10

11

12

13

14

15

16

17

18

19

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577518; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Full title:

yQTL Pipeline: a structured computational workflow for large scale quantitative trait loci discovery and
downstream visualization

Short title:

Quantitative trait loci discovery analysis pipeline.

Authors:
Mengze Li 12, Zeyuan Song 3, Anastasia Gurinovich #°, Nicholas Schork 7, Paola Sebastiani 4>,

Stefano Monti* 123

1: Bioinformatics Program, Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA.

2: Section of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA.

w

: Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA.

o

: Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA.

w1

: Department of Medicine, School of Medicine, Tufts University, Boston, MA, USA.
6: Data Intensive Study Center, Tufts University, Boston, MA, USA.
7: Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute, Phoenix,

AZ, USA.


https://doi.org/10.1101/2024.01.26.577518
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577518; this version posted January 30, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

available under aCC-BY 4.0 International license.

1 Abstract

Quantitative trait loci (QTL) denote regions of DNA whose variation is associated with variations in
guantitative traits. QTL discovery is a powerful approach to understand how changes in molecular and
clinical phenotypes may be related to DNA sequence changes. However, QTL discovery analysis
encompasses multiple analytical steps and the processing of multiple input files, which can be laborious,
error prone, and hard to reproduce if performed manually. In order to facilitate and automate large-
scale QTL analysis, we developed the yQTL Pipeline, where the ‘y’ indicates the dependent quantitative

variable being modeled.

Prior to genome-wide association test, the pipeline supports the calculation or the direct input of pre-
defined genome-wide principal components and genetic relationship matrix when applicable. User-
specified covariates can also be provided. Depending on whether familial relatedness exists among the
subjects, genome-wide association tests will be performed using either a linear mixed-effect model or a
linear model. Using the workflow management tool Nextflow, the pipeline parallelizes the analysis steps
to optimize run-time and ensure results reproducibility. In addition, a user-friendly R Shiny App is
developed to facilitate result visualization. Upon uploading the result file, it can generate Manhattan
plots of user-selected phenotype traits and trait-QTL connection networks based on user-specified p-

value thresholds.

We applied the yQTL Pipeline to analyze metabolomics profiles of blood serum from the New England
Centenarians Study (NECS) participants. A total of 9.1M SNPs and 1,052 metabolites across 194
participants were analyzed. Using a p-value cutoff 5e-8, we found 14,983 mQTLs cumulatively associated
with 312 metabolites. The built-in parallelization of our pipeline reduced the run time from ~90 min to

~26 min. Visualization using the R Shiny App revealed multiple mQTLs shared across multiple
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metabolites. The yQTL Pipeline is available with documentation on GitHub at

https://github.com/montilab/yQTL-Pipeline.

2 Introduction

Genetic association studies aim to test the correlation between disease risks or other phenotypes and
genetic variation, with single-nucleotide polymorphisms (SNPs) the most widely used markers of such
variation (1) (2). Quantitative trait loci (QTL) refer to those genetic variations that influence the level of a

guantitative trait, for example, expression of a given gene (3).

Several analytical approaches for QTL discovery have been developed to date, examples including Hail
(4), MatrixeQTL (5) and QTLtools (6). However, these tools do not fully account for familial relatedness,
which is an essential component in many genetic association studies. GENESIS (7) is a package in R that
performs genetic association tests while taking into account of familial relatedness, and has been
extensively used in GWAS studies (8). Nevertheless, it can only accommodate one genotype input file
and one phenotype at a time, thus its application to QTL discovery becomes inconvenient when faced

with a large number of phenotypes and multiple input genotype files.

