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The vast majority of population-scale genomic datasets collected to date consist of “bulk”7

samples obtained from heterogeneous tissues, reflecting mixtures of different cell types. In8

order to facilitate discovery at the cell-type level, there is a pressing need for computational9

deconvolution methods capable of leveraging the multitude of underutilized bulk profiles al-10

ready collected across various organisms, tissues, and conditions. Here, we introduce Unico,11

a unified cross-omics method designed to deconvolve standard 2-dimensional bulk matrices12

of samples by features into a 3-dimensional tensors representing samples by features by cell13

types. Unico stands out as the first principled model-based deconvolution method that is the-14

oretically justified for any heterogeneous genomic data. Through deconvolution of bulk gene15

expression and DNA methylation datasets, we demonstrate that the transferability of Unico16

across different data modalities translates into superior performance compared to existing17

approaches. This advancement enhances our capability to conduct powerful large-scale ge-18

nomic studies at cell-type resolution without the need for cell sorting or single-cell biology.19
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1 Introduction20

Studying cell-type level genomic variation is critical for unveiling complex biology. Unfortunately,21

collecting large and well-powered datasets at cell-type resolution for population studies has yet to22

become common practice. Current single-cell datasets typically consist of data collected from no23

more than several dozens of individuals due to prohibitive costs, and purifying cell types at scale24

using flow cytometry is laborious and often impractical, particularly for solid and frozen tissues25

for which cell isolation is very challenging [1–5].26

Indeed, most transcriptomic and other genomic data types collected to date have been mea-27

sured from heterogeneous tissues that consist of multiple cell types, resulting in vast amounts of28

large heterogeneous “bulk” genomic data (e.g., over two million bulk profiles publicly available29

on the Gene Expression Omnibus alone [6]). This rationalizes the development of computational30

methods that can disentangle the convolution of cell-type level signals that compose such bulk31

profiles. The premise, upon successful implementation, offers a transformative capability to con-32

duct powerful, large-scale studies at the cell-type level in multiple tissues and under numerous33

conditions for which large bulk data have already been collected.34

Here, we propose a method for deconvolving 2-dimensional (2D) bulk data (samples by fea-35

tures) into its underlying 3-dimensional (3D) tensor (samples by features by cell types) Thus far,36

deconvolution methods have been tailored to specific data types [7–11]. In contrast, we introduce37

a unified cross-omics method, Unico, the first principled model-based deconvolution method that38

is theoretically applicable to any heterogeneous genomic data. As we demonstrate through a com-39
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prehensive analysis of multiple gene expression and DNA methylation datasets, this generalization40

translates into superior performance over existing approaches and improves our ability to conduct41

powerful large-scale genomic studies at cell-type resolution.42

2 Results43

From bulk genomics to cell-type resolution: decomposition versus deconvolution The study

of bulk genomics routinely calls for decomposition, wherein an observed bulk data matrix is mod-

eled as the product of two matrices: (i) cell-type proportions (fractions) of the samples in the data

and (ii) per-feature cell-type genomic levels (“signatures”; Figure 1a). This amounts to solving a

matrix factorization problem. For a given bulk observation xij of genomic feature j in sample i,

virtually all decomposition models share the following assumption:

xij =
k

∑

h=1

wihzjh + eij (1)

where wi1, ..., wik are the proportions of k modeled cell types in sample i, zj1, ..., zjk are the cell-44

type level signatures of the genomic feature j in each of the k cell types, and eij is an error term.45

Numerous decomposition formulations with various assumptions on the products of the46

factorization have been proposed for the estimation of cell-type compositions and for learning47

cell-type signatures using different genomic modalities, including gene expression [12–15], DNA48

methylation [16–20], copy number aberrations [21, 22], ATAC-Seq [23], and Hi-C data [24]. The49

rich toolbox of decomposition methods has proven successful for a wide range of applications,50

such as clustering genes and studying their functional relationships [25, 26], inferring tumor com-51
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position [21, 22], and discovering cancer sub-types [27]. However, these methods allow us to infer52

only a single profile of cell-type level signatures per feature, which corresponds to the unrealistic53

assumption that all samples in the data share the same genomic levels at the cell-type level.54

Every sample may reflect its own – possibly unique – cell-type level patterns, owing to

various factors of inter-individual variation, such as genetic background, environmental exposures,

and demographics. A natural adjustment of the decomposition model to reflect such variation

yields:

xij =
k

∑

h=1

wihzijh + eij (2)

where zijh now represents the level of feature j in cell-type h, specifically in sample i. Learning55

zijh from bulk data is essentially a deconvolution problem, wherein we disentangle the mixture of56

signals in a 2D samples by features bulk data into the unobserved underlying 3D tensor of samples57

by features by cell types (Figure 1a).58

Decomposition under Equation (1) can be viewed as a degenerate case of the more general59

deconvolution problem in Equation (2) [28]. Deconvolving the data is thus more desired than60

merely decomposing the data, and the higher resolution of a successful deconvolution is expected61

to improve cell-type context and discovery in the analysis of bulk genomics. This has been high-62

lighted and demonstrated by several recent deconvolution methods, including CIBERSORTx [8],63

MIND [9], bMIND [10], and CODEFACS [11] in the context of transcriptomics and TCA [7] in64

the context of DNA methylation.65
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Figure 1: (a) Illustration of decomposition versus deconvolution. (b) The distribution of cell-type

covariance structure strength across the top 10,000 most highly expressed genes in scRNAseq from

PBMC [29], measured by normalized von Neumann entropy (Methods). (c) The joint distribution

of CD4- and monocyte-specific CHCHD2 expression across 118 scRNAseq PBMC samples (left)

and the corresponding conditional joint distribution of a Unico deconvolution (right) for one ar-

bitrary individual sample (red circle) given the pseudo-bulk level of the sample. The conditional

joint distribution highlights the distance between the true cell-type levels (red circle) and the de-

convolution estimate (light blue circle; expectation of the conditional distribution). (d) The same

only for the higher-entropy gene SLC2A3.
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Unico: A unified cross-omics deconvolution model Current deconvolution methods can be cate-66

gorized into two groups: heuristic approaches, including CIBERSORTx [8] and CODEFACS [11],67

and methods based on the assumption of data following a normal distribution, including TCA [7],68

