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7 The vast majority of population-scale genomic datasets collected to date consist of ‘“bulk”
s samples obtained from heterogeneous tissues, reflecting mixtures of different cell types. In
s order to facilitate discovery at the cell-type level, there is a pressing need for computational
10 deconvolution methods capable of leveraging the multitude of underutilized bulk profiles al-
11 ready collected across various organisms, tissues, and conditions. Here, we introduce Unico,
12 a unified cross-omics method designed to deconvolve standard 2-dimensional bulk matrices
13 of samples by features into a 3-dimensional tensors representing samples by features by cell
12 types. Unico stands out as the first principled model-based deconvolution method that is the-
15 oretically justified for any heterogeneous genomic data. Through deconvolution of bulk gene
16 expression and DNA methylation datasets, we demonstrate that the transferability of Unico
17 across different data modalities translates into superior performance compared to existing
1s approaches. This advancement enhances our capability to conduct powerful large-scale ge-

19 nomic studies at cell-type resolution without the need for cell sorting or single-cell biology.
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20 1 Introduction

21 Studying cell-type level genomic variation is critical for unveiling complex biology. Unfortunately,
22 collecting large and well-powered datasets at cell-type resolution for population studies has yet to
23 become common practice. Current single-cell datasets typically consist of data collected from no
2« more than several dozens of individuals due to prohibitive costs, and purifying cell types at scale
25 using flow cytometry is laborious and often impractical, particularly for solid and frozen tissues

26 for which cell isolation is very challenging [1-5].

27 Indeed, most transcriptomic and other genomic data types collected to date have been mea-
28 sured from heterogeneous tissues that consist of multiple cell types, resulting in vast amounts of
20 large heterogeneous “bulk” genomic data (e.g., over two million bulk profiles publicly available
s on the Gene Expression Omnibus alone [6]). This rationalizes the development of computational
a1 methods that can disentangle the convolution of cell-type level signals that compose such bulk
22 profiles. The premise, upon successful implementation, offers a transformative capability to con-
ss  duct powerful, large-scale studies at the cell-type level in multiple tissues and under numerous

s conditions for which large bulk data have already been collected.

3 Here, we propose a method for deconvolving 2-dimensional (2D) bulk data (samples by fea-
s tures) into its underlying 3-dimensional (3D) tensor (samples by features by cell types) Thus far,
a7 deconvolution methods have been tailored to specific data types [7—11]. In contrast, we introduce
ss  a unified cross-omics method, Unico, the first principled model-based deconvolution method that

30 1s theoretically applicable to any heterogeneous genomic data. As we demonstrate through a com-
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40 prehensive analysis of multiple gene expression and DNA methylation datasets, this generalization
41 translates into superior performance over existing approaches and improves our ability to conduct

42 powerful large-scale genomic studies at cell-type resolution.

43 2 Results

From bulk genomics to cell-type resolution: decomposition versus deconvolution The study
of bulk genomics routinely calls for decomposition, wherein an observed bulk data matrix is mod-
eled as the product of two matrices: (i) cell-type proportions (fractions) of the samples in the data
and (ii) per-feature cell-type genomic levels (‘“signatures”; Figure 1a). This amounts to solving a
matrix factorization problem. For a given bulk observation z;; of genomic feature j in sample 7,

virtually all decomposition models share the following assumption:
k
Tij = Y winzn + e 6]
h=1

s where wjy, ..., w;, are the proportions of k£ modeled cell types in sample i, 21, ..., z;;, are the cell-

a5 type level signatures of the genomic feature j in each of the £ cell types, and ¢;; is an error term.

46 Numerous decomposition formulations with various assumptions on the products of the
47 factorization have been proposed for the estimation of cell-type compositions and for learning
s cell-type signatures using different genomic modalities, including gene expression [12—15], DNA
49 methylation [16-20], copy number aberrations [21, 22], ATAC-Seq [23], and Hi-C data [24]. The
so rich toolbox of decomposition methods has proven successful for a wide range of applications,

st such as clustering genes and studying their functional relationships [25, 26], inferring tumor com-
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s2  position [21, 22], and discovering cancer sub-types [27]. However, these methods allow us to infer
s only a single profile of cell-type level signatures per feature, which corresponds to the unrealistic

s¢« assumption that all samples in the data share the same genomic levels at the cell-type level.

Every sample may reflect its own — possibly unique — cell-type level patterns, owing to
various factors of inter-individual variation, such as genetic background, environmental exposures,
and demographics. A natural adjustment of the decomposition model to reflect such variation
yields:

k
Ty = Z WinZijh 1 €4j (2)
h=1
ss where z;;;, now represents the level of feature j in cell-type h, specifically in sample i. Learning
ss  2;;», from bulk data is essentially a deconvolution problem, wherein we disentangle the mixture of
s7 signals in a 2D samples by features bulk data into the unobserved underlying 3D tensor of samples

ss by features by cell types (Figure 1a).

59 Decomposition under Equation (1) can be viewed as a degenerate case of the more general
s deconvolution problem in Equation (2) [28]. Deconvolving the data is thus more desired than
s merely decomposing the data, and the higher resolution of a successful deconvolution is expected
2 to improve cell-type context and discovery in the analysis of bulk genomics. This has been high-
es lighted and demonstrated by several recent deconvolution methods, including CIBERSORTx [8],
s« MIND [9], bMIND [10], and CODEFACS [11] in the context of transcriptomics and TCA [7] in

es the context of DNA methylation.
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Figure 1: (a) Illustration of decomposition versus deconvolution. (b) The distribution of cell-type
covariance structure strength across the top 10,000 most highly expressed genes in scRNAseq from
PBMC [29], measured by normalized von Neumann entropy (Methods). (c) The joint distribution
of CD4- and monocyte-specific CHCHD?2 expression across 118 scRNAseq PBMC samples (left)
and the corresponding conditional joint distribution of a Unico deconvolution (right) for one ar-
bitrary individual sample (red circle) given the pseudo-bulk level of the sample. The conditional
joint distribution highlights the distance between the true cell-type levels (red circle) and the de-
convolution estimate (light blue circle; expectation of the conditional distribution). (d) The same

only for the higher-entropy gene SLC2A3.
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ss Unico: A unified cross-omics deconvolution model Current deconvolution methods can be cate-
&7 gorized into two groups: heuristic approaches, including CIBERSORTX [8] and CODEFACS [11],
ss and methods based on the assumption of data following a normal distribution, including TCA [7],
so  MIND [9], and bMIND [10]. The latter group faces limitations rising from the normal distribution
70 assumption, which is known to be invalid at least for transcriptomic data [30-32]. Importantly, the
71 utilization of variance stabilizing transformations, such as log-scaling, would violate the linearity

72 assumption in Equations (1)-(2) and therefore lead to biased estimation [33].

