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Abstract

Neutrophilic inflammation contributes to multiple chronic inflammatory airway diseases, including
asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), and is associated with an
unfavorable prognosis. Here, using single-cell RNA sequencing (scRNA-seq) to profile human
nasal mucosa obtained from the inferior turbinates, middle turbinates, and nasal polyps of CRSwNP
patients, we identified two IL-1 signaling-induced cell subsets—LY6D" club cells and IDOI*
fibroblasts—that promote neutrophil recruitment by respectively releasing S100A8/A9 and
CXCL1/2/3/5/6/8 into inflammatory regions. IL-1p, a pro-inflammatory cytokine involved in IL-1
signaling, induces the transdifferentiation of LY6D™ club cells and IDOI* fibroblasts from primary
epithelial cells and fibroblasts, respectively. In an LPS-induced neutrophilic CRSwNP mouse model,
blocking IL-1p activity with a receptor antagonist significantly reduced the numbers of LY6D* club
cells and IDOI™ fibroblasts and mitigated nasal inflammation. This study reveals the roles of two
cell subsets in neutrophil recruitment and demonstrates an IL-1-based intervention for mitigating
neutrophilic inflammation in CRSwNP.
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Introduction

Neutrophilic inflammation is prevalent in multiple chronic inflammatory airway diseases such as
asthma, chronic obstructive pulmonary disease, and chronic rhinosinusitis (CRS), and elevated
neutrophilic inflammation is positively correlated with adverse patient outcomes'?. CRS is a chronic
disorder characterized by inflammation of the nasal mucosa and paranasal sinuses that affects 5-12%
of the global adult population®. Patients with CRS and nasal polyps (CRSWNP) experience more
severe clinical symptoms than those without nasal polyps*. Although CRSwNP exhibits a significant
association with type 2 inflammation which is characterized by an immune response involving
eosinophils®, the presence of a neutrophilic inflammation in CRSwWNP has been demonstrated in a
growing number of patients, and is considered to be associated with glucocorticosteroid resistance,
a higher risk of recurrence after surgery, and worse disease outcomes®. However, neutrophilic
inflammation has been relatively little studied and therapeutic strategies targeting neutrophilic
inflammation are currently insufficient in CRSwNP.

Multiple factors drive the neutrophilic inflammation in CRSwWNP. CXC chemokines including
CXCL1, CXCL2, and CXCLS8 are chemotactic factors that guide the neutrophils to the site of
inflammation’. In a multi-center study, the concentrations of CXCL8 was shown to be greater in NP
tissues than that in control tissues, indicating its role in neutrophil recruitment of CRSwNP2.
Increased protein levels of SI00A8, S100A9, and SI00A8/A9, were demonstrated in the nasal polyp
tissues of CRSwNP patients compared to those in the IT tissues of controls, suggesting evident
neutrophil recruitment in CRSWNP®. Previous studies have demonstrated that cytokines derived
from epithelial cells and stromal cells facilitate neutrophilic inflammation in CRS!%!, Nevertheless,
specific cell types that secrete these factors and drive neutrophilic inflammation in CRSWNP remain
ill-defined.

Here, seeking to identify epithelial and stromal cell subsets that contribute to neutrophilic
inflammation in CRSwNP, we profiled human nasal mucosa obtained from the middle turbinates
(MTs), inferior turbinates (ITs), and nasal polyps (NPs) of CRSwNP patients and healthy individuals
using single-cell RNA sequencing (scRNA-seq). After identifying contributions from LY6D™ club
cells and IDOI™ fibroblasts, we demonstrated their ability to facilitate neutrophil recruitment in cells
stimulated with IL-1PB, including primary fibroblasts and air-liquid interface (ALI) cultures
developed from primary nasal epithelial cells. Blocking the activity of IL-1J attenuated nasal
inflammation in an LPS-induced neutrophilic CRSwNP mouse model. These findings uncover the
cell types that drive neutrophilic inflammation in CRSwNP, and highlight potential therapeutic

agents targeting IL-1[ as interventions against neutrophilic CRSwNP.
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100  Results

101 Single-cell profiling of nasal mucosa from multiple anatomical regions in CRSwNP patients
102  identifies diverse disease-specific cell subsets

103

104  We initially profiled the CRSWNP cell type landscape by preparing freshly dissociated samples of
105  middle turbinate (MT), inferior turbinate (IT), and nasal polyp (NP) tissues from CRSwNP patients
106  and healthy individuals and obtaining full-length scRNA-seq profiles (Fig. 1a). Inferior turbinates
107  have been used as control tissues for nasal polyps in previous studies'?!3, Most NPs originate from
108 the ethmoid sinuses located around the MT tissues, and MT tissue removal has been shown to reduce
109  the recurrence of NPs in refractory CRS!4. We therefore selected MT, IT, and NP tissues to compare
110  differences in their cellular composition in an inflammatory milieu. Unsupervised clustering divided
111 the 219,716 cells that passed strict quality-control into six compartments with conserved signatures,
112  including epithelial cells, T/innate lymphoid cells (ILCs), B/plasma cells, mononuclear
113  phagocytes/dendritic cells (MNPs/DCs), mast cells, and stromal cells (Fig.1b-d, Extended Data Fig.
114 la-d and Extended Data Fig. 2). B/plasma cells, MNPs/DCs, and mast cells, were barely detectable
115  inthe IT tissues from healthy individuals, supporting an extensive inflammatory milieu in both nasal
116  polyps and nasal mucosa of CRSwNP patients, regardless of the anatomical regions in which they
117  occur (Fig. 1b, e). Of note, each of the subsets contained cells from each sample, indicating that the
118  cell lineages and expression status were consistent throughout samples and did not represent sample-
119  specific subpopulations or batch effects (Extended Data Fig. 3a, b).

120

121 To identify cell subsets associated with inflammation regulation, we performed unsupervised
122 clustering based on marker genes on the epithelial cell compartment, which revealed seven cell
123 types annotated as basal cells, myoepithelial cells, club cells, goblet cells, ciliated cells, ionocytes,
124 and glandular cells (GCs) (Fig. 1f). Among the identified subsets, LY6D" club cells have not been
125  reported, while the PRBI™ GC and MUC5B* GC subsets were previously observed in the nasal
126 mucosa of CRSwWNP patients’®. Pathway enrichment analysis revealed that PRBI* GCs are
127  associated with erythrocyte renewal and metabolism, while MUC5B* GCs are involved in protein
128  glycosylation, especially mucin glycosylation (Extended Data Fig. 4a-d). The stromal cell
129  compartment was divided into five cell types (endothelial cells, pericytes, fibroblasts, smooth
130  muscle cells, and glia) and then further classified into 15 yet-finer subsets based on marker gene
131 expression; among these subsets, PIEZO2*, IDOI", and OXTR" fibroblasts have not been reported
132  in previous studies of nasal mucosa from CRSwNP patients (Fig. 1g, 1i). Given that OXTR"
133  fibroblasts were detected only in NP tissues, these cells may be involved in NPs development (Fig.
134 4d). The immune cell compartment was subclustered into five cell types, including mast cells,
135  mononuclear phagocytes/dendritic cells (MNPs/DCs), plasma cells, B cells, and T/innate lymphoid
136 cells (T/ILCs), which were subsequently grouped into 27 yet-finer subsets (Fig. 1h and Extended
137  Data Fig. 5a-d). ILC1/2/3 were enriched in NP tissues, reflecting a mixed pattern of inflammation
138  in CRSwNP?!6-18 (Extended Data Fig. 5¢).

139

140  To demonstrate the relationship between cell subsets during differentiation, we constructed a
141  transcription factor fate decision tree for cells spanning different anatomical regions (Fig. 1j, k).
142  This analysis suggested that transcription factors, such as STATI, ELF5, TEAD1, and CREB3, are
143 regulons modulating the differentiation of different cell subsets, further demonstrating the
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144 correctness of the sub-clustering across the samples. Collectively, these findings reveal the cellular
145  heterogeneity in the inflammatory environment across three anatomical regions, and identify
146  disease-specific cell subsets that may regulate immune response in CRSwNP.

147

148  IDOTI" fibroblasts and LY6D" club cells contribute to neutrophil recruitment in CRSWNP
149

150  CRSwNP patients exhibit both eosinophilic and neutrophilic inflammation®®. Increased neutrophilia
151  was detected in the mucosa of NP tissues from CRSwNP patients (Fig. 2a). We also used the xCell
152  algorithm to quantify neutrophil infiltration in a bulk RNA-seq dataset of CRSwNP (GSE179265),
153  and again detected the significantly elevated neutrophilia in CRSWNP samples as compared to
154 healthy tissue samples (Fig. 2b). Seeking to identify epithelial and stromal cell subsets contributing
155  to neutrophil infiltration, we generated an integrated dataset built from our data and another
156  CRSwNP scRNA-seq dataset (HRA000772) (Extended Data Fig. 6a)%°, and subsequently used an
157  algorithm combining Networkx, Community, and Pygraphviz to plot chemokine-chemokine
158  receptor interaction networks and infer the strongly interacting cell subset pairs. Notable signals
159  from the network included a superlatively strong interaction between IDOI* fibroblasts and
160  neutrophils (Fig. 2c), with MMP7" GCs and LY6D" club cells also interacting strongly with
161  neutrophils (Fig. 2¢).