MIND [9], and bMIND [10]. The latter group faces limitations rising from the normal distribution69

assumption, which is known to be invalid at least for transcriptomic data [30–32]. Importantly, the70

utilization of variance stabilizing transformations, such as log-scaling, would violate the linearity71

assumption in Equations (1)-(2) and therefore lead to biased estimation [33].72

We introduce Unico, a deconvolution method for learning cell-type signals from an input73

of large heterogeneous bulk data and matching cell-type proportions. In practice, the latter is74

estimated from the input bulk profiles using reference-based decomposition (e.g., [14, 34]), as per-75

formed by all existing deconvolution methods [7–11]. The primary novelty of Unico stems from76

taking a model-based approach following Equation (2) while making no distributional assump-77

tions, which renders it the first principled model-based method that is theoretically justified for78

analyzing cell type mixtures in any bulk genomic dataset (Methods).79

A second key component of Unico is the consideration of covariance between cell types.80

Genomic features may be different yet coordinated across different cell types; for example, tran-81

scriptional programs can persist through multiple differentiation steps [35, 36]. Indeed, we observe82

that many genes present a non-trivial correlation structure across their cell-type-specific expression83

levels, as measured by entropy of the correlation matrix (Figure 1b), with stronger cell-type cor-84

relations (lower entropy) observed between cell types that are close in the lineage differentiation85
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tree (Supplementary Materials). In the presence of covariance, Unico leverages the information86

coming from the coordination between cell types for improving deconvolution (Figure 1c,d).87

Establishing a new state-of-the-art deconvolution for bulk genomics We compared Unico to88

CIBERSORTx, TCA, and bMIND, as well as to a simple baseline approach of naively weighting89

each bulk profile by the cell-type proportions of the sample. Our evaluation excluded methods that90

are either not publicly available [11] or require multiple measurements for every sample [9].91

In order to form a basis for evaluation, we generated pseudo-bulk mixtures using single-cell92

RNAseq (scRNAseq) data from peripheral blood mononuclear cells (PBMC; n=118 donors) [29]93

and from lung parenchyma tissues (n=90 donors) [37] (Methods). We first evaluated the per-94

formance of the different methods in estimating population-level cell-type means, variances, and95

covariances by establishing gold standard estimates using the known underlying cell-type profiles96

of the mixtures. Our results yielded Unico, TCA and bMIND as the best performing methods for97

estimating population-level means and variances (Figure 2a; Supplementary Figures S1). Unico98

stands out as the leading method for learning cell-type level covariances, showcasing an average99

correlation improvement of 36.3% over bMIND, the second-best performing method, which also100

explicitly models cell-type covariance [10] (Figure 2a; Supplementary Figures S1). The ranking of101

methods remained consistent across different numbers of modeled cell types and various sample102

sizes (Supplementary Figures S2-S7).103

We next evaluated how well the 3D tensor estimated by Unico correlates with the true under-104

lying cell-type expression levels of the pseudo-bulk profiles. Unico consistently outperformed the105
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Figure 2: Evaluation of deconvolution methods. (a) Correlation between deconvolution and single-

cell based estimates of population-level means, variances, and covariances at the cell-type level

across 20 sets of pseudo-bulk mixtures from PBMC scRNAseq profiles of five cell types (500

samples and 600 genes in each set). (b) Evaluation of the concordance between the deconvo-

lution estimates and the known cell-type profiles of the same data in (a). Boxplots reflect the

distribution of linear correlation across all genes, and percentages indicate average cell-type abun-

dances. (c) Assessing deconvolution estimates for their information that cannot be explained by

pseudo bulk expression. Boxplots reflect the distribution across genes from the same data in (b) of

∆ log10(p-value), the difference between the log-scaled p-values of the effects of the pseudo bulk

expression and deconvolution estimates (higher is better; Methods). (d)-(e) Evaluation of whole-

blood DNA methylation deconvolution in terms of RMSE and correlation between estimates and

experimentally validated cell-type level methylation across 20 random sets of 1,000 highly variable

CpGs. All barplots and error bars in the figure represent means and one standard deviation errors;

negative correlations were truncated for visualization purposes, and p-values were calculated using

a paired Wilcoxon test.
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alternative methods across all cell types, providing an average improvement of 17.8% in correla-106

tion over TCA, the second-best performing method (Figure 2b; Supplementary Figures S1). Unlike107

Unico, bMIND is a Bayesian method that can perform deconvolution while incorporating prior in-108

formation on the cell-type level means and covariates. We therefore further compared Unico to109

bMIND in the presence of informative priors from single-cell data. Remarkably, we found that110

bMIND could not improve upon Unico even in the unrealistic extreme case where the prior was111

learned from the true cell-type levels of all samples in the data (Supplementary Figures S8 and S9).112

As anticipated, the improvement of Unico is more pronounced in genes that exhibit strong113

cell-type covariance structure (low-entropy genes; average correlation improvement of 20.0%)114

compared to high-entropy genes (average improvement of 14.9%). This discrepancy highlights115

the added information Unico gains by modeling the cell-type covariance structure. Importantly,116

learning a richer model does not come at the cost of significant computational runtime in this case;117

in fact, Unico is the second fastest deconvolution method (Supplementary Figure S10). The overall118

ranking of methods remained consistent across different numbers of modeled cell types and various119

sample sizes (Supplementary Figures S2-S7).120

Crucially, pseudo-bulk profiles are correlated with their true underlying cell-type levels. We121

therefore asked whether the 3D tensors estimated by Unico and other methods explain the variation122

of the true tensor beyond the pseudo-bulk input (Methods). Strikingly, we found that Unico is the123

only method that learns substantial variation of the true tensor when accounting for the pseudo-bulk124

profiles, including in lowly abundant cell-types (Figure 2c; Supplementary Figures S1-S7).125
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Lastly, we aimed to confirm the transferability of Unico to other data modalities by decon-126

volving bulk DNA methylation data. Reinius et al. [38] assayed from the same six individuals both127

whole-blood methylation and cell-type methylation of six whole-blood cell types. This data col-128

lection allowed us to establish a ground truth for the cell-type levels composing the whole-blood129

bulk samples. In order to circumvent the sample size limitation of the Reinius data (n=6), we130

took a two-step, reference-based approach. Initially, we employed Unico to estimate the model131

parameters using a separate large whole-blood methylation dataset from a similar population [39].132

