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Abstract

Despite advances in identifying genetic markers associated to severe COVID-19, the full genetic
characterisation of the disease remains elusive. This study explores the use of imputation in low-
coverage whole genome sequencing for a severe COVID-19 patient cohort. We generated a
dataset of 79 imputed variant call format files using the GLIMPSE1 tool, each containing an
average of 9.5 million single nucleotide variants. Validation revealed a high imputation accuracy

(squared Pearson correlation =0.97) across sequencing platforms, showing GLIMPSE1’s ability
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to confidently impute variants with minor allele frequencies as low as 2% in Spanish ancestry
individuals. We conducted a comprehensive analysis of the patient cohort, examining
hospitalisation and intensive care utilisation, sex and age-based differences, and clinical
phenotypes using a standardised set of medical terms developed to characterise severe COVID-
19 symptoms. The methods and findings presented here may be leveraged in future genomic

projects, providing vital insights for health challenges like COVID-19.

Context
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), which first appeared by the end of 2019 in Wuhan, China [1]. The
clinical presentation of COVID-19 can be very heterogeneous, ranging from asymptomatic
infection to severe forms with pneumonia, multiple organ complications, and sepsis [2]. Previous
genome-wide association studies (GWAS) have collectively identified genetic risk factors at
multiple loci across the human genome, including specific variants associated with COVID-19
severity and susceptibility to infection [3-5]. Additionally, certain patient characteristics, such as
older age and male sex, as well as comorbidities, like obesity and cancer, have been shown to
contribute to severe outcomes in COVID-19 patients [6]. This earlier body of work has paved the
way for exciting new opportunities to explore the determinants of COVID-19 severity [7],
particularly due to its potential applications in risk prediction, preventive medicine, and patient

management.

Traditionally, the genotyping process has relied on array technologies as the standard, both at
the broader GWAS level and the more specific genetic scoring and genetic diagnostics levels [8].
This reliance is primarily due to very low costs and fast turnaround times, which made microarrays
valuable high-throughput tools capable of generating affordable genomic data. However, arrays
are limited by their experimental design, leading to biases in the data generated. In particular, the

prior selection of genetic markers and probes creates an ascertainment bias, resulting in the
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overrepresentation of intensively researched populations that are more likely to be involved in
array development [9]. This contrasts with high-coverage whole genome sequencing (WGS),
which, since its inception, has promised the ability to probe variation across the entire human
genome, free from the ascertainment bias characteristic of microarrays. This, in fact, has led to

its adoption by large scale population-level projects [10].

Despite significant cost reductions over time [11], WGS at the clinically accepted standard of 30X
coverage [12] remains too expensive for many projects, especially those involving large sample
cohorts such as those required for GWAS. However, recent studies have demonstrated that
sequencing larger numbers of individuals at lower coverages, prioritising cost and haplotype
diversity over sequencing depth, can actually-yield more allelic information at the cohort and
population levels [13]. Consequently, low-coverage WGS (IcWGS) has emerged as a cost-
efficient alternative to high-coverage WGS, surpassing microarrays in the discovery of common

and low-frequency variation [14, 15], particularly in underrepresented populations [16].

Akin to microarrays, IcCWGS data can also be imputed using reference panels to enhance
resolution and statistical power while maintaining low sequencing and data processing costs. The
fundamental principle that underlies genotype imputation algorithms is identity-by-descent (IBD),
wherein two seemingly unrelated individuals may share segments shorter than 10 centimorgans
(cM) inherited from a distant common ancestor [17]. Consequently, genotype imputation
algorithms compare the sparsely distributed haplotypes present in the IcCWGS data with the
haplotypes in the high-coverage reference panel to infer genotype likelihoods in the regions not

covered by sequencing [18].

Previous imputation methods for IcCWGS data exhibited significant drawbacks that undermined
their competitiveness. Some incurred higher costs and longer running times when using large
reference panels due to computational complexity [19], and others used more efficient

approximations, resulting in lower imputation accuracy [20, 21]. To address these challenges, we
3
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utilised the GLIMPSE1 algorithm [16], a less resource-intensive tool that produces more accurate
imputed data than its predecessors, to generate a VCF dataset containing 79 imputed IcWGS

samples, which we are releasing with this manuscript.

Although genotype imputation in IcCWGS datasets shows promise, its use is still in the early stages.
With continuous advancement in sequencing technologies, we expect that imputation methods
will play an increasingly crucial role in unravelling the complexities of the human genome and

accelerating discoveries in precision medicine and personalised healthcare.