162

163  In particular, the chemokine receptors enriched in neutrophils (CCRI and CXCR1/2/4) matched
164  extensively with chemokines highly expressed in IDOI" fibroblasts (such as CXCL1/2/3/5/6/8 and
165  CCL5/7/8/11)**?(Fig. 2d). The interaction between neutrophils and MMP7* GCs was characterized
166 by high CXCR2 expression in neutrophils and strong CXCL2/3 expression in MMP7* GCs. LY6D"
167  club cells interacted with neutrophils by expressing high levels of SI00A8/A9, and their receptor
168  TLR4 was expressed mainly on neutrophils (Fig. 2d). However, MMP7* GCs did not show much
169  difference in proportion of total epithelial cells in different anatomical regions (Fig. 2¢). They were
170  probably a subset of cells with an intermediate state based on their low pseudotime ct values
171 calculated by RNA velocity (Extended Data Fig. 4a-d). Therefore, MMP7+ GCs were not considered
172  to be associated with neutrophil infiltration in CRSWNP.

173

174  In contrast to that of MMP7* GCs, the proportion of LY6D™ club cells was greater in the IT and NP
175  tissues of CRSwNP patients than in the IT tissue of healthy individuals (HC-IT), suggesting their
176  potential role in CRSwWNP development (Fig. 2e). Consistent with these findings, using the
177  HRAO000772 dataset, we also detected higher proportions of LY6D* club cells and IDOI™ cells in
178  the CRSwNP with higher neutrophil numbers (neCRSwNP) than those with lower neutrophil
179  numbers (¢CRSwNP) (Extended Data Fig. 6b-d). We then conducted immunofluorescence analyses
180  on NP tissues from 6 CRSWNP patients (CRS-NP) and IT tissues from 6 healthy controls (HC-IT),
181  and the results revealed a preferential distribution of neutrophils (MPO™ cells) in the LY6D* club
182  cell-rich and IDO1™ fibroblast-rich regions (Fig. 2f, g), supporting their ability to recruit neutrophils
183  in an inflammatory milieu in CRSwNP. These results collectively support that LY6D" club cells and
184  IDOI" fibroblasts facilitate neutrophil recruitment in CRSWNP.

185

186 LY6D" club cells drive IL-1 signaling-mediated neutrophilic inflammation in CRSwNP

187
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188  We further compared the proportions of LY6D* club cells across anatomical regions. An elevated
189  proportion of LY6D* club cells within the total epithelial cell population was noted in CRS-ITs
190  compared to HC-ITs, and in NP tissues compared to adjacent MT tissues (Fig. 3a). We then
191  performed immunofluorescence analyses to evaluate the distribution of LY6D™ club cells in different
192  tissues. Immunostaining detected only a few LY6D* cells in normal IT tissues, but more LY6D" cells
193  in NP tissues, reflecting the preferential induction of LY6D™ club cells in an inflammatory milieu
194  (Fig. 3b, ¢). LY6D" club cells were highly conserved across three anatomical regions as indicating
195  in fate decision tree, and PITX] ranked as the top differentially expressed transcription factor
196  determining LY6D™ club cell differentiation (Fig. 3d, e).

197

198  Previous studies have showed that the expression of S70048 and S10049 is elevated in nasal polyps
199  as compared to control tissues?®?4, and is associated with neutrophilic inflammation and CRS
200  severity?®. By exhibiting epithelial cell subset marker gene expression via heatmap, we observed
201  the upregulation of SI10048 in LY6D" club cells (Fig. 3f). We next explored the differentially
202  expressed genes (DEGs) in LY6D" club cells as compared to other epithelial cells (Fig. 3g). In
203  addition to LY6D and S10048, S10049 was also significantly upregulated in LY6D" club cells (Fig.
204  3g). UMAP showed that LY6D" club cells were the main cell source of S10048 and S10049 in the
205  epithelium that may promote neutrophil chemotaxis in CRSwNP?® (Fig. 3h and Fig. 5b). The high
206  expression of EREG and AREG in LY6D" club cells indicated their involvement in eosinophil
207  reprogramming and goblet metaplasia in response to inflammation?”?® (Fig. 3h).

208

209  Pathway enrichment analysis revealed that the transcriptome of LY6D" club cells was enriched in
210  genes induced by IL-1 signaling (Fig. 3i). The RNA velocity profile of total club cells indicated that
211 LY6D" club cells originated from resident club cells, suggesting that some club cells in the face of
212  upregulated IL-1 signaling progressively acquired LY6D* club cell identity in the mucosal
213 epithelium in CRSwWNP patients (Fig. 3j). The expression of several key functional genes and
214 transcription factors upregulated during the maturation process of LY6D™ club cells was presented
215  in the heatmap (Fig. 3k). ILIRN was inferred by RNA velocity, iteratively indicating that IL-1
216  signaling participates in the transdifferentiation of LY6D" club cells (Fig. 3k). Pathway enrichment
217  analysis revealed that genes involved in neutrophil degranulation were also enriched in LY6D* club
218  cells, reflecting the regulation of neutrophil recruitment by LY6D" club cells (Fig. 3i). Taken together,
219  these findings underscore the role of LY6D™ club cells in IL-1 signaling-mediated neutrophilic
220  inflammation in CRSwNP.

221

222  IDOT" fibroblasts secrete chemokines that facilitate neutrophil recruitment in CRSwNP

223

224 To identify the stromal cell subsets responsible for inflammation in CRSWNP, we further sub-
225  clustered the stromal cell compartment. Endothelial cells, pericytes and smooth muscle cells did not
226  show much variation in the proportions of cell subsets across different anatomical regions except
227  for an increased proportion of arterial endothelial cells and decreased proportion of lymphatic
228  endothelial cells in CRS-related tissues as compared to those in HC-ITs, suggesting weakened
229  lymphatic infiltration but enhanced angiogenesis in inflammatory tissues (Fig. 4a and Extended
230  DataFig. 7a-d). Fibroblast subsets exhibited substantial disparities in cellular proportions within the
231 stromal cell compartment. The proportions of IDOI* and OXTR™ fibroblasts were markedly higher
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232 in NPs than in other tissues (Fig. 4a).

233

234 To better characterize the functionality of the fibroblast subsets, we proceeded to construct a
235  transcription factor fate decision tree for different cell subsets within the stromal cell compartment.
236  Six out of the seven distinct fibroblast subsets were categorized into two main modules (Fig. 4b, c).
237  We noticed that module 1 comprised fibroblasts that exerted pro-inflammatory effects by enhanced
238  production of certain chemokines, such as CXCL1 and CXCLS, while module 2 encompassed
239  fibroblasts that mainly reside in the adventitia and are essential for regulating the integrity and
240  function of the vessel structure?®3!. The fibroblast clusters were displayed according to different
241  anatomical regions (Fig. 4d). Within the cell clusters in module 1, IDOI* and OXTR" fibroblasts
242  were enriched in inflammatory tissues, mostly in NPs, and they were barely detected in healthy
243 tissues (Fig. 4d).

244

245  Considering the potent interaction detected between /DO1* fibroblasts and neutrophils, we explored
246  the gene expression patterns of different stromal cell subsets. The transcriptome of IDOI*
247  fibroblasts was enriched in chemokines (CXCL1/2/3/8) that are relevant to neutrophilic
248  inflammation (Fig. 4e). We subsequently conducted pathway enrichment analysis on the fibroblast
249  subsets within module 1, whose gene expression pattern was associated with inflammatory
250  responses, to scrutinize the regulatory pathways in which IDOI* fibroblasts are implicated (Fig. 4f).
251  Interestingly, both the IL-1 signaling pathway and the NF-kB signaling were enriched in /DOI*
252  fibroblasts, indicating the upstream regulation of IDOI" fibroblasts by IL-1 signaling in
253  inflammation development. The high expression of MMP3 and LIF in IDOI* fibroblasts also
254  indicated the regulation of IDOI" fibroblasts by IL-1 signaling®>33 (Fig. 4e). Immunofluorescence
255  staining revealed increased CXCLS protein level and a greater number of IDO1* fibroblasts (IDO1*
256  COL1A2* cells) in CRS-NP samples as compared to HC-IT samples (Fig. 4g). Together, these
257  findings elucidate IL-1 signaling as a common pathway inducing transdifferentiation of LY6D" club
258  cells and IDOI" fibroblasts to facilitate neutrophil recruitment in CRSwNP.