73 We introduce Unico, a deconvolution method for learning cell-type signals from an input
74 of large heterogeneous bulk data and matching cell-type proportions. In practice, the latter is
75 estimated from the input bulk profiles using reference-based decomposition (e.g., [14, 34]), as per-
76 formed by all existing deconvolution methods [7-11]. The primary novelty of Unico stems from
77 taking a model-based approach following Equation (2) while making no distributional assump-
78 tions, which renders it the first principled model-based method that is theoretically justified for

79 analyzing cell type mixtures in any bulk genomic dataset (Methods).

80 A second key component of Unico is the consideration of covariance between cell types.
st Genomic features may be different yet coordinated across different cell types; for example, tran-
g2 scriptional programs can persist through multiple differentiation steps [35, 36]. Indeed, we observe
ss that many genes present a non-trivial correlation structure across their cell-type-specific expression
s« levels, as measured by entropy of the correlation matrix (Figure 1b), with stronger cell-type cor-

s relations (lower entropy) observed between cell types that are close in the lineage differentiation
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ss tree (Supplementary Materials). In the presence of covariance, Unico leverages the information

&7 coming from the coordination between cell types for improving deconvolution (Figure 1c,d).

ss Establishing a new state-of-the-art deconvolution for bulk genomics We compared Unico to
ss CIBERSORTX, TCA, and bMIND, as well as to a simple baseline approach of naively weighting
o0 each bulk profile by the cell-type proportions of the sample. Our evaluation excluded methods that

o1 are either not publicly available [11] or require multiple measurements for every sample [9].

9 In order to form a basis for evaluation, we generated pseudo-bulk mixtures using single-cell
s RNAseq (scRNAseq) data from peripheral blood mononuclear cells (PBMC; n=118 donors) [29]
s« and from lung parenchyma tissues (n=90 donors) [37] (Methods). We first evaluated the per-
os formance of the different methods in estimating population-level cell-type means, variances, and
%6 covariances by establishing gold standard estimates using the known underlying cell-type profiles
o7 of the mixtures. Our results yielded Unico, TCA and bMIND as the best performing methods for
s estimating population-level means and variances (Figure 2a; Supplementary Figures S1). Unico
9o stands out as the leading method for learning cell-type level covariances, showcasing an average
100 correlation improvement of 36.3% over bMIND, the second-best performing method, which also
101 explicitly models cell-type covariance [10] (Figure 2a; Supplementary Figures S1). The ranking of
12 methods remained consistent across different numbers of modeled cell types and various sample

103 sizes (Supplementary Figures S2-S7).

104 We next evaluated how well the 3D tensor estimated by Unico correlates with the true under-

105 lying cell-type expression levels of the pseudo-bulk profiles. Unico consistently outperformed the


https://doi.org/10.1101/2024.01.27.577588
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.27.577588; this version posted January 30, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

[ Baseline [ CIBERSORTx O TCA & bMIND [ Unico
Means Variances Covariances
1.00 08
0.75
2 075 0.6
K=l
S
© 0.50
© 0.50 0.4
=
S
0.25 0.25 0.2
0.00 0.00 0.0
X S © o) ° B 3 o o ° Bo) S _© - _®
O W 0P oo o W ot \A\(\/c o A,c 00‘5‘ /y“ o 0‘3 AN \/\ \1\0“ 0o®
b CD4 T Cells (32%) NK Cells (20%) CD8 T Cells (18%)
< 16300 < 1e-300 < 16300 < 1e-300 < 1e-300 < 1e-300
<1e-300 <1e-300 <1e-300 <1e-300 <1e-300 <1e-300
< 1e-300 < 1e-300 < 1e-300 < 1e-300 < 1e-300 < 1e-300
1.0 < 1e-300 < 1e-300 1.0 < 1e-300 < 1e-300 1.0 < 1e-300 < 1e-300
Sosl § ' T8 Soe | '
= 0.8 : = 0.8 H = 0.8 '
Los ' Los Los
5 e ! 5 § S il *
004 . 1 004 : . . 004 H
[ .
L] * .
0.2 L. ' 0.2 H 0.2 s ! ! :
0.0 . . 0.0 — s - 0.0 — — s
High Entropy Low Entropy High Entropy Low Entropy High Entropy Low Entropy
Monocytes (17%) B Cells (14%)
< 1e-300 < 16300 < 1e=300 < 1e-300
< 1e-300 < 1e-300 < 1e-300 < 1e-300
< 1e-300 < 1e—300 < 1e-300 < 1e-300
1.0 <1e-300 < 1e—300 1.0 <1e-300 < 1e-300
5 5 i f
E 0.8 E 0.8 ° i
Los Los .
[e] [e]
004 004 H
0.2 0.2 ' :
0.0 ) 0.0 ° —
High Entropy Low Entropy High Entropy Low Entropy
C
9 100 .
= 10 H
>
o
S (O} EEEREERY REE ERE CEE O 00 CEEREEREERS CRN AEE SEF 3N AECEECEECES CEF SRR CEF 3N o EECREEETERS CEE EEE CEF 3500 SECEECEEEEY G CEF SRR 370 IR
g
o =10
|
< -100 '

CD4 T Cells (32%)

Low Entropy

NK Cells (20%)

High Entropy

CD8 T Cells (18%)

Monocytes (17%)

Low Entropy

B Cells (14%)

High Entropy

d e
0.06 0.6
0.075 0.75
5
w = 0.4
o 0 0.050 8 050
= 2
[e)
0.02 0.025 Oo2s 02
0.00 0.000 [[I 0.00{ 0.0
ol oe\\ﬁ‘ce\\ }fc"ce‘\fc,e\\” \oc\l‘e e e o\;\e e\\‘v RS oe\\ﬁ‘ce\\ f"ceg > Qe \oe;‘e 2% c,e\\soq\?ﬁ‘ e\\é’ A
ot

