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Abstract

Summary: The tidyCoverage R package provides a framework for intuitive investigation of
collections of genomic tracks over genomic features, relying on the principle of tidy data
manipulation. It defines two data structures, CoverageExperiment and AggregatedCoverage
classes, directly extending the SummarizedExperiment fundamental class, and introduces a
principled approach to exploring genome-wide data. This infrastructure facilitates the
extraction and manipulation of genomic coverage track data across individual or multiple sets
of thousands of genomic loci. This allows the end user to rapidly visualize track coverage at
individual genomic loci or aggregated coverage profiles over sets of genomic loci.
tidyCoverage seamlessly combines with the existing Bioconductor ecosystem to accelerate
the integration of genome-wide track data in epigenomic analysis workflows. tidyCoverage
emerges as a valuable tool, contributing to the advancement of epigenomics research by

promoting consistency, reproducibility, and accessibility in data analysis.
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Availability and implementation: ridyCoverage is an R package freely available from

Bioconductor > 3.19 (https://www.bioconductor.org/packages/tidyCoverage) for R > 4.4. The

software is distributed under the MIT License and is accompanied by example files and data.

Contact: jacques.serizay@pasteur.fr

Supplementary information: Additional documentation is available from

https://1s2264.¢github.io/tidyCoverage/ and

https://1s2264.github.io/tidyCoverage/articles/tidyCoverage.html.

1. Introduction

Genome-wide epigenomic assays provide powerful methods to profile chromatin
composition, conformation and activity. Linear "coverage" tracks are one of the main output
files obtained when processing sequencing data. These coverage tracks, generally stored as
.bigwig files, are often inspected in genome interactive browsers (e.g. IGV) to visually
appreciate local or global variations in the coverage of specific genomic assays. Another
approach to investigate genomic tracks is to compute and plot the average profile of a
genomic track over a set of genomic loci. This approach is very efficient to summarize and
compare the coverage of chromatin modalities (e.g. protein binding profiles from ChIP-seq,
transcription profiles from RNA-seq, chromatin accessibility from ATAC-seq, ...) over
hundreds and up to thousands of genomic features of interest. This can be used to accurately
describe, both qualitatively and quantitatively, multi-omic genomic tracks summarized across

multiple sets of genomic features.

To create such metaplots, a number of softwares already exist in a command-line interface
—e.g. deeptools (Ramirez et al., 2016) — or as packages in R — e.g. genomation (Akalin et al.,

2015), ATACseqQC (Ou et al., 2018) or soGGI (Dharmalingam, n.d.). However, these


https://www.bioconductor.org/packages/devel/bioc/html/tidyCoverage.html
https://js2264.github.io/tidyCoverage/
https://jserizay.com/tidyCoverage/articles/tidyCoverage.html
https://js2264.github.io/tidyCoverage/
https://jserizay.com/tidyCoverage/articles/tidyCoverage.html
https://paperpile.com/c/F7s3LZ/29RZ
https://paperpile.com/c/F7s3LZ/YEXe
https://paperpile.com/c/F7s3LZ/YEXe
https://paperpile.com/c/F7s3LZ/8FL3
https://paperpile.com/c/F7s3LZ/3JWr
https://doi.org/10.1101/2024.01.27.577537
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.27.577537; this version posted January 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

softwares (1) are not interconnected to existing bioinformatic resources, (2) do not efficiently
leverage the Bioconductor ecosystem and (3) do not use a tidy, intuitive syntax for data
processing (Hutchison et al., 2023; Wickham et al., 2019). Here, we present tidyCoverage, an
R package extending Bioconductor fundamental data structures and reusing principles of tidy
data manipulation to extract and aggregate coverage tracks over multiple sets of genomic

features.