259

260  IL-1B—induced the transdifferentiation of LY6D" club cells and IDOI" fibroblasts promotes
261  neutrophil recruitment

262

263  IL-1 signaling can be activated by the interaction between IL-1f and IL-1 receptor (IL-1R), leading
264  to various immune responses including neutrophilic inflammation34. Here we deployed recombinant
265  IL-1PB on air-liquid interface (ALI) cultures generated from primary human nasal epithelial cells
266  (HNEs) (Extended Data Fig. 8a). Bulk RNA-seq data revealed that the addition of IL-1 elicited the
267  LY6D' club cell state of ALI-cultured HNEs, as IL-1B-stimulated ALI-cultured HNEs highly
268  expressed genes that were also upregulated in LY6D™ club cells detected by scRNA-seq, such as
269  LY6D, SPRR2F, S10049, and LYPD3 (Fig. 5a-c). Immunofluorescence staining of ALI-cultured
270  HNEs revealed the colocalization and elevation of LY6D and S100A8 upon IL-1p stimulation (Fig.
271  5d). These results suggested that IL-1p induced transdifferentiation of LY6D™ cells in vitro. ELISA
272  detected the increased secretion of S100A8/A9 protein from ALI-cultured HNEs upon IL-1f3
273  stimulation (Fig. 5e). Considering the ability of SI00AS8, S100A9, and S100A8/A9 to promote
274 neutrophil activation, chemotaxis and adhesion, we performed a chemotaxis assay to determine
275  whether the secretion of ST00A8/A9 contributes to IL-1B-mediated neutrophil recruitment®®. The
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276  results demonstrated that the media of ALI-cultured HNEs stimulated with IL-13 possessed a
277  stronger neutrophil chemotactic capacity than the control media (Fig. 5f and Extended Data Fig. 8b).
278

279  To explore the effect of IL-1p on the induction of fibroblasts, we treated cultured primary fibroblasts
280  isolated from IT tissues and NPs with IL-1p and performed bulk RNA sequencing. Bulk RNA
281  sequencing results revealed high expression of genes encoding neutrophil chemoattractants (CXCLI,
282  CXCL2, CXCL3, CXCLS5, CXCL6, and CXCLS) in fibroblasts upon IL-1p stimulation (Fig. 5g).
283  These genes were also upregulated in /DOI" fibroblasts according to scRNA-seq analysis,
284  suggesting that the primary fibroblasts acquire the identity of IDOI" fibroblasts upon IL-1
285  stimulation. Immunofluorescence staining demonstrated that IL-1B was capable of activating
286  fibroblasts and inducing the expression of CXCL8 and IDO1 in both IT-derived and NP-derived
287  fibroblasts (Fig. 5h, 1). In line with the results of bulk RNA sequencing, ELISA showed an increase
288  in CXCLS secretion in fibroblasts treated with IL-13 compared to those treated with PBS (Fig. 5j).
289  As expected, culture media from IL-1B-exposed human nasal primary fibroblasts resulted in an
290  increase in the transmigration of purified blood neutrophils compared with media of normal
291  fibroblasts or fresh media mixed with IL-10 (Fig. 5k). Therefore, we reason that IL-1[3 induces both
292  epithelial cells and fibroblasts to promote the recruitment of neutrophils to the sites of inflammation
293  in CRSwNP.

294

295  IL-1p antagonist impedes the transdifferentiation of LY6D" club cells and IDOI" fibroblasts
296  and mitigates inflammation in vivo

297

298  IL-1Pisassociated with neutrophilic airway inflammation®. Here we revealed increased IL-1 level
299  in CRS-NP compared with that in HC-IT (Fig. 6a), most of which was expressed in MNP/DCs (Fig.
300 6b-d). The proportion of monocytes was greater in NP tissues than in other tissues, explaining an
301  increase in IL-1B in the inflammatory mucosa (Fig. 6e). IL-1p is correlated with neutrophilic
302  inflammation in CRS, which is frequently associated with worse disease outcomes®. However,
303  whether therapy targeting IL-1 mitigates neutrophilic inflammation in CRSwNP is unknown.

304

305  To explore the effect of IL-1f inhibition on neutrophilic CRSWNP, we established a mouse model
306  of lipopolysaccharide (LPS)-induced neutrophilic chronic rhinosinusitis with nasal poly (NCRS),
307  and then treated the model mice with anakinra, a recombinant, nonglycosylated interleukin-1
308  receptor antagonist that has been employed as a therapeutic intervention for autoinflammatory
309  diseases and hematological malignancies®* (Extended Data Fig. 8c). The total cell count in nasal
310 lavage fluid (NLF) from mice serves as an indicator of inflammation severity®®. We detected fewer
311  cells in the NLF from anakinra-treated NCRS mice as compared to untreated NCRS mice (Fig. 6f).
312  ELISA detected elevated secretion of CXCL8 and TNFa in the NLF from NCRS mice, while the
313  secretion of these factors approached to normal level in anakinra-treated NCRS mice (Fig. 6g). In
314  NCRS mice, we observed the inflammatory features represented by increased inflammatory cell
315  infiltration and mucosal hyperplasia with impaired mucosal integrity, which were alleviated in
316  anakinra-treated NCRS mice (Fig. 6h). Immunochemistry staining detected increased neutrophil
317  infiltration in NCRS mice, which was also improved in anakinra-treated NCRS mice (Fig. 61). These
318  findings reflected the substantial mitigation of inflammation by IL-13 blockade in NCRS mice.
319
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320  Similar to the induction of human primary cells by IL-18, we detected increased numbers of LY6D"
321  club cells and /DO fibroblasts in the mucosa of NCRS mice as compared to those in control mice
322  (Fig. 6j, k). We next investigated whether IL-1 antagonist affects the transdifferentiation of LY6D"
323  club cells and IDOI* fibroblasts in NCRS mice. Immunofluorescence staining demonstrated that
324  numbers of LY6D" club cells and IDO1* fibroblasts were declined in the mucosa of anakinra-treated
325  NCRS mice, along with the reduction of neutrophil infiltration, as compared to untreated NCRS
326  mice (Fig. 6j, k). These findings suggested that IL-1( suppression impedes the transdifferention of
327  LY6D" club cells and IDOI™ fibroblasts and mitigates neutrophilic inflammation, suggesting that
328  targeting IL-1 is an effective intervention against neutrophil recruitment in CRSwNP.
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330  Discussion

331 Here, we presented a detailed profile of the nasal mucosa of HC-ITs, CRS-ITs, CRS-MTs, and NPs
332  from CRSwWNP patients at the single-cell level. We identified LY6D* club cells and /DO fibroblasts
333  in the nasal mucosa that promote neutrophil recruitment in CRSWNP. LY6D" club cells exert the
334  pathogenic effects upon IL-1 signaling stimulation by secreting S100A8 and S100A9, two
335  molecules possessing ability to promote neutrophil chemotaxis?. In addition, /DOI" fibroblasts
336 induced by IL-1 signaling produce multiple chemokines that interact with receptors expressed in
337  neutrophils and promote neutrophil recruitment. IL-1f, a key factor in the IL-1 signaling pathway,
338  was demonstrated to be upregulated in NPs from CRSwNP patients. We found that IL-1f induces
339  the transdifferentiation of LY6D" club cells and /DOI* fibroblasts from epithelial cells and
340  fibroblasts, respectively. Increased numbers of LY6D™ club cells and IDOI* fibroblasts were also
341  observed in NCRS mouse model. Administration of an IL-1p antagonist reduced the numbers of
342  LY6D" club cells and IDOI" fibroblasts, and showed a promising effect on alleviating neutrophilic
343  inflammation in NCRS mice (see the model in Extended Data Fig. 8d).

344

345  Aprevious study detected higher mRNA and protein levels of IL-1f3 in NPs than in uncinate tissues,
346  inferior turbinates, and ethmoid sinus mucosal samples from control subjects, as did an increased
347  number of IL-1B" cells in polyp tissue from neutrophilic CRSWNP patients*>*!, However, the cell
348  sources of IL-1p in the nasal mucosa are unclear. Here, we verified the upregulation of IL-1p in NP
349  samples from CRSwWNP patients and identified that the cell sources of IL-13 in CRSWNP were
350  monocytes, macrophages, DCs, and neutrophils. Our results elucidated the role of IL-1f in
351  determining the transdifferentiation of LY6D" club cells and and /DO fibroblasts, both of which
352  are enriched in NP tissues. Elevated expression of 10048 and S100A49 has been observed in nasal
353  polyps compared to control tissues®?3?4, Both proteins that induce neutrophil chemotaxis and
354  adhesion?® are secreted by LY6D" club cells in the epithelium from the nasal mucosa. Elevated levels
355  of EGFR ligands have been detected in various airway disorders, such as CRS and COPD*?43, Our
356  results also demonstrated increased expression of EREG and AREG in LY6D" club cells, indicating
357  the involvement of these cells in activating EGFR signaling and subsequently inducing mucus and
358  inflammatory cytokine secretion from airway epithelial cells*4. The functionality of LY6D™ club
359  cells is multifaceted and deserves further exploration. Previous studies have shown that immune
360  cells and stromal cells within the organs, including macrophages and fibroblasts, send coordinated
361  signals that guide neutrophils to their final destination*®*6, Our data uncovered an unreported
362  mechanism underpinning neutrophil chemotaxis orchestrated by IDOI" fibroblasts in CRSwNP.
363  IDOI" fibroblasts constitute the core cell subset that promotes neutrophil recruitment based on the
364  strong interaction observed between these two cell subsets in CRSwNP. IL-1pB-induced /DOI*
365  fibroblasts release substantial quantities of chemokines (CXCL1/2/3/5/6/8) to promote neutrophil
366  recruitment. Considering that both LY6D™ club cells and IDOI* fibroblasts are induced by IL-1f,
367  future studies should examine whether other pro-inflammatory cytokines in the IL-1 signaling
368  pathway, such as IL-1a, contribute to the transdifferentiation of the two cell subsets.

