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Abstract—Motivation: Molecular Regulatory Pathways
(MRPs) are crucial for understanding biological functions.
Knowledge Graphs (KGs) have become vital in organizing
and analyzing MRPs, providing structured representations
of complex biological interactions. Current tools for mining
KGs from biomedical literature are inadequate in capturing
complex, hierarchical relationships and contextual information
about MRPs. Large Language Models (LLMs) like GPT-4 offer
a promising solution, with advanced capabilities to decipher
the intricate nuances of language. However, their potential for
end-to-end KG construction, particularly for MRPs, remains
largely unexplored.
Results: We present reguloGPT, a novel GPT-4 based in-context
learning prompt, designed for the end-to-end joint name
entity recognition, N-ary relationship extraction, and context
predictions from a sentence that describes regulatory interactions
with MRPs. Our reguloGPT approach introduces a context-
aware relational graph that effectively embodies the hierarchical
structure of MRPs and resolves semantic inconsistencies by
embedding context directly within relational edges. We created
a benchmark dataset including 400 annotated PubMed titles on
N6-methyladenosine (m6A) regulations. Rigorous evaluation of
reguloGPT on the benchmark dataset demonstrated marked
improvement over existing algorithms. We further developed
a novel G-Eval scheme, leveraging GPT-4 for annotation-free
performance evaluation and demonstrated its agreement with
traditional annotation-based evaluations. Utilizing reguloGPT
predictions on m6A-related titles, we constructed the m6A-KG
and demonstrated its utility in elucidating m6A’s regulatory
mechanisms in cancer phenotypes across various cancers. These
results underscore reguloGPT’s transformative potential for
extracting biological knowledge from the literature.
Availability and implementation: The source code of reguloGPT,
the m6A title and benchmark datasets, and m6A-KG are available
at: https://github.com/Huang-AI4Medicine-Lab/reguloGPT.

Key words—Molecular Regulatory Pathways, Knowledge
Graph, GPT, In Context Learning, m6A mRNA Methylation

I. INTRODUCTION

Molecular Regulatory Pathways (MRPs) are central to our

understanding of biological functions, as they reveal how

genetic variations or chemical stimuli influence biological

processes and diseases. Studying MRPs allows scientists
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to uncover the molecular mechanisms controlling biological

functions, aiding in the identification of disease-contributing

dysregulations and guiding the development of targeted ther-

apies. As such, elucidating MRPs is a key goal in biomedical

research, offering critical insights into biological processes

and informing the design of precise medical treatments. For

organizing and analyzing the extensive data within MRPs,

Knowledge Graphs (KGs) have become instrumental. These

KGs offer structured representations of complex biological

knowledge, detailing the interactions among various enti-

ties such as genes, proteins, and biological processes [1],

[2]. While databases like KEGG, Reactome, and QIAGEN

Ingenuity Pathway Analysis have been established through

meticulous human curation, the sheer volume and pace of

new research publications pose a significant challenge to these

manual efforts. To address this, automated Natural Language

Processing (NLP) methods have been developed, combining

rule-based and machine-learning strategies to improve the

extraction of biomedical knowledge from literature, as seen

in databases like RepoDB, MSI, Hetionet, DrugMechDB, and

INDRA [3].

Current tools for mining gene associations are inadequate

for mapping complex MRPs, which involve intricate relation-

ships and hierarchical structures. For example, the sentence

“METTL3-mediated m6A methylation of SPHK2 promotes

gastric cancer progression by targeting KLF2.” suggests a

context-specific graph of N-ary relationships involving several

entities, i.e., METTL3, m6A (N6-methyladenosine), SPHK2,

KLF2, progression and gastric cancer as the context (Fig. 1).

This graph encompasses both explicit and implicit regulatory

relationships that collectively describe the mechanism by

which METTL3 regulates the progression of gastric cancer.

Extracting such detailed graphs from MRP descriptions chal-

lenges existing NLP methods and requires advanced Named

Entity Recognition (NER) and N-ary Relationship Extraction

(RE), along with context identification.

Existing NLP methods for biomedical KG construction

can be categorized as rule-based including SemRep [4] and

REACH [5], machine-learning based including EIDOS [6]
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and GNBR [7], or a mix of the two such as Turku Event

Extraction System (TEES) [8]. However, they focus on binary

relationships, represented as triplets (entity A, relationship r,

entity B) [9], and struggle with N-ary relationships in MRPs.

This limitation leads to cascading errors from misidentified

entities to RE and redundant/missed relationships, and in-

creased complexity [10]. Specifically, REACH [5] uses a rule-

based approach to effectively identify entities and relationships

within biomedical texts. Similarly, EIDOS [6] is tailored for

extracting structured information from scientific literature,

employing machine learning techniques to recognize entities

and relationships, thus boosting its information extraction

capabilities. TEES [8], aims to extract events and participants

from biomedical texts, combining rule-based methods with

machine learning. In a similar vein, GNBR [7] specializes

in normalizing gene mentions and extracting binary relations

from biomedical literature. GNBR employs machine learning

for effective gene-related information extraction. SemRep [4]

is another system that utilizes a rule-based methodology for

biomedical relation extraction. It is designed to navigate and

interpret complex language structures in biomedical literature,

focusing on the extraction of meaningful semantic relations.

