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20 1 Abstract

21 Quantitative trait loci (QTL) denote regions of DNA whose variation is associated with variations in 

22 quantitative traits. QTL discovery is a powerful approach to understand how changes in molecular and 

23 clinical phenotypes may be related to DNA sequence changes. However, QTL discovery analysis 

24 encompasses multiple analytical steps and the processing of multiple input files, which can be laborious, 

25 error prone, and hard to reproduce if performed manually. In order to facilitate and automate large-

26 scale QTL analysis, we developed the yQTL Pipeline, where the �y� indicates the dependent quantitative 

27 variable being modeled. 

28

29 Prior to genome-wide association test, the pipeline supports the calculation or the direct input of pre-

30 defined genome-wide principal components and genetic relationship matrix when applicable. User-

31 specified covariates can also be provided. Depending on whether familial relatedness exists among the 

32 subjects, genome-wide association tests will be performed using either a linear mixed-effect model or a 

33 linear model. Using the workflow management tool Nextflow, the pipeline parallelizes the analysis steps 

34 to optimize run-time and ensure results reproducibility. In addition, a user-friendly R Shiny App is 

35 developed to facilitate result visualization. Upon uploading the result file, it can generate Manhattan 

36 plots of user-selected phenotype traits and trait-QTL connection networks based on user-specified p-

37 value thresholds. 

38

39 We applied the yQTL Pipeline to analyze metabolomics profiles of blood serum from the New England 

40 Centenarians Study (NECS) participants. A total of 9.1M SNPs and 1,052 metabolites across 194 

41 participants were analyzed. Using a p-value cutoff 5e-8, we found 14,983 mQTLs cumulatively associated 

42 with 312 metabolites. The built-in parallelization of our pipeline reduced the run time from ~90 min to 

43 ~26 min. Visualization using the R Shiny App revealed multiple mQTLs shared across multiple 
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44 metabolites. The yQTL Pipeline is available with documentation on GitHub at 

45 https://github.com/montilab/yQTL-Pipeline.

46

47 2 Introduction 

48 Genetic association studies aim to test the correlation between disease risks or other phenotypes and 

49 genetic variation, with single-nucleotide polymorphisms (SNPs) the most widely used markers of such 

50 variation (1) (2). Quantitative trait loci (QTL) refer to those genetic variations that influence the level of a 

51 quantitative trait, for example, expression of a given gene (3). 

52

53 Several analytical approaches for QTL discovery have been developed to date, examples including Hail 

54 (4), MatrixeQTL (5) and QTLtools (6). However, these tools do not fully account for familial relatedness, 

55 which is an essential component in many genetic association studies. GENESIS (7) is a package in R that 

56 performs genetic association tests while taking into account of familial relatedness, and has been 

57 extensively used in GWAS studies (8). Nevertheless, it can only accommodate one genotype input file 

58 and one phenotype at a time, thus its application to QTL discovery becomes inconvenient when faced 

59 with a large number of phenotypes and multiple input genotype files. 

60

61 In addition to the association test, the complete QTL discovery workflow encompasses several 

62 preprocessing and post-analysis steps, including conversion of the input genotype file to the correct 

63 format, extraction of SNP missingness and frequency information, calculation of genetic principal 

64 components (PCs) and genetic relationship matrix (GRM), and merging and visualization of the QTL 

65 results. These steps require the execution of multiple commands implemented in different software 

66 packages, and can be error prone, time consuming, and difficult to reproduce. We previously developed 

67 a Nextflow-based pipeline that incorporates all these steps in a single, reproducible workflow (9). 
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68 However, this pipeline is limited to the analysis of one phenotype trait at a time. QTL analysis is often 

69 performed over multiple phenotypic traits and processes multiple genotype input files, and visualization 

70 of the results can be challenging since the relationship of a large number of genomic loci with multiple 

71 traits cannot be easily summarized. 

