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21 Abstract

22  Background

23  The exponential growth of high-throughput sequencing technologies was an incredible

24 opportunity for researchers to combine different -omics within computational frameworks. In
25  particular metagenomics and metabolomics data have gained an increasing interest due to
26  their implication in many complex diseases. However, currently, no standard seems to

27  emerge for jointly integrating both microbiome and metabolome datasets within statistical
28  models.

29 Results

30 Thus, in this paper we comprehensively benchmarked fifteen different integrative methods to
31 link microorganisms and metabolites. Methods evaluated in this paper cover most of the

32 researcher's goals such as global associations, data summarization, individual associations
33 and feature selection. Through an extensive simulation study and an application to real gut
34  microbial datasets, we highlighted the best approaches for unraveling complementary

35 biological processes involved between the two omics. We provided general guidelines for
36  practitioners depending on the scientific question and the data at-hand.

37  Conclusion

38 In summary, we argue that this paper constitutes a promising avenue for establishing

39 research standards when mutually analyzing metagenomics and metabolomics data, while
40  providing foundations for future methodological developments.

41
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47 Background

48  The recent development of high-throughput sequencing technologies has permitted the

49  generation of omics data at an exponential scale. Combining different high dimensional

50 biological datasets within computational models represents a wonderful opportunity for

51 researchers to better understand the underlying biological mechanisms involved in diseases
52 [1]. In particular, the microorganism-metabolite interactions have gained an increasing

53 interest due to their potential involvement in a large set of traits. It has been demonstrated
54  that shifts in the microbiome-metabolome interactions have important implications on

55 individual health [2, 3]. Indeed, recent studies for cardio-metabolic diseases [4] or autism

56  spectrum disorders [5] have shown that pathoetiology could be explained by a complex

57 interplay between microbes and host metabolites [6] or by disruptions in the microbiota-

58 derived metabolite processes [7]. Thus, efficiently incorporating microbiome and metabolome
59  data within statistical frameworks offers critical insights on the complex relationships

60  occurring between diet or lifestyle factors on the microbe-metabolite recomposition and

61 remains an important challenge in order to adequately identify hence target biological

62 pathways [8]. However, the tremendous amount of available statistical models makes the
63  choice of the right method a daunting task for many researchers.

64 The statistical joint integration of microbiome and metabolome data can be achieved
65  with different integrative strategies. Standard workflows include various types of analysis,
66 each addressing a specific biological question [2]. Briefly, traditional pipelines include the

67 detection of global associations, data summarization, individual associations and

68 identification of core features. Firstly, researchers are often interested in determining whether
69 aglobal association is occurring between the two omics. For example, one can look for a
70 global change in metabolome levels due to a microbial recomposition induced by a specific
71  diet or lifestyle [2]. Consistent with recent reports, testing for global associations can be

72  performed using multivariate methods such as the Mantel test [9] or the multivariate

73  microbiome regression-based kernel association test (MMIRKAT) [10]. This step frequently
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74  precedes the application of subsequent analyses such as data summarization methods or
75  the identification of core features [2]. Then, following approaches used for single omics, a
76  common research objective is to summarize information contents in the two omics,
77  facilitating the visualization and interpretation of large scale biological data [1]. The presence
78  of two types of omics allows the exploitation of the intra- and inter- correlation existing
79  between features of the two datasets. Application of data summarization methods including
80  Canonical Correlation Analysis (CCA) [11], Partial Least Square (PLS) [12], Redundancy
81  Analysis (RDA) [13] or more recently Multi-Omics Factor Analysis (MOFA2) [14] is an
82  important step in order to uncover features explaining a large proportion of data variability.
83 Indeed, applications of data summarization methods have allowed the identification of
84  taxonomic groups or metabolites involved in Type 2 diabetes [15]. However, both global
85  association and data summarization methods fail to provide individual relationships between
86  one or several microorganisms and metabolites. This aspect remains central to highlight core
87  features involved in a particular biological context. As an illustration, methods for detecting
88 individual associations may prove relevant for the identification of bacterial genus associated
89  with dietary-impacted metabolites [2]. One strategy is to compute a measure of association
90 between each metabolite-microbiota pair, using either a correlation or a regression model.
91  Although easily implementable and interpretable, these approaches suffer from lack of power
92  induced by the number of models fitted, limiting result transferability. An alternative way is to
93 employ univariate or multivariate feature selection methods to adequately identify key actors
94  atalarge scale. The least absolute shrinkage and selection operator (LASSO) is a method
95 initially developed to improve predictability while proceeding to feature selection [16]. Indeed,
96 the LASSO is able to set coefficients to zero, hence facilitating identification of core features.
97  Consistently with this idea, sparse CCA (sCCA) [17] or sparse Partial Least Square (sPLS)
98 [18] are multivariate penalized methods summarizing data variability while proceeding to
99 feature selection. However, due to the complex structure of both microbiome and