N-ary relationships, involving more than two entities, are

crucial for a comprehensive representation of biological in-

teractions. While N-ary RE is well-investigated in general

KG construction [11], it is under-explored in the biomedical

domain, although a few recent works have considered the

prediction of drug-gene-mutation relationships and others from

multiple sentences [12]. Furthermore, existing methods are

limited in capturing important contextual information like

diseases and tissue types, potentially leading to inconsistencies

in and misinterpretation of biomedical KGs.

The advent of Large Language Models (LLMs) like GPT-

4 represents a significant leap forward in NLP, providing

deep insights into the contextual dynamics of language. These

models, which learn from vast text corpora, challenge the

traditional view of language as a static set of terms and

rules, instead proposing that language fundamentally consists

of relational links between words [13]. This perspective aligns

well with the core objective of KGs, which is to map out a

network of relationships among entities. While LLM-based

in-context learning (ICL) has demonstrated state-of-the-art

performances in biomedical NLP tasks without expensive

training or fine-tuning, their potential for end-to-end KG

construction, particularly for MRPs, remains largely untapped

and represents a promising frontier in the field of biomedical

research [13]. Additionally, tools such as Bioinfo-Bench [14]

are significant in evaluating the capabilities of LLMs in bioin-

formatics, indicating a promising direction for future research.

In this paper, we explored the capability of GPT-4 in the

end-to-end construction of a context-aware relational graph to

accurately delineate context-specific MRPs of m6A methyla-

tion within a given sentence. Our contributions are:

1) We proposed reguloGPT, GPT-4 driven ICL prompt,

specifically designed for end-to-end joint NER, N-ary

RE, and context identification, with an aim to accu-

Fig. 1. (A) reguloGPT builds a context-aware knowledge graph (KG)
based on PubMed sentences depicting molecular regulatory pathways. The
KG reflects the hierarchy of molecular pathways, while also incorporating
extracted regulatory contexts and associated PubMed IDs into edges. This
enables the delineation of context-specific regulation. (B) The exclusion of
context in KG could introduce contradictory relations or wrong conclusions
in the downstream pathway. For example, the highlighted path suggests the
‘inhibition’ and ‘promotion’ of ‘progression’ with ‘induced deficiency of’
METTL3, which is incorrect.

rately interpret context-specific MRPs that include both

explicit and implicit regulations. We designed the base-

line, few-shot, and Chain-of-Thought (CoT) prompts for

reguloGPT.

2) We introduced a context-aware relational graph repre-

sentation of regulatory interactions within MRPs of dis-

ease, tissue, and cell type (Fig. 1). This graph uniquely

incorporates the context as part of the relational edges,

thereby addressing and resolving the semantic contra-

dictions of relations that often arise when contexts are

not considered (Fig. 1). It also possesses the inherent

regulatory hierarchy of MRPs (Fig. 1).

3) We annotated the context-aware relational graphs de-

rived from 400 PubMed paper titles related to m6A

MRPs and created a benchmark dataset. This dataset

encompasses a diverse array of contexts, entities and

relationships, highly valuable for systematic evaluation

of reguloGPT.

4) We thoroughly evaluated the performance of the pro-

posed prompts for predicting contexts, recognizing the

entities, and extracting both explicit and implicit rela-

tionships. Our results demonstrated significant improve-

ment over several existing algorithms.

5) To overcome the need for manual annotation in evaluat-

ing reguloGPT, we introduced a novel G-Eval scheme,

which leverages CoT prompts to evaluate extracted con-

text and relational graphs. We showed that there was a

strong similarity between G-Eval scores and annotation-

based evaluations.
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6) We applied reguloGPT to PubMed titles between 2013-

2023 related to m6A MRPs and constructed m6A-KG, a

comprehensive KG of m6A MRPs. We demonstrated the

utility of m6A-KG for representing m6A-mediated path-

ways and delineating mechanisms by which the m6A

writer METTL3 regulates cancer-related phenotypes in

breast cancer, lung cancer, and myeloid leukemia.

II. METHODS

In this section, we outline reguloGPT, a novel approach that

leverages GPT-4 based ICL for the end-to-end extraction of

MRPs from literature. The reguloGPT involves six modules,

each meticulously designed to facilitate the construction of

a context-aware KG from PubMed research publications, as

illustrated in Fig. 2. The reguloGPT workflow begins with

a dataset of publication titles extracted from PubMed. These

titles are fed into reguloGPT, which utilizes a customized

ICL prompt . The prompt is designed to capture N-ary

molecular regulations and their biological context, reflecting

the intricacies of MRPs. We will detail these processes in

the subsequent sections, covering the generation, annotation,

and normalization of the benchmark dataset for reguloGPT

evaluation, evaluation criteria and methods, creation of a KG

specific to m6A research domain, and the discovery of novel

regulations.