e Lot \no®

< ¢
(,‘a“ O ok

WORTRY

® 00% ok

e o oo'* NOIEN


https://doi.org/10.1101/2024.01.27.577588
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.27.577588; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2: Evaluation of deconvolution methods. (a) Correlation between deconvolution and single-
cell based estimates of population-level means, variances, and covariances at the cell-type level
across 20 sets of pseudo-bulk mixtures from PBMC scRNAseq profiles of five cell types (500
samples and 600 genes in each set). (b) Evaluation of the concordance between the deconvo-
lution estimates and the known cell-type profiles of the same data in (a). Boxplots reflect the
distribution of linear correlation across all genes, and percentages indicate average cell-type abun-
dances. (c) Assessing deconvolution estimates for their information that cannot be explained by
pseudo bulk expression. Boxplots reflect the distribution across genes from the same data in (b) of
Alog,,(p-value), the difference between the log-scaled p-values of the effects of the pseudo bulk
expression and deconvolution estimates (higher is better; Methods). (d)-(e) Evaluation of whole-
blood DNA methylation deconvolution in terms of RMSE and correlation between estimates and
experimentally validated cell-type level methylation across 20 random sets of 1,000 highly variable
CpGs. All barplots and error bars in the figure represent means and one standard deviation errors;
negative correlations were truncated for visualization purposes, and p-values were calculated using

a paired Wilcoxon test.
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106 alternative methods across all cell types, providing an average improvement of 17.8% in correla-
107 tion over TCA, the second-best performing method (Figure 2b; Supplementary Figures S1). Unlike
18 Unico, bMIND is a Bayesian method that can perform deconvolution while incorporating prior in-
100 formation on the cell-type level means and covariates. We therefore further compared Unico to
110 bMIND in the presence of informative priors from single-cell data. Remarkably, we found that
111 bMIND could not improve upon Unico even in the unrealistic extreme case where the prior was

12 learned from the true cell-type levels of all samples in the data (Supplementary Figures S8 and S9).

113 As anticipated, the improvement of Unico is more pronounced in genes that exhibit strong
1a cell-type covariance structure (low-entropy genes; average correlation improvement of 20.0%)
1s  compared to high-entropy genes (average improvement of 14.9%). This discrepancy highlights
116 the added information Unico gains by modeling the cell-type covariance structure. Importantly,
17 learning a richer model does not come at the cost of significant computational runtime in this case;
ns 1n fact, Unico is the second fastest deconvolution method (Supplementary Figure S10). The overall
119 ranking of methods remained consistent across different numbers of modeled cell types and various

120 sample sizes (Supplementary Figures S2-S7).

121 Crucially, pseudo-bulk profiles are correlated with their true underlying cell-type levels. We
122 therefore asked whether the 3D tensors estimated by Unico and other methods explain the variation
123 of the true tensor beyond the pseudo-bulk input (Methods). Strikingly, we found that Unico is the
124 only method that learns substantial variation of the true tensor when accounting for the pseudo-bulk

125 profiles, including in lowly abundant cell-types (Figure 2c; Supplementary Figures S1-S7).

10
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126 Lastly, we aimed to confirm the transferability of Unico to other data modalities by decon-
127 volving bulk DNA methylation data. Reinius et al. [38] assayed from the same six individuals both
128 whole-blood methylation and cell-type methylation of six whole-blood cell types. This data col-
120 lection allowed us to establish a ground truth for the cell-type levels composing the whole-blood
130 bulk samples. In order to circumvent the sample size limitation of the Reinius data (n=6), we
131 took a two-step, reference-based approach. Initially, we employed Unico to estimate the model
132 parameters using a separate large whole-blood methylation dataset from a similar population [39].
133 Subsequently, we utilized these parameter estimates in Unico’s tensor estimator, which given the
13s  model parameters, deconvolves the bulk profile of each individual sample independently of other

135 samples in the data. A similar procedure was adapted for the competing methods (Methods).

136 Unico demonstrated exceptional performance compared to the alternative methods in recon-
137 structing the experimentally known 3D tensor. Considering the top 10,000 most variable methyla-
13s  tion CpGs in the data, Unico achieved an average improvement of 8.8% and 8.1% in root median
139 squared error (RMSE) and correlation compared with bMIND, the second best performing method
1o (Figure 2d,e; Supplementary Figures S11 and S12). The ranking of the methods was preserved
121 when considering a set of 10,000 randomly selected CpGs; unsurprisingly, all methods present a

12 noticeable decrease in performance in this case (Supplementary Figures S13-S15).

113 Detecting cell-type-specific differential expression in heterogeneous tumors Follicular lym-
124 phoma (FL) is the second most common indolent non-Hodgkin lymphoma (NHL) in the USA and

145 BEurope, accounting for nearly 20% of all NHL cases [40]. Previous work using FACS-sorted B

11
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1s cells from FL tumors identified 612 differentially expressed genes in the presence of CREBBP
127 mutation [41]. Here, similarly to previous analysis [8], we asked whether deconvolving bulk FL
1as  tumors (n=24, including 14 with CREBBP mutation) [8, 41] would allow us to detect the pre-
1e viously reported effects in B cells from FL tumors. Indeed, B cell expression levels estimated
150 by Unico from bulk FL tumors recapitulate the previously reported down- and up-regulation ef-
151 fects in FL B cells significantly better than alternative deconvolution methods (Figure 3a). More
152 specifically, none of the methods performed significantly better than the others on the up-regulated
153 genes, with the exception of the baseline method, which performed worse than all deconvolution
15« methods. However, Unico performed best on the down-regulated genes, and remarkably, it was the
155 only deconvolution method that performed significantly better than a straightforward bulk analysis

156 (adjusted p-value<0.05; Paired Wilcoxon test).

157 Unico improves resolution and robustness in epigenetic association studies We expected that
158 modeling and effectively estimating cell-type covariance will allow Unico to yield better perfor-
159 mance in downstream applications that aim at disentangling signals between cell types. In order to
1e0 demonstrate this, we evaluated the different deconvolution methods in calling cell-type level differ-
1e1 ential methylation (DM). While ground truth DM is generally unknown, one can consider the con-
12 sistency of a given method across different datasets as a surrogate for true/false positive/negative

163 rates.

164 We applied each method for testing a set of 177,207 CpGs for cell-type level DM in four

1es large whole-blood methylation datasets (n>590 each) with sex and age information [39, 42, 43].