100 metabolome data, standard methods fall short of providing unbiased associations, limiting

101  the biological interpretation of results.
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102 On the one hand, because of the sequencing technology, metagenomics data

103  highlight hard-to-analyze characteristics [19, 20]. Indeed, it is now globally accepted that
104  microbiome datasets are over-dispersed, zero-inflated, highly correlated, and compositional.
105  Without adequate transformation the inherent compositionality of the data makes the

106  application of standard methods incorrect, leading to inconsistent results [19-21]. On the
107 other hand, metabolomics data shares some of these features, exhibiting over-dispersion
108 and high correlation structures [21]. Thus, combining these two omics together within

109  statistical frameworks requires particular attention. Approaches to deal with compositional
110 data either as an outcome or explanatory variable have already been proposed [20, 22, 23],
111  covering applications of global association methods, data summarization, individual

112  associations or identification of core features. Conventional strategies include utilization of
113 standard methods after suitable data transformations or purely compositional approaches
114  [24-27]. Subsequently, determining which strategy is the best depending on the research
115 question remains an open problem with major implications for practitioners.

116 Despite recent efforts to integrate microbiome and metabolome within unified tools
117  [28], to our knowledge there is no systematic framework to evaluate integrative methods to
118 link microbiome with metabolome datasets; constantly pushing researchers to make their
119 choice without any robust comparison. Thus, in this paper, we comprehensively

120 benchmarked fifteen different integrative methods to link microorganisms and metabolites,
121  covering most of the researcher’s aims, such as global associations, data summarization,
122  individual associations, or feature selection (Figure 1). Our extensive simulation studies
123  provide insightful lessons on the strengths and limits of methods commonly encountered in
124  practice. Then, we applied best methods to real data on the gut microbiome and metabolome
125 for Konzo disease [29], highlighting a complex interplay between the two omics occurring at
126  different scales. Finally, we provide general guidelines and avenues for future

127  methodological developments, depending on the data at-hand and the research aims.

128

129
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130 Results

131  SIMULATION SETUP AND BENCHMARKED METHODS

132 Taking advantage of the “Normal to Anything” (NORtA) framework, we generated synthetic
133  microbiome and metabolome datasets mimicking complex data structures and relationships
134  (See Methods). We produced two simulation settings, a low dimensional and a high

135 dimensional setting, both representing different scenarios commonly encountered in practice
136  (Figure 1A). We therefore compared fifteen integrative methods depending on the research
137  question (Figure 1B). Methods were presented as follows. Firstly, in the global associations
138  subsection we compared the Mantel test and MMIRKAT with respect to the Type-I error rate
139 and power. Then, in the data summarization subsection we evaluated four different models
140 including CCA, PLS, RDA and MOFA2, regarding their capability to recapitulate data

141  variability across latent factors. Third, in the individual associations subsection we compared
142  three strategies for performing regression-based approaches between compositional

143  covariates and metabolites, the clr-linear model, the log-contrast and MiRKAT, respectively.
144  Approaches were evaluated based on the Type-I error rate and power. Fourth, in

145  subsections univariate feature-selection for compositional predictors, univariate feature-

146  selection for compositional outcomes and multivariate feature-selection we compared

147  approaches for identifying core microbes and metabolites, leveraging both univariate and
148  multivariate feature selection strategies. For univariate frameworks, depending on the nature
149  of the response, several models were considered. Indeed, when microorganisms are the
150 explanatory variables, we compared three approaches, the clr-LASSO, the cIr-MLASSO and
151 CODA-LASSO [23]. Consistently, when microorganisms are the response variables, we

152  evaluated the LASSO, MLASSO, and the sparse Dirichlet regression [27]. Nonetheless, for
153  multivariate feature selection models, we considered sCCA and sPLS. Approaches were
154  evaluated based on sparsity and reliability. Details on the methods and their related

155  performance metrics were provided in the Methods section. Finally, in order to highlight

156  complementary biological insights provided by methods, best approaches were illustrated in
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157 the real-data application subsection, exploiting metagenomics and metabolomics data from
158 Konzo disease.

