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Abstract—Motivation: Molecular Regulatory Pathways
(MRPs) are crucial for understanding biological functions.
Knowledge Graphs (KGs) have become vital in organizing
and analyzing MRPs, providing structured representations
of complex biological interactions. Current tools for mining
KGs from biomedical literature are inadequate in capturing
complex, hierarchical relationships and contextual information
about MRPs. Large Language Models (LLMs) like GPT-4 offer
a promising solution, with advanced capabilities to decipher
the intricate nuances of language. However, their potential for
end-to-end KG construction, particularly for MRPs, remains
largely unexplored.

Results: We present reguloGPT, a novel GPT-4 based in-context
learning prompt, designed for the end-to-end joint name
entity recognition, N-ary relationship extraction, and context
predictions from a sentence that describes regulatory interactions
with MRPs. Our reguloGPT approach introduces a context-
aware relational graph that effectively embodies the hierarchical
structure of MRPs and resolves semantic inconsistencies by
embedding context directly within relational edges. We created
a benchmark dataset including 400 annotated PubMed titles on
N6-methyladenosine (m°A) regulations. Rigorous evaluation of
reguloGPT on the benchmark dataset demonstrated marked
improvement over existing algorithms. We further developed
a novel G-Eval scheme, leveraging GPT-4 for annotation-free
performance evaluation and demonstrated its agreement with
traditional annotation-based evaluations. Utilizing reguloGPT
predictions on m®A-related titles, we constructed the m*A-KG
and demonstrated its utility in elucidating m°®A’s regulatory
mechanisms in cancer phenotypes across various cancers. These
results underscore reguloGPT’s transformative potential for
extracting biological knowledge from the literature.

Availability and implementation: The source code of reguloGPT,
the m®A title and benchmark datasets, and m®A-KG are available
at: https://github.com/Huang-AI4Medicine-Lab/reguloGPT.

Key words—Molecular Regulatory Pathways, Knowledge
Graph, GPT, In Context Learning, m°A mRNA Methylation

I. INTRODUCTION

Molecular Regulatory Pathways (MRPs) are central to our
understanding of biological functions, as they reveal how
genetic variations or chemical stimuli influence biological
processes and diseases. Studying MRPs allows scientists
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to uncover the molecular mechanisms controlling biological
functions, aiding in the identification of disease-contributing
dysregulations and guiding the development of targeted ther-
apies. As such, elucidating MRPs is a key goal in biomedical
research, offering critical insights into biological processes
and informing the design of precise medical treatments. For
organizing and analyzing the extensive data within MRPs,
Knowledge Graphs (KGs) have become instrumental. These
KGs offer structured representations of complex biological
knowledge, detailing the interactions among various enti-
ties such as genes, proteins, and biological processes [1],
[2]. While databases like KEGG, Reactome, and QIAGEN
Ingenuity Pathway Analysis have been established through
meticulous human curation, the sheer volume and pace of
new research publications pose a significant challenge to these
manual efforts. To address this, automated Natural Language
Processing (NLP) methods have been developed, combining
rule-based and machine-learning strategies to improve the
extraction of biomedical knowledge from literature, as seen
in databases like RepoDB, MSI, Hetionet, DrugMechDB, and
INDRA [3].

Current tools for mining gene associations are inadequate
for mapping complex MRPs, which involve intricate relation-
ships and hierarchical structures. For example, the sentence
“METTL3-mediated m®A methylation of SPHK2 promotes
gastric cancer progression by targeting KLF2.” suggests a
context-specific graph of N-ary relationships involving several
entities, i.e., METTL3, m°A (N6-methyladenosine), SPHK2,
KLF2, progression and gastric cancer as the context (Fig. 1).
This graph encompasses both explicit and implicit regulatory
relationships that collectively describe the mechanism by
which METTL3 regulates the progression of gastric cancer.
Extracting such detailed graphs from MRP descriptions chal-
lenges existing NLP methods and requires advanced Named
Entity Recognition (NER) and N-ary Relationship Extraction
(RE), along with context identification.

Existing NLP methods for biomedical KG construction
can be categorized as rule-based including SemRep [4] and
REACH [5], machine-learning based including EIDOS [6]
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and GNBR [7], or a mix of the two such as Turku Event
Extraction System (TEES) [8]. However, they focus on binary
relationships, represented as triplets (entity A, relationship r,
entity B) [9], and struggle with N-ary relationships in MRPs.
This limitation leads to cascading errors from misidentified
entities to RE and redundant/missed relationships, and in-
creased complexity [10]. Specifically, REACH [5] uses a rule-
based approach to effectively identify entities and relationships
within biomedical texts. Similarly, EIDOS [6] is tailored for
extracting structured information from scientific literature,
employing machine learning techniques to recognize entities
and relationships, thus boosting its information extraction
capabilities. TEES [8], aims to extract events and participants
from biomedical texts, combining rule-based methods with
machine learning. In a similar vein, GNBR [7] specializes
in normalizing gene mentions and extracting binary relations
from biomedical literature. GNBR employs machine learning
for effective gene-related information extraction. SemRep [4]
is another system that utilizes a rule-based methodology for
biomedical relation extraction. It is designed to navigate and
interpret complex language structures in biomedical literature,
focusing on the extraction of meaningful semantic relations.

N-ary relationships, involving more than two entities, are
crucial for a comprehensive representation of biological in-
teractions. While N-ary RE is well-investigated in general
KG construction [11], it is under-explored in the biomedical
domain, although a few recent works have considered the
prediction of drug-gene-mutation relationships and others from
multiple sentences [12]. Furthermore, existing methods are
limited in capturing important contextual information like
diseases and tissue types, potentially leading to inconsistencies
in and misinterpretation of biomedical KGs.