12
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Figure 3: Application of deconvolution to downstream analysis tasks. (a) Deconvolution of bulk FL.
tumor samples for assessing previously reported CREBBP mutation-related gene expression in B
cells. Presented are deconvolution-based B cell effect size distributions for 219 down-regulated and
275 up-regulated genes; comparisons to Unico were calculated using a one-sided paired Wilcoxon
test. (b) Consistency in calling cell-type level differential methylation with sex and age across
four independent whole-blood DNA methylation datasets. Color gradients represent the Matthews
correlation coefficient (MCC) for every possible pairing of two datasets as discovery and validation
(Methods). Since bMIND was designed for binary conditions only, it was not evaluated in the age

analysis

s Specifically, for every possible combination of two out of the four datasets as discovery and val-
167 1dation data, we measured the consistency between datasets using the Matthews correlation coef-
s ficient (MCC) [44] (Methods). We excluded from this analysis CIBERSORTX, due to its runtime
1o (Supplementary Figure S10) and poor performance in deconvolving bulk methylation (Figure 2e;
170 Supplementary Figures S11-S15). Instead, we considered CellDMC, a method that was designed
171 specifically for detecting cell-type level DM by evaluating linear effects of interaction terms be-
172 tween the condition of interest and cell-type proportions [45]. We observe that Unico provides
173 the best overall consistency (Figure 3b), and it significantly improves upon TCA, the second best
172 method (p-value<0.05 for both sex and age; one-sided paired Wilcoxon test). Importantly, the

175 runtime of Unico was on par with TCA’s (Supplementary Figure S10).

176 The above evaluation disregards a straightforward analysis of the bulk data, which cannot
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177 associate DM with specific cell types but rather call CpGs as generally associated with conditions
178 (“tissue-level” analysis). Intuitively, models that provide cell-type resolution are more realistic
179 and are thus expected to improve cross-dataset consistency over a standard tissue-level analysis. In
1e0 order to verify this intuition, we evaluated a standard linear regression analysis of the bulk data for
181 calling tissue-level DM (Supplementary Figure S16). We observe that cell-type level analysis using
1.2 any of the deconvolution methods provides a substantial improvement in consistency compared to
18a  the bulk analysis. In particular, Unico provides an increase of 107.5% and 40.7% in MCC for
18« sex and age, respectively. Further adapting the different deconvolution methods to call tissue-level
1es DM (Supplementary Methods) yields all methods as better than a standard bulk analysis, with
186 Unico being the top performing method (Supplementary Figure S16) These results demonstrate
1e7  how carefully modeling the cell-type signals in bulk data improves analysis even if constrained to

188 a tissue-level context.

189 3 Discussion

190 We propose Unico, a deconvolution method that is theoretically appropriate for any bulk genomic
191 data type that reflects mixtures of signals across cell types. Here, we demonstrate the utility of
192 Unico for gene expression and DNA methylation, however, our distribution-free treatment sug-
193 gests its applicability to other genomic data types as well. Unico leverages covariance across cell
194 types, and as such, it deconvolves particularly well low-entropy features that exhibit non-trivial
195 correlation structure between cell types. Remarkably, our evaluation, based on two scRNAseq

196 datasets from different tissues and purified methylation data, demonstrates that Unico considerably
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197 outperforms state-of-the-art methods in general, even when deconvolving high entropy features.

198 Finally, Unico has some limitations, and while these limitations are not unique to Unico but
199 are rather common to all the deconvolution methods we evaluated, they may potentially bias and
200 affect the performance of our proposed model. First, given that lowly abundant cell types repre-
201 sent only a small fraction of the variance in bulk data, Unico is expected to perform poorly when
202 attempting to model a large number of cell types. Since heterogeneous tissues often represent
203 mixtures of a large number of cell types and subtypes, the deconvolution of Unico may be biased
20« by unmodeled cell types. Another limitation of Unico pertains to the assumption that cell-type
205 proportions of the input bulk samples are known. Admittedly, this information is rarely available
206 1n bulk genomics data, so proportions need to be estimated in practice. While it is commonplace
207 to employ reference-based methods for learning cell-type compositions, using estimates in place
208 of measurements creates yet another source of noise and potential bias. Despite these concerns,
200 we conclude that our comprehensive evaluation of Unico across diverse datasets and data modal-
210 ities provides compelling evidence of its superiority over existing state-of-the-art deconvolution

211 methods.

212 4 Methods

Unico: a model for uniform cross-omics deconvolution We denote X;; to be the (tissue-level)
bulk gene expression in sample i € {1...,n} of gene j € {1...,m}. For simplicity of exposition,

we use the notion of gene expression, however, j can represent any other genomic feature that may
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vary across cell types. We assume:

Xij = wl Zij + (¢85 + ey 3)

E[eij] = 0, V[eij] = 7'42 (4)

J

213 The first term in Equation (3) defines X;; as a weighted linear combination of cell-type expression
214 levels. Specifically, w; = (w;, ..., wy) is a vector of sample-specific cell-type proportions of k
215 cell types that are assumed to compose the studied tissue and Z;; = (Zijl, - Zijk) 1s a vector of
216 cell-type expression levels of gene ;7 in sample :. The second and third terms in Equation (3) model
217 systematic and non-systematic variation. Specifically, e;; is an i.i.d. component of variation that

: (2
218 reflects measurement noise, C;

is a po-length vector of known covariate values of sample 7 that
219 may be associated with unwanted global effects (i.e., “tissue-level” effects that may affect many

220 genes and are not cell-type-specific, such as batch effects), and /3 is a vector of the corresponding

221 gene-specific fixed effect sizes.

We assume that cell-type proportions {w;} are fixed and given. In practice, these can be
estimated using a reference-based approach (e.g., [14, 34]), as suggested by other deconvolution
methods [7-11]). In contrast to a standard decomposition problem, which assumes shared cell-
type expression levels across all samples, the unknown {Z;;} components are modeled as random
variables; this is emphasized by the use of upper-case notation. Specifically, for Z;j;,, the gene

expression in sample 7 of gene j and cell type h € {1..., k}, we assume:

Zijh = ILjn + (cf»”)Tm + €ijn (5)

E[Gijh] = O, V[Eijh] = O'jzh (6)
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222 where /15, is the mean level, specific to gene j and cell type h, €;;; is an i.i.d. noise term with mean
223 zero and variance U?h that may be specific to gene j and cell type £, cgl) is a p;-length vector of
224 known covariate values of sample ¢ that may present cell-type-specific effects, and ;, 1s a vector

225 of corresponding fixed effect sizes.

Lastly, we further model cell-type covariance. Concretely, we model the covariance of a

given gene j across cell types A, ¢ and denote:

Tinjg = CoV[Zijn, Zijql,  Ojngn = 05, (7
226 The Unico model makes no assumptions on the distribution of the components of variation
227 in Equations (3) and (5), which makes it naturally applicable to all heterogeneous tissue-level
228 omics that can be represented as linear combinations of cell-type level signals. Finally, Unico can
229 be viewed as a generalization of the TCA model and as a frequentist alternative for the bMIND

230 model. See Supplementary Methods for details.

