA during running correlates with
31 positive mood changes. It would be interesting to investigate the effects of dose-response for head

1 acceleration and other forms of rhythmic up-and-down oscillations such as jump rope (Yamashita
2 & Yamamoto, 2021).

3 While head acceleration may play a role in mood alterations, it does not correlate with the
4 improvements in executive function and activation of the lateral prefrontal subregions induced by
5 running. Interestingly, even with minimal head acceleration during pedaling, it has been shown to
6 positively enhance cognitive aspects, especially prefrontal executive function and hippocampal
7 memory (Byun *et al.*, 2014b; Suwabe *et al.*, 2018). The lack of significant findings linking head
8 acceleration to enhanced prefrontal executive function implies that it might not be a critical factor
9 in the cognitive benefits derived from exercise benefits.

10 This study aimed to determine the lowest intensity/speed of running that would have a positive
11 effect on prefrontal function and mood. The participants' running speeds ranged from about 3 to
12 6 km/h. This speed is below the transition from walking to running (around 7 km/h) and is the
13 lowest speed at which the form of running can be maintained. However, this study is the first to
14 show that running, even at its lowest speed, is sufficient to induce a positive mood and to promote
15 prefrontal executive function. Although this study included only healthy young adults, future
16 validation with other populations will increase its generalizability. Even very light-intensity
17 pedaling exercise, when maintained consistently, improves PFC function in older adults (Byun *et*
18 *al.*, 2023). It will be an interesting challenge to see if a long-term intervention of very slow running
19 outperforms pedaling exercise.

20 In conclusion, the current study successfully determined the beneficial effect of a 10-min
21 single bout of very slow running on improving mood and executive function with lateral prefrontal
22 neural activation. This discovery of the positive relationship between head acceleration and
23 improved mood may be one of the underlying mechanisms through which very slow running
24 promotes mental health. To this end, these findings contribute to societal wellbeing by encouraging
25 people with various health conditions to keep physically and mentally active, while also
26 maintaining their own safety, through very slow running.

27
28
29
30
31

1 **ADDITIONAL INFORMATION**

2

3 **Supplemental Material**

4 Supplemental materials are available on the <https://osf.io/wb49v/>.

5

6 **Data availability statement**

7 All data that supports the findings of this study are available from the corresponding author by
8 request with no restrictions.

9

10 **Conflict of interest**

11 The authors declare no conflicts of interest.

12

13 **Author contributions**

14 C.D., R.K., K.A., and H.S. contributed to the design of the study. C.D., R.K., Y.Y., N.A., D.L.,
15 and K.A played a role in collecting data. Data analysis was done by C.D., R.K., Y.Y., K.A., and
16 H.S. The manuscript was written by R.K. and C.D., edited by Y.Y., K.A., K.B., F.T., W.C., M.A.Y.
17 and H.S. H.S. contributed to forming the concept of the study and funding acquisition. All authors
18 have read and approved the final version of the manuscript.

19

20 **Source of funding**

21 This work was supported in part by the Japan Society for the Promotion of Science
22 (JSPS) 18H04081 (H.S.), 21H04858 (H.S.), and 20J20893 (R.K.) and the Japan Science and
23 Technology Agency (JST) Grant JPMJMI19D5 (H.S.). This work was also supported in part by
24 the Inviting Overseas Educational Research Units in the University of Tsukuba (2016–2023; to
25 H.S.).

26

27 **Acknowledgements**

28 The authors thank the members of the Laboratory of Exercise Biochemistry and
29 Neuroendocrinology, University of Tsukuba for their assistance in data collection. Also, they
30 express their gratitude to M. Noguchi (ELCS English Language Consultation, Japan) for helping
31 with the manuscript.

1 **REFERENCES**

2 Bramble DM & Lieberman DE (2004). Endurance running and the evolution of Homo. *Nature*
3 **432**, 345–352.

4 Byun K, Hyodo K, Suwabe K, Fukuie T, Ha M, Damrongthai C, Kuwamizu R, Koizumi H,
5 Yassa MA & Soya H (2023). Mild exercise improves executive function with increasing
6 neural efficiency in the prefrontal cortex of older adults. *Geroscience*.

