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Abstract

We analyze infinite-dimensional Hamiltonian systems corresponding to partial differential equa-

tions on one-dimensional spatial domains formulated with formally skew-adjoint Hamiltonian op-

erators and nonlinear Hamiltonian density. In various applications, the Hamiltonian density can

depend on spatial derivatives of the state such that these systems can not straightforwardly be

formulated as boundary port-Hamiltonian system using a Stokes-Dirac structure. In this work, we

show that any Hamiltonian system of the above class can be reformulated as a Hamiltonian system

on the jet space, in which the Hamiltonian density only depends on the extended state variable

itself and not on its derivatives. Consequently, well-known geometric formulations with Stokes-

Dirac structures are applicable. Additionally, we provide a similar result for dissipative systems.

We illustrate the developed theory by means of the the Boussinesq equation, the dynamics of an

elastic rod and the Allen-Cahn equation.

Keywords. port-Hamiltonian systems, jet spaces, distributed parameter systems

1 Introduction

Hamiltonian systems encapsulate the evolution of physical systems in terms of their energies and
associated generalized coordinates. At their core lies the Hamiltonian function, often described as
the total energy storage of a system. Based on Hamiltonian systems, the theory of port-Hamiltonian
systems was developed to open this class to external influence, [9, 8]. The theory has developed into a
broad and active field of research and port-Hamiltonian systems have also been considered on infinite
dimensional spaces [5, 4].

As for finite dimensional systems, the central aspects of infinite-dimensional port-Hamiltonian
systems are energy storage and energy routing. Energy routing can be modeled using Stokes-Dirac
structures [5], whereas energy storage is captured via the Hamiltonian function. Frequently, when
modeling distributed parameter systems, the storage function involves derivatives of the state variables.
This means that the Hamiltonian no longer solely depends on the state variables; rather, it also
incorporates spatial derivatives of the state.

It has been observed in several applications that the Hamiltonian form is preserved when the system
is embedded in the jet space, [7]. In addition, it was even possible to represent it as a boundary port-
Hamiltonian system, [12]. In this work, we prove this property for conservative and dissipative port-
Hamiltonian systems. Port-Hamiltonian systems have also been formulated directly on jet bundles [11],
where the authors allow for multi-dimensional spatial domains.

This article is organized as follows. In Section 2, we formulate the problem statement followed by
motivating examples from fluid dynamics and mechanics. In Section 3 we provide the first main result
of this work, showing that jet space extensions of Hamiltonian systems are again Hamiltonian, and the
extended Hamiltonian density does not depend on derivatives of the state. Further, in Section 4, we
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support by the European Union by means of an Erasmus+ scholarship.
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extend this result to dissipative Hamiltonian systems. Last, in Section 5, we conclude this work and
provide an outlook to future research perspectives.

Notation. We define themd-th prolongation of a state variable x by pr(md) x := (x, ∂zx, . . . , ∂
md
z x).

We will write [n : m] := [n,m] + Z for appropriate index sets. For a matrix differential operator J
as in (1) we denote the (i, j)2th entry by Jij and by Ji7 the i-th row. We consider index sets I :=
{(i1, j1), . . . , (il, jl)} ¢ [1 : n]×[0 : md] for q,md * N and denote by ind : {j1, . . . , jl} ³ [1 : l] the choice
function mapping any jk to ind(jk) := k for k * [1 : l]. Further, we let i : {j1, . . . , jl} ³ {i1, . . . , il}
defined by jk 7³ ik for k * [1 : l].

2 Motivation and problem statement

In this section, we first recall the definition of Hamiltonian systems on a one-dimensional spatial
domain where the Hamiltonian operator is a constant coefficient matrix operator and the Hamiltonian
functional depends on the spatial derivatives of the state variables, i.e. it is defined on the prolongation
of the state space [10]. We then briefly recall the definition of boundary port-Hamiltonian systems
[14, 5] with respect to a Stokes-Dirac structure associated with the Hamiltonian operator, which are
defined when the Hamiltonian functional depends only on the spatial variable and the state variables
and not its derivatives. Finally, we recall on two simple examples, how one may use the jet space
extension of a Hamiltonian system in order to formulate a boundary port-Hamiltonian systems, as a
motivation to derive a general procedure.