A. In-Context Learning (ICL) Prompts for reguloGPT

ICL has gained prominence as an innovative method in

LLMs, like GPT4, for zero-shot or few-shot predictions. To

harness this potential, we developed three distinct prompts

for reguloGPT including a baseline prompt that provides only

definitions, a few-shot prompt enriched with a few examples

that showcase the resultant context and N-ary relational graph,

and a CoT prompt, which uses additional reasoning steps

within each example, improving the underlying logic of the

information extraction.

1) Baseline prompt: Fig. 3A shows the framework of the

baseline prompt, including: 1) Instruction, which presents the

task objective of reguloGPT for GPT-4; 2) Definition, which

defines the components in a context-aware relational graph,

including node, edge, context, and inferred edge. Each edge

includes two nodes and a predicate. This section also illustrates

a collection of constraints for nodes and edge extraction; and

3) Output format. Following the prompt, we specify a target

sentence from a PubMed paper that comprises a collection

of molecular regulatory relationships. In this paper, we only

use the title of a paper. In the definition, we also propose

the inferred edge since many relationships in the sentences

are logically derived but aren’t directly stated in the pro-

vided sentence. Take “METTL3-mediated m6A methylation

of SPHK2 promotes gastric cancer progression by targeting

KLF2” in Fig. 1 as an example, we can infer an edge for

KLF2 promoting gastric cancer progression but the sentence

does not explicitly mention this relationship.

Process 1

Pubtator Extraction

of m6A-related
titles 

reguloGPT

Process 2

Annotation of  
Benchmark Data

(400 titles)

Process 3

Normalization of

nodes, predicates, 
and context

Benchmark

DB

Raw DB

All titles

Process 5

m6A KG
Generation

Process 6

KG Statistics and

Discovery of
New Regulations

Custom reguloGPT Prompt

Evaluation Prompts

Database

P3

Norm

Process 4

Evaluation using

G-eval and
Benchmark Data

P3

Norm

Fig. 2. The overall process of developing reguloGPT including data collection,
creation of a benchmark dataset, ICL prompt engineering, performance
evaluation, context-aware m6A KG generation, and downstream analysis.

2) Few-shot prompt: The few-shot prompt consists of 1)

instruction, 2) definition, 3) demonstration, and 4) output for-

mat. Different from the baseline prompt, the few-shot prompt

includes an extra demonstration section after definition, which

provides a few examples containing pairs of sentences and the

biomedical graph extracted from sentences. A few examples

help LLM have a better understanding of the task. We include

4 examples in our prompt and one of them is illustrated in

Fig. 3B. Each example includes the target sentence and output

(context, nodes, direct edges, and inferred edges). The output

follows the requirement in the output format.

3) Chain-of-Thoughts (CoT) prompt: CoT prompt has been

shown [15] to encourage a complex and logical response from

LLM, which in turn improves the task performance. In our

CoT prompt, we add a series of intermediate reasoning steps

as the chain of thought for each example in the demonstrations,

as presented in the red box in Fig. 3C.

B. Construction of datasets for performance benchmark and

knowledge graph generation

The lack of context-dependent benchmark datasets for

MRPs is a primary obstacle to the comprehensive assessment

of our proposed reguloGPT. In addition, in the rapidly evolv-

ing field of molecular biology, the focused construction and

annotation of benchmark datasets in the m6A domain hold

significant scientific value. Concentrating on m6A, a relatively

new area, allows for a detailed and nuanced understanding

of this emerging field. This targeted approach not only cir-

cumvents the challenge of information overload inherent in

broader research domains but also fosters the development

of a specialized repository of knowledge. Such a repository

is instrumental in accelerating research and catalyzing new

discoveries in m6A-related studies. Moreover, the creation of

a benchmark dataset within this niche is critical for model

validation and refinement.

We extracted titles of publications involving m6A research

as they represent the most concise description of context-

specific molecular regulations. To this end, we searched

PubMed, which is a large open database of online books,

life science journals, and MEDLINE. We used PubTator [16]
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Fig. 3. The reguloGPT prompts. (A) Baseline prompt including instruction, definition, and output format. (B) Demonstration in few-shot prompt. (C)
Demonstration in CoT prompt.

RESTful API with “m6A” as the query keyword to extract

publications from PubMed between 2013 and 2023. Our se-

lection criteria are defined as follows: we choose titles that are

complete sentences and include references to multiple genes.

This is crucial for mapping pathways that either lead from

m6A to various genes/proteins or from these genes/proteins

back to m6A.