In addition to the association test, the complete QTL discovery workflow encompasses several
preprocessing and post-analysis steps, including conversion of the input genotype file to the correct
format, extraction of SNP missingness and frequency information, calculation of genetic principal
components (PCs) and genetic relationship matrix (GRM), and merging and visualization of the QTL
results. These steps require the execution of multiple commands implemented in different software
packages, and can be error prone, time consuming, and difficult to reproduce. We previously developed

a Nextflow-based pipeline that incorporates all these steps in a single, reproducible workflow (9).
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performed over multiple phenotypic traits and processes multiple genotype input files, and visualization

of the results can be challenging since the relationship of a large number of genomic loci with multiple

traits cannot be easily summarized.

To address these challenges, we developed the yQTL Pipeline to incorporate all the analysis steps into a
single pipeline. It uses the workflow management tool Nextflow (10) to automate the entire workflow

and enables the parallel execution of multiple processes whenever possible.

3 Methods: yQTL Pipeline Design

To ensure modularity, to minimize storage requirements and execution time, and to maximize user
control of the analysis steps to be executed, the yQTL Pipeline workflow consists of three separate

components (shown in Fig 1): Prepare.nf, Analysis.nf, and Report.nf.

Fig 1. The yQTL Pipeline workflow. The pipeline is split into three Nextflow steps: Prepare.nf,
Analysis.nf, and Report.nf. Two alternative workflows are available for the cases when familial
relatedness is present or not. Grey: inputs. Blue: analysis steps and intermediate outputs. Green: final

outputs.

Prepare.nf performs any data pre-processing when needed, including the conversion of VCF genotype

files to GDS format, and obtaining genetic PCs and GRM. Information about the genetic variants,

including the allele information, allele frequency and missingness, are also extracted from the genotype

data. Next, Analysis.nf can be invoked to perform the association test based on the input files either
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92  directly provided by the user or from the output of Prepare.nf. Finally, Report.nf merges the QTL results
93  and generates the plots.
94
95  This modular design was in part adopted to take full advantage of Nextflow’s features. Each Nextflow
96 process first creates a copy of all input files into a “work” directory, which ensures reproducibility, but
97  significantly increases the total execution time as well as the storage requirements, which can become a
98 bottleneck when analyzing large datasets. This is particularly the case in QTL analysis, which takes large
99  genotype input files, executes multiple steps, and generates large-sized result files. Splitting the
100  workflow into three components significantly reduces the storage and execution footprints, since the
101  input files can be submitted as “values” corresponding to their file paths, rather than actual “files” to be
102 copied.
103
104  Throughout the entire pipeline, processes are executed in parallel whenever possible. Parallelization is
105  an essential feature when analyzing a large number of quantitative traits, and/or when the genotype
106 data is provided as multiple files. In large studies, it can translate into hundreds or thousands of
107 independent batch jobs being submitted, which can be executed in parallel and thus highly decrease the
108 run time.
109
110 For the configuration and execution of the yQTL Pipeline, all that is needed is for the user to specify a
111 configuration file listing the input files and parameters, and to submit three command lines to invoke
112  the entire pipeline. The yQTL Pipeline is released under a General Public License 3.0 license. It is publicly

113  available at https://github.com/montilab/yQTLpipeline, including comprehensive documentations of the

114 configuration setup. It supports Linux and OS X operating systems.

115
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116 3.1 Input, configuration, and preparation

117  Therequired inputs for the yQTL Pipeline include genotype and phenotype data. Optionally, covariates,
118  genetic PCs and GRM can also be included. A more detailed description of each of the input parameters
119 s provided in the GitHub documentation.

120

121 3.1.1 Genotype data

122  The pipeline supports either VCF or GDS input format for genotype data. If VCF files are provided, these
123 will be converted to GDS format by running Prepare.nf. In addition, the user can specify whether to use
124  the imputed dosage entry or the genotype count entry.

