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Abstract 
Despite advances in identifying genetic markers associated to severe COVID-19, the full genetic 

characterisation of the disease remains elusive. This study explores the use of imputation in low-

coverage whole genome sequencing for a severe COVID-19 patient cohort. We generated a 

dataset of 79 imputed variant call format files using the GLIMPSE1 tool, each containing an 

average of 9.5 million single nucleotide variants. Validation revealed a high imputation accuracy 

(squared Pearson correlation ≈0.97) across sequencing platforms, showing GLIMPSE19s ability 
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to confidently impute variants with minor allele frequencies as low as 2% in Spanish ancestry 

individuals. We conducted a comprehensive analysis of the patient cohort, examining 

hospitalisation and intensive care utilisation, sex and age-based differences, and clinical 

phenotypes using a standardised set of medical terms developed to characterise severe COVID-

19 symptoms. The methods and findings presented here may be leveraged in future genomic 

projects, providing vital insights for health challenges like COVID-19. 

Context 
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), which first appeared by the end of 2019 in Wuhan, China [1]. The 

clinical presentation of COVID-19 can be very heterogeneous, ranging from asymptomatic 

infection to severe forms with pneumonia, multiple organ complications, and sepsis [2]. Previous 

genome-wide association studies (GWAS) have collectively identified genetic risk factors at 

multiple loci across the human genome, including specific variants associated with COVID-19 

severity and susceptibility to infection [3-5]. Additionally, certain patient characteristics, such as 

older age and male sex, as well as comorbidities, like obesity and cancer, have been shown to 

contribute to severe outcomes in COVID-19 patients [6]. This earlier body of work has paved the 

way for exciting new opportunities to explore the determinants of COVID-19 severity [7], 

particularly due to its potential applications in risk prediction, preventive medicine, and patient 

management. 

Traditionally, the genotyping process has relied on array technologies as the standard, both at 

the broader GWAS level and the more specific genetic scoring and genetic diagnostics levels [8]. 

This reliance is primarily due to very low costs and fast turnaround times, which made microarrays 

valuable high-throughput tools capable of generating affordable genomic data. However, arrays 

are limited by their experimental design, leading to biases in the data generated. In particular, the 

prior selection of genetic markers and probes creates an ascertainment bias, resulting in the 
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overrepresentation of intensively researched populations that are more likely to be involved in 

array development [9]. This contrasts with high-coverage whole genome sequencing (WGS), 

which, since its inception, has promised the ability to probe variation across the entire human 

genome, free from the ascertainment bias characteristic of microarrays. This, in fact, has led to 

its adoption by large scale population-level projects [10]. 

Despite significant cost reductions over time [11], WGS at the clinically accepted standard of 30X 

coverage [12] remains too expensive for many projects, especially those involving large sample 

cohorts such as those required for GWAS. However, recent studies have demonstrated that 

sequencing larger numbers of individuals at lower coverages, prioritising cost and haplotype 

diversity over sequencing depth, can actually yield more allelic information at the cohort and 

population levels [13]. Consequently, low-coverage WGS (lcWGS) has emerged as a cost-

efficient alternative to high-coverage WGS, surpassing microarrays in the discovery of common 

and low-frequency variation [14, 15], particularly in underrepresented populations [16]. 

Akin to microarrays, lcWGS data can also be imputed using reference panels to enhance 

resolution and statistical power while maintaining low sequencing and data processing costs. The 

fundamental principle that underlies genotype imputation algorithms is identity-by-descent (IBD), 

wherein two seemingly unrelated individuals may share segments shorter than 10 centimorgans 

(cM) inherited from a distant common ancestor [17]. Consequently, genotype imputation 

algorithms compare the sparsely distributed haplotypes present in the lcWGS data with the 

haplotypes in the high-coverage reference panel to infer genotype likelihoods in the regions not 

covered by sequencing [18]. 

Previous imputation methods for lcWGS data exhibited significant drawbacks that undermined 

their competitiveness. Some incurred higher costs and longer running times when using large 

reference panels due to computational complexity [19], and others used more efficient 

approximations, resulting in lower imputation accuracy [20, 21]. To address these challenges, we 
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utilised the GLIMPSE1 algorithm [16], a less resource-intensive tool that produces more accurate 

imputed data than its predecessors, to generate a VCF dataset containing 79 imputed lcWGS 

samples, which we are releasing with this manuscript. 

Although genotype imputation in lcWGS datasets shows promise, its use is still in the early stages. 

With continuous advancement in sequencing technologies, we expect that imputation methods 

will play an increasingly crucial role in unravelling the complexities of the human genome and 

accelerating discoveries in precision medicine and personalised healthcare. 

Dataset description 
We generated a dataset consisting of 79 VCF files, and respective FASTQ and CRAM files, using 

the GLIMPSE1 imputation algorithm [16]. We leveraged the 1000 Genomes Project Phase 3 

dataset [22] as the reference panel of haplotypes. In total this dataset is composed of 

approximately 325 GB of FASTQ data, 156 GB of CRAM data, and 6 GB of VCF data. 