The advent of Large Language Models (LLMs) like GPT-
4 represents a significant leap forward in NLP, providing
deep insights into the contextual dynamics of language. These
models, which learn from vast text corpora, challenge the
traditional view of language as a static set of terms and
rules, instead proposing that language fundamentally consists
of relational links between words [13]. This perspective aligns
well with the core objective of KGs, which is to map out a
network of relationships among entities. While LLM-based
in-context learning (ICL) has demonstrated state-of-the-art
performances in biomedical NLP tasks without expensive
training or fine-tuning, their potential for end-to-end KG
construction, particularly for MRPs, remains largely untapped
and represents a promising frontier in the field of biomedical
research [13]. Additionally, tools such as Bioinfo-Bench [14]
are significant in evaluating the capabilities of LLMs in bioin-
formatics, indicating a promising direction for future research.

In this paper, we explored the capability of GPT-4 in the
end-to-end construction of a context-aware relational graph to
accurately delineate context-specific MRPs of mSA methyla-
tion within a given sentence. Our contributions are:

1) We proposed reguloGPT, GPT-4 driven ICL prompt,

specifically designed for end-to-end joint NER, N-ary
RE, and context identification, with an aim to accu-
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Fig. 1. (A) reguloGPT builds a context-aware knowledge graph (KG)
based on PubMed sentences depicting molecular regulatory pathways. The
KG reflects the hierarchy of molecular pathways, while also incorporating
extracted regulatory contexts and associated PubMed IDs into edges. This
enables the delineation of context-specific regulation. (B) The exclusion of
context in KG could introduce contradictory relations or wrong conclusions
in the downstream pathway. For example, the highlighted path suggests the
‘inhibition” and ‘promotion’ of ‘progression’ with ‘induced deficiency of’
METTL3, which is incorrect.

rately interpret context-specific MRPs that include both
explicit and implicit regulations. We designed the base-
line, few-shot, and Chain-of-Thought (CoT) prompts for
reguloGPT.

2) We introduced a context-aware relational graph repre-
sentation of regulatory interactions within MRPs of dis-
ease, tissue, and cell type (Fig. 1). This graph uniquely
incorporates the context as part of the relational edges,
thereby addressing and resolving the semantic contra-
dictions of relations that often arise when contexts are
not considered (Fig. 1). It also possesses the inherent
regulatory hierarchy of MRPs (Fig. 1).

3) We annotated the context-aware relational graphs de-
rived from 400 PubMed paper titles related to mSA
MRPs and created a benchmark dataset. This dataset
encompasses a diverse array of contexts, entities and
relationships, highly valuable for systematic evaluation
of reguloGPT.

4) We thoroughly evaluated the performance of the pro-
posed prompts for predicting contexts, recognizing the
entities, and extracting both explicit and implicit rela-
tionships. Our results demonstrated significant improve-
ment over several existing algorithms.

5) To overcome the need for manual annotation in evaluat-
ing reguloGPT, we introduced a novel G-Eval scheme,
which leverages CoT prompts to evaluate extracted con-
text and relational graphs. We showed that there was a
strong similarity between G-Eval scores and annotation-
based evaluations.
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6) We applied reguloGPT to PubMed titles between 2013-
2023 related to m®A MRPs and constructed m®A-KG, a
comprehensive KG of m® A MRPs. We demonstrated the
utility of m8A-KG for representing m® A-mediated path-
ways and delineating mechanisms by which the m6A
writer METTL3 regulates cancer-related phenotypes in
breast cancer, lung cancer, and myeloid leukemia.

II. METHODS

In this section, we outline reguloGPT, a novel approach that
leverages GPT-4 based ICL for the end-to-end extraction of
MRPs from literature. The reguloGPT involves six modules,
each meticulously designed to facilitate the construction of
a context-aware KG from PubMed research publications, as
illustrated in Fig. 2. The reguloGPT workflow begins with
a dataset of publication titles extracted from PubMed. These
titles are fed into reguloGPT, which utilizes a customized
ICL prompt . The prompt is designed to capture N-ary
molecular regulations and their biological context, reflecting
the intricacies of MRPs. We will detail these processes in
the subsequent sections, covering the generation, annotation,
and normalization of the benchmark dataset for reguloGPT
evaluation, evaluation criteria and methods, creation of a KG
specific to mSA research domain, and the discovery of novel
regulations.

A. In-Context Learning (ICL) Prompts for reguloGPT

ICL has gained prominence as an innovative method in
LLMs, like GPT4, for zero-shot or few-shot predictions. To
harness this potential, we developed three distinct prompts
for reguloGPT including a baseline prompt that provides only
definitions, a few-shot prompt enriched with a few examples
that showcase the resultant context and N-ary relational graph,
and a CoT prompt, which uses additional reasoning steps
within each example, improving the underlying logic of the
information extraction.

1) Baseline prompt: Fig. 3A shows the framework of the
baseline prompt, including: 1) Instruction, which presents the
task objective of reguloGPT for GPT-4; 2) Definition, which
defines the components in a context-aware relational graph,
including node, edge, context, and inferred edge. Each edge
includes two nodes and a predicate. This section also illustrates
a collection of constraints for nodes and edge extraction; and
3) Output format. Following the prompt, we specify a target
sentence from a PubMed paper that comprises a collection
of molecular regulatory relationships. In this paper, we only
use the title of a paper. In the definition, we also propose
the inferred edge since many relationships in the sentences
are logically derived but aren’t directly stated in the pro-
vided sentence. Take “METTL3-mediated m®A methylation
of SPHK2 promotes gastric cancer progression by targeting
KLF2” in Fig. 1 as an example, we can infer an edge for
KLF2 promoting gastric cancer progression but the sentence
does not explicitly mention this relationship.

Process 1 Process 2 Process 3 Norm

Publed 1 Pubtator Extraction jon of Normalization
Database of mOA-related Benchmark Data nodes, predlcates,
titles (400 titles) and context

Custom reguloGPT Prompt

Benchmark

Raw DB
_ Alltitles

- i Process 4 W

<— Evaluation Prompts—| Evaluation using
reguloGPT ]
Benchmark Data

Process 5 Process 6

KG Statistics and
Discovery of
New Regulations

mba kG
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Fig. 2. The overall process of developing reguloGPT including data collection,
creation of a benchmark dataset, ICL prompt engineering, performance
evaluation, context-aware m®A KG generation, and downstream analysis.

