

1 From Planning Stage To FAIR Data: A Practical 2 Metadatasheet For Biomedical Scientists

3 **Lea Seep¹, Stephan Grein¹, Iva Splichalova², Danli Ran³, Mickel Mikhael³, Staffan
4 Hildebrand³, Mario Lauterbach⁴, Karsten Hiller⁴, Dalila Juliana Silva Ribeiro⁵, Katharina
5 Sieckmann⁵, Ronja Kardinal⁵, Hao Huang², Jiangyan Yu^{1,6}, Sebastian Kallabis⁷, Janina
6 Behrens⁸, Andreas Till⁹, Viktoriya Peeva⁹, Akim Strohmeyer¹⁰, Johanna Bruder¹⁰, Tobias
7 Blum¹¹, Ana Soriano-Arroquia³, Dominik Tischer³, Katharina Kuellmer¹⁰, Yuanfang Li¹³,
8 Marc Beyer^{13,14}, Anne-Kathrin Gellner^{15,16}, Tobias Fromme¹⁰, Henning Wackerhage¹⁷,
9 Martin Klingenspor^{10,12,18}, Wiebke K. Fenske^{9,19}, Ludger Scheja⁸, Felix Meissner^{7,20},
10 Andreas Schlitzer⁶, Elvira Mass², Dagmar Wachten⁵, Eicke Latz⁵, Alexander Pfeifer^{3,21},
11 and Jan Hasenauer^{1,22,*}**

12 ¹Computational Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany

13 ²Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn,
14 Bonn, Germany

15 ³Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany

16 ⁴Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany

17 ⁵Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany

18 ⁶Quantitative Systems Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany

19 ⁷Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn,
20 Germany

21 ⁸Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg,
22 Germany

23 ⁹Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Medical Center
24 Bonn, Bonn, Germany

25 ¹⁰Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising,
26 Germany

27 ¹¹Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany

28 ¹²EKFZ—Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany

29 ¹³Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn,
30 Germany

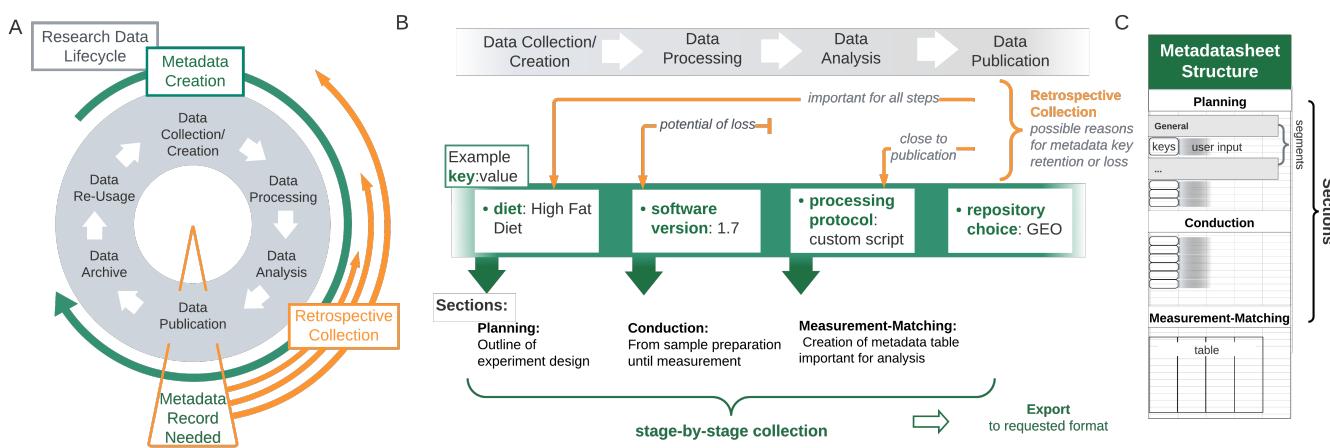
31 ¹⁴PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative

32 Diseases and the University of Bonn, Bonn, Germany
33 ¹⁵Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
34 ¹⁶Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
35 ¹⁷School for Medicine and Health, Faculty of Sport and Health Sciences, Technical University of Munich, Munich,
36 Germany
37 ¹⁸ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
38 ¹⁹Department of Internal Medicine I - Endocrinology, Diabetology and Metabolism, Gastroenterology and
39 Hepatology, University Hospital Bergmannsheil, Bochum, Germany
40 ²⁰Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
41 ²¹PharmaCenter Bonn, University of Bonn, Bonn, Germany
42 ²²Helmholtz Center Munich, German Research Center for Environmental Health, Computational Health Center,
43 Munich, Germany
44 *corresponding author: Jan Hasenauer (jan.hasenauer@uni-bonn.de)

45 ABSTRACT

Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts. However, relevant information resides at differing stages across the data-lifecycle. Often, this information is defined and standardized only at publication stage, which can lead to data loss and workload increase.

46 In this study, we developed Metadatasheet, a metadata standard based on interviews with members of two biomedical consortia and systematic screening of data repositories. It aligns with the data-lifecycle allowing synchronous metadata recording within Microsoft Excel, a widespread data recording software. Additionally, we provide an implementation, the Metadata Workbook, that offers user-friendly features like automation, dynamic adaption, metadata integrity checks, and export options for various metadata standards.


By design and due to its extensive documentation, the proposed metadata standard simplifies recording and structuring of metadata for biomedical scientists, promoting practicality and convenience in data management. This framework can accelerate scientific progress by enhancing collaboration and knowledge transfer throughout the intermediate steps of data creation.

47 1 Introduction

48 Collaboration along with the open exchange of techniques, protocols and data are the backbone of modern biomedical research¹.
49 Data usage and retrieval requires the structured collection of information, such as study design, experimental conditions, sample
50 preparation and sample processing, on the performed measurements. This information is generally referred to as metadata
51 which grows along the research data-lifecycle (Fig. 1A), from planning to its final storage alongside publication.²⁻⁶. There

52 is a growing consensus among researchers, journals and funding agencies that data should adhere to the principles of being
53 findable, accessible, inter-operable and reusable (FAIR). The adherence to these FAIR data principles⁷ requires metadata^{8,9} and
54 benefits from the use of trustworthy digital repositories. Trustworthiness is marked by Transparency, Responsibility, User focus,
55 Sustainability and Technology (TRUST)¹⁰.

56 Repositories are subdivided into cross-discipline and domain-specific categories. Cross-discipline repositories intentionally do
57 not impose any requirements on format or size to allow sharing without boundaries. Domain-specific repositories in the field of
58 biomedicine such as BioSample and GEO¹¹, maintained by the National Center for Biotechnology Information (NCBI), or
59 PRIDE¹² and BioModels^{13,14}, maintained by European Bioinformatics Institute (EBI), impose requirements during submission
60 in form of data and metadata standards. Standards often make use of controlled vocabularies and ontologies to ensure
61 consistency and comparability. Controlled vocabularies, consisting of standardized terms, describe requested characteristics
62 and keys⁵, while ontologies, such as the Gene Ontology (GO)¹⁵, establish structured frameworks for depicting relationships
63 between entities, fostering comprehensive and searchable knowledge structures. Current metadata standards can be divided
64 into two categories. First, comprehensive high-level documents that are often tailored to specific use cases. These documents
65 primarily consist of lists of requested terms or guidelines, often interconnected with corresponding ontologies. For instance,
66 ARRIVE (Animal Research: Reporting of In Vivo Experiments) provides a checklist of information to include in publications
67 of *in vivo* experiments¹⁶ or MIRIAM (minimum information requested in the annotation of biochemical models)¹⁷ standardizes
68 the curation of biochemical models including their annotations. Second, there are structured metadata standards supplied
69 and requested by respective repositories. Irrespective of the suitable metadata standard, it is common to adhere to requested
70 standards at the stage of data publication evoking a retrospective collection (Fig. 1A). Necessary information resides at all
71 stages of the data-lifecycle and may involve different responsible individuals, thereby rendering the retrospective metadata
72 collection resource-intensive.

