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Abstract 48 

Neutrophilic inflammation contributes to multiple chronic inflammatory airway diseases, including 49 

asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), and is associated with an 50 

unfavorable prognosis. Here, using single-cell RNA sequencing (scRNA-seq) to profile human 51 

nasal mucosa obtained from the inferior turbinates, middle turbinates, and nasal polyps of CRSwNP 52 

patients, we identified two IL-1 signaling-induced cell subsets—LY6D+ club cells and IDO1+ 53 

fibroblasts—that promote neutrophil recruitment by respectively releasing S100A8/A9 and 54 

CXCL1/2/3/5/6/8 into inflammatory regions. IL-1β, a pro-inflammatory cytokine involved in IL-1 55 

signaling, induces the transdifferentiation of LY6D+ club cells and IDO1+ fibroblasts from primary 56 

epithelial cells and fibroblasts, respectively. In an LPS-induced neutrophilic CRSwNP mouse model, 57 

blocking IL-1β activity with a receptor antagonist significantly reduced the numbers of LY6D+ club 58 

cells and IDO1+ fibroblasts and mitigated nasal inflammation. This study reveals the roles of two 59 

cell subsets in neutrophil recruitment and demonstrates an IL-1-based intervention for mitigating 60 

neutrophilic inflammation in CRSwNP.  61 

 62 
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 63 

Introduction 64 

 65 

Neutrophilic inflammation is prevalent in multiple chronic inflammatory airway diseases such as 66 

asthma, chronic obstructive pulmonary disease, and chronic rhinosinusitis (CRS), and elevated 67 

neutrophilic inflammation is positively correlated with adverse patient outcomes1,2. CRS is a chronic 68 

disorder characterized by inflammation of the nasal mucosa and paranasal sinuses that affects 5-12% 69 

of the global adult population3. Patients with CRS and nasal polyps (CRSwNP) experience more 70 

severe clinical symptoms than those without nasal polyps4. Although CRSwNP exhibits a significant 71 

association with type 2 inflammation which is characterized by an immune response involving 72 

eosinophils5, the presence of a neutrophilic inflammation in CRSwNP has been demonstrated in a 73 

growing number of patients, and is considered to be associated with glucocorticosteroid resistance, 74 

a higher risk of recurrence after surgery, and worse disease outcomes6. However, neutrophilic 75 

inflammation has been relatively little studied and therapeutic strategies targeting neutrophilic 76 

inflammation are currently insufficient in CRSwNP. 77 

 78 

Multiple factors drive the neutrophilic inflammation in CRSwNP. CXC chemokines including 79 

CXCL1, CXCL2, and CXCL8 are chemotactic factors that guide the neutrophils to the site of 80 

inflammation7. In a multi-center study, the concentrations of CXCL8 was shown to be greater in NP 81 

tissues than that in control tissues, indicating its role in neutrophil recruitment of CRSwNP8. 82 

Increased protein levels of S100A8, S100A9, and S100A8/A9, were demonstrated in the nasal polyp 83 

tissues of CRSwNP patients compared to those in the IT tissues of controls, suggesting evident 84 

neutrophil recruitment in CRSwNP9. Previous studies have demonstrated that cytokines derived 85 

from epithelial cells and stromal cells facilitate neutrophilic inflammation in CRS10,11. Nevertheless, 86 

specific cell types that secrete these factors and drive neutrophilic inflammation in CRSwNP remain 87 

ill-defined.   88 

 89 

Here, seeking to identify epithelial and stromal cell subsets that contribute to neutrophilic 90 

inflammation in CRSwNP, we profiled human nasal mucosa obtained from the middle turbinates 91 

(MTs), inferior turbinates (ITs), and nasal polyps (NPs) of CRSwNP patients and healthy individuals 92 

using single-cell RNA sequencing (scRNA-seq). After identifying contributions from LY6D+ club 93 

cells and IDO1+ fibroblasts, we demonstrated their ability to facilitate neutrophil recruitment in cells 94 

stimulated with IL-1, including primary fibroblasts and air-liquid interface (ALI) cultures 95 

developed from primary nasal epithelial cells. Blocking the activity of IL-1 attenuated nasal 96 

inflammation in an LPS-induced neutrophilic CRSwNP mouse model. These findings uncover the 97 

cell types that drive neutrophilic inflammation in CRSwNP, and highlight potential therapeutic 98 

agents targeting IL-1 as interventions against neutrophilic CRSwNP.   99 
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Results 100 

Single-cell profiling of nasal mucosa from multiple anatomical regions in CRSwNP patients 101 

identifies diverse disease-specific cell subsets  102 

 103 

We initially profiled the CRSwNP cell type landscape by preparing freshly dissociated samples of 104 

middle turbinate (MT), inferior turbinate (IT), and nasal polyp (NP) tissues from CRSwNP patients 105 

and healthy individuals and obtaining full-length scRNA-seq profiles (Fig. 1a). Inferior turbinates 106 

have been used as control tissues for nasal polyps in previous studies12,13. Most NPs originate from 107 

the ethmoid sinuses located around the MT tissues, and MT tissue removal has been shown to reduce 108 

the recurrence of NPs in refractory CRS14. We therefore selected MT, IT, and NP tissues to compare 109 

differences in their cellular composition in an inflammatory milieu. Unsupervised clustering divided 110 

the 219,716 cells that passed strict quality-control into six compartments with conserved signatures, 111 

including epithelial cells, T/innate lymphoid cells (ILCs), B/plasma cells, mononuclear 112 

phagocytes/dendritic cells (MNPs/DCs), mast cells, and stromal cells (Fig.1b-d, Extended Data Fig. 113 

1a-d and Extended Data Fig. 2). B/plasma cells, MNPs/DCs, and mast cells, were barely detectable 114 

in the IT tissues from healthy individuals, supporting an extensive inflammatory milieu in both nasal 115 

polyps and nasal mucosa of CRSwNP patients, regardless of the anatomical regions in which they 116 

occur (Fig. 1b, e). Of note, each of the subsets contained cells from each sample, indicating that the 117 

cell lineages and expression status were consistent throughout samples and did not represent sample-118 

specific subpopulations or batch effects (Extended Data Fig. 3a, b).  119 

 120 

To identify cell subsets associated with inflammation regulation, we performed unsupervised 121 

clustering based on marker genes on the epithelial cell compartment, which revealed seven cell 122 

types annotated as basal cells, myoepithelial cells, club cells, goblet cells, ciliated cells, ionocytes, 123 

and glandular cells (GCs) (Fig. 1f). Among the identified subsets, LY6D+ club cells have not been 124 

reported, while the PRB1+ GC and MUC5B+ GC subsets were previously observed in the nasal 125 

mucosa of CRSwNP patients15. Pathway enrichment analysis revealed that PRB1+ GCs are 126 

associated with erythrocyte renewal and metabolism, while MUC5B+ GCs are involved in protein 127 

glycosylation, especially mucin glycosylation (Extended Data Fig. 4a-d). The stromal cell 128 

compartment was divided into five cell types (endothelial cells, pericytes, fibroblasts, smooth 129 

muscle cells, and glia) and then further classified into 15 yet-finer subsets based on marker gene 130 

expression; among these subsets, PIEZO2+, IDO1+, and OXTR+ fibroblasts have not been reported 131 

in previous studies of nasal mucosa from CRSwNP patients (Fig. 1g, 1i). Given that OXTR+ 132 

fibroblasts were detected only in NP tissues, these cells may be involved in NPs development (Fig. 133 

4d). The immune cell compartment was subclustered into five cell types, including mast cells, 134 

mononuclear phagocytes/dendritic cells (MNPs/DCs), plasma cells, B cells, and T/innate lymphoid 135 

cells (T/ILCs), which were subsequently grouped into 27 yet-finer subsets (Fig. 1h and Extended 136 

Data Fig. 5a-d). ILC1/2/3 were enriched in NP tissues, reflecting a mixed pattern of inflammation 137 

in CRSwNP16–18 (Extended Data Fig. 5c). 138 

 139 

To demonstrate the relationship between cell subsets during differentiation, we constructed a 140 

transcription factor fate decision tree for cells spanning different anatomical regions (Fig. 1j, k). 141 

This analysis suggested that transcription factors, such as STAT1, ELF5, TEAD1, and CREB3, are 142 

regulons modulating the differentiation of different cell subsets, further demonstrating the 143 
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correctness of the sub-clustering across the samples. Collectively, these findings reveal the cellular 144 

heterogeneity in the inflammatory environment across three anatomical regions, and identify 145 

disease-specific cell subsets that may regulate immune response in CRSwNP. 146 

 147 

IDO1+ fibroblasts and LY6D+ club cells contribute to neutrophil recruitment in CRSwNP 148 

 149 

CRSwNP patients exhibit both eosinophilic and neutrophilic inflammation19. Increased neutrophilia 150 

was detected in the mucosa of NP tissues from CRSwNP patients (Fig. 2a). We also used the xCell 151 

algorithm to quantify neutrophil infiltration in a bulk RNA-seq dataset of CRSwNP (GSE179265), 152 

and again detected the significantly elevated neutrophilia in CRSwNP samples as compared to 153 

healthy tissue samples (Fig. 2b). Seeking to identify epithelial and stromal cell subsets contributing 154 

to neutrophil infiltration, we generated an integrated dataset built from our data and another 155 