125

126  3.1.2 Phenotype and covariates data

127 Phenotype and covariates data should be entered as a data frame in either RDS (R Data Serialization),
128  CSV (comma separated text file) or TXT (tab separated text file) format, with rows denoting samples and
129  columns denoting the phenotypes to identify QTLs from (i.e., the ‘y’ in the model). There should be a
130  column named “sample.id” to be matched with sample ids in the genetic data files. In addition, the user
131  needs to input a text file that contains all the phenotype trait names to analyze, corresponding to the
132 column names in the phenotype file. The user can specify both numerical and categorical covariates to
133 include.

134

135 Genetic PCs, as well as GRM when familial relatedness is presented in the data, can be estimated using
136 different types of computational tools. The yQTL pipeline applies PC-AiR (11) and PC-Relate (12) to

137 perform the tasks and is achieved by running Prepare.nf. Alternatively, if pre-calculated genetic PCs and
138 GRM are available, they can be provided as RDS-formatted input files.

139
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7

3.1.3 Anoption to analyze a subset of samples and/or SNPs
By default, the pipeline will perform the analysis using all the samples and all SNPs available in the
intersection of all input data files. Alternatively, the analysis can be restricted to a subset of samples

and/or a subset of SNPs as specified in user-provided input text files listing the sample and SNP IDs.

3.1.4 Control Nextflow processes

Nextflow supports the dispatch of multiple processes in parallel, a feature that can significantly reduce
execution time. The user can control the maximum number of processes to run concurrently in the
configuration file. When running the pipeline on a high-performance shared computer cluster, the user
can also specify distinct resource allocation requirements for each of the pipeline steps in the SGE (Sun
Grid Engine) configuration file. This is an important feature, as different steps may require drastically
different computational resources, and the tailored resource allocation ensures the efficient use of

computational (memory and CPU) resources.

3.1.5 Plotting parameters

Following the completion of QTL analysis, the yQTL Pipeline will generate the Manhattan plots and QQ
(quantile-quantile) plots for each of the phenotypes. The user can specify the minor allele count (MAC)
threshold for the SNPs to be included, as well as the resolution and size of the plots. This MAC threshold

only affects the plotting and will not filter any of the output QTL results.

3.2 QTL analysis workflows
The yQTL Pipeline supports two alternative analysis modalities implemented in separate workflows, with
the choice to be specified in the parameter “params.pipeline_engine”. Available options are “genesis”

|”

and “matrixeqtl”. The details of each are discussed next.
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164
165 3.2.1 Workflow 1: data with familial relatedness
166  When there is known familial relatedness, the user can select workflow 1 (Fig 1, left side), by setting
167  params.pipeline_engine = “genesis” or “g”, which is based on GENESIS, and uses a two-step procedure.
168 First, it estimates a “null model” representing the fixed effect of all covariates provided. It then performs
169  association testing for each SNP using a linear mixed-effect model.
170
171 GENESIS takes a single phenotype, a single genotype file, covariates and a GRM as input. Thus, the
172 pipeline first splits the one multi-phenotype input file into as many single phenotype files, then submits
173 multiple jobs in parallel corresponding to each of the phenotypes and each of the input genotype data
174  files. For instance, if the user wishes to analyze 100 phenotypes and the genotype data is provided as 22
175  GDSfiles, corresponding to as many chromosomes, then 2,200 processes will be automatically
176  submitted and run in parallel. The same covariates, PCs and GRM are used across all those processes.
177
178 3.2.2 Workflow 2: data without familial relatedness
179  When the genotype data represent profiles from unrelated samples, the user can opt for workflow 2 (Fig
180 1, right side), achieved by setting params.pipeline_engine = “matrixeqtl” or “m”, to take advantage of
181 MatrixeQTL's greater efficiency (5). MatrixeQTL performs the association test of all input phenotypes
182 with each genetic input file using a linear model. Although there is no set upper limit on how many
183 phenotypes MatrixeQTL can handle at once, as the number of phenotypes and the size of the genotype
184  dataincrease, the required memories increase substantially and may exceed the available resources. To
185 circumvent this problem, the phenotype file will be split into multiple “chunks”, with each chunk
186 containing a subset of phenotypes. The user can control the number of phenotypes included in each