Our samples were specifically derived from sequenced DNA from a highly selective cohort of 

patients, comprised of mostly Iberian Populations in Spain (IBS) individuals but also containing 

some individuals from other genetic backgrounds. All patients presented with severe COVID-19 

symptoms during the initial wave of the SARS-CoV-2 pandemic in Madrid, Spain. 

On average, each VCF file in this rich dataset contains 9.49 million high-confidence single 

nucleotide variants [95%CI: 9.37 million - 9.61 million] (Figure 1). To facilitate access to 

researchers interested in further studying this data, it has been made available for reuse in the 

European Genome-phenome Archive [23], under the accession number EGAS00001007573. 
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Figure 1 – Number of high-confidence single nucleotide variants (SNVs) for the 79 VCF 

files in the severe COVID-19 dataset. The x-axis represents the sample IDs in the dataset, while 

the y-axis denotes the total counts of SNVs for each sample in millions (1×106). 

Patient cohort characterisation 

Sampling strategy 
The 79 genomic samples analysed in this study constitute a subset of a larger cohort of individuals 

whose exomes were initially sequenced and analysed as part of a comprehensive investigation 

into genetic determinants for COVID-19 severity [24]. The selection of this subset was based on 

the quality assessment of DNA samples suitable for PCR-free library preparation for lcWGS. All 

individuals were patients hospitalised between March and June 2020, during the first wave of the 

SARS-CoV-2 pandemic in Spain, at a tertiary referral hospital in Madrid, and confirmed to be 

infected with SARS-CoV-2. We aimed to select patients with the following clinical profile: (1) 

younger than 60 years old; (2) experienced fever and respiratory symptoms for more than three 

days; (3) blood oxygen saturation level below 93%; (4) bilateral pneumonia on imaging tests; and 

(5) no comorbidities, such as diabetes, obesity, or immunosuppressive conditions. At the time the 

study population was recruited, no vaccines had been developed yet. 

We examined the dataset focusing on three main aspects: firstly, a general characterisation of 

the patients by age, sex, and ethnicity; secondly, hospital stays and time spent in the intensive 
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care unit (ICU); and finally, the distinct clinical phenotypes presented by the patients (respiratory, 

thromboembolic, cardiovascular, etc.). Further details on the patients9 demographic information 

and clinical history can be found in Supplementary File 1 [25]. 

 

Demographic characterisation 
Through our analysis, we aimed to create a comprehensive demographic profile of our cohort of 

severe COVID-19 patients. The age distribution in the cohort (Figure 2A) is characterised by a 

distinct right skew, with a higher prevalence of individuals falling within the 45-64 age bracket and 

particularly concentrated around 55-59 years, which aligns with our current knowledge of the 

correlations between older age and severe COVID-19 outcomes [6]. Yet, the lower tail-end of the 

distribution also underscores the fact that severe COVID-19 is not strictly age related and young 

individuals may also suffer from severe manifestations. 

The sex distribution (Figure 2B) shows a higher frequency of male patients relative to females. 

This finding concurs with previous research indicating that men are at a higher risk of developing 

severe COVID-19 [6]. Investigating the age distribution in relation to sex (Figure 2C), indicates 

that both males and females have a similar median age of 55 and 53 years, respectively, although 

the male age distribution exhibits a broader range and higher variability, suggestive of a greater 

scope of age-related COVID-19 risk among men. 

Lastly, studying the patients9 country of origin (Figure 2D) reveals that most of the patients in our 

cohort originate from Spain and Latin American countries. This geographical distribution is mostly 

a reflection of the demographic makeup of Madrid, Spain, where sample collection occurred. To 

expand our analysis beyond demographics and understand the genetic makeup of our cohort, we 

also performed a Principal Component Analysis (PCA) of our 79 samples, after imputation and 

variant filtering, against the backdrops of the 1000 Genomes Project [22] global superpopulations 

and IBS population. 
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The global PCA plots (Figure 3A) show that most samples cluster within the European (EUR) 

group, mirroring the fact that a significant proportion of our cohort hails from Spain. Additionally, 

a subset of patients is found within or near the Admixed American (AMR) and South Asian (SAS) 

clusters, reflecting the Latin American patients in our cohort, and the mixed ancestry common in 

Latin American populations. A few patients also cluster within the African (AFR) group, likely 

representing the African ancestry in our cohort from the patients originating from Cape Verde and 

Morocco. 

In the IBS-specific PCA plots (Figure 3B), most of the severe COVID-19 patients form a distinct 

cluster close to the 1000 Genomes IBS population, indicating a shared genetic background with 

this group, representing the individuals with IBS ancestry. However, it is worth noting that subtle 

regional genetic variations within the Iberian population could contribute to the observed 

dispersion within this shared genetic background, particularly along the third principal component. 