2) Few-shot prompt: The few-shot prompt consists of 1)
instruction, 2) definition, 3) demonstration, and 4) output for-
mat. Different from the baseline prompt, the few-shot prompt
includes an extra demonstration section after definition, which
provides a few examples containing pairs of sentences and the
biomedical graph extracted from sentences. A few examples
help LLM have a better understanding of the task. We include
4 examples in our prompt and one of them is illustrated in
Fig. 3B. Each example includes the target sentence and output
(context, nodes, direct edges, and inferred edges). The output
follows the requirement in the output format.

3) Chain-of-Thoughts (CoT) prompt: CoT prompt has been
shown [15] to encourage a complex and logical response from
LLM, which in turn improves the task performance. In our
CoT prompt, we add a series of intermediate reasoning steps
as the chain of thought for each example in the demonstrations,
as presented in the red box in Fig. 3C.

B. Construction of datasets for performance benchmark and
knowledge graph generation

The lack of context-dependent benchmark datasets for
MRPs is a primary obstacle to the comprehensive assessment
of our proposed reguloGPT. In addition, in the rapidly evolv-
ing field of molecular biology, the focused construction and
annotation of benchmark datasets in the m®A domain hold
significant scientific value. Concentrating on m®A, a relatively
new area, allows for a detailed and nuanced understanding
of this emerging field. This targeted approach not only cir-
cumvents the challenge of information overload inherent in
broader research domains but also fosters the development
of a specialized repository of knowledge. Such a repository
is instrumental in accelerating research and catalyzing new
discoveries in m®A-related studies. Moreover, the creation of
a benchmark dataset within this niche is critical for model
validation and refinement.

We extracted titles of publications involving m®A research
as they represent the most concise description of context-
specific molecular regulations. To this end, we searched
PubMed, which is a large open database of online books,
life science journals, and MEDLINE. We used PubTator [16]
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For each sentence, format your answer as:
- Context => [Context or 'Null']
- Graph:
- nodes=> a list of nodes. For example, Node 1: HNRNPA2B1, Node 2: Progression.

edge value: promote. It denotes that HNRNPA2B promotes progression.
- Inferred edges=> a list of inferred edges with descriptions

INSTRUCTION 3>

- Direct edges=> a list of direct edges with descriptions. For example, Edge 1: From Node 1 to Node 2;

Sentence: GR-mediated FTO transactivation induces lipid
accumulation in hepatocytes via demethylation of m6A on lipogen-
ic mRNAs.

Answer:

Context => Hepatocytes

Graph:

- nodes=> Node 1: GR, Node 2: FTO transactivation, Node 3:
Lipid Accumulation, Node 4: m6A, Node 5: lipogenic mRNAs.

- **Only** represent biological molecules, entities such as pathways or biological processes, as nodes.

Denote a node as a single biology entity.

- **Do Not** include context in the node unless the context is a complete node. For example, use only
differentiation in 'mouse embryonic stem cell differentiation’ as the node since the 'mouse embryonic stem

cell' is the context. But node must be a noun biological molecules or entities.

- Regard phrases like the A/B/C or (A-B-C) “axis”, “pathway”, and “signaling” as a node. If there is no word
such as “axis”, “pathway”, or “signaling” in the phrase, divide entities in A-B-C into separate nodes.
- **Do Not** have any action nouns as a node, including upregulation, resistance, exposure, resilience,

regulation, suppression, or targeting, because they are not biological entities.

- **Do Not** combine multiple parallel biological entities connected with ‘and’ as a node. Extract each

entity as a separate node.
- Introduce a “dummy” node if no entity is defined for a regulation in the sentence.

- Use an edge to represent the regulatory relationship between a head and a tail node described by the

action nouns or verbs.

- The edge value should be a single-word predicate (or a concise description) that describes the direct

relationship between the head and tail nodes.

- Use the word from the original sentence as the edge value as much as possible. If not possible, use

generic word such as regulate, up-regulate, or down-regulate.

- 'is on' can be used as a relationship in the edge. **Do Not** use other prepositions, such as 'of, or 'in'

as a relationship.

- **Do Not** include more than two nodes in an edge. If multiple nodes point to one node or one node

points to multiple nodes, split them into multiple edges.

- It refers to the broader biological context such as a specific diseases (like a type of cancer).

- Directly use phrases in the input.

- **Do not** include biological processes as a part of the context. Common biological processes (like
\"myogenesis\" or \"apoptosis\") should NOT be included as context but rather represented within the

graph.

- **Do not** just include unclear or general biological entities, such as 'tumor’, 'yeast'. In this case,

indicate it as 'Null'.
- If there's no context mentioned, indicate it as 'Null'.

- Include any relationships that can be logically derived but aren't directly stated in the provided sentence
- **Only** include inferred edge to make the graph complete. Do not introduce extra relationships.

- Direct edges=> Edge 1: From Node 1 to Node 2; edge value:
mediate. It represents that GR mediates FTO transactivation.
Edge 2: From Node 2 to Node 3; edge value: induce. It represents
that FTO transactivation induces lipid accumulation. Edge 3: From
Node 2 to Node 4; edge value: demethylate. It represents that FTO
demethylates m6A. Edge 4: From Node 4 to Node 5; edge value:
is on. It represents that m6A is on lipogenic mMRNAs.

- Inferred edges=> Edge 5: From Node 5 to Node 3; edge value:
regulate. It implies that demethylation of m6A on lipogenic mMRNAs
regulates lipid accumulation.

Sentence: GR-mediated FTO transactivation induces lipid
accumulation in hepatocytes via demethylation of m6A on lipogenic
mRNAs.