CRSwNP scRNA-seq dataset (HRA000772) (Extended Data Fig. 6a)20, and subsequently used an 156 

algorithm combining Networkx, Community, and Pygraphviz to plot chemokine-chemokine 157 

receptor interaction networks and infer the strongly interacting cell subset pairs. Notable signals 158 

from the network included a superlatively strong interaction between IDO1+ fibroblasts and 159 

neutrophils (Fig. 2c), with MMP7+ GCs and LY6D+ club cells also interacting strongly with 160 

neutrophils (Fig. 2c).  161 

 162 

In particular, the chemokine receptors enriched in neutrophils (CCR1 and CXCR1/2/4) matched 163 

extensively with chemokines highly expressed in IDO1+ fibroblasts (such as CXCL1/2/3/5/6/8 and 164 

CCL5/7/8/11)21,22(Fig. 2d). The interaction between neutrophils and MMP7+ GCs was characterized 165 

by high CXCR2 expression in neutrophils and strong CXCL2/3 expression in MMP7+ GCs. LY6D+ 166 

club cells interacted with neutrophils by expressing high levels of S100A8/A9, and their receptor 167 

TLR4 was expressed mainly on neutrophils (Fig. 2d). However, MMP7+ GCs did not show much 168 

difference in proportion of total epithelial cells in different anatomical regions (Fig. 2e). They were 169 

probably a subset of cells with an intermediate state based on their low pseudotime ct values 170 

calculated by RNA velocity (Extended Data Fig. 4a-d). Therefore, MMP7+ GCs were not considered 171 

to be associated with neutrophil infiltration in CRSwNP. 172 

 173 

In contrast to that of MMP7+ GCs, the proportion of LY6D+ club cells was greater in the IT and NP 174 

tissues of CRSwNP patients than in the IT tissue of healthy individuals (HC-IT), suggesting their 175 

potential role in CRSwNP development (Fig. 2e). Consistent with these findings, using the 176 

HRA000772 dataset, we also detected higher proportions of LY6D+ club cells and IDO1+ cells in 177 

the CRSwNP with higher neutrophil numbers (neCRSwNP) than those with lower neutrophil 178 

numbers (eCRSwNP) (Extended Data Fig. 6b-d). We then conducted immunofluorescence analyses 179 

on NP tissues from 6 CRSwNP patients (CRS-NP) and IT tissues from 6 healthy controls (HC-IT), 180 

and the results revealed a preferential distribution of neutrophils (MPO+ cells) in the LY6D+ club 181 

cell-rich and IDO1+ fibroblast-rich regions (Fig. 2f, g), supporting their ability to recruit neutrophils 182 

in an inflammatory milieu in CRSwNP. These results collectively support that LY6D+ club cells and 183 

IDO1+ fibroblasts facilitate neutrophil recruitment in CRSwNP.  184 

 185 

 LY6D+ club cells drive IL-1 signaling-mediated neutrophilic inflammation in CRSwNP 186 

 187 
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We further compared the proportions of LY6D+ club cells across anatomical regions. An elevated 188 

proportion of LY6D+ club cells within the total epithelial cell population was noted in CRS-ITs 189 

compared to HC-ITs, and in NP tissues compared to adjacent MT tissues (Fig. 3a). We then 190 

performed immunofluorescence analyses to evaluate the distribution of LY6D+ club cells in different 191 

tissues. Immunostaining detected only a few LY6D+ cells in normal IT tissues, but more LY6D+ cells 192 

in NP tissues, reflecting the preferential induction of LY6D+ club cells in an inflammatory milieu 193 

(Fig. 3b, c). LY6D+ club cells were highly conserved across three anatomical regions as indicating 194 

in fate decision tree, and PITX1 ranked as the top differentially expressed transcription factor 195 

determining LY6D+ club cell differentiation (Fig. 3d, e).  196 

 197 

Previous studies have showed that the expression of S100A8 and S100A9 is elevated in nasal polyps 198 

as compared to control tissues23,24, and is associated with neutrophilic inflammation and CRS 199 

severity25. By exhibiting epithelial cell subset marker gene expression via heatmap, we observed 200 

the upregulation of S100A8 in LY6D+ club cells (Fig. 3f). We next explored the differentially 201 

expressed genes (DEGs) in LY6D+ club cells as compared to other epithelial cells (Fig. 3g). In 202 

addition to LY6D and S100A8, S100A9 was also significantly upregulated in LY6D+ club cells (Fig. 203 

3g). UMAP showed that  LY6D+ club cells were the main cell source of S100A8 and S100A9 in the 204 

epithelium that may promote neutrophil chemotaxis in CRSwNP26 (Fig. 3h and Fig. 5b). The high 205 

expression of EREG and AREG in LY6D+ club cells indicated their involvement in eosinophil 206 

reprogramming and goblet metaplasia in response to inflammation27,28 (Fig. 3h).  207 

 208 

Pathway enrichment analysis revealed that the transcriptome of LY6D+ club cells was enriched in 209 

genes induced by IL-1 signaling (Fig. 3i). The RNA velocity profile of total club cells indicated that 210 

LY6D+ club cells originated from resident club cells, suggesting that some club cells in the face of 211 

upregulated IL-1 signaling progressively acquired LY6D+ club cell identity in the mucosal 212 

epithelium in CRSwNP patients (Fig. 3j). The expression of several key functional genes and 213 

transcription factors upregulated during the maturation process of LY6D+ club cells was presented 214 

in the heatmap (Fig. 3k). IL1RN was inferred by RNA velocity, iteratively indicating that IL-1 215 

signaling participates in the transdifferentiation of LY6D+ club cells (Fig. 3k). Pathway enrichment 216 

analysis revealed that genes involved in neutrophil degranulation were also enriched in LY6D+ club 217 

cells, reflecting the regulation of neutrophil recruitment by LY6D+ club cells (Fig. 3i). Taken together, 218 

these findings underscore the role of LY6D+ club cells in IL-1 signaling-mediated neutrophilic 219 

inflammation in CRSwNP. 220 

 221 

IDO1+ fibroblasts secrete chemokines that facilitate neutrophil recruitment in CRSwNP 222 

 223 

To identify the stromal cell subsets responsible for inflammation in CRSwNP, we further sub-224 

clustered the stromal cell compartment. Endothelial cells, pericytes and smooth muscle cells did not 225 

show much variation in the proportions of cell subsets across different anatomical regions except 226 

for an increased proportion of arterial endothelial cells and decreased proportion of lymphatic 227 

endothelial cells in CRS-related tissues as compared to those in HC-ITs, suggesting weakened 228 

lymphatic infiltration but enhanced angiogenesis in inflammatory tissues (Fig. 4a and Extended 229 

Data Fig. 7a-d). Fibroblast subsets exhibited substantial disparities in cellular proportions within the 230 

stromal cell compartment. The proportions of IDO1+ and OXTR+ fibroblasts were markedly higher 231 
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in NPs than in other tissues (Fig. 4a).  232 

 233 

To better characterize the functionality of the fibroblast subsets, we proceeded to construct a 234 

transcription factor fate decision tree for different cell subsets within the stromal cell compartment. 235 

Six out of the seven distinct fibroblast subsets were categorized into two main modules (Fig. 4b, c). 236 

We noticed that module 1 comprised fibroblasts that exerted pro-inflammatory effects by enhanced 237 

production of certain chemokines, such as CXCL1 and CXCL8, while module 2 encompassed 238 

fibroblasts that mainly reside in the adventitia and are essential for regulating the integrity and 239 

function of the vessel structure29–31. The fibroblast clusters were displayed according to different 240 

anatomical regions (Fig. 4d). Within the cell clusters in module 1, IDO1+ and OXTR+ fibroblasts 241 

were enriched in inflammatory tissues, mostly in NPs, and they were barely detected in healthy 242 

tissues (Fig. 4d).  243 

 244 

Considering the potent interaction detected between IDO1+ fibroblasts and neutrophils, we explored 245 

the gene expression patterns of different stromal cell subsets. The transcriptome of IDO1+ 246 

fibroblasts was enriched in chemokines (CXCL1/2/3/8) that are relevant to neutrophilic 247 

inflammation (Fig. 4e). We subsequently conducted pathway enrichment analysis on the fibroblast 248 

subsets within module 1, whose gene expression pattern was associated with inflammatory 249 

responses, to scrutinize the regulatory pathways in which IDO1+ fibroblasts are implicated (Fig. 4f). 250 

Interestingly, both the IL-1 signaling pathway and the NF-B signaling were enriched in IDO1+ 251 

fibroblasts, indicating the upstream regulation of IDO1+ fibroblasts by IL-1 signaling in 252 

inflammation development. The high expression of MMP3 and LIF in IDO1+ fibroblasts also 253 

indicated the regulation of IDO1+ fibroblasts by IL-1 signaling32,33 (Fig. 4e). Immunofluorescence 254 

staining revealed increased CXCL8 protein level and a greater number of IDO1+ fibroblasts (IDO1+ 255 

COL1A2+ cells) in CRS-NP samples as compared to HC-IT samples (Fig. 4g). Together, these 256 

findings elucidate IL-1 signaling as a common pathway inducing transdifferentiation of LY6D+ club 257 

cells and IDO1+ fibroblasts to facilitate neutrophil recruitment in CRSwNP.  258 

 259 

IL-1−induced the transdifferentiation of LY6D+ club cells and IDO1+ fibroblasts promotes 260 

neutrophil recruitment  261 

 262 

IL-1 signaling can be activated by the interaction between IL-1 and IL-1 receptor (IL-1R), leading 263 

to various immune responses including neutrophilic inflammation34. Here we deployed recombinant 264 

IL-1 on air-liquid interface (ALI) cultures generated from primary human nasal epithelial cells 265 

(HNEs) (Extended Data Fig. 8a). Bulk RNA-seq data revealed that the addition of IL-1 elicited the 266 

LY6D+ club cell state of ALI-cultured HNEs, as IL-1β-stimulated ALI-cultured HNEs highly 267 

expressed genes that were also upregulated in LY6D+ club cells detected by scRNA-seq, such as 268 