The figure also shows a dispersion of patients alongside the left side of the plots, which represent 

the individuals with ancestries other than IBS. This highlights the genetic diversity in our cohort, 

contributed by the inclusion of patients from Spain and various other nations. 
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Figure 2 – Demographic and geographic characterisation of the severe COVID-19 patient 

cohort. 

A Distribution of severe COVID-19 patients' ages in our cohort. Each bar signifies an age bracket 

comprising 5-year increments, with its height denoting the proportion of individuals within that age 

range. The plot is overlaid with a Kernel Density Estimation (KDE) curve, which provides a 

smoothed estimation of the age distribution. 

B Patients9 stratification by sex. Each bar represents one sex, with its length indicating the number 
of patients of that sex. 

C Distribution of patients' ages by sex. The boxplot presents the age distribution for each sex. 

Each box represents the interquartile range (IQR) of ages for either males or females, with the 

dividing line representing the median age. The diamonds represent outliers. 
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D Distribution of patients by country of origin. Each bar corresponds to a country, and its length 

indicates the number of patients from that country. 

Figure 3 – Principal component analysis of genetic variation in the severe COVID-19 patient 

cohort against the 1000 Genomes Project global superpopulations and IBS (Iberian 

Populations in Spain) population. 

A Projection of imputed low-coverage whole-genome sequencing (lcWGS) data from severe 

COVID-19 patients against the backdrop of global superpopulations from the 1000 Genomes 

Project. Each point represents an individual, colour-coded according to their superpopulation. 

Severe COVID-19 patients are distinguished by points with a white fill and coloured border. The 

x-axis and y-axis on the two subplots represent the first and second, and first and third principal 
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components, respectively, with the percentage of variance explained by each component 

indicated in the axis label. 

B Focused view of the genetic variation within the Iberian (IBS) population and the severe COVID-

19 patients. Individuals from the IBS population are represented by solid-coloured points, while 

those with severe COVID-19 are represented by points with a white fill and coloured border. The 

x-axis and y-axis on the two subplots represent the first and second, and first and third principal 

components, respectively, with the percentage of variance explained by each component 

indicated in the axis label. 

 

Hospital stays 
Examining the patients9 hospital medical records provides valuable insights about the 

hospitalisation experience of individuals with severe COVID-19. By examining these trends, we 

can gain a better understanding of potential sex and age-based differences in the duration of 

hospitalisation and the level of care required. 

Firstly, we analysed the distribution of hospitalisation days in our patient cohort (Figure 4A). The 

distribution is notably skewed to right, with most patients requiring relatively short hospital stays 

between 1 and 34 days. However, the distribution9s right tail shows that a subset of patients 

experienced significantly longer stays, up to 202 days, which could be attributed to cases of 

COVID-19 with increased severity, thus requiring additional medical attention. 

Furthermore, an evaluation of distribution of hospital stays by sex (Figure 4B) reveals that the 

median duration of hospital stays was similar for both sexes. Nevertheless, the distribution for 

male patients exhibits greater variability, accentuated by the presence of some outliers who spent 

an unusually high number of days in the hospital, which represent severe or complex cases that 

required a significantly longer time for recovery and medical management. This could mean that 

the severe disease progression and recovery time in males is less consistent than in females, 

possibly due to a wider range of severity in clinical presentations among male patients. 

In addition, we investigated the use of the intensive care unit (ICU). Approximately 25% of the 

cohort was admitted to the ICU during their hospitalisation (Figure 4C), indicating that, despite 
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the severity of their COVID-19 symptoms, most patients were managed without the need for 

intensive care. However, a much larger proportion of males necessitated ICU admission than 

females (Figure 4D). This, again, reflects findings from numerous studies that have identified 

male sex as a risk factor for severe COVID-19 outcomes [6]. 

We further stratified the ICU data by patient age (Figure 4E), showing that the majority of patients 

who were admitted to the ICU were between 45 and 70 years old, which underscores the 

heightened risk of severe outcomes in these age groups. Finally, we investigated the duration of 

ICU stays among those who required such care (Figure 4F). Mirroring the hospital stay duration 

for the overall cohort, most patients admitted to the ICU spent between 1 and 35 days there. 

However, a considerable subset of patients experienced significantly longer ICU stays, thus 

representing a broad spectrum of disease severity and recovery rates within this critical care 

cohort. 
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Figure 4 – Analysis of hospital stays among the severe COVID-19 patient cohort. 

A Distribution of hospital stay durations in our cohort. Each bar corresponds to an interval of 

hospital stay durations of 5 days, with its height indicating the proportion of patients with a stay 

duration within that duration interval. The plot is overlaid with a Kernel Density Estimation (KDE) 

curve, that provides a smoothed estimate of the duration distribution. 
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B Stratification of hospital stay durations by sex. This boxplot presents the distribution of hospital 

stays for each sex. Each box represents the interquartile range (IQR) of the duration of hospital 

stays for one sex, with the line inside the box marking the median duration. The diamonds 

represent outliers. 