72

73 To address these challenges, we developed the yQTL Pipeline to incorporate all the analysis steps into a 

74 single pipeline. It uses the workflow management tool Nextflow (10) to automate the entire workflow 

75 and enables the parallel execution of multiple processes whenever possible.

76

77 3 Methods: yQTL Pipeline Design 

78

79 To ensure modularity, to minimize storage requirements and execution time, and to maximize user 

80 control of the analysis steps to be executed, the yQTL Pipeline workflow consists of three separate 

81 components (shown in Fig 1): Prepare.nf, Analysis.nf, and Report.nf. 

82

83 Fig 1. The yQTL Pipeline workflow. The pipeline is split into three Nextflow steps: Prepare.nf, 

84 Analysis.nf, and Report.nf. Two alternative workflows are available for the cases when familial 

85 relatedness is present or not. Grey: inputs. Blue: analysis steps and intermediate outputs. Green: final 

86 outputs. 

87

88 Prepare.nf performs any data pre-processing when needed, including the conversion of VCF genotype 

89 files to GDS format, and obtaining genetic PCs and GRM. Information about the genetic variants, 

90 including the allele information, allele frequency and missingness, are also extracted from the genotype 

91 data. Next, Analysis.nf can be invoked to perform the association test based on the input files either 
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92 directly provided by the user or from the output of Prepare.nf. Finally, Report.nf merges the QTL results 

93 and generates the plots. 

94

95 This modular design was in part adopted to take full advantage of Nextflow�s features. Each Nextflow 

96 process first creates a copy of all input files into a �work� directory, which ensures reproducibility, but 

97 significantly increases the total execution time as well as the storage requirements, which can become a 

98 bottleneck when analyzing large datasets. This is particularly the case in QTL analysis, which takes large 

99 genotype input files, executes multiple steps, and generates large-sized result files. Splitting the 

100 workflow into three components significantly reduces the storage and execution footprints, since the 

101 input files can be submitted as �values� corresponding to their file paths, rather than actual �files� to be 

102 copied. 

103

104 Throughout the entire pipeline, processes are executed in parallel whenever possible. Parallelization is 

105 an essential feature when analyzing a large number of quantitative traits, and/or when the genotype 

106 data is provided as multiple files. In large studies, it can translate into hundreds or thousands of 

107 independent batch jobs being submitted, which can be executed in parallel and thus highly decrease the 

108 run time. 

109

110 For the configuration and execution of the yQTL Pipeline, all that is needed is for the user to specify a 

111 configuration file listing the input files and parameters, and to submit three command lines to invoke 

112 the entire pipeline. The yQTL Pipeline is released under a General Public License 3.0 license. It is publicly 

113 available at https://github.com/montilab/yQTLpipeline, including comprehensive documentations of the 

114 configuration setup. It supports Linux and OS X operating systems. 

115
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116 3.1 Input, configuration, and preparation 

117 The required inputs for the yQTL Pipeline include genotype and phenotype data. Optionally, covariates, 

118 genetic PCs and GRM can also be included. A more detailed description of each of the input parameters 

119 is provided in the GitHub documentation. 

120

121 3.1.1 Genotype data 

122 The pipeline supports either VCF or GDS input format for genotype data. If VCF files are provided, these 

123 will be converted to GDS format by running Prepare.nf. In addition, the user can specify whether to use 

124 the imputed dosage entry or the genotype count entry.

125

126 3.1.2 Phenotype and covariates data 

127 Phenotype and covariates data should be entered as a data frame in either RDS (R Data Serialization), 

128 CSV (comma separated text file) or TXT (tab separated text file) format, with rows denoting samples and 

129 columns denoting the phenotypes to identify QTLs from (i.e., the �y� in the model). There should be a 

130 column named �sample.id� to be matched with sample ids in the genetic data files. In addition, the user 

131 needs to input a text file that contains all the phenotype trait names to analyze, corresponding to the 

132 column names in the phenotype file. The user can specify both numerical and categorical covariates to 

133 include. 