Figure 1. Alignment of Metadata Lifecycle with the Research Data-Lifecycle. (A) Metadata is created alongside the research data creation, however, often only gathered at the point of publication when it is requested from, e.g., repositories. (B) Through the retrospective collection, recovering necessary metadata items can be challenging. When not generally recorded, only metadata-items of immediate interest for the next step or for data analysis will be available, other items that ensure FAIRness, e.g., the software version of a specific program, might not get recorded at all and will hence be lost. (C) The structure of the proposed Metadatasheet is defined by its sections, which further encompass segments. Within each segment user input is required, which can be of different forms, e.g., values to keys or table entries.

73 Despite the existence of various metadata standards in biomedical sciences and widespread recognition of the relevance of
 74 metadata, a practical issue persists: the absence of a dedicated metadata standard that effectively and with low burden directs
 75 researchers in capturing metadata along the data-lifecycle without loss of information, ensuring FAIRness during and after
 76 the experiment (Fig. 1B). Thus, we propose a metadata standard tailored for wet-lab scientists mirroring the phases of the
 77 biomedical research lifecycle, offering transferability across distinct stages and among diverse stakeholders.

78 The proposed standard, further referred to as Metadatasheet, is embedded in a macro-enabled Excel workbook, further referred
 79 to as Metadata Workbook. The Metadata Workbook offers various usability features, such as automation, integrity checks,
 80 extensive documentation, usage of templates, and a set of export functionalities to other metadata standards. By design, the
 81 proposed Metadatasheet, accompanied by the Metadata Workbook, naturally allows stage-by-stage collection, embodying a
 82 paradigm shift in metadata collection strategies, and promoting the efficient use of knowledge in the pre-publication phase.

83 2 Results

84 2.1 The Metadatasheet is based on comprehensive interview of biomedical researchers

85 Metadata information consists of a set of characteristics, attributes, herein named keys, that intend to provide a common
 86 understanding of the data. Example keys are experimental system, tissue type, or measurement type. Accordingly, the
 87 Metadatasheet is built upon requested keys gathered from comprehensive interviews of research groups and systematical
 88 collection from public repositories. In the initial phase more than 30 experimental researchers from the biomedical sciences
 89 participated, who were from two consortia focusing on metaflammation (<https://www.sfb1454-metaflammation.de/>) and metabolism of brown adipose tissue (<https://www.trr333.uni-bonn.de/>). The participating researchers

91 reported common general keys as well as diverse experimental designs covering 5 major experimental systems and 15 common
92 measurement techniques, each accompanied with their specific set of keys. To refine and enhance the set of metadata keys, we
93 engaged in iterative consultations with biomedical researchers. In parallel, we systematically collected relevant keys from four
94 popular public repositories, namely NCBI¹⁸, GEO¹¹, the Metabolomics Workbench¹⁹ and the PRIDE¹² database. Moreover,
95 expected input, summarized under the term 'controlled vocabulary', for all keys needed to be specified. From second iteration
96 on, specifications of the controlled vocabulary, as well as the set of keys, were improved based on researchers' feedback. The
97 comprehensive key and controlled vocabulary collection process revealed the dynamic, unique and growing requirements
98 of different projects, in terms of values within the controlled vocabulary and performed measurements. Those requirements
99 lead to the choice of allowing customisation and expansion of key sets and controlled vocabulary as an integral part of the
100 Metadatasheet. To handle the dynamic and adaptable nature of the Metadatasheet, it was embedded within a reactive framework
101 with additional functionalities, the Metadata Workbook.

102 In the following, the overall concept and design of the Metadatasheet is introduced, afterwards key aspects of the Metadata
103 Workbook are highlighted. The results section concludes with an example Metadatasheet generated by the Metadata Workbook.

104 **2.2 The Metadatasheet design follows and allows metadata recording along the data-lifecycle**

105 The proposed Metadatasheet is organized into three main sections: 'planning', 'conduction' and 'measurement-matching'
106 section. These sections mirror the stages of the data-lifecycle and align with the general experimental timeline (Fig. 1B). The
107 analogous top-to-bottom structure allows sequential metadata recording acknowledging the continuous growth of metadata.
108 Each section further subdivides into segments, which hold the keys, that need to be specified by the user through values. The
109 segmentation aims to group keys into logical units, that are likely provided by a single individual. This grouping enables the
110 assignment of responsible persons, resulting in a clear emergent order for data entry if multiple persons are involved. Moreover,
111 within a section the segments are independent from each other allowing also parallel data entry.

112 Metadatasheet keys can be categorized based on the form of the expected input. First, providing a single value (key:value
113 pair), e.g. the analyzed 'tissue' (key) originates from the 'liver' (value). Second, filling tables, whereby the row names can be
114 interpreted as keys but multiple values need to be provided (one per column). Third, changing a key:value entry to a table entry
115 by the keyword 'CHANGES'. If the keyword is supplied as a value, the respective target key changes from key:value pair to a
116 table entry. The switch of form allows data entries to be minimal if sufficient or exhaustively detailed if needed. This flexible
117 data entry minimizes the need of repetition gaining easier readability but allows recording fine-grained information whenever
118 needed.

119 Required values can be entered in form of controlled vocabulary items, date-format, free text including numbers or filenames.
120 Filenames are a special type of free text and specify additional resources where corresponding files are either expected within
121 the same directory as the Metadatasheet itself or given as relative path. Suitable form of values is naturally determined by
122 the key, e.g., 'Date' is of date format, 'weight' is of number format and 'tissue' of discrete nature to be selected from the

123 controlled vocabulary. The format choice is constraining the allowed values. Providing such input constraints to each key,
124 allows harmonization of metadata. Harmonization enables machine readability which is a starting point for further applications.

125 A single Metadatasheet captures the combination of an experimental design and a measurement type, as those come with a
126 distinct set of keys, also referred to as dependent keys. An experimental design is here defined as a specific experimental system
127 exposed to a contrasting setting. Within the Metadatasheet five contrasting settings, herein named comparison groups, are
128 set: 'diet', 'treatment', 'genotype', 'age', 'temperature' and 'other' (non-specific). Experimental designs exhibit a range of
129 complexities, they can span multiple comparison groups such as different treatments exposed to different genotypes, while each
130 group can have multiple instances such as LPS-treatment and control-treatment.

131 The varying complexity in experimental designs is reflected in the Metadatasheet structure. This reflection is achieved through
132 hierarchies, organized into up to three levels. The top-level keys are mandatory, while the inclusion of other-level keys depends
133 on design's complexity. Present hierarchies within the samples are also important to consider for statistical analysis. Hierarchies
134 emerge, if the sample is divided into subsamples prior to the measurement. For instance, if the experimental system involves
135 a mouse with two extracted organs for measurement, the relation to the sample should be specified. Moreover, subsamples
136 are also present when measurements where conducted on technical replicates of the extracted sample. The Metadatasheet
137 accommodates up to two levels of sample partitioning. By leveraging a hierarchical structure, details are displayed only when
138 necessary, avoiding unnecessary intricacies. Moreover, relationships of the measured samples can be recorded, enhancing
139 clarity.