C Distribution of patients admitted to the Intensive Care Unit (ICU). Each bar corresponds to either 

patients admitted to the ICU (green) or patients not admitted to the ICU (blue), with its height 

indicating the number of patients in that category. 

D Distribution of patients admitted to the ICU by sex. Each pair of bars corresponds to one sex, 

with their height indicating the proportion of patients of that sex who were admitted to the ICU. 

Each bar corresponds to either patients admitted to the ICU (green) or patients not admitted to 

the ICU (blue), with its height indicating the number of patients in that category. 

E Distribution of ages of patients admitted to the ICU. Each bar corresponds to an age group of 

5 years, with its height indicating the proportion of patients in that age group. The plot is overlaid 

with a KDE curve, which provides a smoothed estimate of the age distribution. 

F Distribution of ICU stay durations among patients admitted to the ICU. Each bar corresponds 

to an interval of ICU stay durations of 5 days, with its height indicating the number of patients 

within that duration interval. The plot is overlaid with a KDE curve, that provides a smoothed 

estimate of the duration distribution. Only patients who were admitted to the ICU are represented 

in this plot. 

 

Clinical phenotypes 
An analysis of the phenotypes of the severe COVID-19 patient cohort reveals valuable insights 

into the most common phenotypes associated with severe forms of the disease and their 

frequency and relationships. While established COVID-19 phenotype ontologies were readily 

available [26, 27], they lacked the level of granularity we required to comprehensively characterise 

the clinical phenotypes of our cohort. Therefore, we devised a specialised set of standardised 

terminology comprising 28 medical terms that were organised into 4 primary clinical categories: 

pulmonary, extra-pulmonary, coagulation, and systemic phenotypes. Subsequently, we evaluated 

each patient's record for the presence of these terms. 

Table 1 provides a detailed breakdown of the number of patients associated with each specific 

phenotype, within the four major clinical categories. We found that the Pulmonary category, which 

includes pneumonia, ARDS (acute respiratory distress syndrome), and a combination of ARDS 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.577610doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577610
http://creativecommons.org/licenses/by/4.0/


14 
 

and admission to the ICU, was the most prevalent among our cohort. Indeed, pneumonia alone 

was identified in 78 patients. The Extra-Pulmonary category covers a broad range of clinical 

symptoms and conditions, with liver hepatitis and gastrointestinal diarrhoea being the most 

common, observed in 10 patients each. The Coagulation category focused on thrombotic events 

and related conditions.  Pulmonary embolism and deep venous thrombosis, each identified in 5 

patients, were most prevalent. Finally, the Systemic category included conditions that affect the 

patient's overall health and wellbeing, such as persistent fever and symptoms like fatigue and 

headache. Persistent fever was the most common Systemic phenotype, observed in 33 patients. 

To further investigate the relationships between the phenotypes in our patient cohort and to 

determine whether any of them were likely to co-occur, we performed a Spearman correlation 

analysis using the function corr(method="spearman") from the seaborn package for Python [28], 

and visualised the results in a heatmap (Figure 5). These correlations suggest that patients who 

presented with one of these phenotypes were more likely to present others, pointing to possible 

common underlying pathways or simultaneous occurrence in severe disease presentation. 

The plot shows that most phenotypes are not strongly correlated, hence, the presence of one 

phenotype does not necessarily predict the presence of another. This could be indicative of the 

diverse clinical manifestations of severe COVID-19, with different phenotypes appearing 

independently in different patients. However, there are several pairs of phenotypes exhibiting 

higher degrees of correlations. This is particularly evident in neurological conditions, such as the 

correlations between psychiatric disorders, encephalopathies and polyneuropathies, which 

appear to be correlated to a relatively high degree. In addition, moderate correlations are shown 

between the former three neurological phenotypical categories and exanthema, myopathies, and 

bone marrow abnormalities. Finally, some moderate correlations occurred between the ARDS & 

ICU phenotype and a few other phenotypes, pointing at the additional occurrence of various 

phenotypes of COVID-19 severity in patients admitted to the ICU with ARDS. 
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This exploratory analysis highlights the diverse ways in which severe COVID-19 can present, and 

the importance of comprehensive and nuanced clinical phenotyping in improving our 

understanding and management of the disease. 

Major 

Phenotypes 

Phenotype Phenotype 

ID 

Patient 

Count 

n=79 

Pulmonary 

n=78 

Pneumonia V-1 78 

ARDS (acute respiratory distress syndrome) V-2 47 

ARDS & ICU V-3 20 

Extra-

pulmonary 

n=37 

Skin – exanthema V-4 4 

Heart – myocarditis V-5 1 

Heart – arrhythmia V-6 4 

Liver- hepatitis V-7 10 

Kidney – glomerulonephritis V-8 0 

Kidney – tubulopathy V-9 4 

Neurological – encephalitis/encephalopathy V-10 6 

Neurological – psychiatric (delirium, etc.) V-11 6 

Neurological – polyneuropathy (neuropathy, 

Guillain-Barré, etc.) 