2.1 Hamiltonian systems

Let an interval [a, b] ¢ R be given. In this paper, we consider the matrix differential operators of the
form

J =

m∑

j=0

Pj∂
j
z , (1)

for Pj * Rn×n with Pj = (21)j+1P¦
j for j * [0 : m]. Using integration by parts, J is formally

skew-adjoint in the L2([a, b];R), cf. [12].

Definition 1 (Hamiltonian systems). Let J be as in (1) and let H : (Rn)md ³ R be a Hamiltonian
density depending on the state x : [a, b] ³ R and its first md * N spatial derivatives, denoted by
the prolongation pr(md) x. An infinite-dimensional Hamiltonian system generated by the Hamiltonian
functional

H(pr(md) x) :=

∫ b

a

H(pr(md) x(z)) dz (2)

is given by the system dynamics
d

dt
x = J δxH(pr(md) x), (3)

where δxH(pr(md) x) denotes the variational derivative of H(pr(md) x) w.r.t. x defined by

d

dε

∣∣∣∣
ε=0

H[x+ εη] =

∫ b

a

〈δxH(pr(md) x)(z), η(z)〉Rn dz (4)

for all η * Hmd

0 ([a, b],Rn) [10, Def. 4.1].

We proceed with two examples.

Example 2. We consider the dynamics of a one-dimensional elastic rod given by

d

dt

(
u

p

)
=

(
0 1
21 0

)(
δuH(u, p, ∂zu)
δpH(u, p, ∂zu)

)

2



with the displacement variable u and the momentum density p of the elastic rod [12]. The Hamiltonian
functional is defined by

H(u, p, ∂zu) =
1

2

∫ b

a

1

(ρA)
p(z)2 + k u(z) + T (∂zu(z))

2 dz

where the first term corresponds to the kinetic energy, the second is the the gravity potential and
third is structural elastic energy. The parameters are elasticity modulus T > 0, volume mass density
ρ, section area A > 0, and k g 0.

Example 3. The Boussinesq equation

d2

dt2
u =

1

3
∂4zu+

4

3
∂2z (u

2)

is a nonlinear approximation equation for water waves in shallow water whereas u denotes the dis-
placement of the surface. The model can be rewritten as the following Hamiltonian system of two
conservation laws [10, p. 459 ff]

d

dt

(
u

v

)
=

(
0 ∂z
∂z 0

)(
δuH(u, v, ∂zu)
δvH(u, v, ∂zu)

)
(5)

with the Hamiltonian functional

H(u, v, ∂zu) =

∫ b

a

2
1

6
(∂zu(z))

2 +
4

9
u(z)3 +

1

2
v(z)2 dz.

Here, whereas the Hamiltonian operator in (5) is a linear matrix operator, the energy functional is not
quadratic as it involves a third order term in u. Further, note that it is indefinite, due to the negative
sign of the first term.

2.2 Boundary port-Hamiltonian systems

Boundary Port-Hamiltonian systems are an extension of Hamiltonian systems (3) when considering
functions which do not vanish at the boundary and the operator J is no more skew-adjoint, thereby
enabling the description of open Hamiltonian systems which are interacting with their environment
[14]. Therefore the Hamiltonian operator J in (1) is extended to a Dirac structure1 [3, 2] called
Stokes-Dirac structure.