Answer: This regulation happens in Hepatocytes so the context is|
Hepatocytes. The sentence has five biological entities: GR, FTO
transactivation, Lipid Accumulation, m6A, and lipogenic mRNAs.
'of is not a relationship and demethylation is an action noun so we
use mBA as a node. ‘GR-mediated FTO transactivation’ means that
there is a direct edge between GR and FTO transactivation. There
is also a direct edge from FTO transactivation to lipid accumulation
because FTO transactivation is the subject and lipid accumulation
is the object of the sentence. The phrase after 'via' defines the
mechanism, by which FTO transactivation induces lipid accumula-
tion. It indicates that FTO transactivation demethylates m6A on
lipogenic mMRNAs to which induces lipid accumulation. As a result,
we have direct edges, one from FTO transactivation to m6A and the
other from m6A to lipogenic mMRNAs. Finally, we have inferred
edges from lipogenic mRNAs to lipid accumulation to describe the
outcome of the mechanism and complete the graph.

Context => Hepatocytes

Graph:

-nodes=> Node 1: GR, Node 2: FTO transactivation, Node 3: Lipid
Accumulation, Node 4: m6A, Node 5: lipogenic mRNAs.

- Direct edges=> Edge 1: From Node 1 to Node 2; edge value:
mediate. It represents that GR mediates FTO transactivation. Edge
2: From Node 2 to Node 3; edge value: induce. It represents that

NOILVHLSNOW3A
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For each sentence, format your answer as:
- Context => [Context or 'Null']
- Graph:
- nodes=> a list of nodes. For example, Node 1: HNRNPA2B1, Node 2: Progression.

edge value: promote. It denotes that HNRNPA2B promotes progression.
| - Inferred edges=> a list of inferred edges with descriptions

OUTPUT FORMAT

- Direct edges=> a list of direct edges with descriptions. For example, Edge 1: From Node 1 to Node 2;

FTO transactivation induces lipid accumulation. Edge 3: From
Node 2 to Node 4; edge value: demethylate. It represents that FTO
demethylates m6A. Edge 4: From Node 4 to Node 5; edge value: is
on. It represents that m6A is on lipogenic mRNAs.

- Inferred edges=> Edge 5: From Node 5 to Node 3; edge value:
regulate. It implies that demethylation of m6A on lipogenic mMRNAs
regulates lipid accumulation.

NOILVYLSNOW3A

Fig. 3. The reguloGPT prompts. (A) Baseline prompt including instruction, definition, and output format. (B) Demonstration in few-shot prompt. (C)

Demonstration in CoT prompt.

RESTful API with “m®A” as the query keyword to extract
publications from PubMed between 2013 and 2023. Our se-
lection criteria are defined as follows: we choose titles that are
complete sentences and include references to multiple genes.
This is crucial for mapping pathways that either lead from
m®A to various genes/proteins or from these genes/proteins
back to mSA.

1) Annotation method for benchmark dataset: To facilitate
the annotation of a benchmark dataset, we assembled five
subject-matter-expert annotators with backgrounds in com-
puter science and biomedicine to annotate 400 specially cho-
sen titles, which contain MRPs from the m®A research paper
title corpus. The annotation has three phases:

(a) Practice annotation phase: We randomly selected 20
sentences as practice examples. Five annotators followed
the descriptions that were provided in the prompts to
identify the nodes, edges, and context. They discussed
within themselves and came up with a consensus. Most
importantly, they summarize the special cases for further
annotation.

(b) Group annotation phase: We used annotation guidelines
summarized in the practice annotation phase to guide
the group annotation. All sentences were divided into

5 shards and distributed to 5 annotators. After the first
round of annotation, 5 annotators exchanged examples
and completed the second round of annotation. In this
case, each example was annotated by two annotators.
(c) Adjudication phase: For titles that all annotators agreed
on, their annotation will be final. For the others, the
annotations were discussed within the group to reach an

agreement.
2) Annotation guidelines: In the practice annotation phase,

basic guidelines were summarized. For each sentence, the
annotation included context, nodes list, and edge lists. Each
edge included two nodes and one predicate to connect the two
nodes. Inferred edges were considered to be extra relationships
and they were often accompanied by prepositions like “via”,
“by”, and “through” in the sentence. The context should not
be biological processes such as development, progression,
etc. Co-reference was not committed and therefore for “mSA
methyltransferase METTL3” only “METTL3” was extracted.
In addition, some special cases were adopted: 1) Any complex
mechanism like the A/B/C or (A-B-C) “axis”, “pathway”, and
“signaling” is annotated as single node. If there is no word
such as “axis”, “pathway”, or “signaling” in the phrase, divide
entities in A-B-C into separate nodes; 2) A “dummy” node
was introduced if no entity is defined for regulation in the
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sentence. For example in the Fig. 1, for the subject “Deficiency
of METTL3” at the beginning of the sentence with PMID
33681207, we will construct a relationship as (dummy, induce
deficiency of, METTL3). Finally, we normalized the extracted
relationships into 31 ontological normalized predicates dis-
cussed in the next section.

C. Normalization of nodes, predicates, and contexts

We used Gilda [17] and the Gene Ontology knowledge-
base (GO) [18] to normalize nodes first. Subsequently, we
performed manual normalization to ensure consistency among
nodes that convey the same meaning. We further grouped the
nodes into six categories: m®A, mPA writers/erasers/readers
(WERs), genes/proteins, GO/pathways, and other.

For the predicate normalization, we followed the
Ontological predicate definitions in SemRep [4]. Semrep
provides 30 predicate types including HIGHER_THAN,
LOWER_THAN, AFFECTS, STIMULATES, AUGMENTS,
INTERACTS_WITH, INHIBITS, DISRUPTS, PREVENTS,
CAUSES, DIAGNOSES, CONVERTS_TO, COEX-
ISTS_WITH, COMPLICATES, ISA, TREATS, PRODUCES,
LOCATES, PRECEDES, MANIFESTS, METHODS,
OCCURS_IN, PART_OF, COMPARED_WITH, SAME_AS,
ASSOCIATED_WITH, USES, ADMINISTERED_TO,
PROCESS_OF, PREDISPOSES. We added an extra predicate
type, MAINTAINS (keep in an existing state) to have 31
types in total. For relationship normalization, we applied
GPT-4 to perform an initial normalization, followed by a
manual evaluation to correct inconsistencies. We also applied
the same normalization method to the context as we do for
nodes. We further systematically normalized the contexts
associated with The Cancer Genome Atlas (TCGA) cancer
types [19].