V-12 6 

Neurological – myelitis V-13 0 

Neurological – seizure V-14 0 

Gastrointestinal – diarrhoea V-15 10 

Gastrointestinal – nausea/vomiting V-16 3 

Endocrine dysfunction (thyroid, etc.) V-17 2 

Musculoskeletal – myopathy V-18 1 

Musculoskeletal - arthritis V-19 0 

Bone marrow – blood cytopenia, 

pancytopenia/aplasia 

V-20 5 

Coagulation 

n=12 

Pulmonary embolism V-21 5 

Deep venous thrombosis V-22 5 

Peripheral arterial thrombosis V-23 0 
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Stroke V-24 0 

Ischemic heart event V-25 1 

Disseminated intravascular coagulation V-26 3 

Systemic 

n=41 

Persistent fever V-27 33 

Fatigue, malaise, headache, arthromyalgias V-28 20 

Table 1 – Frequency of severe COVID-19 phenotypes in the patient cohort. 

The table presents the distribution of our 28 severe COVID-19 specific phenotypes organised into 

four major clinical categories: Pulmonary, Extra-pulmonary, Coagulation, and Systemic, as 

observed in our severe COVID-19 patient cohort. For each category, the total number of unique 

patients with at least one phenotype in the category is indicated. Each phenotype is listed with a 

unique Phenotype ID (V-1 to V-28) and the number of patients who were identified with that 

phenotype.

Figure 5 – Heatmap of phenotype correlations in the severe COVID-19 patient cohort. 

The plot illustrates the Spearman correlations between our 28 severe COVID-19 specific 

phenotypes. Each square in the heatmap represents the correlation between two phenotypes, 

with the colour of the square indicating the strength of the correlation, and the number inside each 

square represents the correlation coefficient. Only statistically significant (p < 0.05) correlation 
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coefficients are shown. Darker colours represent stronger positive or negative correlations, with 

red representing positive correlations and blue representing negative correlations. These indicate 

that individuals displaying one phenotype are more or less likely to exhibit the other phenotype 

as well, suggesting potential underlying mechanisms for the progression of severe COVID-19. 

 

Methods 

DNA extraction and library preparation 
We collected blood samples for each patient in 10 mL EDTA tubes. We then centrifuged the tubes 

at 3000 rpm for 10 minutes to isolate the buffy coat, which we subsequently froze at -20ºC until 

further use. Afterward, we used the Maxwell RSC Buffy Coat DNA Kit (AS1540, Promega UK, 

Southampton, United Kingdom) to isolate genomic DNA from frozen buffy coat samples. We 

assessed the concentration of the genomic DNA using spectrometric analysis. We then 

fragmented the DNA using a Covaris E220 focused-ultrasonicator (Covaris Ltd., Brighton, United 

Kingdom) to generate 350 bp length DNA fragments. The following parameters were used for the 

fragmentation process: 6 cycles, PIP 75, Cycles/Burst 1000, Duty Factor 20%, Duration 20s. After 

that, we prepared DNA libraries using the MGIEasy PCR-Free DNA Library Prep Set 

(1000013453; MGI Tech Co. Ltd, Shenzhen, China). The concentration of the DNA libraries was 

assessed using a Qubit 3.0 fluorometer (Life Technologies). Finally, we sequenced the libraries 

on an MGI DNBSEQ-G400 sequencer (RRID:SCR_017980; MGI Tech Co. Ltd), with a target 

sequencing depth of 1X. 

 

Sequencing quality control and preprocessing 
We performed quality control and preprocessing of the resulting FASTQ files using the nf-core 

[29] Sarek pipeline v3.1.2 [30-39]. The following parameters were applied during the pipeline 

execution: nextflow run nf-core/sarek -r 3.1.2 -profile docker --input samplesheet.csv --outdir 

/mnt/e/Sarek/out/ --trim_fastq --igenomes_base /mnt/e/Sarek/references --genome 
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GATK.GRCh37 --skip_tools strelka --seq_platform 'MGI'. We used the recalibrated base quality 

scores CRAM files produced by the Sarek pipeline as the input for the subsequent step. 

 

Imputation using GLIMPSE 
We calculated genotype likelihoods using bcftools mpileup v1.16 (RRID:SCR_005227) [39], with 

the parameters -I -E -a 'FORMAT/DP', followed by genotype calling using bcftools call, with 

parameters --ploidy GRCh37 -S ploidy.txt -Aim -C alleles. The file 8ploidy.txt9 contained 

information about the sex of each sample, which was necessary to correctly generate genotype 

calls for chromosome X in males [16]. 

After that, we imputed the low-coverage genomes with GLIMPSE v1.1.1 [16]. Firstly, we split each 

chromosome into 2 Mb chunks, with 200 kb buffer regions on each side of a chunk, by using 

GLIMPSE_chunk with the parameters --window-size 2000000 --buffer-size 200000. Secondly, we 

used GLIMPSE_phase to perform imputation of each chunk, with the tool9s default iteration 

parameters. GLIMPSE_phase imputation was multithreaded with GNU Parallel v20230522 [40]. 