LY6D, SPRR2F, S100A9, and LYPD3 (Fig. 5a-c). Immunofluorescence staining of ALI-cultured 269 

HNEs revealed the colocalization and elevation of LY6D and S100A8 upon IL-1 stimulation (Fig. 270 

5d). These results suggested that IL-1 induced transdifferentiation of LY6D+ cells in vitro. ELISA 271 

detected the increased secretion of S100A8/A9 protein from ALI-cultured HNEs upon IL-1 272 

stimulation (Fig. 5e). Considering the ability of S100A8, S100A9, and S100A8/A9 to promote 273 

neutrophil activation, chemotaxis and adhesion, we performed a chemotaxis assay to determine 274 

whether the secretion of S100A8/A9 contributes to IL-1-mediated neutrophil recruitment26. The 275 
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results demonstrated that the media of ALI-cultured HNEs stimulated with IL-1 possessed a 276 

stronger neutrophil chemotactic capacity than the control media (Fig. 5f and Extended Data Fig. 8b).   277 

 278 

To explore the effect of IL-1 on the induction of fibroblasts, we treated cultured primary fibroblasts 279 

isolated from IT tissues and NPs with IL-1 and performed bulk RNA sequencing. Bulk RNA 280 

sequencing results revealed high expression of genes encoding neutrophil chemoattractants (CXCL1, 281 

CXCL2, CXCL3, CXCL5, CXCL6, and CXCL8) in fibroblasts upon IL-1 stimulation (Fig. 5g). 282 

These genes were also upregulated in IDO1+ fibroblasts according to scRNA-seq analysis, 283 

suggesting that the primary fibroblasts acquire the identity of IDO1+ fibroblasts upon IL-1 284 

stimulation. Immunofluorescence staining demonstrated that IL-1 was capable of activating 285 

fibroblasts and inducing the expression of CXCL8 and IDO1 in both IT-derived and NP-derived 286 

fibroblasts (Fig. 5h, i). In line with the results of bulk RNA sequencing, ELISA showed an increase 287 

in CXCL8 secretion in fibroblasts treated with IL-1β compared to those treated with PBS  (Fig. 5j). 288 

As expected, culture media from IL-1-exposed human nasal primary fibroblasts resulted in an 289 

increase in the transmigration of purified blood neutrophils compared with media of normal 290 

fibroblasts or fresh media mixed with IL-1 (Fig. 5k). Therefore, we reason that IL-1 induces both 291 

epithelial cells and fibroblasts to promote the recruitment of neutrophils to the sites of inflammation 292 

in CRSwNP.  293 

 294 

IL-1β antagonist impedes the transdifferentiation of LY6D+ club cells and IDO1+ fibroblasts 295 

and mitigates inflammation in vivo 296 

 297 

IL-1 is associated with neutrophilic airway inflammation35. Here we revealed increased IL-1 level 298 

in CRS-NP compared with that in HC-IT (Fig. 6a), most of which was expressed in MNP/DCs (Fig. 299 

6b-d). The proportion of monocytes was greater in NP tissues than in other tissues, explaining an 300 

increase in IL-1 in the inflammatory mucosa (Fig. 6e). IL-1 is correlated with neutrophilic 301 

inflammation in CRS, which is frequently associated with worse disease outcomes6. However, 302 

whether therapy targeting IL-1 mitigates neutrophilic inflammation in CRSwNP is unknown.  303 

 304 

To explore the effect of IL-1 inhibition on neutrophilic CRSwNP, we established a mouse model 305 

of lipopolysaccharide (LPS)-induced neutrophilic chronic rhinosinusitis with nasal poly (NCRS)36, 306 

and then treated the model mice with anakinra, a recombinant, nonglycosylated interleukin-1 307 

receptor antagonist that has been employed as a therapeutic intervention for autoinflammatory 308 

diseases and hematological malignancies37,38 (Extended Data Fig. 8c). The total cell count in nasal 309 

lavage fluid (NLF) from mice serves as an indicator of inflammation severity39. We detected fewer 310 

cells in the NLF from anakinra-treated NCRS mice as compared to untreated NCRS mice (Fig. 6f). 311 

ELISA detected elevated secretion of CXCL8 and TNF in the NLF from NCRS mice, while the 312 

secretion of these factors approached to normal level in anakinra-treated NCRS mice (Fig. 6g). In 313 

NCRS mice, we observed the inflammatory features represented by increased inflammatory cell 314 

infiltration and mucosal hyperplasia with impaired mucosal integrity, which were alleviated in 315 

anakinra-treated NCRS mice (Fig. 6h). Immunochemistry staining detected increased neutrophil 316 

infiltration in NCRS mice, which was also improved in anakinra-treated NCRS mice (Fig. 6i). These 317 

findings reflected the substantial mitigation of inflammation by IL-1 blockade in NCRS mice. 318 

 319 
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Similar to the induction of human primary cells by IL-1, we detected increased numbers of LY6D+ 320 

club cells and IDO1+ fibroblasts in the mucosa of NCRS mice as compared to those in control mice 321 

(Fig. 6j, k). We next investigated whether IL-1 antagonist affects the transdifferentiation of LY6D+ 322 

club cells and IDO1+ fibroblasts in NCRS mice. Immunofluorescence staining demonstrated that 323 

numbers of LY6D+ club cells and IDO1+ fibroblasts were declined in the mucosa of anakinra-treated 324 

NCRS mice, along with the reduction of neutrophil infiltration, as compared to untreated NCRS 325 

mice (Fig. 6j, k). These findings suggested that IL-1 suppression impedes the transdifferention of 326 

LY6D+ club cells and IDO1+ fibroblasts and mitigates neutrophilic inflammation, suggesting that 327 

targeting IL-1 is an effective intervention against neutrophil recruitment in CRSwNP.  328 

  329 
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Discussion 330 

Here, we presented a detailed profile of the nasal mucosa of HC-ITs, CRS-ITs, CRS-MTs, and NPs 331 

from CRSwNP patients at the single-cell level. We identified LY6D+ club cells and IDO1+ fibroblasts 332 

in the nasal mucosa that promote neutrophil recruitment in CRSwNP. LY6D+ club cells exert the 333 

pathogenic effects upon IL-1 signaling stimulation by secreting S100A8 and S100A9, two 334 

molecules possessing ability to promote neutrophil chemotaxis26. In addition, IDO1+ fibroblasts 335 

induced by IL-1 signaling produce multiple chemokines that interact with receptors expressed in 336 

neutrophils and promote neutrophil recruitment. IL-1, a key factor in the IL-1 signaling pathway, 337 

was demonstrated to be upregulated in NPs from CRSwNP patients. We found that IL-1 induces 338 

the transdifferentiation of LY6D+ club cells and IDO1+ fibroblasts from epithelial cells and 339 

fibroblasts, respectively. Increased numbers of LY6D+ club cells and IDO1+ fibroblasts were also 340 

observed in NCRS mouse model. Administration of an IL-1 antagonist reduced the numbers of 341 

LY6D+ club cells and IDO1+ fibroblasts, and showed a promising effect on alleviating neutrophilic 342 

inflammation in NCRS mice (see the model in Extended Data Fig. 8d).   343 

 344 

A previous study detected higher mRNA and protein levels of IL-1 in NPs than in uncinate tissues, 345 

inferior turbinates, and ethmoid sinus mucosal samples from control subjects, as did an increased 346 

number of IL-1+ cells in polyp tissue from neutrophilic CRSwNP patients40,41. However, the cell 347 

sources of IL-1 in the nasal mucosa are unclear. Here, we verified the upregulation of IL-1 in NP 348 

samples from CRSwNP patients and identified that the cell sources of IL-1 in CRSwNP were 349 

monocytes, macrophages, DCs, and neutrophils. Our results elucidated the role of IL-1 in 350 

determining the transdifferentiation of LY6D+ club cells and and IDO1+ fibroblasts, both of which 351 

are enriched in NP tissues. Elevated expression of S100A8 and S100A9 has been observed in nasal 352 

polyps compared to control tissues9,23,24. Both proteins that induce neutrophil chemotaxis and 353 

adhesion26 are secreted by LY6D+ club cells in the epithelium from the nasal mucosa. Elevated levels 354 

of EGFR ligands have been detected in various airway disorders, such as CRS and COPD42,43. Our 355 

results also demonstrated increased expression of EREG and AREG in LY6D+ club cells, indicating 356 

the involvement of these cells in activating EGFR signaling and subsequently inducing mucus and 357 

inflammatory cytokine secretion from airway epithelial cells42,44. The functionality of LY6D+ club 358 

cells is multifaceted and deserves further exploration. Previous studies have shown that immune 359 

cells and stromal cells within the organs, including macrophages and fibroblasts, send coordinated 360 

signals that guide neutrophils to their final destination45,46. Our data uncovered an unreported 361 

mechanism underpinning neutrophil chemotaxis orchestrated by IDO1+ fibroblasts in CRSwNP. 362 

IDO1+ fibroblasts constitute the core cell subset that promotes neutrophil recruitment based on the 363 

strong interaction observed between these two cell subsets in CRSwNP. IL-1-induced IDO1+ 364 

fibroblasts release substantial quantities of chemokines (CXCL1/2/3/5/6/8) to promote neutrophil 365 

recruitment. Considering that both LY6D+ club cells and IDO1+ fibroblasts are induced by IL-1, 366 

future studies should examine whether other pro-inflammatory cytokines in the IL-1 signaling 367 

pathway, such as IL-1, contribute to the transdifferentiation of the two cell subsets. 368 

 369 

It is well known that neutrophilia and eosinophilia are both present in most cases of CRS19. 370 