369

370 It is well known that neutrophilia and eosinophilia are both present in most cases of CRS'.
371  Activated neutrophils possess the capability to facilitate eosinophil transmigration and
372  accumulation*’. Studies have demonstrated the association of mixed eosinophilic-neutrophilic
373  inflammation with hard-to-treat asthma or CRSWNP®%48 In addition to surgery and intranasal
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374  corticosteroids, multiple biologics have been approved or are undergoing clinical trials as
375  therapeutics for CRS. Dupilumab (targeting IL-4Ra), omalizumab (targeting IgE), and
376  mepolizumab (targeting IL-5) have been approved for CRSwWNP treatment. Reslizumab (targeting
377  1IL-5) and benralizumab (targeting IL-5Ra) have been undergoing phase 2 and phase 3 trials,
378  respectively*®. However, these therapies primarily target eosinophilic and type 2 inflammation in
379  CRSwNP, whereas therapies targeting neutrophilic inflammation remain a gap. Given the
380  unfavorable prognosis of CRSWNP with a mixed inflammatory pattern and the ineffectiveness of
381  steroids on the neutrophil activation state in CRSWNP, the demand to develop novel strategies
382  against neutrophilia in CRSWNP patients is imperative*. Strategies targeting IL-1p, such as
383  anakinra, rilonacept, and canakinumab, are commonly used to block the effects of IL-1p, thereby
384  reducing inflammation and related symptoms in conditions such as rheumatoid arthritis,
385  atherosclerosis, and other immune-mediated diseases™. In this study, we revealed the effects of
386 intervention targeting IL-1p on inducing LY6D" club cells and IDOI" fibroblasts, and recruiting
387  neutrophils in CRSwNP. We validated the mitigation of neutrophilic inflammation by the
388 application of anakinra in an LPS-induced neutrophilic CRSWNP mouse model. We did observe a
389  substantial reduction in chemokine secretion and a decrease in neutrophil infiltration in anakinra-
390 treated neutrophilic CRSWNP mice. Given the promising anti-inflammatory eftects of blocking IL-
391 1B in the neutrophilic CRSWNP mouse model, our findings highlight that targeting IL-13 may be
392  an effective strategy for the treatment of neutrophilic inflammation in CRSwNP.

393
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394  Materials and methods

395

396  Study participants

397  In total, 85 individuals aged between 18 and 70 years were recruited from the Department of
398 Otolaryngology in Qilu Hospital of Shandong University, including chronic rhinosinusitis with
399  polyps (CRSwNP) patients (n=47) and healthy controls (HCs) (n=38). This study was approved by
400  the Medical Ethics Committee of Qilu Hospital of Shandong University (KYLL-202102-1061). All
401  study participants provided written informed consent. The diagnosis of CRSWNP was based on the
402  EPOS 2020 criteria®!, and included confirmatory clinical, endoscopic and radiographic criteria. HCs
403  were patients with cerebral spinal fluid leak or nasal septum deviation. The nasal tissues, including
404  nasal polyps, middle turbinates, and inferior turbinates, were collected during endoscopic sinus
405 surgery. Participants who had an immunodeficiency disorder, fungal sinusitis, cystic fibrosis or
406  tumors were excluded from the study. No participants used systemic corticosteroids for at least 4
407  weeks before surgery. The detailed clinical characteristics are summarized in Supplementary Table
408 1.

409

410  Preparation of single-cell suspensions

411  Nasal mucosa was freshly sampled from the middle turbinates (n=7), inferior turbinates (n=9), nasal
412  polyps (n=15) of CRSwNP patients and inferior turbinates (n=2) of patients with cerebral spinal
413  fluid leak. The nasal biopsies were washed in phosphate-buffered saline (PBS, 10010023,
414  ThermoFisher) to remove mucus and blood cells. Then, the nasal tissues were cut into approximately
415  0.5-mm? pieces in RPMI-1640 medium supplemented with 1% penicillin/streptomycin, and then
416 enzymatically digested with the Multi Tissue Dissociation Kit 2 (MACS# 130-110-203) at 37°C for
417 30 min with agitation, according to the manufacturer’s instructions. Following cell dissociation, the
418  resultant cell suspension was sequentially filtered through cell strainers with pore sizes of 70 pm
419  and 40 um (BD). Subsequently, the samples were centrifuged at 300g for 10 minutes. Subsequent
420  to the removal of the supernatant, the cells forming the pellet were reconstituted in red blood cell
421  lysis buffer (Thermo Fisher) and subjected to a 2-minute incubation on ice to lyse the red blood
422  cells. Following dual washes with PBS, the cellular pellets were re-suspended in PBS supplemented
423  with 0.04% bovine serum albumin (A7906, Sigma-Aldrich).

424

425  Single-cell RNA library construction and sequencing

426  DNBelab C Series High-throughput Single-cell System (BGI-research) was utilized for scRNA-seq
427  library preparation. Briefly, the single-cell suspensions underwent a series of processes to generate
428  barcoded scRNA-seq libraries. These steps encompassed droplet encapsulation, emulsion breakage,
429  collection of beads containing the captured mRNA, reverse transcription cDNA amplification and
430  subsequent purification. The cDNA was subjected to fragmentation into shorter segments spanning
431 250 to 400 base pairs. Following this, the construction of indexed sequencing libraries was achieved
432 in accordance with the protocol provided by the manufacturer. Qualification was performed using
433  the Qubit ssDNA Assay Kit (Thermo Fisher Scientific) and the Agilent Bioanalyzer 2100.
434 Subsequent to library preparation, all the constructs underwent sequencing using the DIPSEQ T1
435  sequencing platform in the China National GeneBank via pair-end sequencing methodology. The
436  sequencing reads contained 30-bp read 1 (including the 10-bp cell barcode 1, 10-bp cell barcode 2
437  and 10-bp unique molecular identifiers [UMI]), 100-bp read 2 for gene sequences and 10-bp
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438  barcodes read for sample index. Next, processed reads were aligned to the GRCh38 reference
439  genome using STAR (v2.5.3). The identification of valid cells was achieved through an automated
440  process utilizing the "barcodeRanks" function from the DropletUtils tool. This function was
441  employed to eliminate background beads and those with UMI counts falling below a predetermined
442  threshold, using the UMI number distribution characteristic of each cell. Finally, we computed the
443  gene expression profiles of individual cells and subsequently generated a matrix of genes by cells
444 for each library by means of PISA. The newly generated scRNA-seq data and bulk RNA-seq data
445  will be immediately accessible upon acceptance of the paper.

446

447  Alignment, quantification, and quality control of single-cell RNA sequencing data

448  The droplet-based sequencing data were subjected to alignment and quantification through the
449  utilization of CellRanger software (version 3.0.2, designed for 3’ chemistry), employing the
450  GRCh38.p13 human reference genome. The Python package Scanpy (version 1.7.1)%2 was
451  employed to load the matrix containing cell-gene counts and to execute quality control procedures
452  for both the newly generated dataset and the acquired datasets. For each sample, genes associated
453  with mitochondria (indicated by gene symbols commencing with "MT-") and ribosomal proteins
454 (initiated by gene symbols commencing with "RP") were eliminated from consideration. After that,
455  cells possessing less than 2000 UMI counts and 250 detected genes were identified as empty
456  droplets and subsequently excluded from the datasets. Finally, genes demonstrating expression in
457  fewer than three cells were excluded from further analysis.

458

459  Doublet detection

460  In order to rule out doublets, we implemented the Scrublet software (version 0.2.3)%%, which
461  facilitated the identification of artifactual libraries originating from two or more cells within each
462  scRNA-seq sample, comprising both the newly generated dataset and the compiled datasets. The
463  doublet score for each individual single cell, along with the threshold determined from the bimodal
464  distribution, was computed using the default parameters (sim_doublet ratio=2.0;
465  n_neighbors=None; expected doublet rate=0.1, stdev_doublet rate=0.02). After that, a
466  comprehensive assessment was conducted on the remaining cells and cell subsets to identify
467  potential false-negatives from the scrublet analysis. This evaluation was guided by the following
468  sets of criteria: (1) cells with more than 8000 detected genes, (2) subsets that expressed marker
469  genes from two distinct cell types, which are unlikely according to prior knowledge (i.e., CD3D for
470 T cells and EPCAM for epithelial cells). Any cells or subsets identified as doublets were excluded
471  from subsequent downstream analyses.

472

473 Graph subseting and partitioning cells into distinct compartments

474  Downstream analysis included normalization (scanpy.pp.normalize total method, target sum=1e4),
475  log-transformation (scanpy.pp.loglp method, default parameters), cell cycle score
476  (scanpy.tl.score genes cell cycle method), cell cycle genes defined in Tirosh et al, 2016%*, feature
477  regress out (scanpy.pp.regress_out method, UMI counts, percentage of mitochondrial genes and cell
478  cycle score were considered to be the source of unwanted variability and were regressed), feature
479  scaling (scanpy.pp.scale method, max_value=10, zero center=False), PCA (scanpy.tl.pca method,
480  svd_solver="arpack’), batch-balanced neighborhood graph building (scanpy.external.pp.bbknn
481  method, n_pcs=20)%, leiden graph-based subseting (scanpy.tl.leiden method, Resolution=1.0)%,
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482  and UMAP visualization®” (scanpy.tlumap method) performed using scanpy. The initial
483 categorization of the subsets encompassed a division into six distinct compartments, achieved
484  through the utilization of marker genes established in the existing literature in conjunction with
485  genes exhibiting differential expression. (scanpy.tl.rank gene groups method, method="Wilcoxon
486  test’). Specifically, the epithelial compartment was annotated using a gene list (EPCAM, KRTS,
487  KRTI18, KRT19, PIGR), T and ILCs compartment (CD2, CD3D, CD3E, CD3G, TRAC, IL7R), B
488 cell compartment (JCHAIN, CD79A, IGHAT1, IGHA2, MZB1, SSR4), MNPs compartment (HLA-
489  DRA, CST3, HLA-DPBI, CD74, HLA-DPA1, AIF1), Mast cell compartment (TPSAB1, CPA3,
490  TPSB2,CD9, HPGDS, KIT), and Stromal cell compartment (IGFBP7, IFITM3, TCF7L1, COL1A2,
491  COL3AI1, GSN). Subsequently, the epithelial compartment was subjected to sorting for subsequent
492  downstream analysis.