Estimating the underlying 3D tensor with Unico. Given a single realization z;; of the bulk
level coming from X;;, we wish to learn z;;, the realization of the cell-type-specific expression
levels Z;; of the corresponding sample 7 and gene j. Our goal is hence to compose a 3D tensor
(samples by genes by cell types) based on the 2D input matrix. We address this problem by setting

the estimator of z;; to be the expected value of the conditional distribution Z;;| X,
Zij = E (2410, wi, Xij = 3] ®)
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where 0; is the set of parameters that are specific to gene j, that is,

0; = {ijntn U {vintn ULBi} Udiniqtna ©)

231 The following theorem provides an analytical solution for the estimator Z;; under the Unico model

232 in Equations (3)-(7).

Theorem 1 (The Unico 3D tensor estimator) The solution for the estimator stated in Equation (8)

under the Unico model is given by:
. ~1
Zij = E[ZZ]|0]] + (Sum ((wleT) ® E]) + TJ»Q) iji (xij — wZT <Mj + (Cgl))T’}/j)> — (CEQ))TBJ)

s where v; = (i1, .-, Vjk) € RPF is a martix composed of the vectors {v;n}, ¥; € R¥F¥ is the
23¢  cell-type covariance matrix of gene j, the ® operator is the Hadamard product of two matrices,

25 and the Sum(-) operator is a summation across all entries of a matrix.

236 Proof is given in the Supplementary Methods.

237 Theorem 1 provides an analytical solution for the 3D tensor given the cell-type proportions
28 {w;} and model parameters #;. As mentioned above, in practice, cell-type proportions are es-
239 timated using decomposition methods, and as we later describe, the model parameters can be

200 estimated from the observed bulk data and the estimated cell-type proportions.

241 Unico essentially defines the estimator Z;; as the expected value of the conditional distribu-
242 tion Z;j|X;; = x;;, which was previously suggested in TCA [7]. However, Under the richer Unico
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2e3 model this conditional distribution becomes more informative owing to the correlation structure
224 between cell types. Intuitively, learning cell-type levels that better capture cell-type covariance
2¢s  will enhance our capacity to assign deconvolution signals accurately to the respective cell types in

2s6  downstream analysis.

247 A-priori one may wonder whether modeling cell-type covariance is necessary for a decon-
248 volution method to recapitulate the true cell-type covariance in the data. Put differently, one could
249 expect an accurate deconvolution method to capture cell-type covariance regardless of an explicit
250 modeling of the covariance. However, our empirical results suggest that such modeling is valuable
251 for accurate deconvolution, and the following theorem provides intuition into why modeling the
252 covariance is indeed desired in order to achieve accurate deconvolution. Besides Unico, TCA [7]
253 1s the only existing deconvolution method that offers an analytical estimator for the 3D tensor.
25« Hence, the following exclusively focuses on Unico and TCA, as the theoretical analysis for other

255 methods remains unclear.

256 Theorem 2 (Improved capacity to reduce covariance bias) Assume for simplicity Vh : 5, =
257 0, O?h = 1, 7; = 0, and no covariates for some feature j under Equations (3)-(7). If n — oo then
258 (i) the cell-type covariances of the 3D tensor estimated by TCA are fixed and do not depend on
259 feature j, and (ii) the cell-type covariances of the 3D tensor estimated by Unico are a function of

260 the cell-type covariance of feature j.

261 Proof is given in the Supplementary Methods.
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22 Optimization We estimate the parameters of the model by following concepts from the General-
263 1zed Method of Moments (GMM) [46]. The GMM framework allows us to learn the parameters of
264 a model by iteratively solving equations (moment conditions) that match population moments (or,
265 more generally, a function of population moments) with their corresponding data-derived sample
266 moments. We tailor the optimization to the Unico model to form asymptotically consistent estima-
267 tors as in classical GMMs [46], while introducing practical considerations and constraints that are
268 essential for finite data. The full details about the optimization and implementation of Unico are

269 provided in the Supplementary Methods.

270 Implementation of Unico and practical considerations We implemented Unico in R. In order
271 to stabilize the parameter estimation, in practice, we consider non-negativity constraints when
272 estimating the means and a small L, penalty when estimating the variances and covariances in
273 the model. The latter alleviates the risk of multicollinearity and therefore inaccurate estimation
274 owing to the high correlation between the proportions of different cell types. Additionally, when
275 estimating the parameters of a given feature, we disregard samples with values that diverge from the
276 mean by more than two standard deviations. This measure prevents extreme and non-representative

277 data points from dominating the solution.

278 We optimize the Unico model iteratively. At the end of each iteration, we update the weights,
279 which can then be used for weighting the samples in the following iteration (Supplementary Meth-
250 0ds). At a given iteration, we learn the means using the constrained least squares solver pcls

281 from the mgcv R package, and we learn the variances and covariances using the COBYLA al-
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2.2 gorithm [47] as implemented in the nloptr R package [48]. Empirically, we found that Unico
283 works well using as few as two iterations (i.e., updating the weights once) for estimating the means

28« and using three iterations for estimating the variances and covariances (data not shown).

255 PBMC and lung scRNAseq data We obtained the PBMC scRNAseq dataset from a COVID-19
286 study by Stephenson et al. [29]. We arbitrarily selected only one sample for donors with multiple
257 measurements, which resulted in a total of 118 samples for the analysis. After excluding cells with
288 high percentage of hemoglobin (> 1%) or mitochondria (> 5%), and low percentage of ribosomal
289 content (< 1%), in addition to requiring a minimal and maximal number of unique expressed genes
200 (> 500, < 2500) and total UMI counts (> 2000, < 15000), 499,336 cells remained for the analysis.
201 In addition, we used scRNAseq from the data collection presented by Sikkema et al. [37] as part of
202 a study for integrating multiple datasets collected from the human respiratory system. We focused
203 on the lung parenchyma samples (n=90) that composed most of the carefully annotated group of
204« samples in the original study (defined by the authors as the “core reference” group). Employing
205 the same data filtering criteria as for the PBMC data resulted in a total of 296,227 cells for the
206 analysis. For both the PBMC and lung datasets we used the cell-type annotations provided by the

297 authors and applied a counts per million (CPM) normalization.

