

1 **Full title:**

2 yQTL Pipeline: a structured computational workflow for large scale quantitative trait loci discovery and
3 downstream visualization

4 **Short title:**

5 Quantitative trait loci discovery analysis pipeline.

6

7 **Authors:**

8 Mengze Li ¹², Zeyuan Song ³, Anastasia Gurinovich ⁴⁵, Nicholas Schork ⁷, Paola Sebastiani ⁴⁵⁶,

9 Stefano Monti* ¹²³

10

11 1: Bioinformatics Program, Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA.

12 2: Section of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA.

13 3: Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA.

14 4: Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA.

15 5: Department of Medicine, School of Medicine, Tufts University, Boston, MA, USA.

16 6: Data Intensive Study Center, Tufts University, Boston, MA, USA.

17 7: Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute, Phoenix,

18 AZ, USA.

19

20 **1 Abstract**

21 Quantitative trait loci (QTL) denote regions of DNA whose variation is associated with variations in
22 quantitative traits. QTL discovery is a powerful approach to understand how changes in molecular and
23 clinical phenotypes may be related to DNA sequence changes. However, QTL discovery analysis
24 encompasses multiple analytical steps and the processing of multiple input files, which can be laborious,
25 error prone, and hard to reproduce if performed manually. In order to facilitate and automate large-
26 scale QTL analysis, we developed the *yQTL Pipeline*, where the 'y' indicates the dependent quantitative
27 variable being modeled.

28

29 Prior to genome-wide association test, the pipeline supports the calculation or the direct input of pre-
30 defined genome-wide principal components and genetic relationship matrix when applicable. User-
31 specified covariates can also be provided. Depending on whether familial relatedness exists among the
32 subjects, genome-wide association tests will be performed using either a linear mixed-effect model or a
33 linear model. Using the workflow management tool Nextflow, the pipeline parallelizes the analysis steps
34 to optimize run-time and ensure results reproducibility. In addition, a user-friendly R Shiny App is
35 developed to facilitate result visualization. Upon uploading the result file, it can generate Manhattan
36 plots of user-selected phenotype traits and trait-QTL connection networks based on user-specified p-
37 value thresholds.

38

39 We applied the *yQTL Pipeline* to analyze metabolomics profiles of blood serum from the New England
40 Centenarians Study (NECS) participants. A total of 9.1M SNPs and 1,052 metabolites across 194
41 participants were analyzed. Using a p-value cutoff 5e-8, we found 14,983 mQTLs cumulatively associated
42 with 312 metabolites. The built-in parallelization of our pipeline reduced the run time from ~90 min to
43 ~26 min. Visualization using the R Shiny App revealed multiple mQTLs shared across multiple

44 metabolites. The *yQTL Pipeline* is available with documentation on GitHub at
45 <https://github.com/montilab/yQTL-Pipeline>.

46

47 **2 Introduction**

48 Genetic association studies aim to test the correlation between disease risks or other phenotypes and
49 genetic variation, with single-nucleotide polymorphisms (SNPs) the most widely used markers of such
50 variation (1) (2). Quantitative trait loci (QTL) refer to those genetic variations that influence the level of a
51 quantitative trait, for example, expression of a given gene (3).

52

53 Several analytical approaches for QTL discovery have been developed to date, examples including *Hail*
54 (4), *MatrixeQTL* (5) and *QTLtools* (6). However, these tools do not fully account for familial relatedness,
55 which is an essential component in many genetic association studies. *GENESIS* (7) is a package in R that
56 performs genetic association tests while taking into account of familial relatedness, and has been
57 extensively used in GWAS studies (8). Nevertheless, it can only accommodate one genotype input file
58 and one phenotype at a time, thus its application to QTL discovery becomes inconvenient when faced
59 with a large number of phenotypes and multiple input genotype files.

60

61 In addition to the association test, the complete QTL discovery workflow encompasses several
62 preprocessing and post-analysis steps, including conversion of the input genotype file to the correct
63 format, extraction of SNP missingness and frequency information, calculation of genetic principal
64 components (PCs) and genetic relationship matrix (GRM), and merging and visualization of the QTL
65 results. These steps require the execution of multiple commands implemented in different software
66 packages, and can be error prone, time consuming, and difficult to reproduce. We previously developed
67 a Nextflow-based pipeline that incorporates all these steps in a single, reproducible workflow (9).