159

160 GLOBAL ASSOCIATIONS

161 A common question in practice for researchers is to find global associations between two
162  omics datasets [2]. Thus, we compared two multivariate methods detecting associations
163  occurring at the global level between microbiome and metabolome, the Mantel test [9] and
164  MMIRKAT [10], respectively. Since these two methods provide frequentist statistical

165 frameworks i.e., p-values, we systematically evaluated their performance with respect to
166  Type-I error rate control and power (See Methods). Firstly, when applying on the ILR

167 transformed microbiome data, the Mantel test provides a good control of Type-I error rate in
168 the high dimensional scenario while MMIRKAT highlights a slightly more conservative

169  behavior (Figures 2A-2B). Secondly, MMIRKAT exhibits strikingly higher power than the
170  Mantel test under our high dimensional scenario. Indeed, at the 0.05 significance threshold
171  MMIRKAT reaches on average 97% of power against 22% for the Mantel test (Figures 2C).
172  This difference is however mitigated in the low dimensional setting, where the two methods
173  exhibit comparable performances (Figures S1-S2) . Importantly, the distance kernel choice
174  seems to strongly impact the Mantel test power, from single to double, while MMIRKAT

175 power remains stable across data transformations (Figure 2C). These results were confirmed
176  in our low dimensional scenario and considering different data normalizations (Figures S3-
177  S15). Interestingly, when the Mantel test was considered, the Canberra distance exhibits the
178 lowest powers, while no clear distinction could be observed between Euclidean and

179  Manhattan distance kernels (Figure 2C). This result suggests the Canberra distance as the
180 poorest choice when using the Mantel test. Collectively, our results suggest comparable
181  performance for the two methods under the low dimensional setting regarding both Type-I
182  error rate and power. However, in the high dimensional scenario MMIRKAT is the most

183  powerful method to find global associations. In addition the method is robust to data

184 transformation and distance kernels.


https://doi.org/10.1101/2024.01.26.577441
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577441; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

185 DATA SUMMARIZATION

186 Instead of measuring one global association, one can be interested in recapitulating

187 information contained within the two datasets through latent factors, accounting for the

188  between- within-correlation [30] . Thus, we compared Canonical Correlation Analysis (CCA)
189  [11], Regression PLS (PLS-Reg) [12], Canonical PLS (PLS-Can) [12], Redundancy Analysis
190 (RDA) [13], and Multi-Omic Factor Analysis (MOFAZ2) [14] in our two scenarios with respect
191 to their capability to summarize explained variance through their components (See Methods).
192  Generally, regardless of the considered data normalization, in our two scenarios, MOFA2
193 was the best method, exhibiting larger explained variances, with a modest variability

194  compared to PLS-Reg, PLS-Can, CCA, and RDA (Figure 2D; Figures S16-S19). Indeed,
195 when ILR transformed microbiome data were considered, in our high dimensional scenario,
196 MOFA2 exhibited an average of explained variance of 86% (sd = 1.37) compared to 44% (sd
197 =4.35), 14% (sd = 2.03), 21% (sd = 2.34), and 22% (sd = 0.76) for PLS-Reg, PLS-Can, CCA
198 and RDA, respectively. Surprisingly, except for MOFA2 and the PLS-Reg, where the

199 explained variances increase (64% to 86% and 41% to 44%, respectively), all the remaining
200 methods exhibit a smaller explained variance in the high dimensional scenario compared to
201 the low dimensional setting. Aligned with this result, we investigated the behavior of each
202  method with respect to the number of associated features and the effect size and found

203  positive associations in both cases across all methods (Figures S20-S21). Importantly,

204  method performances may vary depending on the considered data transformation (Figure
205 2D; Figures S16-S19). Our results pointed to MOFA2 as the best model to summarize data
206 variability through latent factors. Finally, our findings suggested that the method is versatile
207  and robust under scenarios commonly encountered in practice.

