

1 **Transdifferentiation of epithelial cells and fibroblasts induced by IL-1 β fuels neutrophil
2 recruitment in chronic rhinosinusitis**

3 Xinyu Xie^{1,2}, Pin Wang^{1,2}, Min Jin^{2,3}, Yue Wang^{3,4}, Lijie Qi¹, Changhua Wu¹, Shu Guo¹,
4 Changqing Li¹, Xiaojun Zhang¹, Ye Yuan¹, Xinyi Ma¹, Fangying Liu¹, Weiyuan Liu¹, Heng Liu¹,
5 Chen Duan¹, Ping Ye¹, Xuezhong Li¹, Larry Borish⁴, Wei Zhao⁵, Xin Feng^{1,*}

6

7 ¹Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health
8 Commission Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China

9 ²Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China

10 ³Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China

11 ⁴Departments of Medicine and Microbiology, University of Virginia Health System,
12 Charlottesville, Virginia, USA

13 ⁵Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key
14 Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science,
15 Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China

16

17 [#]These authors contributed equally and will list themselves first on their CVs.

18

19 ^{*}Correspondence: drfengxin@sdu.edu.cn (Xin Feng)

20

21 **ACKNOWLEDGMENTS**

22 This research is supported by the National Natural Science Foundation of China (82171106,
23 82371120, 81700890), Taishan Scholar Program of Shandong Province (tsqn202103166), and
24 Natural Science Foundation of Shandong Province (ZR2022MH313).

25

26 **AUTHOR CONTRIBUTIONS**

27 X.F. and P.W. conceived and designed the research. X.X. and M.J. collected and processed the tissue
28 to single-cell suspensions. Y.W. performed all computational analyses for scRNA-seq data. Y.W.
29 and P.W. performed analyses for bulk mRNA sequencing data on epithelial cells and fibroblasts.
30 X.X., Y.W., L.Q., S.G., and P.W. analyzed data, prepared figures. X.X., C.W., Y.Y. and W.L. performed
31 or contributed to the experiments on primary cell culture, with help from X.Z., H.L., and F.L. C.L.,
32 X.M. and C.D. performed the animal experiments. X.F., M.J., P.Y., and X.L. designed clinical
33 protocols, reviewed clinical histories, selected and recruited study participants, and coordinated
34 patient care teams to acquire profiled tissues. X.F. conceptualized and coordinated the study. P.W.
35 and X.X. wrote the manuscript. X.F., M.J., L.B., and W.Z. revised the manuscript. All authors
36 reviewed and approved the manuscript.

37

38 **DECLARATION OF INTERESTS**

39 The authors declare no competing interest.

40

41 **Data availability**

42 All scRNA-seq and bulk RNA-seq data generated in this study have been deposited in Mendeley

43 Data and will be made accessible upon acceptance.

44

45 **Code availability**

46 All the codes related to the analysis are publicly available upon acceptance.

47

48 **Abstract**

49 Neutrophilic inflammation contributes to multiple chronic inflammatory airway diseases, including
50 asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), and is associated with an
51 unfavorable prognosis. Here, using single-cell RNA sequencing (scRNA-seq) to profile human
52 nasal mucosa obtained from the inferior turbinates, middle turbinates, and nasal polyps of CRSwNP
53 patients, we identified two IL-1 signaling-induced cell subsets—*LY6D*⁺ club cells and *IDO1*⁺
54 fibroblasts—that promote neutrophil recruitment by respectively releasing S100A8/A9 and
55 CXCL1/2/3/5/6/8 into inflammatory regions. IL-1 β , a pro-inflammatory cytokine involved in IL-1
56 signaling, induces the transdifferentiation of *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts from primary
57 epithelial cells and fibroblasts, respectively. In an LPS-induced neutrophilic CRSwNP mouse model,
58 blocking IL-1 β activity with a receptor antagonist significantly reduced the numbers of *LY6D*⁺ club
59 cells and *IDO1*⁺ fibroblasts and mitigated nasal inflammation. This study reveals the roles of two
60 cell subsets in neutrophil recruitment and demonstrates an IL-1-based intervention for mitigating
61 neutrophilic inflammation in CRSwNP.

62

63

64 Introduction

65

66 Neutrophilic inflammation is prevalent in multiple chronic inflammatory airway diseases such as
67 asthma, chronic obstructive pulmonary disease, and chronic rhinosinusitis (CRS), and elevated
68 neutrophilic inflammation is positively correlated with adverse patient outcomes^{1,2}. CRS is a chronic
69 disorder characterized by inflammation of the nasal mucosa and paranasal sinuses that affects 5-12%
70 of the global adult population³. Patients with CRS and nasal polyps (CRSwNP) experience more
71 severe clinical symptoms than those without nasal polyps⁴. Although CRSwNP exhibits a significant
72 association with type 2 inflammation which is characterized by an immune response involving
73 eosinophils⁵, the presence of a neutrophilic inflammation in CRSwNP has been demonstrated in a
74 growing number of patients, and is considered to be associated with glucocorticosteroid resistance,
75 a higher risk of recurrence after surgery, and worse disease outcomes⁶. However, neutrophilic
76 inflammation has been relatively little studied and therapeutic strategies targeting neutrophilic
77 inflammation are currently insufficient in CRSwNP.

78

79 Multiple factors drive the neutrophilic inflammation in CRSwNP. CXC chemokines including
80 CXCL1, CXCL2, and CXCL8 are chemotactic factors that guide the neutrophils to the site of
81 inflammation⁷. In a multi-center study, the concentrations of CXCL8 was shown to be greater in NP
82 tissues than that in control tissues, indicating its role in neutrophil recruitment of CRSwNP⁸.
83 Increased protein levels of S100A8, S100A9, and S100A8/A9, were demonstrated in the nasal polyp
84 tissues of CRSwNP patients compared to those in the IT tissues of controls, suggesting evident
85 neutrophil recruitment in CRSwNP⁹. Previous studies have demonstrated that cytokines derived
86 from epithelial cells and stromal cells facilitate neutrophilic inflammation in CRS^{10,11}. Nevertheless,
87 specific cell types that secrete these factors and drive neutrophilic inflammation in CRSwNP remain
88 ill-defined.

89

90 Here, seeking to identify epithelial and stromal cell subsets that contribute to neutrophilic
91 inflammation in CRSwNP, we profiled human nasal mucosa obtained from the middle turbinates
92 (MTs), inferior turbinates (ITs), and nasal polyps (NPs) of CRSwNP patients and healthy individuals
93 using single-cell RNA sequencing (scRNA-seq). After identifying contributions from *LY6D⁺* club
94 cells and *IDO1⁺* fibroblasts, we demonstrated their ability to facilitate neutrophil recruitment in cells
95 stimulated with IL-1 β , including primary fibroblasts and air-liquid interface (ALI) cultures
96 developed from primary nasal epithelial cells. Blocking the activity of IL-1 β attenuated nasal
97 inflammation in an LPS-induced neutrophilic CRSwNP mouse model. These findings uncover the
98 cell types that drive neutrophilic inflammation in CRSwNP, and highlight potential therapeutic
99 agents targeting IL-1 β as interventions against neutrophilic CRSwNP.

100 **Results**

101 **Single-cell profiling of nasal mucosa from multiple anatomical regions in CRSwNP patients**
102 **identifies diverse disease-specific cell subsets**

103

104 We initially profiled the CRSwNP cell type landscape by preparing freshly dissociated samples of
105 middle turbinate (MT), inferior turbinate (IT), and nasal polyp (NP) tissues from CRSwNP patients
106 and healthy individuals and obtaining full-length scRNA-seq profiles (Fig. 1a). Inferior turbinates
107 have been used as control tissues for nasal polyps in previous studies^{12,13}. Most NPs originate from
108 the ethmoid sinuses located around the MT tissues, and MT tissue removal has been shown to reduce
109 the recurrence of NPs in refractory CRS¹⁴. We therefore selected MT, IT, and NP tissues to compare
110 differences in their cellular composition in an inflammatory milieu. Unsupervised clustering divided
111 the 219,716 cells that passed strict quality-control into six compartments with conserved signatures,
112 including epithelial cells, T/innate lymphoid cells (ILCs), B/plasma cells, mononuclear
113 phagocytes/dendritic cells (MNPs/DCs), mast cells, and stromal cells (Fig. 1b-d, Extended Data Fig.
114 1a-d and Extended Data Fig. 2). B/plasma cells, MNPs/DCs, and mast cells, were barely detectable
115 in the IT tissues from healthy individuals, supporting an extensive inflammatory milieu in both nasal
116 polyps and nasal mucosa of CRSwNP patients, regardless of the anatomical regions in which they
117 occur (Fig. 1b, e). Of note, each of the subsets contained cells from each sample, indicating that the
118 cell lineages and expression status were consistent throughout samples and did not represent sample-
119 specific subpopulations or batch effects (Extended Data Fig. 3a, b).

120

121 To identify cell subsets associated with inflammation regulation, we performed unsupervised
122 clustering based on marker genes on the epithelial cell compartment, which revealed seven cell
123 types annotated as basal cells, myoepithelial cells, club cells, goblet cells, ciliated cells, ionocytes,
124 and glandular cells (GCs) (Fig. 1f). Among the identified subsets, *LY6D*⁺ club cells have not been
125 reported, while the *PRBI*⁺ GC and *MUC5B*⁺ GC subsets were previously observed in the nasal
126 mucosa of CRSwNP patients¹⁵. Pathway enrichment analysis revealed that *PRBI*⁺ GCs are
127 associated with erythrocyte renewal and metabolism, while *MUC5B*⁺ GCs are involved in protein
128 glycosylation, especially mucin glycosylation (Extended Data Fig. 4a-d). The stromal cell
129 compartment was divided into five cell types (endothelial cells, pericytes, fibroblasts, smooth
130 muscle cells, and glia) and then further classified into 15 yet-finer subsets based on marker gene
131 expression; among these subsets, *PIEZ02*⁺, *IDO1*⁺, and *OXTR*⁺ fibroblasts have not been reported
132 in previous studies of nasal mucosa from CRSwNP patients (Fig. 1g, 1i). Given that *OXTR*⁺
133 fibroblasts were detected only in NP tissues, these cells may be involved in NPs development (Fig.
134 4d). The immune cell compartment was subclustered into five cell types, including mast cells,
135 mononuclear phagocytes/dendritic cells (MNPs/DCs), plasma cells, B cells, and T/innate lymphoid
136 cells (T/ILCs), which were subsequently grouped into 27 yet-finer subsets (Fig. 1h and Extended
137 Data Fig. 5a-d). ILC1/2/3 were enriched in NP tissues, reflecting a mixed pattern of inflammation
138 in CRSwNP¹⁶⁻¹⁸ (Extended Data Fig. 5c).

139

140 To demonstrate the relationship between cell subsets during differentiation, we constructed a
141 transcription factor fate decision tree for cells spanning different anatomical regions (Fig. 1j, k).
142 This analysis suggested that transcription factors, such as *STAT1*, *ELF5*, *TEAD1*, and *CREB3*, are
143 regulons modulating the differentiation of different cell subsets, further demonstrating the

144 correctness of the sub-clustering across the samples. Collectively, these findings reveal the cellular
145 heterogeneity in the inflammatory environment across three anatomical regions, and identify
146 disease-specific cell subsets that may regulate immune response in CRSwNP.

147

148 ***IDO1*⁺ fibroblasts and *LY6D*⁺ club cells contribute to neutrophil recruitment in CRSwNP**

149

150 CRSwNP patients exhibit both eosinophilic and neutrophilic inflammation¹⁹. Increased neutrophilia
151 was detected in the mucosa of NP tissues from CRSwNP patients (Fig. 2a). We also used the xCell
152 algorithm to quantify neutrophil infiltration in a bulk RNA-seq dataset of CRSwNP (GSE179265),
153 and again detected the significantly elevated neutrophilia in CRSwNP samples as compared to
154 healthy tissue samples (Fig. 2b). Seeking to identify epithelial and stromal cell subsets contributing
155 to neutrophil infiltration, we generated an integrated dataset built from our data and another
156 CRSwNP scRNA-seq dataset (HRA000772) (Extended Data Fig. 6a)²⁰, and subsequently used an
157 algorithm combining Networkx, Community, and Pygraphviz to plot chemokine-chemokine
158 receptor interaction networks and infer the strongly interacting cell subset pairs. Notable signals
159 from the network included a superlatively strong interaction between *IDO1*⁺ fibroblasts and
160 neutrophils (Fig. 2c), with *MMP7*⁺ GCs and *LY6D*⁺ club cells also interacting strongly with
161 neutrophils (Fig. 2c).

162

163 In particular, the chemokine receptors enriched in neutrophils (*CCR1* and *CXCR1/2/4*) matched
164 extensively with chemokines highly expressed in *IDO1*⁺ fibroblasts (such as *CXCL1/2/3/5/6/8* and
165 *CCL5/7/8/11*)^{21,22}(Fig. 2d). The interaction between neutrophils and *MMP7*⁺ GCs was characterized
166 by high *CXCR2* expression in neutrophils and strong *CXCL2/3* expression in *MMP7*⁺ GCs. *LY6D*⁺
167 club cells interacted with neutrophils by expressing high levels of S100A8/A9, and their receptor
168 TLR4 was expressed mainly on neutrophils (Fig. 2d). However, *MMP7*⁺ GCs did not show much
169 difference in proportion of total epithelial cells in different anatomical regions (Fig. 2e). They were
170 probably a subset of cells with an intermediate state based on their low pseudotime ct values
171 calculated by RNA velocity (Extended Data Fig. 4a-d). Therefore, *MMP7*⁺ GCs were not considered
172 to be associated with neutrophil infiltration in CRSwNP.

173

174 In contrast to that of *MMP7*⁺ GCs, the proportion of *LY6D*⁺ club cells was greater in the IT and NP
175 tissues of CRSwNP patients than in the IT tissue of healthy individuals (HC-IT), suggesting their
176 potential role in CRSwNP development (Fig. 2e). Consistent with these findings, using the
177 HRA000772 dataset, we also detected higher proportions of *LY6D*⁺ club cells and *IDO1*⁺ cells in
178 the CRSwNP with higher neutrophil numbers (neCRSwNP) than those with lower neutrophil
179 numbers (eCRSwNP) (Extended Data Fig. 6b-d). We then conducted immunofluorescence analyses
180 on NP tissues from 6 CRSwNP patients (CRS-NP) and IT tissues from 6 healthy controls (HC-IT),
181 and the results revealed a preferential distribution of neutrophils (MPO⁺ cells) in the *LY6D*⁺ club
182 cell-rich and *IDO1*⁺ fibroblast-rich regions (Fig. 2f, g), supporting their ability to recruit neutrophils
183 in an inflammatory milieu in CRSwNP. These results collectively support that *LY6D*⁺ club cells and
184 *IDO1*⁺ fibroblasts facilitate neutrophil recruitment in CRSwNP.

185

186 ***LY6D*⁺ club cells drive IL-1 signaling-mediated neutrophilic inflammation in CRSwNP**

187

188 We further compared the proportions of *LY6D*⁺ club cells across anatomical regions. An elevated
189 proportion of *LY6D*⁺ club cells within the total epithelial cell population was noted in CRS-ITs
190 compared to HC-ITs, and in NP tissues compared to adjacent MT tissues (Fig. 3a). We then
191 performed immunofluorescence analyses to evaluate the distribution of *LY6D*⁺ club cells in different
192 tissues. Immunostaining detected only a few *LY6D*⁺ cells in normal IT tissues, but more *LY6D*⁺ cells
193 in NP tissues, reflecting the preferential induction of *LY6D*⁺ club cells in an inflammatory milieu
194 (Fig. 3b, c). *LY6D*⁺ club cells were highly conserved across three anatomical regions as indicating
195 in fate decision tree, and *PITX1* ranked as the top differentially expressed transcription factor
196 determining *LY6D*⁺ club cell differentiation (Fig. 3d, e).

197

198 Previous studies have showed that the expression of *S100A8* and *S100A9* is elevated in nasal polyps
199 as compared to control tissues^{23,24}, and is associated with neutrophilic inflammation and CRS
200 severity²⁵. By exhibiting epithelial cell subset marker gene expression via heatmap, we observed
201 the upregulation of *S100A8* in *LY6D*⁺ club cells (Fig. 3f). We next explored the differentially
202 expressed genes (DEGs) in *LY6D*⁺ club cells as compared to other epithelial cells (Fig. 3g). In
203 addition to *LY6D* and *S100A8*, *S100A9* was also significantly upregulated in *LY6D*⁺ club cells (Fig.
204 3g). UMAP showed that *LY6D*⁺ club cells were the main cell source of *S100A8* and *S100A9* in the
205 epithelium that may promote neutrophil chemotaxis in CRSwNP²⁶ (Fig. 3h and Fig. 5b). The high
206 expression of *EREG* and *AREG* in *LY6D*⁺ club cells indicated their involvement in eosinophil
207 reprogramming and goblet metaplasia in response to inflammation^{27,28} (Fig. 3h).

208

209 Pathway enrichment analysis revealed that the transcriptome of *LY6D*⁺ club cells was enriched in
210 genes induced by IL-1 signaling (Fig. 3i). The RNA velocity profile of total club cells indicated that
211 *LY6D*⁺ club cells originated from resident club cells, suggesting that some club cells in the face of
212 upregulated IL-1 signaling progressively acquired *LY6D*⁺ club cell identity in the mucosal
213 epithelium in CRSwNP patients (Fig. 3j). The expression of several key functional genes and
214 transcription factors upregulated during the maturation process of *LY6D*⁺ club cells was presented
215 in the heatmap (Fig. 3k). IL1RN was inferred by RNA velocity, iteratively indicating that IL-1
216 signaling participates in the transdifferentiation of *LY6D*⁺ club cells (Fig. 3k). Pathway enrichment
217 analysis revealed that genes involved in neutrophil degranulation were also enriched in *LY6D*⁺ club
218 cells, reflecting the regulation of neutrophil recruitment by *LY6D*⁺ club cells (Fig. 3i). Taken together,
219 these findings underscore the role of *LY6D*⁺ club cells in IL-1 signaling-mediated neutrophilic
220 inflammation in CRSwNP.

221

222 ***IDO1*⁺ fibroblasts secrete chemokines that facilitate neutrophil recruitment in CRSwNP**

223

224 To identify the stromal cell subsets responsible for inflammation in CRSwNP, we further sub-
225 clustered the stromal cell compartment. Endothelial cells, pericytes and smooth muscle cells did not
226 show much variation in the proportions of cell subsets across different anatomical regions except
227 for an increased proportion of arterial endothelial cells and decreased proportion of lymphatic
228 endothelial cells in CRS-related tissues as compared to those in HC-ITs, suggesting weakened
229 lymphatic infiltration but enhanced angiogenesis in inflammatory tissues (Fig. 4a and Extended
230 Data Fig. 7a-d). Fibroblast subsets exhibited substantial disparities in cellular proportions within the
231 stromal cell compartment. The proportions of *IDO1*⁺ and *OXTR*⁺ fibroblasts were markedly higher

232 in NPs than in other tissues (Fig. 4a).

233
234 To better characterize the functionality of the fibroblast subsets, we proceeded to construct a
235 transcription factor fate decision tree for different cell subsets within the stromal cell compartment.
236 Six out of the seven distinct fibroblast subsets were categorized into two main modules (Fig. 4b, c).
237 We noticed that module 1 comprised fibroblasts that exerted pro-inflammatory effects by enhanced
238 production of certain chemokines, such as CXCL1 and CXCL8, while module 2 encompassed
239 fibroblasts that mainly reside in the adventitia and are essential for regulating the integrity and
240 function of the vessel structure^{29–31}. The fibroblast clusters were displayed according to different
241 anatomical regions (Fig. 4d). Within the cell clusters in module 1, *IDO1*⁺ and *OXTR*⁺ fibroblasts
242 were enriched in inflammatory tissues, mostly in NPs, and they were barely detected in healthy
243 tissues (Fig. 4d).

244
245 Considering the potent interaction detected between *IDO1*⁺ fibroblasts and neutrophils, we explored
246 the gene expression patterns of different stromal cell subsets. The transcriptome of *IDO1*⁺
247 fibroblasts was enriched in chemokines (CXCL1/2/3/8) that are relevant to neutrophilic
248 inflammation (Fig. 4e). We subsequently conducted pathway enrichment analysis on the fibroblast
249 subsets within module 1, whose gene expression pattern was associated with inflammatory
250 responses, to scrutinize the regulatory pathways in which *IDO1*⁺ fibroblasts are implicated (Fig. 4f).
251 Interestingly, both the IL-1 signaling pathway and the NF-κB signaling were enriched in *IDO1*⁺
252 fibroblasts, indicating the upstream regulation of *IDO1*⁺ fibroblasts by IL-1 signaling in
253 inflammation development. The high expression of *MMP3* and *LIF* in *IDO1*⁺ fibroblasts also
254 indicated the regulation of *IDO1*⁺ fibroblasts by IL-1 signaling^{32,33} (Fig. 4e). Immunofluorescence
255 staining revealed increased CXCL8 protein level and a greater number of *IDO1*⁺ fibroblasts (*IDO1*⁺
256 *COL1A2*⁺ cells) in CRS-NP samples as compared to HC-IT samples (Fig. 4g). Together, these
257 findings elucidate IL-1 signaling as a common pathway inducing transdifferentiation of *LY6D*⁺ club
258 cells and *IDO1*⁺ fibroblasts to facilitate neutrophil recruitment in CRSwNP.