Activated neutrophils possess the capability to facilitate eosinophil transmigration and 371 

accumulation47. Studies have demonstrated the association of mixed eosinophilic-neutrophilic 372 

inflammation with hard-to-treat asthma or CRSwNP5,19,48. In addition to surgery and intranasal 373 
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corticosteroids, multiple biologics have been approved or are undergoing clinical trials as 374 

therapeutics for CRS. Dupilumab (targeting IL-4R), omalizumab (targeting IgE), and 375 

mepolizumab (targeting IL-5) have been approved for CRSwNP treatment. Reslizumab (targeting 376 

IL-5) and benralizumab (targeting IL-5R) have been undergoing phase 2 and phase 3 trials, 377 

respectively49. However, these therapies primarily target eosinophilic and type 2 inflammation in 378 

CRSwNP, whereas therapies targeting neutrophilic inflammation remain a gap. Given the 379 

unfavorable prognosis of CRSwNP with a mixed inflammatory pattern and the ineffectiveness of 380 

steroids on the neutrophil activation state in CRSwNP, the demand to develop novel strategies 381 

against neutrophilia in CRSwNP patients is imperative49. Strategies targeting IL-1β, such as 382 

anakinra, rilonacept, and canakinumab, are commonly used to block the effects of IL-1β, thereby 383 

reducing inflammation and related symptoms in conditions such as rheumatoid arthritis, 384 

atherosclerosis, and other immune-mediated diseases50. In this study, we revealed the effects of 385 

intervention targeting IL-1β on inducing LY6D+ club cells and IDO1+ fibroblasts, and recruiting 386 

neutrophils in CRSwNP. We validated the mitigation of neutrophilic inflammation by the 387 

application of anakinra in an LPS-induced neutrophilic CRSwNP mouse model. We did observe a 388 

substantial reduction in chemokine secretion and a decrease in neutrophil infiltration in anakinra-389 

treated neutrophilic CRSwNP mice. Given the promising anti-inflammatory effects of blocking IL-390 

1 in the neutrophilic CRSwNP mouse model, our findings highlight that targeting IL-1 may be 391 

an effective strategy for the treatment of neutrophilic inflammation in CRSwNP.  392 

  393 
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Materials and methods 394 

 395 

Study participants 396 

In total, 85 individuals aged between 18 and 70 years were recruited from the Department of 397 

Otolaryngology in Qilu Hospital of Shandong University, including chronic rhinosinusitis with 398 

polyps (CRSwNP) patients (n=47) and healthy controls (HCs) (n=38). This study was approved by 399 

the Medical Ethics Committee of Qilu Hospital of Shandong University (KYLL-202102-1061). All 400 

study participants provided written informed consent. The diagnosis of CRSwNP was based on the 401 

EPOS 2020 criteria51, and included confirmatory clinical, endoscopic and radiographic criteria. HCs 402 

were patients with cerebral spinal fluid leak or nasal septum deviation. The nasal tissues, including 403 

nasal polyps, middle turbinates, and inferior turbinates, were collected during endoscopic sinus 404 

surgery. Participants who had an immunodeficiency disorder, fungal sinusitis, cystic fibrosis or 405 

tumors were excluded from the study. No participants used systemic corticosteroids for at least 4 406 

weeks before surgery. The detailed clinical characteristics are summarized in Supplementary Table 407 

1.  408 

 409 

Preparation of single-cell suspensions 410 

Nasal mucosa was freshly sampled from the middle turbinates (n=7), inferior turbinates (n=9), nasal 411 

polyps (n=15) of CRSwNP patients and inferior turbinates (n=2) of patients with cerebral spinal 412 

fluid leak. The nasal biopsies were washed in phosphate-buffered saline (PBS, 10010023, 413 

ThermoFisher) to remove mucus and blood cells. Then, the nasal tissues were cut into approximately 414 

0.5-mm3 pieces in RPMI-1640 medium supplemented with 1% penicillin/streptomycin, and then 415 

enzymatically digested with the Multi Tissue Dissociation Kit 2 (MACS# 130-110-203) at 37℃ for 416 

30 min with agitation, according to the manufacturer’s instructions. Following cell dissociation, the 417 

resultant cell suspension was sequentially filtered through cell strainers with pore sizes of 70 μm 418 

and 40 µm (BD). Subsequently, the samples were centrifuged at 300g for 10 minutes. Subsequent 419 

to the removal of the supernatant, the cells forming the pellet were reconstituted in red blood cell 420 

lysis buffer (Thermo Fisher) and subjected to a 2-minute incubation on ice to lyse the red blood 421 

cells. Following dual washes with PBS, the cellular pellets were re-suspended in PBS supplemented 422 

with 0.04% bovine serum albumin (A7906, Sigma-Aldrich). 423 

 424 

Single-cell RNA library construction and sequencing  425 

DNBelab C Series High-throughput Single-cell System (BGI-research) was utilized for scRNA-seq 426 

library preparation. Briefly, the single-cell suspensions underwent a series of processes to generate 427 

barcoded scRNA-seq libraries. These steps encompassed droplet encapsulation, emulsion breakage, 428 

collection of beads containing the captured mRNA, reverse transcription cDNA amplification and 429 

subsequent purification. The cDNA was subjected to fragmentation into shorter segments spanning 430 

250 to 400 base pairs. Following this, the construction of indexed sequencing libraries was achieved 431 

in accordance with the protocol provided by the manufacturer. Qualification was performed using 432 

the Qubit ssDNA Assay Kit (Thermo Fisher Scientific) and the Agilent Bioanalyzer 2100. 433 

Subsequent to library preparation, all the constructs underwent sequencing using the DIPSEQ T1 434 

sequencing platform in the China National GeneBank via pair-end sequencing methodology. The 435 

sequencing reads contained 30-bp read 1 (including the 10-bp cell barcode 1, 10-bp cell barcode 2 436 

and 10-bp unique molecular identifiers [UMI]), 100-bp read 2 for gene sequences and 10-bp 437 
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barcodes read for sample index. Next, processed reads were aligned to the GRCh38 reference 438 

genome using STAR (v2.5.3). The identification of valid cells was achieved through an automated 439 

process utilizing the "barcodeRanks" function from the DropletUtils tool. This function was 440 

employed to eliminate background beads and those with UMI counts falling below a predetermined 441 

threshold, using the UMI number distribution characteristic of each cell. Finally, we computed the 442 

gene expression profiles of individual cells and subsequently generated a matrix of genes by cells 443 

for each library by means of PISA. The newly generated scRNA-seq data and bulk RNA-seq data 444 

will be immediately accessible upon acceptance of the paper. 445 

 446 

Alignment, quantification, and quality control of single-cell RNA sequencing data 447 

The droplet-based sequencing data were subjected to alignment and quantification through the 448 

utilization of CellRanger software (version 3.0.2, designed for 3’ chemistry), employing the 449 

GRCh38.p13 human reference genome. The Python package Scanpy (version 1.7.1)52 was 450 

employed to load the matrix containing cell-gene counts and to execute quality control procedures 451 

for both the newly generated dataset and the acquired datasets. For each sample, genes associated 452 

with mitochondria (indicated by gene symbols commencing with "MT-") and ribosomal proteins 453 

(initiated by gene symbols commencing with "RP") were eliminated from consideration. After that, 454 

cells possessing less than 2000 UMI counts and 250 detected genes were identified as empty 455 

droplets and subsequently excluded from the datasets. Finally, genes demonstrating expression in 456 

fewer than three cells were excluded from further analysis. 457 

 458 

Doublet detection 459 

In order to rule out doublets, we implemented the Scrublet software (version 0.2.3)53, which 460 

facilitated the identification of artifactual libraries originating from two or more cells within each 461 

scRNA-seq sample, comprising both the newly generated dataset and the compiled datasets. The 462 

doublet score for each individual single cell, along with the threshold determined from the bimodal 463 

distribution, was computed using the default parameters (sim_doublet_ratio=2.0; 464 

n_neighbors=None; expected_doublet_rate=0.1, stdev_doublet_rate=0.02). After that, a 465 

comprehensive assessment was conducted on the remaining cells and cell subsets to identify 466 

potential false-negatives from the scrublet analysis. This evaluation was guided by the following 467 

sets of criteria: (1) cells with more than 8000 detected genes, (2) subsets that expressed marker 468 

genes from two distinct cell types, which are unlikely according to prior knowledge (i.e., CD3D for 469 

T cells and EPCAM for epithelial cells). Any cells or subsets identified as doublets were excluded 470 

from subsequent downstream analyses. 471 

 472 

Graph subseting and partitioning cells into distinct compartments 473 

Downstream analysis included normalization (scanpy.pp.normalize_total method, target_sum=1e4), 474 

log-transformation (scanpy.pp.log1p method, default parameters), cell cycle score 475 

(scanpy.tl.score_genes_cell_cycle method), cell cycle genes defined in Tirosh et al, 201654, feature 476 

regress out (scanpy.pp.regress_out method, UMI counts, percentage of mitochondrial genes and cell 477 

cycle score were considered to be the source of unwanted variability and were regressed), feature 478 

scaling (scanpy.pp.scale method, max_value=10, zero_center=False), PCA (scanpy.tl.pca method, 479 

svd_solver=’arpack’), batch-balanced neighborhood graph building (scanpy.external.pp.bbknn 480 

method, n_pcs=20)55, leiden graph-based subseting (scanpy.tl.leiden method, Resolution=1.0)56, 481 
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and UMAP visualization57 (scanpy.tl.umap method) performed using scanpy. The initial 482 

categorization of the subsets encompassed a division into six distinct compartments, achieved 483 

through the utilization of marker genes established in the existing literature in conjunction with 484 

genes exhibiting differential expression. (scanpy.tl.rank_gene_groups method, method=’Wilcoxon 485 

test’). Specifically, the epithelial compartment was annotated using a gene list (EPCAM, KRT8, 486 