Proposition 4. [5, 15, 12] Consider the flow space F = L2 ([a, b] , Rn)×Rp + (f, f∂)
¦
= f̄ and the

effort space E = F 7 + (e, e∂)
¦
= ē. The bond space is defined by B = F × E and equipped with the

symmetric pairing

〈
f̄ , ē

〉
B

=

〈(
f

f∂

)
,

(
e

e∂

)〉

B

= 〈f, e〉L2 2 〈f∂ , e∂〉Rp

Consider a Hamiltonian operator J defined in (1). Then there exists an integer p, W * R2p×2p and a
(p× n) matrix differential operator T such that the subspace

DJ =

ù
ú
û

((
f

f∂

)
,

(
e

e∂

))
* B

∣∣∣∣∣∣

e * Hm([a, b],Rn) s.t.

f = J e,

(
f∂
e∂

)
=W tr (T e)

ü
ý
þ (6)

is a Dirac structure, called Stokes-Dirac structure, with respect to a symmetric pairing on the bond
space, i.e., j

(
f̄1, ē2

)
,
(
f̄2, ē1

)
k+=

〈
f̄1, ē2

〉
B
+
〈
f̄2, ē1

〉
B

for
(
f̄i, ēi

)
* B, i * {1, 2}.

1Let F and E be two real vector spaces endowed with a non-degenerate bilinear form 〈·, ·〉, called pairing. On the
product space B = F × E, called bond space, consider the plus pairing j (f1, e1), (f2, e2) k+:= 〈e1, f2〉 + 〈e2, f1〉. A
Dirac structure is a subspace D ¢ B such that D = D⊥, with § denoting the orthogonal complement with respect to
the plus pairing j,k+.
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The pairs (f∂ , e∂) are called port variables and have various equivalent definitions, cf. [5, 15, 4, 12].
Note that, by the definition of a Dirac structure, a consequence of the Proposition 4 is that

∫ b

a

eTJ e dz +

∫ b

a

(J e)T e dz 2 e¦∂ f∂ = 0 (7)

for (f, f∂ , e, e∂) * DJ which is indeed a generalization of the skew-adjointness of the operator J .
Using the Stokes-Dirac structure, Hamiltonian systems (3) have been extended to boundary port-
Hamiltonian systems with respect to the Stokes-Dirac structure (6), in the case when the Hamiltonian
density H(x) depends only on the state variables and not their spatial derivatives.

Definition 5. [Boundary Port-Hamiltonian System [13] ] The boundary port-Hamiltonian system
on the state space X = L2 ([a, b], R

n) with respect to the Stokes-Dirac structure DJ defined in (6)
associated with the Hamiltonian matrix operator J and Hamiltonian H with density H = H(x) is the
system ((

dx
dt
f∂

)
,

(
δxH
e∂

))
* DJ , (8)

where (f∂ , e∂) are the boundary port variables.

The definition of the Stokes-Dirac structure and the property (7) yields the energy balance equation

d

dt
H = e¦∂ f∂ (9)

If the Hamiltonian functional is bounded from below, the boundary port-Hamiltonian system is lossless.

2.3 Problem statement

However the very classic examples of the elastic rod and the Boussinesq equation, presented in the
section 2.1, have a Hamiltonian functional which does depend on derivatives of the state such that
Definition 5 may not be readily applied. Of course, if the Hamiltonian depends on the prolonged state,
i.e., H(pr(md) x), one may still define the dynamics according to (8) but the energy balance equation (9)
is no more satisfied [12] and some interface variables are missing to render the system complete.

Example 6. Consider the Hamiltonian formulation of the Korteweg–De Vries equation

∂tx = ∂zδxH1(x, ∂zx),

with H1(x, ∂zx) :=
∫ b
a
2 1

2 (∂zx)
2 + 1

6x
3 dz, [7]. The Hamiltonian operator ∂z induces a Stokes-Dirac

structure but one may compute

d

dt
H = e¦∂ f∂ + [∂zxδxH(x, ∂zx)]

b

a

for the corresponding boundary port variables f∂ , e∂ * R.