D. Construction of the mSA knowledge graph

In addition to the benchmark dataset of 400 titles, our
study further extracted 968 titles that include descriptions of
MRPs from the titles extracted by PubTator. These additional
titles were subject to our reguloGPT CoT prompt to extract
the context and relation graphs, thus broadening the scope
of our analysis and enriching the dataset under considera-
tion. Normalization was applied to standardize the extracted
nodes, edges, and contexts. We integrated these normalized
relational graphs with those from our benchmark dataset by
joining common nodes and edges to construct m6A-KG, a
comprehensive KG of m®A functions in diverse contexts.
This KG includes nodes connected with edges that define the
normalized predicates. A unique feature of m8A-KG is that
each edge also includes a set of associated contexts extracted
from the same titles as the edge to inform the context under
which the regulation defined by the edge occurs. The edge
also incorporates the unnormalized edge value and PubMed
Identifier (PMID) of the associated titles. Unnormalized edge
and PMID provide a mechanism to trace back to the original
title and associated paper for reference. We used Neo4j [20]
to visualize and manipulate our KG.

E. Evaluation metrics and criteria

1) Evaluation with the benchmark dataset: We used the
benchmark dataset to evaluate the performance of reguloGPT
across different prompt designs. We adopted accuracy as the
metric for context prediction and recall, precision and F1 score
for nodes and edges evaluation. The criteria to evaluate the
predicted nodes and edges are listed below:

(a) True positive: This is achieved when GPT-4 prediction
nodes align with the benchmark annotation. A match is
also considered if the output context or node contains
most of the ground truth information. For edge eval-
uation, the criteria for two nodes are similar, and the
normalized prediction must completely align with the
result in the benchmark dataset.

(b) False positive: Incorrectly extracted nodes or edges are
marked as false positives. In edge evaluation, a false
positive occurs if the predicted nodes match but the
predicate is incorrect or not extracted.

(c) False negative: Any ground truth nodes and edges
without a corresponding matching prediction are false
negatives.

2) G-Eval scheme for annotation-free assessment of reg-
uloGPT: The assessment of context-aware KG construction
poses challenges and manual annotation is labor-intensive and
costly. Recent research proposes leveraging LLMs directly as
evaluators for reference-free Natural Language Generation, as
indicated by [21] in GPTScore. They utilize LLMs to evaluate
candidate outputs, assigning scores based on generation prob-
ability without referencing any target. [22] demonstrate that
GPT-4 can assess the quality of generated texts in coherence,
consistency, fluency, and relevance compared to ground truth
in a form-filling paradigm. However, existing studies have
primarily focused on sentence-level evaluation, leaving the
performance of LLMs in graph generation evaluation largely
unexplored.

To address this challenge, we proposed a novel framework,
GPT-4-evaluation (G-Eval), which employs GPT-4 and a form-
filling paradigm to evaluate the quality of output at the
sentence level. We experimented with two tasks, namely,
1) context evaluation and 2) graph evaluation. For context
evaluation, GPT-4 gave a score to each context in a sentence,
while for graph evaluation, GPT-4 gave a score to all edges
extracted from a sentence. The evaluation prompts of both
context evaluation and graph evaluation included four parts:
1) Introduction, 2) Definition, which denotes the concept of
context in the context evaluation, or the concepts of nodes
and edges in the graph evaluation; 3) Evaluation Steps; and 4)
Output Format.

The concepts of contexts, nodes, and edges are the same as
those defined in reguloGPT prompts (Fig. 3A). The evaluation
steps were generated by GPT-4 based on the introduction and
definition. The range of the score was 1-5, and we repeated
the evaluation five times to obtain the average score [22]. In
the output format, we added a test sentence and predicted
context in the context evaluation or corresponding edge (two
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INSTRUCTION

I guidelines:

You will be given an original sentence including the molecular regulatory relationship. You will then be given a context
described in the original sentence. Your task is to evaluate whether the generated context follows these explicit

You will be given an original sentence including the molecular regulatory relationship. You will then be given a graph that
includes connected triplets (head node, edge, tail node) to represent the molecular regulatory relationship described in
the original sentence. Your task is to evaluate whether the generated graph follows these explicit guidelines:

Context:
- ... the broader biological context ... (Same as the concept in the graph generation)
Here are examples to generate context from the sentence.

lipogenic mRNAs.
Context: Colorectal Carcinoma
Sentence 2:

Evaluation Criteria:
Score (1-5) - The alignment between the context and guidelines. The maximum score is 5 and lowest score is 1.

Sentence 1: GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on

1. Nodes:
2. Edges:
Here are examples to generate context from the sentence.
Sentence 1: GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via ...
Graph: (GR, mediate, FTO transactivation), (FTO transactivation, induce, lipid accumulation), (FTO transactivation,
gem‘ethylaée, mBA), (mBA, is on, lipogenic mRNAs), (lipogenic mRNAs, regulate, lipid accumulation).

entence 2:

.. (Same as the concept in the graph generation)
... (Same as the concept in the graph generation)

Evaluation Criteria:
core (1-5) - The alignment between the edges (head node, edge, tail node) in the generated graph and guidelines. The
maximum score is 5 and lowest score is 1.

on

Auto CoT

or a specific organism.

summary of the sentence but should directly use phrases from the sentence.

"apoptosis" should not be included as context

or unclear, indicate it as 'Null'.
5. If there's no context mentioned in the sentence, indicate it as 'Null'

EVALUATION STEPS.

1 Vlgeuaad ‘the or\é?nsa.l sentence and identify the broader biological context. This could be a specific disease, a type of cell,
2. Check if the context directly uses phrases from the input sentence. The context should not be a paraphrase or a
3. Ensure that the context does not include biological processes. Common biological processes like "myogenesis" or
4. Make sure the context is not a general or unclear biological entity, such as 'tumor’, 'yeast'. If the context is too general

6. Score the context based on how well it aligns with these guidelines. A context that perfectly aligns with all the
guidelines would receive a score of 5. A context that does not align with any of the guidelines would receive a score of
1

Evaluation Steps:

1. Check the nodes in the graph. If all nodes represent biological molecules or entities, and no action nouns or context
are included in the nodes, then proceed to the next step. If not, deduct points based on the number and severity of the
errors.