68 However, this pipeline is limited to the analysis of one phenotype trait at a time. QTL analysis is often
69 performed over multiple phenotypic traits and processes multiple genotype input files, and visualization
70 of the results can be challenging since the relationship of a large number of genomic loci with multiple
71 traits cannot be easily summarized.

72

73 To address these challenges, we developed the *yQTL Pipeline* to incorporate all the analysis steps into a
74 single pipeline. It uses the workflow management tool Nextflow (10) to automate the entire workflow
75 and enables the parallel execution of multiple processes whenever possible.

76

77 **3 Methods: *yQTL Pipeline* Design**

78

79 To ensure modularity, to minimize storage requirements and execution time, and to maximize user
80 control of the analysis steps to be executed, the *yQTL Pipeline* workflow consists of three separate
81 components (shown in **Fig 1**): *Prepare.nf*, *Analysis.nf*, and *Report.nf*.

82

83 **Fig 1. The *yQTL Pipeline* workflow.** The pipeline is split into three Nextflow steps: *Prepare.nf*,
84 *Analysis.nf*, and *Report.nf*. Two alternative workflows are available for the cases when familial
85 relatedness is present or not. Grey: inputs. Blue: analysis steps and intermediate outputs. Green: final
86 outputs.

87

88 *Prepare.nf* performs any data pre-processing when needed, including the conversion of VCF genotype
89 files to GDS format, and obtaining genetic PCs and GRM. Information about the genetic variants,
90 including the allele information, allele frequency and missingness, are also extracted from the genotype
91 data. Next, *Analysis.nf* can be invoked to perform the association test based on the input files either

92 directly provided by the user or from the output of *Prepare.nf*. Finally, *Report.nf* merges the QTL results
93 and generates the plots.

94

95 This modular design was in part adopted to take full advantage of Nextflow's features. Each Nextflow
96 process first creates a copy of all input files into a “work” directory, which ensures reproducibility, but
97 significantly increases the total execution time as well as the storage requirements, which can become a
98 bottleneck when analyzing large datasets. This is particularly the case in QTL analysis, which takes large
99 genotype input files, executes multiple steps, and generates large-sized result files. Splitting the
100 workflow into three components significantly reduces the storage and execution footprints, since the
101 input files can be submitted as “values” corresponding to their file paths, rather than actual “files” to be
102 copied.

103

104 Throughout the entire pipeline, processes are executed in parallel whenever possible. Parallelization is
105 an essential feature when analyzing a large number of quantitative traits, and/or when the genotype
106 data is provided as multiple files. In large studies, it can translate into hundreds or thousands of
107 independent batch jobs being submitted, which can be executed in parallel and thus highly decrease the
108 run time.

109

110 For the configuration and execution of the *yQTL Pipeline*, all that is needed is for the user to specify a
111 configuration file listing the input files and parameters, and to submit three command lines to invoke
112 the entire pipeline. The *yQTL Pipeline* is released under a General Public License 3.0 license. It is publicly
113 available at <https://github.com/montilab/yQTLpipeline>, including comprehensive documentations of the
114 configuration setup. It supports Linux and OS X operating systems.

115

116 **3.1 Input, configuration, and preparation**

117 The required inputs for the *yQTL Pipeline* include genotype and phenotype data. Optionally, covariates,
118 genetic PCs and GRM can also be included. A more detailed description of each of the input parameters
119 is provided in the GitHub documentation.

120

121 **3.1.1 Genotype data**

122 The pipeline supports either VCF or GDS input format for genotype data. If VCF files are provided, these
123 will be converted to GDS format by running *Prepare.nf*. In addition, the user can specify whether to use
124 the imputed dosage entry or the genotype count entry.

125

126 **3.1.2 Phenotype and covariates data**

127 Phenotype and covariates data should be entered as a data frame in either RDS (R Data Serialization),
128 CSV (comma separated text file) or TXT (tab separated text file) format, with rows denoting samples and
129 columns denoting the phenotypes to identify QTLs from (i.e., the 'y' in the model). There should be a
130 column named "sample.id" to be matched with sample ids in the genetic data files. In addition, the user
131 needs to input a text file that contains all the phenotype trait names to analyze, corresponding to the
132 column names in the phenotype file. The user can specify both numerical and categorical covariates to
133 include.