208

209 INDIVIDUAL ASSOCIATIONS

210  Studying the relationship between metabolites and microorganisms may represent an

211 important challenge in order to account for the compositionality induced by microbiome

212  datasets. Indeed, the perfect correlation brought by the compositionality makes the
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213  application of standard methods incorrect. This is particularly true when microbiota are

214  incorporated as covariates [19, 22]. We therefore compared three equivalent strategies in
215  order to study the global effect of microorganisms on one particular metabolite, the Log-

216  contrast model [22], MiRKAT [10] and a linear regression on the CLR transformed

217  microbiome (referred to as clr-Im), respectively. Methods were evaluated with respect to their
218 capability to adequately control false positives while maintaining a good power (See

219  Methods). Globally, under the null hypothesis, the three methods adequately controlled the
220  Type-I error rate, with the linear log-contrast model exhibiting a slightly conservative behavior
221  across the two scenarios (Figures 3A-3B). Then, under the alternative hypothesis, the linear
222  log-contrast model offers a higher power than MiRKAT or the clr-Im model, on average twice
223  larger across the data transformations considered in the high dimensional setting (Figure
224 3C). This result was also confirmed when comparing the log-contrast model to Spearman’s
225  or Pearson’s correlations, while MiRKAT or the clIm-Im model do not exhibit clear advantage
226  (Figure S22). Indeed, at a 0.05 significance threshold, the log-contrast model offers 52% of
227  power against 29% for MiRKAT and clr-Im, and 29% and 21% for Pearson’s and Spearman’s
228  correlations, respectively. This result was confirmed in our low dimensional setting, where
229 smaller discrepancies can be observed (Figure 3C). However, consistent with results

230 observed for MMIRKAT, MiRKAT provided a stable power and a good control of Type-I error
231 rate across data normalizations (Figure S23). Importantly, when evaluating individual

232  association methods for compositional outcomes, we found no clear superiority of the

233  Dirichlet regression or the linear regression on the CLR transformed microbiome data over
234  Spearman’s or Pearson’s correlations in our low dimensional setting (Figure S24).

235  Collectively, our results suggest that in order to study the global impact of microorganisms on
236 individual metabolites, the linear log-contrast model represents the best method compared to
237  competitor approaches, providing higher power and a suitable control of the Type-I error

238 rate.

239

240
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241

242  UNIVARIATE FEATURE-SELECTION FOR COMPOSITIONAL PREDICTORS

243  Feature selection methods have gained increasing interest from researchers in order to

244  identify a subset of microbiota associated with a variable of interest [31]. However, due to the
245  compositionality induced by microbiome data, traditional methods have been shown to lead
246  toincorrect results [19]. Thus, we compared univariate feature selection methods accounting
247  for compositional predictors, CODA-LASSO [23], cIr-LASSO [23] and cIr-MLASSO,

248  respectively. Firstly, we evaluated whether methods were able to provide sparse sets of

249  microorganisms across our two scenarios. In our low dimensional setting, CODA-LASSO
250  highlighted sparser selections, showing average sparsities of 2% against 9% and 14% for
251  cIr-LASSO and cIr-MLASSO. This result was consistent in our high dimensional setting,

252  where CODA-LASSO showed stable sparsities, while the sparsity of clr-LASSO and clr-

253  MLASSO greatly improves (Figures 4A-4D; CODA-LASSO=2%; clr-LASSO=5%; clr-

254  MLASSO=11%). This result suggests that CODA-LASSO tends to provide a stable sparsity
255  across our two scenarios, selecting only a small proportion of the total microorganism-

256  metabolite interactions compared to the two other methods. Then, we assessed how

257  accurate the methods are in order to find true associations. In the low dimensional scenario,
258  cIr-LASSO offered slightly higher classification performances, showing average F1-Scores of
259  43%, compared to 35% and 30% for CODA-LASSO and clr-MLASSO, respectively (Figure
260  4A). Nonetheless, in the high dimensional scenario, CODA-LASSO provided higher F1-

261  Scores than clr-LASSO or clr-MLASSO, with accurate classification rates on average 1.40
262 times higher (Figure 4D). Collectively, our results point to CODA-LASSO as a good trade-off
263  between sparsity and classification performances to accurately select sparse subset of

264  microbiota associated with metabolites.