2. Check the edges in the graph. If all edges represent the regulatory relationship between a head and a tail node, then
proceed to the next step. If not, deduct points based on the number and severity of the errors.

3. Check if the graph correctly represents all molecular regulatory relationships described in the original sentence. If it
does, then proceed to the next step. If not, deduct points based on the number and severity of the errors.

4. Check if the graph follows the explicit guidelines. If it does, then the graph receives a score of 5. If not, deduct points
based on the number and severity of the errors.

5. If the graph has multiple errors in nodes, edges, representation of the molecular regulatory relationship, or adherence
to the guidelines, then the graph receives a score of 1

Sentence: {{Sentence}}
{{Graph}}
Evaluation Form (scores ONLY):

OUTPUT FORMAT

A - Score:

Sentence: {{Sentence}}
{Graphy}
Evaluation Form (scores ONLY):

Fig. 4. The G-Eval prompts for (A) context evaluation and (B) graph evaluation. the Evaluation Steps were generated by GPT-4 based on our Instructions
and Definitions. Then, they evaluate the context or graph added in the Output Format in a form-filling fashion.

nodes and a predicate) list in the graph evaluation. It should
be mentioned that we used unnormalized context and edges
in the output. Fig. 4 shows the framework of G-Eval for the
context evaluation and graph evaluation.

III. RESULTS
A. Annotation of the benchmark dataset

We annotated the context-aware graphs for a selection of
400 titles, specifically chosen from m®A research papers. We
were able to deduce the context-specific information from 344
titles. The annotated dataset includes the extracted 1558 nodes
and 1485 edges with 1312 unique nodes and 152 unique edges,
or an average of 3.72 entity-relations extracted per title. Fur-
ther normalization resulted in a total of 1241 unique nodes and
62 unique edges. Also, 165 of the nodes were categorized as in
the Genes/Proteins group, 172 as GO/Pathway, 9 as Readers,
8 as Writers, 2 as Erasers, and 956 as Other. Moreover, we
were able to extract 24 different TCGA cancer types from the
normalized contexts in the benchmark dataset.

B. reguloGPT significantly outperforms existing algorithms on
the benchmark dataset

We first evaluate reguloGPT’s performance on the bench-
mark datasets against human annotation. To evaluate the effec-
tiveness of reguloGPT, we selected two established algorithms
as baselines: REACH [5] and EIDOS [6]. Both algorithms
are integral components of the INDRA [3] framework and are
specifically designed for extracting interactions from scientific
research papers. To conduct a comprehensive comparison, we
tested these baseline algorithms using the benchmark dataset.
Note that neither baseline algorithms were designed to extract
contexts.

Table I details the performance of various prompting strate-
gies used in reguloGPT development (baseline, few-shot, and
CoT prompts) compared to REACH and EIDOS, as measured
against the human-annotated benchmark dataset. The metrics
used for this comparison include Recall (Re), Precision (Pr),
and F1 score for both node and edge evaluations, alongside
Accuracy for context evaluation. Because REACH and EIDOS

do not output context information, hence context evaluation
results (accuracy) for these algorithms are absent in the
comparison.

Overall, reguloGPT’s ICL strategies have demonstrated re-
markable superiority over REACH and EIDOS. Among regu-
loGPT prompts, CoT emerged as the most effective, achieving
an impressive accuracy of 0.89 for context detection and F1
scores of 0.955 for node prediction and 0.636 for edge ex-
traction. The relatively lower performance on edge prediction
underscores the inherent complexity in accurately extracting
complex N-ary relationships. However, when compared to
EIDOS, the CoT prompt showed substantial improvement of
22%, 29%, and 81.5% improvement in context accuracy and
node and edge F1 scores, respectively. These enhancements
underscore reguloGPT’s overall superior capabilities in ex-
tracting knowledge of MRPs. The marked improvement can be
attributed to the end-to-end strategy and, likely, the advanced
capabilities of GPT-4.

The improvement of the extraction capabilities is evident in
the title “The mSA methyltransferase METTL3 promotes os-
teosarcoma progression by regulating the m®A level of LEF1”
(PMID: 31253399). As noted in section III-A, the bench-
mark annotations for this title include four triplets under the
context of ‘osteosarcoma’. However, REACH only identified
(METTL3, STIMULATES, level of LEF1). Similarly, EIDOS
extracted only one triplet (m®A methyltransferase METTL3,
STIMULATES, osteosarcoma progression). In contrast, all
three of the reguloGPT prompts were able to successfully
extract the 3 direct and 1 inferred edge relationship between
the correct entities with the correct context of osteosarcoma.

In another example, “elF3i promotes colorectal cancer
cell survival via augmenting PHGDH translation” (PMID:
37611825), reguloGPT identified three triplets with two direct
and one inferred edge. In contrast, REACH extracted only one
triplet (eIF3i, STIMULATES, cell survival) while EIDOS ex-
tracted two triplets, including (eIF3i, AUGMENTS, PHGDH
translation) and (elF3i, STIMULATES, colorectal cancer cell
survival). However, reguloGPT was able to additionally extract
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TABLE I
RESULTS COMPARISON OF DIFFERENT PROMPTS WITH EXISTING
ALGORITHMS USING THE BENCHMARK DATASET. HERE, RE = RECALL,
PR = PRECISION, AND F1 = F1 SCORE.

Context Node Edge
Accuracy | Re Pr F1 Re Pr F1
REACH - 0.547 0.939 0.689|0.162 0.451 0.235
EIDOS - 0.594 0.9815 0.740|0.260 0.675 0.3517
Baseline | 0.7375 |0.891 0.926 0.910|0.451 0.422 0.441
Few shot| 0.875 |0.940 0.951 0.946|0.599 0.578 0.588
CoT 0.89 0.954 0.956 0.955|0.638 0.642 0.639

the inferred edge relation (PHGDH, STIMULATES, survival)
and the context as ‘colorectal cancer cell’.