140 To ensure coherence between a samples' actual measurement data and recorded metadata, it is crucial to link them accurately
141 by an unique personal ID. To guide through matching and prevent mismatches, we have designed the Measurement-Matching
142 section to summarize essential information and focusing on differences between samples. This information includes their
143 association with an instance of a comparison group, the number of replicate, and the presence or absence of subsamples. If
144 subsamples are present, they are organized in a separate table, referencing their higher, preceding sample. Careful recording
145 also involves specified covariates. They are expected at the lowest level, the measurement level, and must be carefully matched
146 to the correct ID within the set of replicates within a comparison group instance.

147 The inherent innovative force within the research community risk to hit boundaries of anything predefined, here, particularly
148 evident in controlled vocabulary and dependent keys. Those predefined sets come as additional tables, associated with the
149 Metadatasheet. Subsequently, the resources of the Metadatasheet require an ongoing commitment to be extended and further
150 developed. The separation of the Metadatasheet and its resources also allows the creation of group-specific subsets of controlled
151 vocabulary. This feature proves helpful when a group wants a more constrained set of controlled vocabulary, e.g., using
152 ontologies and respective value specifications. The group-specific validation should be a subset of the overall validation.

153 The Metadatasheet design aligns with the data-lifecycle to allow analogous metadata recording. Presented design choices allow
154 to adopt to various settings biomedical researchers are confronted with and thereby provide a high degree of flexibility.

155 **2.3 The implementation of the Metadatasheet, the Metadata Workbook, enhances user experience by
156 automation, integrity checks, customisation and export to other formats**

157 Gathering the diverse resources, specifically the Metadatasheet, the validation and dependent fields resources, we created an
158 Excel Workbook including all of those sheets. To promote usage through user-friendliness, dynamic adaption and automation,
159 we further introduced Excel macros (a set of custom functions) resolving to a macro enabled Excel workbook, called the
160 Metadata Workbook. This Metadata Workbook is designed to guide the Metadatasheet application while providing automation
161 whenever possible. Advancements through the implementation include specifically the ability of automatic insertion of the
162 depending keys, enhancements to user experience, easy expansion and updating of the controlled vocabulary, the option to use
163 templates, automatic checks of data input validity as well as the export of the Metadata Workbook to other formats allowing
164 long-term storage. Crucial advancements are explained in more detail in the following.

165 The Metadata Workbook creates tailored Metadatasheets for common biomedical experimental systems and measurement
166 techniques. Those segments come with their unique set of dependent keys and therefore change between individual Meta-
167 datasheets. Static sheets result therefore in a high amount of sheets. The Metadata Workbook provides a dynamic solution
168 reducing different requirements to a single Metadata Workbook that needs to be handled. The dependent, inserted keys, can be
169 extended, but not changed, by adding values to the respective column within the dependent field sheet. The new addition is
170 automatically added to the validation sheet, holding the controlled vocabulary. For new additions, the key's input constraints
171 can be changed. These features enable flexibility through expansion, allowing to match current and future research contexts.

172 The Metadata Workbook employs various features to enhance user experience and convenience while facilitating to capture
173 simple to advanced setups of an experiment: sections of the sheet collapse, such as second levels of hierarchical segments, if
174 not applicable; DropDown menus based on the provided controlled vocabulary enrich value fields, facilitating ease of selection.
175 Furthermore, visual cues notify users in several situations: any segment where the structure deviates from the typical key:value
176 format to adopt to a tabular arrangement is highlighted automatically; text-highlighting is used to mark mistakes, e.g., if input
177 values for key fields do not align with the controlled vocabulary. Altogether, Metadata Workbook provides a user-friendly
178 environment to guide users to record metadata.

179 Disruptive redundancy across and within the proposed Metadatasheet is tackled within the Metadata Workbook. Redundancy
180 across Metadatasheets occurs if multiple studies are conducted in the same context, with similar designs, systems or experimental
181 techniques. To reduce redundancy and prevent mistakes from copying and pasting, existing Metadatasheets can serve as
182 templates. All information from the first two sections (planning and conduction) are exported from an uploaded Metadatasheet.
183 Upon upload, users only need to update the ID information in the Measurement-Matching section for the new setting. This
184 exception prevents not updating these crucial IDs. Redundancy within a single Metadatasheet occurs while providing the 'final
185 groups' as well as the table within the Measurement-Matching section at the beginning of section two and three, respectively.
186 The Metadata Workbook provides 'generate' buttons to produce both those tables automatically. Hence the first 'generate'
187 button creates all possible combinations based on the Planning section, while the measurement-matching table is generated

188 based on the Conduction section. To maintain structural integrity, the Metadata Workbook requires a sequential input of the
189 sections, the generate buttons prevent from violations by evoking an error if input in the preceding section is invalid. The
190 'generate' functionalities remove through automation, again, the need for copy paste actions and redundant actions for the user.

191 Upon the completion of the Metadata Workbook, it can be exported to various formats serving different objectives, such as
192 compatibility with open-source software, long-term storage through TRUST repositories and minimization of work by don't
193 repeat yourself (DRY) principles²⁰. Compatibility of the Metadata Workbook with open-source software, like LibreOffice,
194 is facilitated by the export option to a simple Excel (xlsx filetype) file while simultaneously removing any associated
195 functionalities. Notably, a unique identifier is automatically assigned upon export. Providing metadata represents a critical
196 prerequisite before uploading data to repositories or publication. Repositories normally adhere to their distinct metadata
197 standards. Some offer submission tools featuring user interfaces, e.g. MetabolomicsWorkbench. Conversely, others like
198 GEO or NCBI require the manual completion of an Excel table. For both repositories, export capabilities have been added to
199 transform the Metadata Workbook compliant with the repositories' requirements. The proposed structure covers all mandatory
200 fields from the major repositories. These export functionalities reduce the hours spent on reformatting to meet different
201 requirements and are a crucial step towards DRY principles within the metadata annotation procedure. Further, a converter
202 is provided that turns the proposed structure, given as an exported xlsx file, to an object, commonly used as input to data
203 analysis. The converter, applicable to omics-data and associated metadata, returns an R object called SummarizedExperiment²¹.
204 The SummarizedExperiment object can be easily shared and lays the foundation for a plethora of standardized bioinformatic
205 analyses within R. The object contains all available metadata from previous data-lifecycle stages limiting issues due to missing
206 information, like unmentioned covariates.

207 In essence, the introduced implementation results in a macro-enhanced Excel Workbook, the Metadata Workbook, with
208 advanced functionalities that choose the appropriate keys, enhances user experience with color cues and automation while
209 maintaining data integrity.

210 **2.4 Showcase and application of the Metadatasheet demonstrate its use in recording metadata and subse- 211 quent data analysis**

212 To assess the suitability and adaptability of the designed Metadatasheet we asked researchers from 40 different groups to gather
213 and transfer their metadata in this format. The initiation of capturing standardized metadata alongside the data generation
214 process has made a range of practical applications possible, yielding multiple advantages within the consortia. The versatility of
215 the proposed structure is demonstrated by a curated collection of sheets (Table 1), each accompanied by a concise description
216 of the study's setting. The provided selection encompasses various measurement types and differing experimental systems. The
217 experimental designs within this selection range from straightforward setups to nested designs as well as two-way comparisons.
218 For all complete Metadatasheets, see Supplementary Material. As the Metadatasheet records metadata from the start of
219 the data-lifecycle, some measurement data in certain showcases is not included here due to its non-disclosure status before

220 publication.