We used the 1000 Genomes Phase 3 dataset [22] as the reference panel, since it has been shown 

that the inclusion of diversity in reference panels improves the quality of imputation by reducing 

missing genotype calls [41, 42]. Finally, we used GLIMPSE_ligate to join the imputed chunks 

together into entire chromosomes, followed by bcftools concat to merge all chromosomes into a 

single VCF file, containing chromosomes 1 to 22 and X, for each sample. 

 

Post-imputation filtering 
Following imputation, we  filtered the VCF files, to prioritise the most reliable genotype calls for 

further analysis, keeping only variants with minor allele frequency (MAF) above 2% and maximum 

genotype probability (GP) above 80%. We determined the MAF value through our validation 

process (see Data Validation) as the minimum threshold of acceptable imputation accuracy of 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.577610doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577610
http://creativecommons.org/licenses/by/4.0/


19 
 

�2 ≅  0.9. The GP field represents the likelihood of each genotype being accurate and is 

expressed as a value between 0 and 1, with the sum of probabilities across all possible genotypes 

totalling 1 [43]. The chosen cutoff was determined as the best compromise between imputation 

accuracy and loss of information [43]. With this approach, we generated a dataset of imputed 

VCF files, from the DNA samples of our severe COVID-19 cohort. 

 

Principal component analysis 
We performed a principal component analysis (PCA) to assess the genetic ancestries of our 

patient cohort, using PLINK v.1.90b6.21 (RRID: SCR_001757) [44]. To do so, firstly we 

normalised the variants from chromosomes 1 to 22 of the 1000 Genomes Project Phase 3 dataset 

[22] using bcftools [39]. We split multi-allelic calls and left-aligned indels against the reference 

genome using bcftools norm, with the parameters -m-any --check-ref w; followed by bcftools 

annotate with the parameters -x ID -I +'%CHROM:%POS:%REF:%ALT', to normalise the naming 

of unset IDs; and bcftools norm to remove duplicate records using the parameters -Ob --rm-dup 

both. In addition, we filtered this global variant dataset to create a distinct subset containing 

variants exclusively from the 1000 Genomes Project IBS individuals. We used bcftools view, with 

the -S parameter, which includes only variants originating from the specified 1000 Genomes IBS 

sample IDs. 

We then converted the two datasets, 1000 Genomes global and IBS, to binary PLINK format, 

using PLINK with the parameters --keep-allele-order --vcf-idspace-to _ --const-fid --allow-extra-

chr 0 --split-x b37 no-fail --make-bed. Next, we used PLINK to identify population-specific markers 

by filtering the variants within both datasets based on MAF and variance inflation factor (VIF), 

using the parameters --maf 0.10 --indep 50 5 1.5. We then pruned the datasets to include only 

the variants that fulfil those thresholds, through –extract. 
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Subsequently, we merged the variants from chromosomes 1 to 22 of all 79 post-filtering imputed 

VCF files into a single BCF file using bcftools merge with the parameters -r $(seq -s, 1 22) --

missing-to-ref, followed by a normalisation process akin to that of the 1000 Genomes global and 

IBS datasets. Then, we converted the merged imputed dataset to binary PLINK format. 

We used PLINK again to determine common variants between the merged imputed dataset and 

the populational markers in the 1000 Genomes global and IBS datasets, using –bmerge, followed 

by extraction of common variants with –extract. Finally, we merged the extracted variant datasets 

with –bmerge, and calculated 20 principal components using –pca. We plotted the first three 

principal components using the matplotlib package for Python [45]. 

Data Validation 
To validate our imputed dataset, we sought to quantify the accuracy of our imputation process 

and determine whether it is affected by the choice of short-read sequencing platforms. To do so, 

we obtained a healthy IBS genome (IBS001), independent from our patient cohort, sequenced at 

40X coverage using an Illumina system, at Dante Labs (Cambridge, United Kingdom), and an 

MGI system, at BGI Tech Solutions Hongkong Co Ltd (Tai Po, Hong Kong). After quality control, 

alignment, and pre-processing, we obtained two CRAM files for the IBS001 individual: 

IBS001_illumina with an average depth per base of 39.34 and IBS001_bgi with an average depth 

per base of 41.64. The average depth per base was calculated using mosdepth v0.3.3 [36], with 

the -x parameter, against the GATK b37 reference genome. 

We downsampled both versions of the IBS001 genome to 1X coverage using samtools v1.16 

(RRID:SCR_002105) [39]. We calculated the subsampling fractions by dividing the target depth 

per base (1.00) by the respective average depth per base of each file. Therefore, the genome 

sequenced on the Illumina platform was downsampled using the command samtools view -s 
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0.025419420437214, and the genome sequenced on the MGI platform was downsampled using 

samtools view -s 0.0240153698366955. 