KRT18, KRT19, PIGR), T and ILCs compartment (CD2, CD3D, CD3E, CD3G, TRAC, IL7R), B 487 

cell compartment (JCHAIN, CD79A, IGHA1, IGHA2, MZB1, SSR4), MNPs compartment (HLA-488 

DRA, CST3, HLA-DPB1, CD74, HLA-DPA1, AIF1), Mast cell compartment (TPSAB1, CPA3, 489 

TPSB2, CD9, HPGDS, KIT), and Stromal cell compartment (IGFBP7, IFITM3, TCF7L1, COL1A2, 490 

COL3A1, GSN). Subsequently, the epithelial compartment was subjected to sorting for subsequent 491 

downstream analysis. 492 

  493 

Transcription factor module analysis 494 

The python package pySCENIC workflow (version 0.11.0) with default settings was used to infer 495 

active TFs and their target genes in all human cells58,59. Specifically, the pipeline was executed in 496 

three steps. Initially, the single-cell gene expression matrix was filtered to eliminate genes whose 497 

expression was detected in fewer than ten total cells. The retained genes were subsequently 498 

employed to construct a gene-gene correlation matrix, which facilitated the identification of co-499 

expression modules through the application of a regression per-target approach utilizing the 500 

GRNBoost2 algorithm. Subsequent to the initial step, each identified module was systematically 501 

refined based on a regulatory motif in close proximity to a transcription start site (TSS). The 502 

acquisition of cis-regulatory footprints was facilitated through the utilization of positional 503 

sequencing methodologies. The binding motifs of the TFs were then used to build an RCisTarget 504 

database. Modules were retained based on the enrichment of transcription factor (TF)-binding 505 

motifs among their respective target genes. In cases where target genes lacked direct TF-binding 506 

motifs, they were excluded from consideration. In the third phase, we assessed the influence of each 507 

regulon on individual single-cell transcriptomes through the utilization of the area under the curve 508 

(AUC) score, employing the AUCell algorithm as the evaluative metric. The scores pertaining to 509 

transcription factor motifs within gene promoters and regions surrounding transcription start sites, 510 

specific to the hg38 human reference genome, were acquired from the RcisTarget database. 511 

Concurrently, the list of transcription factor-associated genes was obtained from the Humantfs 512 

database60. 513 

 514 

Fate decision tree construction (regulon-based) 515 

Dendrogram plots were generated for epithelial cells using the sc.pl.dendrogram method from the 516 

Scanpy package. These plots were generated based on the AUCell matrix comprising 608 regulons, 517 

aiming to visualize more nuanced alterations. We deciphered the diverging composite rules of a 518 

regulon-based dendrogram by testing each branching node for differential regulon importance. 519 

Thereafter, differential analysis of regulon expression was conducted for each node using the 520 

Wilcoxon test (implemented through the sc.tl.rank_gene_groups method with method='Wilcoxon 521 

test'), with the aim of deducing the sequence of regulon-driven propagation events.  522 

 523 

Datasets integration  524 

In this study, we utilized a previously published scRNA-seq dataset of CRSwNP20 (GSA: 525 
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HRA000772), the one that detailed a specific quantity of neutrophils, to investigate the expression 526 

of inflammatory factors in neutrophils in human nasal mucosal tissues. Specifically, we compared 527 

the downloaded fastq files with the barcodes-genes matrix utilizing Alevin-fry61. The matrix 528 

underwent initial quality control, doublet removal, and normalization, applied in accordance with 529 

the dataset from the previous section. The gene expression and cell annotation of the dataset were 530 

modeled using CellTypist62. Subsequently, the trained model was used to perform Label Transfer 531 

on the HRA000772 dataset. In particular, myeloid cells annotated by Label Transfer were manually 532 

reannotated based on marker genes, thereby identifying the neutrophils subset 533 

(FCGR3B+CXCR1+CXCR2+). 534 

 535 

RNA velocity 536 

Cells that met the quality control criteria were used to filter the loom file generated by the Velocyto 537 

python package based on the cell barcodes63. This package was used to conduct splicing analysis on 538 

the bam file in preparation for subsequent RNA velocity analysis. The filtered loom file served as 539 

an input within the Scanpy pipeline, implemented as part of the CellRank pipeline64. The loom file 540 

derived from Velocyto was harnessed to compute RNA velocities for each cell according to standard 541 

parameters for the software. CellRank generates both stochastic and dynamic models of RNA 542 

velocity, which were compared via the computation of a consistency score for each cell, employing 543 

each modeling approach, in accordance with the guidance provided by the authors. Pseudotime was 544 

subsequently calculated based on the outcomes of RNA velocity analysis, while latent time was 545 

deduced from the dynamic velocity results. 546 

 547 

Gene set scoring and identification of significant changes  548 

We scored the gene sets of all cells and subsets using the Scanpy python package (sc.tl.score_genes 549 

method, ctrl_size=len(genesets), gene_pool=None, n_bins=25, use_raw=None). The score was the 550 

average expression of a set of genes subtracted from the average expression of a reference set of 551 

genes. The reference set was randomly sampled from the gene_pool for each binned expression 552 

value. To prevent highly expressed genes from dominating a gene set score, we scaled each gene of 553 

the log2 (TP10K+1) expression matrix by its root mean squared expression across all cells. After 554 

obtaining score-cell matrix of the signatures, differential signature analysis (sc.tl.rank_gene_groups 555 

method, method=’Wilcoxon test’) was implemented to identify significant changes among different 556 

nasal anatomical regions. All pathways included in gene set enrichment analysis (Fig. 3i, Fig. 4f and 557 

Extended Data Fig. 7c, d) were obtained from Reactome65. 558 

 559 

Cell-cell interaction and network representation analysis 560 

To plot chemokine-chemokine receptor interaction networks, we employed the Networkx (version 561 

2.5) (https://github.com/networkx/networkx), Community (version 1.0.0b1) and Pygraphviz 562 

(version 1.6) (https://github.com/pygraphviz/pygraphviz) python packages to construct a network 563 

defined using the count of interactions between cell subsets. The pipeline was implemented in three 564 

steps. First, the nodes with a degree of zero were eliminated. Second, any edges with a connection 565 

strength less than the average of all the edges were removed. Third, the sizes of the nodes were 566 

defined as the log2 (counts+1) of the cell subsets, and the network with the Kamada Kawai layout 567 

algorithm (networkx.kamada_kawai_layout method) was utilized to visualize the network. The 568 

thickness of the line connecting the two cell subsets was directly proportional to the degree of 569 
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interaction strength between them. The chemokines-chemokines receptor interaction data were 570 

obtained from IMEx Consortium66, IntAct67, InnateDB-All68, MINT69 and I2D70 database. 571 

 572 

Estimation of neutrophil infiltration in CRSwNP 573 

In this study, we applied the xCell algorithm to determine the immune cell subsets in the RNA-seq 574 

dataset (GSE179265). The xCell algorithm represents a gene signature-based approach derived from 575 

learning from numerous pure cell types originating from diverse sources. This method adeptly 576 

enables a cell type enumeration analysis using gene expression data, providing a comprehensive 577 

assessment of 64 immune and stromal cell types. This attribute endows it with a commendable 578 

capability to accurately depict the intricate landscape of cellular heterogeneity within tissue 579 

expression profiles71. 580 

 581 

Animals 582 

C57BL/6 mice used in these experiments were purchased from SPF Biotech. The mice were 583 

maintained in individually ventilated cages in a specific pathogen-free facility under 12 h light–dark 584 

cycles at 22–24 °C and 50–60% humidity. The protocol for the animal studies was approved by the 585 

Laboratory Animal Ethical and Welfare Committee of Shandong University Cheeloo College of 586 

Medicine (23086). 587 

 588 

Neutrophilic CRSwNP mouse model and treatment with an IL-1R antagonist (Anakinra) 589 

Mice were randomly divided into three groups consisting of 6 individuals each. The construction of 590 

the mouse model of CRSwNP with neutrophilia was carried out following a previously described 591 

protocol36. For the control group, 20 µl of sterile normal saline solution was dropped into the nasal 592 

cavities three times a week for 3.5 consecutive months. Mice in the model groups received 10 µg of 593 

LPS (from Escherichia coli; Sigma-Aldrich, Merck Millipore, Germany) in 20 µl of sterile normal 594 

saline solution three times a week for 3.5 consecutive months. For the anakinra-treated group, 595 

starting on the 77th day, the mice were given 10 µg of Anakinra (MedChemExpress, HY-108841, 596 

USA) in 20 µl of sterile normal saline solution by intranasal instillation and 10 µg of Anakinra in 597 

200 µl of saline by intraperitoneal injection 30 minutes after LPS stimulation for 2 weeks. For the 598 

following 2 weeks, only 10 µg of Anakinra was intranasally administered in 20 µl of sterile normal 599 

saline solution within 30 minutes each after LPS stimulation. The animals were sacrificed 24 h after 600 

the last nasal challenge. The graphic protocol is depicted in Extended Data Fig. 8c. NLF was 601 

collected immediately from the sacrificed mice by washing the nasal cavity with 1 mL of ice-cold 602 

PBS three times. The total number of cells in NLF was counted using a cell counter (JIMBIO, China). 603 

 604 

Immunofluorescence staining  605 

The detailed experimental protocol for processing the sinonasal tissue specimens was previously 606 

described72. In brief, we removed the skin on the heads of the mice and then excised the mandibles. 607 