7 Byun K, Hyodo K, Suwabe K, Kujach S, Kato M, Soya H, Ochi G, Sakairi Y, Kato M, Dan I &
8 Soya H (2014a). Possible influences of exercise-intensity-dependent increases in non-
9 cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive
10 tasks: Technical note. *J Exerc Nutr Biochem* **18**, 327–332.

11 Byun K, Hyodo K, Suwabe K, Ochi G, Sakairi Y, Kato M, Dan I & Soya H (2014b). Positive
12 effect of acute mild exercise on executive function via arousal-related prefrontal activations:
13 An fNIRS study. *Neuroimage* **98**, 336–345.

14 Christoff K & Gabrieli JDE (2000). The frontopolar cortex and human cognition: Evidence for a
15 rostrocaudal hierarchical organization within the human prefrontal cortex. *Psychobiology*
16 **28**, 168–186.

17 Damrongthai C, Kuwamizu R, Suwabe K, Ochi G, Yamazaki Y, Fukuie T, Kazutaka A, Yassa
18 MA, Worachat C & Soya H (2021). Benefit of human moderate running boosting mood and
19 executive function coinciding with bilateral prefrontal activation. *Sci Rep* **11**, 22657.

20 Frings C, Brinkmann T, Friehs MA & van Lipzig T (2018). Single session tDCS over the left
21 DLPFC disrupts interference processing. *Brain Cogn* **120**, 1–7.

22 Fukuie T, Suwabe K, Kawase S, Shimizu T, Ochi G, Kuwamizu R, Sakairi Y & Soya H (2022).
23 Groove rhythm stimulates prefrontal cortex function in groove enjoyers. *Sci Rep* **12**, 1–14.

24 Garofolini A & Taylor S (2019). The effect of running on foot muscles and bones: A systematic
25 review. *Hum Mov Sci* **64**, 75–88.

26 Kujach S, Byun K, Hyodo K, Suwabe K, Fukuie T, Laskowski R, Dan I & Soya H (2018). A
27 transferable high-intensity intermittent exercise improves executive performance in
28 association with dorsolateral prefrontal activation in young adults. *Neuroimage* **169**, 117–
29 125.

30 Kuwamizu R, Suwabe K, Damrongthai C, Fukuie T, Ochi G, Hyodo K, Hiraga T, Nagano-Saito
31 A & Soya H (2021). Spontaneous eye blink rate connects missing link between aerobic

1 fitness and cognition. *Med Sci Sports Exerc* **53**, 1425–1433.

2 Kuwamizu R, Yamazaki Y, Aoike N, Hiraga T, Hata T, Yassa MA & Soya H (2023). Pupil
3 dynamics during very light exercise predict benefits to prefrontal cognition. *Neuroimage*
4 **277**, 120244.

5 Kuwamizu R, Yamazaki Y, Aoike N, Ochi G, Suwabe K & Soya H (2022). Pupil-linked arousal
6 with very light exercise : Pattern of pupil dilation during graded exercise. *J Physiol Sci* **72**,
7 1–9.

8 Leung HC, Skudlarski P, Gatenby JC, Peterson BS & Gore JC (2000). An event-related
9 functional MRI study of the Stroop color word interference task. *Cereb Cortex* **10**, 552–560.

10 Lyngeraa TS, Pedersen LM, Mantoni T, Belhage B, Rasmussen LS, van Lieshout JJ & Pott FC
11 (2013). Middle cerebral artery blood velocity during running. *Scand J Med Sci Sport* **23**,
12 32–37.

13 MacDonald AW, Cohen JD, Andrew Stenger V & Carter CS (2000). Dissociating the role of the
14 dorsolateral prefrontal and anterior cingulate cortex in cognitive control. *Science* **288**,
15 1835–1838.

16 Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T &
17 Kubota K (2001). Cortical mapping of gait in humans: A near-infrared spectroscopic
18 topography study. *Neuroimage* **14**, 1186–1192.

19 Miyazawa T, Horiuchi M, Komine H, Sugawara J, Fadel PJ & Ogoh S (2013). Skin blood flow
20 influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic
21 exercise. *Eur J Appl Physiol* **113**, 2841–2848.