Subsequently, we utilized these parameter estimates in Unico’s tensor estimator, which given the133

model parameters, deconvolves the bulk profile of each individual sample independently of other134

samples in the data. A similar procedure was adapted for the competing methods (Methods).135

Unico demonstrated exceptional performance compared to the alternative methods in recon-136

structing the experimentally known 3D tensor. Considering the top 10,000 most variable methyla-137

tion CpGs in the data, Unico achieved an average improvement of 8.8% and 8.1% in root median138

squared error (RMSE) and correlation compared with bMIND, the second best performing method139

(Figure 2d,e; Supplementary Figures S11 and S12). The ranking of the methods was preserved140

when considering a set of 10,000 randomly selected CpGs; unsurprisingly, all methods present a141

noticeable decrease in performance in this case (Supplementary Figures S13-S15).142

Detecting cell-type-specific differential expression in heterogeneous tumors Follicular lym-143

phoma (FL) is the second most common indolent non-Hodgkin lymphoma (NHL) in the USA and144

Europe, accounting for nearly 20% of all NHL cases [40]. Previous work using FACS-sorted B145
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cells from FL tumors identified 612 differentially expressed genes in the presence of CREBBP146

mutation [41]. Here, similarly to previous analysis [8], we asked whether deconvolving bulk FL147

tumors (n=24, including 14 with CREBBP mutation) [8, 41] would allow us to detect the pre-148

viously reported effects in B cells from FL tumors. Indeed, B cell expression levels estimated149

by Unico from bulk FL tumors recapitulate the previously reported down- and up-regulation ef-150

fects in FL B cells significantly better than alternative deconvolution methods (Figure 3a). More151

specifically, none of the methods performed significantly better than the others on the up-regulated152

genes, with the exception of the baseline method, which performed worse than all deconvolution153

methods. However, Unico performed best on the down-regulated genes, and remarkably, it was the154

only deconvolution method that performed significantly better than a straightforward bulk analysis155

(adjusted p-value<0.05; Paired Wilcoxon test).156

Unico improves resolution and robustness in epigenetic association studies We expected that157

modeling and effectively estimating cell-type covariance will allow Unico to yield better perfor-158

mance in downstream applications that aim at disentangling signals between cell types. In order to159

demonstrate this, we evaluated the different deconvolution methods in calling cell-type level differ-160

ential methylation (DM). While ground truth DM is generally unknown, one can consider the con-161

sistency of a given method across different datasets as a surrogate for true/false positive/negative162

rates.163

We applied each method for testing a set of 177,207 CpGs for cell-type level DM in four164

large whole-blood methylation datasets (n>590 each) with sex and age information [39, 42, 43].165
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Figure 3: Application of deconvolution to downstream analysis tasks. (a) Deconvolution of bulk FL

tumor samples for assessing previously reported CREBBP mutation-related gene expression in B

cells. Presented are deconvolution-based B cell effect size distributions for 219 down-regulated and

275 up-regulated genes; comparisons to Unico were calculated using a one-sided paired Wilcoxon

test. (b) Consistency in calling cell-type level differential methylation with sex and age across

four independent whole-blood DNA methylation datasets. Color gradients represent the Matthews

correlation coefficient (MCC) for every possible pairing of two datasets as discovery and validation

(Methods). Since bMIND was designed for binary conditions only, it was not evaluated in the age

analysis

Specifically, for every possible combination of two out of the four datasets as discovery and val-166

idation data, we measured the consistency between datasets using the Matthews correlation coef-167

ficient (MCC) [44] (Methods). We excluded from this analysis CIBERSORTx, due to its runtime168

(Supplementary Figure S10) and poor performance in deconvolving bulk methylation (Figure 2e;169

Supplementary Figures S11-S15). Instead, we considered CellDMC, a method that was designed170

specifically for detecting cell-type level DM by evaluating linear effects of interaction terms be-171

tween the condition of interest and cell-type proportions [45]. We observe that Unico provides172

the best overall consistency (Figure 3b), and it significantly improves upon TCA, the second best173

method (p-valuef0.05 for both sex and age; one-sided paired Wilcoxon test). Importantly, the174

runtime of Unico was on par with TCA’s (Supplementary Figure S10).175

The above evaluation disregards a straightforward analysis of the bulk data, which cannot176
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associate DM with specific cell types but rather call CpGs as generally associated with conditions177

(“tissue-level” analysis). Intuitively, models that provide cell-type resolution are more realistic178

and are thus expected to improve cross-dataset consistency over a standard tissue-level analysis. In179

order to verify this intuition, we evaluated a standard linear regression analysis of the bulk data for180

calling tissue-level DM (Supplementary Figure S16). We observe that cell-type level analysis using181

any of the deconvolution methods provides a substantial improvement in consistency compared to182

the bulk analysis. In particular, Unico provides an increase of 107.5% and 40.7% in MCC for183

sex and age, respectively. Further adapting the different deconvolution methods to call tissue-level184

DM (Supplementary Methods) yields all methods as better than a standard bulk analysis, with185

Unico being the top performing method (Supplementary Figure S16) These results demonstrate186

how carefully modeling the cell-type signals in bulk data improves analysis even if constrained to187

a tissue-level context.188

3 Discussion189

We propose Unico, a deconvolution method that is theoretically appropriate for any bulk genomic190

data type that reflects mixtures of signals across cell types. Here, we demonstrate the utility of191