493

494 Transcription factor module analysis

495  The python package pySCENIC workflow (version 0.11.0) with default settings was used to infer
496  active TFs and their target genes in all human cells®5°. Specifically, the pipeline was executed in
497  three steps. Initially, the single-cell gene expression matrix was filtered to eliminate genes whose
498  expression was detected in fewer than ten total cells. The retained genes were subsequently
499 employed to construct a gene-gene correlation matrix, which facilitated the identification of co-
500  expression modules through the application of a regression per-target approach utilizing the
501  GRNBoost2 algorithm. Subsequent to the initial step, each identified module was systematically
502  refined based on a regulatory motif in close proximity to a transcription start site (TSS). The
503  acquisition of cis-regulatory footprints was facilitated through the utilization of positional
504 sequencing methodologies. The binding motifs of the TFs were then used to build an RCisTarget
505  database. Modules were retained based on the enrichment of transcription factor (TF)-binding
506  motifs among their respective target genes. In cases where target genes lacked direct TF-binding
507  motifs, they were excluded from consideration. In the third phase, we assessed the influence of each
508  regulon on individual single-cell transcriptomes through the utilization of the area under the curve
509 (AUC) score, employing the AUCell algorithm as the evaluative metric. The scores pertaining to
510 transcription factor motifs within gene promoters and regions surrounding transcription start sites,
511  specific to the hg38 human reference genome, were acquired from the RcisTarget database.
512  Concurrently, the list of transcription factor-associated genes was obtained from the Humantfs
513  database®.

514

515  Fate decision tree construction (regulon-based)

516  Dendrogram plots were generated for epithelial cells using the sc.pl.dendrogram method from the
517  Scanpy package. These plots were generated based on the AUCell matrix comprising 608 regulons,
518  aiming to visualize more nuanced alterations. We deciphered the diverging composite rules of a
519  regulon-based dendrogram by testing each branching node for differential regulon importance.
520  Thereafter, differential analysis of regulon expression was conducted for each node using the
521  Wilcoxon test (implemented through the sc.tl.rank gene groups method with method='"Wilcoxon
522  test'), with the aim of deducing the sequence of regulon-driven propagation events.

523

524  Datasets integration

525 In this study, we utilized a previously published scRNA-seq dataset of CRSWNP? (GSA:
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526  HRAO000772), the one that detailed a specific quantity of neutrophils, to investigate the expression
527  of inflammatory factors in neutrophils in human nasal mucosal tissues. Specifically, we compared
528  the downloaded fastq files with the barcodes-genes matrix utilizing Alevin-fry®l. The matrix
529  underwent initial quality control, doublet removal, and normalization, applied in accordance with
530  the dataset from the previous section. The gene expression and cell annotation of the dataset were
531  modeled using CellTypist®?. Subsequently, the trained model was used to perform Label Transfer
532  onthe HRA000772 dataset. In particular, myeloid cells annotated by Label Transfer were manually
533  reannotated based on marker genes, thereby identifying the neutrophils subset
534  (FCGR3B'CXCRI'CXCR2").

535

536  RNA velocity

537  Cells that met the quality control criteria were used to filter the loom file generated by the Velocyto
538  python package based on the cell barcodes®. This package was used to conduct splicing analysis on
539  the bam file in preparation for subsequent RNA velocity analysis. The filtered loom file served as
540  an input within the Scanpy pipeline, implemented as part of the CellRank pipeline®*. The loom file
541  derived from Velocyto was harnessed to compute RNA velocities for each cell according to standard
542  parameters for the software. CellRank generates both stochastic and dynamic models of RNA
543  wvelocity, which were compared via the computation of a consistency score for each cell, employing
544  each modeling approach, in accordance with the guidance provided by the authors. Pseudotime was
545 subsequently calculated based on the outcomes of RNA velocity analysis, while latent time was
546  deduced from the dynamic velocity results.

547

548  Gene set scoring and identification of significant changes

549  We scored the gene sets of all cells and subsets using the Scanpy python package (sc.tl.score_genes
550  method, ctrl _size=len(genesets), gene pool=None, n_bins=25, use_raw=None). The score was the
551  average expression of a set of genes subtracted from the average expression of a reference set of
552  genes. The reference set was randomly sampled from the gene pool for each binned expression
553  value. To prevent highly expressed genes from dominating a gene set score, we scaled each gene of
554  the log2 (TP10K+1) expression matrix by its root mean squared expression across all cells. After
555  obtaining score-cell matrix of the signatures, differential signature analysis (sc.tl.rank _gene groups
556  method, method="Wilcoxon test’) was implemented to identify significant changes among different
557  nasal anatomical regions. All pathways included in gene set enrichment analysis (Fig. 31, Fig. 4f and
558  Extended Data Fig. 7¢, d) were obtained from Reactome®.

559

560  Cell-cell interaction and network representation analysis

561  To plot chemokine-chemokine receptor interaction networks, we employed the Networkx (version
562  2.5) (https://github.com/networkx/networkx), Community (version 1.0.0bl) and Pygraphviz
563  (version 1.6) (https://github.com/pygraphviz/pygraphviz) python packages to construct a network
564  defined using the count of interactions between cell subsets. The pipeline was implemented in three
565  steps. First, the nodes with a degree of zero were eliminated. Second, any edges with a connection
566  strength less than the average of all the edges were removed. Third, the sizes of the nodes were
567  defined as the log2 (counts+1) of the cell subsets, and the network with the Kamada Kawai layout
568  algorithm (networkx.kamada kawai layout method) was utilized to visualize the network. The
569  thickness of the line connecting the two cell subsets was directly proportional to the degree of
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570  interaction strength between them. The chemokines-chemokines receptor interaction data were
571  obtained from IMEx Consortium®®, IntAct®, InnateDB-A11%8 MINT® and 12D database.

572

573  Estimation of neutrophil infiltration in CRSwNP

574 In this study, we applied the xCell algorithm to determine the immune cell subsets in the RNA-seq
575  dataset (GSE179265). The xCell algorithm represents a gene signature-based approach derived from
576  learning from numerous pure cell types originating from diverse sources. This method adeptly
577  enables a cell type enumeration analysis using gene expression data, providing a comprehensive
578  assessment of 64 immune and stromal cell types. This attribute endows it with a commendable
579 capability to accurately depict the intricate landscape of cellular heterogeneity within tissue
580  expression profiles’t.

581

582  Animals

583  C57BL/6 mice used in these experiments were purchased from SPF Biotech. The mice were
584  maintained in individually ventilated cages in a specific pathogen-free facility under 12 h light—dark
585  cycles at 22-24 °C and 50-60% humidity. The protocol for the animal studies was approved by the
586  Laboratory Animal Ethical and Welfare Committee of Shandong University Cheeloo College of
587  Medicine (23086).

588

589  Neutrophilic CRSWNP mouse model and treatment with an IL-1R antagonist (Anakinra)

590  Mice were randomly divided into three groups consisting of 6 individuals each. The construction of
591  the mouse model of CRSwNP with neutrophilia was carried out following a previously described
592  protocol®. For the control group, 20 ul of sterile normal saline solution was dropped into the nasal
593  cavities three times a week for 3.5 consecutive months. Mice in the model groups received 10 pg of
594  LPS (from Escherichia coli; Sigma-Aldrich, Merck Millipore, Germany) in 20 pl of sterile normal
595  saline solution three times a week for 3.5 consecutive months. For the anakinra-treated group,
596  starting on the 77th day, the mice were given 10 pg of Anakinra (MedChemExpress, HY-108841,
597  USA) in 20 pl of sterile normal saline solution by intranasal instillation and 10 pg of Anakinra in
598 200 pl of saline by intraperitoneal injection 30 minutes after LPS stimulation for 2 weeks. For the
599  following 2 weeks, only 10 pg of Anakinra was intranasally administered in 20 pl of sterile normal
600  saline solution within 30 minutes each after LPS stimulation. The animals were sacrificed 24 h after
601  the last nasal challenge. The graphic protocol is depicted in Extended Data Fig. 8c. NLF was
602  collected immediately from the sacrificed mice by washing the nasal cavity with 1 mL of ice-cold
603  PBS three times. The total number of cells in NLF was counted using a cell counter (JIMBIO, China).
604