134

135 Genetic PCs, as well as GRM when familial relatedness is presented in the data, can be estimated using
136 different types of computational tools. The *yQTL pipeline* applies PC-AiR (11) and PC-Relate (12) to
137 perform the tasks and is achieved by running *Prepare.nf*. Alternatively, if pre-calculated genetic PCs and
138 GRM are available, they can be provided as RDS-formatted input files.

139

140 **3.1.3 An option to analyze a subset of samples and/or SNPs**

141 By default, the pipeline will perform the analysis using all the samples and all SNPs available in the
142 intersection of all input data files. Alternatively, the analysis can be restricted to a subset of samples
143 and/or a subset of SNPs as specified in user-provided input text files listing the sample and SNP IDs.

144

145 **3.1.4 Control Nextflow processes**

146 Nextflow supports the dispatch of multiple processes in parallel, a feature that can significantly reduce
147 execution time. The user can control the maximum number of processes to run concurrently in the
148 configuration file. When running the pipeline on a high-performance shared computer cluster, the user
149 can also specify distinct resource allocation requirements for each of the pipeline steps in the *SGE* (Sun
150 Grid Engine) configuration file. This is an important feature, as different steps may require drastically
151 different computational resources, and the tailored resource allocation ensures the efficient use of
152 computational (memory and CPU) resources.

153

154 **3.1.5 Plotting parameters**

155 Following the completion of QTL analysis, the *yQTL Pipeline* will generate the Manhattan plots and QQ
156 (quantile-quantile) plots for each of the phenotypes. The user can specify the minor allele count (MAC)
157 threshold for the SNPs to be included, as well as the resolution and size of the plots. This MAC threshold
158 only affects the plotting and will not filter any of the output QTL results.

159

160 **3.2 QTL analysis workflows**

161 The *yQTL Pipeline* supports two alternative analysis modalities implemented in separate workflows, with
162 the choice to be specified in the parameter “params.pipeline_engine”. Available options are “genesis”
163 and “matrixeqtl”. The details of each are discussed next.

164

165 **3.2.1 Workflow 1: data with familial relatedness**

166 When there is known familial relatedness, the user can select *workflow 1* (Fig 1, left side), by setting
167 `params.pipeline_engine = "genesis"` or `"g"`, which is based on *GENESIS*, and uses a two-step procedure.
168 First, it estimates a “null model” representing the fixed effect of all covariates provided. It then performs
169 association testing for each SNP using a linear mixed-effect model.

170

171 *GENESIS* takes a single phenotype, a single genotype file, covariates and a GRM as input. Thus, the
172 pipeline first splits the one multi-phenotype input file into as many single phenotype files, then submits
173 multiple jobs in parallel corresponding to each of the phenotypes and each of the input genotype data
174 files. For instance, if the user wishes to analyze 100 phenotypes and the genotype data is provided as 22
175 GDS files, corresponding to as many chromosomes, then 2,200 processes will be automatically
176 submitted and run in parallel. The same covariates, PCs and GRM are used across all those processes.

177

178 **3.2.2 Workflow 2: data without familial relatedness**

179 When the genotype data represent profiles from unrelated samples, the user can opt for *workflow 2* (Fig
180 1, right side), achieved by setting `params.pipeline_engine = "matrixeql"` or `"m"`, to take advantage of
181 *MatrixeQTL*’s greater efficiency (5). *MatrixeQTL* performs the association test of all input phenotypes
182 with each genetic input file using a linear model. Although there is no set upper limit on how many
183 phenotypes *MatrixeQTL* can handle at once, as the number of phenotypes and the size of the genotype
184 data increase, the required memories increase substantially and may exceed the available resources. To
185 circumvent this problem, the phenotype file will be split into multiple “chunks”, with each chunk
186 containing a subset of phenotypes. The user can control the number of phenotypes included in each
187 chunk to balance the memory requirement and total analysis time. The pipeline will then apply

188 *MatrixeQTL* to each phenotype chunk with each genotype input file in parallel. For example, if there are
189 100 phenotypes, 22 genotype data input files, and a user-specified chunk size of 30 (i.e., 30 phenotypes
190 in each chunk), there would be 4 chunks in total with one chunk containing the last 10 phenotypes, and
191 88 parallel processes would be submitted. The same covariates are used with all those processes.