Unico for gene expression and DNA methylation, however, our distribution-free treatment sug-192

gests its applicability to other genomic data types as well. Unico leverages covariance across cell193

types, and as such, it deconvolves particularly well low-entropy features that exhibit non-trivial194

correlation structure between cell types. Remarkably, our evaluation, based on two scRNAseq195

datasets from different tissues and purified methylation data, demonstrates that Unico considerably196
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outperforms state-of-the-art methods in general, even when deconvolving high entropy features.197

Finally, Unico has some limitations, and while these limitations are not unique to Unico but198

are rather common to all the deconvolution methods we evaluated, they may potentially bias and199

affect the performance of our proposed model. First, given that lowly abundant cell types repre-200

sent only a small fraction of the variance in bulk data, Unico is expected to perform poorly when201

attempting to model a large number of cell types. Since heterogeneous tissues often represent202

mixtures of a large number of cell types and subtypes, the deconvolution of Unico may be biased203

by unmodeled cell types. Another limitation of Unico pertains to the assumption that cell-type204

proportions of the input bulk samples are known. Admittedly, this information is rarely available205

in bulk genomics data, so proportions need to be estimated in practice. While it is commonplace206

to employ reference-based methods for learning cell-type compositions, using estimates in place207

of measurements creates yet another source of noise and potential bias. Despite these concerns,208

we conclude that our comprehensive evaluation of Unico across diverse datasets and data modal-209

ities provides compelling evidence of its superiority over existing state-of-the-art deconvolution210

methods.211

4 Methods212

Unico: a model for uniform cross-omics deconvolution We denote Xij to be the (tissue-level)

bulk gene expression in sample i ∈ {1..., n} of gene j ∈ {1...,m}. For simplicity of exposition,

we use the notion of gene expression, however, j can represent any other genomic feature that may
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vary across cell types. We assume:

Xij = wT
i Zij + (c

(2)
i )T´j + eij (3)

E[eij] = 0, V [eij] = Ä 2j (4)

The first term in Equation (3) defines Xij as a weighted linear combination of cell-type expression213

levels. Specifically, wi = (wi1, ..., wik) is a vector of sample-specific cell-type proportions of k214

cell types that are assumed to compose the studied tissue and Zij = (Zij1, ..., Zijk) is a vector of215

cell-type expression levels of gene j in sample i. The second and third terms in Equation (3) model216

systematic and non-systematic variation. Specifically, eij is an i.i.d. component of variation that217

reflects measurement noise, c
(2)
i is a p2-length vector of known covariate values of sample i that218

may be associated with unwanted global effects (i.e., “tissue-level” effects that may affect many219

genes and are not cell-type-specific, such as batch effects), and ´j is a vector of the corresponding220

gene-specific fixed effect sizes.221

We assume that cell-type proportions {wi} are fixed and given. In practice, these can be

estimated using a reference-based approach (e.g., [14, 34]), as suggested by other deconvolution

methods [7–11]). In contrast to a standard decomposition problem, which assumes shared cell-

type expression levels across all samples, the unknown {Zij} components are modeled as random

variables; this is emphasized by the use of upper-case notation. Specifically, for Zijh, the gene

expression in sample i of gene j and cell type h ∈ {1..., k}, we assume:

Zijh = µjh + (c
(1)
i )Tµjh + ϵijh (5)

E[ϵijh] = 0, V [ϵijh] = Ã2
jh (6)
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where µjh is the mean level, specific to gene j and cell type h, ϵihj is an i.i.d. noise term with mean222

zero and variance Ã2
jh that may be specific to gene j and cell type h, c

(1)
i is a p1-length vector of223

known covariate values of sample i that may present cell-type-specific effects, and µjh is a vector224

of corresponding fixed effect sizes.225

Lastly, we further model cell-type covariance. Concretely, we model the covariance of a

given gene j across cell types h, q and denote:

Ãjh,jq ≡ Cov[Zijh, Zijq], Ãjh,jh ≡ Ã2
jh (7)

The Unico model makes no assumptions on the distribution of the components of variation226

in Equations (3) and (5), which makes it naturally applicable to all heterogeneous tissue-level227

omics that can be represented as linear combinations of cell-type level signals. Finally, Unico can228

be viewed as a generalization of the TCA model and as a frequentist alternative for the bMIND229

model. See Supplementary Methods for details.230

Estimating the underlying 3D tensor with Unico. Given a single realization xij of the bulk

level coming from Xij , we wish to learn zij , the realization of the cell-type-specific expression

levels Zij of the corresponding sample i and gene j. Our goal is hence to compose a 3D tensor

(samples by genes by cell types) based on the 2D input matrix. We address this problem by setting

the estimator of zij to be the expected value of the conditional distribution Zij|Xij:

ẑij = E [Zij|¹j, wi, Xij = xij] (8)
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where ¹j is the set of parameters that are specific to gene j, that is,

¹j = {µjh}h ∪ {µjh}h ∪ {´j} ∪ {Ãjh,jq}h,q (9)

The following theorem provides an analytical solution for the estimator ẑij under the Unico model231

in Equations (3)-(7).232

Theorem 1 (The Unico 3D tensor estimator) The solution for the estimator stated in Equation (8)

under the Unico model is given by:

ẑij = E[Zij|¹j] +
(

Sum
(

(wiw
T
i )» Σj

)

+ Ä 2j
)

−1
Σjwi

(

xij − wT
i

(

µj + (c
(1)
i )Tµj)

)

− (c
(2)
i )T´j

)

where µj = (µj1, ..., µjk) ∈ R
p1×k is a martix composed of the vectors {µjh}, Σj ∈ R

k×k is the233

cell-type covariance matrix of gene j, the » operator is the Hadamard product of two matrices,234

and the Sum(·) operator is a summation across all entries of a matrix.235

Proof is given in the Supplementary Methods.236

Theorem 1 provides an analytical solution for the 3D tensor given the cell-type proportions237