605  Immunofluorescence staining

606  The detailed experimental protocol for processing the sinonasal tissue specimens was previously
607 described’?. In brief, we removed the skin on the heads of the mice and then excised the mandibles.
608  The heads of the mice were fixed in 4% paraformaldehyde at room temperature for at least 24 hours,
609  and decalcified for 7 days. For human nasal tissues, biopsy samples were soaked in 4%
610  paraformaldehyde for 24 hours. For both the murine and human studies, after dehydration and
611  paraffin embedding, the tissue samples were cut into 4 um-thick paraffin sections. The slides were
612  incubated at 65 °C for 1 hour, dewaxed, hydrated, and subsequently heated in antigen retrieval liquid
613  for 15 minutes in a microwave oven. After cooling to room temperature, the slides were permeated

17


https://doi.org/10.1101/2024.01.28.576762
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.28.576762; this version posted January 31, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

614  with PBS containing 1% Triton X-100 for 20 minutes. The slides were washed in PBS 3 times and
615  blocked with 5% bovine serum albumin at room temperature for 1 hour. After that, the slides were
616  incubated with the primary antibody (see Supplementary Table 2 for a complete list and dilutions)
617  overnight at 4°C in a humidified chamber. The slides were gently washed with PBS 3 times, and
618  incubated with a fluorescent secondary antibody at room temperature for 1 hour. After washing with
619  PBS, the slides were stained with 4°, 6-diamidino-2-phenylindole ( DAPI) (Solarbio, C006, China)
620  for 10 minutes. After another washing step with PBS, the slides were cover-slipped with anti-fade
621  mounting medium (Solarbio, S2100, China). Image acquisition was performed using two
622  fluorescence microscopes (Olympus, IX73 and VS120, Japan).

623

624  Multiplexed immunohistochemistry

625  Multiplexed immunohistochemistry (mIHC) assay was performed using the Opal 6-Plex Detection
626  Kit (AKOYA #811001, USA) as described previously’. Briefly, after dewaxing and hydration, the
627  slides were boiled in AR6 buffer in a microwave oven for 15 minutes. The tissue sections on the
628  slides were incubated with blocking buffer for 30 min and then with primary antibody (see
629  Supplementary Table 2 for a complete list and dilutions) for 2 hours at room temperature in a
630  humidified chamber. Then the slides were washed with TBST twice and incubated with Opal
631  polymer anti-rabbit/mouse horseradish peroxidase (HRP) for 10 minutes at room temperature. Then,
632 100-300 pl of Opal Fluorophore working solution was added to each slide. After washing with
633  TBST twice, the slides were incubated at room temperature for 10 minutes. The previous steps were
634  repeated as needed. DAPI working solution was applied on the slides for 10 minutes at room
635  temperature. As a final step, the slides were washed and cover-slipped with anti-fade mounting
636  medium. Image acquisition was performed using the TissueFAXS imaging system (TissueGnostics,
637  Germany).

638

639  Isolation and culture of primary human nasal epithelial cells (HNEs)

640  Human nasal epithelial cells were scraped from patients' nasal mucosa during endoscopic sinus
641  surgery. The cells were placed in an Eppendorf tube containing 1 ml of bronchial epithelial cell
642  medium (BEpiCM) (ScienCell, 3211, USA) supplemented with 1% penicillin/streptomycin and 1%
643  bronchial epithelial cell growth supplement immediately upon acquisition. Cells were seeded within
644 6 hours in six well plates pre-coated with Collagen Type I (Corning, 354236, USA) and maintained
645  in a humidified incubator at 37°C containing 5% CO;. The media was changed every two days.
646  When cells reached 90% confluence in the well, they were transferred to the upper chamber of
647  polyester Transwell inserts (0.4 pm, 0.33 cm?, BIOFIL, TCS016012, China) pre-coated with
648 Collagen Type 1. After that, 1 ml of BEpiCM was added into the lower chamber, and media was
649  replaced every two days. At confluence, the media was replaced with differential media (BEpiCM:
650 DMEM/F12 =1:1) in the basal chamber and the apical surface was exposed to provide an air-liquid
651 interface (ALI). Monolayers were grown at the ALI for an additional 21 days to promote
652  differentiation into a nasal epithelium with basal, multiciliated and secretory cells. On day 22, media
653  containing PBS or recombinant IL-1p (10 ng/ml) (Abbkine, PRP100051, USA) was added to the
654  basal chambers for 3 days.

655

656  Isolation and culture of primary human nasal fibroblasts (HNFs)

657  The inferior turbinate or nasal polyp tissues were soaked in penicillin-streptomycin solution

18


https://doi.org/10.1101/2024.01.28.576762
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.28.576762; this version posted January 31, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

658  (Solarbio, P1400, China) for 3 minutes and cut into small pieces. After digestion in Trypsin-EDTA
659  solution (Macgene, CC017-500) for 10 minutes, the tissues were put into cell culture flasks with
660 DMEM media supplemented with 10% FBS. The cells were cultured in a humidified incubator at
661 37 °C containing 5% CO,, and the media was replaced every 2 days. The migrated cells were nasal
662  mucosa-derived fibroblasts. When cells reached 90% confluence in the well, PBS or IL-1p (10
663  ng/ml) was added into the wells, and the cells were cultured for 1 days.

664

665  Isolation of human peripheral blood neutrophils

666  Neutrophils were enriched from peripheral blood by means of Polymorphprep (Serumwerk
667  Bernburg AG, 1895) density centrifugation. We carefully layered 5.0 ml of anti-coagulated whole
668  blood over 5.0 ml of PolymorphPrep in a 15 ml tube. The tubes were centrifuged at 500 g for 30
669 min at 20°C. After centrifugation, two bands were visible, and the neutrophils were enriched in the
670  lower band. The cells were aspirated to another clean tube and an equal volume of sterile normal
671  saline solution was added. After incubating at room temperature for 10 minutes, the tubes were put
672  on centrifuge at 500 x g for 30 minutes. The supernatant was discarded, and the cell pellet was
673  resuspended in Roswell Park Memorial Institute (RPMI) 1640 media supplemented with 1% FBS.
674

675  Neutrophil chemotaxis assay

676  For the cell migration assay, after resuspension in RPMI 1640 media supplemented with 1% FBS,
677  the neutrophils were seeded at 1.0 x 10%/100 pl per well in the upper compartment of 24-transwell
678  plates with 3-um pores (Costar, 3415). The conditioned media from fibroblasts, either stimulated
679  with IL-1B or not, was added into the lower chamber to test the chemotactic effect on neutrophils.
680  Normal culture media was used as a negative control. After 3 hours of incubation at 37°C in 5%
681  COg, the number of the migrated cells in the lower chamber was counted.

682

683  Enzyme-linked immunosorbent assay (ELISA)

684  ELISAs were performed using multiple ELISA kits (4A Biotech, CHE0011, CME0008, CME0004,
685 China) according to the manufacturers’ instructions. In brief, the standards and samples were added
686  to the antibody pre-coated 96-well ELISA plate, which was subsequently incubated at 37°C for 2
687  hours. The liquid was removed, and the plate was washed 4 times with wash buffer. Then, an
688  enzyme-linked antibody was applied to the plate, which was incubated at 37°C for 60 minutes. After
689  a washing step, avidin-biotin-peroxidase complex was applied to each well, and the plate was
690  incubated at 37°C for 30 minutes. The plate was washed 4 times with wash buffer and the color
691 developing reagent was added to each well of the plate and the plate was incubated at 37°C in
692  darkness for 10-20 minutes. The reaction was terminated by adding stop solution and the optical
693  density (OD) at 450 nm was measured immediately using a microplate reader (Thermo Fisher,
694  Varioskan Flash, USA). Analysis was performed using GraphPad Prism version 9.

695

696  Immunohistochemistry

697  Paraffin-embedded sections were incubated at 65°C for 1 hour. Dewaxing, hydration, and antigen
698  repair were performed sequentially as previously described’®. The endogenous peroxidase blocker
699  was applied to the slides after they had cooled to room temperature. The slides were incubated for
700 20 minutes at room temperature. The slides were then washed with PBS 3 times and incubated with
701  the primary antibody (see Supplementary Table 2 for a complete list and dilutions) in a humidified
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702  chamber at 4°C overnight. After washing with PBS, the sections were incubated with reaction
703  enhanced solution. Following another wash, the sections were incubated with the secondary
704  antibody for 10 minutes, and the color reaction was developed using 3,30-diaminobenzidine
705  tetrahydrochloride (DAB) (ZSGB-Bio, PV-9000, China). The slides were counterstained with
706  hematoxylin. Finally, the slides were dehydrated and mounted. The images were acquired using a
707  fluorescence microscope (Olympus VS120, Japan).

708

709  Hematoxylin and eosin Staining (HE staining)

710  HE staining was performed using the HE staining kit (Beyotime, C0105S, China) according to the
711 manufacturer’s instruction. Sections were dewaxed, hydrated and then washed with PBS. Then, the
712 sections were incubated with hematoxylin for 10 seconds and washed with distilled water for 10
713  minutes. After that, the sections were differentiated with 1% hydrochloric ethanol for 20 seconds.
714 After a washing step with distilled water for a 10 min, the slides were stained with eosin for 1 min.
715  Following dehydration, clearing and mounting, the slides were ready for image acquisition under a
716  microscope (Olympus, VS120, Japan).