Dataset description
We generated a dataset consisting of 79 VCF files, and respective FASTQ and CRAM files, using

the GLIMPSE1 imputation algorithm [16]. We leveraged the 1000 Genomes Project Phase 3
dataset [22] as the reference panel of haplotypes. In total this dataset is composed of

approximately 325 GB of FASTQ data, 156 GB of CRAM data, and 6 GB of VCF data.

Our samples were specifically derived from sequenced DNA from a highly selective cohort of
patients, comprised of mostly Iberian Populations in Spain (IBS) individuals but also containing
some individuals from other genetic backgrounds. All patients presented with severe COVID-19

symptoms during the initial wave of the SARS-CoV-2 pandemic in Madrid, Spain.

On average, each VCF file in this rich dataset contains 9.49 million high-confidence single
nucleotide variants [95%CI: 9.37 million - 9.61 million] (Figure 1). To facilitate access to
researchers interested in further studying this data, it has been made available for reuse in the

European Genome-phenome Archive [23], under the accession number EGAS00001007573.
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Figure 1 — Number of high-confidence single nucleotide variants (SNVs) for the 79 VCF
files in the severe COVID-19 dataset. The x-axis represents the sample IDs in the dataset, while
the y-axis denotes the total counts of SNVs for each sample in millions (1x10°).

Patient cohort characterisation
Sampling strategy

The 79 genomic samples analysed in this study constitute a subset of a larger cohort of individuals
whose exomes were initially sequenced and analysed as part of a comprehensive investigation
into genetic determinants for COVID-19 severity [24]. The selection of this subset was based on
the quality assessment of DNA samples suitable for PCR-free library preparation for IcWGS. All
individuals were patients hospitalised between March and June 2020, during the first wave of the
SARS-CoV-2 pandemic in Spain, at a tertiary referral hospital in Madrid, and confirmed to be
infected with SARS-CoV-2. We aimed to select patients with the following clinical profile: (1)
younger than 60 years old; (2) experienced fever and respiratory symptoms for more than three
days; (3) blood oxygen saturation level below 93%; (4) bilateral pneumonia on imaging tests; and
(5) no comorbidities, such as diabetes, obesity, or immunosuppressive conditions. At the time the

study population was recruited, no vaccines had been developed yet.

We examined the dataset focusing on three main aspects: firstly, a general characterisation of

the patients by age, sex, and ethnicity; secondly, hospital stays and time spent in the intensive
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care unit (ICU); and finally, the distinct clinical phenotypes presented by the patients (respiratory,
thromboembolic, cardiovascular, etc.). Further details on the patients’ demographic information

and clinical history can be found in Supplementary File 1 [25].

Demographic characterisation
Through our analysis, we aimed to create a comprehensive demographic profile of our cohort of

severe COVID-19 patients. The age distribution in the cohort (Figure 2A) is characterised by a
distinct right skew, with a higher prevalence of individuals falling within the 45-64 age bracket and
particularly concentrated around 55-59 years, which aligns with our current knowledge of the
correlations between older age and severe COVID-19 outcomes [6]. Yet, the lower tail-end of the
distribution also underscores the fact that severe COVID-19 is not strictly age related and young

individuals may also suffer from severe manifestations.

The sex distribution (Figure 2B) shows a higher frequency of male patients relative to females.
This finding concurs with previous research indicating that men are at a higher risk of developing
severe COVID-19 [6]. Investigating the age distribution in relation to sex (Figure 2C), indicates
that both males and females have a similar median age of 55 and 53 years, respectively, although
the male age distribution exhibits a broader range and higher variability, suggestive of a greater

scope of age-related COVID-19 risk among men.

Lastly, studying the patients’ country of origin (Figure 2D) reveals that most of the patients in our
cohort originate from Spain and Latin American countries. This geographical distribution is mostly
a reflection of the demographic makeup of Madrid, Spain, where sample collection occurred. To
expand our analysis beyond demographics and understand the genetic makeup of our cohort, we
also performed a Principal Component Analysis (PCA) of our 79 samples, after imputation and
variant filtering, against the backdrops of the 1000 Genomes Project [22] global superpopulations

and IBS population.
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The global PCA plots (Figure 3A) show that most samples cluster within the European (EUR)
group, mirroring the fact that a significant proportion of our cohort hails from Spain. Additionally,
a subset of patients is found within or near the Admixed American (AMR) and South Asian (SAS)
clusters, reflecting the Latin American patients in our cohort, and the mixed ancestry common in
Latin American populations. A few patients also cluster within the African (AFR) group, likely
representing the African ancestry in our cohort from the patients originating from Cape Verde and

Morocco.