Table 1. Overview of curated collection of completed Metadatasheets, which can be found in the Supplementary Material

Measurement Type	Experimental System	Experimental Design	Notes	Provider
bulk RNASeq	mouse	6 diets	part of collection; manuscript example	I. S., H. H., E. M.
metabolomics (13C glucose)	human-derived	2 treatments x 2 timepoints	time dependent timeline	M. L., K. H.
bulk proteomics	mouse	2 others	stress-treatment; with drop out	A. K. G.
bulk proteomics	human-derived	4 others	athlete groups; nested design (subsamples time)	A. S. A., F. M., S. K., H. W.
16S rRNA Seq	rat	4 others	bariatric surgery or fecal microbiota transfer	V. P., A. T., W. K. F.
indirect calorimetry	mouse	2 genotypes	nested design (subsamples time)	S. H., A. P.
FACS	patient	3 others	disease stages	J. Y., A. Sch.
single-cell RNASeq	mouse	4 diets x 2 genotypes	time dependent timeline	Y. L., M. B.
single-nucleus RNASeq	mouse	2 genotypes	nested design (subsamples tissue)	K. K., T. F.
bulk lipidomics	mouse	2 diets x 2 genotypes	2-fold comparison and nested design (subsamples tissue)	J. Be., L. Sch.
lipolysis measurement	cell-line	9 treatments	nested design (subsamples technical replicates); well plate measurements	D. Ra., A. P.
UPLC-UV	cell-line	6 treatments	nested design (subsamples technical replicates)	M. M., A. P.
FRET	cell-line	1 treatment (timeseries)	timeseries involves the consecutive treatment with drugs	D. Ra., A. P.
Histology	mouse	2 genotypes	multiple covariates given	R. K., K. S. D. W.

221 In the following, a single Metadatasheet from the showcase collection is highlighted, which has been created with the Metadata
222 Workbook. The picked Metadatasheet for demonstration encompasses one of the datasets associated with the study of
223 developmental programming of Kupffer cells by maternal obesity²². The associated data is deposited on GEO and are accessible
224 through GEO Series accession number GSE237408 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE237408>).

225 **Example Planning Section**

226 The Metadatasheet starts with the Planning section which captures all information already available during the conceptualization
227 of an experiment. The section is subdivided into the segments 'General', 'Experimental System' and 'Comparison groups'
228 (Fig. 2). The requested information in 'General' (Fig. 2A) includes personal information, the title of the project as well as
229 the specification whether the sheet is part of a collection of multiple related Metadatasheets. Collections allow users to link
230 individual Metadatasheets from the same project to spread awareness of such connections, in this example linking multiple
231 datasets associated with the same project. 'Experimental System' segment provides automatically predefined keys (dependent
232 fields sheet) after the selection within the Metadata Workbook, for example, 'line' and 'genotype' information will be needed
233 upon selecting 'mouse' (Fig. 2B).

A

Planning	
General	
Experimental System	
Comparison Groups	
diet	
treatment	
genotype	
:	
Conduction	
Measurement-Matching	

B

General	
Group	Mass
Name	Lea Seep
Date	2023-10-26
Title	Developmental programming of Kupffer cells by maternal obesity causes fatty liver disease in the offspring
comment	
part_of_collection	Yes
type_of_link	scientific question
link_via	Title

C

Experimental System	
Experimental System	Mouse
name of mouse strain	C57BL/6Jrcc
name of mouse line	_not applicable_
genotype of mouse	wild type
tissue type	liver (BTO:0000759)
comment	

D

Comparison groups	
More than one of the following?	
diet	No
diet	Yes
Time dependent changes	
How many groups?	
Specification of groups (one per column)	CDmCDICD
fasting	No
frequency	ad libitum
comment	First two diets correspond to maternal diet; the last to offspring diet
	CDmCDIHFD
	No
	ad libitum
	First two diets correspond to maternal diet; the last to offspring diet
	...

Figure 2. Example of an instance of the Planning section. (A) Overview Planning section. (B) General segment contains contact information and general project information in form of key:value pairs; on its second level, linked Metadatasheets can be specified. (C) The experimental system segment is requesting keys dependent on the value given to key 'Experimental System'. (D) Comparison group segment; here further the only comparison group is 'diet'. defined through diet (other comparison group options as treatment etc. not shown). As six groups are requested by the user a table is present with six columns (only two shown). Information per specified group is expected column-wise. Note that the full Metadatasheet of this example can be found in Supplementary Material.

234 The 'Comparison groups' segment (Fig. 2C) specifies the experimental design linked to the current research question. The
 235 experiment design for each comparison group involves two levels: broader comparison group, here 'diet' and details for each
 236 instance within the broader comparison group. Users are not restricted to a single comparison group. At the second level,
 237 details for each chosen comparison group are entered. Here, 6 different groups with varying diet schemes were studied. The
 238 established feeding scheme is unique within the consortia, those special requirements were easily added to the controlled
 239 vocabulary for 'diet' with the Metadata Workbook, leveraging on its adaptability.

240 **Example Conduction Section**

241 The Conduction section is divided into six segments and captures all information created during the experimental/ wet-lab
 242 phase. The section starts with the specification of the 'final groups' resulting from previously specified comparison groups. As
 243 diet is the only comparison group with six instances, the final groups resolve to those types (Fig. 3A). If multiple groups are
 244 planned, for example, if six diet groups and two genotype groups, 12 final groups would be present due to all combination
 245 possibilities. Within the Metadata Workbook those final groups are generated automatically, the user then defines the respective
 246 replicates.

A

Planning
Conduction
total_groups
covariates / constants
Time-Dependence-timeline
Preparation
Measurement
DataFiles-Linkage
Measurement-Matching

B

total_groups	generate	reset					
final_groups	CDmCDICD	CDmCDIHFD	HFDmHFDIHFD	HFDmCDIHFD	HFDmHFDICD	HFDmCDICD	
How many replicates per group?			6	7	4	4	5
							4

C

covariates / constants			
covariates captured (one per column)			
unit(if applicable)			
constants (one per column)	cell type	genotype	age
specify constant value	Kupffer Cells	wild type	adult

D

Time-Dependence-timeline	
interruptions to record?	No

E

Preparation	
procedure	liver isolation
comment	
Are the taken specimen differently processed?	No

F

Measurement	
measurement type	bulk_RNA_seq
output file type	FASTQ
measurement-type dependent	
used facility	PRECISE
molecule	total_RNA
technology	NextSeq 550
single or paired-end	single
comment	

G

DataFiles-Linkage	
Is the raw data supplied?	Yes
Link Type	Personal ID
ID contained in filename	
Is the processed data supplied?	No

Figure 3. Example of an instance of the Conduction section. (A) Overview Conduction section. (B) The 'total_groups' segment expects all possible combinations of the comparison groups defined in the Planning section. Number of replicates belongs underneath each group. In the Metadatasheet implementation 'final_groups' are generated; pink color marks an expected table. (C) The segment covariates / constants requests respective specification including units. For constants the value is expected in place, whereas covariates values are expected within the measurement-matching table. (D) Time-Dependence-timeline segment collapses completely if not required. (E) Preparation segment expects the procedure that is required before the actual measurement. Here, the reference to either a fixed protocol, chosen from the controlled vocabulary or a filename is expected. The specified file is expected to be on the same level as the Metadatasheet in the filesystem. (F) The Measurement segment is requesting keys depending on the value given to key measurement type. (G) The DataFiles-Linkage segment specifies how to identify the correct measurement file given the subsequent (within the measurement matching section) specified personal ID. If there is no clear pattern one can choose keyword 'CHANGES' to promote filename specification to the measurement matching section. Note that the full Metadatasheet of this example can be found in Supplementary Material.