The heads of the mice were fixed in 4% paraformaldehyde at room temperature for at least 24 hours, 608 

and decalcified for 7 days. For human nasal tissues, biopsy samples were soaked in 4% 609 

paraformaldehyde for 24 hours. For both the murine and human studies, after dehydration and 610 

paraffin embedding, the tissue samples were cut into 4 µm-thick paraffin sections. The slides were 611 

incubated at 65 ℃ for 1 hour, dewaxed, hydrated, and subsequently heated in antigen retrieval liquid 612 

for 15 minutes in a microwave oven. After cooling to room temperature, the slides were permeated 613 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.28.576762doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.576762
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

with PBS containing 1% Triton X-100 for 20 minutes. The slides were washed in PBS 3 times and 614 

blocked with 5% bovine serum albumin at room temperature for 1 hour. After that, the slides were 615 

incubated with the primary antibody (see Supplementary Table 2 for a complete list and dilutions) 616 

overnight at 4℃ in a humidified chamber. The slides were gently washed with PBS 3 times, and 617 

incubated with a fluorescent secondary antibody at room temperature for 1 hour. After washing with 618 

PBS, the slides were stained with 4’, 6-diamidino-2-phenylindole ( DAPI) (Solarbio, C006, China) 619 

for 10 minutes. After another washing step with PBS, the slides were cover-slipped with anti-fade 620 

mounting medium (Solarbio, S2100, China). Image acquisition was performed using two 621 

fluorescence microscopes (Olympus, IX73 and VS120, Japan).   622 

 623 

Multiplexed immunohistochemistry 624 

Multiplexed immunohistochemistry (mIHC) assay was performed using the Opal 6-Plex Detection 625 

Kit (AKOYA #811001, USA) as described previously73. Briefly, after dewaxing and hydration, the 626 

slides were boiled in AR6 buffer in a microwave oven for 15 minutes. The tissue sections on the 627 

slides were incubated with blocking buffer for 30 min and then with primary antibody (see 628 

Supplementary Table 2 for a complete list and dilutions) for 2 hours at room temperature in a 629 

humidified chamber. Then the slides were washed with TBST twice and incubated with Opal 630 

polymer anti-rabbit/mouse horseradish peroxidase (HRP) for 10 minutes at room temperature. Then, 631 

100-300 µl of Opal Fluorophore working solution was added to each slide. After washing with 632 

TBST twice, the slides were incubated at room temperature for 10 minutes. The previous steps were 633 

repeated as needed. DAPI working solution was applied on the slides for 10 minutes at room 634 

temperature. As a final step, the slides were washed and cover-slipped with anti-fade mounting 635 

medium. Image acquisition was performed using the TissueFAXS imaging system (TissueGnostics, 636 

Germany). 637 

 638 

Isolation and culture of primary human nasal epithelial cells (HNEs) 639 

Human nasal epithelial cells were scraped from patients' nasal mucosa during endoscopic sinus 640 

surgery. The cells were placed in an Eppendorf tube containing 1 ml of bronchial epithelial cell 641 

medium (BEpiCM) (ScienCell, 3211, USA) supplemented with 1% penicillin/streptomycin and 1% 642 

bronchial epithelial cell growth supplement immediately upon acquisition. Cells were seeded within 643 

6 hours in six well plates pre-coated with Collagen Type I (Corning, 354236, USA) and maintained 644 

in a humidified incubator at 37℃ containing 5% CO2. The media was changed every two days. 645 

When cells reached 90% confluence in the well, they were transferred to the upper chamber of 646 

polyester Transwell inserts (0.4 µm, 0.33 cm2, BIOFIL, TCS016012, China) pre-coated with 647 

Collagen Type Ⅰ. After that, 1 ml of BEpiCM was added into the lower chamber, and media was 648 

replaced every two days. At confluence, the media was replaced with differential media (BEpiCM: 649 

DMEM/F12 =1:1) in the basal chamber and the apical surface was exposed to provide an air-liquid 650 

interface (ALI). Monolayers were grown at the ALI for an additional 21 days to promote 651 

differentiation into a nasal epithelium with basal, multiciliated and secretory cells. On day 22, media 652 

containing PBS or recombinant IL-1β (10 ng/ml) (Abbkine, PRP100051, USA) was added to the 653 

basal chambers for 3 days.  654 

  655 

Isolation and culture of primary human nasal fibroblasts (HNFs) 656 

The inferior turbinate or nasal polyp tissues were soaked in penicillin-streptomycin solution 657 
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(Solarbio, P1400, China) for 3 minutes and cut into small pieces. After digestion in Trypsin-EDTA 658 

solution (Macgene, CC017-500) for 10 minutes, the tissues were put into cell culture flasks with 659 

DMEM media supplemented with 10% FBS. The cells were cultured in a humidified incubator at 660 

37 ℃ containing 5% CO2, and the media was replaced every 2 days. The migrated cells were nasal 661 

mucosa-derived fibroblasts. When cells reached 90% confluence in the well, PBS or IL-1β (10 662 

ng/ml) was added into the wells, and the cells were cultured for 1 days.  663 

 664 

Isolation of human peripheral blood neutrophils  665 

Neutrophils were enriched from peripheral blood by means of Polymorphprep (Serumwerk 666 

Bernburg AG, 1895) density centrifugation. We carefully layered 5.0 ml of anti-coagulated whole 667 

blood over 5.0 ml of PolymorphPrep in a 15 ml tube. The tubes were centrifuged at 500 g for 30 668 

min at 20℃. After centrifugation, two bands were visible, and the neutrophils were enriched in the 669 

lower band. The cells were aspirated to another clean tube and an equal volume of sterile normal 670 

saline solution was added. After incubating at room temperature for 10 minutes, the tubes were put 671 

on centrifuge at 500 × g for 30 minutes. The supernatant was discarded, and the cell pellet was 672 

resuspended in Roswell Park Memorial Institute (RPMI) 1640 media supplemented with 1% FBS. 673 

 674 

Neutrophil chemotaxis assay  675 

For the cell migration assay, after resuspension in RPMI 1640 media supplemented with 1% FBS, 676 

the neutrophils were seeded at 1.0 × 105/100 µl per well in the upper compartment of 24-transwell 677 

plates with 3-μm pores (Costar, 3415).  The conditioned media from fibroblasts, either stimulated 678 

with IL-1β or not, was added into the lower chamber to test the chemotactic effect on neutrophils. 679 

Normal culture media was used as a negative control. After 3 hours of incubation at 37℃ in 5% 680 

CO2, the number of the migrated cells in the lower chamber was counted.  681 

 682 

Enzyme-linked immunosorbent assay (ELISA) 683 

ELISAs were performed using multiple ELISA kits (4A Biotech, CHE0011, CME0008, CME0004, 684 

China) according to the manufacturers’ instructions. In brief, the standards and samples were added 685 

to the antibody pre-coated 96-well ELISA plate, which was subsequently incubated at 37℃ for 2 686 

hours. The liquid was removed, and the plate was washed 4 times with wash buffer. Then, an 687 

enzyme-linked antibody was applied to the plate, which was incubated at 37℃ for 60 minutes. After 688 

a washing step, avidin-biotin-peroxidase complex was applied to each well, and the plate was 689 

incubated at 37℃ for 30 minutes. The plate was washed 4 times with wash buffer and the color 690 

developing reagent was added to each well of the plate and the plate was incubated at 37℃ in 691 

darkness for 10-20 minutes. The reaction was terminated by adding stop solution and the optical 692 

density (OD) at 450 nm was measured immediately using a microplate reader (Thermo Fisher, 693 

Varioskan Flash, USA). Analysis was performed using GraphPad Prism version 9.  694 

 695 

Immunohistochemistry 696 

Paraffin-embedded sections were incubated at 65℃ for 1 hour. Dewaxing, hydration, and antigen 697 

repair were performed sequentially as previously described73. The endogenous peroxidase blocker 698 

was applied to the slides after they had cooled to room temperature. The slides were incubated for 699 

20 minutes at room temperature. The slides were then washed with PBS 3 times and incubated with 700 

the primary antibody (see Supplementary Table 2 for a complete list and dilutions) in a humidified 701 
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chamber at 4℃ overnight. After washing with PBS, the sections were incubated with reaction 702 

enhanced solution. Following another wash, the sections were incubated with the secondary 703 

antibody for 10 minutes, and the color reaction was developed using 3,30-diaminobenzidine 704 

tetrahydrochloride (DAB) (ZSGB-Bio, PV-9000, China). The slides were counterstained with 705 

hematoxylin. Finally, the slides were dehydrated and mounted. The images were acquired using a 706 

fluorescence microscope (Olympus VS120, Japan). 707 

 708 

Hematoxylin and eosin Staining (HE staining) 709 

HE staining was performed using the HE staining kit (Beyotime, C0105S, China) according to the 710 

manufacturer’s instruction. Sections were dewaxed, hydrated and then washed with PBS. Then, the 711 

sections were incubated with hematoxylin for 10 seconds and washed with distilled water for 10 712 

minutes. After that, the sections were differentiated with 1% hydrochloric ethanol for 20 seconds. 713 

After a washing step with distilled water for a 10 min, the slides were stained with eosin for 1 min. 714 

Following dehydration, clearing and mounting, the slides were ready for image acquisition under a 715 

microscope (Olympus, VS120, Japan). 716 

 717 

Statistical methods 718 

No statistical analysis was performed to predetermine sample size. The numbers of samples included 719 

in the analyses are listed throughout the figures. For the scRNA-seq data, statistical analyses and 720 

graphic production were performed using Python version 3.7.10. The experimental data are 721 

presented as mean ± SEM or mean with 95% CI, as shown in the corresponding figure legends. 722 