259

260 **IL-1β-induced the transdifferentiation of *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts promotes 261 neutrophil recruitment**

262

263 IL-1 signaling can be activated by the interaction between IL-1β and IL-1 receptor (IL-1R), leading
264 to various immune responses including neutrophilic inflammation³⁴. Here we deployed recombinant
265 IL-1β on air-liquid interface (ALI) cultures generated from primary human nasal epithelial cells
266 (HNEs) (Extended Data Fig. 8a). Bulk RNA-seq data revealed that the addition of IL-1β elicited the
267 *LY6D*⁺ club cell state of ALI-cultured HNEs, as IL-1β-stimulated ALI-cultured HNEs highly
268 expressed genes that were also upregulated in *LY6D*⁺ club cells detected by scRNA-seq, such as
269 *LY6D*, *SPRR2F*, *S100A9*, and *LYPD3* (Fig. 5a-c). Immunofluorescence staining of ALI-cultured
270 HNEs revealed the colocalization and elevation of LY6D and S100A8 upon IL-1β stimulation (Fig.
271 5d). These results suggested that IL-1β induced transdifferentiation of *LY6D*⁺ cells *in vitro*. ELISA
272 detected the increased secretion of S100A8/A9 protein from ALI-cultured HNEs upon IL-1β
273 stimulation (Fig. 5e). Considering the ability of S100A8, S100A9, and S100A8/A9 to promote
274 neutrophil activation, chemotaxis and adhesion, we performed a chemotaxis assay to determine
275 whether the secretion of S100A8/A9 contributes to IL-1β-mediated neutrophil recruitment²⁶. The

276 results demonstrated that the media of ALI-cultured HNEs stimulated with IL-1 β possessed a
277 stronger neutrophil chemotactic capacity than the control media (Fig. 5f and Extended Data Fig. 8b).

278

279 To explore the effect of IL-1 β on the induction of fibroblasts, we treated cultured primary fibroblasts
280 isolated from IT tissues and NPs with IL-1 β and performed bulk RNA sequencing. Bulk RNA
281 sequencing results revealed high expression of genes encoding neutrophil chemoattractants (*CXCL1*,
282 *CXCL2*, *CXCL3*, *CXCL5*, *CXCL6*, and *CXCL8*) in fibroblasts upon IL-1 β stimulation (Fig. 5g).
283 These genes were also upregulated in *IDO1* $^+$ fibroblasts according to scRNA-seq analysis,
284 suggesting that the primary fibroblasts acquire the identity of *IDO1* $^+$ fibroblasts upon IL-1 β
285 stimulation. Immunofluorescence staining demonstrated that IL-1 β was capable of activating
286 fibroblasts and inducing the expression of CXCL8 and IDO1 in both IT-derived and NP-derived
287 fibroblasts (Fig. 5h, i). In line with the results of bulk RNA sequencing, ELISA showed an increase
288 in CXCL8 secretion in fibroblasts treated with IL-1 β compared to those treated with PBS (Fig. 5j).
289 As expected, culture media from IL-1 β -exposed human nasal primary fibroblasts resulted in an
290 increase in the transmigration of purified blood neutrophils compared with media of normal
291 fibroblasts or fresh media mixed with IL-1 β (Fig. 5k). Therefore, we reason that IL-1 β induces both
292 epithelial cells and fibroblasts to promote the recruitment of neutrophils to the sites of inflammation
293 in CRSwNP.

294

295 **IL-1 β antagonist impedes the transdifferentiation of *LY6D* $^+$ club cells and *IDO1* $^+$ fibroblasts 296 and mitigates inflammation *in vivo***

297

298 IL-1 β is associated with neutrophilic airway inflammation³⁵. Here we revealed increased IL-1 β level
299 in CRS-NP compared with that in HC-IT (Fig. 6a), most of which was expressed in MNP/DCs (Fig.
300 6b-d). The proportion of monocytes was greater in NP tissues than in other tissues, explaining an
301 increase in IL-1 β in the inflammatory mucosa (Fig. 6e). IL-1 β is correlated with neutrophilic
302 inflammation in CRS, which is frequently associated with worse disease outcomes⁶. However,
303 whether therapy targeting IL-1 β mitigates neutrophilic inflammation in CRSwNP is unknown.

304

305 To explore the effect of IL-1 β inhibition on neutrophilic CRSwNP, we established a mouse model
306 of lipopolysaccharide (LPS)-induced neutrophilic chronic rhinosinusitis with nasal poly (NCRS)³⁶,
307 and then treated the model mice with anakinra, a recombinant, nonglycosylated interleukin-1
308 receptor antagonist that has been employed as a therapeutic intervention for autoinflammatory
309 diseases and hematological malignancies^{37,38} (Extended Data Fig. 8c). The total cell count in nasal
310 lavage fluid (NLF) from mice serves as an indicator of inflammation severity³⁹. We detected fewer
311 cells in the NLF from anakinra-treated NCRS mice as compared to untreated NCRS mice (Fig. 6f).
312 ELISA detected elevated secretion of CXCL8 and TNF α in the NLF from NCRS mice, while the
313 secretion of these factors approached to normal level in anakinra-treated NCRS mice (Fig. 6g). In
314 NCRS mice, we observed the inflammatory features represented by increased inflammatory cell
315 infiltration and mucosal hyperplasia with impaired mucosal integrity, which were alleviated in
316 anakinra-treated NCRS mice (Fig. 6h). Immunochemistry staining detected increased neutrophil
317 infiltration in NCRS mice, which was also improved in anakinra-treated NCRS mice (Fig. 6i). These
318 findings reflected the substantial mitigation of inflammation by IL-1 β blockade in NCRS mice.

319

320 Similar to the induction of human primary cells by IL-1 β , we detected increased numbers of *LY6D* $^+$
321 club cells and *IDO1* $^+$ fibroblasts in the mucosa of NCRS mice as compared to those in control mice
322 (Fig. 6j, k). We next investigated whether IL-1 β antagonist affects the transdifferentiation of *LY6D* $^+$
323 club cells and *IDO1* $^+$ fibroblasts in NCRS mice. Immunofluorescence staining demonstrated that
324 numbers of *LY6D* $^+$ club cells and *IDO1* $^+$ fibroblasts were declined in the mucosa of anakinra-treated
325 NCRS mice, along with the reduction of neutrophil infiltration, as compared to untreated NCRS
326 mice (Fig. 6j, k). These findings suggested that IL-1 β suppression impedes the transdifferentiation of
327 *LY6D* $^+$ club cells and *IDO1* $^+$ fibroblasts and mitigates neutrophilic inflammation, suggesting that
328 targeting IL-1 β is an effective intervention against neutrophil recruitment in CRSwNP.

329

330 **Discussion**

331 Here, we presented a detailed profile of the nasal mucosa of HC-ITs, CRS-ITs, CRS-MTs, and NPs
332 from CRSwNP patients at the single-cell level. We identified *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts
333 in the nasal mucosa that promote neutrophil recruitment in CRSwNP. *LY6D*⁺ club cells exert the
334 pathogenic effects upon IL-1 signaling stimulation by secreting S100A8 and S100A9, two
335 molecules possessing ability to promote neutrophil chemotaxis²⁶. In addition, *IDO1*⁺ fibroblasts
336 induced by IL-1 signaling produce multiple chemokines that interact with receptors expressed in
337 neutrophils and promote neutrophil recruitment. IL-1 β , a key factor in the IL-1 signaling pathway,
338 was demonstrated to be upregulated in NPs from CRSwNP patients. We found that IL-1 β induces
339 the transdifferentiation of *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts from epithelial cells and
340 fibroblasts, respectively. Increased numbers of *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts were also
341 observed in NCRS mouse model. Administration of an IL-1 β antagonist reduced the numbers of
342 *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts, and showed a promising effect on alleviating neutrophilic
343 inflammation in NCRS mice (see the model in Extended Data Fig. 8d).

344

345 A previous study detected higher mRNA and protein levels of IL-1 β in NPs than in uncinate tissues,
346 inferior turbinates, and ethmoid sinus mucosal samples from control subjects, as did an increased
347 number of IL-1 β ⁺ cells in polyp tissue from neutrophilic CRSwNP patients^{40,41}. However, the cell
348 sources of IL-1 β in the nasal mucosa are unclear. Here, we verified the upregulation of IL-1 β in NP
349 samples from CRSwNP patients and identified that the cell sources of IL-1 β in CRSwNP were
350 monocytes, macrophages, DCs, and neutrophils. Our results elucidated the role of IL-1 β in
351 determining the transdifferentiation of *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts, both of which
352 are enriched in NP tissues. Elevated expression of *S100A8* and *S100A9* has been observed in nasal
353 polyps compared to control tissues^{9,23,24}. Both proteins that induce neutrophil chemotaxis and
354 adhesion²⁶ are secreted by *LY6D*⁺ club cells in the epithelium from the nasal mucosa. Elevated levels
355 of EGFR ligands have been detected in various airway disorders, such as CRS and COPD^{42,43}. Our
356 results also demonstrated increased expression of *EREG* and *AREG* in *LY6D*⁺ club cells, indicating
357 the involvement of these cells in activating EGFR signaling and subsequently inducing mucus and
358 inflammatory cytokine secretion from airway epithelial cells^{42,44}. The functionality of *LY6D*⁺ club
359 cells is multifaceted and deserves further exploration. Previous studies have shown that immune
360 cells and stromal cells within the organs, including macrophages and fibroblasts, send coordinated
361 signals that guide neutrophils to their final destination^{45,46}. Our data uncovered an unreported
362 mechanism underpinning neutrophil chemotaxis orchestrated by *IDO1*⁺ fibroblasts in CRSwNP.
363 *IDO1*⁺ fibroblasts constitute the core cell subset that promotes neutrophil recruitment based on the
364 strong interaction observed between these two cell subsets in CRSwNP. IL-1 β -induced *IDO1*⁺
365 fibroblasts release substantial quantities of chemokines (CXCL1/2/3/5/6/8) to promote neutrophil
366 recruitment. Considering that both *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts are induced by IL-1 β ,
367 future studies should examine whether other pro-inflammatory cytokines in the IL-1 signaling
368 pathway, such as IL-1 α , contribute to the transdifferentiation of the two cell subsets.

369

370 It is well known that neutrophilia and eosinophilia are both present in most cases of CRS¹⁹.
371 Activated neutrophils possess the capability to facilitate eosinophil transmigration and
372 accumulation⁴⁷. Studies have demonstrated the association of mixed eosinophilic-neutrophilic
373 inflammation with hard-to-treat asthma or CRSwNP^{5,19,48}. In addition to surgery and intranasal

374 corticosteroids, multiple biologics have been approved or are undergoing clinical trials as
375 therapeutics for CRS. Dupilumab (targeting IL-4R α), omalizumab (targeting IgE), and
376 mepolizumab (targeting IL-5) have been approved for CRSwNP treatment. Reslizumab (targeting
377 IL-5) and benralizumab (targeting IL-5R α) have been undergoing phase 2 and phase 3 trials,
378 respectively⁴⁹. However, these therapies primarily target eosinophilic and type 2 inflammation in
379 CRSwNP, whereas therapies targeting neutrophilic inflammation remain a gap. Given the
380 unfavorable prognosis of CRSwNP with a mixed inflammatory pattern and the ineffectiveness of
381 steroids on the neutrophil activation state in CRSwNP, the demand to develop novel strategies
382 against neutrophilia in CRSwNP patients is imperative⁴⁹. Strategies targeting IL-1 β , such as
383 anakinra, rilonacept, and canakinumab, are commonly used to block the effects of IL-1 β , thereby
384 reducing inflammation and related symptoms in conditions such as rheumatoid arthritis,
385 atherosclerosis, and other immune-mediated diseases⁵⁰. In this study, we revealed the effects of
386 intervention targeting IL-1 β on inducing *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts, and recruiting
387 neutrophils in CRSwNP. We validated the mitigation of neutrophilic inflammation by the
388 application of anakinra in an LPS-induced neutrophilic CRSwNP mouse model. We did observe a
389 substantial reduction in chemokine secretion and a decrease in neutrophil infiltration in anakinra-
390 treated neutrophilic CRSwNP mice. Given the promising anti-inflammatory effects of blocking IL-
391 1 β in the neutrophilic CRSwNP mouse model, our findings highlight that targeting IL-1 β may be
392 an effective strategy for the treatment of neutrophilic inflammation in CRSwNP.

393

394 **Materials and methods**

395

396 **Study participants**

397 In total, 85 individuals aged between 18 and 70 years were recruited from the Department of
398 Otolaryngology in Qilu Hospital of Shandong University, including chronic rhinosinusitis with
399 polyps (CRSwNP) patients (n=47) and healthy controls (HCs) (n=38). This study was approved by
400 the Medical Ethics Committee of Qilu Hospital of Shandong University (KYLL-202102-1061). All
401 study participants provided written informed consent. The diagnosis of CRSwNP was based on the
402 EPOS 2020 criteria⁵¹, and included confirmatory clinical, endoscopic and radiographic criteria. HCs
403 were patients with cerebral spinal fluid leak or nasal septum deviation. The nasal tissues, including
404 nasal polyps, middle turbinates, and inferior turbinates, were collected during endoscopic sinus
405 surgery. Participants who had an immunodeficiency disorder, fungal sinusitis, cystic fibrosis or
406 tumors were excluded from the study. No participants used systemic corticosteroids for at least 4
407 weeks before surgery. The detailed clinical characteristics are summarized in Supplementary Table
408 1.

409

410 **Preparation of single-cell suspensions**

411 Nasal mucosa was freshly sampled from the middle turbinates (n=7), inferior turbinates (n=9), nasal
412 polyps (n=15) of CRSwNP patients and inferior turbinates (n=2) of patients with cerebral spinal
413 fluid leak. The nasal biopsies were washed in phosphate-buffered saline (PBS, 10010023,
414 ThermoFisher) to remove mucus and blood cells. Then, the nasal tissues were cut into approximately
415 0.5-mm³ pieces in RPMI-1640 medium supplemented with 1% penicillin/streptomycin, and then
416 enzymatically digested with the Multi Tissue Dissociation Kit 2 (MACS# 130-110-203) at 37°C for
417 30 min with agitation, according to the manufacturer's instructions. Following cell dissociation, the
418 resultant cell suspension was sequentially filtered through cell strainers with pore sizes of 70 µm
419 and 40 µm (BD). Subsequently, the samples were centrifuged at 300g for 10 minutes. Subsequent
420 to the removal of the supernatant, the cells forming the pellet were reconstituted in red blood cell
421 lysis buffer (Thermo Fisher) and subjected to a 2-minute incubation on ice to lyse the red blood
422 cells. Following dual washes with PBS, the cellular pellets were re-suspended in PBS supplemented
423 with 0.04% bovine serum albumin (A7906, Sigma-Aldrich).

424

425 **Single-cell RNA library construction and sequencing**

426 DNBelab C Series High-throughput Single-cell System (BGI-research) was utilized for scRNA-seq
427 library preparation. Briefly, the single-cell suspensions underwent a series of processes to generate
428 barcoded scRNA-seq libraries. These steps encompassed droplet encapsulation, emulsion breakage,
429 collection of beads containing the captured mRNA, reverse transcription cDNA amplification and
430 subsequent purification. The cDNA was subjected to fragmentation into shorter segments spanning
431 250 to 400 base pairs. Following this, the construction of indexed sequencing libraries was achieved
432 in accordance with the protocol provided by the manufacturer. Qualification was performed using
433 the Qubit ssDNA Assay Kit (Thermo Fisher Scientific) and the Agilent Bioanalyzer 2100.
434 Subsequent to library preparation, all the constructs underwent sequencing using the DIPSEQ T1
435 sequencing platform in the China National GeneBank via pair-end sequencing methodology. The
436 sequencing reads contained 30-bp read 1 (including the 10-bp cell barcode 1, 10-bp cell barcode 2
437 and 10-bp unique molecular identifiers [UMI]), 100-bp read 2 for gene sequences and 10-bp

438 barcodes read for sample index. Next, processed reads were aligned to the GRCh38 reference
439 genome using STAR (v2.5.3). The identification of valid cells was achieved through an automated
440 process utilizing the "barcodeRanks" function from the DropletUtils tool. This function was
441 employed to eliminate background beads and those with UMI counts falling below a predetermined
442 threshold, using the UMI number distribution characteristic of each cell. Finally, we computed the
443 gene expression profiles of individual cells and subsequently generated a matrix of genes by cells
444 for each library by means of PISA. The newly generated scRNA-seq data and bulk RNA-seq data
445 will be immediately accessible upon acceptance of the paper.

446

447 **Alignment, quantification, and quality control of single-cell RNA sequencing data**

448 The droplet-based sequencing data were subjected to alignment and quantification through the
449 utilization of CellRanger software (version 3.0.2, designed for 3' chemistry), employing the
450 GRCh38.p13 human reference genome. The Python package Scanpy (version 1.7.1)⁵² was
451 employed to load the matrix containing cell-gene counts and to execute quality control procedures
452 for both the newly generated dataset and the acquired datasets. For each sample, genes associated
453 with mitochondria (indicated by gene symbols commencing with "MT-") and ribosomal proteins
454 (initiated by gene symbols commencing with "RP") were eliminated from consideration. After that,
455 cells possessing less than 2000 UMI counts and 250 detected genes were identified as empty
456 droplets and subsequently excluded from the datasets. Finally, genes demonstrating expression in
457 fewer than three cells were excluded from further analysis.

458

459 **Doublet detection**

460 In order to rule out doublets, we implemented the Scrublet software (version 0.2.3)⁵³, which
461 facilitated the identification of artifactual libraries originating from two or more cells within each
462 scRNA-seq sample, comprising both the newly generated dataset and the compiled datasets. The
463 doublet score for each individual single cell, along with the threshold determined from the bimodal
464 distribution, was computed using the default parameters (sim_doublet_ratio=2.0;
465 n_neighbors=None; expected_doublet_rate=0.1, stdev_doublet_rate=0.02). After that, a
466 comprehensive assessment was conducted on the remaining cells and cell subsets to identify
467 potential false-negatives from the scrublet analysis. This evaluation was guided by the following
468 sets of criteria: (1) cells with more than 8000 detected genes, (2) subsets that expressed marker
469 genes from two distinct cell types, which are unlikely according to prior knowledge (i.e., CD3D for
470 T cells and EPCAM for epithelial cells). Any cells or subsets identified as doublets were excluded
471 from subsequent downstream analyses.

472

473 **Graph subsetting and partitioning cells into distinct compartments**

474 Downstream analysis included normalization (scanpy.pp.normalize_total method, target_sum=1e4),
475 log-transformation (scanpy.pp.log1p method, default parameters), cell cycle score
476 (scanpy.tl.score_genes_cell_cycle method), cell cycle genes defined in Tirosh et al, 2016⁵⁴, feature
477 regress out (scanpy.pp.regress_out method, UMI counts, percentage of mitochondrial genes and cell
478 cycle score were considered to be the source of unwanted variability and were regressed), feature
479 scaling (scanpy.pp.scale method, max_value=10, zero_center=False), PCA (scanpy.tl.pca method,
480 svd_solver='arpack'), batch-balanced neighborhood graph building (scanpy.external.pp.bbkn method,
481 n_pcs=20)⁵⁵, leiden graph-based subsetting (scanpy.tl.leiden method, Resolution=1.0)⁵⁶,

482 and UMAP visualization⁵⁷ (scanpy.tl.umap method) performed using scanpy. The initial
483 categorization of the subsets encompassed a division into six distinct compartments, achieved
484 through the utilization of marker genes established in the existing literature in conjunction with
485 genes exhibiting differential expression. (scanpy.tl.rank_gene_groups method, method='Wilcoxon
486 test'). Specifically, the epithelial compartment was annotated using a gene list (EPCAM, KRT8,
487 KRT18, KRT19, PIGR), T and ILCs compartment (CD2, CD3D, CD3E, CD3G, TRAC, IL7R), B
488 cell compartment (JCHAIN, CD79A, IGHA1, IGHA2, MZB1, SSR4), MNPs compartment (HLA-
489 DRA, CST3, HLA-DPB1, CD74, HLA-DPA1, AIF1), Mast cell compartment (TPSAB1, CPA3,
490 TPSB2, CD9, HPGDS, KIT), and Stromal cell compartment (IGFBP7, IFITM3, TCF7L1, COL1A2,
491 COL3A1, GSN). Subsequently, the epithelial compartment was subjected to sorting for subsequent
492 downstream analysis.

493

494 **Transcription factor module analysis**

495 The python package pySCENIC workflow (version 0.11.0) with default settings was used to infer
496 active TFs and their target genes in all human cells^{58,59}. Specifically, the pipeline was executed in
497 three steps. Initially, the single-cell gene expression matrix was filtered to eliminate genes whose
498 expression was detected in fewer than ten total cells. The retained genes were subsequently
499 employed to construct a gene-gene correlation matrix, which facilitated the identification of co-
500 expression modules through the application of a regression per-target approach utilizing the
501 GRNBoost2 algorithm. Subsequent to the initial step, each identified module was systematically
502 refined based on a regulatory motif in close proximity to a transcription start site (TSS). The
503 acquisition of cis-regulatory footprints was facilitated through the utilization of positional
504 sequencing methodologies. The binding motifs of the TFs were then used to build an RCisTarget
505 database. Modules were retained based on the enrichment of transcription factor (TF)-binding
506 motifs among their respective target genes. In cases where target genes lacked direct TF-binding
507 motifs, they were excluded from consideration. In the third phase, we assessed the influence of each
508 regulon on individual single-cell transcriptomes through the utilization of the area under the curve
509 (AUC) score, employing the AUCell algorithm as the evaluative metric. The scores pertaining to
510 transcription factor motifs within gene promoters and regions surrounding transcription start sites,
511 specific to the hg38 human reference genome, were acquired from the RcisTarget database.
512 Concurrently, the list of transcription factor-associated genes was obtained from the HumanTFS
513 database⁶⁰.