134

135 Genetic PCs, as well as GRM when familial relatedness is presented in the data, can be estimated using 

136 different types of computational tools. The yQTL pipeline applies PC-AiR (11) and PC-Relate (12) to 

137 perform the tasks and is achieved by running Prepare.nf. Alternatively, if pre-calculated genetic PCs and 

138 GRM are available, they can be provided as RDS-formatted input files. 

139
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140 3.1.3 An option to analyze a subset of samples and/or SNPs 

141 By default, the pipeline will perform the analysis using all the samples and all SNPs available in the 

142 intersection of all input data files. Alternatively, the analysis can be restricted to a subset of samples 

143 and/or a subset of SNPs as specified in user-provided input text files listing the sample and SNP IDs.

144

145 3.1.4 Control Nextflow processes 

146 Nextflow supports the dispatch of multiple processes in parallel, a feature that can significantly reduce 

147 execution time. The user can control the maximum number of processes to run concurrently in the 

148 configuration file. When running the pipeline on a high-performance shared computer cluster, the user 

149 can also specify distinct resource allocation requirements for each of the pipeline steps in the SGE (Sun 

150 Grid Engine) configuration file. This is an important feature, as different steps may require drastically 

151 different computational resources, and the tailored resource allocation ensures the efficient use of 

152 computational (memory and CPU) resources. 

153

154 3.1.5 Plotting parameters

155 Following the completion of QTL analysis, the yQTL Pipeline will generate the Manhattan plots and QQ 

156 (quantile-quantile) plots for each of the phenotypes. The user can specify the minor allele count (MAC) 

157 threshold for the SNPs to be included, as well as the resolution and size of the plots. This MAC threshold 

158 only affects the plotting and will not filter any of the output QTL results. 

159

160 3.2 QTL analysis workflows

161 The yQTL Pipeline supports two alternative analysis modalities implemented in separate workflows, with 

162 the choice to be specified in the parameter �params.pipeline_engine�. Available options are �genesis� 

163 and �matrixeqtl�. The details of each are discussed next. 
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164

165 3.2.1 Workflow 1: data with familial relatedness

166 When there is known familial relatedness, the user can select workflow 1 (Fig 1, left side), by setting 

167 params.pipeline_engine = �genesis� or �g�, which is based on GENESIS, and uses a two-step procedure. 

168 First, it estimates a �null model� representing the fixed effect of all covariates provided. It then performs 

169 association testing for each SNP using a linear mixed-effect model. 

170

171 GENESIS takes a single phenotype, a single genotype file, covariates and a GRM as input. Thus, the 

172 pipeline first splits the one multi-phenotype input file into as many single phenotype files, then submits 

173 multiple jobs in parallel corresponding to each of the phenotypes and each of the input genotype data 

174 files. For instance, if the user wishes to analyze 100 phenotypes and the genotype data is provided as 22 

175 GDS files, corresponding to as many chromosomes, then 2,200 processes will be automatically 

176 submitted and run in parallel. The same covariates, PCs and GRM are used across all those processes. 

177

178 3.2.2 Workflow 2: data without familial relatedness 

179 When the genotype data represent profiles from unrelated samples, the user can opt for workflow 2 (Fig 

180 1, right side), achieved by setting params.pipeline_engine = �matrixeqtl� or �m�, to take advantage of 

181 MatrixeQTL�s greater efficiency (5). MatrixeQTL performs the association test of all input phenotypes 

182 with each genetic input file using a linear model. Although there is no set upper limit on how many 

183 phenotypes MatrixeQTL can handle at once, as the number of phenotypes and the size of the genotype 

184 data increase, the required memories increase substantially and may exceed the available resources. To 

185 circumvent this problem, the phenotype file will be split into multiple �chunks�, with each chunk 

186 containing a subset of phenotypes. The user can control the number of phenotypes included in each 

187 chunk to balance the memory requirement and total analysis time. The pipeline will then apply 
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188 MatrixeQTL to each phenotype chunk with each genotype input file in parallel. For example, if there are 

189 100 phenotypes, 22 genotype data input files, and a user-specified chunk size of 30 (i.e., 30 phenotypes 

190 in each chunk), there would be 4 chunks in total with one chunk containing the last 10 phenotypes, and 

191 88 parallel processes would be submitted. The same covariates are used with all those processes. 