717

718 Statistical methods

719  No statistical analysis was performed to predetermine sample size. The numbers of samples included
720  in the analyses are listed throughout the figures. For the scRNA-seq data, statistical analyses and
721  graphic production were performed using Python version 3.7.10. The experimental data are
722  presented as mean + SEM or mean with 95% CI, as shown in the corresponding figure legends.
723 Data distribution was assumed to be normal. One-way ANOVA and two-way ANOVA were used to
724 compare multiple sets. Two-tailed Student’s t-tests were used for the comparisons between two sets.
725  Statistical analyses and graphic production were performed with GraphPad Prism version 9
726  (GraphPad Software Inc., San Diego, CA, USA). P < 0.05 was considered statistically significant.
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886  Figure legends

887  Fig. 1: Analysis of middle turbinates, inferior turbinates, and nasal polyps from CRSwNP
888  patients and healthy individuals.

889  a For the study design, 33 samples were collected from distinct anatomical regions (inferior
890  turbinates, middle turbinates, and nasal polyps) of CRSwNP patients and healthy individuals.
891  scRNA-seq (DNBelab C4) acquired 219,716 high-quality cells. Created with BioRender.com.

892 b Cell counts by anatomical region for each compartment. The colors of the cell compartments are
893  consistent in panel (b) and (c).

894 ¢ Unsupervised sub-clustering preliminarily divided the cells into six compartments.

895  d UMAP (uniform manifold approximation and projection) embedding by three anatomical regions.
896 e Bar plot depicting the cell compositions of the indicated anatomical regions of human nasal
897  mucosa from CRSwNP patients and healthy individuals. The colors of the cell compartments are
898  consistent in panel (b) and (c).

899  fUMAP displaying typical cell subsets of the nasal mucosal epithelium.

900 g UMAP displaying 15 cell subsets of stromal cells in the nasal mucosa with the gene signatures of
901  each subset indicated in the colored boxes.

902  h UMAP displaying immune cell subsets in all samples.

903  iBubble heatmap showing marker genes across cell subsets of interest in this study.

904  j A dendrogram of regulons for all cell subsets constructed from the fate decision tree analysis. TFs
905  at each branching point are representative regulons of subjacent groups. The colors of the cell
906  subsets are consistent in panel (j) and (k).

907  k UMAP showing six cell compartments and some cell subsets based on the regulons from the fate
908  decision tree analysis presented in panel (j). The colors of the cell subsets are consistent in panel (j)
909  and (k).

910

911 Fig. 2: Identification of cell subsets involved in neutrophil recruitment in CRSwNP.

912  a Representative image and quantification of immunofluorescence staining for MPO (red) and the
913  nuclear marker DAPI (blue) in IT tissue from healthy individuals (HC-IT) and NP tissue from
914 CRSwNP patients (CRS-NP). Neutrophils are indicated by white arrows. Scale bar, 50 um (left), 20
915  um (right). The data are presented as the means + SEM. The P-value was calculated and reported
916  using the two-tailed Student’s t-test.

917 b Neutrophil scores obtained using the xCell algorithm for CRSwWNP patients and healthy
918  individuals. The P-value was calculated and reported using a two-tailed Student’s t-test.

919 ¢ Cell-cell interaction and network representation analysis based on chemokine-chemokine receptor
920 interactions. The nodes with a degree of zero and a connection strength less than the average of all
921  the edges were eliminated. The sizes of the nodes were defined as the log2 (counts+1) of the cell
922  subsets. The thickness of the link reflects the degree of the interaction. Cell subsets that strongly
923  interact with neutrophils are indicated in red boxes.

924  d Bubble heatmap for chemokine-chemokine receptor interactions between immune cells and
925  epithelial/stromal cells. Previously validated interactions are indicated by colored straight lines.
926  Chemokines predominantly expressed in LY6D* club cells and IDOI™ fibroblasts are indicated in
927  red boxes.

928 e Bar plot depicting the cell composition of epithelial cell subsets in the indicated anatomical regions
929  of human nasal mucosa from CRSwNP patients and healthy individuals.
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930  f Immunofluorescence staining for LY6D (red), KRT13 (white), MPO (green), and the nuclear
931  marker DAPI (blue) in CRS-NP tissue and HC-IT tissue. The epithelium is indicated with orange
932  arrows. Neutrophils are indicated with white arrows. Scale bar, 20 um.

933 g Immunofluorescence staining for COL1A2 (red), IDO1 (white), MPO (green), and the nuclear
934  marker DAPI (blue) in HC-IT tissue and CRS-NP tissue. The epithelium is indicated with orange
935  arrows. Neutrophils are indicated with white arrows. Scale bar, 20 pm.

936

937  Fig. 3: LY6D" club cells regulate neutrophilic inflammation in CRSwWNP.

938 a UMAP displaying the distribution of LY6D" club cells in the indicated anatomical regions of
939  human nasal mucosa from CRSwNP patients and healthy individuals. Enriched LY6D" club cells
940  are indicated with blue circles (left panel). The proportions of LY6D" club cells in the indicated
941  anatomical regions are shown on the right. The colors are consistent in the two panels.

942 b Representative immunofluorescence staining for LY6D (green), SPRR1B (red), KRT13 (white,
943  marker gene of club cells) and the nuclear marker DAPI (blue) in HC-IT tissue and CRS-NP tissue.
944 The white arrows indicate colocalization of LY6D, SPRR1B and KRT13. Scale bar, 20 pm.

945 ¢ Quantification of the data in panel (b). The data are presented as the means = SEM. The P-value
946  was calculated and reported using a two-tailed Student’s t-test.

947 d A dendrogram of regulons for epithelial cell subsets in the indicated anatomical regions
948  constructed from the fate decision tree analysis. The transcription factors at each branching point
949  are representative regulons of subjacent groups. The brown triangles show the proximity between
950  LY6D" club cells (E11) and club cells (E03) during differentiation. The numbering of cell subsets is
951  consistent with that in Fig. 1(k).

952 e TFs enriched in LY6D* club cells aligned by TF specificity score. PITXI (red) is the top
953  transcription factor responsible for LY6D™ club cell differentiation.

954  f Heatmap of gene expression analyzed by scRNA-seq displaying representative genes for 12
955  epithelial cell subsets. LY6D™ club cells are highlighted in cyan letters.

956 g Volcano plot displaying the differentially expressed genes (DEGs) between LY6D* club cells and
957  other epithelial cell subsets. The P-value was calculated and reported using a two-tailed Student’s
958  t-test.

959  h UMAP with the epithelial cell compartment displaying the expression of four upregulated genes
960 (IL1RN, S100A8, AREG, and EREG) in LY6D" club cells. LY6D" club cells are indicated with red
961  circles.

962  iPathway enrichment analysis revealing the enriched signaling pathways in LY6D" club cells when
963  compared with those in other epithelial cells.

964  j RNA velocity analysis based on RNA splicing information indicating that LY6D* club cells are
965  maturely differentiated club cells.

966 k Heatmap displaying dynamic changes in the expression of functional genes and TFs during the
967  maturation process of LY6D™ club cells.

968

969  Fig. 4: IDOI" fibroblasts contribute to IL-1 signaling-mediated neutrophilic inflammation in
970  CRSwNP.

971 a Bar plot depicting the cell composition of stromal cell subsets in the indicated anatomical regions
972  of human nasal mucosa from CRSwNP patients and healthy individuals.

973 b Transcription factor fate decision tree analysis of stromal cells displaying two distinguishable
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974  modules consisting of six fibroblast subsets with remarkable differences in TF patterns. Module 1

975  and module 2 are indicated by blue and green boxes, respectively.

976 ¢ UMAP displaying the expression of marker genes of the two modules in the stromal cell

977  compartment.

978  d UMAP of stromal cell compartment displaying fibroblasts in the indicated anatomical regions.

979  Bar plot displaying differences in the proportions of seven fibroblast subsets in the indicated

980  anatomical regions.

981 e Bubble heatmap depicting the expression of representative genes of /DOI" fibroblasts across

982  different stromal cell subsets.

983  f Radar plot displaying the pathway enrichment analysis results for the four fibroblast subsets in

984  module 1. The colors in the circles reflect the P-values.

985 g Representative immunofluorescence staining for CXCLS8 (white), IDO1 (green), COL1A2 (red, a

986  marker gene of fibroblasts), and the nuclear marker DAPI (blue) in HC-IT tissue and CRS-NP tissue.

987 The white arrows indicate colocalization of IDO1, CXCLS8, and COL1A2 in the NPs. Scale bar, 20

988 pm.

989

990  Fig. 5: IL-1PB induces transdifferentiation of LY6D™ club cells and IDOI" fibroblasts to promote

991  neutrophil recruitment

992  a Volcano plot of DEGs between IL-1p -stimulated and PBS-treated air-liquid interface (ALI) -

993  cultured primary human nasal epithelial cells (HNEs) identified with the cut-off criterion P < 0.05

994 and |log2FC| > 1. The P-values were calculated and reported using two-tailed Student’s t-tests. Blue

995  dots: significantly downregulated genes; red dots: significantly upregulated genes.

996 b UMAP with epithelial cell compartment displaying the expression of four genes that are

997  upregulated in LY6D" club cells identified by scRNA-seq. The red circles indicate LY6D™ club cells

998 in the epithelial cell compartment according to the scRNA-seq data.