The two resulting low-coverage downsamples were used for the genotype calling, imputation, and 

post-imputation filtering steps as described in the Methods section. This process resulted in four 

VCF files: two pre-filtering files and two post-filtering files from the two sequencing platforms, 

Illumina and MGI. These four files served as the imputed genotypes for the validation process. 

Additionally, we also performed the genotype calling step on the original high-coverage files, with 

the VCF output used as the gold standard genotypes in the validation. 

To measure imputation accuracy we used GLIMPSE_concordance [16] to calculate a squared 

Pearson correlation between the high-coverage and imputed dosages across chromosomes 1 to 

22 and X, within several MAF bins (0-0.02%, 0.02-0.05%, 0.05-0.1%, 0.1-0.2%, 0.2-0.5%, 0.5-

1%, 1-2%, 2-5%, 5-10%, 10-15%, 15-20%, 20-30%, 30-40%, and 40-50%), and a single 

aggregate squared Pearson correlation across all sites. We only used sites in the validation data 

with a minimum depth of 8 reads and minimum posterior probability of 0.9999. To do so, we used 

the parameters --minDP 8 --minPROB 0.9999 --bins 0.00000 0.0002 0.0005 0.001 0.002 0.005 

0.01 0.02 0.05 0.1 0.15 0.2 0.3 0.4 0.5. 

We conducted this concordance assessment, comparing the imputed pre-filtering IBS001 

genomes against the high-coverage validation IBS001 genomes, within sequencing platforms 

(BGI 1X vs BGI 40X and Illumina 1X vs Illumina 40X) and across sequencing platforms (BGI 1X 

vs Illumina 40X and Illumina 1X vs BGI 40X), to identify any quantifiable differences in imputation 

quality arising from the use of different short-read sequencing platforms. Across all four platform 

comparisons (Figure 6A), GLIMPSE accurately imputed variants in the 2-5%, 5-10%, 10-15%, 

15-20%, 20-30%, 30-40%, and 40-50% MAF bins, represented by an r2 correlation equal to or 

higher than 0.90. However, as anticipated, imputation accuracy steadily decreased for MAFs 

lower than 2%, likely due to the underrepresentation of rare variants in the 1000 Genomes 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.28.577610doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577610
http://creativecommons.org/licenses/by/4.0/


22 
 

reference panel [16]. Overall, this resulted in an aggregate r2 correlation of approximately 0.96 

across all MAF bins for both IBS001 genomes (Table 2). 

Moreover, we assessed the impact of the filtering process on the accuracy of the dataset. We 

repeated the concordance comparison using GLIMPSE_concordance, instead using the imputed 

post-filtering IBS001 genomes against the high-coverage validation IBS001 genomes. Due to the 

removal of low confidence sites during filtering, the r2 correlation in the 2-5%, 5-10%, 10-15%, 15-

20%, 20-30%, 30-40%, and 40-50% MAF bins improved slightly (Figure 6B). In turn, this 

improved the aggregate r2 correlation to approximately 0.97 on all four platform comparisons we 

performed (Table 2). 

In conclusion, the validation of our imputation and filtering process shows that GLIMPSE1, with 

the 1000 Genomes Project Phase 3 [22] as the reference panel, can be used to confidently impute 

variants with MAF up to approximately 2%.
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Figure 6 – Assessment of GLIMPSE1 imputation concordance within different minor allele 

frequency (MAF) bins for the IBS001 validation genome. 

A Squared Pearson correlation (r2) between high-coverage and pre-filtering imputed dosages 

segregated into various MAF bins. The x-axis shows MAF bins, ranging from 0 to 50%, and the 
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y-axis shows the squared Pearson correlation coefficient (r2). The analysis was performed for 

chromosomes 1 to 22 and X, within sequencing platforms (BGI 1X vs BGI 40X and Illumina 1X 

vs Illumina 40X) and across sequencing platforms (BGI 1X vs Illumina 40X and Illumina 1X vs 

BGI 40X). 

B Squared Pearson correlation (r2) between high-coverage and post-filtering imputed dosages 

segregated into various MAF bins. 

 

Coverage 

r2 concordance pre-filtering r2 concordance post-filtering 

BGI 40X Illumina 40X BGI 40X Illumina 40X 

BGI 1X 0.962085 0.962852 0.970049 0.970573 

Illumina 1X 0.961485 0.962807 0.969826 0.970724 

Table 2 – Aggregate GLIMPSE1 imputation concordance for the IBS001 validation genome. 

The table displays the aggregate r2 correlation results obtained from the concordance assessment 

of the imputed IBS001 genomes against the high-coverage validation IBS001 genomes. The 

analysis was performed for chromosomes 1 to 22 and X, within sequencing platforms (BGI 1X vs 

BGI 40X and Illumina 1X vs Illumina 40X) and across sequencing platforms (BGI 1X vs Illumina 

40X and Illumina 1X vs BGI 40X). The table presents the aggregate r2 correlation values, 

indicating the overall accuracy of imputation across all sites. 