192

193 3.3 Outputs

194 The intermediate results and the final outputs of the pipeline are saved to separate folders. Log files of 

195 all analysis steps are also saved.

196 1. �1_data� and �1_phenotype_data� (or �1_phenotype_data_chunk�) folders contain all data 

197 used, including the GDS version of the genotype data if the original inputs were VCF files, and 

198 covariate and phenotype data, respectively. 

199 2. �2_SNP_info� folder contains the SNP information, such as allele, missingness and frequency. 

200 3. �3_individual_results� folder contains the QTL results of each phenotype with each genetic data 

201 file. 

202 4. �4_ individual_results_SNPinfo� folder is the combination of the two intermediate results above. 

203 5. �5_Results_Summary� folder contains the final output, which includes the merged version of all 

204 the QTL results of each of the phenotype including SNP information, a summary table of the 

205 number of QTLs identified, as well as the QQ plots and Manhattan plots of each of the 

206 phenotype traits. Since QTL results are often large data frames, the results are output in RDS 

207 format. In addition, the user can setup the configuration file to output QTL results in comma 

208 separated text files (CSV format) besides RDS files. 

209
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210 3.4 Downstream Visualization 

211 We developed an R Shiny App to facilitate post-analysis visualization. In the R Shiny App interface, the 

212 user can upload the RDS file generated by the pipeline, or an RDS file in a similar format, i.e., a data 

213 frame reporting the phenotype trait names, QTL names, their chromosomal coordinates, and their p-

214 values.

215

216 The Manhattan plot is one of the most used visualization methods for GWAS analysis since it enables the 

217 intuitive identification of significant genetic associations. After uploading the QTL results file, the 

218 Manhattan plot of a specific phenotype trait is generated by selecting a phenotype trait name from the 

219 drop-down menu in the R Shiny App interface. In addition, the user can specify a list of SNP IDs in a text 

220 input area, separated by comma, to obtain the filtered QTL result table of those SNPs. If a specific 

221 phenotype is selected, only results from this phenotype will be returned. Alternatively, the user can 

222 select the option �All phenotypes� in the drop-down menu to display results from all phenotypes. 

223

224 Manhattan plots can only visualize the results for a single phenotype trait, thus making the comparison 

225 across phenotypes difficult. To compare QTL results between multiple phenotype traits, the R Shiny App 

226 can also visualize a trait-QTL network. The nodes in the network represent phenotype traits, QTL names 

227 (e.g., SNP IDs), and chromosome names. The edges represent significant associations between traits and 

228 their QTLs, and top QTLs� co-localization within the same chromosome. The user can specify a p-value 

229 threshold, and the trait-QTL network will be generated including only QTLs reaching the threshold. For 

230 each phenotype trait, given the large number of adjacent genetic loci in high linkage disequilibrium (LD) 

231 with each other, only the most significant genetic locus on each chromosome will be included in the 

232 network plot. The resulting network thus displays which phenotype traits have QTLs identified at the 
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233 selected p-value threshold, which chromosomes those QTLs are in, and whether phenotype traits are 

234 sharing (some of) the same QTLs. 

235

236 4 Results and Discussions: A Metabolomics Use Case of the yQTL Pipeline

237 We will illustrate the application of the yQTL Pipeline to paired metabolomics and genotype datasets 

238 from the New England Centenarians Study (NECS). These datasets profiled 194 NECS participants 

239 described in (13). Age, gender, and years of education were used as covariates. 1,052 metabolites with 

240 less than 20% missing values were selected and their expression values were natural log transformed. 