There are two ways to deal with this problem. The first one is to introduce additional port variables
associated with the Hamiltonian functional H(pr(md) x) by defining Stokes-Lagrange subspaces and a
boundary port-Hamiltonian systems with two types of port variables: power ports associated with the
Stokes-Dirac structure and energy ports associated with the Hamiltonian H(pr(md) x) [12]. The second
way which we use in this paper, is to lift the system to a higher dimensional state including the spatial
derivatives of the state appearing in the Hamiltonian functional. This lifting is commonly called a
jet space extension, [10, p. 96]. This has been actually utilized in the original approach for defining
boundary port-Hamiltonian systems for mechanical systems [13, 5] or fluid-mechanical systems [7].

We will now illustrate this lifting procedure by means of the two applications of Example 2 and 3.

Example 7. Let us consider again the example of the flexible rod presented in Example 2 where the
Hamiltonian, the total elasto-dynamic energy, depends on the first derivative of the displacement ∂zu.
Define the strain variable as ε(t, z) := ∂zu(t, z) and consider the augmented state

x̄ =
(
x̄1 x̄2 x̄3

)T
:=

(
u p ε

)T

4



with the Hamiltonian functional defined in the lifted variables

H̄(x̄) =
1

2

∫ b

a

1

(ρA)
x̄2(z)

2 + kx̄1(z)
2 + T (x̄3(z))

2
dz.

Following [12] we can express the dynamics of the elastic rod equivalently by

d

dt
x̄ =

û
ý

0 1 0
21 0 ∂z
0 ∂z 0

þ
ø δx̄H̄(x̄).

Again, we obtain a Hamiltonian system on the jet space in which, by construction, the Hamiltonian
only depends on the state and not on its derivatives.

Example 8. Consider now Example 3 of the Boussinesq equation where the Hamiltonian functional
depends also on ∂zu. Thus, define the augmented state x̄ as in [7] by

x̄ =
(
x̄1 x̄2 x̄3

)T
:=

(
u v ∂zu

)T
(10)

and the Hamiltonian functional by

H̄(x̄) =

∫ b

a

2
1

6
(x̄3(z))

2 +
4

9
x̄1(z)

3 +
1

2
x̄2(z)

2 dz. (11)

The dynamics (5) on the augmented state space may then again be written as a Hamiltonian system

d

dt
x̄ =

û
ý

0 ∂z 0
∂z 0 2∂2z
0 ∂2z 0

þ
ø δx̄H̄(x̄) (12)

in which the Hamiltonian H̄ does only depend on the extended state x̄ and not on its spatial derivatives.

In the sequel, we shall give a constructive method for the prolongation of the Hamiltonian systems
(3) to Hamiltonian systems on the jet space.

3 Hamiltonian jet space extensions

In this section, we give a constructive method to derive the lift of Hamiltonian system to the jet space
defined by the arguments of the Hamiltonian function.

3.1 Definition of the extended state space

In the first instance, we shall define the extended state space on which the Hamiltonian system will
be lifted. Therefore, we consider a subset of indices

I := {(i1, j1), . . . , (il, jl)} ¢ [1 : n]× [0 : md]

and assume that H depends only on the variable set VI := {∂jzxi | (i, j) * I}. Further, we vectorize
VI consistently to the notation in (3) by first ordering by the order of differentiation and second by
coordinate. By definition of this index set, we write H(pr(md) x) = H(VI). We first require a result
on the variational derivative of this Hamiltonian functional.

Proposition 9. Let H(VI) =
∫ b
a
H(VI) dz. Then

δxH(VI) =

md∑

j=1

(2∂z)
j dH

d(∂jzx)
(VI).

5



Proof. The claim follows directly from the definition of the variational derivative (4) together with the
chain rule and integration by parts:

δxH(VI) =

û
üüüüüý

md∑
j=1

(2∂z)
j dH

d(∂j
zx1)

...
md∑
j=1

(2∂z)
j dH

d(∂j
zxn)

þ
ÿÿÿÿÿø

=

md∑

j=1

(2∂z)
j

û
üüý

dH

d(∂j
zx1)

...
dH

d(∂j
zxn)

þ
ÿÿø .