265

266 UNIVARIATE FEATURE-SELECTION FOR COMPOSITIONAL OUTCOMES

267  Finding a subset of metabolites associated with microbiota may bring important insights into

268 the underlying biological mechanisms involved between the two omics. Thus, consistently
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269  with the previous subsection, we systematically compared three different methods taking into
270  account compositional outcomes with respect to sparsity and F1-Score, the sparse Dirichlet
271  regression [27], LASSO and MLASSO of the CLR transformed microbiome data. Firstly, in
272  the low dimensional setting, the LASSO offered strikingly sparser solutions, showing sparsity
273  scores of 8% compared to 40% and 18% for the sparse Dirichlet regression and MLASSO,
274  respectively (Figure 4C). Except for the sparse Dirichlet regression, where the sparsity was
275  multiplied by roughly 2 between the two scenarios, LASSO and MLASSO exhibit sparser
276  selection in the high dimensional setting compared to the low dimensional scenario (Figure
277  4D). This result suggests that standard methods applied on the CLR transformed

278  microbiome data seems to provide sparse and consistent solutions across our scenarios.
279 Moreover, regardless of the scenario considered, F1-Scores remained low across methods
280  suggesting poor method performances to accurately classify associations between

281  microorganisms and metabolites (Figures 4C-4D). However, it is worth mentioning that high
282  F1-Scores achieved by the sparse Dirichlet regression in the low dimensional scenario may
283  be explained by weak sparsity scores. Taken together, our results point to poor performance
284  of methods to select accurately metabolites associated with microorganisms; where standard
285 methods applied on the CLR transformed microbiome data correspond to a better trade-off
286  between sparsity and classification performances than a purely compositional penalized

287  method.

288

289 MULTIVARIATE FEATURE-SELECTION

290 Instead of analyzing each feature independently, exploiting information shared across two
291 omics may represent an interesting avenue to select the most contributive features [32].

292  Thus, we compared three methods taking advantage of both intra- and inter-correlation

293  occurring between features of the two datasets, the regression sparse PLS, the canonical
294  sparse PLS [18] and the sparse CCA [17], respectively. Firstly, in our low dimensional setting
295 the regression sPLS seems to provide high levels of sparsity compared to the two other

296  methods (Figure 4C). Indeed, the method tends to select about 34% of total features

10
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297  compared to 23% or 26% for SCCA or canonical SPLS. This pattern was also observed in our
298 high dimensional setting, even if an increase of sparsity between the two scenarios has to be
299  noted (Figures 4C-4F). This result aligns with a too high number of selected features, since
300 our simulation setup maximally assumes a 10% of associated features. Then, we

301 investigated whether methods were able to accurately discriminate contributive features from
302 uninformative ones. In our low dimensional scenario, the regression sPLS offered higher F1-
303  Scores, showing average values of 76% compared to 70% and 60% for the canonical sPLS
304 and sCCA, respectively (Figures 4C). This result was confirmed in the high dimensional

305 scenario, even if lower scores across the three methods have to be noted (Figures 4F). For
306 example, the average F1-Score for the regression sPLS decreased by 63%, while for the
307 canonical sPLS and sCCA, the decrease is of 53% and 69%, respectively, consistent with
308 lower classification performance as the dimensionality increases. Then, we investigated

309 whether methods are sensitive to data transformation. Interestingly, we found that in the low
310 dimensional scenario CLR transformation offered higher sparsity scores showing equivalent
311 F1-Scores across methods, while in the high dimensional setting absence of microbiome
312  data transformation slightly improved both sparsity and F1-Scores (Figure S25). Finally, our
313 results align with regression sPLS as the preferred choice for selecting features accounting
314  for between and within omics correlation. However, our findings point to modest levels of
315 sparsity across the methods suggesting poor method specificity with inconsistencies of

316 method results across data transformation.