In the IBS-specific PCA plots (Figure 3B), most of the severe COVID-19 patients form a distinct
cluster close to the 1000 Genomes IBS population, indicating a shared genetic background with
this group, representing the individuals with IBS ancestry. However, it is worth noting that subtle
regional genetic variations within the Iberian population could contribute to the observed
dispersion within this shared genetic background, particularly along the third principal component.
The figure also shows a dispersion of patients alongside the left side of the plots, which represent
the individuals with ancestries other than IBS. This highlights the genetic diversity in our cohort,

contributed by the inclusion of patients from Spain and various other nations.
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Figure 2 — Demographic and geographic characterisation of the severe COVID-19 patient
cohort.

A Distribution of severe COVID-19 patients' ages in our cohort. Each bar signifies an age bracket
comprising 5-year increments, with its height denoting the proportion of individuals within that age
range. The plot is overlaid with a Kernel Density Estimation (KDE) curve, which provides a
smoothed estimation of the age distribution.

B Patients’ stratification by sex. Each bar represents one sex, with its length indicating the number
of patients of that sex.

C Distribution of patients' ages by sex. The boxplot presents the age distribution for each sex.
Each box represents the interquartile range (IQR) of ages for either males or females, with the

dividing line representing the median age. The diamonds represent outliers.
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D Distribution of patients by country of origin. Each bar corresponds to a country, and its length
indicates the number of patients from that country.
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Figure 3 — Principal component analysis of genetic variation in the severe COVID-19 patient
cohort against the 1000 Genomes Project global superpopulations and IBS (lberian
Populations in Spain) population.

A Projection of imputed low-coverage whole-genome sequencing (IcWGS) data from severe
COVID-19 patients against the backdrop of global superpopulations from the 1000 Genomes
Project. Each point represents an individual, colour-coded according to their superpopulation.
Severe COVID-19 patients are distinguished by points with a white fill and coloured border. The
x-axis and y-axis on the two subplots represent the first and second, and first and third principal
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components, respectively, with the percentage of variance explained by each component
indicated in the axis label.

B Focused view of the genetic variation within the Iberian (IBS) population and the severe COVID-
19 patients. Individuals from the IBS population are represented by solid-coloured points, while
those with severe COVID-19 are represented by points with a white fill and coloured border. The
x-axis and y-axis on the two subplots represent the first and second, and first and third principal
components, respectively, with the percentage of variance explained by each component
indicated in the axis label.

Hospital stays
Examining the patients’ hospital medical records provides valuable insights about the

hospitalisation experience of individuals with severe COVID-19. By examining these trends, we
can gain a better understanding of potential sex and age-based differences in the duration of

hospitalisation and the level of care required.

Firstly, we analysed the distribution of hospitalisation days in our patient cohort (Figure 4A). The
distribution is notably skewed to right, with most patients requiring relatively short hospital stays
between 1 and 34 days. However, the distribution’s right tail shows that a subset of patients
experienced significantly longer stays, up to 202 days, which could be attributed to cases of

COVID-19 with increased severity, thus requiring additional medical attention.

Furthermore, an evaluation of distribution of hospital stays by sex (Figure 4B) reveals that the
median duration of hospital stays was similar for both sexes. Nevertheless, the distribution for
male patients exhibits greater variability, accentuated by the presence of some outliers who spent
an unusually high number of days in the hospital, which represent severe or complex cases that
required a significantly longer time for recovery and medical management. This could mean that
the severe disease progression and recovery time in males is less consistent than in females,

possibly due to a wider range of severity in clinical presentations among male patients.

In addition, we investigated the use of the intensive care unit (ICU). Approximately 25% of the

cohort was admitted to the ICU during their hospitalisation (Figure 4C), indicating that, despite
10
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the severity of their COVID-19 symptoms, most patients were managed without the need for
intensive care. However, a much larger proportion of males necessitated ICU admission than
females (Figure 4D). This, again, reflects findings from numerous studies that have identified

male sex as a risk factor for severe COVID-19 outcomes [6].

We further stratified the ICU data by patient age (Figure 4E), showing that the majority of patients
who were admitted to the ICU were between 45 and 70 years old, which underscores the
heightened risk of severe outcomes in these age groups. Finally, we investigated the duration of
ICU stays among those who required such care (Figure 4F). Mirroring the hospital stay duration
for the overall cohort, most patients admitted to the ICU spent between 1 and 35 days there.
However, a considerable subset of patients experienced significantly longer ICU stays, thus
representing a broad spectrum of disease severity and recovery rates within this critical care

cohort.

11
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Figure 4 — Analysis of hospital stays among the severe COVID-19 patient cohort.