999 ¢ Expression of four genes in panel b of ALI-cultured primary HNEs treated with the indicated
1000  conditions (as determined by bulk RNA-seq). The length of the error bars is a 95% confidence
1001  interval for the mean in Fig. 5(¢). The P-values were calculated and reported using a two-tailed
1002  Student’s t-test.

1003  d Representative immunofluorescence staining for LY6D (green), SI00AS8 (red), and the nuclear
1004  marker DAPI (blue) in ALI-cultured primary HNEs upon the indicated stimulations. Scale bar, 50
1005  pm.

1006 e S100A8/A9 protein levels in the media (measured by ELISA) upon the indicated stimulations of
1007  ALl-cultured HNEs. The P-value was calculated and reported using a two-tailed Student’s t-test.
1008  fNumber of neutrophils passing through the membrane of a transwell insert by ALI-cultured HNE-
1009  exposed media in the presence or absence of IL-1 stimulation. ALI-cultured HNE-exposed media
1010  (control media) and fresh media containing IL-1p (control media + IL-1p) were used as negative
1011  control. Data are presented as the means =SEMs. The P-values were calculated and reported using
1012 one-way ANOVA.

1013 ¢ Heatmap displaying the expression of the indicated chemokines in primary fibroblasts derived
1014  from HC-IT tissue and CRS-NP tissue upon the indicated stimulations.

1015  h Representative immunofluorescence staining for IDO1 (green), CXCL8 (red) and the nuclear
1016  marker DAPI (blue) displaying the protein levels of IDO1 and CXCLS8 upon the indicated
1017  stimulations. Scale bar, 100 um.
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1018 i Quantification of the data in panel (h). The data are presented as the means + SEM. The P-values
1019  were calculated and reported using a one-way ANOVA.

1020  j CXCLS protein levels measured by ELISA after indicated stimulations in primary fibroblasts
1021  derived from HC-IT tissues and CRS-NP tissues. The P-values are calculated and reported using
1022  two-way ANOVA.

1023  k Number of neutrophils passing through the membrane of a transwell insert by fibroblasts-exposed
1024  media in the presence or absence of IL-1 stimulation. Fibroblast-exposed media (control media)
1025  and fresh media containing IL-1 (control media + IL-1[) were used as negative controls. The data
1026  are presented as the means = SEM. The P-values were calculated and reported using two-way
1027  ANOVA.

1028

1029  Fig. 6: IL-1B antagonist suppresses transdifferentiation of LY6D* club cells and IDOI*
1030  fibroblasts and mitigates inflammation in vivo.

1031  a Representative immunohistochemistry staining for IL-1p in HC-IT tissue and CRS-NP tissue
1032  (n=5). Scale bar, 50 um. The data are presented as the means + SEM. The P-value was calculated
1033  and reported using a two-tailed Student’s t-test.

1034 b UMAP displaying the expression of IL-1f in total cell subsets determined via the scRNA-seq
1035  analysis.

1036 ¢ UMAP showing the expression of IL-1J in total cell subsets from analysis of the CRSwNP
1037  scRNA-seq dataset (HRA000772).

1038 d UMAP embedding the expression of IL-1P in immune cells determined via the scRNA-seq
1039  analysis.

1040 e Bar plot depicting the cell compositions of MNP/DC subsets for the indicated anatomical regions
1041  of human nasal mucosa from CRSwNP patients and healthy individuals.

1042  f Cell counts in nasal lavage fluid from mice in the indicated groups. Data are expressed as the
1043  means = SEM. The P-values were calculated and reported using one-way ANOVA.

1044 g CXCLS (left) and TNFa (right) protein levels in the nasal lavage fluid of mice in the indicated
1045  groups measured by ELISA. The data are expressed as the means = SEM. The P-values were
1046  calculated and reported using a one-way ANOVA.

1047  hRepresentative H&E images of nasal mucosal tissues from mice in the indicated groups. Scale bar,
1048 200 pm (left), 20 pm (right).

1049  iRepresentative immunohistochemical staining for MPO in nasal mucosal tissues of mice from the
1050  indicated groups (left). Scale bar, 200 pm (left), 50 pm (right). The data are presented as the means
1051  + SEM (right). The P-values were calculated and reported using one-way ANOVA.

1052  j Representative multiple immunohistochemistry images of nasal mucosa in mice from the indicated
1053  groups. Images showing the the staining for IDOI" fibroblasts (orange arrows), LY6D™ club cells
1054 (red arrows), and neutrophils (white arrows) in the nasal mucosa of model mice. Scale bar, 20 um
1055  (left), 2 um (right).

1056  k Quantification of (j). Data are presented as the means + SEM. One-way ANOVA was employed
]1057 to assess variations of /DOI™ fibroblasts and LY6D* club cells.
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Extended Data Figure Legends

Extended Data Fig. 1: Landscape of the scRNA-seq data of CRSwNP.

a, UMAP displaying total cells in the indicated anatomical regions.

b, UMAP displaying expression of marker genes in the six cell compartments defined in Fig.1(a).
¢, UMAP displaying 54 cell subsets.

d, Correlation analysis of the gene expression similarity of total cell subsets.

Extended Data Fig. 2: Summary of total cell subsets in nasal mucosa from patients with
CRSwNP patients and healthy controls.

(a-d) Overview of functional genes and key transcription factors of each cell subset. The four top
genes are listed.

Extended Data Fig. 3: The distribution of samples in total cell subsets.
a, UMAP embedding by patients with CRSWNP and healthy individuals.
b, Bar plots showing the contributions of samples across total cell subsets.

Extended Data Fig. 4: Analysis of glandular cells in nasal mucosa from CRSwNP patients and
healthy controls.

a, RNA velocity analysis based on RNA splicing information.

b, Ct values of four glandular cell subsets calculated by pseudotime analysis.

¢, Heatmap displaying the expression of marker genes for four glandular cell subsets.

d, Heatmap displaying enriched functional and signaling pathways for four glandular cell subsets.

Extended Data Fig. 5: Sub-clustering of immune cells reiterates the inflammatory
environment in neutrophilic CRSwNP.

a, Bar plot displaying the proportions of five immune cell subsets from the indicated anatomical
regions.

b, UMAP displaying the distribution of immune cells in the indicated anatomical regions.

¢, UMAP displaying 12 T/ILCs subsets (left panel). The proportions of different T/ILCs cell subsets
in the indicated anatomical regions (right panel).

d, UMAP displaying 5 subsets of B cells and plasma cells (left panel). The proportions of cells in
different B cell and plasma cell subsets in the indicated anatomical regions across different disease
states (right panel).

Extended Data Fig. 6: Analysis of the neutrophils, LY6D" club cells, and IDOI" fibroblasts in
the scRNA-seq data of CRSwNP (HRA000772).

a, UMAP displaying all cell subsets from the scRNA-seq dataset of CRSWNP (HRA000772). The
enrichment of neutrophils is indicated by a red circle.

b, Proportions of neutrophils in samples from eosinophilic, non-eosinophilic CRSwNP patients and
healthy individuals.

¢, Proportions of LY6D™ club cells in samples from eosinophilic, non-eosinophilic CRSwNP patients,
and healthy individuals.

d, Proportions of IDOI" fibroblasts in samples from eosinophilic, non-eosinophilic CRSWNP
patients, and healthy individuals.
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1102

1103  Extended Data Fig. 7: Endothelial cell, pericyte and smooth muscle cell subsets in nasal
1104 mucosa from CRSwNP patients and healthy controls.

1105  a, UMAP with stromal cell compartment displaying endothelial cells in the indicated anatomical
1106  regions (left panel). Bar plot depicting the proportions of the four endothelial cell subsets in the
1107  indicated anatomical regions (right panel). The numbering of the cell subsets is consistent with that
1108  in Fig. 1(g).

1109 b, UMAP with stromal cell compartment displaying pericytes and smooth muscle cells in the
1110  indicated anatomical regions (left panel). Bar plot depicting the distribution of three subsets of
1111  pericytes and smooth muscle cells in the indicated anatomical regions. The numbering of the cell
1112  subsets is consistent with that in Fig. 1(g).

1113 ¢, Pathway enrichment analysis displaying the enriched functional and signaling pathways for
1114  different endothelial cell subsets.

1115  d, Pathway enrichment analysis displaying the enriched functional and signaling pathways for
1116  different subsets of pericytes and smooth muscle cells.

1117

1118  Extended Data Fig. 8: Graphical protocols and schematic diagram of the mechanism involved
1119  in this study.

1120  a, Representative H&E images of ALI-cultured HNEs showing the structure of differentiated
1121  epithelial cells, such as ciliated cells. Scale bar, 100 um (upper), 50 um (below).

1122 B, Schematic diagram of the neutrophil chemotaxis model.

1123 ¢, Graphical protocol for the establishment of a mouse model of neutrophilic chronic rhinosinusitis
1124  with nasal polyps induced by LPS. The protocol for anakinra administration was included.

1125  d, Graphical summary of new findings on CRSwWNP pathways from this research. The graphical
1126  summary provides novel insights into the mechanism of neutrophil recruitment in the nasal mucosa
1127  of both CRSwNP patients and healthy individuals.

1128
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Supplementary Materials
Supplementary Table 1 Clinical characteristics of healthy control subjects and CRSwNP patients

for this study
Supplementary Table 2 Antibodies and other reagents in this study
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LY6D* Club cells in diverse nasal regions and disease states d
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Extended Data Figure 8
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