192

193 **3.3 Outputs**

194 The intermediate results and the final outputs of the pipeline are saved to separate folders. Log files of
195 all analysis steps are also saved.

- 196 1. “1_data” and “1_phenotype_data” (or “1_phenotype_data_chunk”) folders contain all data
197 used, including the GDS version of the genotype data if the original inputs were VCF files, and
198 covariate and phenotype data, respectively.
- 199 2. “2_SNP_info” folder contains the SNP information, such as allele, missingness and frequency.
- 200 3. “3_individual_results” folder contains the QTL results of each phenotype with each genetic data
201 file.
- 202 4. “4_individual_results_SNPinfo” folder is the combination of the two intermediate results above.
- 203 5. “5_Results_Summary” folder contains the final output, which includes the merged version of all
204 the QTL results of each of the phenotype including SNP information, a summary table of the
205 number of QTLs identified, as well as the QQ plots and Manhattan plots of each of the
206 phenotype traits. Since QTL results are often large data frames, the results are output in RDS
207 format. In addition, the user can setup the configuration file to output QTL results in comma
208 separated text files (CSV format) besides RDS files.

209

210 **3.4 Downstream Visualization**

211 We developed an R Shiny App to facilitate post-analysis visualization. In the R Shiny App interface, the
212 user can upload the RDS file generated by the pipeline, or an RDS file in a similar format, i.e., a data
213 frame reporting the phenotype trait names, QTL names, their chromosomal coordinates, and their p-
214 values.

215

216 The Manhattan plot is one of the most used visualization methods for GWAS analysis since it enables the
217 intuitive identification of significant genetic associations. After uploading the QTL results file, the
218 Manhattan plot of a specific phenotype trait is generated by selecting a phenotype trait name from the
219 drop-down menu in the R Shiny App interface. In addition, the user can specify a list of SNP IDs in a text
220 input area, separated by comma, to obtain the filtered QTL result table of those SNPs. If a specific
221 phenotype is selected, only results from this phenotype will be returned. Alternatively, the user can
222 select the option “All phenotypes” in the drop-down menu to display results from all phenotypes.

223

224 Manhattan plots can only visualize the results for a single phenotype trait, thus making the comparison
225 across phenotypes difficult. To compare QTL results between multiple phenotype traits, the R Shiny App
226 can also visualize a trait-QTL network. The nodes in the network represent phenotype traits, QTL names
227 (e.g., SNP IDs), and chromosome names. The edges represent significant associations between traits and
228 their QTLs, and top QTLs’ co-localization within the same chromosome. The user can specify a p-value
229 threshold, and the trait-QTL network will be generated including only QTLs reaching the threshold. For
230 each phenotype trait, given the large number of adjacent genetic loci in high linkage disequilibrium (LD)
231 with each other, only the most significant genetic locus on each chromosome will be included in the
232 network plot. The resulting network thus displays which phenotype traits have QTLs identified at the

233 selected p-value threshold, which chromosomes those QTLs are in, and whether phenotype traits are
234 sharing (some of) the same QTLs.

235

236 **4 Results and Discussions: A Metabolomics Use Case of the *yQTL Pipeline***

237 We will illustrate the application of the *yQTL Pipeline* to paired metabolomics and genotype datasets
238 from the New England Centenarians Study (NECS). These datasets profiled 194 NECS participants
239 described in (13). Age, gender, and years of education were used as covariates. 1,052 metabolites with
240 less than 20% missing values were selected and their expression values were natural log transformed.
241 9.1M SNPs in the genotype data were used. Since the participants are not genetically related, the
242 pipeline was setup to run with *workflow 2*, in which the linear model implemented in *MatrixeQTL* was
243 applied and samples were considered as independent. The p-value cutoff was set to 1e-3. Since the
244 dataset had previously estimated genetic PCs and the genotype data was already in GDS format, only
245 *Analysis.nf* and *Report.nf* were executed.