514

515 **Fate decision tree construction (regulon-based)**

516 Dendrogram plots were generated for epithelial cells using the sc.pl.dendrogram method from the
517 Scanpy package. These plots were generated based on the AUCell matrix comprising 608 regulons,
518 aiming to visualize more nuanced alterations. We deciphered the diverging composite rules of a
519 regulon-based dendrogram by testing each branching node for differential regulon importance.
520 Thereafter, differential analysis of regulon expression was conducted for each node using the
521 Wilcoxon test (implemented through the sc.tl.rank_gene_groups method with method='Wilcoxon
522 test'), with the aim of deducing the sequence of regulon-driven propagation events.

523

524 **Datasets integration**

525 In this study, we utilized a previously published scRNA-seq dataset of CRSwNP²⁰ (GSA:

526 HRA000772), the one that detailed a specific quantity of neutrophils, to investigate the expression
527 of inflammatory factors in neutrophils in human nasal mucosal tissues. Specifically, we compared
528 the downloaded fastq files with the barcodes-genes matrix utilizing Alevin-fry⁶¹. The matrix
529 underwent initial quality control, doublet removal, and normalization, applied in accordance with
530 the dataset from the previous section. The gene expression and cell annotation of the dataset were
531 modeled using CellTypist⁶². Subsequently, the trained model was used to perform Label Transfer
532 on the HRA000772 dataset. In particular, myeloid cells annotated by Label Transfer were manually
533 reannotated based on marker genes, thereby identifying the neutrophils subset
534 (*FCGR3B⁺CXCR1⁺CXCR2⁺*).

535

536 **RNA velocity**

537 Cells that met the quality control criteria were used to filter the loom file generated by the Velocyto
538 python package based on the cell barcodes⁶³. This package was used to conduct splicing analysis on
539 the bam file in preparation for subsequent RNA velocity analysis. The filtered loom file served as
540 an input within the Scanpy pipeline, implemented as part of the CellRank pipeline⁶⁴. The loom file
541 derived from Velocyto was harnessed to compute RNA velocities for each cell according to standard
542 parameters for the software. CellRank generates both stochastic and dynamic models of RNA
543 velocity, which were compared via the computation of a consistency score for each cell, employing
544 each modeling approach, in accordance with the guidance provided by the authors. Pseudotime was
545 subsequently calculated based on the outcomes of RNA velocity analysis, while latent time was
546 deduced from the dynamic velocity results.

547

548 **Gene set scoring and identification of significant changes**

549 We scored the gene sets of all cells and subsets using the Scanpy python package (`sc.tl.score_genes`
550 method, `ctrl_size=len(genesets)`, `gene_pool=None`, `n_bins=25`, `use_raw=None`). The score was the
551 average expression of a set of genes subtracted from the average expression of a reference set of
552 genes. The reference set was randomly sampled from the `gene_pool` for each binned expression
553 value. To prevent highly expressed genes from dominating a gene set score, we scaled each gene of
554 the \log_2 (TP10K+1) expression matrix by its root mean squared expression across all cells. After
555 obtaining score-cell matrix of the signatures, differential signature analysis (`sc.tl.rank_gene_groups`
556 method, `method='Wilcoxon test'`) was implemented to identify significant changes among different
557 nasal anatomical regions. All pathways included in gene set enrichment analysis (Fig. 3i, Fig. 4f and
558 Extended Data Fig. 7c, d) were obtained from Reactome⁶⁵.

559

560 **Cell-cell interaction and network representation analysis**

561 To plot chemokine-chemokine receptor interaction networks, we employed the Networkx (version
562 2.5) (<https://github.com/networkx/networkx>), Community (version 1.0.0b1) and Pygraphviz
563 (version 1.6) (<https://github.com/pygraphviz/pygraphviz>) python packages to construct a network
564 defined using the count of interactions between cell subsets. The pipeline was implemented in three
565 steps. First, the nodes with a degree of zero were eliminated. Second, any edges with a connection
566 strength less than the average of all the edges were removed. Third, the sizes of the nodes were
567 defined as the \log_2 (counts+1) of the cell subsets, and the network with the Kamada Kawai layout
568 algorithm (`networkx.kamada_kawai_layout` method) was utilized to visualize the network. The
569 thickness of the line connecting the two cell subsets was directly proportional to the degree of

570 interaction strength between them. The chemokines-chemokines receptor interaction data were
571 obtained from IMEx Consortium⁶⁶, IntAct⁶⁷, InnateDB-All⁶⁸, MINT⁶⁹ and I2D⁷⁰ database.

572

573 **Estimation of neutrophil infiltration in CRSwNP**

574 In this study, we applied the xCell algorithm to determine the immune cell subsets in the RNA-seq
575 dataset (GSE179265). The xCell algorithm represents a gene signature-based approach derived from
576 learning from numerous pure cell types originating from diverse sources. This method adeptly
577 enables a cell type enumeration analysis using gene expression data, providing a comprehensive
578 assessment of 64 immune and stromal cell types. This attribute endows it with a commendable
579 capability to accurately depict the intricate landscape of cellular heterogeneity within tissue
580 expression profiles⁷¹.

581

582 **Animals**

583 C57BL/6 mice used in these experiments were purchased from SPF Biotech. The mice were
584 maintained in individually ventilated cages in a specific pathogen-free facility under 12 h light–dark
585 cycles at 22–24 °C and 50–60% humidity. The protocol for the animal studies was approved by the
586 Laboratory Animal Ethical and Welfare Committee of Shandong University Cheeloo College of
587 Medicine (23086).

588

589 **Neutrophilic CRSwNP mouse model and treatment with an IL-1R antagonist (Anakinra)**

590 Mice were randomly divided into three groups consisting of 6 individuals each. The construction of
591 the mouse model of CRSwNP with neutrophilia was carried out following a previously described
592 protocol³⁶. For the control group, 20 µl of sterile normal saline solution was dropped into the nasal
593 cavities three times a week for 3.5 consecutive months. Mice in the model groups received 10 µg of
594 LPS (from *Escherichia coli*; Sigma-Aldrich, Merck Millipore, Germany) in 20 µl of sterile normal
595 saline solution three times a week for 3.5 consecutive months. For the anakinra-treated group,
596 starting on the 77th day, the mice were given 10 µg of Anakinra (MedChemExpress, HY-108841,
597 USA) in 20 µl of sterile normal saline solution by intranasal instillation and 10 µg of Anakinra in
598 200 µl of saline by intraperitoneal injection 30 minutes after LPS stimulation for 2 weeks. For the
599 following 2 weeks, only 10 µg of Anakinra was intranasally administered in 20 µl of sterile normal
600 saline solution within 30 minutes each after LPS stimulation. The animals were sacrificed 24 h after
601 the last nasal challenge. The graphic protocol is depicted in Extended Data Fig. 8c. NLF was
602 collected immediately from the sacrificed mice by washing the nasal cavity with 1 mL of ice-cold
603 PBS three times. The total number of cells in NLF was counted using a cell counter (JIMBIO, China).

604

605 **Immunofluorescence staining**

606 The detailed experimental protocol for processing the sinonasal tissue specimens was previously
607 described⁷². In brief, we removed the skin on the heads of the mice and then excised the mandibles.
608 The heads of the mice were fixed in 4% paraformaldehyde at room temperature for at least 24 hours,
609 and decalcified for 7 days. For human nasal tissues, biopsy samples were soaked in 4%
610 paraformaldehyde for 24 hours. For both the murine and human studies, after dehydration and
611 paraffin embedding, the tissue samples were cut into 4 µm-thick paraffin sections. The slides were
612 incubated at 65 °C for 1 hour, dewaxed, hydrated, and subsequently heated in antigen retrieval liquid
613 for 15 minutes in a microwave oven. After cooling to room temperature, the slides were permeated

614 with PBS containing 1% Triton X-100 for 20 minutes. The slides were washed in PBS 3 times and
615 blocked with 5% bovine serum albumin at room temperature for 1 hour. After that, the slides were
616 incubated with the primary antibody (see Supplementary Table 2 for a complete list and dilutions)
617 overnight at 4°C in a humidified chamber. The slides were gently washed with PBS 3 times, and
618 incubated with a fluorescent secondary antibody at room temperature for 1 hour. After washing with
619 PBS, the slides were stained with 4', 6-diamidino-2-phenylindole (DAPI) (Solarbio, C006, China)
620 for 10 minutes. After another washing step with PBS, the slides were cover-slipped with anti-fade
621 mounting medium (Solarbio, S2100, China). Image acquisition was performed using two
622 fluorescence microscopes (Olympus, IX73 and VS120, Japan).

623

624 **Multiplexed immunohistochemistry**

625 Multiplexed immunohistochemistry (mIHC) assay was performed using the Opal 6-Plex Detection
626 Kit (AKOYA #811001, USA) as described previously⁷³. Briefly, after dewaxing and hydration, the
627 slides were boiled in AR6 buffer in a microwave oven for 15 minutes. The tissue sections on the
628 slides were incubated with blocking buffer for 30 min and then with primary antibody (see
629 Supplementary Table 2 for a complete list and dilutions) for 2 hours at room temperature in a
630 humidified chamber. Then the slides were washed with TBST twice and incubated with Opal
631 polymer anti-rabbit/mouse horseradish peroxidase (HRP) for 10 minutes at room temperature. Then,
632 100-300 µl of Opal Fluorophore working solution was added to each slide. After washing with
633 TBST twice, the slides were incubated at room temperature for 10 minutes. The previous steps were
634 repeated as needed. DAPI working solution was applied on the slides for 10 minutes at room
635 temperature. As a final step, the slides were washed and cover-slipped with anti-fade mounting
636 medium. Image acquisition was performed using the TissueFAXS imaging system (TissueGnostics,
637 Germany).

638

639 **Isolation and culture of primary human nasal epithelial cells (HNEs)**

640 Human nasal epithelial cells were scraped from patients' nasal mucosa during endoscopic sinus
641 surgery. The cells were placed in an Eppendorf tube containing 1 ml of bronchial epithelial cell
642 medium (BEpiCM) (ScienCell, 3211, USA) supplemented with 1% penicillin/streptomycin and 1%
643 bronchial epithelial cell growth supplement immediately upon acquisition. Cells were seeded within
644 6 hours in six well plates pre-coated with Collagen Type I (Corning, 354236, USA) and maintained
645 in a humidified incubator at 37°C containing 5% CO₂. The media was changed every two days.
646 When cells reached 90% confluence in the well, they were transferred to the upper chamber of
647 polyester Transwell inserts (0.4 µm, 0.33 cm², BIOFIL, TCS016012, China) pre-coated with
648 Collagen Type I. After that, 1 ml of BEpiCM was added into the lower chamber, and media was
649 replaced every two days. At confluence, the media was replaced with differential media (BEpiCM:
650 DMEM/F12 =1:1) in the basal chamber and the apical surface was exposed to provide an air-liquid
651 interface (ALI). Monolayers were grown at the ALI for an additional 21 days to promote
652 differentiation into a nasal epithelium with basal, multiciliated and secretory cells. On day 22, media
653 containing PBS or recombinant IL-1β (10 ng/ml) (Abbkine, PRP100051, USA) was added to the
654 basal chambers for 3 days.

655

656 **Isolation and culture of primary human nasal fibroblasts (HNFs)**

657 The inferior turbinate or nasal polyp tissues were soaked in penicillin-streptomycin solution

658 (Solarbio, P1400, China) for 3 minutes and cut into small pieces. After digestion in Trypsin-EDTA
659 solution (Macgene, CC017-500) for 10 minutes, the tissues were put into cell culture flasks with
660 DMEM media supplemented with 10% FBS. The cells were cultured in a humidified incubator at
661 37 °C containing 5% CO₂, and the media was replaced every 2 days. The migrated cells were nasal
662 mucosa-derived fibroblasts. When cells reached 90% confluence in the well, PBS or IL-1 β (10
663 ng/ml) was added into the wells, and the cells were cultured for 1 days.

664

665 **Isolation of human peripheral blood neutrophils**

666 Neutrophils were enriched from peripheral blood by means of Polymorphprep (Serumwerk
667 Bernburg AG, 1895) density centrifugation. We carefully layered 5.0 ml of anti-coagulated whole
668 blood over 5.0 ml of PolymorphPrep in a 15 ml tube. The tubes were centrifuged at 500 g for 30
669 min at 20°C. After centrifugation, two bands were visible, and the neutrophils were enriched in the
670 lower band. The cells were aspirated to another clean tube and an equal volume of sterile normal
671 saline solution was added. After incubating at room temperature for 10 minutes, the tubes were put
672 on centrifuge at 500 \times g for 30 minutes. The supernatant was discarded, and the cell pellet was
673 resuspended in Roswell Park Memorial Institute (RPMI) 1640 media supplemented with 1% FBS.

674

675 **Neutrophil chemotaxis assay**

676 For the cell migration assay, after resuspension in RPMI 1640 media supplemented with 1% FBS,
677 the neutrophils were seeded at $1.0 \times 10^5/100 \mu\text{l}$ per well in the upper compartment of 24-transwell
678 plates with 3- μm pores (Costar, 3415). The conditioned media from fibroblasts, either stimulated
679 with IL-1 β or not, was added into the lower chamber to test the chemotactic effect on neutrophils.
680 Normal culture media was used as a negative control. After 3 hours of incubation at 37°C in 5%
681 CO₂, the number of the migrated cells in the lower chamber was counted.

682

683 **Enzyme-linked immunosorbent assay (ELISA)**

684 ELISAs were performed using multiple ELISA kits (4A Biotech, CHE0011, CME0008, CME0004,
685 China) according to the manufacturers' instructions. In brief, the standards and samples were added
686 to the antibody pre-coated 96-well ELISA plate, which was subsequently incubated at 37°C for 2
687 hours. The liquid was removed, and the plate was washed 4 times with wash buffer. Then, an
688 enzyme-linked antibody was applied to the plate, which was incubated at 37°C for 60 minutes. After
689 a washing step, avidin-biotin-peroxidase complex was applied to each well, and the plate was
690 incubated at 37°C for 30 minutes. The plate was washed 4 times with wash buffer and the color
691 developing reagent was added to each well of the plate and the plate was incubated at 37°C in
692 darkness for 10-20 minutes. The reaction was terminated by adding stop solution and the optical
693 density (OD) at 450 nm was measured immediately using a microplate reader (Thermo Fisher,
694 Varioskan Flash, USA). Analysis was performed using GraphPad Prism version 9.

695

696 **Immunohistochemistry**

697 Paraffin-embedded sections were incubated at 65°C for 1 hour. Dewaxing, hydration, and antigen
698 repair were performed sequentially as previously described⁷³. The endogenous peroxidase blocker
699 was applied to the slides after they had cooled to room temperature. The slides were incubated for
700 20 minutes at room temperature. The slides were then washed with PBS 3 times and incubated with
701 the primary antibody (see Supplementary Table 2 for a complete list and dilutions) in a humidified

702 chamber at 4°C overnight. After washing with PBS, the sections were incubated with reaction
703 enhanced solution. Following another wash, the sections were incubated with the secondary
704 antibody for 10 minutes, and the color reaction was developed using 3,30-diaminobenzidine
705 tetrahydrochloride (DAB) (ZSGB-Bio, PV-9000, China). The slides were counterstained with
706 hematoxylin. Finally, the slides were dehydrated and mounted. The images were acquired using a
707 fluorescence microscope (Olympus VS120, Japan).

708

709 **Hematoxylin and eosin Staining (HE staining)**

710 HE staining was performed using the HE staining kit (Beyotime, C0105S, China) according to the
711 manufacturer's instruction. Sections were dewaxed, hydrated and then washed with PBS. Then, the
712 sections were incubated with hematoxylin for 10 seconds and washed with distilled water for 10
713 minutes. After that, the sections were differentiated with 1% hydrochloric ethanol for 20 seconds.
714 After a washing step with distilled water for a 10 min, the slides were stained with eosin for 1 min.
715 Following dehydration, clearing and mounting, the slides were ready for image acquisition under a
716 microscope (Olympus, VS120, Japan).

717

718 **Statistical methods**

719 No statistical analysis was performed to predetermine sample size. The numbers of samples included
720 in the analyses are listed throughout the figures. For the scRNA-seq data, statistical analyses and
721 graphic production were performed using Python version 3.7.10. The experimental data are
722 presented as mean \pm SEM or mean with 95% CI, as shown in the corresponding figure legends.
723 Data distribution was assumed to be normal. One-way ANOVA and two-way ANOVA were used to
724 compare multiple sets. Two-tailed Student's t-tests were used for the comparisons between two sets.
725 Statistical analyses and graphic production were performed with GraphPad Prism version 9
726 (GraphPad Software Inc., San Diego, CA, USA). $P < 0.05$ was considered statistically significant.

727 **References**

1. Gernez, Y., Tirouvanziam, R. & Chanez, P. Neutrophils in chronic inflammatory airway diseases: can we target them and how? *Eur Respir J* **35**, 467–469 (2010).
2. Esther, C. R. *et al.* Metabolomic Evaluation of Neutrophilic Airway Inflammation in Cystic Fibrosis. *Chest* **148**, 507–515 (2015).
3. Fokkens, W. J. *et al.* EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. *Rhinology* **50**, 1–12 (2012).
4. Benjamin, M. R. *et al.* Clinical Characteristics of Patients with Chronic Rhinosinusitis without Nasal Polyps in an Academic Setting. *J Allergy Clin Immunol Pract* **7**, 1010–1016 (2019).
5. Tomassen, P. *et al.* Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. *J Allergy Clin Immunol* **137**, 1449–1456.e4 (2016).
6. Delemarre, T. & Bachert, C. Neutrophilic inflammation in chronic rhinosinusitis. *Curr Opin Allergy Clin Immunol* **23**, 14–21 (2023).
7. Kobayashi, Y. The role of chemokines in neutrophil biology. *Front Biosci* **13**, 2400–2407 (2008).
8. Wang, X. *et al.* Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. *J Allergy Clin Immunol* **138**, 1344–1353 (2016).
9. Sumsion, J. S., Pulsipher, A. & Alt, J. A. Differential expression and role of S100 proteins in chronic rhinosinusitis. *Curr Opin Allergy Clin Immunol* **20**, 14–22 (2020).
10. Wang, H. *et al.* The activation and function of IL-36γ in neutrophilic inflammation in chronic rhinosinusitis. *J Allergy Clin Immunol* **141**, 1646–1658 (2018).
11. Palacios-García, J. *et al.* Role of Fibroblasts in Chronic Inflammatory Signalling in Chronic Rhinosinusitis with Nasal Polyps—A Systematic Review. *J Clin Med* **12**, 3280 (2023).
12. Poposki, J. A. *et al.* Increased expression of the chemokine CCL23 in eosinophilic chronic rhinosinusitis with nasal polyps. *J Allergy Clin Immunol* **128**, 73-81.e4 (2011).
13. Peng, Y. *et al.* Whole-transcriptome sequencing reveals heightened inflammation and defective host defence responses in chronic rhinosinusitis with nasal polyps. *Eur Respir J* **54**, 1900732 (2019).
14. Rinia, A. B., Kostamo, K., Ebbens, F. A., van Drunen, C. M. & Fokkens, W. J. Nasal polyposis: a cellular-based approach to answering questions. *Allergy* **62**, 348–358 (2007).
15. Ordovas-Montanes, J. *et al.* Allergic inflammatory memory in human respiratory epithelial progenitor cells. *Nature* **560**, 649–654 (2018).
16. Morita, H., Moro, K. & Koyasu, S. Innate lymphoid cells in allergic and nonallergic inflammation. *J Allergy Clin Immunol* **138**, 1253–1264 (2016).
17. Ma, J. *et al.* Single-cell analysis pinpoints distinct populations of cytotoxic CD4+ T cells and an IL-10+CD109+ TH2 cell population in nasal polyps. *Sci Immunol* **6**, eabg6356 (2021).
18. Deprez, M. *et al.* A Single-Cell Atlas of the Human Healthy Airways. *Am J Respir Crit Care Med* **202**, 1636–1645 (2020).
19. Delemarre, T. *et al.* A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. *J Allergy Clin Immunol* **147**, 179-188.e2 (2021).
20. Wang, W. *et al.* Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. *Nat Immunol* **23**, 1484–1494 (2022).

771 21. Capucetti, A., Albano, F. & Bonecchi, R. Multiple Roles for Chemokines in Neutrophil
772 Biology. *Front Immunol* **11**, 1259 (2020).

773 22. Bonecchi, R. *et al.* Up-regulation of CCR1 and CCR3 and induction of chemotaxis to CC
774 chemokines by IFN-gamma in human neutrophils. *J Immunol* **162**, 474–479 (1999).

775 23. Nakatani, A. *et al.* S100A8 enhances IL-1 β production from nasal epithelial cells in
776 eosinophilic chronic rhinosinusitis. *Allergol Int* **72**, 143–150 (2023).