A Distribution of hospital stay durations in our cohort. Each bar corresponds to an interval of
hospital stay durations of 5 days, with its height indicating the proportion of patients with a stay
duration within that duration interval. The plot is overlaid with a Kernel Density Estimation (KDE)

curve, that provides a smoothed estimate of the duration distribution.
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B Stratification of hospital stay durations by sex. This boxplot presents the distribution of hospital
stays for each sex. Each box represents the interquartile range (IQR) of the duration of hospital
stays for one sex, with the line inside the box marking the median duration. The diamonds
represent outliers.

C Distribution of patients admitted to the Intensive Care Unit (ICU). Each bar corresponds to either
patients admitted to the ICU (green) or patients not admitted to the ICU (blue), with its height
indicating the number of patients in that category.

D Distribution of patients admitted to the ICU by sex. Each pair of bars corresponds to one sex,
with their height indicating the proportion of patients of that sex who were admitted to the ICU.
Each bar corresponds to either patients admitted to the ICU (green) or patients not admitted to
the ICU (blue), with its height indicating the number of patients in that category.

E Distribution of ages of patients admitted to the ICU. Each bar corresponds to an age group of
5 years, with its height indicating the proportion of patients in that age group. The plot is overlaid
with a KDE curve, which provides a smoothed estimate of the age distribution.

F Distribution of ICU stay durations among patients admitted to the ICU. Each bar corresponds
to an interval of ICU stay durations of 5 days, with its height indicating the number of patients
within that duration interval. The plot is overlaid with a KDE curve, that provides a smoothed
estimate of the duration distribution. Only patients who were admitted to the ICU are represented
in this plot.

Clinical phenotypes

An analysis of the phenotypes of the severe COVID-19 patient cohort reveals valuable insights
into the most common phenotypes associated with severe forms of the disease and their
frequency and relationships. While established COVID-19 phenotype ontologies were readily
available [26, 27], they lacked the level of granularity we required to comprehensively characterise
the clinical phenotypes of our cohort. Therefore, we devised a specialised set of standardised
terminology comprising 28 medical terms that were organised into 4 primary clinical categories:
pulmonary, extra-pulmonary, coagulation, and systemic phenotypes. Subsequently, we evaluated

each patient's record for the presence of these terms.

Table 1 provides a detailed breakdown of the number of patients associated with each specific
phenotype, within the four major clinical categories. We found that the Pulmonary category, which

includes pneumonia, ARDS (acute respiratory distress syndrome), and a combination of ARDS

13
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and admission to the ICU, was the most prevalent among our cohort. Indeed, pneumonia alone
was identified in 78 patients. The Extra-Pulmonary category covers a broad range of clinical
symptoms and conditions, with liver hepatitis and gastrointestinal diarrhoea being the most
common, observed in 10 patients each. The Coagulation category focused on thrombotic events
and related conditions. Pulmonary embolism and deep venous thrombosis, each identified in 5
patients, were most prevalent. Finally, the Systemic category included conditions that affect the
patient's overall health and wellbeing, such as persistent fever and symptoms like fatigue and

headache. Persistent fever was the most common Systemic phenotype, observed in 33 patients.

To further investigate the relationships between the phenotypes in our patient cohort and to
determine whether any of them were likely to co-occur, we performed a Spearman correlation
analysis using the function corr(method="spearman") from the seaborn package for Python [28],
and visualised the results in a heatmap (Figure 5). These correlations suggest that patients who
presented with one of these phenotypes were more likely to present others, pointing to possible

common underlying pathways or simultaneous occurrence in severe disease presentation.

The plot shows that most phenotypes are not strongly correlated, hence, the presence of one
phenotype does not necessarily predict the presence of another. This could be indicative of the
diverse clinical manifestations of severe COVID-19, with different phenotypes appearing
independently in different patients. However, there are several pairs of phenotypes exhibiting
higher degrees of correlations. This is particularly evident in neurological conditions, such as the
correlations between psychiatric disorders, encephalopathies and polyneuropathies, which
appear to be correlated to a relatively high degree. In addition, moderate correlations are shown
between the former three neurological phenotypical categories and exanthema, myopathies, and
bone marrow abnormalities. Finally, some moderate correlations occurred between the ARDS &
ICU phenotype and a few other phenotypes, pointing at the additional occurrence of various

phenotypes of COVID-19 severity in patients admitted to the ICU with ARDS.
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This exploratory analysis highlights the diverse ways in which severe COVID-19 can present, and
the importance of comprehensive and nuanced clinical phenotyping in improving our

understanding and management of the disease.