{wi} and model parameters ¹j . As mentioned above, in practice, cell-type proportions are es-238

timated using decomposition methods, and as we later describe, the model parameters can be239

estimated from the observed bulk data and the estimated cell-type proportions.240

Unico essentially defines the estimator ẑij as the expected value of the conditional distribu-241

tion Zij|Xij = xij , which was previously suggested in TCA [7]. However, Under the richer Unico242
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model this conditional distribution becomes more informative owing to the correlation structure243

between cell types. Intuitively, learning cell-type levels that better capture cell-type covariance244

will enhance our capacity to assign deconvolution signals accurately to the respective cell types in245

downstream analysis.246

A-priori one may wonder whether modeling cell-type covariance is necessary for a decon-247

volution method to recapitulate the true cell-type covariance in the data. Put differently, one could248

expect an accurate deconvolution method to capture cell-type covariance regardless of an explicit249

modeling of the covariance. However, our empirical results suggest that such modeling is valuable250

for accurate deconvolution, and the following theorem provides intuition into why modeling the251

covariance is indeed desired in order to achieve accurate deconvolution. Besides Unico, TCA [7]252

is the only existing deconvolution method that offers an analytical estimator for the 3D tensor.253

Hence, the following exclusively focuses on Unico and TCA, as the theoretical analysis for other254

methods remains unclear.255

Theorem 2 (Improved capacity to reduce covariance bias) Assume for simplicity ∀h : µjh =256

0, Ã2
jh = 1, Äj = 0, and no covariates for some feature j under Equations (3)-(7). If n → ∞ then257

(i) the cell-type covariances of the 3D tensor estimated by TCA are fixed and do not depend on258

feature j, and (ii) the cell-type covariances of the 3D tensor estimated by Unico are a function of259

the cell-type covariance of feature j.260

Proof is given in the Supplementary Methods.261
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Optimization We estimate the parameters of the model by following concepts from the General-262

ized Method of Moments (GMM) [46]. The GMM framework allows us to learn the parameters of263

a model by iteratively solving equations (moment conditions) that match population moments (or,264

more generally, a function of population moments) with their corresponding data-derived sample265

moments. We tailor the optimization to the Unico model to form asymptotically consistent estima-266

tors as in classical GMMs [46], while introducing practical considerations and constraints that are267

essential for finite data. The full details about the optimization and implementation of Unico are268

provided in the Supplementary Methods.269

Implementation of Unico and practical considerations We implemented Unico in R. In order270

to stabilize the parameter estimation, in practice, we consider non-negativity constraints when271

estimating the means and a small L2 penalty when estimating the variances and covariances in272

the model. The latter alleviates the risk of multicollinearity and therefore inaccurate estimation273

owing to the high correlation between the proportions of different cell types. Additionally, when274

estimating the parameters of a given feature, we disregard samples with values that diverge from the275

mean by more than two standard deviations. This measure prevents extreme and non-representative276

data points from dominating the solution.277

We optimize the Unico model iteratively. At the end of each iteration, we update the weights,278

which can then be used for weighting the samples in the following iteration (Supplementary Meth-279

ods). At a given iteration, we learn the means using the constrained least squares solver pcls280

from the mgcv R package, and we learn the variances and covariances using the COBYLA al-281
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gorithm [47] as implemented in the nloptr R package [48]. Empirically, we found that Unico282

works well using as few as two iterations (i.e., updating the weights once) for estimating the means283

and using three iterations for estimating the variances and covariances (data not shown).284

PBMC and lung scRNAseq data We obtained the PBMC scRNAseq dataset from a COVID-19285

study by Stephenson et al. [29]. We arbitrarily selected only one sample for donors with multiple286

measurements, which resulted in a total of 118 samples for the analysis. After excluding cells with287

high percentage of hemoglobin (g 1%) or mitochondria (g 5%), and low percentage of ribosomal288

content (f 1%), in addition to requiring a minimal and maximal number of unique expressed genes289

(g 500,f 2500) and total UMI counts (g 2000,f 15000), 499,336 cells remained for the analysis.290

In addition, we used scRNAseq from the data collection presented by Sikkema et al. [37] as part of291

a study for integrating multiple datasets collected from the human respiratory system. We focused292

on the lung parenchyma samples (n=90) that composed most of the carefully annotated group of293

samples in the original study (defined by the authors as the “core reference” group). Employing294

the same data filtering criteria as for the PBMC data resulted in a total of 296,227 cells for the295

analysis. For both the PBMC and lung datasets we used the cell-type annotations provided by the296

authors and applied a counts per million (CPM) normalization.297

Gene expression data with follicular lymphoma We used a preprocessed microarray bulk FL298

data (n=302) by Newman et al. [8]. In total, out of the 302 samples available, 14 were confirmed299

to have the CREBBP mutation and 10 samples were confirmed to exhibit a wild-type allele. The300

CREBBP status for 12 of these samples was collected by Green et al. [41] and the remaining 12301
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samples by Newman et al. [8]; the CREBBP status of all 24 samples was made available in the302

supplementary files of Newman et al. For defining a ground truth list of differentially expressed303

genes with CREBBP mutation in FL B cells, we considered the set of 334 up-regulated and 279304

down-regulated genes that were previously reported in a study with sorted B cells from FL tu-305

mors [41]. Intersecting these sets with the genes available in the bulk FL data left us with 275 and306

219 up- and down-regulated genes for evaluation.307

Whole-blood DNA methylation datasets We used a total of five beta-normalized DNA methyla-308

tion datasets that were collected using the Illumina 450K methylation array. For the methylation309

deconvolution analysis, we obtained data from Reinius et al. [38], including whole-blood (n=6)310

and matching cell-sorted methylation data from the same individuals (granulocytes, monocytes,311