1) Annotation method for benchmark dataset: To facilitate

the annotation of a benchmark dataset, we assembled five

subject-matter-expert annotators with backgrounds in com-

puter science and biomedicine to annotate 400 specially cho-

sen titles, which contain MRPs from the m6A research paper

title corpus. The annotation has three phases:

(a) Practice annotation phase: We randomly selected 20

sentences as practice examples. Five annotators followed

the descriptions that were provided in the prompts to

identify the nodes, edges, and context. They discussed

within themselves and came up with a consensus. Most

importantly, they summarize the special cases for further

annotation.

(b) Group annotation phase: We used annotation guidelines

summarized in the practice annotation phase to guide

the group annotation. All sentences were divided into

5 shards and distributed to 5 annotators. After the first

round of annotation, 5 annotators exchanged examples

and completed the second round of annotation. In this

case, each example was annotated by two annotators.

(c) Adjudication phase: For titles that all annotators agreed

on, their annotation will be final. For the others, the

annotations were discussed within the group to reach an

agreement.
2) Annotation guidelines: In the practice annotation phase,

basic guidelines were summarized. For each sentence, the

annotation included context, nodes list, and edge lists. Each

edge included two nodes and one predicate to connect the two

nodes. Inferred edges were considered to be extra relationships

and they were often accompanied by prepositions like “via”,

“by”, and “through” in the sentence. The context should not

be biological processes such as development, progression,

etc. Co-reference was not committed and therefore for “m6A

methyltransferase METTL3” only “METTL3” was extracted.

In addition, some special cases were adopted: 1) Any complex

mechanism like the A/B/C or (A-B-C) “axis”, “pathway”, and

“signaling” is annotated as single node. If there is no word

such as “axis”, “pathway”, or “signaling” in the phrase, divide

entities in A-B-C into separate nodes; 2) A “dummy” node

was introduced if no entity is defined for regulation in the
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sentence. For example in the Fig. 1, for the subject “Deficiency

of METTL3” at the beginning of the sentence with PMID

33681207, we will construct a relationship as (dummy, induce

deficiency of, METTL3). Finally, we normalized the extracted

relationships into 31 ontological normalized predicates dis-

cussed in the next section.

C. Normalization of nodes, predicates, and contexts

We used Gilda [17] and the Gene Ontology knowledge-

base (GO) [18] to normalize nodes first. Subsequently, we

performed manual normalization to ensure consistency among

nodes that convey the same meaning. We further grouped the

nodes into six categories: m6A, m6A writers/erasers/readers

(WERs), genes/proteins, GO/pathways, and other.

For the predicate normalization, we followed the

Ontological predicate definitions in SemRep [4]. Semrep

provides 30 predicate types including HIGHER THAN,

LOWER THAN, AFFECTS, STIMULATES, AUGMENTS,

INTERACTS WITH, INHIBITS, DISRUPTS, PREVENTS,

CAUSES, DIAGNOSES, CONVERTS TO, COEX-

ISTS WITH, COMPLICATES, ISA, TREATS, PRODUCES,

LOCATES, PRECEDES, MANIFESTS, METHODS,

OCCURS IN, PART OF, COMPARED WITH, SAME AS,

ASSOCIATED WITH, USES, ADMINISTERED TO,

PROCESS OF, PREDISPOSES. We added an extra predicate

type, MAINTAINS (keep in an existing state) to have 31

types in total. For relationship normalization, we applied

GPT-4 to perform an initial normalization, followed by a

manual evaluation to correct inconsistencies. We also applied

the same normalization method to the context as we do for

nodes. We further systematically normalized the contexts

associated with The Cancer Genome Atlas (TCGA) cancer

types [19].

D. Construction of the m6A knowledge graph

In addition to the benchmark dataset of 400 titles, our

study further extracted 968 titles that include descriptions of

MRPs from the titles extracted by PubTator. These additional

titles were subject to our reguloGPT CoT prompt to extract

the context and relation graphs, thus broadening the scope

of our analysis and enriching the dataset under considera-

tion. Normalization was applied to standardize the extracted

nodes, edges, and contexts. We integrated these normalized

relational graphs with those from our benchmark dataset by

joining common nodes and edges to construct m6A-KG, a

comprehensive KG of m6A functions in diverse contexts.

This KG includes nodes connected with edges that define the

normalized predicates. A unique feature of m6A-KG is that

each edge also includes a set of associated contexts extracted

from the same titles as the edge to inform the context under

which the regulation defined by the edge occurs. The edge

also incorporates the unnormalized edge value and PubMed

Identifier (PMID) of the associated titles. Unnormalized edge

and PMID provide a mechanism to trace back to the original

title and associated paper for reference. We used Neo4j [20]

to visualize and manipulate our KG.