2. Implementation

2.1.  Two new S4 classes implemented from SummarizedExperiment

tidyCoverage implements the CoverageExperiment and AggregatedCoverage classes, both of
which are built on top of the SummarizedExperiment class (Figure 1A). This ensures
seamless creation and manipulation of these objects by end users, in particular those already
familiar with popular packages built on top of SummarizedExperiment, such as DESeq?2
(Love et al., 2014) and SingleCellExperiment (Amezquita et al., 2020). CoverageExperiment
objects organize a collection of genome-wide tracks (from local .higwig files or numerical
tracks stored in memory) and a collection of sets of genomic features of interest. When
instantiated, the coverage of each genomic track over genomic features is extracted using the
efficient underlying Bioconductor parallelization and import infrastructure (Lawrence et al.,
2009) and stored in memory as an array. AggregatedCoverage further computes statistical
metrics (e.g. mean, median, standard deviation, etc.) from the coverage vectors stored in a
CoverageExperiment object. tidyCoverage data structures are natively compatible with other
genomic data representations (e.g. GenomicRanges, RleList, OrgDb) and facilitate the

integration of epigenomic data into large-scale multi-omics projects.

2.2.  Tidy principles for epigenomics
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Tidy analysis of omics data has recently gained traction in large communities of
bioinformaticians and programming languages (Hutchison et al., 2023), and tidyCoverage
fully adheres to the tidy data paradigm. The package supports operative verbs defined in the
tidyverse, such as filter, mutate, group by or expand for CoverageExperiment and
AggregatedCoverage objects. This enables researchers to efficiently organize, manipulate,
and visualize epigenomic datasets in a tidy and structured format. tidyCoverage streamlines
the intuitive exploration of large epigenomics datasets and facilitates data visualization using

robust tools such as ggplot2.

3. Case studies

To demonstrate the usability of tidyCoverage package, we recovered 10 different epigenomic
profiles in the human cell line GM 12878 from the ENCODE data portal (Luo et al., 2020).
We used tidyCoverage to extract track coverage over tens of thousands of
ENCODE-annotated cis-regulatory elements, including promoters, proximal and distal
enhancers (£ CTCF). Aggregating epigenomics coverage highlighted the different
composition, structure and activity of the chromatin which makes up different types of
regulatory elements (Figure 1B). For instance, this reveals that CTCF enrichment is greater at
distal enhancers than at proximal enhancers or promoters. This raises hypotheses regarding
the implication of CTCF for chromatin looping and spatial folding at these different classes

of regulatory elements.

4. Discussion

Compared to existing solutions, tidyCoverage focuses on data recovery and manipulation,
using a standard representation of the data and principles of tidy data manipulation.

tidyCoverage also ensures seamless integration of genomic track data into the existing
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genomics-centric Bioconductor ecosystem. This will contribute to the advancement of

epigenomics research by fostering efficient and reproducible analyses.

Code availability

The entire code used to generate Figure 1B is available here:

https://github.com/js2264/tidyCoverage/blob/devel/vignettes/manuscript_figure.qmd.

Data availability

All data presented in this manuscript have already been published. Human
ENCODE-annotated regulatory elements were retrieved from (ENCODE Project Consortium
et al., 2020) (Supplementary Table 10). The genomic tracks were retrieved from the
ENCODE data portal from the following IDs: forward GRO-seq: ENCFF896TNM; reverse
GRO-seq: ENCFF764SVR; Pol2RA ChIP-seq: ENCFF890SYC; CTCF ChIP-seq:
ENCFF484SOD; DNAse-seq: ENCFF428XFI; ATAC-seq: ENCFF165WGA; H3K4mel
ChIP-seq: ENCFF785YET; H3K4me3 ChlIP-seq: ENCFF736DCK; H3K9me3 ChIP-seq:
ENCFF698SKYV; H3K27me3 ChIP-seq: ENCFF119CAV; H3K27ac ChIP-seq:

ENCFF458CR.
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Figure legends
Figure 1: Overview of tidyCoverage functionalities

A. The CoverageExperiment object extracts and stores a separate coverage matrix for
pairs of genomic track and genomic features. It can be further aggregated into a
AggregatedCoverage object, which stores statistical metrics (mean, min, max,
median, standard deviation, confidence interval) of the coverage of each track over
each set of genomic features.

B. tidyCoverage can be leveraged in combination with ggplot2 functionalities to produce

advanced aggregated coverage plots, for multiple tracks and genomic features.
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