NK, B, CD4 T, and CD8 T cells). For the cell-type level differential methylation (DM) analysis,312

we considered whole-blood datasets from liu et al. (n=687) [42], Hannum et al. (n=590; samples313

with missing smoking status were excluded) [39], and two datasets from Hannon et al. (n=675,314

n=665) [43]. In all datasets, we removed CpGs with non-autosomal, polymorphic, and cross-315

reactive probes [49], and we excluded low variance CpGs (variance<0.001). This left us with316

153,155, 144,743, 134,250, and 95,360 CpGs for the Liu, Hannum, and the two Hannon datasets,317

respectively. For the Reinius dataset,we considered CpGs at the intersection between the Reinius318

data and a preprocessed version of the Hannum dataset (restricted to samples with European an-319

cestry; 93,086 CpGs). Lastly, cell-type proportions were estimated for all whole-blood datasets320

using EpiDISH, a reference-based methylation decomposition method [50].321
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Implementation and application of competing deconvolution and cell-type association meth-322

ods We ran all CIBERSORTx [8] related codes under a docker container version 1.0 encapsulating323

both the “High Resolution” mode (for estimating cell-type level profiles) and the “Fractions” mode324

(for estimating cell-type proportions) with default parameters and authentication token granted by325

the CIBERSORTx team upon request. CIBERSORTx evaluates the maximum value in a bulk input326

and automatically assumes the data have been log-normalized if the maximum is less than 50. This327

choice is reasonable for transcriptomic data, for which CIBERSORTx was designed, however, it is328

not justified for beta-normalized methylation levels that are restricted to the interval [0, 1]. We thus329

scaled the methylation beta values by a factor of 10,000 prior to the application of CIBERSORTx330

and rescaled the results back to original scale.331

We installed the TCA [7] R CRAN package version v1.2.1 deposited on CRAN and evalu-332

ated its performance under default parameters. We fitted the model using the function tca and333

performed deconvolution using the tensor function. For the cell-type level DM analysis, both334

the joint (tissue-level) and marginal (cell-type level) statistical tests were automatically evaluated335

as part of the model parameter learning step in the tca function.336

bMIND [10] is available via the MIND R CRAN package version 0.3.3. We obtained the cell-337

type specific profiles and the estimated model parameters with the function bMIND and performed338

association testing with the function test. bMIND evaluates the maximum value in the bulk339

input and automatically log transforms the data if the maximum is larger than 50. We therefore340

scaled the bulk expression profile (and the single-cell derived prior) by the inverse of the largest341
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detected value before applying bMIND, and then rescaled the output back to the original scale. This342

approach ensured consistency and comparability across all deconvolution methods. Specifically,343

allowing the default log transformation of the data would have violated the assumption that bulk344

levels represent linear combinations of cell-type levels.345

Throughout this work, we also evaluated a baseline approach in our analysis and evaluation346

by simply considering the product of the observed bulk data and the cell-type proportions as cell-347

type level estimates. That is, we estimated zijh, the cell-type level of sample i, gene j, and cell348

type h as zBaseline
ijh = xij ·wih. Finally, we applied CellDMC [45] for DM using the implementation349

in the Bioconductor R package EpiDISH, version 2.10.0.350

Deconvolving mixtures of gene expression profiles and estimating cell-type level moments We351

used both the PBMC and lung scRNAseq datasets for generating pseudo-bulk mixtures. Briefly,352

for creating a new pseudo-bulk sample, we first drew (with replacement) all cell-type level profiles353

of one randomly selected sample. The cell-type profiles of each individual sample were defined354

as normalized pseudo-bulk counts at the cell-type level. We then drew (with replacement) the355

cell-type proportions of one randomly selected sample in the data (total number of cells coming356

from each cell type, normalized to sum up to 1). Eventually, these were used as the weights for a357

weighted linear combination of the cell-type level profiles to create one pseudo-bulk sample.358

In the PBMC analysis we considered either five major cell-type groups (monocytes, NK, B,359

CD4 T, and CD8 T cells) or seven cell types by further stratifying B cells into canonical B cells and360

plasma cells and monocytes into CD16 and CD14 monocytes. In the analysis with lung cells we361
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considered either four major cell-type groups (endothelial, stromal, immune, and epithelial cells)362

or six cell types by further stratifying immune cells into myeloid and lymphoid compartments and363

epitihelial cells into airway and alveolar epithelium cells. Our evaluation was restricted for the top364

10,000 most highly expressed genes in the data. See Supplementary Methods for more details.365

The pseudo-bulk mixtures, along with the corresponding mixing proportions, were provided366

as the input for all deconvolution methods to learn 3D tensors. We assessed these tensors for their367

accuracy by comparing them against the known cell-type profiles. Particularly, for a given cell368

type and a given gene, we evaluated the correlation between the true cell-type expression levels of369

the pseudo-bulk samples and their deconvolution-based estimates.370

We obtained estimates of population-level cell-type moments from the data (means, vari-371

ances, and covariances per gene) directly from the output of the deconvolution methods. For372

methods which do not explicitly output such estimates (e.g., no method except for bMIND and373

Unico outputs covariance estimates), we used the estimated tensor for calculating these moments.374