Now define the augmented state

x̄ :=
(
∂j1z xi1 ∂j2z xi2 . . . ∂jlz xil

)¦
.

Having this substitution in mind, we can rewrite the Hamiltonian as a function in the lifted state

H̄(x̄) :=

∫ b

a

H(x̄1, x̄2, . . . x̄l) dz. (13)

It is important to note that from now on we interpret the Hamiltonian as a function in several variables
without dependencies between the functions x̄1, . . . x̄l.

3.2 Lift of the Hamiltonian system

We are now in the position to formulate the central result of this note, showing how to lift a Hamil-
tonian system to a higher dimensional Hamiltonian system on the jet space VI . We set D± :=
diag((±∂z)

j1 , (±∂z)
j2 , . . . , (±∂z)

jl).

Proposition 10. The extension of (3) onto the jet space is again a Hamiltonian system, given by

d

dt
x̄ = Jδx̄H̄(x̄) (14)

with the formally skew-adjoint differential operator

J =

û
üý
∂j1z Ji1i1(2∂z)

j1 . . . ∂j1z Ji1il(2∂z)
jl

...
. . .

...
∂jlz Jili1(2∂z)

j1 . . . ∂jlz Jilil(2∂z)
jl

þ
ÿø . (15)

Proof. We consider the system dynamics (3) which extends to the dynamics of the states VI :

d

dt

û
üüüý

∂j1z xi1
∂j2z xi2

...
∂jlz xil

þ
ÿÿÿø= D+

d

dt

û
üüüý

xi1
xi2
...
xil

þ
ÿÿÿø= D+

û
üüüý

Ji17
Ji27
...

Jil7

þ
ÿÿÿø δxH(VI),

by Schwarz’ theorem. Then Proposition 9 yields that

d

dt

û
üüüý

∂j1z xi1
∂j2z xi2

...
∂jlz xil

þ
ÿÿÿø= D+

m∑

j=1

û
üüüý

Ji17
Ji27
...

Jil7

þ
ÿÿÿø (2∂z)

j dH

d(∂jzx)
(VI)

= D+

û
üüüý

Ji17 . . . Ji17
Ji27 . . . Ji27
...

...
Jil7 . . . Jil7

þ
ÿÿÿø

û
üüüüý

(2∂z)
1 dH
d(∂1

zx)
(VI)

(2∂z)
2 dH
d(∂2

zx)
(VI)

...
(2∂z)

md dH

d(∂
md
z x)

(VI)

þ
ÿÿÿÿø
.

6



As the vector of derivatives of the density function H vanishes for terms not contained in VI , we may
remove the corresponding columns, which together with (13) implies

d

dt
x̄ = D+

û
üý
Ji1i1 . . . Ji1il
...

. . .
...

Jili1 . . . Jilil

þ
ÿøD2δx̄H̄(x̄) = Jδx̄H̄(x̄).

Integration by parts yields D7
± = D3, i.e., J = 2J7.

In Proposition 10 we derived from the system (3) an augmented Hamiltonian system on the augmented
state space with a Hamiltonian not involving differential operators. However, the extended Hamiltonian
operator (15) is not yet written as matrix differential operator (1) which is used to define the boundary
port variables and the Stokes-Dirac structures in [5, 15, 12]. Therefore we derive the decomposition
(1) in the next proposition.

Proposition 11. The differential operator in (15) satisfies

J =

m+2jl∑

k=0

Jk∂
k
z , with Jk :=

∑

|(u,v,w)|=k

Quvw * R
l×l

where for (u, v, w) * [0 : m]× {j1, . . . , jl}
2,

(Quvw)ij =

{
(21)v(Pu)i(v),i(w) (i, j) = (ind(v), ind(w))

0 (i, j) 6= (ind(v), ind(w))

Proof. We rewrite J as

J = D+

û
üý
Ji1i1 . . . Ji1il
...