777 24. Boruk, M. *et al.* Elevated S100A9 expression in chronic rhinosinusitis coincides with
778 elevated MMP production and proliferation in vitro. *Sci Rep* **10**, 16350 (2020).

779 25. Van Crombruggen, K., Vogl, T., Pérez-Novo, C., Holtappels, G. & Bachert, C. Differential
780 release and deposition of S100A8/A9 proteins in inflamed upper airway tissue. *Eur Respir J*
781 **47**, 264–274 (2016).

782 26. Ryckman, C., Vandal, K., Rouleau, P., Talbot, M. & Tessier, P. A. Proinflammatory activities
783 of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and
784 adhesion. *J Immunol* **170**, 3233–3242 (2003).

785 27. Yoshisue, H. & Hasegawa, K. Effect of MMP/ADAM inhibitors on goblet cell hyperplasia
786 in cultured human bronchial epithelial cells. *Biosci Biotechnol Biochem* **68**, 2024–2031 (2004).

787 28. Casalino-Matsuda, S. M., Monzón, M. E. & Forteza, R. M. Epidermal growth factor
788 receptor activation by epidermal growth factor mediates oxidant-induced goblet cell
789 metaplasia in human airway epithelium. *Am J Respir Cell Mol Biol* **34**, 581–591 (2006).

790 29. Mackay, C. D. A., Jadli, A. S., Fedak, P. W. M. & Patel, V. B. Adventitial Fibroblasts in Aortic
791 Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. *Diagnostics (Basel)* **12**,
792 871 (2022).

793 30. Stenmark, K. R. *et al.* The adventitia: Essential role in pulmonary vascular remodeling.
794 *Compr Physiol* **1**, 141–161 (2011).

795 31. Matsushima, K., Yang, D. & Oppenheim, J. J. Interleukin-8: An evolving chemokine.
796 *Cytokine* **153**, 155828 (2022).

797 32. He, Z. *et al.* Interleukin 1 beta and Matrix Metallopeptidase 3 Contribute to Development
798 of Epidermal Growth Factor Receptor-Dependent Serrated Polyps in Mouse Cecum.
799 *Gastroenterology* **157**, 1572–1583.e8 (2019).

800 33. Knight, D. A. *et al.* Leukemia inhibitory factor (LIF) and LIF receptor in human lung.
801 Distribution and regulation of LIF release. *Am J Respir Cell Mol Biol* **20**, 834–841 (1999).

802 34. Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity.
803 *Immunol Rev* **281**, 8–27 (2018).

804 35. Anti-Interleukin-1 Beta/Tumor Necrosis Factor-Alpha IgY Antibodies Reduce
805 Pathological Allergic Responses in Guinea Pigs with Allergic Rhinitis - PubMed.
806 <https://pubmed.ncbi.nlm.nih.gov/27046957/>.

807 36. Wang, S. *et al.* Establishment of a mouse model of lipopolysaccharide-induced
808 neutrophilic nasal polyps. *Exp Ther Med* **14**, 5275–5282 (2017).

809 37. Jang, Y. *et al.* Anakinra treatment for refractory cerebral autoinflammatory responses.
810 *Ann Clin Transl Neurol* **9**, 91–97 (2022).

811 38. Cavalli, G. & Dinarello, C. A. Anakinra Therapy for Non-cancer Inflammatory Diseases.
812 *Front Pharmacol* **9**, 1157 (2018).

813 39. Eldridge, M. W. & Peden, D. B. Allergen provocation augments endotoxin-induced nasal
814 inflammation in subjects with atopic asthma. *J Allergy Clin Immunol* **105**, 475–481 (2000).

815 40. Wei, Y. *et al.* Activated pyrin domain containing 3 (NLRP3) inflammasome in neutrophilic
816 chronic rhinosinusitis with nasal polyps (CRSwNP). *J Allergy Clin Immunol* **145**, 1002–1005.e16
817 (2020).

818 41. Ruan, J.-W. *et al.* Characterizing the Neutrophilic Inflammation in Chronic Rhinosinusitis
819 With Nasal Polyps. *Front Cell Dev Biol* **9**, 793073 (2021).

820 42. Ding, G. Q., Zheng, C. Q. & Bagga, S. S. Up-regulation of the mucosal epidermal growth
821 factor receptor gene in chronic rhinosinusitis and nasal polyposis. *Arch Otolaryngol Head
822 Neck Surg* **133**, 1097–1103 (2007).

823 43. de Boer, W. I. *et al.* Expression of epidermal growth factors and their receptors in the
824 bronchial epithelium of subjects with chronic obstructive pulmonary disease. *Am J Clin Pathol*
825 **125**, 184–192 (2006).

826 44. Cheng, W.-L. *et al.* The Role of EREG/EGFR Pathway in Tumor Progression. *Int J Mol Sci*
827 **22**, 12828 (2021).

828 45. Schiwon, M. *et al.* Crosstalk between sentinel and helper macrophages permits neutrophil
829 migration into infected uroepithelium. *Cell* **156**, 456–468 (2014).

830 46. Kim, N. D. & Luster, A. D. The role of tissue resident cells in neutrophil recruitment. *Trends
831 Immunol* **36**, 547–555 (2015).

832 47. Kikuchi, I. *et al.* Eosinophil trans-basement membrane migration induced by interleukin-
833 8 and neutrophils. *Am J Respir Cell Mol Biol* **34**, 760–765 (2006).

834 48. Moore, W. C. *et al.* Sputum neutrophil counts are associated with more severe asthma
835 phenotypes using cluster analysis. *J Allergy Clin Immunol* **133**, 1557–1563.e5 (2014).

836 49. Tai, J., Han, M. & Kim, T. H. Therapeutic Strategies of Biologics in Chronic Rhinosinusitis:
837 Current Options and Future Targets. *Int J Mol Sci* **23**, 5523 (2022).

838 50. Abadie, B. Q. & Cremer, P. C. Interleukin-1 Antagonists for the Treatment of Recurrent
839 Pericarditis. *BioDrugs* **36**, 459–472 (2022).

840 51. Fokkens, W. J. *et al.* European Position Paper on Rhinosinusitis and Nasal Polyps 2020.
841 *Rhinology* **58**, 1–464 (2020).

842 52. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data
843 analysis. *Genome Biol* **19**, 15 (2018).

844 53. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell
845 Doublets in Single-Cell Transcriptomic Data. *Cell Syst* **8**, 281–291.e9 (2019).

846 54. Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-
847 cell RNA-seq. *Science* **352**, 189–196 (2016).

848 55. Polański, K. *et al.* BBKNN: fast batch alignment of single cell transcriptomes.
849 *Bioinformatics* **36**, 964–965 (2020).

850 56. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-
851 connected communities. *Sci Rep* **9**, 5233 (2019).

852 57. Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP. *Nat
853 Biotechnol* (2018) doi:10.1038/nbt.4314.

854 58. Van de Sande, B. *et al.* A scalable SCENIC workflow for single-cell gene regulatory
855 network analysis. *Nat Protoc* **15**, 2247–2276 (2020).

856 59. Aibar, S. *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nat
857 Methods* **14**, 1083–1086 (2017).

858 60. Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* **172**, 650–665 (2018).

859 61. He, D. *et al.* Alevin-fry unlocks rapid, accurate and memory-frugal quantification of
860 single-cell RNA-seq data. *Nat Methods* **19**, 316–322 (2022).

861 62. Domínguez Conde, C. *et al.* Cross-tissue immune cell analysis reveals tissue-specific
862 features in humans. *Science* **376**, eabI5197 (2022).

863 63. La Manno, G. *et al.* RNA velocity of single cells. *Nature* **560**, 494–498 (2018).

864 64. Lange, M. *et al.* CellRank for directed single-cell fate mapping. *Nat Methods* **19**, 159–170
865 (2022).

866 65. Croft, D. *et al.* Reactome: a database of reactions, pathways and biological processes.
867 *Nucleic Acids Res* **39**, D691–697 (2011).

868 66. Orchard, S. *et al.* Protein interaction data curation: the International Molecular Exchange
869 (IMEx) consortium. *Nat Methods* **9**, 345–350 (2012).

870 67. Orchard, S. *et al.* The MIntAct project--IntAct as a common curation platform for 11
871 molecular interaction databases. *Nucleic Acids Res* **42**, D358–363 (2014).

872 68. Breuer, K. *et al.* InnateDB: systems biology of innate immunity and beyond--recent
873 updates and continuing curation. *Nucleic Acids Res* **41**, D1228–1233 (2013).

874 69. Licata, L. *et al.* MINT, the molecular interaction database: 2012 update. *Nucleic Acids Res*
875 **40**, D857–861 (2012).

876 70. Brown, K. R. & Jurisica, I. Unequal evolutionary conservation of human protein
877 interactions in interologous networks. *Genome Biol* **8**, R95 (2007).

878 71. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity
879 landscape. *Genome Biol* **18**, 220 (2017).

880 72. Beppu, A. K. *et al.* Epithelial plasticity and innate immune activation promote lung tissue
881 remodeling following respiratory viral infection. *Nat Commun* **14**, 5814 (2023).

882 73. Chen, W. *et al.* Over-expression of CRTH2 indicates eosinophilic inflammation and poor
883 prognosis in recurrent nasal polyps. *Front Immunol* **13**, 1046426 (2022).

884
885

886 **Figure legends**

887 **Fig. 1: Analysis of middle turbinates, inferior turbinates, and nasal polyps from CRSwNP**
888 **patients and healthy individuals.**

889 **a** For the study design, 33 samples were collected from distinct anatomical regions (inferior
890 turbinates, middle turbinates, and nasal polyps) of CRSwNP patients and healthy individuals.
891 scRNA-seq (DNBelab C4) acquired 219,716 high-quality cells. Created with BioRender.com.

892 **b** Cell counts by anatomical region for each compartment. The colors of the cell compartments are
893 consistent in panel **(b)** and **(c)**.

894 **c** Unsupervised sub-clustering preliminarily divided the cells into six compartments.

895 **d** UMAP (uniform manifold approximation and projection) embedding by three anatomical regions.

896 **e** Bar plot depicting the cell compositions of the indicated anatomical regions of human nasal
897 mucosa from CRSwNP patients and healthy individuals. The colors of the cell compartments are
898 consistent in panel **(b)** and **(c)**.

899 **f** UMAP displaying typical cell subsets of the nasal mucosal epithelium.

900 **g** UMAP displaying 15 cell subsets of stromal cells in the nasal mucosa with the gene signatures of
901 each subset indicated in the colored boxes.

902 **h** UMAP displaying immune cell subsets in all samples.

903 **i** Bubble heatmap showing marker genes across cell subsets of interest in this study.

904 **j** A dendrogram of regulons for all cell subsets constructed from the fate decision tree analysis. TFs
905 at each branching point are representative regulons of subjacent groups. The colors of the cell
906 subsets are consistent in panel **(j)** and **(k)**.

907 **k** UMAP showing six cell compartments and some cell subsets based on the regulons from the fate
908 decision tree analysis presented in panel **(j)**. The colors of the cell subsets are consistent in panel **(j)**
909 and **(k)**.

910

911 **Fig. 2: Identification of cell subsets involved in neutrophil recruitment in CRSwNP.**

912 **a** Representative image and quantification of immunofluorescence staining for MPO (red) and the
913 nuclear marker DAPI (blue) in IT tissue from healthy individuals (HC-IT) and NP tissue from
914 CRSwNP patients (CRS-NP). Neutrophils are indicated by white arrows. Scale bar, 50 μ m (left), 20
915 μ m (right). The data are presented as the means \pm SEM. The *P-value* was calculated and reported
916 using the two-tailed Student's t-test.

917 **b** Neutrophil scores obtained using the xCell algorithm for CRSwNP patients and healthy
918 individuals. The *P-value* was calculated and reported using a two-tailed Student's t-test.

919 **c** Cell-cell interaction and network representation analysis based on chemokine-chemokine receptor
920 interactions. The nodes with a degree of zero and a connection strength less than the average of all
921 the edges were eliminated. The sizes of the nodes were defined as the log2 (counts+1) of the cell
922 subsets. The thickness of the link reflects the degree of the interaction. Cell subsets that strongly
923 interact with neutrophils are indicated in red boxes.

924 **d** Bubble heatmap for chemokine-chemokine receptor interactions between immune cells and
925 epithelial/stromal cells. Previously validated interactions are indicated by colored straight lines.
926 Chemokines predominantly expressed in *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts are indicated in
927 red boxes.

928 **e** Bar plot depicting the cell composition of epithelial cell subsets in the indicated anatomical regions
929 of human nasal mucosa from CRSwNP patients and healthy individuals.

930 **f** Immunofluorescence staining for LY6D (red), KRT13 (white), MPO (green), and the nuclear
931 marker DAPI (blue) in CRS-NP tissue and HC-IT tissue. The epithelium is indicated with orange
932 arrows. Neutrophils are indicated with white arrows. Scale bar, 20 μ m.

933 **g** Immunofluorescence staining for COL1A2 (red), IDO1 (white), MPO (green), and the nuclear
934 marker DAPI (blue) in HC-IT tissue and CRS-NP tissue. The epithelium is indicated with orange
935 arrows. Neutrophils are indicated with white arrows. Scale bar, 20 μ m.

936

937 **Fig. 3: LY6D⁺ club cells regulate neutrophilic inflammation in CRSwNP.**

938 **a** UMAP displaying the distribution of *LY6D⁺* club cells in the indicated anatomical regions of
939 human nasal mucosa from CRSwNP patients and healthy individuals. Enriched *LY6D⁺* club cells
940 are indicated with blue circles (left panel). The proportions of *LY6D⁺* club cells in the indicated
941 anatomical regions are shown on the right. The colors are consistent in the two panels.

942 **b** Representative immunofluorescence staining for LY6D (green), SPRR1B (red), KRT13 (white,
943 marker gene of club cells) and the nuclear marker DAPI (blue) in HC-IT tissue and CRS-NP tissue.
944 The white arrows indicate colocalization of LY6D, SPRR1B and KRT13. Scale bar, 20 μ m.

945 **c** Quantification of the data in panel (b). The data are presented as the means \pm SEM. The *P-value*
946 was calculated and reported using a two-tailed Student's t-test.

947 **d** A dendrogram of regulons for epithelial cell subsets in the indicated anatomical regions
948 constructed from the fate decision tree analysis. The transcription factors at each branching point
949 are representative regulons of subjacent groups. The brown triangles show the proximity between
950 *LY6D⁺* club cells (E11) and club cells (E03) during differentiation. The numbering of cell subsets is
951 consistent with that in Fig. 1(k).

952 **e** TFs enriched in *LY6D⁺* club cells aligned by TF specificity score. *PITX1* (red) is the top
953 transcription factor responsible for *LY6D⁺* club cell differentiation.

954 **f** Heatmap of gene expression analyzed by scRNA-seq displaying representative genes for 12
955 epithelial cell subsets. *LY6D⁺* club cells are highlighted in cyan letters.

956 **g** Volcano plot displaying the differentially expressed genes (DEGs) between *LY6D⁺* club cells and
957 other epithelial cell subsets. The *P-value* was calculated and reported using a two-tailed Student's
958 t-test.

959 **h** UMAP with the epithelial cell compartment displaying the expression of four upregulated genes
960 (*IL1RN*, *S100A8*, *AREG*, and *EREG*) in *LY6D⁺* club cells. *LY6D⁺* club cells are indicated with red
961 circles.

962 **i** Pathway enrichment analysis revealing the enriched signaling pathways in *LY6D⁺* club cells when
963 compared with those in other epithelial cells.

964 **j** RNA velocity analysis based on RNA splicing information indicating that *LY6D⁺* club cells are
965 maturely differentiated club cells.

966 **k** Heatmap displaying dynamic changes in the expression of functional genes and TFs during the
967 maturation process of *LY6D⁺* club cells.

968

969 **Fig. 4: IDO1⁺ fibroblasts contribute to IL-1 signaling-mediated neutrophilic inflammation in**
970 **CRSwNP.**

971 **a** Bar plot depicting the cell composition of stromal cell subsets in the indicated anatomical regions
972 of human nasal mucosa from CRSwNP patients and healthy individuals.

973 **b** Transcription factor fate decision tree analysis of stromal cells displaying two distinguishable

974 modules consisting of six fibroblast subsets with remarkable differences in TF patterns. Module 1
975 and module 2 are indicated by blue and green boxes, respectively.
976 **c** UMAP displaying the expression of marker genes of the two modules in the stromal cell
977 compartment.
978 **d** UMAP of stromal cell compartment displaying fibroblasts in the indicated anatomical regions.
979 Bar plot displaying differences in the proportions of seven fibroblast subsets in the indicated
980 anatomical regions.
981 **e** Bubble heatmap depicting the expression of representative genes of *IDO1*⁺ fibroblasts across
982 different stromal cell subsets.
983 **f** Radar plot displaying the pathway enrichment analysis results for the four fibroblast subsets in
984 module 1. The colors in the circles reflect the *P-values*.
985 **g** Representative immunofluorescence staining for CXCL8 (white), IDO1 (green), COL1A2 (red, a
986 marker gene of fibroblasts), and the nuclear marker DAPI (blue) in HC-IT tissue and CRS-NP tissue.
987 The white arrows indicate colocalization of IDO1, CXCL8, and COL1A2 in the NPs. Scale bar, 20
988 μm .
989

990 **Fig. 5: IL-1 β induces transdifferentiation of *LY6D*⁺ club cells and *IDO1*⁺ fibroblasts to promote
991 neutrophil recruitment**

992 **a** Volcano plot of DEGs between IL-1 β -stimulated and PBS-treated air-liquid interface (ALI) -
993 cultured primary human nasal epithelial cells (HNEs) identified with the cut-off criterion $P < 0.05$
994 and $|\log_{2}\text{FC}| \geq 1$. The *P-values* were calculated and reported using two-tailed Student's t-tests. Blue
995 dots: significantly downregulated genes; red dots: significantly upregulated genes.

996 **b** UMAP with epithelial cell compartment displaying the expression of four genes that are
997 upregulated in *LY6D*⁺ club cells identified by scRNA-seq. The red circles indicate *LY6D*⁺ club cells
998 in the epithelial cell compartment according to the scRNA-seq data.

999 **c** Expression of four genes in panel b of ALI-cultured primary HNEs treated with the indicated
1000 conditions (as determined by bulk RNA-seq). The length of the error bars is a 95% confidence
1001 interval for the mean in Fig. 5(c). The *P-values* were calculated and reported using a two-tailed
1002 Student's t-test.

1003 **d** Representative immunofluorescence staining for LY6D (green), S100A8 (red), and the nuclear
1004 marker DAPI (blue) in ALI-cultured primary HNEs upon the indicated stimulations. Scale bar, 50
1005 μm .

1006 **e** S100A8/A9 protein levels in the media (measured by ELISA) upon the indicated stimulations of
1007 ALI-cultured HNEs. The *P-value* was calculated and reported using a two-tailed Student's t-test.

1008 **f** Number of neutrophils passing through the membrane of a transwell insert by ALI-cultured HNE-
1009 exposed media in the presence or absence of IL-1 stimulation. ALI-cultured HNE-exposed media
1010 (control media) and fresh media containing IL-1 β (control media + IL-1 β) were used as negative
1011 control. Data are presented as the means \pm SEMs. The *P-values* were calculated and reported using
1012 one-way ANOVA.

1013 **g** Heatmap displaying the expression of the indicated chemokines in primary fibroblasts derived
1014 from HC-IT tissue and CRS-NP tissue upon the indicated stimulations.

1015 **h** Representative immunofluorescence staining for IDO1 (green), CXCL8 (red) and the nuclear
1016 marker DAPI (blue) displaying the protein levels of IDO1 and CXCL8 upon the indicated
1017 stimulations. Scale bar, 100 μm .

1018 **i** Quantification of the data in panel **(h)**. The data are presented as the means \pm SEM. The *P-values*
1019 were calculated and reported using a one-way ANOVA.

1020 **j** CXCL8 protein levels measured by ELISA after indicated stimulations in primary fibroblasts
1021 derived from HC-IT tissues and CRS-NP tissues. The *P-values* are calculated and reported using
1022 two-way ANOVA.

1023 **k** Number of neutrophils passing through the membrane of a transwell insert by fibroblasts-exposed
1024 media in the presence or absence of IL-1 β stimulation. Fibroblast-exposed media (control media)
1025 and fresh media containing IL-1 β (control media + IL-1 β) were used as negative controls. The data
1026 are presented as the means \pm SEM. The *P-values* were calculated and reported using two-way
1027 ANOVA.

1028

1029 **Fig. 6: IL-1 β antagonist suppresses transdifferentiation of LY6D $^+$ club cells and IDO1 $^+$
1030 fibroblasts and mitigates inflammation *in vivo*.**

1031 **a** Representative immunohistochemistry staining for IL-1 β in HC-IT tissue and CRS-NP tissue
1032 (n=5). Scale bar, 50 μ m. The data are presented as the means \pm SEM. The *P-value* was calculated
1033 and reported using a two-tailed Student's t-test.

1034 **b** UMAP displaying the expression of IL-1 β in total cell subsets determined via the scRNA-seq
1035 analysis.

1036 **c** UMAP showing the expression of IL-1 β in total cell subsets from analysis of the CRSwNP
1037 scRNA-seq dataset (HRA000772).

1038 **d** UMAP embedding the expression of IL-1 β in immune cells determined via the scRNA-seq
1039 analysis.