20s (Gene expression data with follicular lymphoma We used a preprocessed microarray bulk FL
209 data (n=302) by Newman et al. [8]. In total, out of the 302 samples available, 14 were confirmed
a0 to have the CREBBP mutation and 10 samples were confirmed to exhibit a wild-type allele. The

s0r  CREBBP status for 12 of these samples was collected by Green et al. [41] and the remaining 12
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a2 samples by Newman et al. [8]; the CREBBP status of all 24 samples was made available in the
a3  supplementary files of Newman et al. For defining a ground truth list of differentially expressed
s+ genes with CREBBP mutation in FL B cells, we considered the set of 334 up-regulated and 279
ss down-regulated genes that were previously reported in a study with sorted B cells from FL tu-
aos mors [41]. Intersecting these sets with the genes available in the bulk FL data left us with 275 and

a7 219 up- and down-regulated genes for evaluation.

ss  Whole-blood DNA methylation datasets We used a total of five beta-normalized DNA methyla-
a0 tion datasets that were collected using the [llumina 450K methylation array. For the methylation
a0 deconvolution analysis, we obtained data from Reinius et al. [38], including whole-blood (n=6)
st and matching cell-sorted methylation data from the same individuals (granulocytes, monocytes,
sz NK, B, CD4 T, and CDS8 T cells). For the cell-type level differential methylation (DM) analysis,
a3 we considered whole-blood datasets from liu et al. (n=687) [42], Hannum et al. (n=590; samples
a1 with missing smoking status were excluded) [39], and two datasets from Hannon et al. (n=675,
a5 n=665) [43]. In all datasets, we removed CpGs with non-autosomal, polymorphic, and cross-
sie  reactive probes [49], and we excluded low variance CpGs (variance<0.001). This left us with
a7 153,155, 144,743, 134,250, and 95,360 CpGs for the Liu, Hannum, and the two Hannon datasets,
sis respectively. For the Reinius dataset,we considered CpGs at the intersection between the Reinius
ato  data and a preprocessed version of the Hannum dataset (restricted to samples with European an-
a0 cestry; 93,086 CpGs). Lastly, cell-type proportions were estimated for all whole-blood datasets

221 using EpiDISH, a reference-based methylation decomposition method [50].
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22 Implementation and application of competing deconvolution and cell-type association meth-
223 ods We ran all CIBERSORTX [8] related codes under a docker container version 1.0 encapsulating
324 both the “High Resolution” mode (for estimating cell-type level profiles) and the “Fractions” mode
a5 (for estimating cell-type proportions) with default parameters and authentication token granted by
a6 the CIBERSORTX team upon request. CIBERSORTX evaluates the maximum value in a bulk input
327 and automatically assumes the data have been log-normalized if the maximum is less than 50. This
a8 choice is reasonable for transcriptomic data, for which CIBERSORTx was designed, however, it is
20 not justified for beta-normalized methylation levels that are restricted to the interval [0, 1]. We thus
a0 scaled the methylation beta values by a factor of 10,000 prior to the application of CIBERSORTx

ass1  and rescaled the results back to original scale.

332 We installed the TCA [7] R CRAN package version v1.2.1 deposited on CRAN and evalu-
asss  ated its performance under default parameters. We fitted the model using the function tca and
s« performed deconvolution using the tensor function. For the cell-type level DM analysis, both
a5 the joint (tissue-level) and marginal (cell-type level) statistical tests were automatically evaluated

ass  as part of the model parameter learning step in the t ca function.

337 bMIND [10] is available via the MIND R CRAN package version 0.3.3. We obtained the cell-
ass  type specific profiles and the estimated model parameters with the function bMIND and performed
ase association testing with the function test. bMIND evaluates the maximum value in the bulk
a0 input and automatically log transforms the data if the maximum is larger than 50. We therefore

a1 scaled the bulk expression profile (and the single-cell derived prior) by the inverse of the largest

24


https://doi.org/10.1101/2024.01.27.577588
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.27.577588; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a2 detected value before applying bMIND, and then rescaled the output back to the original scale. This
sz approach ensured consistency and comparability across all deconvolution methods. Specifically,
a4 allowing the default log transformation of the data would have violated the assumption that bulk

as levels represent linear combinations of cell-type levels.

346 Throughout this work, we also evaluated a baseline approach in our analysis and evaluation

a7 by simply considering the product of the observed bulk data and the cell-type proportions as cell-

ss  type level estimates. That is, we estimated 253, the cell-type level of sample ¢, gene j, and cell
Baseline

a9 type has z; " = x;; - w;p,. Finally, we applied CellDMC [45] for DM using the implementation

ss0  1n the Bioconductor R package EpiDISH, version 2.10.0.

351 Deconvolving mixtures of gene expression profiles and estimating cell-type level moments We
352 used both the PBMC and lung scRNAseq datasets for generating pseudo-bulk mixtures. Briefly,
a3 for creating a new pseudo-bulk sample, we first drew (with replacement) all cell-type level profiles
354 of one randomly selected sample. The cell-type profiles of each individual sample were defined
355 as normalized pseudo-bulk counts at the cell-type level. We then drew (with replacement) the
a6 cell-type proportions of one randomly selected sample in the data (total number of cells coming
ss7  from each cell type, normalized to sum up to 1). Eventually, these were used as the weights for a

s weighted linear combination of the cell-type level profiles to create one pseudo-bulk sample.

359 In the PBMC analysis we considered either five major cell-type groups (monocytes, NK, B,
0 CD4 T, and CD8 T cells) or seven cell types by further stratifying B cells into canonical B cells and

st plasma cells and monocytes into CD16 and CD14 monocytes. In the analysis with lung cells we
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s2 considered either four major cell-type groups (endothelial, stromal, immune, and epithelial cells)
ss  or six cell types by further stratifying immune cells into myeloid and lymphoid compartments and
se4 epitihelial cells into airway and alveolar epithelium cells. Our evaluation was restricted for the top

35 10,000 most highly expressed genes in the data. See Supplementary Methods for more details.

366 The pseudo-bulk mixtures, along with the corresponding mixing proportions, were provided
37 as the input for all deconvolution methods to learn 3D tensors. We assessed these tensors for their
ss accuracy by comparing them against the known cell-type profiles. Particularly, for a given cell
s type and a given gene, we evaluated the correlation between the true cell-type expression levels of

a0 the pseudo-bulk samples and their deconvolution-based estimates.

78 We obtained estimates of population-level cell-type moments from the data (means, vari-
a2 ances, and covariances per gene) directly from the output of the deconvolution methods. For
a3 methods which do not explicitly output such estimates (e.g., no method except for bMIND and
az+  Unico outputs covariance estimates), we used the estimated tensor for calculating these moments.
a5 To evaluate the accuracy of the estimated moments, we established gold standard estimates based
a7e on the cell-type profiles underlying the pseudo-bulk mixtures. In order to mitigate the potential
a7z influence of outliers, we considered only samples within 2 standard deviations from the mean for

a7 the moments estimation of a given gene.