To evaluate the accuracy of the estimated moments, we established gold standard estimates based375

on the cell-type profiles underlying the pseudo-bulk mixtures. In order to mitigate the potential376

influence of outliers, we considered only samples within 2 standard deviations from the mean for377

the moments estimation of a given gene.378

Finally, we used multiple linear regression for evaluating whether an estimated 3D tensor of379

a given deconvolution method captures variation of the true tensor beyond its correlation with the380

deconvolution input (i.e., pseudo-bulk and cell-type proportions). In more detail, for every gene381
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and cell type, we fitted a regression model for the known cell-type expression levels as the depen-382

dent variable using several independent variables, including the pseudo-bulk levels of the gene,383

the cell-type proportions, and the cell-type tensor estimates. This allowed us to quantify to what384

extent the deconvolution-based estimates provide information beyond the bulk data. Specifically,385

we defined ∆ log10(p-value) as the difference between the log-scaled (basis 10) t-test derived p-386

values of the pseudo-bulk variable and the estimated cell-type levels in the regression. Of note, we387

defined the p-values to be 1 in cases where cell-type levels were estimated to have no variation. In388

order to mitigate potential biases due to heavy-tailed distributions of expression levels, we log1p-389

transformed expression levels and considered only samples within 2 standard deviations from the390

mean.391

Deconvolving the Reinius whole-blood DNA methylation data Unlike our deconvolution of392

gene expression mixtures, the size of the Reinis data (n=6) does not allow for drawing reliable393

conclusions through a straightforward evaluation. Particularly, Unico, as well as current decon-394

volution methods, are designed to operate on large bulk data. We circumvented this limitation by395

taking a two-step reference-based procedure. First, we learned the parameters of the Unico model396

from the larger Hannum whole-blood methylation data [39]. Acknowledging that population struc-397

ture affects methylation [51], we focused solely on Caucasian individuals from the Hannum data398

(n=426), anticipating that they would adequately represent the Swedish individuals in the Reinius399

study. Then, we plugged these parameter estimates into Unico’s 3D tensor estimator together with400

the Reinius bulk profiles and their cell-type proportion estimates. We performed the same proce-401

dure for TCA, however, CIBERSORTx and bMIND, which do not provide an analytical estimator402
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of the tensor, required a different strategy. In order to inform the deconvolution of CIBERSORTx403

and bMIND with the same additional information, we applied these methods to the concatenation404

of the Reinius and Hannum datasets and extracted the cell-type level estimates for the Reinius405

samples.406

Benchmarking methods based on the Reinius data presents a second challenge: determining407

a proper way to evaluate their performance given that data from only six individuals is available408

for the analysis. We tackle this limitation by collapsing methylation levels in the estimated tensor409

along both the CpGs and samples axes. That is, for every cell type, we evaluated how correlated410

is the vector of all methylation estimates of the cell type (i.e., by pooling estimates across all411

CpGs and samples) with the experimentally measured ground truth levels from purified cells. This412

yielded a single correlation score per cell type. Importantly, when stacking CpGs for evaluation, a413

deconvolution that only correctly estimates relative means and scales of CpGs but performs poorly414

in terms of per-CpG correlation (i.e., across samples) may achieve spuriously high correlation415

levels. We addressed this by removing from every CpG its cell-type level mean methylation level.416

Since beta-normalized methylation levels are bounded to the range [0,1], unlike in the de-417

convolution of relative expression levels, we further evaluated the divergence of the estimated 3D418

tensors from the true cell-type levels in absolute terms. Specifically, we evaluated the root median419

square error (RMSE) between the true and each estimated 3D tensor; we expected that a median420

metric in place of a standard mean square error would improve robustness to outliers. Similarly to421

the evaluation of correlation, we calculated an RMSE value per cell type after collapsing methyla-422
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tion levels in the tensors along both the CpGs and samples axes.423

Finally, our benchmarking focused either on randomly selected CpGs or on a set of highly424

variable CpGs based on the Reinius data. For defining the latter, we ranked the CpGs in the425

intersection of the Reinius and Hannum datasets (93,086 CpGs) by the sum of their variances in426

the different cell types using the sorted methylation Reinius data and chose the top 10,000 CpGs427

with the largest values.428

Calculating robust linear correlation All the correlation values reported throughout our analysis429

and evaluation were calculated using a robust linear correlation metric in place of the standard430

Pearson correlation. Specifically, we used the function cov.rob from the MASS R package [52],431

which performs an approximate search for a subset of the observations to exclude such that a432

Gaussian confidence ellipsoid is minimized in volume. Effectively, this procedure trims outliers433

that may otherwise dramatically bias correlation levels. In particular, if either input vector has an434

interquartile range (IQR) of 0, cov.rob defines the correlation as 0. Throughout the paper, we435

set the fraction of outliers to exclude to 5% of the data points.436

Calculating von Neumann entropy We quantify the amount of signal coming from the covari-437

ance structure of a given gene by the von Neumann entropy [53]. For a given gene, the von438

Neumann entropy is defined as the entropy applied to the eigenvalues of the normalized cell-type439

covariance matrix of the gene (i.e., a k×k matrix of correlations between cell types). High entropy440

corresponds to cases where no substantial cell-type covariance structure exists, and low entropy in-441

dicates strong positive or negative correlations between cell types. Throughout our evaluation of442
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the deconvolution results we grouped genes into high- and low-entropy groups. This classification443

was based on ranking the genes by their entropy and assigning genes with above-median (below-444

median) entropy to the high (low) entropy group. Lastly, the normalized von Neumann entropy445

presented in figure 1b simply refers to von Neumann entropy values scaled to the range [0,1].446

Since the von Neumann entropy is bounded by a number that depends on the number of cell types447

k, this normalization enables us to evaluate and visualize the distribution of entropy across genes448

using covariance matrices of different sizes.449

Deconvolving bulk profiles from follicular lymphoma tumors For every deconvolution method,450

we first estimated the 3D tensor of the bulk FL dataset (n=302) while considering only the sets of451

275 and 219 genes that were previously reported as up- and down-regulated with the CREBBP452

mutation. We provided each method with cell-type proportions estimated using CIBERSORTx453

(“Fractions” mode) with the LM22 signature matrix [54], while collapsing the estimated propor-454

tions into 4 categories: B cells, CD4 T cells, CD8 T cells, and “remaining”.455

A straightforward evaluation would include calculating for every method log-fold changes456

(LFCs) with the CREBBP mutation based on the estimated B cell expression levels. This would457

allow assessing the concordance between the LFCs and the previously-reported direction of the458

differentially expressed genes. However, the group of CREBBP-mutated tumors presents an el-459

evated B cell composition, which is expected to lead to an overly-optimistic performance on the460

set of up-regulated genes in cases of deconvolution estimates that are biased by cell composition461