1040 **e** Bar plot depicting the cell compositions of MNP/DC subsets for the indicated anatomical regions
1041 of human nasal mucosa from CRSwNP patients and healthy individuals.

1042 **f** Cell counts in nasal lavage fluid from mice in the indicated groups. Data are expressed as the
1043 means \pm SEM. The *P-values* were calculated and reported using one-way ANOVA.

1044 **g** CXCL8 (left) and TNF α (right) protein levels in the nasal lavage fluid of mice in the indicated
1045 groups measured by ELISA. The data are expressed as the means \pm SEM. The *P-values* were
1046 calculated and reported using a one-way ANOVA.

1047 **h** Representative H&E images of nasal mucosal tissues from mice in the indicated groups. Scale bar,
1048 200 μ m (left), 20 μ m (right).

1049 **i** Representative immunohistochemical staining for MPO in nasal mucosal tissues of mice from the
1050 indicated groups (left). Scale bar, 200 μ m (left), 50 μ m (right). The data are presented as the means
1051 \pm SEM (right). The *P-values* were calculated and reported using one-way ANOVA.

1052 **j** Representative multiple immunohistochemistry images of nasal mucosa in mice from the indicated
1053 groups. Images showing the staining for IDO1 $^+$ fibroblasts (orange arrows), LY6D $^+$ club cells
1054 (red arrows), and neutrophils (white arrows) in the nasal mucosa of model mice. Scale bar, 20 μ m
1055 (left), 2 μ m (right).

1056 **k** Quantification of **(j)**. Data are presented as the means \pm SEM. One-way ANOVA was employed
1057 to assess variations of IDO1 $^+$ fibroblasts and LY6D $^+$ club cells.

1058 **Extended Data Figure Legends**

1059 **Extended Data Fig. 1: Landscape of the scRNA-seq data of CRSwNP.**

1060 **a**, UMAP displaying total cells in the indicated anatomical regions.

1061 **b**, UMAP displaying expression of marker genes in the six cell compartments defined in Fig.1(a).

1062 **c**, UMAP displaying 54 cell subsets.

1063 **d**, Correlation analysis of the gene expression similarity of total cell subsets.

1064

1065 **Extended Data Fig. 2: Summary of total cell subsets in nasal mucosa from patients with**

1066 **CRSwNP patients and healthy controls.**

1067 **(a-d)** Overview of functional genes and key transcription factors of each cell subset. The four top

1068 genes are listed.

1069

1070 **Extended Data Fig. 3: The distribution of samples in total cell subsets.**

1071 **a**, UMAP embedding by patients with CRSwNP and healthy individuals.

1072 **b**, Bar plots showing the contributions of samples across total cell subsets.

1073

1074 **Extended Data Fig. 4: Analysis of glandular cells in nasal mucosa from CRSwNP patients and**

1075 **healthy controls.**

1076 **a**, RNA velocity analysis based on RNA splicing information.

1077 **b**, Ct values of four glandular cell subsets calculated by pseudotime analysis.

1078 **c**, Heatmap displaying the expression of marker genes for four glandular cell subsets.

1079 **d**, Heatmap displaying enriched functional and signaling pathways for four glandular cell subsets.

1080

1081 **Extended Data Fig. 5: Sub-clustering of immune cells reiterates the inflammatory**

1082 **environment in neutrophilic CRSwNP.**

1083 **a**, Bar plot displaying the proportions of five immune cell subsets from the indicated anatomical

1084 regions.

1085 **b**, UMAP displaying the distribution of immune cells in the indicated anatomical regions.

1086 **c**, UMAP displaying 12 T/ILCs subsets (left panel). The proportions of different T/ILCs cell subsets

1087 in the indicated anatomical regions (right panel).

1088 **d**, UMAP displaying 5 subsets of B cells and plasma cells (left panel). The proportions of cells in

1089 different B cell and plasma cell subsets in the indicated anatomical regions across different disease

1090 states (right panel).

1091

1092 **Extended Data Fig. 6: Analysis of the neutrophils, *LY6D*⁺ club cells, and *IDO1*⁺ fibroblasts in**

1093 **the scRNA-seq data of CRSwNP (HRA000772).**

1094 **a**, UMAP displaying all cell subsets from the scRNA-seq dataset of CRSwNP (HRA000772). The

1095 enrichment of neutrophils is indicated by a red circle.

1096 **b**, Proportions of neutrophils in samples from eosinophilic, non-eosinophilic CRSwNP patients and

1097 healthy individuals.

1098 **c**, Proportions of *LY6D*⁺ club cells in samples from eosinophilic, non-eosinophilic CRSwNP patients,

1099 and healthy individuals.

1100 **d**, Proportions of *IDO1*⁺ fibroblasts in samples from eosinophilic, non-eosinophilic CRSwNP

1101 patients, and healthy individuals.

1102

1103 **Extended Data Fig. 7: Endothelial cell, pericyte and smooth muscle cell subsets in nasal**
1104 **mucosa from CRSwNP patients and healthy controls.**

1105 **a**, UMAP with stromal cell compartment displaying endothelial cells in the indicated anatomical
1106 regions (left panel). Bar plot depicting the proportions of the four endothelial cell subsets in the
1107 indicated anatomical regions (right panel). The numbering of the cell subsets is consistent with that
1108 in Fig. 1(g).

1109 **b**, UMAP with stromal cell compartment displaying pericytes and smooth muscle cells in the
1110 indicated anatomical regions (left panel). Bar plot depicting the distribution of three subsets of
1111 pericytes and smooth muscle cells in the indicated anatomical regions. The numbering of the cell
1112 subsets is consistent with that in Fig. 1(g).

1113 **c**, Pathway enrichment analysis displaying the enriched functional and signaling pathways for
1114 different endothelial cell subsets.

1115 **d**, Pathway enrichment analysis displaying the enriched functional and signaling pathways for
1116 different subsets of pericytes and smooth muscle cells.

1117

1118 **Extended Data Fig. 8: Graphical protocols and schematic diagram of the mechanism involved**
1119 **in this study.**

1120 **a**, Representative H&E images of ALI-cultured HNEs showing the structure of differentiated
1121 epithelial cells, such as ciliated cells. Scale bar, 100 μ m (upper), 50 μ m (below).

1122 **B**, Schematic diagram of the neutrophil chemotaxis model.

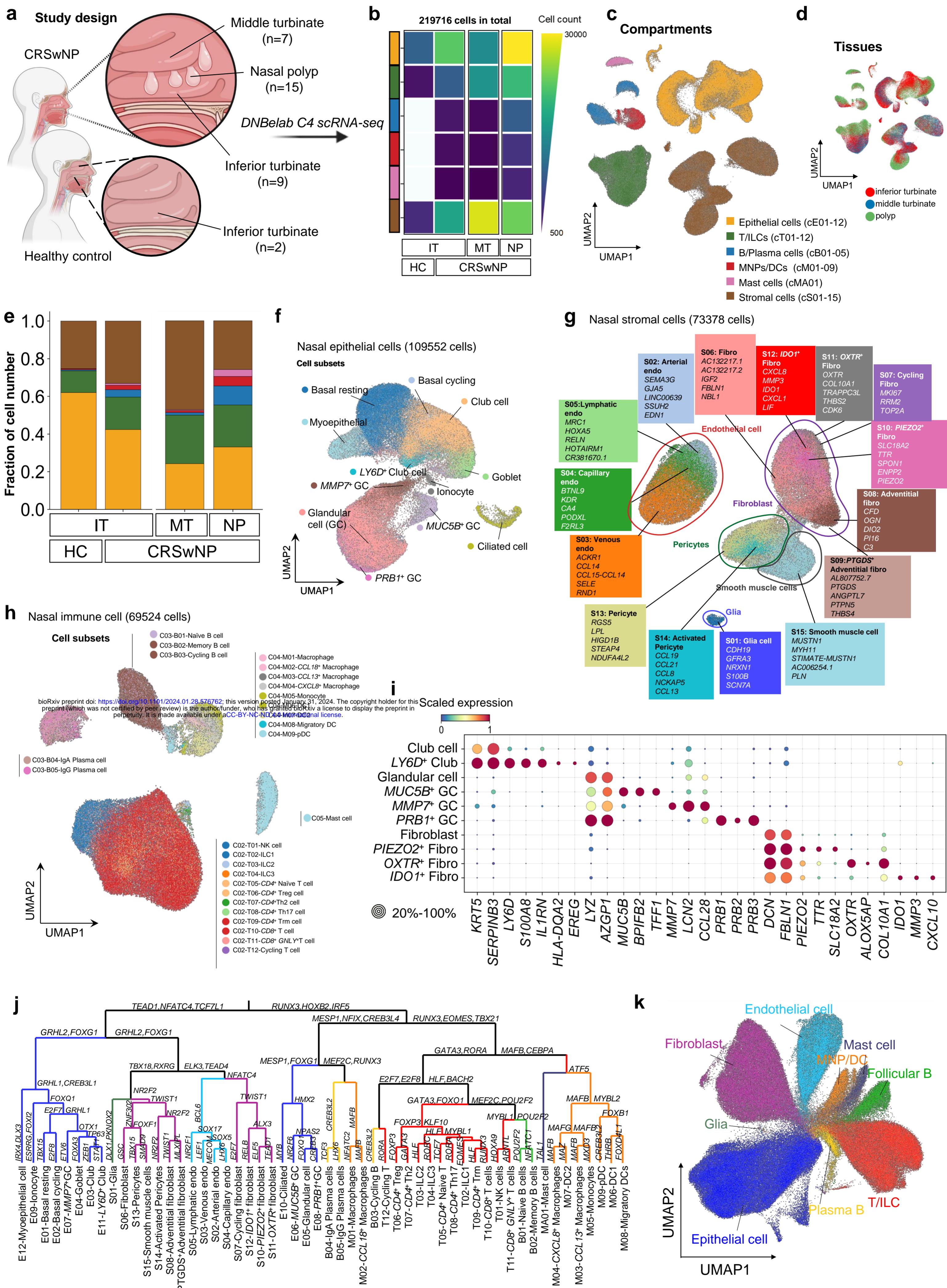
1123 **c**, Graphical protocol for the establishment of a mouse model of neutrophilic chronic rhinosinusitis
1124 with nasal polyps induced by LPS. The protocol for anakinra administration was included.

1125 **d**, Graphical summary of new findings on CRSwNP pathways from this research. The graphical
1126 summary provides novel insights into the mechanism of neutrophil recruitment in the nasal mucosa
1127 of both CRSwNP patients and healthy individuals.

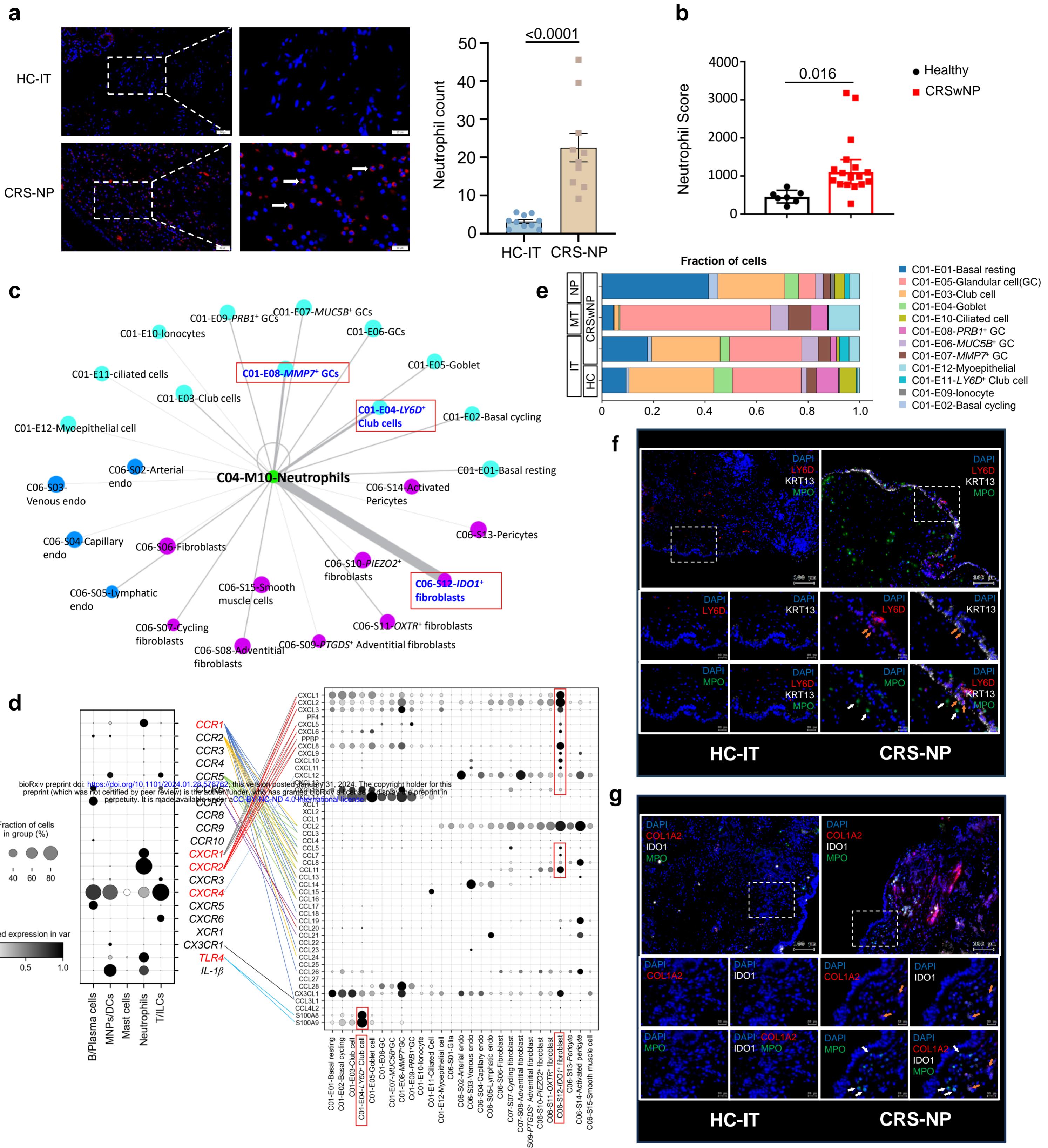
1128

1129 **Supplementary Materials**

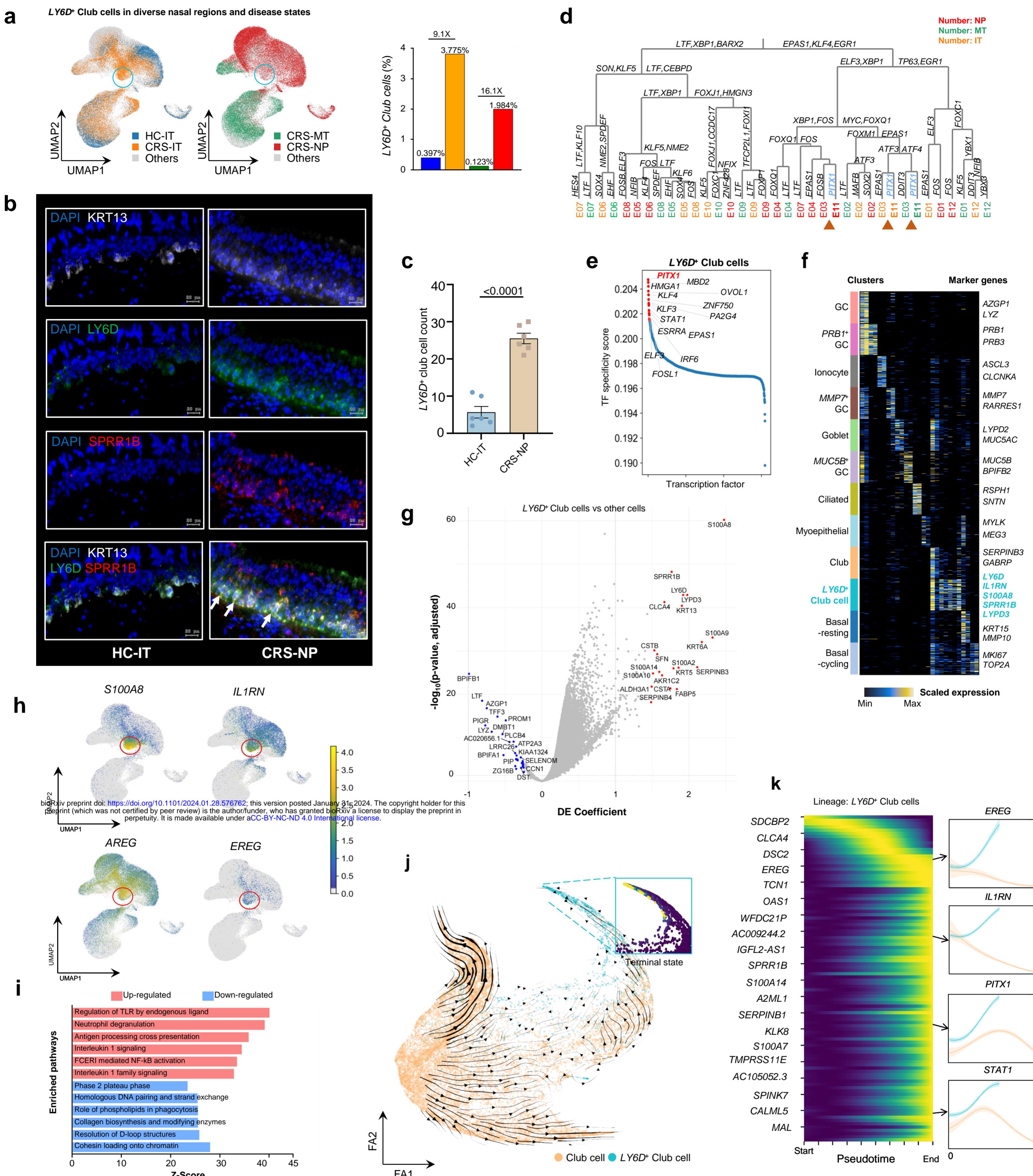
1130


1131 **Supplementary Table 1** Clinical characteristics of healthy control subjects and CRSwNP patients
1132 for this study