Data distribution was assumed to be normal. One-way ANOVA and two-way ANOVA were used to 723 

compare multiple sets. Two-tailed Student’s t-tests were used for the comparisons between two sets. 724 

Statistical analyses and graphic production were performed with GraphPad Prism version 9 725 

(GraphPad Software Inc., San Diego, CA, USA). P < 0.05 was considered statistically significant.  726 
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Figure legends 886 

Fig. 1: Analysis of middle turbinates, inferior turbinates, and nasal polyps from CRSwNP 887 

patients and healthy individuals.  888 

a For the study design, 33 samples were collected from distinct anatomical regions (inferior 889 

turbinates, middle turbinates, and nasal polyps) of CRSwNP patients and healthy individuals. 890 

scRNA-seq (DNBelab C4) acquired 219,716 high-quality cells. Created with BioRender.com.  891 

b Cell counts by anatomical region for each compartment. The colors of the cell compartments are 892 

consistent in panel (b) and (c). 893 

c Unsupervised sub-clustering preliminarily divided the cells into six compartments.  894 

d UMAP (uniform manifold approximation and projection) embedding by three anatomical regions.  895 

e Bar plot depicting the cell compositions of the indicated anatomical regions of human nasal 896 

mucosa from CRSwNP patients and healthy individuals. The colors of the cell compartments are 897 

consistent in panel (b) and (c). 898 

f UMAP displaying typical cell subsets of the nasal mucosal epithelium. 899 

g UMAP displaying 15 cell subsets of stromal cells in the nasal mucosa with the gene signatures of 900 

each subset indicated in the colored boxes.   901 

h UMAP displaying immune cell subsets in all samples. 902 

i Bubble heatmap showing marker genes across cell subsets of interest in this study.  903 

j A dendrogram of regulons for all cell subsets constructed from the fate decision tree analysis. TFs 904 

at each branching point are representative regulons of subjacent groups. The colors of the cell 905 

subsets are consistent in panel (j) and (k). 906 

k UMAP showing six cell compartments and some cell subsets based on the regulons from the fate 907 

decision tree analysis presented in panel (j). The colors of the cell subsets are consistent in panel (j) 908 

and (k). 909 

 910 

Fig. 2: Identification of cell subsets involved in neutrophil recruitment in CRSwNP.  911 

a Representative image and quantification of immunofluorescence staining for MPO (red) and the 912 

nuclear marker DAPI (blue) in IT tissue from healthy individuals (HC-IT) and NP tissue from 913 

CRSwNP patients (CRS-NP). Neutrophils are indicated by white arrows. Scale bar, 50 μm (left), 20 914 

μm (right). The data are presented as the means ± SEM. The P-value was calculated and reported 915 

using the two-tailed Student’s t-test. 916 

b Neutrophil scores obtained using the xCell algorithm for CRSwNP patients and healthy 917 

individuals. The P-value was calculated and reported using a two-tailed Student’s t-test.  918 

c Cell-cell interaction and network representation analysis based on chemokine-chemokine receptor 919 

interactions. The nodes with a degree of zero and a connection strength less than the average of all 920 

the edges were eliminated. The sizes of the nodes were defined as the log2 (counts+1) of the cell 921 

subsets. The thickness of the link reflects the degree of the interaction. Cell subsets that strongly 922 

interact with neutrophils are indicated in red boxes. 923 

d Bubble heatmap for chemokine-chemokine receptor interactions between immune cells and 924 

epithelial/stromal cells. Previously validated interactions are indicated by colored straight lines. 925 

Chemokines predominantly expressed in LY6D+ club cells and IDO1+ fibroblasts are indicated in 926 

red boxes. 927 

e Bar plot depicting the cell composition of epithelial cell subsets in the indicated anatomical regions 928 

of human nasal mucosa from CRSwNP patients and healthy individuals.  929 
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f Immunofluorescence staining for LY6D (red), KRT13 (white), MPO (green), and the nuclear 930 

marker DAPI (blue) in CRS-NP tissue and HC-IT tissue. The epithelium is indicated with orange 931 

arrows. Neutrophils are indicated with white arrows. Scale bar, 20 μm. 932 

g Immunofluorescence staining for COL1A2 (red), IDO1 (white), MPO (green), and the nuclear 933 

marker DAPI (blue) in HC-IT tissue and CRS-NP tissue. The epithelium is indicated with orange 934 

arrows. Neutrophils are indicated with white arrows. Scale bar, 20 μm. 935 

 936 

Fig. 3: LY6D+ club cells regulate neutrophilic inflammation in CRSwNP. 937 

a UMAP displaying the distribution of LY6D+ club cells in the indicated anatomical regions of 938 

human nasal mucosa from CRSwNP patients and healthy individuals. Enriched LY6D+ club cells 939 

are indicated with blue circles (left panel). The proportions of LY6D+ club cells in the indicated 940 

anatomical regions are shown on the right. The colors are consistent in the two panels.  941 

b Representative immunofluorescence staining for LY6D (green), SPRR1B (red), KRT13 (white, 942 

marker gene of club cells) and the nuclear marker DAPI (blue) in HC-IT tissue and CRS-NP tissue. 943 

The white arrows indicate colocalization of LY6D, SPRR1B and KRT13. Scale bar, 20 μm. 944 

c Quantification of the data in panel (b). The data are presented as the means ± SEM. The P-value 945 

was calculated and reported using a two-tailed Student’s t-test.  946 

d A dendrogram of regulons for epithelial cell subsets in the indicated anatomical regions 947 

constructed from the fate decision tree analysis. The transcription factors at each branching point 948 

are representative regulons of subjacent groups. The brown triangles show the proximity between 949 

LY6D+ club cells (E11) and club cells (E03) during differentiation. The numbering of cell subsets is 950 

consistent with that in Fig. 1(k). 951 

e TFs enriched in LY6D+ club cells aligned by TF specificity score. PITX1 (red) is the top 952 

transcription factor responsible for LY6D+ club cell differentiation. 953 

f Heatmap of gene expression analyzed by scRNA-seq displaying representative genes for 12 954 

epithelial cell subsets. LY6D+ club cells are highlighted in cyan letters. 955 

g Volcano plot displaying the differentially expressed genes (DEGs) between LY6D+ club cells and 956 

other epithelial cell subsets. The P-value was calculated and reported using a two-tailed Student’s 957 

t-test.  958 

h UMAP with the epithelial cell compartment displaying the expression of four upregulated genes 959 

(IL1RN, S100A8, AREG, and EREG) in LY6D+ club cells. LY6D+ club cells are indicated with red 960 

circles. 961 

i Pathway enrichment analysis revealing the enriched signaling pathways in LY6D+ club cells when 962 

compared with those in other epithelial cells. 963 

j RNA velocity analysis based on RNA splicing information indicating that LY6D+ club cells are 964 

maturely differentiated club cells. 965 

k Heatmap displaying dynamic changes in the expression of functional genes and TFs during the 966 

maturation process of LY6D+ club cells. 967 

 968 

Fig. 4: IDO1+ fibroblasts contribute to IL-1 signaling-mediated neutrophilic inflammation in 969 

CRSwNP. 970 

a Bar plot depicting the cell composition of stromal cell subsets in the indicated anatomical regions 971 

of human nasal mucosa from CRSwNP patients and healthy individuals. 972 

b Transcription factor fate decision tree analysis of stromal cells displaying two distinguishable 973 
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modules consisting of six fibroblast subsets with remarkable differences in TF patterns. Module 1 974 

and module 2 are indicated by blue and green boxes, respectively. 975 

c UMAP displaying the expression of marker genes of the two modules in the stromal cell 976 

compartment. 977 

d UMAP of stromal cell compartment displaying fibroblasts in the indicated anatomical regions. 978 

Bar plot displaying differences in the proportions of seven fibroblast subsets in the indicated 979 

anatomical regions. 980 

e Bubble heatmap depicting the expression of representative genes of IDO1+ fibroblasts across 981 

different stromal cell subsets. 982 

f Radar plot displaying the pathway enrichment analysis results for the four fibroblast subsets in 983 

module 1. The colors in the circles reflect the P-values. 984 

g Representative immunofluorescence staining for CXCL8 (white), IDO1 (green), COL1A2 (red, a 985 

marker gene of fibroblasts), and the nuclear marker DAPI (blue) in HC-IT tissue and CRS-NP tissue. 986 

The white arrows indicate colocalization of IDO1, CXCL8, and COL1A2 in the NPs. Scale bar, 20 987 

μm. 988 

 989 

Fig. 5: IL-1 induces transdifferentiation of LY6D+ club cells and IDO1+ fibroblasts to promote 990 

neutrophil recruitment  991 

a Volcano plot of DEGs between IL-1 -stimulated and PBS-treated air-liquid interface (ALI) -992 

cultured primary human nasal epithelial cells (HNEs) identified with the cut-off criterion P < 0.05 993 

and |log2FC| ≥ 1. The P-values were calculated and reported using two-tailed Student’s t-tests. Blue 994 

dots: significantly downregulated genes; red dots: significantly upregulated genes.  995 

b UMAP with epithelial cell compartment displaying the expression of four genes that are 996 

upregulated in LY6D+ club cells identified by scRNA-seq. The red circles indicate LY6D+ club cells 997 

in the epithelial cell compartment according to the scRNA-seq data. 998 

c Expression of four genes in panel b of ALI-cultured primary HNEs treated with the indicated 999 

conditions (as determined by bulk RNA-seq). The length of the error bars is a 95% confidence 1000 

interval for the mean in Fig. 5(c). The P-values were calculated and reported using a two-tailed 1001 