246

247 Although all 9.1M SNPs were analyzed, to avoid artifacts caused by extremely rare SNPs, only the results
248 from the 3.2M SNPs that have MAC ≥ 3 were considered in the following post-GWAS analysis. At the
249 relaxed p-value threshold of 1e-3, all 1,052 metabolites had mQTLs identified. At the genome wide
250 significance threshold (p-value $< 5e-8$), the list reduced to 312 metabolites. The latter threshold yielded
251 14,983 mQTLs, including 11,931 unique SNPs, with 3,052 of them being mQTLs shared by at least two
252 metabolites.

253

254 **Fig 2** shows the Manhattan plot of metabolite N2-acetyl,N6-methyllysine, which is part of the *yQTL*
255 *Pipeline* output, but can also be generated using the companion R Shiny App. Two genomic loci at
256 chromosomes 2 and 10 were identified at genome-wide significance level (p $< 5e-8$).

257

258 **Fig 2. Example Manhattan plot from the R Shiny App.** Manhattan plot of N2-acetyl,N6-methyllysine
259 mQTL analysis based on the New England Centenarians Study (NECS) dataset. Minor allele count (MAC)
260 cutoff ≥ 3 was applied to avoid artifacts caused by rare SNPs. Two genome-wide signals on chromosome
261 2 and chromosome 10 are clearly visible.

262

263 **Fig 3** illustrates an example of the trait-QTL network generated by the R Shiny App using the most
264 significant mQTLs obtained ($p < 1e-17$), which reveals information that would not be easily captured by
265 single phenotype trait visualization methods, such as Manhattan plots. For instance, the network
266 visualization makes it clear that while rs4539242 (bottom of **Fig 3**) is one of the top QTL associations of
267 N2-acetyl,N6,N6-dimethyllysine, it is also the top QTL of N6-methyllysine. Meanwhile, orotidine (right of
268 **Fig 3**) has QTLs with $p < 1e-17$ on both chromosome 14 (top QTL rs192581407) and chromosome 20 (top
269 QTL rs541005701). On the chromosome level, rs768854100 (middle left of **Fig 3**) on chromosome 10 is
270 the top QTL of undecanedioate, while a few other SNPs on the same chromosome are also the top QTL
271 of other metabolites.

272

273 **Fig 3. Example network plot from the R Shiny App.** Results of the New England Centenarians Study
274 (NECS)-based mQTL analysis using a $p < 1e-17$ threshold are shown. Shared top mQTLs between
275 different metabolites, as well as top mQTLs from different metabolites on the same chromosome are
276 displayed.

277

278 If running all analyses sequentially, the total execution time for this example exceeded 90 minutes.
279 Thanks to *the yQTL Pipeline*'s built-in parallelization, the total run time was reduced to 26 minutes,
280 achieving a ~ 3.5 -fold speed-up. In this example, the memory of the compute nodes ranges from 4GB to

281 32GB, tailored to the requirements of each of the processes. With larger datasets, and when modeling
282 familial relatedness, the execution time reduction would be substantially larger.

283

284 **5 Conclusions**

285 The tools described and results presented provide strong evidence for the usefulness of the *yQTL*
286 *Pipeline*. By streamlining the analysis process, increasing parallelization, and improving reproducibility of
287 results, and by incorporating multiple steps into rigorously tested and well-documented wrapper
288 workflows, the pipeline will contribute to lowering the barrier to the wide adoption of QTL analysis tools
289 by the research community.

290

291 **6 Acknowledgements**

292 We express our sincere gratitude for the funding provided by the National Institute on Aging (NIA),
293 including: U19-AG063893 (PS), UH3-AG064704 (PS, SM), UH3-AG064706 (NS), and U19-AG023122 (PS,
294 SM, NS).

295

296 **7 References**

- 297 1. Lewis CM, Knight J. Introduction to Genetic Association Studies. *Cold Spring Harb Protoc*. 2012 Mar
298 1;2012(3):pdb.top068163-pdb.top068163.
- 299 2. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide
300 association studies. *Nat Rev Genet*. 2019 Aug;20(8):467–84.
- 301 3. Montgomery SB, Dermitzakis ET. From expression QTLs to personalized transcriptomics. *Nat Rev
302 Genet*. 2011 Apr;12(4):277–82.
- 303 4. Hail Team. Hail 0.2.13-81ab564db2b4. <https://github.com/hail-is/hail/releases/tag/0.2.13>.
- 304 5. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. *Bioinformatics*. 2012
305 May 15;28(10):1353–8.