187  chunk to balance the memory requirement and total analysis time. The pipeline will then apply
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188  MatrixeQTL to each phenotype chunk with each genotype input file in parallel. For example, if there are
189 100 phenotypes, 22 genotype data input files, and a user-specified chunk size of 30 (i.e., 30 phenotypes
190  in each chunk), there would be 4 chunks in total with one chunk containing the last 10 phenotypes, and
191 88 parallel processes would be submitted. The same covariates are used with all those processes.
192
193 3.3 Outputs
194  The intermediate results and the final outputs of the pipeline are saved to separate folders. Log files of

195 all analysis steps are also saved.

196 1. “1_data” and “1_phenotype_data” (or “1_phenotype_data_chunk”) folders contain all data

197 used, including the GDS version of the genotype data if the original inputs were VCF files, and
198 covariate and phenotype data, respectively.

199 2. “2_SNP_info” folder contains the SNP information, such as allele, missingness and frequency.
200 3. “3_individual_results” folder contains the QTL results of each phenotype with each genetic data
201 file.

202 4. “4_individual_results_SNPinfo” folder is the combination of the two intermediate results above.
203 5. “5_Results_Summary” folder contains the final output, which includes the merged version of all
204 the QTL results of each of the phenotype including SNP information, a summary table of the
205 number of QTLs identified, as well as the QQ plots and Manhattan plots of each of the

206 phenotype traits. Since QTL results are often large data frames, the results are output in RDS
207 format. In addition, the user can setup the configuration file to output QTL results in comma
208 separated text files (CSV format) besides RDS files.

209
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210 3.4 Downstream Visualization

211  We developed an R Shiny App to facilitate post-analysis visualization. In the R Shiny App interface, the
212 user can upload the RDS file generated by the pipeline, or an RDS file in a similar format, i.e., a data

213 frame reporting the phenotype trait names, QTL names, their chromosomal coordinates, and their p-
214 values.

215

216  The Manhattan plot is one of the most used visualization methods for GWAS analysis since it enables the
217 intuitive identification of significant genetic associations. After uploading the QTL results file, the

218 Manhattan plot of a specific phenotype trait is generated by selecting a phenotype trait name from the
219 drop-down menu in the R Shiny App interface. In addition, the user can specify a list of SNP IDs in a text
220  input area, separated by comma, to obtain the filtered QTL result table of those SNPs. If a specific

221  phenotype is selected, only results from this phenotype will be returned. Alternatively, the user can

222 select the option “All phenotypes” in the drop-down menu to display results from all phenotypes.

223

224  Manhattan plots can only visualize the results for a single phenotype trait, thus making the comparison
225  across phenotypes difficult. To compare QTL results between multiple phenotype traits, the R Shiny App
226 can also visualize a trait-QTL network. The nodes in the network represent phenotype traits, QTL names
227 (e.g., SNP IDs), and chromosome names. The edges represent significant associations between traits and
228  their QTLs, and top QTLs’ co-localization within the same chromosome. The user can specify a p-value
229  threshold, and the trait-QTL network will be generated including only QTLs reaching the threshold. For
230 each phenotype trait, given the large number of adjacent genetic loci in high linkage disequilibrium (LD)
231  with each other, only the most significant genetic locus on each chromosome will be included in the

232 network plot. The resulting network thus displays which phenotype traits have QTLs identified at the
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233 selected p-value threshold, which chromosomes those QTLs are in, and whether phenotype traits are
234 sharing (some of) the same QTLs.