 

Re-use potential 
Despite continuous improvements in genotype imputation algorithms, lcWGS imputation remains 

underutilised as an economical alternative over higher-coverage sequencing. Additionally, the 

understanding of host genetic markers that predispose to COVID-19 severity is still limited [7]. 

In this context, our manuscript's dataset, coupled with the innovative methods we employed, casts 

a promising light. Not only do we showcase the viability of using lcWGS imputation to generate 

data for the study of disease-related genetic markers, but also we present a robust validation 

methodology to ensure accuracy of the data produced. Our ambition is to inspire confidence and 

stimulate further interest from researchers who wish to deploy a similar approach to a range of 

other infectious diseases, genetic disorders, or population-based genetic studies, particularly in 
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large scale genomic projects and resource-limited settings where sequencing at higher coverages 

proves to be prohibitively expensive. 

It is important to note, however, that the inherent probabilistic nature of imputed low-coverage 

genotypes can introduce uncertainty into downstream analyses, and that measures should be 

taken to mitigate such errors. For example, Petter, Ding [46]Petter, Ding [46] propose a statistical 

calibration method for polygenic scores (PGS) based on imputed lcWGS genotypes, which is 

shown to improve estimations of PGS over traditional calculations that ignore genotyping errors 

in low-coverage sequencing. Understanding the nature of genotyping error is essential to 

accurately interpret imputed lcWGS results, and, therefore, researchers should be mindful of 

adopting similar approaches when utilising imputed datasets such as this one. 

Beyond the immediate implications in lcWGS imputation, this dataset serves as a valuable 

resource for investigators studying genetic markers associated with COVID-19 severity. 

Specifically, the careful methodology we utilised to characterise our patient cohort, through 

standardised clinical terminology, paves the way for the discovery of genetic components that 

might be linked to severe COVID-19 disease manifestations and progressions. For instance, this 

methodology could be tailored to analyse hospitalisation trends in other clinical cohorts, thereby 

serving as a template for future studies aiming to comprehensively characterise complex 

diseases. 

The analysis of patient hospitalisation, particularly focused on sex and age-related differences, 

has the potential to inform healthcare policy and clinical guidelines. The insights gained from 

hospital stay distributions, ICU admissions, and the identification of disease severity across 

different demographics have broad applications. For example, they could be translated into 

personalised care strategies or even underpin predictive models that assist healthcare providers 

delivering more effective treatments [47, 48]. 
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Finally, the validation data regarding comparisons of short-read sequencing platforms is of great 

importance. As genomic research progresses, the accuracy and reliability of different sequencing 

platforms becomes increasingly critical. By offering a comparison of imputation accuracy between 

Illumina and MGI sequencers, we provide an avenue for other researchers to make informed 

decisions about their sequencing platform. This becomes especially relevant as the scientific 

community strives to standardise genetic research methodologies [49], to ensure consistent 

results and comparable outcomes across different studies. 

In conclusion, the dataset presented here, though primarily focused on COVID-19 severity, 

transcends this scope with a broad utility that reaches multiple domains of scientific research. We 

encourage its reuse hoping that its integration into other studies will advance our collective 

understanding and response to complex health challenges, such as those presented by COVID-

19. 

Availability of source code and requirements 
Project name: GLIMPSE low-coverage WGS imputation 

Project home page: https://github.com/renatosantos98/GLIMPSE-low-coverage-WGS-imputation 

Operating system(s): Linux 

Programming language: Bash and Python3 

Other requirements: GLIMPSE 1.1.1; samtools 1.16; bcftools 1.16; Python 3.11; numpy 1.24.3; 

matplotlib 3.7.1; pandas 2.0.3; seaborn 0.12.2; parallel 20230522; mosdepth 0.3.3; plink 

1.90b6.21; bc 1.07.1. 

License: MIT license 
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Data Availability 
The clinical dataset is available in the European Genome-phenome Archive, under the accession 

number EGAS00001007573. The other datasets supporting the results of this article are available 

in our Figshare collection [50] and GitHub repository [51]. 

Declarations 

List of abbreviations 
AFR: 1000 Genomes Africans superpopulation 

AMR: 1000 Genomes Admixed Americans superpopulation 

ARDS: acute respiratory distress syndrome 

cM: centimorgans 

COVID-19: coronavirus disease 2019 

EDTA: ethylenediaminetetraacetic acid 

EUR: 1000 Genomes Europeans superpopulation 

GP: genotype probability 

GWAS: genome-wide association studies 

IBD: identity-by-descent 

IBS: 1000 Genomes Iberian Populations in Spain population 

ICU: intensive care unit 

lcWGS: low-coverage whole genome sequencing 

MAF: minor allele frequency 

PCA: principal component analysis 

PGS: polygenic scores 
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SAS: 1000 Genomes South Asians superpopulation 

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2 

VCF: variant call format 

WGS: whole genome sequencing 
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