E. Evaluation metrics and criteria

1) Evaluation with the benchmark dataset: We used the

benchmark dataset to evaluate the performance of reguloGPT

across different prompt designs. We adopted accuracy as the

metric for context prediction and recall, precision and F1 score

for nodes and edges evaluation. The criteria to evaluate the

predicted nodes and edges are listed below:

(a) True positive: This is achieved when GPT-4 prediction

nodes align with the benchmark annotation. A match is

also considered if the output context or node contains

most of the ground truth information. For edge eval-

uation, the criteria for two nodes are similar, and the

normalized prediction must completely align with the

result in the benchmark dataset.

(b) False positive: Incorrectly extracted nodes or edges are

marked as false positives. In edge evaluation, a false

positive occurs if the predicted nodes match but the

predicate is incorrect or not extracted.

(c) False negative: Any ground truth nodes and edges

without a corresponding matching prediction are false

negatives.

2) G-Eval scheme for annotation-free assessment of reg-

uloGPT: The assessment of context-aware KG construction

poses challenges and manual annotation is labor-intensive and

costly. Recent research proposes leveraging LLMs directly as

evaluators for reference-free Natural Language Generation, as

indicated by [21] in GPTScore. They utilize LLMs to evaluate

candidate outputs, assigning scores based on generation prob-

ability without referencing any target. [22] demonstrate that

GPT-4 can assess the quality of generated texts in coherence,

consistency, fluency, and relevance compared to ground truth

in a form-filling paradigm. However, existing studies have

primarily focused on sentence-level evaluation, leaving the

performance of LLMs in graph generation evaluation largely

unexplored.

To address this challenge, we proposed a novel framework,

GPT-4-evaluation (G-Eval), which employs GPT-4 and a form-

filling paradigm to evaluate the quality of output at the

sentence level. We experimented with two tasks, namely,

1) context evaluation and 2) graph evaluation. For context

evaluation, GPT-4 gave a score to each context in a sentence,

while for graph evaluation, GPT-4 gave a score to all edges

extracted from a sentence. The evaluation prompts of both

context evaluation and graph evaluation included four parts:

1) Introduction, 2) Definition, which denotes the concept of

context in the context evaluation, or the concepts of nodes

and edges in the graph evaluation; 3) Evaluation Steps; and 4)

Output Format.

The concepts of contexts, nodes, and edges are the same as

those defined in reguloGPT prompts (Fig. 3A). The evaluation

steps were generated by GPT-4 based on the introduction and

definition. The range of the score was 1-5, and we repeated

the evaluation five times to obtain the average score [22]. In

the output format, we added a test sentence and predicted

context in the context evaluation or corresponding edge (two
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Fig. 4. The G-Eval prompts for (A) context evaluation and (B) graph evaluation. the Evaluation Steps were generated by GPT-4 based on our Instructions
and Definitions. Then, they evaluate the context or graph added in the Output Format in a form-filling fashion.

nodes and a predicate) list in the graph evaluation. It should

be mentioned that we used unnormalized context and edges

in the output. Fig. 4 shows the framework of G-Eval for the

context evaluation and graph evaluation.

III. RESULTS

A. Annotation of the benchmark dataset

We annotated the context-aware graphs for a selection of

400 titles, specifically chosen from m6A research papers. We

were able to deduce the context-specific information from 344

titles. The annotated dataset includes the extracted 1558 nodes

and 1485 edges with 1312 unique nodes and 152 unique edges,

or an average of 3.72 entity-relations extracted per title. Fur-

ther normalization resulted in a total of 1241 unique nodes and

62 unique edges. Also, 165 of the nodes were categorized as in

the Genes/Proteins group, 172 as GO/Pathway, 9 as Readers,

8 as Writers, 2 as Erasers, and 956 as Other. Moreover, we

were able to extract 24 different TCGA cancer types from the

normalized contexts in the benchmark dataset.

B. reguloGPT significantly outperforms existing algorithms on

the benchmark dataset

We first evaluate reguloGPT’s performance on the bench-

mark datasets against human annotation. To evaluate the effec-

tiveness of reguloGPT, we selected two established algorithms

as baselines: REACH [5] and EIDOS [6]. Both algorithms

are integral components of the INDRA [3] framework and are

specifically designed for extracting interactions from scientific

research papers. To conduct a comprehensive comparison, we

tested these baseline algorithms using the benchmark dataset.

Note that neither baseline algorithms were designed to extract

contexts.

Table I details the performance of various prompting strate-

gies used in reguloGPT development (baseline, few-shot, and

CoT prompts) compared to REACH and EIDOS, as measured

against the human-annotated benchmark dataset. The metrics

used for this comparison include Recall (Re), Precision (Pr),

and F1 score for both node and edge evaluations, alongside

Accuracy for context evaluation. Because REACH and EIDOS

do not output context information, hence context evaluation

results (accuracy) for these algorithms are absent in the

comparison.