Student’s t-test. 1002 

d Representative immunofluorescence staining for LY6D (green), S100A8 (red), and the nuclear 1003 

marker DAPI (blue) in ALI-cultured primary HNEs upon the indicated stimulations. Scale bar, 50 1004 

μm. 1005 

e S100A8/A9 protein levels in the media (measured by ELISA) upon the indicated stimulations of 1006 

ALI-cultured HNEs. The P-value was calculated and reported using a two-tailed Student’s t-test.  1007 

f Number of neutrophils passing through the membrane of a transwell insert by ALI-cultured HNE-1008 

exposed media in the presence or absence of IL-1 stimulation. ALI-cultured HNE-exposed media 1009 

(control media) and fresh media containing IL-1 (control media + IL-1) were used as negative 1010 

control. Data are presented as the means ±SEMs. The P-values were calculated and reported using 1011 

one-way ANOVA. 1012 

g Heatmap displaying the expression of the indicated chemokines in primary fibroblasts derived 1013 

from HC-IT tissue and CRS-NP tissue upon the indicated stimulations. 1014 

h Representative immunofluorescence staining for IDO1 (green), CXCL8 (red) and the nuclear 1015 

marker DAPI (blue) displaying the protein levels of IDO1 and CXCL8 upon the indicated 1016 

stimulations. Scale bar, 100 μm.  1017 
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i Quantification of the data in panel (h). The data are presented as the means ± SEM. The P-values 1018 

were calculated and reported using a one-way ANOVA.  1019 

j CXCL8 protein levels measured by ELISA after indicated stimulations in primary fibroblasts 1020 

derived from HC-IT tissues and CRS-NP tissues. The P-values are calculated and reported using 1021 

two-way ANOVA.  1022 

k Number of neutrophils passing through the membrane of a transwell insert by fibroblasts-exposed 1023 

media in the presence or absence of IL-1 stimulation. Fibroblast-exposed media (control media) 1024 

and fresh media containing IL-1 (control media + IL-1) were used as negative controls. The data 1025 

are presented as the means ± SEM. The P-values were calculated and reported using two-way 1026 

ANOVA.  1027 

 1028 

Fig. 6: IL-1 antagonist suppresses transdifferentiation of LY6D+ club cells and IDO1+ 1029 

fibroblasts and mitigates inflammation in vivo. 1030 

a Representative immunohistochemistry staining for IL-1 in HC-IT tissue and CRS-NP tissue 1031 

(n=5). Scale bar, 50 μm. The data are presented as the means ± SEM. The P-value was calculated 1032 

and reported using a two-tailed Student’s t-test.  1033 

b UMAP displaying the expression of IL-1 in total cell subsets determined via the scRNA-seq 1034 

analysis. 1035 

c UMAP showing the expression of IL-1 in total cell subsets from analysis of the CRSwNP 1036 

scRNA-seq dataset (HRA000772).  1037 

d UMAP embedding the expression of IL-1 in immune cells determined via the scRNA-seq 1038 

analysis.  1039 

e Bar plot depicting the cell compositions of MNP/DC subsets for the indicated anatomical regions 1040 

of human nasal mucosa from CRSwNP patients and healthy individuals. 1041 

f Cell counts in nasal lavage fluid from mice in the indicated groups. Data are expressed as the 1042 

means ± SEM. The P-values were calculated and reported using one-way ANOVA.  1043 

g CXCL8 (left) and TNF (right) protein levels in the nasal lavage fluid of mice in the indicated 1044 

groups measured by ELISA. The data are expressed as the means ± SEM. The P-values were 1045 

calculated and reported using a one-way ANOVA.  1046 

h Representative H&E images of nasal mucosal tissues from mice in the indicated groups. Scale bar, 1047 

200 μm (left), 20 μm (right).  1048 

i Representative immunohistochemical staining for MPO in nasal mucosal tissues of mice from the 1049 

indicated groups (left). Scale bar, 200 μm (left), 50 μm (right). The data are presented as the means 1050 

± SEM (right). The P-values were calculated and reported using one-way ANOVA. 1051 

j Representative multiple immunohistochemistry images of nasal mucosa in mice from the indicated 1052 

groups. Images showing the the staining for IDO1+ fibroblasts (orange arrows), LY6D+ club cells 1053 

(red arrows), and neutrophils (white arrows) in the nasal mucosa of model mice. Scale bar, 20 μm 1054 

(left), 2 μm (right).  1055 

k Quantification of (j). Data are presented as the means ± SEM. One-way ANOVA was employed 1056 

to assess variations of IDO1+ fibroblasts and LY6D+ club cells.  1057 
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Extended Data Figure Legends 1058 

Extended Data Fig. 1: Landscape of the scRNA-seq data of CRSwNP.  1059 

a, UMAP displaying total cells in the indicated anatomical regions.  1060 

b, UMAP displaying expression of marker genes in the six cell compartments defined in Fig.1(a).  1061 

c, UMAP displaying 54 cell subsets.  1062 

d, Correlation analysis of the gene expression similarity of total cell subsets. 1063 

 1064 

Extended Data Fig. 2: Summary of total cell subsets in nasal mucosa from patients with 1065 

CRSwNP patients and healthy controls.  1066 

(a-d) Overview of functional genes and key transcription factors of each cell subset. The four top 1067 

genes are listed. 1068 

 1069 

Extended Data Fig. 3: The distribution of samples in total cell subsets.  1070 

a, UMAP embedding by patients with CRSwNP and healthy individuals.  1071 

b, Bar plots showing the contributions of samples across total cell subsets. 1072 

 1073 

Extended Data Fig. 4: Analysis of glandular cells in nasal mucosa from CRSwNP patients and 1074 

healthy controls.  1075 

a, RNA velocity analysis based on RNA splicing information.  1076 

b, Ct values of four glandular cell subsets calculated by pseudotime analysis.  1077 

c, Heatmap displaying the expression of marker genes for four glandular cell subsets.  1078 

d, Heatmap displaying enriched functional and signaling pathways for four glandular cell subsets. 1079 

 1080 

Extended Data Fig. 5: Sub-clustering of immune cells reiterates the inflammatory 1081 

environment in neutrophilic CRSwNP.  1082 

a, Bar plot displaying the proportions of five immune cell subsets from the indicated anatomical 1083 

regions.  1084 

b, UMAP displaying the distribution of immune cells in the indicated anatomical regions.  1085 

c, UMAP displaying 12 T/ILCs subsets (left panel). The proportions of different T/ILCs cell subsets 1086 

in the indicated anatomical regions (right panel).  1087 

d, UMAP displaying 5 subsets of B cells and plasma cells (left panel). The proportions of cells in 1088 

different B cell and plasma cell subsets in the indicated anatomical regions across different disease 1089 

states (right panel).  1090 

 1091 

Extended Data Fig. 6: Analysis of the neutrophils, LY6D+ club cells, and IDO1+ fibroblasts in 1092 

the scRNA-seq data of CRSwNP (HRA000772).  1093 

a, UMAP displaying all cell subsets from the scRNA-seq dataset of CRSwNP (HRA000772). The 1094 

enrichment of neutrophils is indicated by a red circle.  1095 

b, Proportions of neutrophils in samples from eosinophilic, non-eosinophilic CRSwNP patients and 1096 

healthy individuals.  1097 

c, Proportions of LY6D+ club cells in samples from eosinophilic, non-eosinophilic CRSwNP patients, 1098 

and healthy individuals.  1099 

d, Proportions of IDO1+ fibroblasts in samples from eosinophilic, non-eosinophilic CRSwNP 1100 

patients, and healthy individuals. 1101 
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 1102 

Extended Data Fig. 7: Endothelial cell, pericyte and smooth muscle cell subsets in nasal 1103 

mucosa from CRSwNP patients and healthy controls.  1104 

a, UMAP with stromal cell compartment displaying endothelial cells in the indicated anatomical 1105 

regions (left panel). Bar plot depicting the proportions of the four endothelial cell subsets in the 1106 

indicated anatomical regions (right panel). The numbering of the cell subsets is consistent with that 1107 

in Fig. 1(g).  1108 

b, UMAP with stromal cell compartment displaying pericytes and smooth muscle cells in the 1109 

indicated anatomical regions (left panel). Bar plot depicting the distribution of three subsets of 1110 

pericytes and smooth muscle cells in the indicated anatomical regions. The numbering of the cell 1111 

subsets is consistent with that in Fig. 1(g).  1112 

c, Pathway enrichment analysis displaying the enriched functional and signaling pathways for 1113 

different endothelial cell subsets.  1114 

d, Pathway enrichment analysis displaying the enriched functional and signaling pathways for 1115 

different subsets of pericytes and smooth muscle cells. 1116 

 1117 

Extended Data Fig. 8: Graphical protocols and schematic diagram of the mechanism involved 1118 

in this study.  1119 

a, Representative H&E images of ALI-cultured HNEs showing the structure of differentiated 1120 

epithelial cells, such as ciliated cells. Scale bar, 100 μm (upper), 50 μm (below).  1121 

B, Schematic diagram of the neutrophil chemotaxis model.  1122 

c, Graphical protocol for the establishment of a mouse model of neutrophilic chronic rhinosinusitis 1123 

with nasal polyps induced by LPS. The protocol for anakinra administration was included.  1124 

d, Graphical summary of new findings on CRSwNP pathways from this research. The graphical 1125 

summary provides novel insights into the mechanism of neutrophil recruitment in the nasal mucosa 1126 

of both CRSwNP patients and healthy individuals. 1127 

  1128 
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Supplementary Materials 1129 

 1130 

Supplementary Table 1 Clinical characteristics of healthy control subjects and CRSwNP patients 1131 

for this study 1132 

Supplementary Table 2 Antibodies and other reagents in this study 1133 

 1134 

 1135 
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