247 The segment 'Covariates/Constants', expects each constant or covariate to fill a single column with the respective suitable

248 unit (table form). For clarification, a covariate refers to any additional variable or factor, beyond the main variables of interest
 249 (comparison groups), that is considered or observed in the experimental design. This could include factors such as age, gender,
 250 environmental conditions but also unusual colour of serum or day of preparation. Here, no covariate but the constants 'cell type'
 251 and 'genotype' were recorded, respective values, 'Kupffer Cells' and 'wild type' occupying a single columns each (Fig. 3B).
 252 The next segment 'Time-Dependence-Timeline' is organized hierarchically. On the first level, one decides whether this segment
 253 is applicable, by answering if interruptions are present. The presence of an interrupted timeline is given, when the designated
 254 comparison group is to be augmented with temporal details that occurred during the experimental period. The second level
 255 distinguishes between two types of an interrupted timeline: 'continued' and 'discontinued'. A 'continued' timeline is identified
 256 when temporal details are annotated. On the other hand, if the temporal details describe a change, such as a modification in
 257 treatment, it falls under the 'discontinued' type. For example, an interrupted timeline is present when a mouse undergoes several
 258 glucose tolerance tests during a contrasting diet setting (interrupted timeline type continued), or when a treatment consists of
 259 administering agent A for 24 hours followed by agent B for the next hours (interrupted timeline type discontinued). While not
 260 present at the example at hand, both types of interrupted timelines would require further details (Fig. 4A).

Time-Dependence-timeline				
Interruptions to record?	Yes			
Interruption-type_continued	No			
Interruption-type_discontinued	Yes			
type_of_time_dependence	diet			
unit_time	weeks			
Specification of groups (one per column)				
Start_1	CDmCDICD	CDmCDIHFD	0	0
End_1	CD	CD	11	11
Type_1	maternal diet	maternal diet		
comment				
Start_2			12	12
End_2			14	14
Type_2	CD	CD		
comment	lactational diet	lactational diet		
Start_3			14	14
End_3			22	22
Type_3	CD	HFD		
comment	offspring diet	offspring diet		

Preparation		
procedure	liver isolation	
comment		
Are the taken specimen differently processed?	Yes	
Need of subsamples	Yes	
How many types?	2	
Specification of groups (one per column)	Kupffer Cells	Hepatocytes
replicates (one per column)	3	4
procedure	Mass_KC_procedure.docx	Mass_HC_procedure.docx
comment	in-lab adjusted SOP for Kupffer cell isolation	in-lab adjusted SOP for Kupffer cell isolation
Need of subsubsamples	No	

Figure 4. Advanced example of segments within the Conduction section. (A) Within the Time-Dependence Timeline segment, given comparison groups can be enriched with time dependent information on the second hierarchy level. One specifies which of the comparison groups is to be enriched with timeline information and the unit of time. Then, time-steps can be specified. Pink color marks the table, which needs to be filled. (B) Within the Preparation segment one can supply up to two divisions of the original experimental system sample. Here, from the liver of mice two celltypes are isolated. The liver isolation has the same protocol while cell type isolation has differing protocols. The respective files are expected to be on the same level as the Metadatasheet in the filesystem.

261 The next two segments 'Preparation' (Fig. 3D) and 'Measurement' (Fig. 3E) capture the information for sample preparation
 262 approaches and measurement techniques, respectively. The 'Preparation' segment holds the information about the process

263 of the experimental system to the specimen that gets measured. The respective protocol can be selected from a predefined
264 set of terms, such as common workflows or entering a filename in the designated comment field, as shown here. When there
265 are subsamples present (Fig. 4B), information at segments' secondary level is necessary, such as the number of subsamples
266 per sample, their instances, replicates, and preparation information must be provided in a tabular format. The 'Measurement'
267 segment requests details depending on the respective choice of the measurement technique (Fig. 3E). Note, that 'used facility'
268 was an additional dependent key added upon the process of filling the Metadatasheet. The user can easily add further keys
269 by entering the wanted key in both dependent fields sheet in respective column of Measurement type: 'bulk_RNA_seq' and
270 specify its type of constraints, e.g., free-text, date or controlled vocabulary, within the 'Validation' sheet.

271 The final segment 'DataFiles-Linkage' (Fig. 3F), connects the measurement results with metadata. On the first level, one
272 specifies whether raw or processed data is available. Raw data denotes the original machine-generated output, untouched by
273 any processing, here the raw data are the .fastq files. At secondary levels, users would provide more details about their file
274 naming system. Three options are provided: 'ID contained in filename', 'single file for all', and 'CHANGES'. The options 'ID
275 contained in filename' and 'single file for all' require the data to be positioned at the same level as the metadata document
276 within a file system, whereby relative paths can be given. The option of 'CHANGES' (switching key:value pair to tabular form)
277 allows user to define their unique naming system in the Measurement-Matching section. For processed data the procedure is
278 required, and to be provided like the preparation protocol.

279 **Example Measurement-Matching Section** The last but the most important step for Metadatasheet is the 'measurement-
280 matching' section, which links the recorded metadata to the measurement data. This section involves an ID-specific metadata
281 table to facilitate matching (Fig. 5). Here, the measurement for each replicate within a group requires a unique measurement ID.
282 Given this ID and the group name (defined at top of Metadatasheet), one must be able to identify respective measurement. If
283 there are subgroups or further subdivisions of samples, a table per division is expected. By design, the actual measurement
284 happens at the last division stage, hence the measurement ID belongs to the last stage, as well. If available further personal IDs
285 can be given on sample level, too.

A

Planning
Conduction
Measurement-Matching
Sample-Section
Subsample-Section
Subsubsample-Section

B

Sample-Section	generate	reset						
personal_ID	5819	5820	5824	5825	6026	6027		
global_ID	ID_Lv1_CDmC DICD_1	ID_Lv1_CDmCDICD_2	ID_Lv1_CDmCDICD_3	ID_Lv1_CDmCDICD_4	ID_Lv1_CDmCDICD_5	ID_Lv1_CDmCDICD_6		
Nr.	1	2	3	4	5	6		
unique_group	CDmCDICD	CDmCDICD	CDmCDICD	CDmCDICD	CDmCDICD	CDmCDICD		
unique_group_replicate	1	2	3	4	5	6		
diet_group	CDmCDICD	CDmCDICD	CDmCDICD	CDmCDICD	CDmCDICD	CDmCDICD	...	
treatment_group	NA	NA	NA	NA	NA	NA		
genotype_group	NA	NA	NA	NA	NA	NA		
age_group	NA	NA	NA	NA	NA	NA		
other_group	NA	NA	NA	NA	NA	NA		
subsample_present	0	0	0	0	0	0	0	
subsubsample_present	0	0	0	0	0	0	0	

Figure 5. Example of an instance of the Measurement-Matching section. (A) Overview Measurement-Matching section. (B) An ID-specific metadata table example with the minimal number of required rows. The yellow marked cells hold measurement IDs ('personal_ID') required for the matching of metadata column with the respective measured data. 'NA' indicates non available information ('Diet' is the only comparison group specified). The last two rows indicate that neither subsamples nor subsubsamples are needed in this instance. The table is column cropped; based on previous final groups and given replicates a total of 30 columns are expected in the full table. Note that the full Metadatasheet of this example can be found in Supplementary Material.

286 The automatically generated ID-specific metadata table summarizes the preceding input of the user to ease the measurement
 287 to metadata matching. Hence, besides the default rows, the ID-specific metadata table will expand depending on inputs
 288 from the Conduction section. Expansion includes previously mentioned covariates and constants, along with any keys where
 289 the 'CHANGES' value was applied. The Measurement-Matching section overall ensures the flexibility tailored to capture
 290 information individually for each measured sample or division of such. Moreover, the arrangement of subsamples and
 291 subsubsamples clearly reveals any nested design, which is important for choosing appropriate statistics.

292 Application of complete Metadatasheets

293 The availability of standardized Metadatasheets offers advantages to both individual users and the scientific community, ranging
 294 from the respective group to large-scale consortia.