1133 **Supplementary Table 2** Antibodies and other reagents in this study


1134

1135


1136

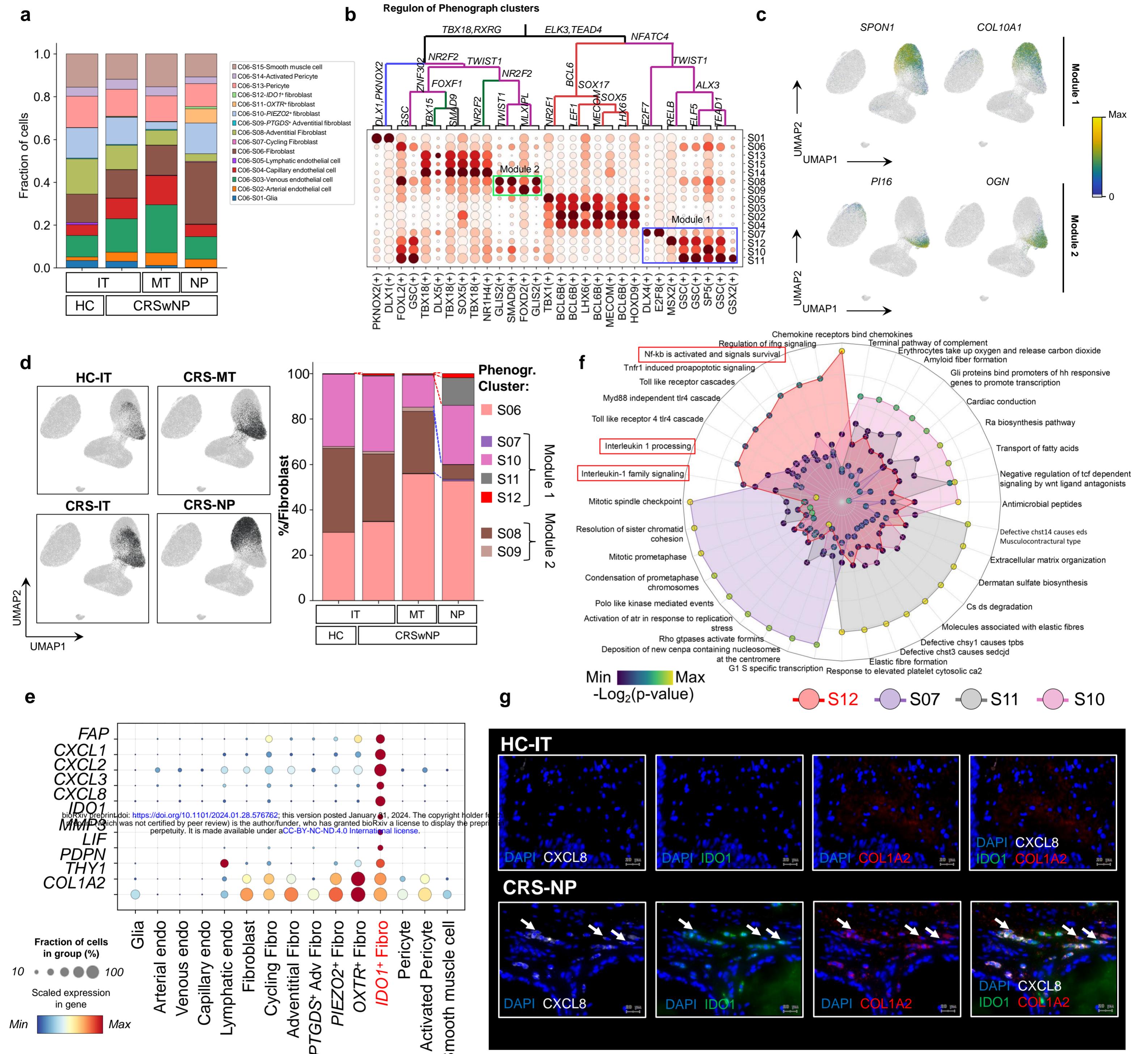


Fig 1

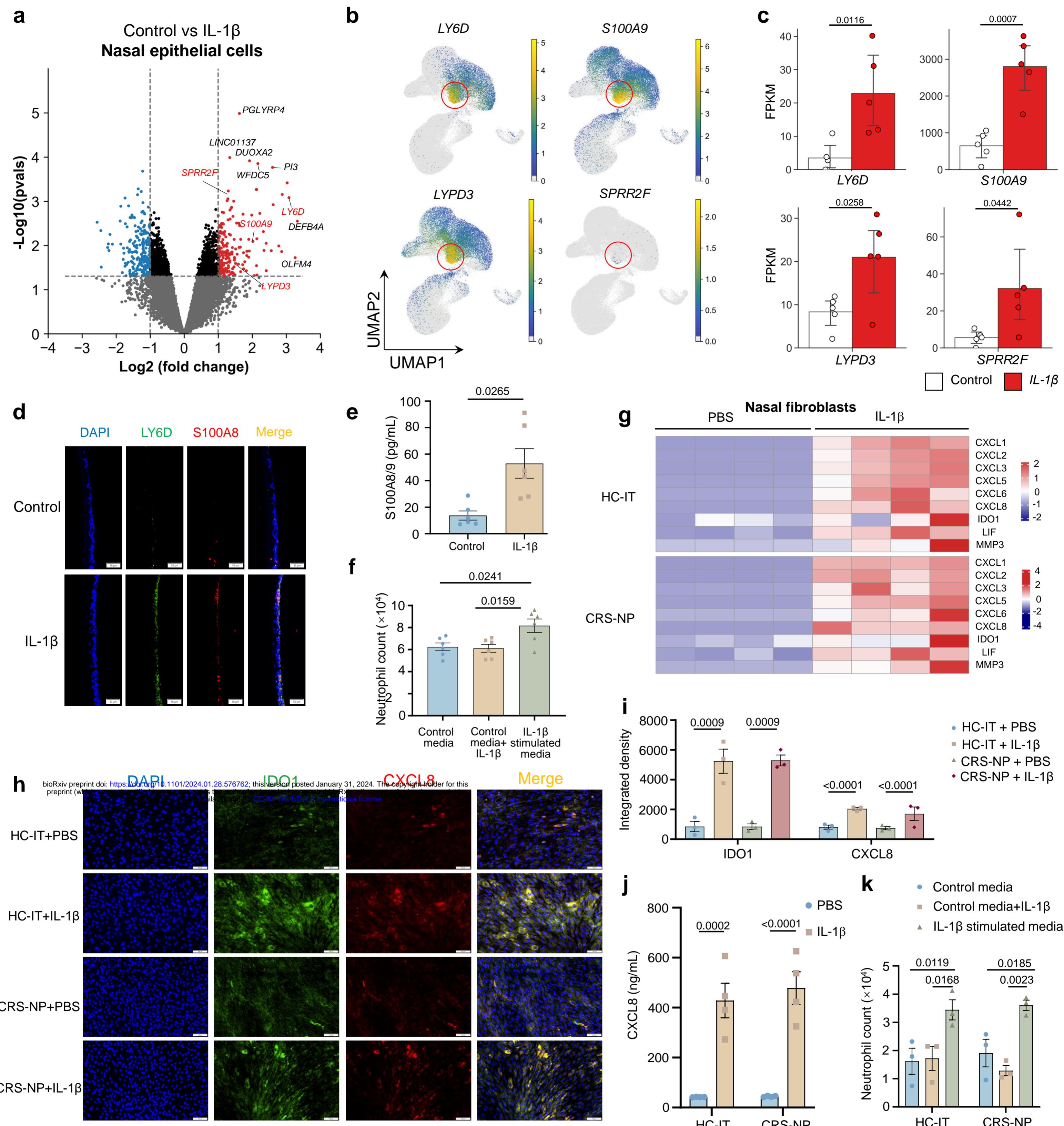


Fig 2

Fig 4

Fig 5

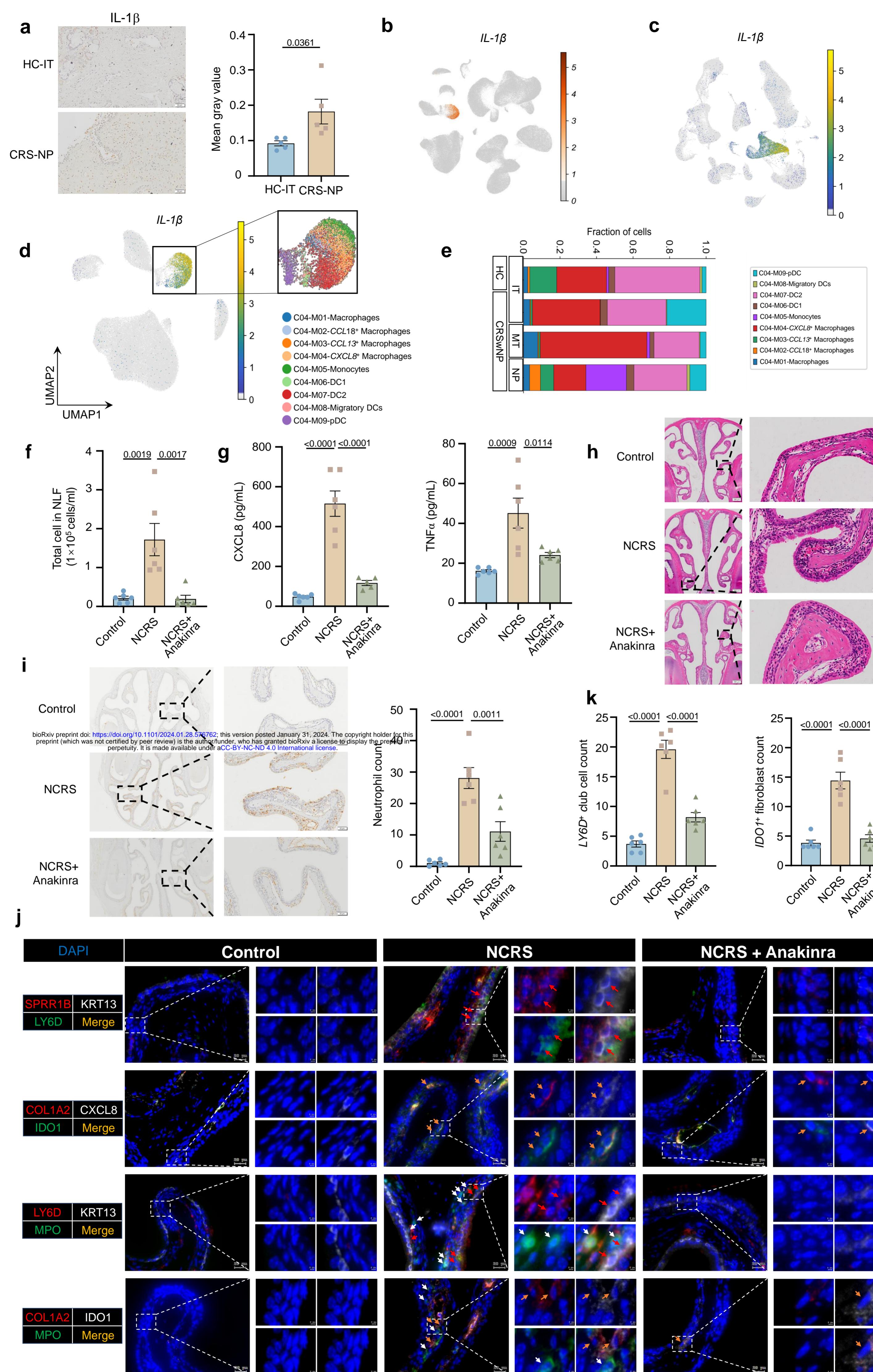
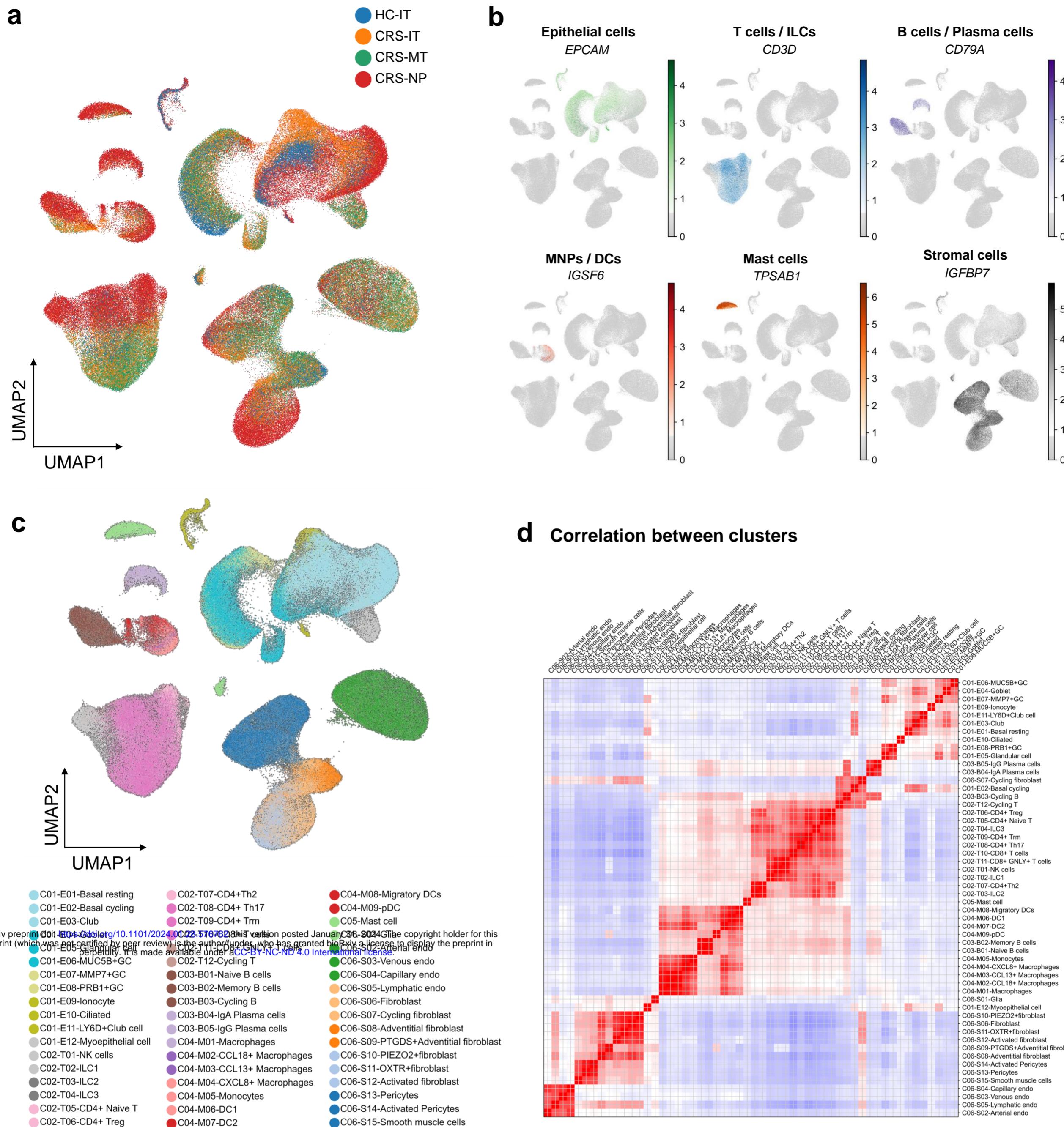



Fig 6

Extended Data Figure 1

a

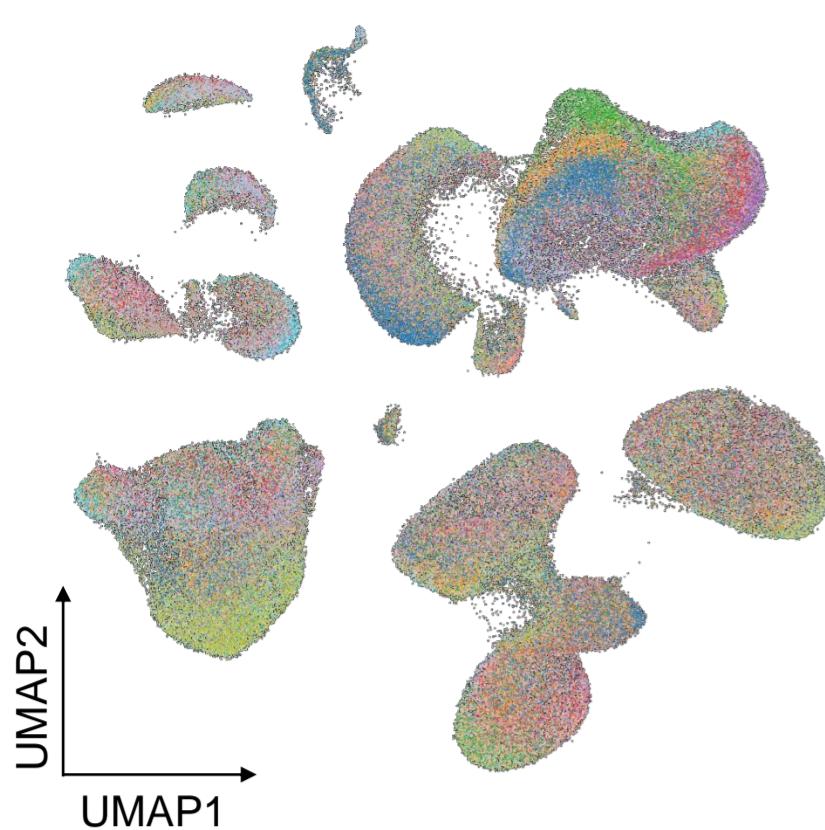
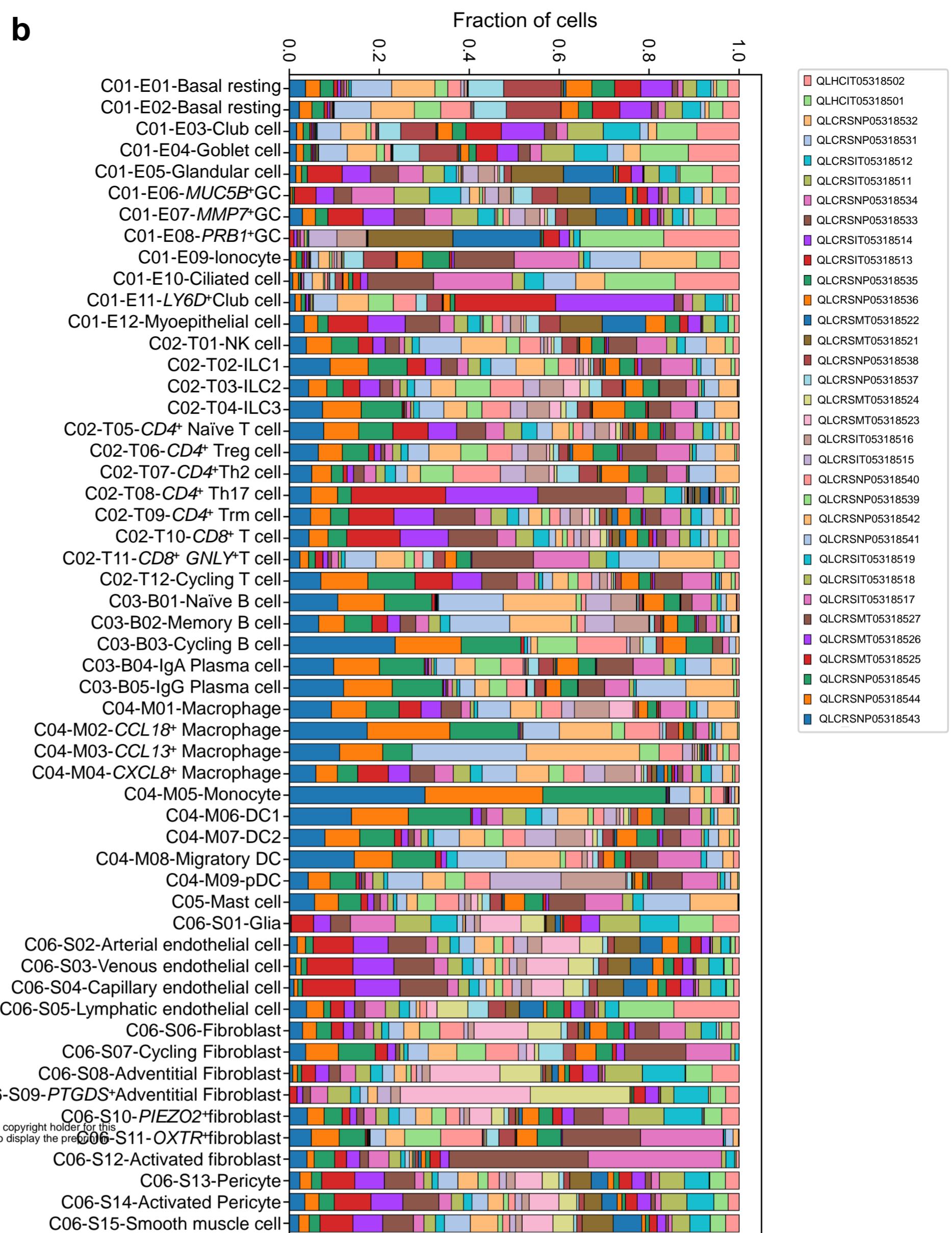
Epithelial cell cluster names	Representative genes	
	Functional genes	Transcription factors (RSS top4)
E01-Basal resting	KRT15, MMP10, LAMB3, POSTN	TP63, EGR1, FOS, ETS2
E02-Basal cycling	MKI67, TOP2A, RRM2, CENPF	PA2G4, DNMT1, HMGA1, CENPX
E03-Club cell	SERPINB3, GABRP, ADAM28, SERPINB4	EPAS1, ELF3, KLF4, KLF5
E04-Goblet cell	LYPD2, MUC5AC, CEACAM5, RAB37	XBP1, ELF3, CREB3L1, SPDEF
E05-Glandular cell (GC)	DMBT1, RNASE1, AZGP1, AC020656.1	LTf, XBP1, SOX8, BARX2
E06-MUC5B ⁺ GC	MUC5B, BPIFB2, TFF1, FCGBP	SPDEF, XBP1, CREB3L1, FOXP1
E07-MMP7 ⁺ GC	MMP7, RARRES1, ALDH1A3, KRT6B	LTf, KLF6, FOXC1, XBP1
E08-PRB1 ⁺ GC	PRB1, PRB2, PRB3, PRB4	LTf, XBP1, ELF5, ETV1
E09-Ionocyte	CLCNKB, CLCNKA, ASCL3, FOXI1	TFCP2L1, ASCL3, VAX2, FOXP1
E10-Ciliated cell	RSPH1, RFX3, SNTN, CCDC17	FOXJ1, CCDC17, HMGN3, ZNF440
E11-LY6D ⁺ Club cell	LY6D, S100A8, SPRR1B, SPRR2D	PITX1, MBD2, HMGA1, OVOL1
E12-Myoepithelial cell	KRT14, MYLK, MEG3, GEM	NFIB, EGR1, EGR2, EGR3