Overall, reguloGPT’s ICL strategies have demonstrated re-

markable superiority over REACH and EIDOS. Among regu-

loGPT prompts, CoT emerged as the most effective, achieving

an impressive accuracy of 0.89 for context detection and F1

scores of 0.955 for node prediction and 0.636 for edge ex-

traction. The relatively lower performance on edge prediction

underscores the inherent complexity in accurately extracting

complex N-ary relationships. However, when compared to

EIDOS, the CoT prompt showed substantial improvement of

22%, 29%, and 81.5% improvement in context accuracy and

node and edge F1 scores, respectively. These enhancements

underscore reguloGPT’s overall superior capabilities in ex-

tracting knowledge of MRPs. The marked improvement can be

attributed to the end-to-end strategy and, likely, the advanced

capabilities of GPT-4.

The improvement of the extraction capabilities is evident in

the title “The m6A methyltransferase METTL3 promotes os-

teosarcoma progression by regulating the m6A level of LEF1”

(PMID: 31253399). As noted in section III-A, the bench-

mark annotations for this title include four triplets under the

context of ‘osteosarcoma’. However, REACH only identified

(METTL3, STIMULATES, level of LEF1). Similarly, EIDOS

extracted only one triplet (m6A methyltransferase METTL3,

STIMULATES, osteosarcoma progression). In contrast, all

three of the reguloGPT prompts were able to successfully

extract the 3 direct and 1 inferred edge relationship between

the correct entities with the correct context of osteosarcoma.

In another example, “eIF3i promotes colorectal cancer

cell survival via augmenting PHGDH translation” (PMID:

37611825), reguloGPT identified three triplets with two direct

and one inferred edge. In contrast, REACH extracted only one

triplet (eIF3i, STIMULATES, cell survival) while EIDOS ex-

tracted two triplets, including (eIF3i, AUGMENTS, PHGDH

translation) and (eIF3i, STIMULATES, colorectal cancer cell

survival). However, reguloGPT was able to additionally extract
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TABLE I
RESULTS COMPARISON OF DIFFERENT PROMPTS WITH EXISTING

ALGORITHMS USING THE BENCHMARK DATASET. HERE, RE = RECALL,
PR = PRECISION, AND F1 = F1 SCORE.

Context Node Edge

Accuracy Re Pr F1 Re Pr F1

REACH - 0.547 0.939 0.689 0.162 0.451 0.235
EIDOS - 0.594 0.9815 0.740 0.260 0.675 0.3517

Baseline 0.7375 0.891 0.926 0.910 0.451 0.422 0.441
Few shot 0.875 0.940 0.951 0.946 0.599 0.578 0.588

CoT 0.89 0.954 0.956 0.955 0.638 0.642 0.639

the inferred edge relation (PHGDH, STIMULATES, survival)

and the context as ‘colorectal cancer cell’.

Due to additional demonstrations in the prompts as illus-

trated in Fig. 3C, the CoT prompt leads to Context accuracy

at 89%, followed by the few-shot prompt at 87.5%, and the

baseline prompt at 73.75%. In extracted Node evaluation,

the CoT prompt again demonstrates superior performance,

achieving the highest scores across Recall (95.4%), Precision

(95.6%), and F1 (95.5%) followed by a few-shot prompt

that surpasses the other methods. For Graph evaluation, CoT

leads with a Recall of 63.8%, Precision of 64.2%, and an

F1 score of 63.9%. The few-shot prompt closely follows,

significantly outperforming the baseline prompt, EIDOS, and

REACH algorithms.

To be precise, the advanced prompt technique makes the

output of GPT-4 align with our requirements. Although we

ask the GPT-4 to introduce a dummy node in the prompt,

the output of the baseline prompt ignores this guideline. By

adding one example in a demonstration with a similar case,

the few-shot prompt can follow this requirement. However,

this alignment is not stable. In the paper “Suppression of m6A

reader Ythdf2 promotes hematopoietic stem cell expansion”

(PMID: 30065315), the few-shot prompt neglects this con-

dition, but the CoT prompt can maintain alignment as well.

A similar issue happened in the ”Silencing METTL3 inhibits

the proliferation and invasion of osteosarcoma by regulating

ATAD2” (PMID: 32044716) and the few-shot prompt fails to

introduce a dummy node.

C. G-Eval assessment is consistent with manual evaluations

We next investigated the G-Eval evaluations of predictions

by the three reguloGPT prompts on the 400 titles in the

benchmark dataset and assessed the extent to which the G-

Eval evaluations are consistent with the evaluations against

human annotations. We have 400 scores in context evaluation

and 400 scores in graph evaluation. Examining the averaged

scores across the 400 titles (Table. I) revealed a consistent

trend with the annotation evaluation in Table. II where the

CoT prompt exhibited the best performance, followed by the

few-shot and baseline prompts.

To further validate the effectiveness of our G-Eval strategy,

we analyzed the similarity between the annotation evaluation

and G-Eval scores for each sentence. Since the annotation

evaluation for each sentence is binary, i.e., correct or incorrect,

we first binarized G-Eval scores using a threshold score of 3.