295 The individual's benefits from utilizing the Metadatasheet as a live document or central hub guides their data management for
 296 conducted or planned experiments. This approach simplifies the process of handing or taking over projects, as documentation
 297 follows a streamlined format, as opposed to each person maintaining individual data management methods. Furthermore,
 298 standardization plays a pivotal role in enabling the development of programs for analysis and processing, thanks to uniform
 299 input formats. A notable example is the provided conversion program that parses the Metadatasheet involving bulk-omics
 300 measurements to an R object. This SummarizedExperiment object²¹ itself is the standarized input for many Bioconductor based
 301 analysis^{23 24}.

302 A group or consortia introducing the Metadatasheet will have access to multiple Metadatasheets. This in turn evokes the
 303 possibility for creation of a comprehensive database. Within this database, numerous sheets can be easily searched for specific
 304 information. To support this application, we have developed a dedicated, publicly accessible ontology for seamless integration

305 of data into a custom database. Essentially, this database functions as a centralized knowledge hub, enabling swift access to
306 available data, available specimen and planned experiments across groups. A database facilitates meta-analyses and aids in
307 identifying gaps in the current local research landscape potentially discovering collaboration opportunities.

308 In summary, the application example showcases the Metadatasheet in practice. The use of Metadatasheets benefit individual
309 users and the scientific community by streamlining data management and enabling program development.

310 3 Discussion

311 The developed metadata standard facilitates comprehensive recording of all relevant metadata for a broad spectrum of biomedical
312 applications throughout the data-lifecycle. The standard's implementation ensures efficient documentation of metadata and with
313 a user-friendly design. The provided Metadata Workbook enriched with custom, open-source functionalities can be extended
314 on various levels to adjust to additional setups.

315 The presented framework, encompasses two parts. The first part involved the iterative collection and organisation of keys, while
316 the second part focused on the implementation of the user experience within the Metadata Workbook. During the collection
317 phase, it became apparent that the specific set of keys varies enormously depending on the research groups. To address the high
318 variability, we made adaptability of the Metadatasheet a priority. While the set of comparisons ('comparison groups') is tailored
319 to our context, e.g. diet or temperature, the implementation is designed to be extensible ad-hoc. This means the Metadatasheet
320 can be customized by specifying requested keys and adding experimental groups and measurement types, as well as expanding
321 the controlled vocabulary. Moreover, a versatile comparison group labeled as 'Others' has been introduced. This 'Others' group
322 adapts to any comparison scenario, not covered. Adding another 'comparison group' to the structure is also possible when
323 adhering to the segments structural characteristics, only requiring additions to the provided Metadatasheet ontology.

324 The Metadatasheet has been implemented within a macro-enabled Microsoft Excel workbook. Despite the fact that Excel
325 is not open-source, nor free it has several severe advantages. Its widespread availability, familiarity and standard-use within
326 the biomedical research community makes it a valuable choice, especially when compared to custom standalone applications.
327 Furthermore, most users are experienced Excel user, allowing for seamless integration of our proposed sheet into existing
328 workflows. This immediate integration would not be as straightforward with open-source spreadsheet software like LibreOffice,
329 also lacking required automation aspects. An online, browser-based, operating system independent approach, besides being
330 accessible for everyone, violates the needs of sensitive data, particularly in cases involving unpublished studies. Recently,
331 Microsoft has introduced Excel365, a browser-based software. However, our provided Metadata Workbook, requires adjustments
332 to function within the Excel365 framework, as the used automation languages differ.

333 Metadata labels provide meaning to data, especially if keys and values are not only comprehensive but also interconnected,
334 enabling cross-study comparisons. Providing metadata labels is commonly referred to as semantic interoperability, and it
335 is considered a pivotal aspect of data management²⁵. In order to attain semantic interoperability, there are domain-specific

336 ontologies that establish meaningful connections between the labels of metadata. However, it is important to note that there is
337 no single ontology that can comprehensively address the diverse requirements, even within a relatively homogeneous domain of
338 investigation within a single consortium in the field of biomedical sciences. In fact, the choice of the appropriate ontology is far
339 from straightforward and can vary for the same keys depending on the context. Pending ontology decisions might delay the
340 recording of metadata, which in turn can lead to data loss. Involvement of inexperienced users, due to common high fluctuations
341 of early-stage researchers, can further exacerbate the delay. Therefore, we have made the conscious choice, following our
342 adaptability priority, to employ an extendable controlled vocabulary. This decision empowers biomedical researchers to directly
343 and effortlessly record metadata without the need to immediately handle ontologies and their unavoidable complexities. While
344 this decision will require additional retrospective annotation efforts to adhere to appropriate ontologies, it is manageable in
345 contrast to retrospectively recovering metadata information that was never recorded. Our strategy prioritizes ease of initial data
346 recording and acknowledges the practical challenges associated with ontology selection and application.

347 Ontologies enrich any set of collected metadata, therefore, we do not aim to discourage the use of ontologies. Integration
348 of ontologies into the workflow could be facilitated by Metadata Annotation Services , such as RightField⁸ or OntoBee²⁶.
349 RightField is a standalone tool populating cells within a spreadsheet with ontology-based controlled vocabulary. OntoBee is a
350 linked data server and can be used to query suitable ontologies and IDs given a keyword. Groups can enforce the partial or
351 complete usage of ontology for keys in the Metadatasheet by leveraging on the option of group-specific validation and creating
352 a tailored validation sheet.

353 We anticipate our proposed Metadatasheet accompanied with its implementation, the Metadata Workbook, being used for more
354 than just data recording. Even in a partially filled state and at the start of a research cycle, the findability, accessibility, and
355 interoperability provided by standardized Metadatasheets can speed up experiment preparation between groups, encourage
356 effective specimen usage, and foster collaborations. The further planned deployment of the Metadatasheet and workbook
357 includes adding export options, a database for Standard Operation Protocols, analyzing sets of collected metadata, and providing
358 project monitoring tools. In conclusion, the framework leverages the widespread use of Excel, enabling comprehensive metadata
359 documentation and improving the efficiency of data deposit on repositories. Our practical solution offers a user-friendly and
360 sequential approach to manage metadata, thereby addressing the need for FAIR data in the field of biomedical science at
361 intermediate stages during the data life cycle up to publication. We expect this to be of high relevance for a broad spectrum of
362 biomedical researchers, and think that it can also be easily adapted to adjacent fields.

363 **Methods**

364 **Metadata Workbook Structure**

365 The proposed Metadatasheet is implemented within Microsoft Excel macro-enabled workbook, which consists out of multiple
366 sheets with macros modules. The input sheet resembles the Metadatasheet. The other sheets hold the validation resources, the
367 dependent fields for the differing experimental systems and measurement types, a plain Metadatasheet for reset, the repositories

368 metadata standards, and additional resources for user guidance, such as a glossary. Input, validation, dependent fields and user
369 guidance sheets are visible to the user, whereby only the input sheet is extensively editable by the user. Within validation and
370 dependent fields sheets only blank cells can be filled.

371 The structure of the individual sheets ensures their functionality. An example is the validation sheet which holds per column the
372 controlled vocabulary for a respective key. Each column starts with the three rows where the type of validation - freetext, date,
373 DropDownList or DropDownList_M (multiple selection possible) - any specification in form of help text and the respective key is
374 specified. The depended fields sheet is constructed in a similar manner. Here, the first two rows for each column determine the
375 general category - measurement type or experimental system - as well as the specification from the controlled vocabulary set
376 e.g. of mouse. After those specifications, the dependent keys are enumerated.