b

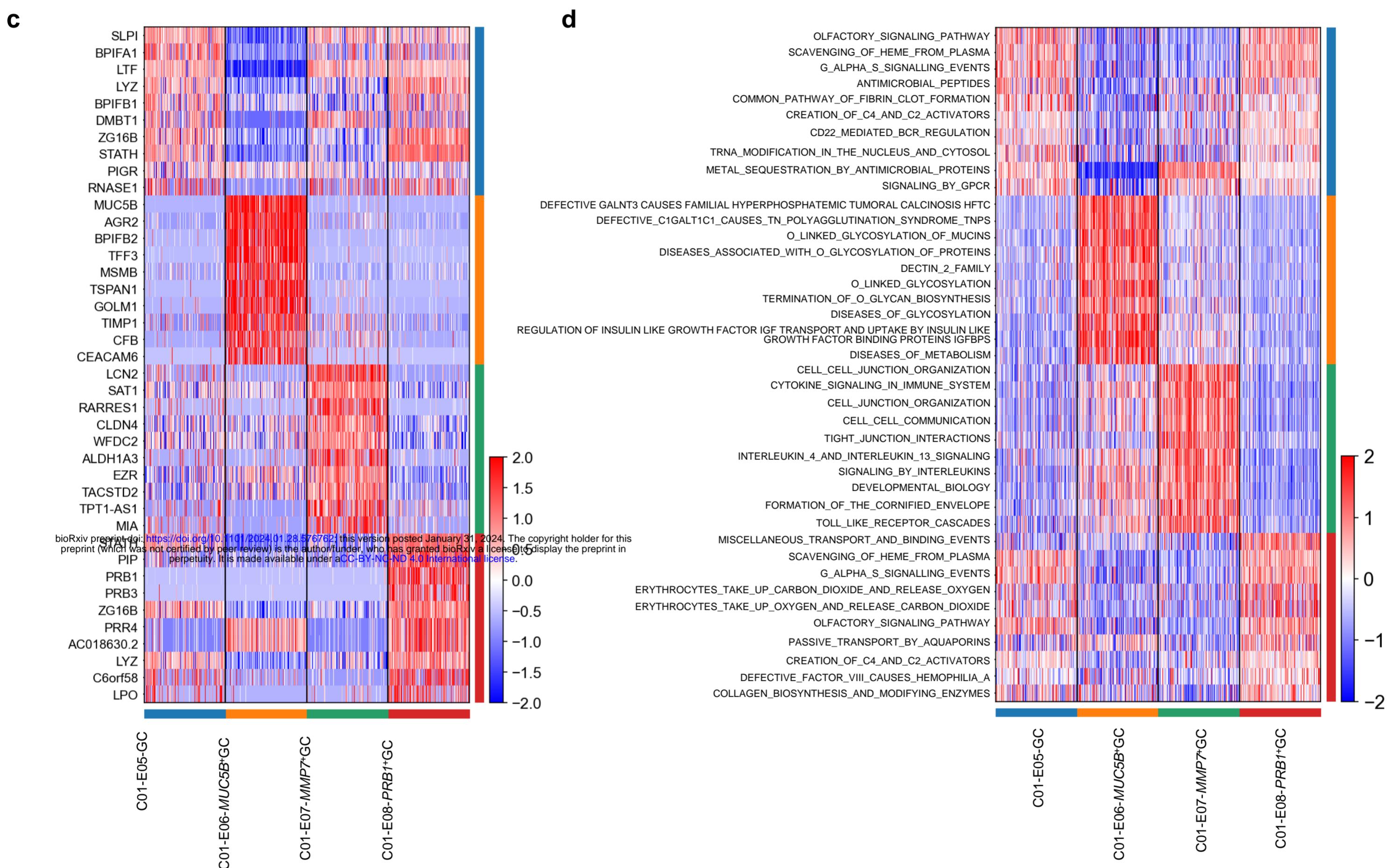
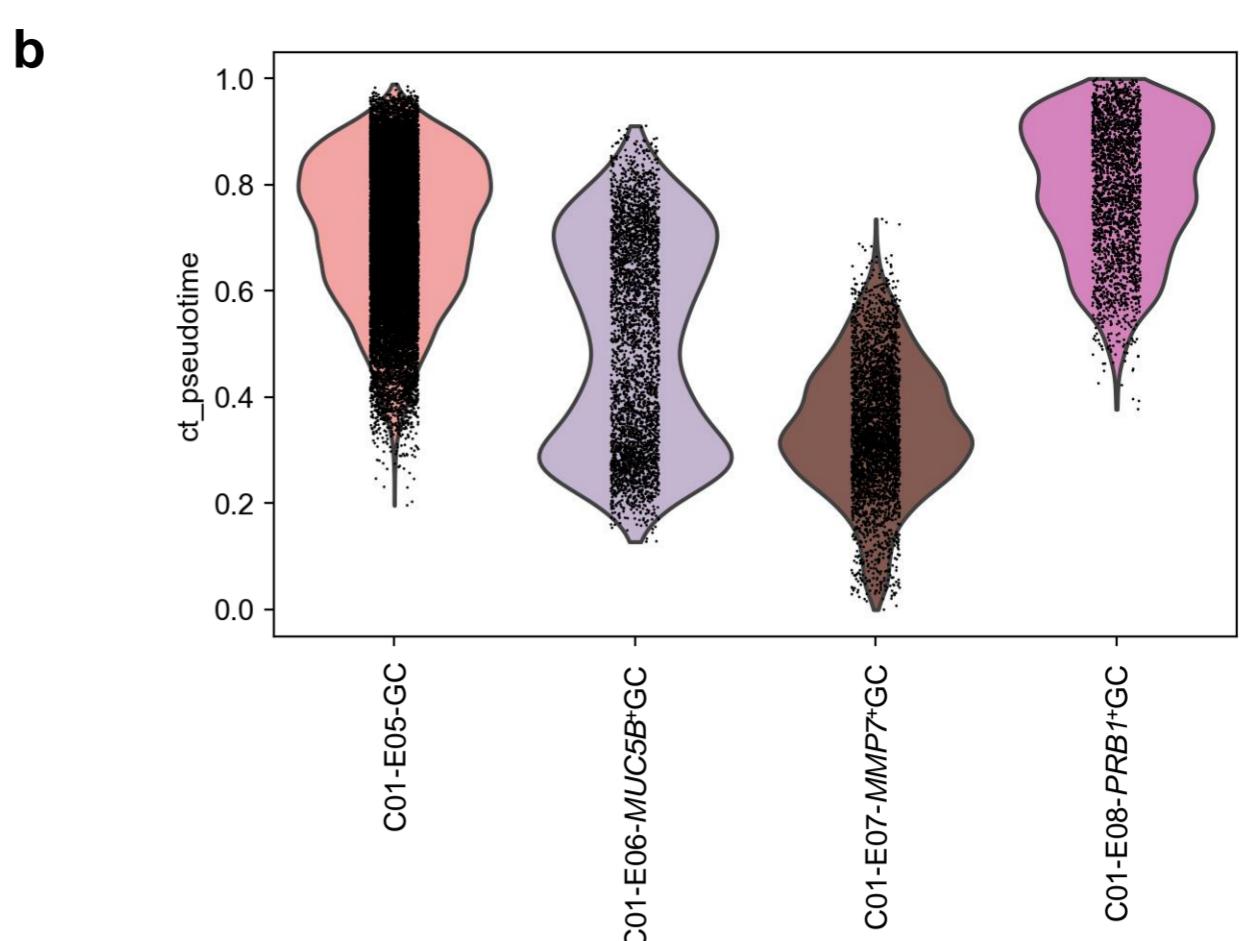
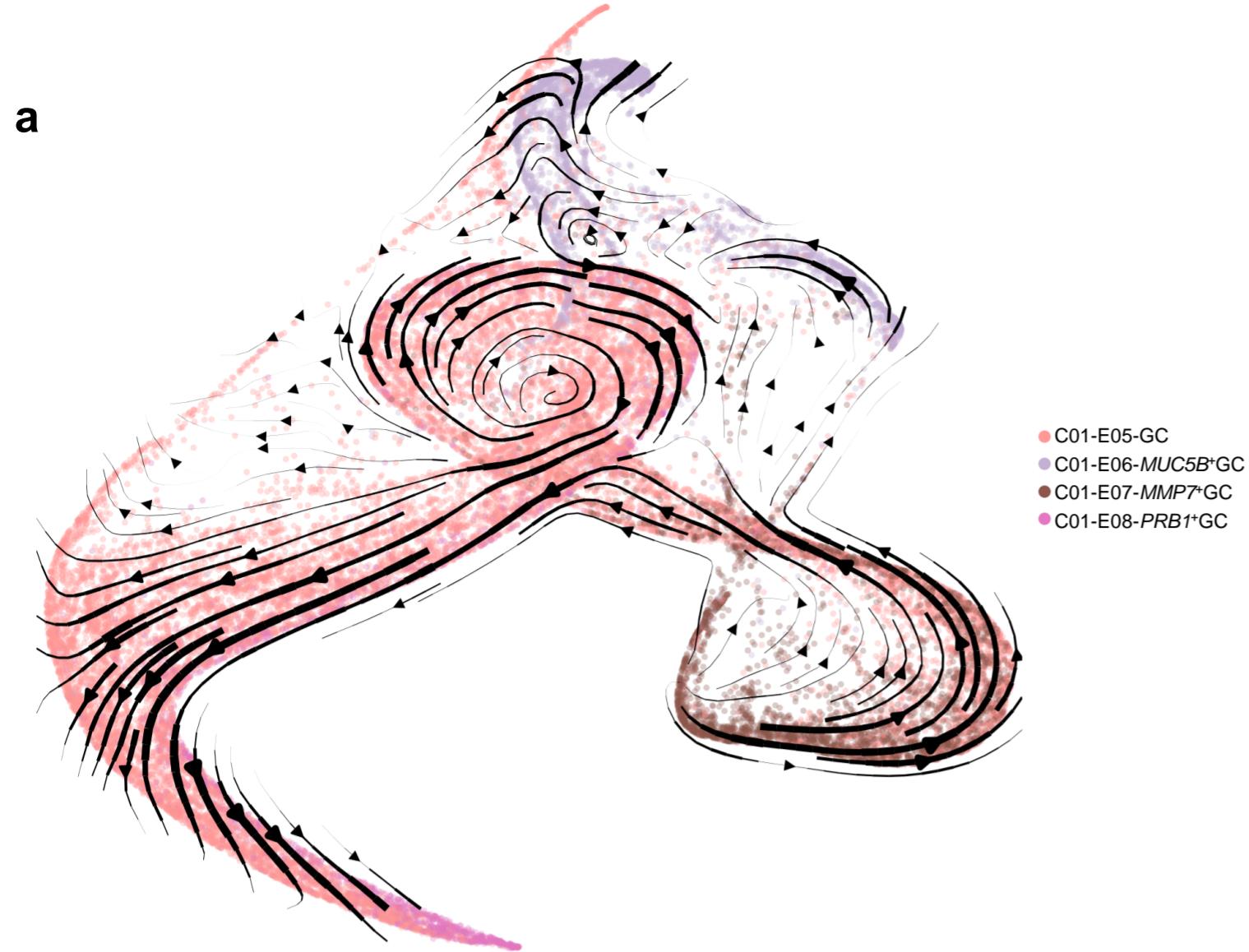
T cell / ILCs cluster names	Representative genes	
	Functional genes	Transcription factors (RSS top4)
T01-NK cell	FCGR3A, MYOM2, PTGDS, FGFBP2	FOS, TBX21, EOMES, NR4A1
T02-ILC1	TYROBP, NCAM1, KRT86, TRDC	MAFF, NR4A1, FOS, EOMES
T03-ILC2	PTGS2, IL13, IL17RB, IL1RL1	GATA3, AHR, NFKB1, PPAGR
T04-ILC3	KIT, LST1, PCDH9, CD300LF	GATA3, FOSB, FOS, AHR
T05-CD4 ⁺ Naive T	CCR7, MAL, TRABD2A, CD28	TCF7, KLF6, FOXP1, KLF2
T06-CD4 ⁺ Treg	TNFRSF4, FANK1, CD177, IL2RA	BATF, PRDM1, ARID5B, FOXP3
T07-CD4 ⁺ Th2	FFAR3, GPR42, MS4A6A, PMCH	GATA3, BATF, MAF, NR3C1
T08-CD4 ⁺ Th17	IL17A, IL26, CCL20, TNF	RORA, MAF, AHR, NR1D2
T09-CD4 ⁺ Trm	CCR6, Z94721.2, CCL20, MCAM	MAF, RORA, KLF6, NR1D2
T10-CD8 ⁺ T cell	CCL5, CD8A, CD8B, CLEC2D	YBX3, ZNF683, IRF4, EPAS1
T11-CD8 ⁺ GNLY ⁺ T cell	FGFBP2, GNLY, LILRB1, CX3CR1	KLF2, TBX21, MYBL1, BHLHE40
T12-Cycling T	MKI67, RRM2, ASPM, TOP2A	DNMT1, MYBL2, TFDP1, FOXM1

c

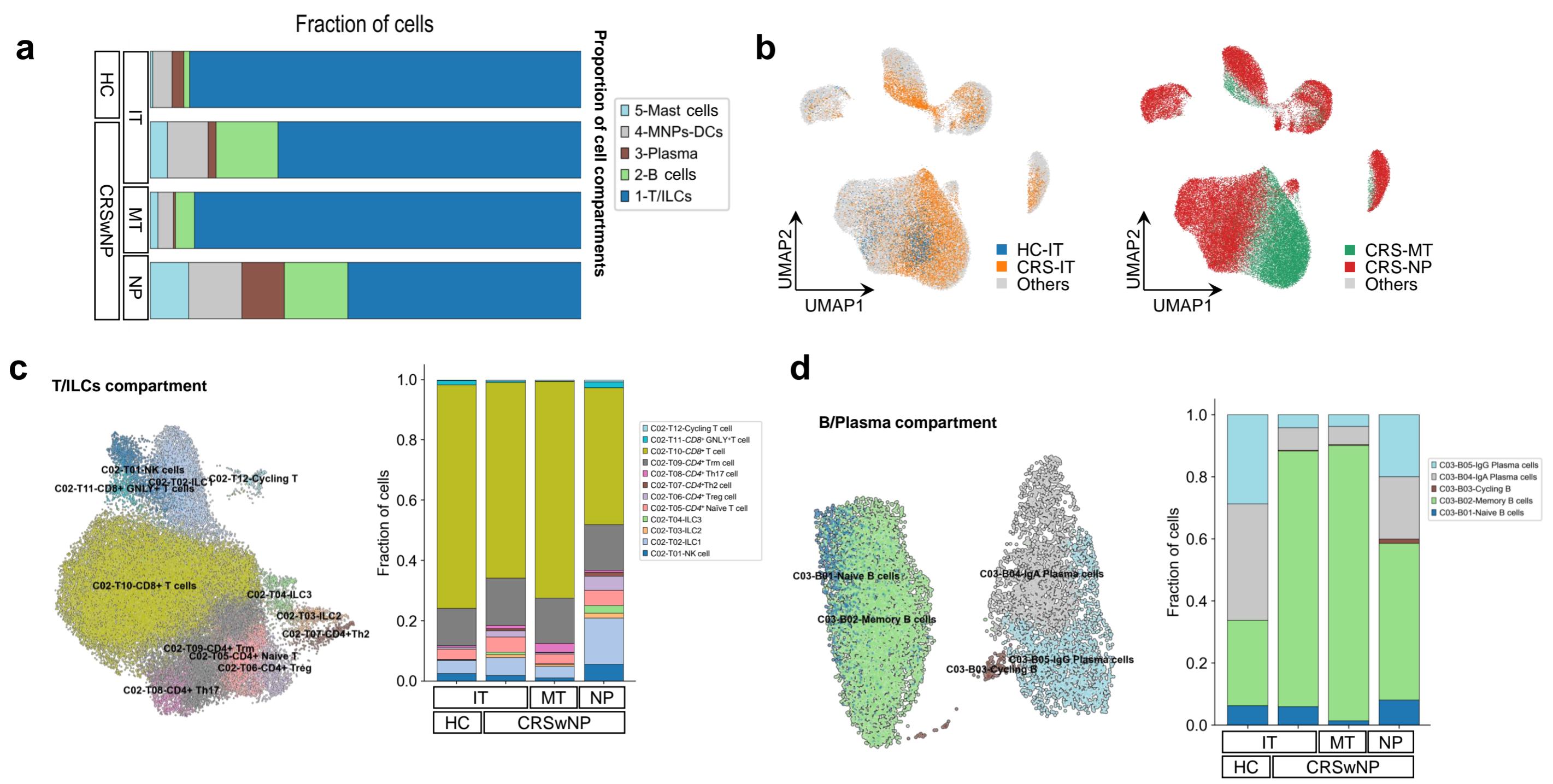
B / Plasma cell cluster names	Representative genes	
	Functional genes	Transcription factors (RSS top4)
B01-Naïve B cell	IGHD, TCFL1A, IL4R, IGHM	PAX5, BACH2, FOXP1, REL
B02-Memory B cell	HLA-DRA, CD83, HLA-DRB1, LAPTM5	REL, NR4A2, IRF8, RUNX3
B03-Cycling B cell	RRM2, MKI67, ASPM, TOP2A	MYBL2, XBP1, DNMT1, NME2
B04-IgA Plasma cell	IGHA1, IGH2A, JCHAIN, DERL3	XBP1, PRDM1, CREB3L2, ZBTB38
B05-IgG Plasma cell	IGHG1, IGHG3, IGHG4, IGHG5	XBP1, PRDM1, CREB3L2, JUN



d

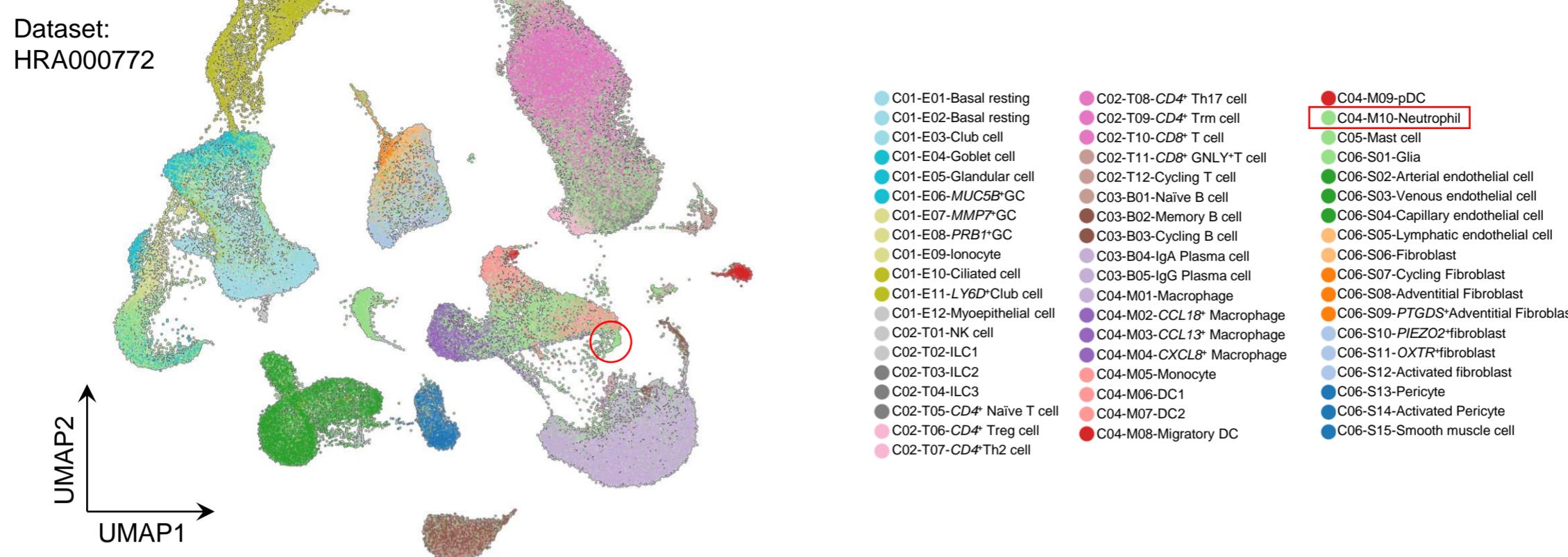
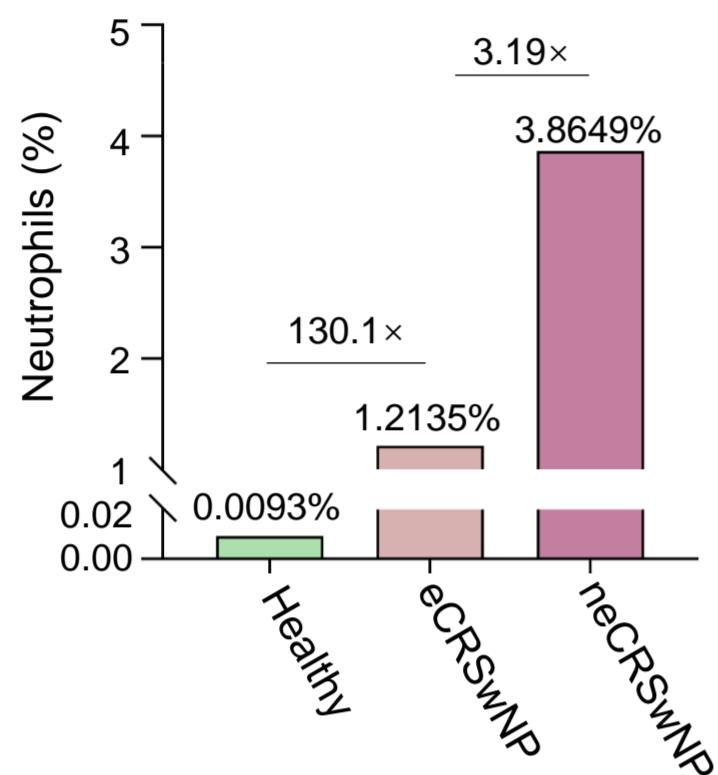
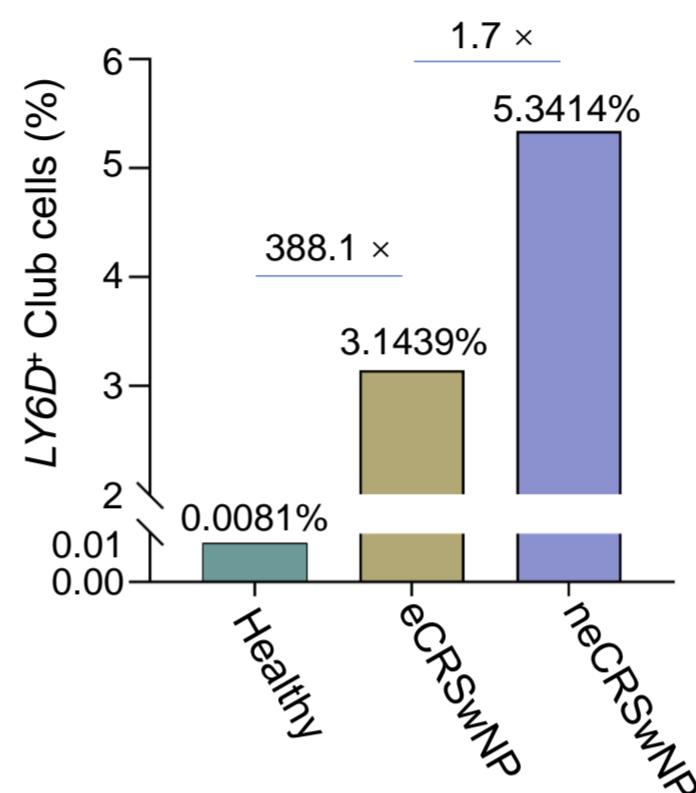
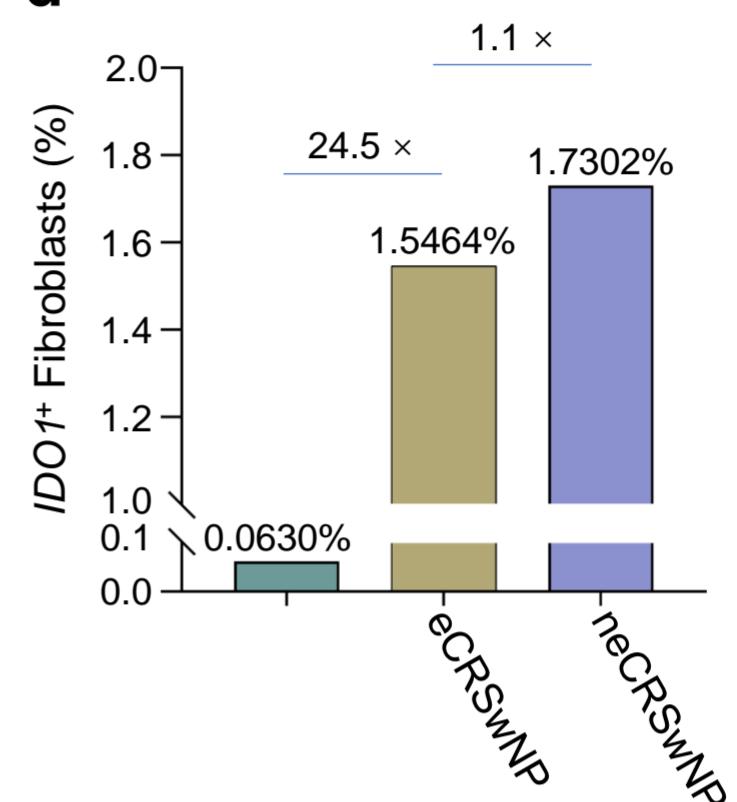
Myeloid cell cluster names	Representative genes	
	Functional genes	Transcription factors (RSS top4)
M01-Macrophage	C1QA, C1QB, C1QC, CD14	MAF, ZNF683, ZFP62, GATA3
M02-CCL18 ⁺ Macro	APOE, CCL18, APOC1, RNASE1	EGR1, FOS, JUN, MAF
M03-CCL13 ⁺ Macro	CCL13, FOLR2, CD163L1, ITSN1	FOS, MAFB, EGR1, JUN
M04-CXCL8 ⁺ Macro	CTSL, C3, CXCL8, DOCK4	MAFB, CEBPB, NFKB1, HIF1A
M05-Monocyte	S100A8, S100A9, FCN1, VCAN	NR4A1, FOSB, JUNB, KLF2
M06-DC1	IDO1, XCR1, CLEC9A, CCND1	IRF8, NME2, BATF3, ZNF366
M07-DC2	CD1C, CD1E, FCER1A, CLEC10A	VDR, ETV3, PLSCR1, YBX1
M08-pDC	LILRA4, PTGDS, JCHAIN, MZB1	IRF7, TCF4, IRF8, SPIB
M09-Migratory DC	SLCO5A1, CCL22, CCL19, CD200	RELB, TRAFD1, ZBTB10, KDM2B
MA01-Mast cell	TPSAB1, TPSB2, CD9, CPA3	GATA2, FOSB, NR4A1, NR4A3