TABLE II
G-EVAL RESULTS. THE RANGE OF SCORES IS 1 - 5. THE SIMILARITY

DENOTES THE RAND SIMILARITY COEFFICIENT BETWEEN THE G-EVAL

AND THE HUMAN ANNOTATION EVALUATIONS OF REGULOGPT’S

PREDICTION ON THE BENCHMARK DATASET AT THE SENTENCE LEVEL.

Context Graph

Score Similarity Score Similarity

Baseline 3.7426 0.81 3.7598 0.6125
Few shot 4.1929 0.8375 4.5901 0.775

CoT 4.3467 0.84 4.6675 0.8125

The threshold was chosen based on the score distribution (1-5).

Additionally, G-Eval conducts the graph evaluation, whereas

the annotation evaluations are assessed for nodes and edges. To

make them comparable, we generated a graph-level annotated

evaluation such that a sentence was deemed correct if more

than 50% of the edges in the sentence were correctly predicted.

We did not consider node prediction because their F1 scores

are high as shown in Table. I. To compare the similarity

between the G-Eval and annotation evaluations, we computed

the Rand matching coefficient for each title. These results

are detailed in Table. II. They demonstrate high similarities

between the two evaluations, especially for reguloGPT, where

the Rand similarities reach 0.84 for context prediction and

0.8125 for graph prediction. These results suggest that G-

Eval is a promising annotation-free method for evaluating

reguloGPT.

IV. M
6A-KG, A CONTEXT-AWARE KG OF M

6A

REGULATORY FUNCTIONS

m6A is the predominant mRNA modification in mammalian

cells, present in over 40% of transcripts. The dynamic m6A

regulation involves various RNA binding proteins (RPBs)

including writers (METTL3 & METTL14), which add methyl

groups, erasers (ALKBH516 & FTO2) to remove it, and

readers, (e.g. YTH proteins), which bind to m6A sites to

decode the regulatory signals for mediating gene expression. It

achieves this by regulating mRNA stability, splicing, mRNA

export, and translation efficiency. Additionally, it influences

cancer development and progression significantly by modu-

lating mRNA stability and splicing. Despite growing interest,

the roles of m6A and its writers, erasers, and readers in cancer

through gene expression alterations are not fully understood.

We demonstrate the utility of reguloGPT to create a detailed

representation of the m6A-associated molecular regulatory

pathways.

A. Construction of m6A-KG with reguloGPT

We applied reguloGPT to 968 unannotated titles, resulting

in the extraction of context-aware relational graphs that depict

functions related to m6A in diverse contexts. After normalizing

the nodes, edges, and contexts, we synthesize these relational

graphs and annotated graphs from the benchmark dataset into

a comprehensive m6A knowledge graph (m6A-KG), denoting

molecular regulatory pathways linked to m6A. The constructed

m6A-KG comprises 2,397 nodes, 4,694 edges, and 478 unique
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contexts, with each edge encompassing an average of 1.06 con-

texts. The node degree, calculated by aggregating in-degrees

and out-degrees akin to undirected graphs, follows a power-

law distribution, with 96.2% of nodes having less than 10

degrees and only 9 nodes possessing >100 degrees. Notably,

node “m6A” emerges as the most connected, with a degree of

827, highlighting its centrality in the network. The top nodes

by degree include key m6A writers like METTL3 (436) and

METTL14 (122), erasers such as ALKBH5 (166) and FTO

(222), and readers like YTHDF2 (127) and YTHDF1 (109).

This underscores their vital roles in the regulatory functions

of m6A. Additionally, nodes representing cell proliferation

(104) and neoplasm metastasis (93) also have high degrees,

indicating m6A’s significant influence on these tumor-related

phenotypes.

B. The structure of m6A-KG reflects the architecture of molec-

ular regulatory pathways

Fig. 5. (A) Outdegree rate of nodes in different categories. (B) Outdegree
and indegree rates of other category nodes within lung cancer-specific KG.

To examine if the structure of the m6A-KG reflects a

typical architecture of MRPs, we categorized the nodes

into six groups: m6A, m6A writers/erasers/readers (WERs),

GO/pathway, genes/proteins, and other. Analysis of the

outgoing edge percentage of a node (outdegree rate) within

each group revealed a hierarchical structure aligned with that

of a molecular pathway. Specifically, m6A WERs and m6A

have a median 0.85 and 0.77 outdegree rate, respectively,

suggesting that they occupy upstream positions (Fig. 5A) and

re-affirming their role as key regulators. Also, genes/proteins

nodes (0.05 median outdegree rate) are intermediate nodes,

which bridge the upstream regulators with the downstream

GO/Pathway nodes (0.03 median outdegree rate) (Fig. 5A).