Major Phenotype Phenotype @ Patient
Phenotypes ID Count
n=79
Pulmonary Pneumonia V-1 78
n=78 ARDS (acute respiratory distress syndrome) V-2 47
ARDS & ICU V-3 20
Extra- Skin — exanthema V-4 4
pulmonary Heart — myocarditis V-5 1
n=37 Heart — arrhythmia V-6 4
Liver- hepatitis V-7 10
Kidney — glomerulonephritis V-8 0
Kidney — tubulopathy V-9 4
Neurological — encephalitis/fencephalopathy V-10 6
Neurological — psychiatric (delirium, etc.) V-11 6
Neurological — polyneuropathy (neuropathy, V-12 6

Guillain-Barré, etc.)

Neurological — myelitis V-13 0
Neurological — seizure V-14 0
Gastrointestinal — diarrhoea V-15 10
Gastrointestinal — nausea/vomiting V-16 3
Endocrine dysfunction (thyroid, etc.) V-17 2
Musculoskeletal — myopathy V-18 1
Musculoskeletal - arthritis V-19 0
Bone marrow - blood cytopenia, V-20 5

pancytopenia/aplasia

Coagulation Pulmonary embolism V-21
n=12 Deep venous thrombosis V-22
Peripheral arterial thrombosis V-23
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Stroke V-24 0

Ischemic heart event V-25 1

Disseminated intravascular coagulation V-26 3
Systemic Persistent fever V-27 33
n=41 Fatigue, malaise, headache, arthromyalgias V-28 20

Table 1 — Frequency of severe COVID-19 phenotypes in the patient cohort.

The table presents the distribution of our 28 severe COVID-19 specific phenotypes organised into
four major clinical categories: Pulmonary, Extra-pulmonary, Coagulation, and Systemic, as
observed in our severe COVID-19 patient cohort. For each category, the total number of unique
patients with at least one phenotype in the category is indicated. Each phenotype is listed with a
unique Phenotype ID (V-1 to V-28) and the number of patients who were identified with that
phenotype.
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Figure 5 — Heatmap of phenotype correlations in the severe COVID-19 patient cohort.

The plot illustrates the Spearman correlations between our 28 severe COVID-19 specific
phenotypes. Each square in the heatmap represents the correlation between two phenotypes,
with the colour of the square indicating the strength of the correlation, and the number inside each
square represents the correlation coefficient. Only statistically significant (p < 0.05) correlation
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coefficients are shown. Darker colours represent stronger positive or negative correlations, with
red representing positive correlations and blue representing negative correlations. These indicate
that individuals displaying one phenotype are more or less likely to exhibit the other phenotype
as well, suggesting potential underlying mechanisms for the progression of severe COVID-19.

Methods

DNA extraction and library preparation
We collected blood samples for each patientin 10 mL EDTA tubes. We then centrifuged the tubes

at 3000 rpm for 10 minutes to isolate the buffy coat, which we subsequently froze at -20°C until
further use. Afterward, we used the Maxwell RSC Buffy Coat DNA Kit (AS1540, Promega UK,
Southampton, United Kingdom) to isolate genomic DNA from frozen buffy coat samples. We
assessed the concentration of the genomic DNA using spectrometric analysis. We then
fragmented the DNA using a Covaris E220 focused-ultrasonicator (Covaris Ltd., Brighton, United
Kingdom) to generate 350 bp length DNA fragments. The following parameters were used for the
fragmentation process: 6 cycles, PIP 75, Cycles/Burst 1000, Duty Factor 20%, Duration 20s. After
that, we prepared DNA libraries using the MGIEasy PCR-Free DNA Library Prep Set
(1000013453; MGI Tech Co. Ltd, Shenzhen, China). The concentration of the DNA libraries was
assessed using a Qubit 3.0 fluorometer (Life Technologies). Finally, we sequenced the libraries
on an MGl DNBSEQ-G400 sequencer (RRID:SCR_017980; MGI Tech Co. Ltd), with a target

sequencing depth of 1X.

Sequencing quality control and preprocessing
We performed quality control and preprocessing of the resulting FASTQ files using the nf-core

[29] Sarek pipeline v3.1.2 [30-39]. The following parameters were applied during the pipeline
execution: nextflow run nf-core/sarek -r 3.1.2 -profile docker --input samplesheet.csv --outdir

/mnt/e/Sarek/out/  --trim_fastq  --igenomes_base  /mnt/e/Sarek/references = --genome
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GATK.GRCh37 --skip_tools strelka --seq_platform 'MGI'. We used the recalibrated base quality

scores CRAM files produced by the Sarek pipeline as the input for the subsequent step.