379 Finally, we used multiple linear regression for evaluating whether an estimated 3D tensor of
ss0 a given deconvolution method captures variation of the true tensor beyond its correlation with the

ss1 deconvolution input (i.e., pseudo-bulk and cell-type proportions). In more detail, for every gene

26


https://doi.org/10.1101/2024.01.27.577588
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.27.577588; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ss2 and cell type, we fitted a regression model for the known cell-type expression levels as the depen-
sss dent variable using several independent variables, including the pseudo-bulk levels of the gene,
ss4 the cell-type proportions, and the cell-type tensor estimates. This allowed us to quantify to what
a5 extent the deconvolution-based estimates provide information beyond the bulk data. Specifically,
s we defined A log,,(p-value) as the difference between the log-scaled (basis 10) t-test derived p-
ss7  values of the pseudo-bulk variable and the estimated cell-type levels in the regression. Of note, we
sss defined the p-values to be 1 in cases where cell-type levels were estimated to have no variation. In
ass9 order to mitigate potential biases due to heavy-tailed distributions of expression levels, we log1p-
a0 transformed expression levels and considered only samples within 2 standard deviations from the

391 Imean.

s2 Deconvolving the Reinius whole-blood DNA methylation data Unlike our deconvolution of
393 gene expression mixtures, the size of the Reinis data (n=6) does not allow for drawing reliable
s« conclusions through a straightforward evaluation. Particularly, Unico, as well as current decon-
aes  volution methods, are designed to operate on large bulk data. We circumvented this limitation by
a6 taking a two-step reference-based procedure. First, we learned the parameters of the Unico model
a7 from the larger Hannum whole-blood methylation data [39]. Acknowledging that population struc-
ses ture affects methylation [51], we focused solely on Caucasian individuals from the Hannum data
a9 (n=426), anticipating that they would adequately represent the Swedish individuals in the Reinius
a0 study. Then, we plugged these parameter estimates into Unico’s 3D tensor estimator together with
01 the Reinius bulk profiles and their cell-type proportion estimates. We performed the same proce-

a2 dure for TCA, however, CIBERSORTx and bMIND, which do not provide an analytical estimator
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a0 of the tensor, required a different strategy. In order to inform the deconvolution of CIBERSORTx
s04 and bMIND with the same additional information, we applied these methods to the concatenation
a5 of the Reinius and Hannum datasets and extracted the cell-type level estimates for the Reinius

06 samples.

407 Benchmarking methods based on the Reinius data presents a second challenge: determining
a8 a proper way to evaluate their performance given that data from only six individuals is available
a9 for the analysis. We tackle this limitation by collapsing methylation levels in the estimated tensor
a0 along both the CpGs and samples axes. That is, for every cell type, we evaluated how correlated
a1 1s the vector of all methylation estimates of the cell type (i.e., by pooling estimates across all
sz CpGs and samples) with the experimentally measured ground truth levels from purified cells. This
a3 yielded a single correlation score per cell type. Importantly, when stacking CpGs for evaluation, a
s14 deconvolution that only correctly estimates relative means and scales of CpGs but performs poorly
a5 in terms of per-CpG correlation (i.e., across samples) may achieve spuriously high correlation

a6 levels. We addressed this by removing from every CpQG its cell-type level mean methylation level.

47 Since beta-normalized methylation levels are bounded to the range [0,1], unlike in the de-
w8 convolution of relative expression levels, we further evaluated the divergence of the estimated 3D
a9 tensors from the true cell-type levels in absolute terms. Specifically, we evaluated the root median
220 square error (RMSE) between the true and each estimated 3D tensor; we expected that a median
21 metric in place of a standard mean square error would improve robustness to outliers. Similarly to

222 the evaluation of correlation, we calculated an RMSE value per cell type after collapsing methyla-

28


https://doi.org/10.1101/2024.01.27.577588
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.27.577588; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a3 tion levels in the tensors along both the CpGs and samples axes.

424 Finally, our benchmarking focused either on randomly selected CpGs or on a set of highly
a5 variable CpGs based on the Reinius data. For defining the latter, we ranked the CpGs in the
26 1ntersection of the Reinius and Hannum datasets (93,086 CpGs) by the sum of their variances in
227 the different cell types using the sorted methylation Reinius data and chose the top 10,000 CpGs

228 with the largest values.

229 Calculating robust linear correlation All the correlation values reported throughout our analysis
s30 and evaluation were calculated using a robust linear correlation metric in place of the standard
31 Pearson correlation. Specifically, we used the function cov . rob from the MASS R package [52],
sz which performs an approximate search for a subset of the observations to exclude such that a
s33 Gaussian confidence ellipsoid is minimized in volume. Effectively, this procedure trims outliers
;3¢ that may otherwise dramatically bias correlation levels. In particular, if either input vector has an
s35  1nterquartile range (IQR) of 0, cov. rob defines the correlation as 0. Throughout the paper, we

a6 set the fraction of outliers to exclude to 5% of the data points.

137 Calculating von Neumann entropy We quantify the amount of signal coming from the covari-
a8 ance structure of a given gene by the von Neumann entropy [53]. For a given gene, the von
139 Neumann entropy is defined as the entropy applied to the eigenvalues of the normalized cell-type
a0 covariance matrix of the gene (i.e., a k X k matrix of correlations between cell types). High entropy
a1 corresponds to cases where no substantial cell-type covariance structure exists, and low entropy in-

a2 dicates strong positive or negative correlations between cell types. Throughout our evaluation of
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a3 the deconvolution results we grouped genes into high- and low-entropy groups. This classification
a4 was based on ranking the genes by their entropy and assigning genes with above-median (below-
a5 median) entropy to the high (low) entropy group. Lastly, the normalized von Neumann entropy
us presented in figure 1b simply refers to von Neumann entropy values scaled to the range [0,1].
a7 Since the von Neumann entropy is bounded by a number that depends on the number of cell types
us  k, this normalization enables us to evaluate and visualize the distribution of entropy across genes

a9 using covariance matrices of different sizes.

150 Deconvolving bulk profiles from follicular lymphoma tumors For every deconvolution method,
a5 we first estimated the 3D tensor of the bulk FL dataset (n=302) while considering only the sets of
ss2 275 and 219 genes that were previously reported as up- and down-regulated with the CREBBP
s53 mutation. We provided each method with cell-type proportions estimated using CIBERSORTx
s54  (“Fractions” mode) with the LM?22 signature matrix [54], while collapsing the estimated propor-

a5 tions into 4 categories: B cells, CD4 T cells, CD8 T cells, and “remaining”.