377 The input sheet and attached functionalities utilize different font faces as well as color cues for structuring, and segment
378 specific automated processes. All grey cells with bold font content signal different segments of each section. This provides a
379 fine-grid structure. Italic font characterize boolean validation requests, hence expecting 'yes' or 'no'. This does not only help
380 for structure but also is done for performance reasons as just by checking font, actions can be precisely called.

381 **Custom add-on functionalities**

382 The Workbook including VBA based macros was developed using Excel Version 16.77. The implementation is tested for
383 use on both macOS (Ventura 13.5) and Windows (Windows 11) and respective variations of Microsoft Excel Version 16.
384 The differences in Excel functionality between Windows and macOS influenced our implementation, such as bypassing
385 'ActiveX-controls' being not available on MacOS platforms.

386 The Metadata Workbook incorporates various functionalities organized into VBA modules. Users invoke actions by either
387 actively pressing a button or upon input, which is a change of a cell within the input sheet. The latter allows for reactive updates.
388 Reactivity functionality is directly attached to the input sheet unlike VBA modules. The Metadata Workbook key functionalities
389 include a validation function, an insertion-of-dependent-keys function, and a reset-import function, which are further discussed
390 in the following. Furthermore, the reactivity procedure evoked upon cell change is outlined.

391 The custom validation function leverages Excel's Data-Validation feature. The feature checks predefined conditions for a given
392 cell upon the user's input, e.g. if the input values lies within a range of allowed values. If those values are of discrete nature one
393 can display all possible values as a DropDownList to the user. Our custom validation function populates Excel's Data-Validation
394 feature automatically, passing the appropriate data constraints to determine a valid input. An exception exists for all keys
395 that allow multiple selections, marked in the validation sheet as type DropDownList_M. To allow the selection of multiple items
396 reactive functionalities had to be included. Any user values that fail validation are marked. To simplify searching within the
397 DropDownList, the allowed values are automatically sorted alphabetically.

398 In the case of extensive controlled vocabulary or wish to tight constraints, users have the option to subset the main validation
399 sheet. The subset sheet must be named 'Validation_[Group]', whereby '[Group]' is to be replaced by the respective value to the

400 requested key group. The structure of the subset sheet is expected to be the same as within the validation sheet. To use this
401 predefined subset one has to choose 'yes' for 'group specific?' on top of the sheet.

402 The insertion functionalities handle the automatic dependent key insertion, inserting necessary keys dependent on the user's
403 choice of the experimental system and measurement type. Here, the subroutines conduct a search for a match with the
404 user's input within the 'dependentFields' sheet, retrieving the corresponding column with associated keys for insertion in the
405 Metadatasheet. Note that dependent key sets can be extended by adding keys to the list, whereby additional keys subsequently
406 need to be added to the validation sheet to provide constraints.

407 The reset/import function allows users to reset the sheet to its initial state or to a chosen template state. Two options are
408 available upon pressing the 'Reset' button and displayed to the user with a pop-up window. The first option resets to a blank
409 input sheet. The function deletes the current input sheet, copies a 'ResetSheet' and renames it to 'Input'. The 'ResetSheet' has
410 the same VBA-code as the 'Input' Sheet attached. The second option resets to a user chosen template. A template may be a
411 previous complete Metadatasheet or a partially filled Metadatasheet. The inputs from the template sheet are copied upon a
412 duplication of the 'ResetSheet' to retain reactivity-functionality. The duplication with the template's input is renamed to 'Input'.
413 The original 'ResetSheet' is always hidden to prevent accidental deletion.

414 **Metadatasheet ontology creation**

415 Our custom ontology was modelled by following a top-down approach using established tools in the realm of semantic web (cf.
416 Protégé²⁷ and accompanying tools), giving rise to a consistent contextual data model, logical data model and physical data
417 model eventually leading to an integration of individuals (metadata samples) into a semantic database.

418 **Conversion program creation**

419 The conversion program uses a completed Metadatasheet as input and checks for suitability of conversion based on the
420 measurement type. If the type is one of 'bulk-metabolomics', 'bulk-transcriptomics' or 'bulk-lipidomics', the conversion starts.
421 The Measurement-Matching section will be saved within 'colData'-slot. The actual data matrix is identified guided by the Data
422 File Linkage information. Given the personal ID and the given file measurement data is identified. Note, the location of the
423 input Metadatasheet is seen as root and given filenames are expected as relative paths. If 'single file for all' is selected the
424 filename given in the comment section is directly searched for. If nothing is found measurement data is searched for by the
425 given extension in processed data and returned to user asking for clarification. The program is written in R.

426 **Data availability**

427 The ontology needed to create a database upon a set of Metadatasheets (version 1.8.0) is available under the following link on
428 Github https://github.com/stephanmg/metadata_ontology.

429 **Code availability**

430 The Metadata Workbook and related content is freely available on [Zenodo](#) (free access upon publication - now reachable
431 by provided link) and GitHub (<https://github.com/LeaSeep/MetaDataFormat>). The repository contains the
432 macro-embedded Metadata Workbook, the isolated VBA scripts, as well as the converter to turn a Metadatasheet to a
433 SummarizedExperiment Object.

434 References

- 435 1. Morillo, F., Bordons, M. & Gómez, I. Interdisciplinarity in science: A tentative typology of disciplines and research areas.
436 *J. Am. Soc. for Inf. Sci. Technol.* **54**, 1237–1249, <https://doi.org/10.1002/asi.10326> (2003). <https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.10326>.
- 437 2. Cioffi, M., Goldman, J. & Marchese, S. Harvard biomedical research data lifecycle, [10.5281/ZENODO.8075933](https://doi.org/10.5281/ZENODO.8075933) (2023).
- 438 3. Habermann, T. Metadata life cycles, use cases and hierarchies. *Geosciences* **8**, [10.3390/geosciences8050179](https://doi.org/10.3390/geosciences8050179) (2018).
- 439 4. Stevens, I. *et al.* Ten simple rules for annotating sequencing experiments. *PLOS Comput. Biol.* **16**, 1–7, [10.1371/journal.pcbi.1008260](https://doi.org/10.1371/journal.pcbi.1008260) (2020).
- 440 5. Shaw, F. *et al.* Copo: a metadata platform for brokering fair data in the life sciences. *F1000Research* **9**, 495, [10.12688/f1000research.23889.1](https://doi.org/10.12688/f1000research.23889.1) (2020).
- 441 6. Ulrich, H. *et al.* Understanding the nature of metadata: Systematic review. *J Med Internet Res* **24**, e25440, [10.2196/25440](https://doi.org/10.2196/25440) (2022).
- 442 7. Wilkinson, M. D. *et al.* Comment: The fair guiding principles for scientific data management and stewardship. *Sci. Data* **3**, [10.1038/sdata.2016.18](https://doi.org/10.1038/sdata.2016.18) (2016).
- 443 8. Wolstencroft, K. *et al.* Rightfield: Embedding ontology annotation in spreadsheets. *Bioinformatics* **27**, 2021–2022, [10.1093/bioinformatics/btr312](https://doi.org/10.1093/bioinformatics/btr312) (2011).
- 444 9. Leipzig, J., Nüst, D., Hoyt, C. T., Ram, K. & Greenberg, J. The role of metadata in reproducible computational research. *Patterns* **2**, [10.1016/j.patter.2021.100322](https://doi.org/10.1016/j.patter.2021.100322) (2021).
- 445 10. Lin, D. *et al.* The trust principles for digital repositories. *Sci. Data* **7**, 144, [10.1038/s41597-020-0486-7](https://doi.org/10.1038/s41597-020-0486-7) (2020).
- 446 11. Barrett, T. *et al.* NCBI GEO: archive for functional genomics data sets—update. *Nucleic Acids Res.* **41**, D991–D995, [10.1093/nar/gks1193](https://doi.org/10.1093/nar/gks1193) (2012). <https://academic.oup.com/nar/article-pdf/41/D1/D991/3678141/gks1193.pdf>.
- 447 12. Vizcaíno, J. A. *et al.* 2016 update of the PRIDE database and its related tools. *Nucleic Acids Res.* **44**, D447–D456, [10.1093/nar/gkv1145](https://doi.org/10.1093/nar/gkv1145) (2015). <https://academic.oup.com/nar/article-pdf/44/D1/D447/16661470/gkv1145.pdf>.
- 448 13. Malik-Sheriff, R. S. *et al.* BioModels—15 years of sharing computational models in life science. *Nucleic Acids Res.* **48**, D407–D415, [10.1093/nar/gkz1055](https://doi.org/10.1093/nar/gkz1055) (2019). <https://academic.oup.com/nar/article-pdf/48/D1/D407/31698010/gkz1055.pdf>.
- 449 14. Glont, M. *et al.* BioModels: expanding horizons to include more modelling approaches and formats. *Nucleic Acids Res.* **46**, D1248–D1253, [10.1093/nar/gkx1023](https://doi.org/10.1093/nar/gkx1023) (2017). <https://academic.oup.com/nar/article-pdf/46/D1/D1248/23162033/gkx1023.pdf>.
- 450 15. Consortium, T. G. O. *et al.* The Gene Ontology knowledgebase in 2023. *Genetics* **224**, iyad031, [10.1093/genetics/iyad031](https://doi.org/10.1093/genetics/iyad031) (2023). <https://academic.oup.com/genetics/article-pdf/224/1/iyad031/51074934/iyad031.pdf>.