Imputation using GLIMPSE
We calculated genotype likelihoods using bcftools mpileup v1.16 (RRID:SCR_005227) [39], with

the parameters -/ -E -a 'FORMAT/DP', followed by genotype calling using bcftools call, with
parameters --ploidy GRCh37 -S ploidy.txt -Aim -C alleles. The file ‘ploidy.txt’ contained
information about the sex of each sample, which was necessary to correctly generate genotype

calls for chromosome X in males [16].

After that, we imputed the low-coverage genomes with GLIMPSE v1.1.1 [16]. Firstly, we split each
chromosome into 2 Mb chunks, with 200 kb buffer regions on each side of a chunk, by using
GLIMPSE_ chunk with the parameters --window-size 2000000 --buffer-size 200000. Secondly, we
used GLIMPSE_phase to perform imputation of each chunk, with the tool's default iteration
parameters. GLIMPSE_phase imputation was multithreaded with GNU Parallel v20230522 [40].
We used the 1000 Genomes Phase 3 dataset [22] as the reference panel, since it has been shown
that the inclusion of diversity in reference panels improves the quality of imputation by reducing
missing genotype calls [41, 42]. Finally, we used GLIMPSE_ligate to join the imputed chunks
together into entire chromosomes, followed by bcftools concat to merge all chromosomes into a

single VCF file, containing chromosomes 1 to 22 and X, for each sample.

Post-imputation filtering
Following imputation, we filtered the VCF files, to prioritise the most reliable genotype calls for

further analysis, keeping only variants with minor allele frequency (MAF) above 2% and maximum
genotype probability (GP) above 80%. We determined the MAF value through our validation

process (see Data Validation) as the minimum threshold of acceptable imputation accuracy of
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r?2 = 0.9. The GP field represents the likelihood of each genotype being accurate and is
expressed as a value between 0 and 1, with the sum of probabilities across all possible genotypes
totalling 1 [43]. The chosen cutoff was determined as the best compromise between imputation
accuracy and loss of information [43]. With this approach, we generated a dataset of imputed

VCF files, from the DNA samples of our severe COVID-19 cohort.

Principal component analysis
We performed a principal component analysis (PCA) to assess the genetic ancestries of our

patient cohort, using PLINK v.1.90b6.21 (RRID: SCR _001757) [44]. To do so, firstly we
normalised the variants from chromosomes 1 to 22 of the 1000 Genomes Project Phase 3 dataset
[22] using bcftools [39]. We split multi-allelic calls and left-aligned indels against the reference
genome using bcftools norm, with the parameters -m-any --check-ref w; followed by bcftools
annotate with the parameters -x ID -1 +'%CHROM:%POS:%REF:%ALT', to normalise the naming
of unset IDs; and bcftools norm to remove duplicate records using the parameters -Ob --rm-dup
both. In addition, we filtered this global variant dataset to create a distinct subset containing
variants exclusively from the 1000 Genomes Project IBS individuals. We used bcftools view, with
the -S parameter, which includes only variants originating from the specified 1000 Genomes IBS

sample IDs.

We then converted the two datasets, 1000 Genomes global and IBS, to binary PLINK format,
using PLINK with the parameters --keep-allele-order --vcf-idspace-to _ --const-fid --allow-extra-
chr 0 --split-x b37 no-fail --make-bed. Next, we used PLINK to identify population-specific markers
by filtering the variants within both datasets based on MAF and variance inflation factor (VIF),
using the parameters --maf 0.10 --indep 50 5 1.5. We then pruned the datasets to include only

the variants that fulfil those thresholds, through —extract.
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Subsequently, we merged the variants from chromosomes 1 to 22 of all 79 post-filtering imputed
VCF files into a single BCF file using bcftools merge with the parameters -r $(seq -s, 1 22) --
missing-to-ref, followed by a normalisation process akin to that of the 1000 Genomes global and

IBS datasets. Then, we converted the merged imputed dataset to binary PLINK format.

We used PLINK again to determine common variants between the merged imputed dataset and
the populational markers in the 1000 Genomes global and IBS datasets, using —bmerge, followed
by extraction of common variants with —extract. Finally, we merged the extracted variant datasets
with —bmerge, and calculated 20 principal components using —pca. We plotted the first three

principal components using the matplotlib package for Python [45].

Data Validation
To validate our imputed dataset, we sought to quantify the accuracy of our imputation process

and determine whether it is affected by the choice of short-read sequencing platforms. To do so,
we obtained a healthy IBS genome (IBS001), independent from our patient cohort, sequenced at
40X coverage using an lllumina system, at Dante Labs (Cambridge, United Kingdom), and an
MGI system, at BGI Tech Solutions Hongkong Co Ltd (Tai Po, Hong Kong). After quality control,
alignment, and pre-processing, we obtained two CRAM files for the IBS001 individual:
IBS001_illumina with an average depth per base of 39.34 and IBS001_bgi with an average depth
per base of 41.64. The average depth per base was calculated using mosdepth v0.3.3 [36], with

the -x parameter, against the GATK b37 reference genome.