306 6. Delaneau O, Ongen H, Brown AA, Fort A, Panousis NI, Dermitzakis ET. A complete tool set for
307 molecular QTL discovery and analysis. *Nat Commun.* 2017 Aug;8(1):15452.

308 7. Gogarten SM, Sofer T, Chen H, Yu C, Brody JA, Thornton TA, et al. Genetic association testing using
309 the GENESIS R/Bioconductor package. Valencia A, editor. *Bioinformatics*. 2019 Dec 15;35(24):5346–
310 8.

311 8. Gurinovich A, Song Z, Zhang W, Federico A, Monti S, Andersen SL, et al. Effect of longevity genetic
312 variants on the molecular aging rate. *GeroScience* [Internet]. 2021 May 4 [cited 2021 May 16];
313 Available from: <https://link.springer.com/10.1007/s11357-021-00376-4>

314 9. Song Z, Gurinovich A, Federico A, Monti S, Sebastiani P. nf-gwas-pipeline: A Nextflow Genome-Wide
315 Association Study Pipeline. *J Open Source Softw.* 2021 Mar 2;6(59):2957.

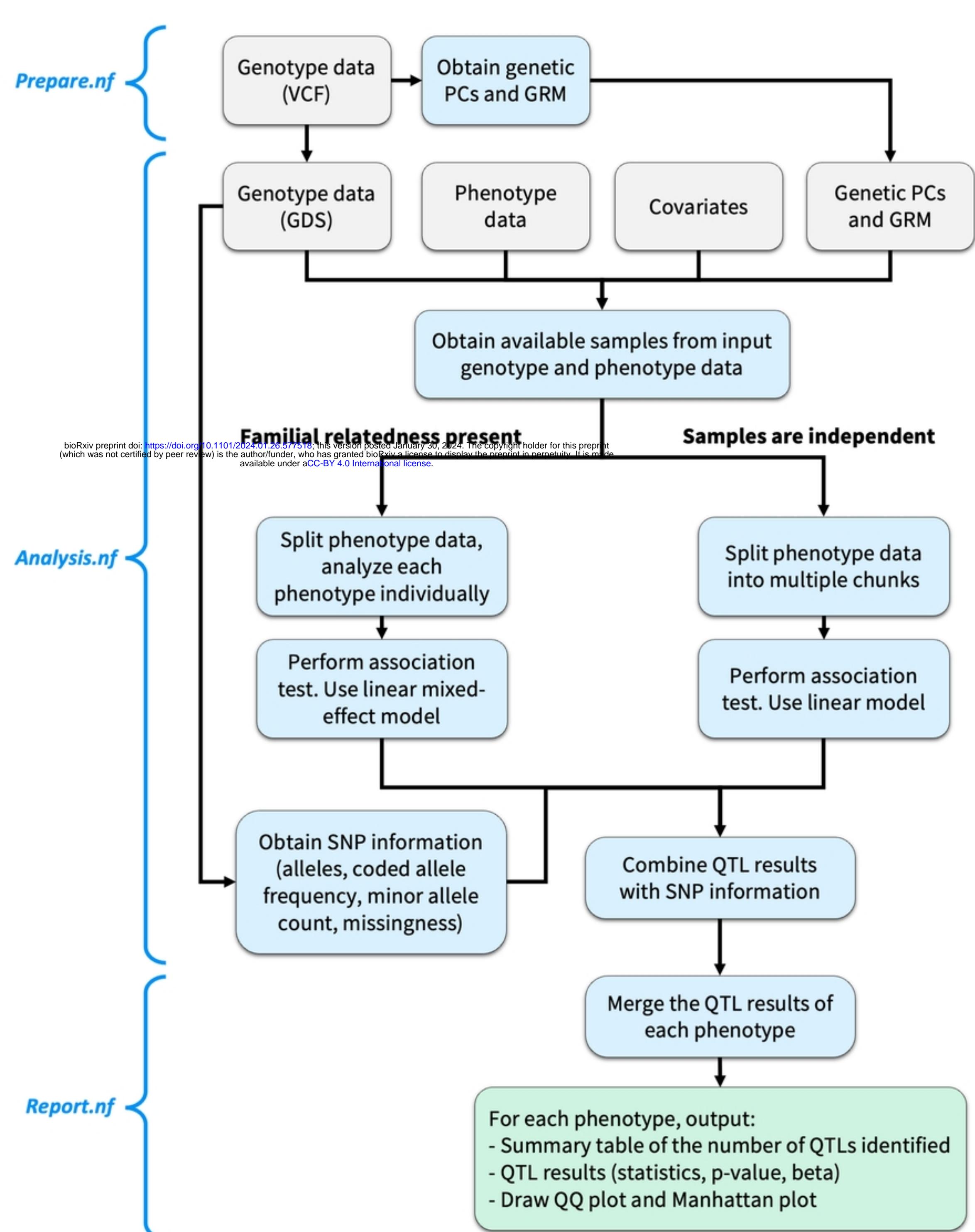
316 10. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables
317 reproducible computational workflows. *Nat Biotechnol.* 2017 Apr;35(4):316–9.