e

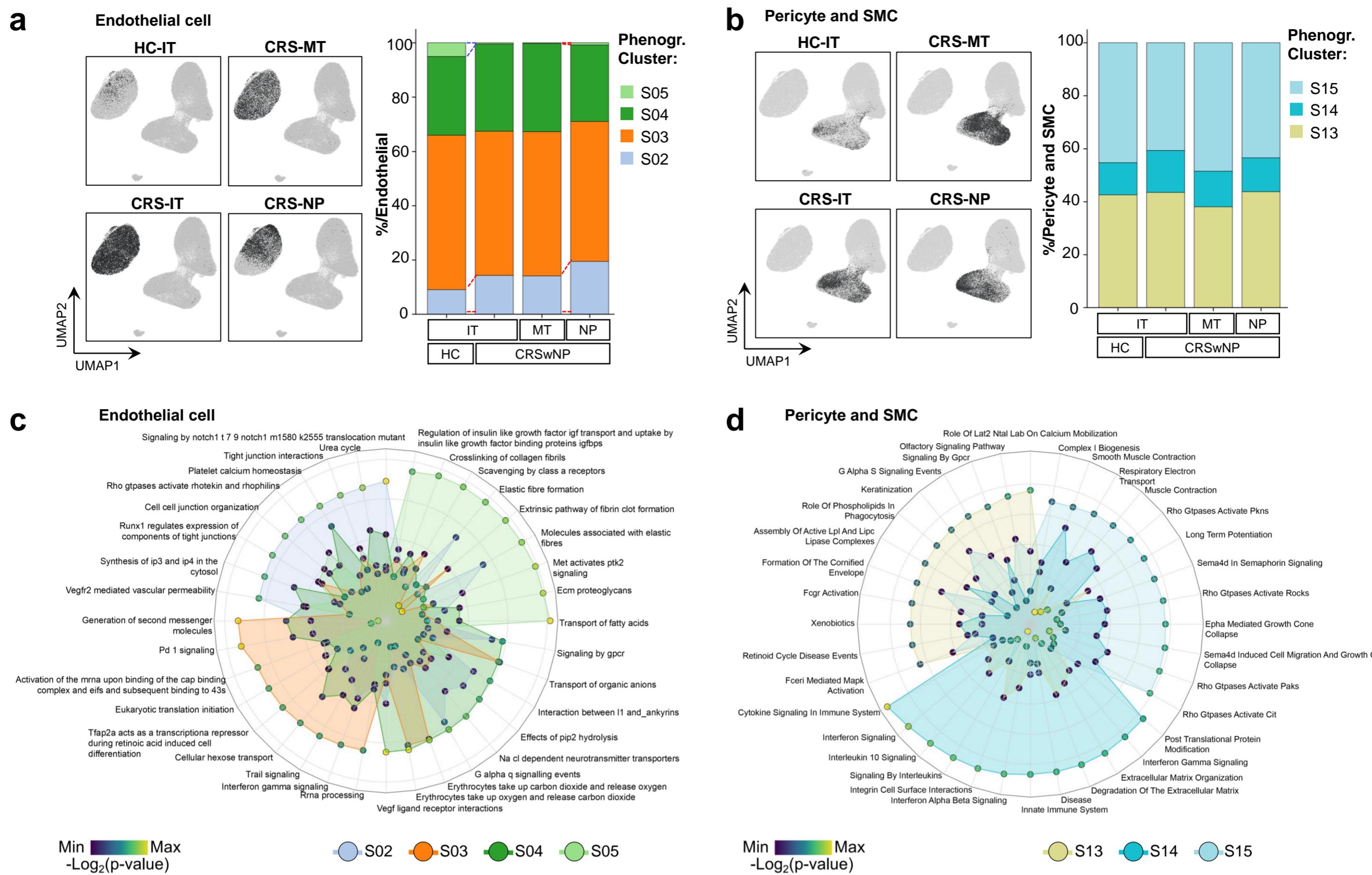
Stromal cell cluster names	Representative genes	
	Functional genes	Transcription factors (RSS top4)
S01-Glia	S100B, NRXN1, GFRA3, CDH19	AHR, ZEB2, SOX10, SOX2
S02-Arterial endo	SEMA3G, GJA5, LINC00639, SSUH2	EPAS1, SOX18, MECOM, KLF2
S03-Venous endo	ACKR1, CCL14, CCL15-CCL14, SELE	ETS2, YBX3, ERG, SOX17
S04-Capillary endo	BTNL9, KDR, CA4, PODXL	ETS2, SOX18, KLF2, ELK3
S05-Lymphatic endo	MRC1, HOXA5, RELN, HOTAIR1	SMAD1, SOX18, ELK3, PROX1
S06-Fibroblast	IGF2, AC132217.1, AC132217.2, FBLN1	AEBP1, PRRX1, TWIST1, PAX9
S07-Cycling fibroblast	MKI67, RRM2, TOP2A, SHCBP1	DNMT1, MAZ, CENPX, PA2G4
S08-Adventitial fibroblast	CFD, OGN, DIO2, SFRP4	PRRX1, NFIX, AEBP1, NFIB
S09-PTGDS ⁺ Adventitial fibroblast	PTGDS, AL807752.7, ANGPTL7, PTPN5	KLF5, EGR3, EBF2, NR4A2
S10-PIEZ02 ⁺ fibroblast	PIEZ02, TTR, SLC18A2, ENPP2	AEBP1, TWIST1, TFAP2A, GATA2
S11-OXTR ⁺ fibroblast	OXTR, COL10A1, TRAPPC3L, THBS2	AEBP1, PRRX1, TEAD1, PAX9
S12-IDO1 ⁺ fibroblast	CXCL1, CXCL8, MMP3, IDO1	AEBP1, STAT1, PRRX1, NFKB1
S13-Pericytes	RGS5, LPL, HIGD1B, STEAP4	NR2F2, ZEB2, EBF1, EPAS1
S14-Activated pericytes	CCL19, CCL21, CCL8, LINC00924	NR2F2, ZEB2, ARID5B, EBF1
S15-Smooth muscle cells	MUSTN1, MYH11, STMATE, AC006254.1	EPAS1, HES4, ATF3, NR2F2


Extended Data Figure 2

a**b**

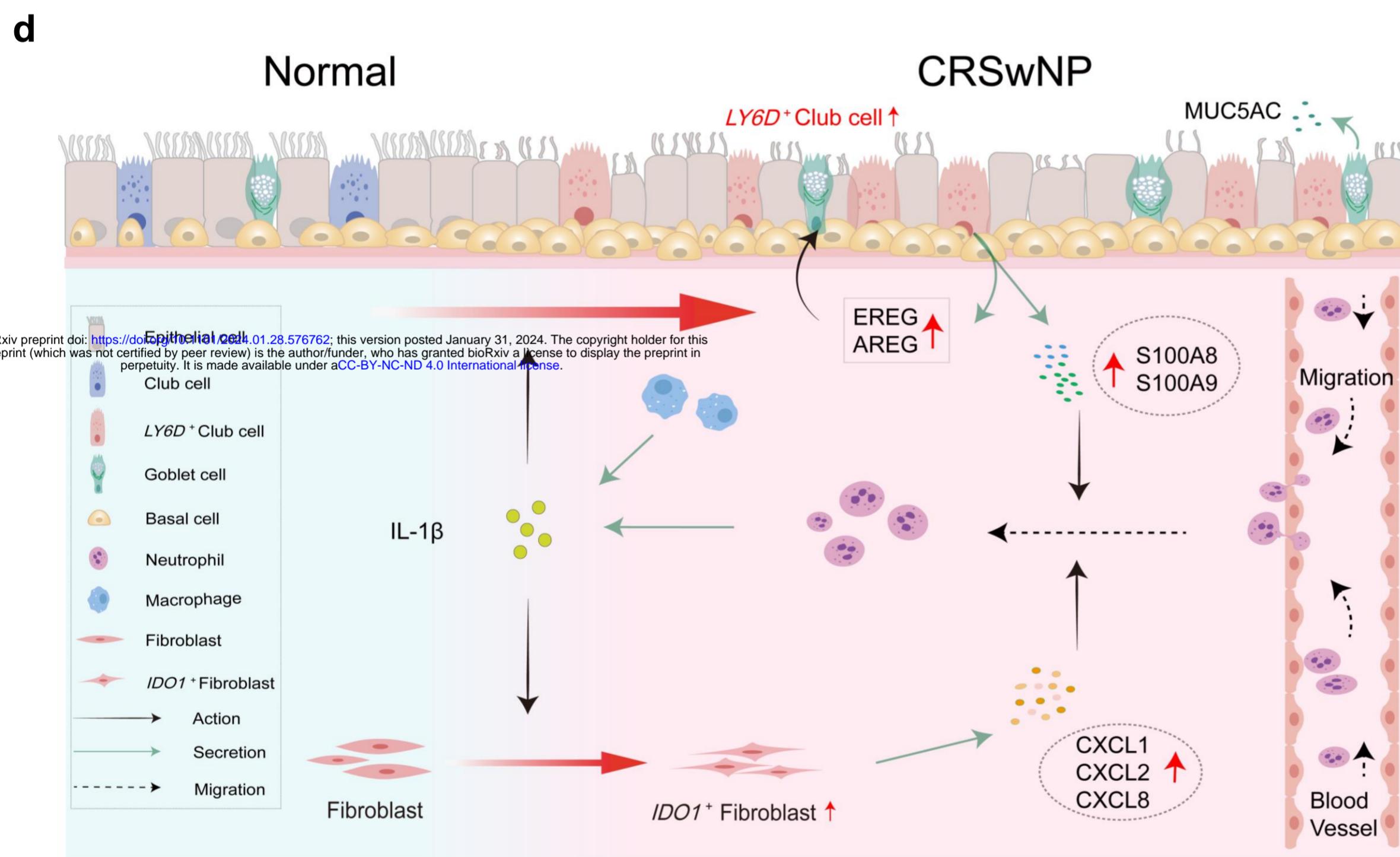
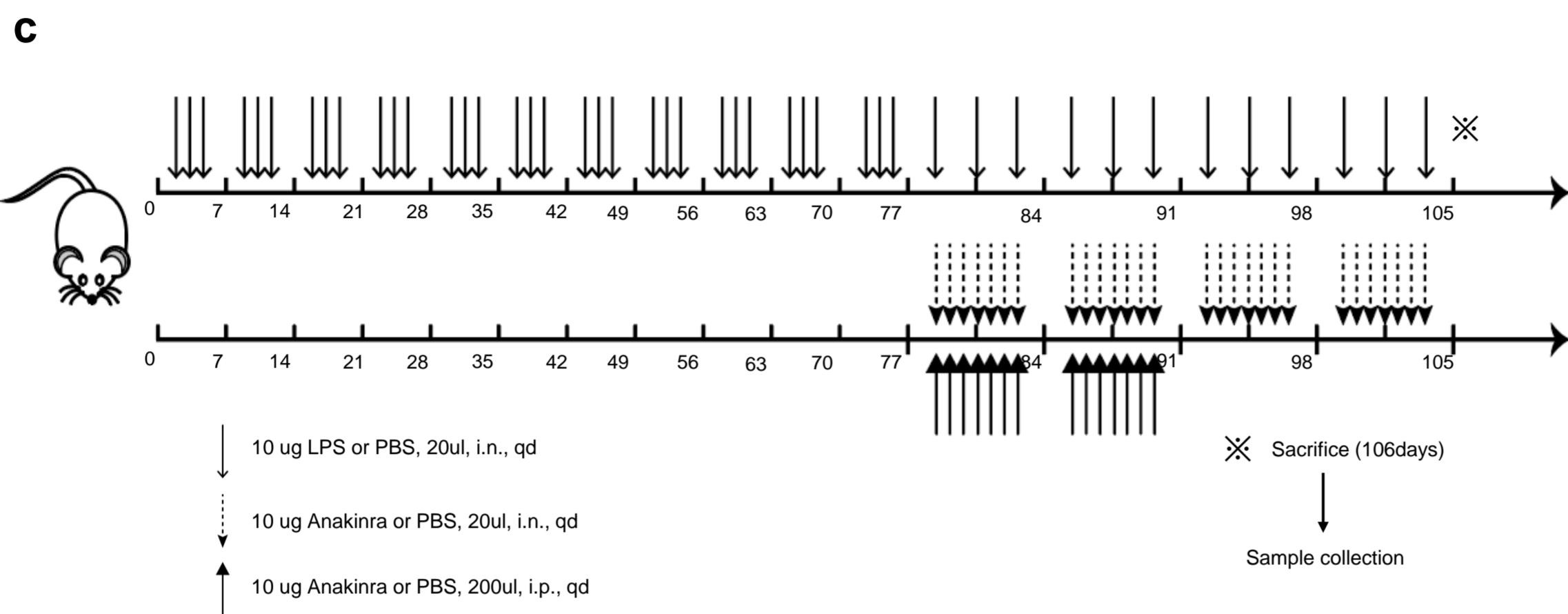
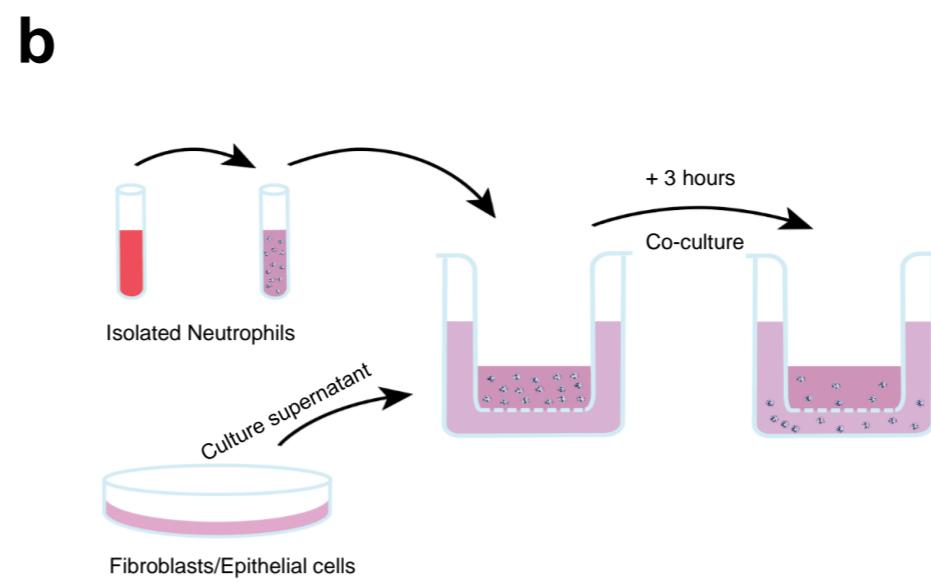
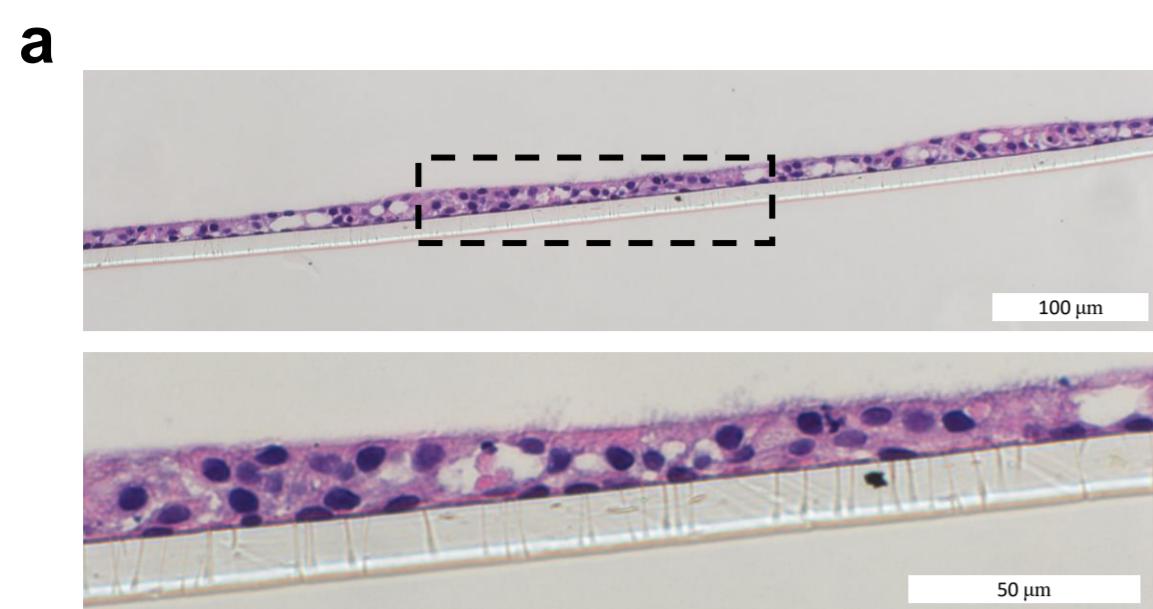




Extended Data Figure 3

Extended Data Figure 4



Extended Data Figure 5

a**b****c****d**





Extended Data Figure 6

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.28.576762>; this version posted January 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Extended Data Figure 7

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.28.576762>; this version posted January 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Extended Data Figure 8