We downsampled both versions of the IBS001 genome to 1X coverage using samtools v1.16
(RRID:SCR_002105) [39]. We calculated the subsampling fractions by dividing the target depth
per base (1.00) by the respective average depth per base of each file. Therefore, the genome

sequenced on the lllumina platform was downsampled using the command samtools view -s
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0.025419420437214, and the genome sequenced on the MGI platform was downsampled using

samtools view -s 0.0240153698366955.

The two resulting low-coverage downsamples were used for the genotype calling, imputation, and
post-imputation filtering steps as described in the Methods section. This process resulted in four
VCF files: two pre-filtering files and two post-filtering files from the two sequencing platforms,
lllumina and MGI. These four files served as the imputed genotypes for the validation process.
Additionally, we also performed the genotype calling step on the original high-coverage files, with

the VCF output used as the gold standard genotypes in the validation.

To measure imputation accuracy we used GLIMPSE_concordance [16] to calculate a squared
Pearson correlation between the high-coverage and imputed dosages across chromosomes 1 to
22 and X, within several MAF bins (0-0.02%, 0.02-0.05%, 0.05-0.1%, 0.1-0.2%, 0.2-0.5%, 0.5-
1%, 1-2%, 2-5%, 5-10%, 10-15%, 15-20%, 20-30%, 30-40%, and 40-50%), and a single
aggregate squared Pearson correlation across all sites. We only used sites in the validation data
with a minimum depth of 8 reads and minimum posterior probability of 0.9999. To do so, we used
the parameters --minDP 8 --minPROB 0.9999 --bins 0.00000 0.0002 0.0005 0.001 0.002 0.005

0.010.020.050.170.1560.2 0.3 0.4 0.5.

We conducted this concordance assessment, comparing the imputed pre-filtering 1BS001
genomes against the high-coverage validation IBS001 genomes, within sequencing platforms
(BGI 1X vs BGI 40X and lllumina 1X vs lllumina 40X) and across sequencing platforms (BGI 1X
vs lllumina 40X and lllumina 1X vs BGI 40X), to identify any quantifiable differences in imputation
quality arising from the use of different short-read sequencing platforms. Across all four platform
comparisons (Figure 6A), GLIMPSE accurately imputed variants in the 2-5%, 5-10%, 10-15%,
15-20%, 20-30%, 30-40%, and 40-50% MAF bins, represented by an r? correlation equal to or
higher than 0.90. However, as anticipated, imputation accuracy steadily decreased for MAFs

lower than 2%, likely due to the underrepresentation of rare variants in the 1000 Genomes
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reference panel [16]. Overall, this resulted in an aggregate r? correlation of approximately 0.96

across all MAF bins for both IBS001 genomes (Table 2).

Moreover, we assessed the impact of the filtering process on the accuracy of the dataset. We
repeated the concordance comparison using GLIMPSE_concordance, instead using the imputed
post-filtering IBS001 genomes against the high-coverage validation IBS001 genomes. Due to the
removal of low confidence sites during filtering, the r? correlation in the 2-5%, 5-10%, 10-15%, 15-
20%, 20-30%, 30-40%, and 40-50% MAF bins improved slightly (Figure 6B). In turn, this
improved the aggregate r? correlation to approximately 0.97 on all four platform comparisons we

performed (Table 2).

In conclusion, the validation of our imputation and filtering process shows that GLIMPSE1, with
the 1000 Genomes Project Phase 3 [22] as the reference panel, can be used to confidently impute

variants with MAF up to approximately 2%.
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Figure 6 — Assessment of GLIMPSE1 imputation concordance within different minor allele
frequency (MAF) bins for the IBS001 validation genome.

A Squared Pearson correlation (r?) between high-coverage and pre-filtering imputed dosages

segregated into various MAF bins. The x-axis shows MAF bins, ranging from 0 to 50%, and the
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y-axis shows the squared Pearson correlation coefficient (r?). The analysis was performed for
chromosomes 1 to 22 and X, within sequencing platforms (BGI 1X vs BGI 40X and lllumina 1X
vs lllumina 40X) and across sequencing platforms (BGI 1X vs lllumina 40X and lllumina 1X vs
BGI 40X).