318 11. Conomos MP, Miller MB, Thornton TA. Robust Inference of Population Structure for Ancestry
319 Prediction and Correction of Stratification in the Presence of Relatedness. *Genet Epidemiol.* 2015
320 May;39(4):276–93.

321 12. Conomos MP, Reiner AP, Weir BS, Thornton TA. Model-free Estimation of Recent Genetic
322 Relatedness. *Am J Hum Genet.* 2016 Jan;98(1):127–48.

323 13. Sebastiani P, Song Z, Ellis D, Tian Q, Schwaiger-Haber M, Stancliffe E, et al. A metabolomic signature
324 of the APOE2 allele. *GeroScience*. 2023 Feb;45(1):415–26.

325



N2-acetyl,N6-methyllysine (mac 3)

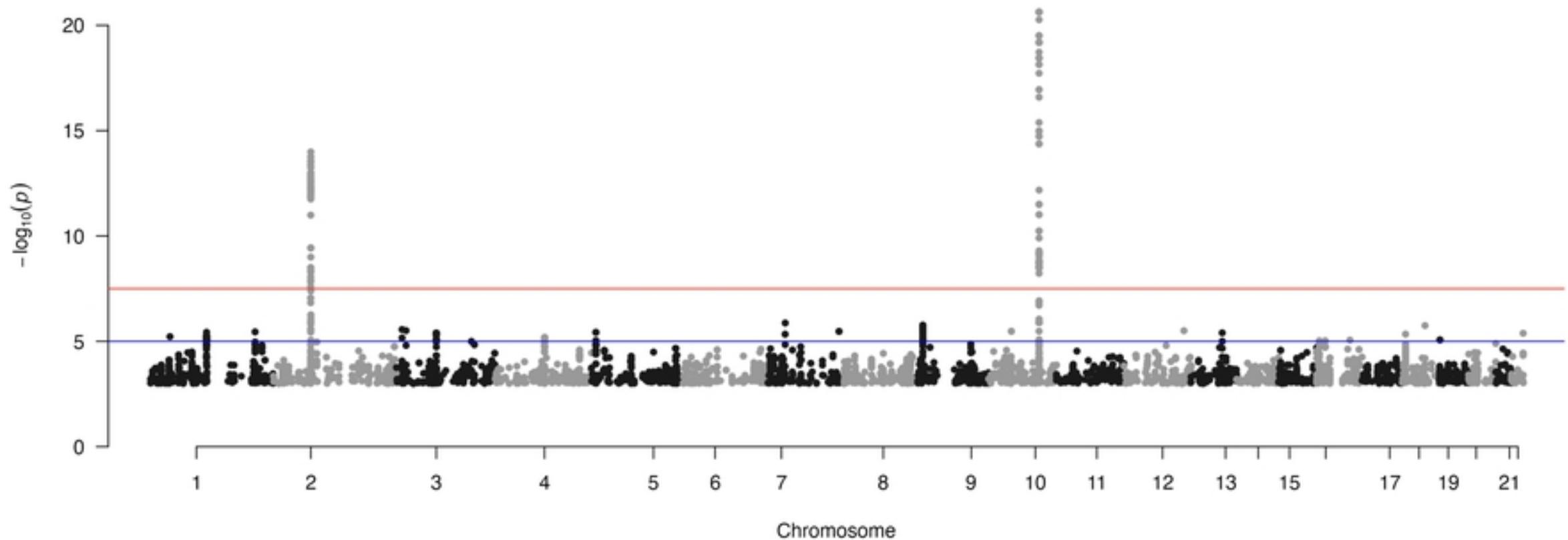


Fig 2

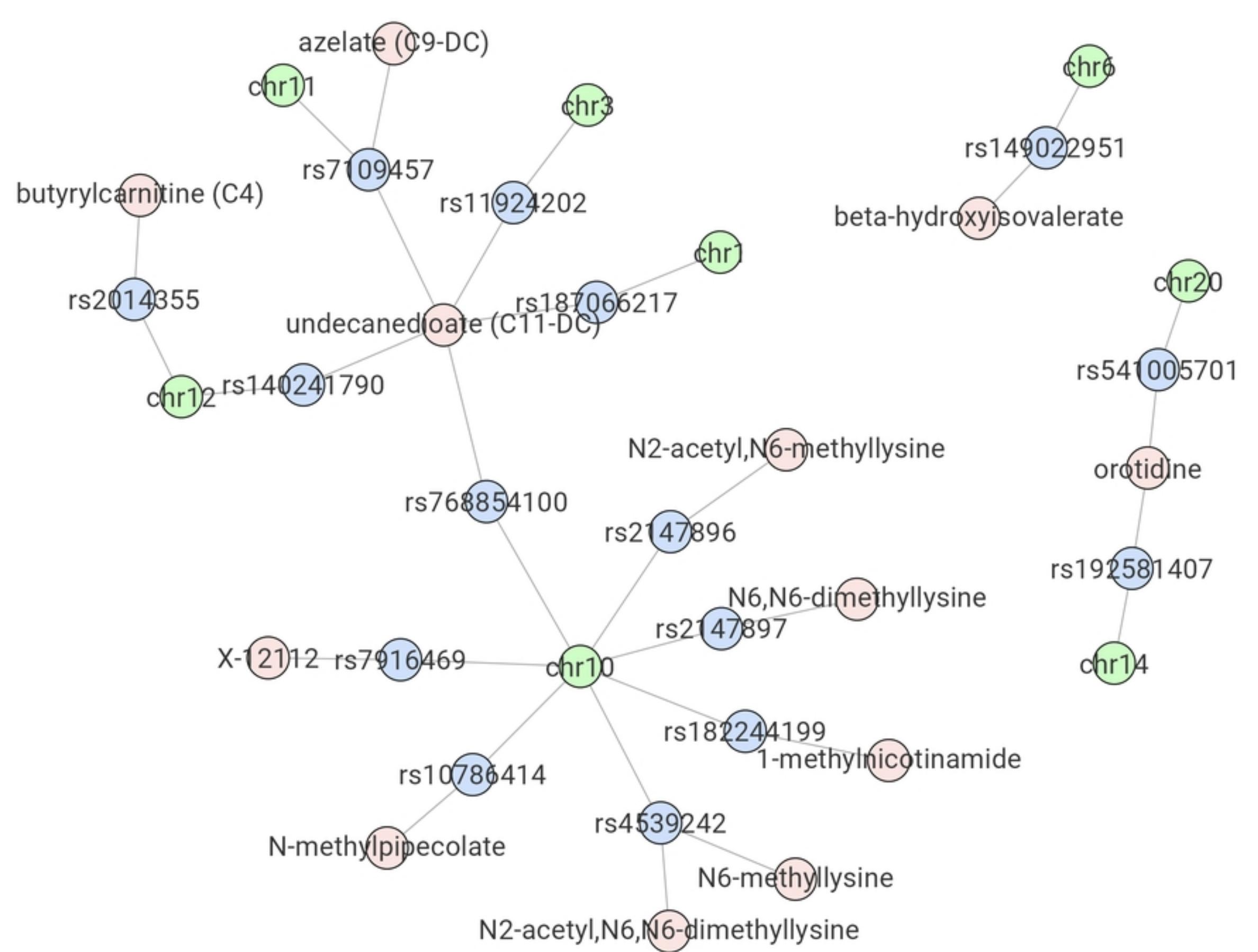


Fig 3