(Supplementary Figure S17). Most notably, since the baseline method estimates B cell expression462
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levels by naively multiplying bulk levels by B cells proportions, the baseline estimates are ex-463

pected to be artificially higher for samples with higher B cells composition. The baseline method464

therefore consistently estimates higher B cell expression levels for the CREBBP-mutated tumors,465

regardless of whether the genes are truly down- or up-regulated. Consequently, genes that are truly466

up-regulated in CREBBP tumors are expected to present strong LFCs under the baseline given the467

combination of both real and artificial up-regulation effects.468

In order to account for the B cell composition bias, we used multiple linear regression to test469

whether the estimated tensors capture the mutation effects beyond the effect of B cell composition.470

In more detail, for every gene, we fitted a regression model for the estimated B cell expression lev-471

els as the dependant variable using the B cell composition and the mutation status as independent472

variables. We performed the same procedure while using the bulk expression levels as the depen-473

dent variable to evaluate a standard analysis of bulk expression. In order to allow a comparable474

evaluation of the estimated mutation effect sizes across the different methods and to alleviate the475

potential effect of outliers, we standardized the log1p-scaled B cell expression estimates of every476

gene. For methods that do not constrain non-negativity in their estimated tensor, for every gene and477

cell type, we shifted the distribution of the estimates by subtracting the minimum value detected,478

which enforced non-negatively prior to the log1p transformation. The effect size of a gene that was479

estimated to have a constant B cell expression level across all samples was set to 0.480

Cell-type level epigenetic association studies with sex and age We performed statistical testing481

for calling DM using Unico, TCA [7], bMIND [10], and CellDMC [45] (Supplementary Methods).482
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As a baseline model, we evaluated the linear effects of the conditions on the tensor estimates of483

our baseline deconvolution. Concretely, for a given CpG and cell type, we fitted a linear regression484

model with the baseline-estimated cell-type level methylation as the dependent variable and the485

condition (and covariates) as the independent variable. This allowed us to calculate t-statistics and486

derive p-values for the cell-type level effects of the conditions under a baseline deconvolution.487

Our analysis included cell-type level covariates ({c
(1)
i } under the Unico notations) and tissue-488

level covariates ({c
(2)
i } under the Unico notations). For cell-type covariates, we considered age489

and sex in the analysis of all four whole-blood methylation datasets (Liu et al. [42], Hannum et490

al. [39], and two cohors by Hannon et al. [43]). In addition, we accounted for rheumatoid arthritis491

and smoking status in the Liu data, schizophrenia status in the Hannon data, and ethnicity and492

smoking status in the Hannum data. Across all datasets, smoking status was classified into three493

major categories: never, past, and current smoker. For tissue-level covariates, we considered sur-494

rogates of technical variability. In more detail, for each methylation dataset, prior to filtering any495

CpG, we took a previously suggested approach [7, 28] of estimating factors of technical variation496

by calculating the top 20 principal components (PCs) of the 10,000 least variable CpGs of each497

methylation array. We expected these PCs to capture only global technical variation and no bio-498

logical variation due to the use of CpGs with nearly constant variance. In addition to these PCs,499

we further accounted for plate information, which was available for the Hannum data. All the500

benchmarked methods were designed to account for cell-type and tissue-level covariates, except501

for the baseline model. For the latter, we simply included the full set of covariates as independent502

variables in the linear regression model.503
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The inter-individual distribution of array-probed methylation levels is approximately nor-504

mally distributed for most CpGs. For that reason, TCA and CellDMC, which were designed for505

methylation data, assume the data is normally distributed; bMIND assumes normality as well, even506

though it was not designed for methylation. We therefore similarly applied statistical testing under507

a normality assumption when evaluating Unico on calling DM (Supplementary Methods). No-508

tably, this assumption is not required given that the Unico framework is generally distribution-free509

and allows us to derive asymptotic p-values (Supplementary Methods). Indeed, we empirically ob-510

serve that asymptotically-derived p-values are highly correlated with their parametric counterparts,511

while also being calibrated under the null (Supplementary Figure S18-S21).512

For any given ordered pair of datasets (discovery and validation), we considered the CpGs at513

the intersection of the two datasets. True positives (TPs) were defined as CpGs that are (i) genome-514

wide significant in the discovery dataset under a Bonferroni-corrected threshold and (ii) significant515

in the validation dataset, under a Bonferroni-corrected threshold adjusting for the number of sig-516

nificant hits identified in the discovery data. CpGs that only satisfied condition (i) and either failed517

to satisfy condition (ii) or demonstrated inconsistent direction of their estimated effect size were518

considered as false negatives (FNs). CpGs with p-value>0.95 in the discovery dataset were con-519

sidered as negative controls for the evaluation of false positives (FPs) and true negatives (TNs).520

That is, negative controls with significant (non-significant) p-values under a Bonferroni-corrected521

threshold adjusting for the number of negative controls in the validation data were counted as FPs522

(TNs).523
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Finally, as a metric of consistency across datasets, we calculated the MCC per method for524

every pair of discovery and validation datasets. We favored MCC over the widely-used F1 score525

since the former incorporates true negatives, which makes it a better choice for assessing model526

performance on imbalanced class distributions [44]. Yet, for completeness, we further considered527

the F1 score as the consistency metric, which revealed qualitatively similar results (Supplementary528

Figure S22 and S23).529

Data availability530

The bulk FL data is available from GEO (accession number GSE127462). The whole-blood531

methylation data with matching sorted cells, as well as the whole-blood methylation datasets532

used for cell-type level DM analysis are available from GEO (accessions GSE35069, GSE42861533

GSE40279, GSE80417, GSE84727). The PBMC scRNAseq dataset was downloaded from EMBL-534

EBI (accession E-MTAB-10026), and the lung scRNAseq is available on cellxgene [55] as the535

integrated Human Lung Cell Atlas.536

Code availability537

Unico is available as an R package under the GPL-3 license license at: https://github.com/cozygene/538

Unico.539
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