. . .
...

Jili1 . . . Jilil

þ
ÿøD2

= D+

û
üý

m∑
j=0

û
üý
(Pj)i1i1 . . . (Pj)i1il

...
. . .

...
(Pj)ili1 . . . (Pj)ilil

þ
ÿø ∂jz

þ
ÿøD2

=
m∑
j=0

D+

û
üý
(Pj)i1i1 . . . (Pj)i1il

...
. . .

...
(Pj)ili1 . . . (Pj)ilil

þ
ÿøD2∂

j
z .

Since we multiply the coefficient matrix with derivatives of different order from the right and left side,
lengthy but straightforward computations yields the result, as

J =
∑m

u=0

∑jl
v=j1

∑jl
w=j1

Quvw∂
u+v+w
z =

m+2jl∑
k=0

Jk∂
k
z .

Next we derive the Hamiltonian operators defining the lift of the Hamiltonian formulation for the
flexible rod and the Boussinesq equation according to Proposition 11.

Example 12. The Hamiltonian operator of the Boussinesq equation is given by
(
0 ∂z
∂z 0

)
=

(
0 0
0 0

)
∂0z +

(
0 1
1 0

)
∂1z =: P0∂

0
z + P1∂

1
z

Further, the index set IB associated with the Boussinesq equation is IB := {(1, 0), (2, 0), (1, 1)}. The
augmented state and the lifted Hamiltonian function are defined in (10) and (11), respectively. By

Proposition 11, we represent the corresponding Hamiltonian operator by JB =
1+2·1∑
k=0

Jk∂
k
z with

J0 =

(
(21)0(P0)11 0 0

0 0 0
0 0 0

)
+

(
0 (21)0(P0)12 0
0 0 0
0 0 0

)
+

(
0 0 0

(21)0(P0)21 0 0
0 0 0

)
+

(
0 0 0
0 (21)0(P0)22 0
0 0 0

)
= 03,

7



J1 =

(
(21)0(P1)11 0 0

0 0 0
0 0 0

)
+

(
0 (21)0(P1)12 0
0 0 0
0 0 0

)
+

(
0 0 0

(21)0(P1)21 0 0
0 0 0

)
+

(
0 0 0
0 (21)0(P1)22 0
0 0 0

)
+ 4 · 03

=
(

0 1 0
0 0 0
0 0 0

)
+
(

0 0 0
1 0 0
0 0 0

)
=

(
0 1 0
1 0 0
0 0 0

)
,

and analogously J2 =
(

0 0 0
0 0 1
0 21 0

)
and J3 = 03. Thus, we obtain the Hamiltonian operator

03∂
0
z +

û
ý
0 1 0
1 0 0
0 0 0

þ
ø ∂1z +

û
ý
0 0 0
0 0 1
0 21 0

þ
ø ∂2z + 03∂

3
z =

û
ý

0 ∂z 0
∂z 0 2∂2z
0 ∂2z 0

þ
ø .

Example 13. Analogously, we can apply Proposition 11 to compute the coefficients of the extended
Hamiltonian operator associated to the elastic rod with local elasticity relation as

û
ý

0 1 0
21 0 0
0 0 0

þ
ø ∂0z +

û
ý
0 0 0
0 0 1
0 1 0

þ
ø ∂1z + 03∂

2
z =

û
ý

0 1 0
21 0 ∂z
0 ∂z 0

þ
ø .

4 Dissipative Hamiltonian systems

In this section, we shall extend the previous results to dissipative Hamiltonian systems, introduced
in [18, 6] and which are defined with respect to an operator consisting in the sum of an Hamiltonian
and a self-adjoint operator. In the sequel, we give a slightly generalized definition by considering a
Hamiltonian functional depending on the derivatives of the state variable (its prolongation).