22 Ohiwa N, Saito T, Chang H & Omori T (2006). Activation of A1 and A2 noradrenergic neurons
23 in response to running in the rat. *Neurosci Lett* **395**, 46–50.

24 Palatini P, Mos L, Mormino P, Di Marco A, Munari L, Fazio G, Giuliano G, Pessina AC & Dal
25 Palu C (1989). Blood pressure changes during running in humans: The ‘beat’ phenomenon.
26 *J Appl Physiol* **67**, 52–59.

27 Perret E (1974). The left frontal lobe of man and the suppression of habitual responses in verbal
28 categorical behaviour. *Neuropsychologia* **12**, 323–330.

29 Pescatello LS, Riebe D & Thompson PD (Eds.). (2014). *ACSM’s guidelines for exercise testing
30 and prescription*. Wolters Kluwer.

31 Ryu Y et al. (2020). Mechanical regulation underlies effects of exercise on serotonin-induced

1 signaling in the prefrontal cortex neurons. *iScience* **23**, 1–16.

2 Schulkin J (2016). Evolutionary basis of human running and its impact on neural function. *Front*
3 *Syst Neurosci* **10**, 1–10.

4 Song Y & Hakoda Y (2015). An fMRI study of the functional mechanisms of Stroop/reverse-
5 Stroop effects. *Behav Brain Res* **290**, 187–196.

6 Soya H, Mukai A, Deocaris CC, Ohiwa N, Chang H, Nishijima T, Fujikawa T, Togashi K &
7 Saito T (2007). Threshold-like pattern of neuronal activation in the hypothalamus during
8 treadmill running: Establishment of a minimum running stress (MRS) rat model. *Neurosci*
9 *Res* **58**, 341–348.

10 Suwabe K, Byun K, Hyodo K, Reagh ZM, Roberts JM, Matsushita A, Saotome K, Ochi G,
11 Suzuki K, Sankai Y, Yassa MA, Soya H & Fukuie T (2018). Rapid stimulation of human
12 dentate gyrus function with acute mild exercise. *Proc Natl Acad Sci U S A* **115**, 10487–
13 10492.

14 Suwabe K, Hyodo K, Fukuie T, Ochi G, Inagaki K, Sakairi Y & Soya H (2021). Positive mood
15 while exercising influences beneficial effects of exercise with music on prefrontal executive
16 function: A functional NIRS study. *Neuroscience* **454**, 61–71.

17 Tsuzuki D & Dan I (2014). Spatial registration for functional near-infrared spectroscopy: From
18 channel position on the scalp to cortical location in individual and group analyses.
19 *Neuroimage* **85**, 92–103.

20 Tsuzuki D, Jurcak V, Singh AK, Okamoto M, Watanabe E & Dan I (2007). Virtual spatial
21 registration of stand-alone fNIRS data to MNI space. *Neuroimage* **34**, 1506–1518.

22 Vitorio R, Stuart S, Rochester L, Alcock L & Pantall A (2017). fNIRS response during walking
— Artefact or cortical activity? A systematic review. *Neurosci Biobehav Rev* **83**, 160–172.

23 Yamashita M & Yamamoto T (2021). Impact of long-rope jumping on monoamine and attention
25 in young adults. *Brain Sci*; DOI: 10.3390/brainsci11101347.

26 Yamazaki Y, Sato D, Yamashiro K, Tsubaki A, Takehara N, Uetake Y, Nakano S & Maruyama
27 A (2018). Inter-individual differences in working memory improvement after acute mild
28 and moderate aerobic exercise. *PLoS One* **13**, 1–14.

29 Yamazaki Y, Suwabe K, Nagano-saito A, Saotome K, Kuwamizu R, Hiraga T, Torma F, Suzuki
30 K, Sankai Y, Yassa MA & Soya H (2023). A Possible contribution of the locus coeruleus to
31 arousal enhancement with mild exercise : Evidence from pupillometry and neuromelanin

1 imaging. *Cereb Cortex Commun*; DOI: <https://doi.org/10.1093/texcom/tgad010>.

2 Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y & Soya H (2010). Acute

3 moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive

4 performance with Stroop test. *Neuroimage* **50**, 1702–1710.

5