Due to additional demonstrations in the prompts as illus-
trated in Fig. 3C, the CoT prompt leads to Context accuracy
at 89%, followed by the few-shot prompt at 87.5%, and the
baseline prompt at 73.75%. In extracted Node evaluation,
the CoT prompt again demonstrates superior performance,
achieving the highest scores across Recall (95.4%), Precision
(95.6%), and F1 (95.5%) followed by a few-shot prompt
that surpasses the other methods. For Graph evaluation, CoT
leads with a Recall of 63.8%, Precision of 64.2%, and an
F1 score of 63.9%. The few-shot prompt closely follows,
significantly outperforming the baseline prompt, EIDOS, and
REACH algorithms.

To be precise, the advanced prompt technique makes the
output of GPT-4 align with our requirements. Although we
ask the GPT-4 to introduce a dummy node in the prompt,
the output of the baseline prompt ignores this guideline. By
adding one example in a demonstration with a similar case,
the few-shot prompt can follow this requirement. However,
this alignment is not stable. In the paper “Suppression of m°A
reader Ythdf2 promotes hematopoietic stem cell expansion”
(PMID: 30065315), the few-shot prompt neglects this con-
dition, but the CoT prompt can maintain alignment as well.
A similar issue happened in the “Silencing METTL3 inhibits
the proliferation and invasion of osteosarcoma by regulating
ATAD?2” (PMID: 32044716) and the few-shot prompt fails to
introduce a dummy node.

C. G-Eval assessment is consistent with manual evaluations

We next investigated the G-Eval evaluations of predictions
by the three reguloGPT prompts on the 400 titles in the
benchmark dataset and assessed the extent to which the G-
Eval evaluations are consistent with the evaluations against
human annotations. We have 400 scores in context evaluation
and 400 scores in graph evaluation. Examining the averaged
scores across the 400 titles (Table. I) revealed a consistent
trend with the annotation evaluation in Table. II where the
CoT prompt exhibited the best performance, followed by the
few-shot and baseline prompts.

To further validate the effectiveness of our G-Eval strategy,
we analyzed the similarity between the annotation evaluation
and G-Eval scores for each sentence. Since the annotation
evaluation for each sentence is binary, i.e., correct or incorrect,
we first binarized G-Eval scores using a threshold score of 3.

TABLE 11
G-EVAL RESULTS. THE RANGE OF SCORES IS 1 - 5. THE SIMILARITY
DENOTES THE RAND SIMILARITY COEFFICIENT BETWEEN THE G-EVAL
AND THE HUMAN ANNOTATION EVALUATIONS OF REGULOGPT’S
PREDICTION ON THE BENCHMARK DATASET AT THE SENTENCE LEVEL.

Context Graph
Score Similarity Score Similarity
Baseline 3.7426 0.81 3.7598 0.6125
Few shot 4.1929 0.8375 4.5901 0.775
CoT 4.3467 0.84 4.6675 0.8125

The threshold was chosen based on the score distribution (1-5).
Additionally, G-Eval conducts the graph evaluation, whereas
the annotation evaluations are assessed for nodes and edges. To
make them comparable, we generated a graph-level annotated
evaluation such that a sentence was deemed correct if more
than 50% of the edges in the sentence were correctly predicted.
We did not consider node prediction because their F1 scores
are high as shown in Table. I. To compare the similarity
between the G-Eval and annotation evaluations, we computed
the Rand matching coefficient for each title. These results
are detailed in Table. II. They demonstrate high similarities
between the two evaluations, especially for reguloGPT, where
the Rand similarities reach 0.84 for context prediction and
0.8125 for graph prediction. These results suggest that G-
Eval is a promising annotation-free method for evaluating
reguloGPT.

IV. MOA-KG, A CONTEXT-AWARE KG OF M®A
REGULATORY FUNCTIONS

mCA is the predominant mMRNA modification in mammalian
cells, present in over 40% of transcripts. The dynamic mSA
regulation involves various RNA binding proteins (RPBs)
including writers (METTL3 & METTL14), which add methyl
groups, erasers (ALKBH516 & FTO2) to remove it, and
readers, (e.g. YTH proteins), which bind to mlA sites to
decode the regulatory signals for mediating gene expression. It
achieves this by regulating mRNA stability, splicing, mRNA
export, and translation efficiency. Additionally, it influences
cancer development and progression significantly by modu-
lating mRNA stability and splicing. Despite growing interest,
the roles of m®A and its writers, erasers, and readers in cancer
through gene expression alterations are not fully understood.
We demonstrate the utility of reguloGPT to create a detailed
representation of the mO®A-associated molecular regulatory
pathways.

A. Construction of mSA-KG with reguloGPT

We applied reguloGPT to 968 unannotated titles, resulting
in the extraction of context-aware relational graphs that depict
functions related to m®A in diverse contexts. After normalizing
the nodes, edges, and contexts, we synthesize these relational
graphs and annotated graphs from the benchmark dataset into
a comprehensive m®A knowledge graph (m®A-KG), denoting
molecular regulatory pathways linked to mA. The constructed
m®A-KG comprises 2,397 nodes, 4,694 edges, and 478 unique
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contexts, with each edge encompassing an average of 1.06 con-
texts. The node degree, calculated by aggregating in-degrees
and out-degrees akin to undirected graphs, follows a power-
law distribution, with 96.2% of nodes having less than 10
degrees and only 9 nodes possessing >100 degrees. Notably,
node “m®A” emerges as the most connected, with a degree of
827, highlighting its centrality in the network. The top nodes
by degree include key m®A writers like METTL3 (436) and
METTL14 (122), erasers such as ALKBHS5 (166) and FTO
(222), and readers like YTHDF2 (127) and YTHDF1 (109).
This underscores their vital roles in the regulatory functions
of m®A. Additionally, nodes representing cell proliferation
(104) and neoplasm metastasis (93) also have high degrees,
indicating m®A’s significant influence on these tumor-related
phenotypes.