241 9.1M SNPs in the genotype data were used. Since the participants are not genetically related, the 

242 pipeline was setup to run with workflow 2, in which the linear model implemented in MatrixeQTL was 

243 applied and samples were considered as independent. The p-value cutoff was set to 1e-3. Since the 

244 dataset had previously estimated genetic PCs and the genotype data was already in GDS format, only 

245 Analysis.nf and Report.nf were executed. 

246

247 Although all 9.1M SNPs were analyzed, to avoid artifacts caused by extremely rare SNPs, only the results 

248 from the 3.2M SNPs that have MAC ≥ 3 were considered in the following post-GWAS analysis. At the 

249 relaxed p-value threshold of 1e-3, all 1,052 metabolites had mQTLs identified. At the genome wide 

250 significance threshold (p-value < 5e-8), the list reduced to 312 metabolites. The latter threshold yielded 

251 14,983 mQTLs, including 11,931 unique SNPs, with 3,052 of them being mQTLs shared by at least two 

252 metabolites. 

253

254 Fig 2 shows the Manhattan plot of metabolite N2-acetyl,N6-methyllysine, which is part of the yQTL 

255 Pipeline output, but can also be generated using the companion R Shiny App. Two genomic loci at 

256 chromosomes 2 and 10 were identified at genome-wide significance level (p < 5e-8). 
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257

258 Fig 2. Example Manhattan plot from the R Shiny App. Manhattan plot of N2-acetyl,N6-methyllysine 

259 mQTL analysis based on the New England Centenarians Study (NECS) dataset. Minor allele count (MAC) 

260 cutoff ≥ 3 was applied to avoid artifacts caused by rare SNPs. Two genome-wide signals on chromosome 

261 2 and chromosome 10 are clearly visible. 

262

263 Fig 3 illustrates an example of the trait-QTL network generated by the R Shiny App using the most 

264 significant mQTLs obtained (p < 1e-17), which reveals information that would not be easily captured by 

265 single phenotype trait visualization methods, such as Manhattan plots. For instance, the network 

266 visualization makes it clear that while rs4539242 (bottom of Fig 3) is one of the top QTL associations of 

267 N2-acetyl,N6,N6-dimethyllysine, it is also the top QTL of N6-methyllysine. Meanwhile, orotidine (right of 

268 Fig 3) has QTLs with p < 1e-17 on both chromosome 14 (top QTL rs192581407) and chromosome 20 (top 

269 QTL rs541005701). On the chromosome level, rs768854100 (middle left of Fig 3) on chromosome 10 is 

270 the top QTL of undecanedioate, while a few other SNPs on the same chromosome are also the top QTL 

271 of other metabolites.

272

273 Fig 3. Example network plot from the R Shiny App. Results of the New England Centenarians Study 

274 (NECS)-based mQTL analysis using a p < 1e-17 threshold are shown. Shared top mQTLs between 

275 different metabolites, as well as top mQTLs from different metabolites on the same chromosome are 

276 displayed.

277

278 If running all analyses sequentially, the total execution time for this example exceeded 90 minutes. 

279 Thanks to the yQTL Pipeline�s built-in parallelization, the total run time was reduced to 26 minutes, 

280 achieving a ~3.5-fold speed-up. In this example, the memory of the compute nodes ranges from 4GB to 
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281 32GB, tailored to the requirements of each of the processes. With larger datasets, and when modeling 

282 familial relatedness, the execution time reduction would be substantially larger.

283

284 5 Conclusions

285 The tools described and results presented provide strong evidence for the usefulness of the yQTL 

286 Pipeline. By streamlining the analysis process, increasing parallelization, and improving reproducibility of 

287 results, and by incorporating multiple steps into rigorously tested and well-documented wrapper 

288 workflows, the pipeline will contribute to lowering the barrier to the wide adoption of QTL analysis tools 

289 by the research community.

290
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