235

236 4 Results and Discussions: A Metabolomics Use Case of the yQTL Pipeline

237  We will illustrate the application of the yQTL Pipeline to paired metabolomics and genotype datasets
238  from the New England Centenarians Study (NECS). These datasets profiled 194 NECS participants

239 described in (13). Age, gender, and years of education were used as covariates. 1,052 metabolites with
240  less than 20% missing values were selected and their expression values were natural log transformed.
241  9.1M SNPs in the genotype data were used. Since the participants are not genetically related, the

242 pipeline was setup to run with workflow 2, in which the linear model implemented in MatrixeQTL was
243 applied and samples were considered as independent. The p-value cutoff was set to 1le-3. Since the
244 dataset had previously estimated genetic PCs and the genotype data was already in GDS format, only
245  Analysis.nf and Report.nf were executed.

246

247  Although all 9.1M SNPs were analyzed, to avoid artifacts caused by extremely rare SNPs, only the results
248  from the 3.2M SNPs that have MAC = 3 were considered in the following post-GWAS analysis. At the
249 relaxed p-value threshold of 1e-3, all 1,052 metabolites had mQTLs identified. At the genome wide

250  significance threshold (p-value < 5e-8), the list reduced to 312 metabolites. The latter threshold yielded
251 14,983 mQTLs, including 11,931 unique SNPs, with 3,052 of them being mQTLs shared by at least two
252  metabolites.

253

254 Fig 2 shows the Manhattan plot of metabolite N2-acetyl,N6-methyllysine, which is part of the yQTL

255 Pipeline output, but can also be generated using the companion R Shiny App. Two genomic loci at

256 chromosomes 2 and 10 were identified at genome-wide significance level (p < 5e-8).
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257
258  Fig 2. Example Manhattan plot from the R Shiny App. Manhattan plot of N2-acetyl,N6-methyllysine
259 mMQTL analysis based on the New England Centenarians Study (NECS) dataset. Minor allele count (MAC)
260  cutoff 2 3 was applied to avoid artifacts caused by rare SNPs. Two genome-wide signals on chromosome
261 2 and chromosome 10 are clearly visible.
262
263 Fig 3 illustrates an example of the trait-QTL network generated by the R Shiny App using the most
264  significant mQTLs obtained (p < 1e-17), which reveals information that would not be easily captured by
265 single phenotype trait visualization methods, such as Manhattan plots. For instance, the network
266  visualization makes it clear that while rs4539242 (bottom of Fig 3) is one of the top QTL associations of
267 N2-acetyl,N6,N6-dimethyllysine, it is also the top QTL of N6-methyllysine. Meanwhile, orotidine (right of
268  Fig 3) has QTLs with p < 1e-17 on both chromosome 14 (top QTL rs192581407) and chromosome 20 (top
269 QTL rs541005701). On the chromosome level, rs768854100 (middle left of Fig 3) on chromosome 10 is
270  the top QTL of undecanedioate, while a few other SNPs on the same chromosome are also the top QTL
271  of other metabolites.
272
273 Fig 3. Example network plot from the R Shiny App. Results of the New England Centenarians Study
274 (NECS)-based mQTL analysis using a p < 1e-17 threshold are shown. Shared top mQTLs between
275 different metabolites, as well as top mQTLs from different metabolites on the same chromosome are
276 displayed.
277
278 If running all analyses sequentially, the total execution time for this example exceeded 90 minutes.
279  Thanks to the yQTL Pipeline’s built-in parallelization, the total run time was reduced to 26 minutes,

280  achieving a ~3.5-fold speed-up. In this example, the memory of the compute nodes ranges from 4GB to
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281  32GB, tailored to the requirements of each of the processes. With larger datasets, and when modeling
282  familial relatedness, the execution time reduction would be substantially larger.

283

284 5 Conclusions

285  The tools described and results presented provide strong evidence for the usefulness of the yQTL

286  Pipeline. By streamlining the analysis process, increasing parallelization, and improving reproducibility of
287  results, and by incorporating multiple steps into rigorously tested and well-documented wrapper

288  workflows, the pipeline will contribute to lowering the barrier to the wide adoption of QTL analysis tools
289 by the research community.

290
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