456 A straightforward evaluation would include calculating for every method log-fold changes
ss7 (LFCs) with the CREBBP mutation based on the estimated B cell expression levels. This would
s allow assessing the concordance between the LFCs and the previously-reported direction of the
59 differentially expressed genes. However, the group of CREBBP-mutated tumors presents an el-
w0 evated B cell composition, which is expected to lead to an overly-optimistic performance on the
w61 set of up-regulated genes in cases of deconvolution estimates that are biased by cell composition

w2 (Supplementary Figure S17). Most notably, since the baseline method estimates B cell expression
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s3 levels by naively multiplying bulk levels by B cells proportions, the baseline estimates are ex-
w4 pected to be artificially higher for samples with higher B cells composition. The baseline method
ses therefore consistently estimates higher B cell expression levels for the CREBBP-mutated tumors,
a6 regardless of whether the genes are truly down- or up-regulated. Consequently, genes that are truly
s67 up-regulated in CREBBP tumors are expected to present strong LFCs under the baseline given the

s combination of both real and artificial up-regulation effects.

469 In order to account for the B cell composition bias, we used multiple linear regression to test
a0 whether the estimated tensors capture the mutation effects beyond the effect of B cell composition.
snr In more detail, for every gene, we fitted a regression model for the estimated B cell expression lev-
a2 €ls as the dependant variable using the B cell composition and the mutation status as independent
73 variables. We performed the same procedure while using the bulk expression levels as the depen-
s74 dent variable to evaluate a standard analysis of bulk expression. In order to allow a comparable
a5 evaluation of the estimated mutation effect sizes across the different methods and to alleviate the
a76  potential effect of outliers, we standardized the loglp-scaled B cell expression estimates of every
a7 gene. For methods that do not constrain non-negativity in their estimated tensor, for every gene and
a8 cell type, we shifted the distribution of the estimates by subtracting the minimum value detected,
a9 which enforced non-negatively prior to the log1p transformation. The effect size of a gene that was

se0 estimated to have a constant B cell expression level across all samples was set to O.

ss1 Cell-type level epigenetic association studies with sex and age We performed statistical testing

sg2  for calling DM using Unico, TCA [7], bMIND [10], and CellDMC [45] (Supplementary Methods).
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a3 As a baseline model, we evaluated the linear effects of the conditions on the tensor estimates of
ss¢ our baseline deconvolution. Concretely, for a given CpG and cell type, we fitted a linear regression
sss  model with the baseline-estimated cell-type level methylation as the dependent variable and the
ss6 condition (and covariates) as the independent variable. This allowed us to calculate t-statistics and

se7 derive p-values for the cell-type level effects of the conditions under a baseline deconvolution.

488 Our analysis included cell-type level covariates ({cz(l)} under the Unico notations) and tissue-
a0 level covariates ({c§2)} under the Unico notations). For cell-type covariates, we considered age
a0 and sex in the analysis of all four whole-blood methylation datasets (Liu et al. [42], Hannum et
s91  al. [39], and two cohors by Hannon et al. [43]). In addition, we accounted for rheumatoid arthritis
s2 and smoking status in the Liu data, schizophrenia status in the Hannon data, and ethnicity and
a3 smoking status in the Hannum data. Across all datasets, smoking status was classified into three
s94 Major categories: never, past, and current smoker. For tissue-level covariates, we considered sur-
a5 rogates of technical variability. In more detail, for each methylation dataset, prior to filtering any
a6 CpG, we took a previously suggested approach [7, 28] of estimating factors of technical variation
se7 by calculating the top 20 principal components (PCs) of the 10,000 least variable CpGs of each
a8 methylation array. We expected these PCs to capture only global technical variation and no bio-
s99 logical variation due to the use of CpGs with nearly constant variance. In addition to these PCs,
soo we further accounted for plate information, which was available for the Hannum data. All the
so0  benchmarked methods were designed to account for cell-type and tissue-level covariates, except
so2 for the baseline model. For the latter, we simply included the full set of covariates as independent

so3 variables in the linear regression model.
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504 The inter-individual distribution of array-probed methylation levels is approximately nor-
sos mally distributed for most CpGs. For that reason, TCA and CellDMC, which were designed for
sos methylation data, assume the data is normally distributed; bMIND assumes normality as well, even
so7 though it was not designed for methylation. We therefore similarly applied statistical testing under
sos @ normality assumption when evaluating Unico on calling DM (Supplementary Methods). No-
so9 tably, this assumption is not required given that the Unico framework is generally distribution-free
stio - and allows us to derive asymptotic p-values (Supplementary Methods). Indeed, we empirically ob-
s11 serve that asymptotically-derived p-values are highly correlated with their parametric counterparts,

stz while also being calibrated under the null (Supplementary Figure S18-S21).

513 For any given ordered pair of datasets (discovery and validation), we considered the CpGs at
s14  the intersection of the two datasets. True positives (TPs) were defined as CpGs that are (i) genome-
s15 wide significant in the discovery dataset under a Bonferroni-corrected threshold and (i1) significant
sie in the validation dataset, under a Bonferroni-corrected threshold adjusting for the number of sig-
517 nificant hits identified in the discovery data. CpGs that only satisfied condition (i) and either failed
sis to satisfy condition (ii) or demonstrated inconsistent direction of their estimated effect size were
sti9  considered as false negatives (FNs). CpGs with p-value>0.95 in the discovery dataset were con-
s20 sidered as negative controls for the evaluation of false positives (FPs) and true negatives (TNs).
s2t  That is, negative controls with significant (non-significant) p-values under a Bonferroni-corrected
s22 threshold adjusting for the number of negative controls in the validation data were counted as FPs

523 (TNS).
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524 Finally, as a metric of consistency across datasets, we calculated the MCC per method for
s25  every pair of discovery and validation datasets. We favored MCC over the widely-used F1 score
s26 since the former incorporates true negatives, which makes it a better choice for assessing model
s27  performance on imbalanced class distributions [44]. Yet, for completeness, we further considered
s2s  the F1 score as the consistency metric, which revealed qualitatively similar results (Supplementary

s29  Figure S22 and S23).

s0  Data availability

s31 The bulk FL data is available from GEO (accession number GSE127462). The whole-blood
s22 methylation data with matching sorted cells, as well as the whole-blood methylation datasets
ss3  used for cell-type level DM analysis are available from GEO (accessions GSE35069, GSE42861
ss¢  GSE40279, GSE80417, GSE84727). The PBMC scRNAseq dataset was downloaded from EMBL-
s3s. EBI (accession E-MTAB-10026), and the lung scRNAseq is available on cellxgene [55] as the

ss integrated Human Lung Cell Atlas.

ss7  Code availability

sss  Unico is available as an R package under the GPL-3 license license at: https://github.com/cozygene/

ss  Unico.
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