464 16. Percie du Sert, N. *et al.* The arrive guidelines 2.0: Updated guidelines for reporting animal research. *PLOS Biol.* **18**, 1–12,
465 [10.1371/journal.pbio.3000410](https://doi.org/10.1371/journal.pbio.3000410) (2020).

466 17. Novère, N. L. *et al.* Minimum information requested in the annotation of biochemical models (miriam). *Nat. Biotechnol.*
467 **23**, 1509–1515, [10.1038/nbt1156](https://doi.org/10.1038/nbt1156) (2005).

468 18. National library of medicine, <https://www.ncbi.nlm.nih.gov/>.

469 19. The metabolomics workbench, <https://www.metabolomicsworkbench.org/>.

470 20. Hunt, A. & Thomas, D. *The pragmatic programmer: From journeyman to master* (Addison Wesley, Boston, MA, 1999).

471 21. Morgan, M., Obenchain, V., Hester, J. & Pages, H. Summarizedexperiment: Summarizedexperiment container. *Bioconduc-*
472 *tor* (2003).

473 22. Mass, E. *et al.* Developmental programming of kupffer cells by maternal obesity causes fatty liver disease in the offspring.
474 *Res. Sq. Platf. LLC* **10.21203/rs.3.rs-3242837/v1** (2023).

475 23. Huber, W. *et al.* Orchestrating high-throughput genomic analysis with bioconductor. *Nat. Methods* **12**, 115–121,
476 [10.1038/nmeth.3252](https://doi.org/10.1038/nmeth.3252) (2015).

477 24. Gentleman, R. C. *et al.* Bioconductor: open software development for computational biology and bioinformatics. *Genome*
478 *Biol.* **5**, R80, [10.1186/gb-2004-5-10-r80](https://doi.org/10.1186/gb-2004-5-10-r80) (2004).

479 25. Sasse, J., Darms, J. & Fluck, J. Semantic metadata annotation services in the biomedical domain—a literature review. *Appl.*
480 *Sci. (Switzerland)* **12**, [10.3390/app12020796](https://doi.org/10.3390/app12020796) (2022).

481 26. Xiang, Z., Mungall, C. J., Ruttenberg, A. & He, Y. O. Ontobee: A linked data server and browser for ontology terms. In
482 *International Conference on Biomedical Ontology* (2011).

483 27. Musen, M. A. The protégé project: A look back and a look forward. *AI Matters* **1**, 4–12, [10.1145/2757001.2757003](https://doi.org/10.1145/2757001.2757003)
484 (2015).

485 28. Gellner, A.-K. *et al.* Stress vulnerability shapes disruption of motor cortical neuroplasticity. *Transl. Psychiatry* **12**,
486 [10.1038/s41398-022-01855-8](https://doi.org/10.1038/s41398-022-01855-8) (2022).

487 29. Münzker, J. *et al.* Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic
488 glucose control via intestinal fxr-tgr5 crosstalk in diet-induced obesity. *Microbiome* **10**, [10.1186/s40168-022-01264-5](https://doi.org/10.1186/s40168-022-01264-5)
489 (2022).

490 30. Niemann, B. *et al.* Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine. *Nature* **609**, 361–368,
491 [10.1038/s41586-022-05041-0](https://doi.org/10.1038/s41586-022-05041-0) (2022).

492 **Acknowledgements**

493 This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
494 Excellence Strategy (project IDs 390685813 - EXC 2047 and 390873048 - EXC 2151) and through Metaflammation, project ID
495 432325352 – SFB 1454 (L.Se., I.S., H.H., D.Ri., J.Y., T.B., K.S., R.K., S.K., E.M., D.W., E.L., F.M., A.Sch., J.H), BATenergy,
496 project ID 450149205 - TRR 333 (S.G., A.S.A., S.H., M.M., D.Ra., J.Be., D.W., A.T., V.P., K.K., A.P., H.W., L.Sch., T.F., W.
497 K. F., M.K., J.H), the Research Unit "Deciphering the role of primary ciliary dynamics in tissue organisation and function",
498 Project-ID 503306912 - FOR5547 (D.W., E.M.), and SEPAN, project ID 458597554 (L.Se.), and by the University of Bonn
499 via the Schlegel professorship to J.H.. E.M. is supported by the European Research Council (ERC) under the European
500 Union's Horizon 2020 research and innovation program (Grant Agreement No. 851257). W.K.F. is further supported by the
501 DFG (FE 1159/6-1, FE 1159/5-1, DFG FE 1159/2-1), by the European Research Council (ERC, under the European Union's
502 Horizon Europe research and innovation program; Grant Agreement No. 101080302) and by grants from the Gabriele Hedwig
503 Danielewski foundation and the Else Kroener Fresenius Foundation. A.T. is supported by the Gabriele Hedwig Danielewski
504 foundation. A.K.G. is supported by Medical Faculty, University of Bonn, BONFOR grants 2018-1A-05, 2019-2-07, 2020-5-01.
505 We thank all members, including associated, of the SFB Metaflammation and TRR BATenergy for the iterative discussions and
506 their input throughout.

507 **Author contributions statement**

508 J.H. and S.G. conceived the concept. L.Se. implemented and extended the Metadatasheet and created the Metadata Workbook.
509 T.B., M.K., J.Br., A.St. tested and provided feedback on initial version of the Metadatasheet. I.S., D.Ra., M.M., S.H., M.L.,
510 K.H., D. Ri, K.S., R.K., H.H., J.Y., S.K., J. Be., A.T., V.P., A.S.A., D.T., K.K., Y.L., M.B., A.K.G., T.F., H.W., M.K., W.K.F., L.
511 Sch., F.M., A. Sch., E.M., D.W. provided in-depth feedback to the Metadatasheet and the Metadata Workbook and contributed
512 to the showcases. E.L. and A.P. lead the discussion rounds as representatives of the consortia. L.Se. and J.H. wrote the first
513 draft of the manuscript. All authors reviewed the manuscript.

514 **Competing interests**

515 The authors declare no competing interests.

516 **Figures & Tables**

517 Figures placed at suitable positions within the manuscript for revision.