Definition 14. Let J a formally skew-adjoint operator of the form (1) and let G7
R be the formal

L2-adjoint of the matrix differential operator

GR :=

mg∑

k=0

Gk∂
k
z (16)

withGk * Rn×dg for k * [0 : mg]. Further, letR * C>([a, b],Rdg×dg) be such that 〈eR, RfR〉L2([a,b],Rdg ) g

0 for all (fR, eR) * L2([a, b],Rdg). Then,

ẋ = (J 2 GRRG
7
R)δxH(VI) (17)

is called a dissipative Hamiltonian system.

It is important to note that the system (17) may be expressed by the algebro-differential system

(
ẋ

F

)
=

(
J GR

2G7
R 0

)(
δxH(VI)

ϕ

)
(18)

together with the closure relation ϕ = RF. This formulation reveals that there is again a skew-adjoint
operator governing the right-hand side. For matrix differential operators with constant coefficients it
is a Hamiltonian operator, at the heart of the model. This operator induces boundary port variables
and a Stokes-Dirac structure (6).

In the sequel, we will embed the dissipative Hamiltonian system (17) into the jet space to eliminate
the spatial derivatives in the Hamiltonian density and show that this embedding defines again a
dissipative Hamiltonian system.

Proposition 15. The extension of (17) onto the jet space is again a dissipative Hamiltonian system,
given by

d

dt
x̄ = (J2GRRG

7
R)δx̄H̄(x̄) (19)

with J as in (15) and

GR = D+

û
üý
mg∑

k=0

û
üý
(Gk)i17

...
(Gk)il7

þ
ÿø ∂kz

þ
ÿø . (20)
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Proof. The system dynamics (17) may be rewritten to

ẋ = J δxH(VI)2 GRRG
7
RδxH(VI).

Following the proof of Proposition 10 yields that

d

dt
x̄ = Jδx̄H̄(x̄)2 Dδx̄H̄(x̄),

with

D=D+

û
üý
(GRRG

7
R)i1i1 . . . (GRRG

7
R)i1il

...
. . .

...
(GRRG

7
R)ili1 . . . (GRRG

7
R)ilil

þ
ÿøD2=GRRG

7
R.

We now provide a representation of GR in terms of matrix differential operators of the form (16).

Proposition 16. Let GR :=
∑mg

k=0Gk∂
k
z with Gk * Rdg×n for k * [0 : mg] be a matrix differential

operator and let GR be given by (20). Then

GR =

mg+jl∑

k=0

û
ý

∑

|(u,w)|=k

Uuw

þ
ø ∂kz =:

mg+jl∑

k=0

Hk∂
k
z . (21)

where for all (u,w) * {0, . . . ,mg} × {j1, . . . , jl},

(Uuw)i7 =

{
(Gu)i(w)7 i = ind(w)

0 i 6= ind(w)

Proof. The claim follows analogously to Proposition 11 from direct computations.

Last, we specify the coefficients of the formally skew-symmetric matrix polynomial in (18) defining
the Stokes-Dirac structure for the geometric formulation of (17).

Proposition 17. consider the operators J and GR defined in (15) and (20) and let J =
∑m

j=0 Jj∂
j
z

and GR =
∑mg

k=0Gk∂
k
z . Then with m̂ := max{m+ 2jl,mg + jl)},

(
J GR

2G7
R 0

)
=

m̂∑

k=0

(
Rk Hk

(21)kHT
k 0

)
∂kz . (22)

Proof. First, note that the formal adjoint of GR is given by G7
R =

∑mg+jl
k=0 HT

k (2∂z)
k. Then, the claim

follows directly by applying Proposition 11 and Proposition 16.

We now conclude this section by an example.

Example 18 (Allen-Cahn equation). We recall the port-Hamiltonian formulation of the Allen-Cahn
equation as given in [16, 17, 1]. Let φ be the phase variable and consider the Landau-Ginzburg entropy
functional

G(φ) :=

∫ b

a

f(φ(z, t)) +
1

2
κ(z)(∂zφ(z, t))

2 dz.