B Squared Pearson correlation (r?) between high-coverage and post-filtering imputed dosages
segregated into various MAF bins.

r? concordance pre-filtering r? concordance post-filtering
Coverage

BGI 40X lllumina 40X BGI 40X lllumina 40X
BGI 1X 0.962085 0.962852 0.970049 0.970573
lllumina 1X 0.961485 0.962807 0.969826 0.970724

Table 2 — Aggregate GLIMPSE1 imputation concordance for the IBS001 validation genome.

The table displays the aggregate r? correlation results obtained from the concordance assessment
of the imputed IBS001 genomes against the high-coverage validation IBS001 genomes. The
analysis was performed for chromosomes 1 to 22 and X, within sequencing platforms (BGI 1X vs
BGI 40X and lllumina 1X vs lllumina 40X) and across sequencing platforms (BGI 1X vs lllumina
40X and lllumina 1X vs BGI 40X). The table presents the aggregate r? correlation values,
indicating the overall accuracy of imputation across all sites.

Re-use potential
Despite continuous improvements in genotype imputation algorithms, IcCWGS imputation remains

underutilised as an economical alternative over higher-coverage sequencing. Additionally, the

understanding of host genetic markers that predispose to COVID-19 severity is still limited [7].

In this context, our manuscript's dataset, coupled with the innovative methods we employed, casts
a promising light. Not only do we showcase the viability of using IcWGS imputation to generate
data for the study of disease-related genetic markers, but also we present a robust validation
methodology to ensure accuracy of the data produced. Our ambition is to inspire confidence and
stimulate further interest from researchers who wish to deploy a similar approach to a range of
other infectious diseases, genetic disorders, or population-based genetic studies, particularly in
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large scale genomic projects and resource-limited settings where sequencing at higher coverages

proves to be prohibitively expensive.

It is important to note, however, that the inherent probabilistic nature of imputed low-coverage
genotypes can introduce uncertainty into downstream analyses, and that measures should be

taken to mitigate such errors. For example, Petter, Ding [46]Petter, Ding [46] propose a statistical

calibration method for polygenic scores (PGS) based on imputed IcWGS genotypes, which is
shown to improve estimations of PGS over traditional calculations that ignore genotyping errors
in low-coverage sequencing. Understanding the nature of genotyping error is essential to
accurately interpret imputed IcWGS results, and, therefore, researchers should be mindful of

adopting similar approaches when utilising imputed datasets such as this one.

Beyond the immediate implications in IcWGS imputation, this dataset serves as a valuable
resource for investigators studying genetic markers associated with COVID-19 severity.
Specifically, the careful methodology we utilised to characterise our patient cohort, through
standardised clinical terminology, paves the way for the discovery of genetic components that
might be linked to severe COVID-19 disease manifestations and progressions. For instance, this
methodology could be tailored to analyse hospitalisation trends in other clinical cohorts, thereby
serving as a template for future studies aiming to comprehensively characterise complex

diseases.

The analysis of patient hospitalisation, particularly focused on sex and age-related differences,
has the potential to inform healthcare policy and clinical guidelines. The insights gained from
hospital stay distributions, ICU admissions, and the identification of disease severity across
different demographics have broad applications. For example, they could be translated into
personalised care strategies or even underpin predictive models that assist healthcare providers

delivering more effective treatments [47, 48].
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Finally, the validation data regarding comparisons of short-read sequencing platforms is of great
importance. As genomic research progresses, the accuracy and reliability of different sequencing
platforms becomes increasingly critical. By offering a comparison of imputation accuracy between
lllumina and MGI sequencers, we provide an avenue for other researchers to make informed
decisions about their sequencing platform. This becomes especially relevant as the scientific
community strives to standardise genetic research methodologies [49], to ensure consistent

results and comparable outcomes across different studies.

In conclusion, the dataset presented here, though primarily focused on COVID-19 severity,
transcends this scope with a broad utility that reaches multiple domains of scientific research. We
encourage its reuse hoping that its integration into other studies will advance our collective
understanding and response to complex health challenges, such as those presented by COVID-

19.

Availability of source code and requirements
Project name: GLIMPSE low-coverage WGS imputation

Project home page: https://github.com/renatosantos98/GLIMPSE-low-coverage-WGS-imputation

Operating system(s): Linux
Programming language: Bash and Python3

Other requirements: GLIMPSE 1.1.1; samtools 1.16; bcftools 1.16; Python 3.11; numpy 1.24.3;
matplotlib 3.7.1; pandas 2.0.3; seaborn 0.12.2; parallel 20230522; mosdepth 0.3.3; plink

1.90b6.21; bc 1.07.1.

License: MIT license
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Data Availability

The clinical dataset is available in the European Genome-phenome Archive, under the accession
number EGAS00001007573. The other datasets supporting the results of this article are available
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