The other nodes exhibited three subgroups, with two (other-

L and other-H) characterized by a median outdegree rate of

either 0 or 1 (Fig. 5A), indicating their positions at extreme

ends of the pathway. Close inspection revealed that other-L

nodes define disease phenotypes or outcomes, naturally at the

Fig. 6. Cancer-type specific KG of (A) Breast cancer, (B) Myeloid leukemia,
and (C) Lung cancer. Extracted pathways are shown to the left. Edge colors
are associated with the supporting titles.

bottom of pathways, while other-H nodes include chemical

or environmental stimuli and are expected to be upstream of

pathways (Fig. 5B). The emergent structure of the m6A-KG,

with various stimuli on the top followed by clear upstream

m6A regulators, gene/protein interactions, and downstream

phenotype outcomes, exhibits the hallmarks of an MRP.

C. The m6A-KG reveals distinct mechanisms of m6A functions

across various cancer types

We next investigated m6A’s role in various cancers, lever-

aging the m6A-KG’s integration of contexts and PMIDs into

edges. This feature enabled us to dissect functions specific to

certain cancers and to identify those common across multiple

types. The m6A-KG contexts included 24 TCGA cancer types

with 2,366 edges pertaining to individual cancer types. Re-

markably, one edge representing “METTL3 AFFECTS m6A”

is universally presented across all 24 TCGA cancer types

examined, signifying METTL3’s ubiquitous influence. Addi-

tionally, three edges spanning 10 cancer types involve the

relationships “METTL14 AFFECTS m6A”, “ALKBH5 AF-

FECTS m6A”, and “METTL3 STIMULATES progression”,

highlighting the central role of the m6A writers METTL3,

METTL14, and the eraser ALKBH5 in multiple cancers.

To gain insights into cancer-specific m6A-mediated func-

tions, we extracted cancer-specific KGs for breast cancer,

lung cancer, and myeloid leukemia. These sub-KGs presented

clear hierarchies of MRPs, with m6A regulators at the top

and disease phenotype nodes at the downstream. METTL3’s
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widespread association across cancers prompted further exam-

ination of pathways centering on this regulator. We focused

on pathways supported by edges spanning multiple titles

because they could reveal novel functions. The breast can-

cer sub-KG delineates a complex dual-pathway mechanism,

with evidence from five titles (PMID: 32766145, 36069931,

36609396, 34312368, 35319018), suggesting METTL3’s in-

volvement in tumor metastasis through two distinct routes:

regulation of COL3A1, crucial for extracellular matrix struc-

ture, and alteration of cancer cell metabolism via the gly-

colytic pathway. This duality suggests that therapeutic tar-

geting METTL3 could simultaneously disrupt key structural

and metabolic routes essential to cancer metastasis, offering

a promising avenue for multifaceted therapeutic intervention.

Moreover, cancer-dependent regulations of MEG3, a tumor

suppressor gene, were revealed in lung and leukemia sub-

KGs. The leukemia sub-KG indicates that MEG3 modu-

lates miR-493-5p to suppress myeloid leukemia by inhibit-

ing METTL3-mediated m6A methylation (PMID: 35761379,

29186125). Conversely, in lung cancer, METTL3 methylates

MEG3, which facilitates carcinogenesis and neoplasm metas-

tasis (PMID: 37308993). These distinct regulatory mecha-

nisms were corroborated through a detailed examination of the

literature associated with the extracted pathways, validating the

m6A-KG’s utility in uncovering new functional insights.

V. CONCLUSION

In this study, we introduced reguloGPT, a novel application

of GPT-4 for the end-to-end construction of KGs in the

realm of MRPs. We developed ICL prompting strategies to

extract context-aware relational graphs depicting interactions

with MRPs. We thoroughly evaluated reguloGPT’s efficacy

against a human-annotated benchmark database comprising

400 titles and demonstrated significant improvements over

existing algorithms. We also found a good similarity between

manual evaluation and our proposed annotation-free G-Eval.

We successfully applied reguloGPT to create a comprehensive

and detailed m6A-KG. This KG included an extensive network

of 2,397 nodes and 4,694 edges, providing a rich map of

m6A regulatory functions. A notable feature of m6A-KG is

its unique context-aware edges, which incorporate associated

contexts and PubMed IDs. This design not only allow us

to understand context-specific regulations but also improves

traceability and verification of the data. The m6A-KG revealed

distinct mechanisms of m6A functions across various cancer

types, facilitating a deeper understanding of the role of m6A in

cancer, opening avenues for targeted cancer research and ther-

apy development. The hierarchical structure of the m6A-KG

mirrors the architecture of MRPs, revealing a more intuitive

understanding of the complex interactions and roles within

these pathways. Future studies will explore a more systematic

G-Eval assessment and relationship extraction, along with

improved normalization schemes for edges and contexts. A

systematic and effective approach to elucidate novel regulatory

functions from the KG will be further developed.
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