Following [1], f : R ³ R encapsulates the bulk free energy associated with a particular phase state.
Further, κ(z) is a positive parameter that pertains to the thickness of the interface between two phases.
Altogether, G(φ) symbolizes the free energy of the system. Then, the Allen-Cahn equation is given by

d

dt
φ(z, t) = 2Γφ(z)δφG(φ), (23)

where Γφ : [a, b] ³ R denotes the isotropic interface mobility and δφG(φ) the variational derivative
of G with respect to φ. Note that (23) is a dissipative Hamiltonian system with GR = G7

R = 1,
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R = Γφ(z) and δφG(φ) = δφf(φ) 2 ∂z(κ(z)∂zφ). To extend this system onto the jet space, we set
ψ(z, t) = ∂zφ(z, t) such that

Ḡ(φ, ψ) :=

∫ b

a

f(φ(z, t)) +
1

2
κ(z)ψ(z, t)2 dz.

The corresponding indices are given by {(1, 0), (1, 1)}. Then, by Proposition 15 and

GR =

(
1 0
0 ∂z

)(
1
1

)
=

(
1
∂z

)
,

we can reformulate the Allen-Cahn equation as

d

dt

(
φ(z, t)
ψ(z, t)

)
=2

(
1
∂z

)
Γφ(z)

(
1
∂z

)7 (
δφḠ(φ, ψ)
δψḠ(φ, ψ)

)
. (24)

Now we are able to express the Allen-Cahn equation using Stokes-Dirac structure combined with
a dissipative relation, since the entropy function Ḡ does not depend on spatial derivatives of the
(extended) state x = (φ, ψ). At first, note that (24) is equivalent to

û
ý

d
dtφ(z, t)
d
dtψ(z, t)

F

þ
ø=

û
ý

0 0 1
0 0 ∂z
21 ∂z 0

þ
ø
û
ý
δφḠ(φ, ψ)
δψḠ(φ, ψ)

ϕ

þ
ø=:J

û
ý
δφḠ(φ, ψ)
δψḠ(φ, ψ)

ϕ

þ
ø (25)

together with the closure relation ϕ = 2Γφ(z)F . To represent the system by geometric structures it
is unavoidable to define boundary ports according to the definition given in Section 2. Note that the
matrix differential operator J is the same as in the case of the elastic rod where we refer to reader to
[12] for more details. This is why the boundary ports are given by

(
f∂
e∂

)
=

(
0 0 1
0 1 0

)
tr

û
ý
δφḠ(φ, ψ)
δψḠ(φ, ψ)

ϕ

þ
ø (26)

Let B = (L2([a, b],R3) × R2)2. The geometric formulation takes into account the associated Stokes-
Dirac structure

DJ =

ù
ú
û(f, fδ, e, eδ) * B

∣∣∣∣∣∣

e * H1([a, b],R3), f = J e,[
fδ
eδ

]
=

(
0 0 1
0 1 0

)
tr e

ü
ý
þ

together with the resistive relation

R =
{
(fR, eR) * L2([a, b],R)2

∣∣ eR = 2Γφ(z)fR
}
.

Finally, we can describe the dynamics of the Allen-Cahn equation with state by (ẋ, eR, fδ, δxḠ, fR, eδ) *
DJ and (fR, eR) * R. Note that the formally skew-adjoint matrix differential operator J defining the
Stokes-Dirac structure of the Allen-Cahn equation is given by (22).

5 Conclusion

In this work we provided an analytical foundation for jet-space extensions of infinite-dimensional
conservative and dissipative Hamiltonian systems. More precisely, we showed that jet-space extensions
of Hamiltonian systems again yield Hamiltonian dynamics. These jet-space extensions allow for a
formulation on a lifted space of extended state variables in which the Hamiltonian density does not
include derivatives of the state variable. As a major consequence, this allows for a straightforward
derivation of port variables and a corresponding energy-balance.
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