B. The structure of mSA-KG reflects the architecture of molec-
ular regulatory pathways

A B [ outdegree_rate 0 indegree_rate
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Fig. 5. (A) Outdegree rate of nodes in different categories. (B) Outdegree
and indegree rates of other category nodes within lung cancer-specific KG.

To examine if the structure of the m®A-KG reflects a
typical architecture of MRPs, we categorized the nodes
into six groups: m®A, m®A writers/erasers/readers (WERS),
GO/pathway, genes/proteins, and other. Analysis of the
outgoing edge percentage of a node (outdegree rate) within
each group revealed a hierarchical structure aligned with that
of a molecular pathway. Specifically, m®A WERs and mSA
have a median 0.85 and 0.77 outdegree rate, respectively,
suggesting that they occupy upstream positions (Fig. 5A) and
re-affirming their role as key regulators. Also, genes/proteins
nodes (0.05 median outdegree rate) are intermediate nodes,
which bridge the upstream regulators with the downstream
GO/Pathway nodes (0.03 median outdegree rate) (Fig. 5A).
The other nodes exhibited three subgroups, with two (other-
L and other-H) characterized by a median outdegree rate of
either 0 or 1 (Fig. 5A), indicating their positions at extreme
ends of the pathway. Close inspection revealed that other-L
nodes define disease phenotypes or outcomes, naturally at the
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Fig. 6. Cancer-type specific KG of (A) Breast cancer, (B) Myeloid leukemia,
and (C) Lung cancer. Extracted pathways are shown to the left. Edge colors
are associated with the supporting titles.

bottom of pathways, while other-H nodes include chemical
or environmental stimuli and are expected to be upstream of
pathways (Fig. 5B). The emergent structure of the m°A-KG,
with various stimuli on the top followed by clear upstream
mSA regulators, gene/protein interactions, and downstream
phenotype outcomes, exhibits the hallmarks of an MRP.

C. The mSA-KG reveals distinct mechanisms of mSA functions
across various cancer types

We next investigated m®A’s role in various cancers, lever-
aging the m®A-KG’s integration of contexts and PMIDs into
edges. This feature enabled us to dissect functions specific to
certain cancers and to identify those common across multiple
types. The m®A-KG contexts included 24 TCGA cancer types
with 2,366 edges pertaining to individual cancer types. Re-
markably, one edge representing “METTL3 AFFECTS mSA”
is universally presented across all 24 TCGA cancer types
examined, signifying METTL3’s ubiquitous influence. Addi-
tionally, three edges spanning 10 cancer types involve the
relationships “METTL14 AFFECTS m®A”, “ALKBHS5 AF-
FECTS m®A”, and “METTL3 STIMULATES progression”,
highlighting the central role of the mSA writers METTL3,
METTLI14, and the eraser ALKBHS in multiple cancers.

To gain insights into cancer-specific m®A-mediated func-
tions, we extracted cancer-specific KGs for breast cancer,
lung cancer, and myeloid leukemia. These sub-KGs presented
clear hierarchies of MRPs, with m®A regulators at the top
and disease phenotype nodes at the downstream. METTL3’s
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widespread association across cancers prompted further exam-
ination of pathways centering on this regulator. We focused
on pathways supported by edges spanning multiple titles
because they could reveal novel functions. The breast can-
cer sub-KG delineates a complex dual-pathway mechanism,
with evidence from five titles (PMID: 32766145, 36069931,
36609396, 34312368, 35319018), suggesting METTL3’s in-
volvement in tumor metastasis through two distinct routes:
regulation of COL3Al, crucial for extracellular matrix struc-
ture, and alteration of cancer cell metabolism via the gly-
colytic pathway. This duality suggests that therapeutic tar-
geting METTL3 could simultaneously disrupt key structural
and metabolic routes essential to cancer metastasis, offering
a promising avenue for multifaceted therapeutic intervention.
Moreover, cancer-dependent regulations of MEG3, a tumor
suppressor gene, were revealed in lung and leukemia sub-
KGs. The leukemia sub-KG indicates that MEG3 modu-
lates miR-493-5p to suppress myeloid leukemia by inhibit-
ing METTL3-mediated méA methylation (PMID: 35761379,
29186125). Conversely, in lung cancer, METTL3 methylates
MEG3, which facilitates carcinogenesis and neoplasm metas-
tasis (PMID: 37308993). These distinct regulatory mecha-
nisms were corroborated through a detailed examination of the
literature associated with the extracted pathways, validating the
m®A-KG’s utility in uncovering new functional insights.

V. CONCLUSION

In this study, we introduced reguloGPT, a novel application
of GPT-4 for the end-to-end construction of KGs in the
realm of MRPs. We developed ICL prompting strategies to
extract context-aware relational graphs depicting interactions
with MRPs. We thoroughly evaluated reguloGPT’s efficacy
against a human-annotated benchmark database comprising
400 titles and demonstrated significant improvements over
existing algorithms. We also found a good similarity between
manual evaluation and our proposed annotation-free G-Eval.
We successfully applied reguloGPT to create a comprehensive
and detailed m® A-KG. This KG included an extensive network
of 2,397 nodes and 4,694 edges, providing a rich map of
m®A regulatory functions. A notable feature of m®A-KG is
its unique context-aware edges, which incorporate associated
contexts and PubMed IDs. This design not only allow us
to understand context-specific regulations but also improves
traceability and verification of the data. The m®A-KG revealed
distinct mechanisms of m®A functions across various cancer
types, facilitating a deeper understanding of the role of m°A in
cancer, opening avenues for targeted cancer research and ther-
apy development. The hierarchical structure of the m®A-KG
mirrors the architecture of MRPs, revealing a more intuitive
understanding of the complex interactions and roles within
these pathways. Future studies will explore a more systematic
G-Eval assessment and relationship extraction, along with
improved normalization schemes for edges and contexts. A
systematic and effective approach to elucidate novel regulatory
functions from the KG will be further developed.
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