317

318 REAL-DATA APPLICATION

319  Our systematic evaluation of strategies to jointly analyze microbiome and metabolome data
320 has permitted the illustration of the best methods depending on the research question. Thus,
321 through an application on metabolomics and metagenomics data of the Konzo disease [29],
322  we applied the more appropriate approaches to highlight different biological patterns

323  occurring between microorganisms and metabolites. We presented the exact workflow in the

324  Konzo data analysis section and Figure S26. Firstly, we used the Mantel test and found a

11
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325 significant global association between the two omics (Spearman's permutation p-value <=
326  9.9e-5). Then we applied MOFA2 and found that through the fifteen first latent factors, the
327  model explains 50% and 40% of microbiome and metabolome variability, respectively

328  (Figure S27). Moreover, the top-10 most contributing features on the first factor highlighted
329 relevant microbiota or metabolites associated with intestinal health. For example, MOFA2
330 identifies the 2,3-Dihydroxy-2-methylbutanoic acid, a fatty-acid which has been

331 demonstrated to be related to lipid metabolism pathways [33] (Figure 5A). Similarly,

332  Faecalibacterium prausnitzii was identified as the most strongly associated microbiota,

333  exhibiting a highly negative contribution (Figure 5B). This microbiota has already been

334  shown to be involved in gut health [34, 35]. Subsequently we used the sPLS regression and
335  were able to identify 249 metabolites and 70 microorganisms significantly contributing to the
336  two first components, where clear clusters of microbiota could be observed (Figure 5C).

337  Consistently with our benchmark, we used the log-contrast regression in order to identify
338 metabolites significantly impacted by microbial communities and found that out of the 249
339 metabolites, 193 are significantly associated with microbial communities (Bonferroni adjusted
340  p-values <= 2e-04). Then applying CODA-LASSO we detected 234 metabolites with at least
341 one interaction with microorganisms. Interestingly, every microorganism has been selected
342  atleast once across the 234 metabolites, with an average of 35 microbiota associated

343  (Figure 5D). For example, the 2,3-Dihydroxy-2-methylbutanoic acid, previously identified by
344  MOFA2, is associated with 8 microorganisms, mostly involved in gastrointestinal health

345  (Figure 5E). Finally, we checked whether microorganisms exhibit consistent effects across
346  metabolites and we observed 5 microbiota highlighting important variability in their effect
347  (Figure 5F). This result was confirmed at a larger scale by network analysis from log-contrast
348  regression and CODA-LASSO (Figures S28-S29). Our results from metagenomics and

349 metabolomics data from Konzo disease highlight complementary biological interactions

350 between microorganisms and metabolites, where different microbial dynamics seems to be
351 involved.

352
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353

354

355 Discussion

356  The integration of microbiome and metabolome datasets within statistical frameworks has
357 become an important resource for researchers in order to comprehensively understand the
358 underlying biological mechanisms involved in diseases. Indeed, recent studies in

359 inflammatory bowel disease [36] or cardiometabolic traits [4] have highlighted that

360 pathoetiology may result in disruptions of interactions between microorganisms and host-
361 metabolites interplay or shifts in the microbial-derived metabolite levels. Understanding these
362 interactions represent therefore a critical avenue for unraveling the biology of complex

363  phenotypes. However, currently, there are no standards on how to integrate these two omics
364  together, pushing researchers to constantly reinvent the wheel. Thus, deciding which method
365 fits best for a specific biological question remains a daunting task, critically limiting the result
366 interpretations and replicability. In this paper, we extensively benchmarked fifteen existent
367 integrative methods to study microbiome-metabolome interactions covering most of the

368 researcher aims: global associations, data summarization, individual associations, and

369 feature selection (Figure 1). Based on a comprehensive simulation study and a real data
370 application, we highlighted best methods depending on the research question and data at-
371 hand, providing important insights about statistical good practices (Table 1) and avenues for
372  future methodological developments (Table 2).

373 When evaluating global association methods, our results have pointed to important
374  lessons for practitioners. Indeed, MMIRKAT represents the most promising method

375 compared to the Mantel test, showing higher power and robustness to data transformations
376 and distance kernels (Figure 2C). We argue this aspect is particularly relevant since

377  choosing the right data transformation or distance metric may represent an important

378 challenge for practitioners. Moreover, MMIRKAT has the possibility to adjust for confounding

379 factors which is an appealing feature for most phenotypes where bias can be induced by
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380 certain individual characteristics, such as age, sex or lifestyle [3, 4]. However, one limitation
381 of MMIRKAT compared to the Mantel test is its incapability to deal with scenarios with a

382 larger number of features than individuals. We therefore recommend filtering out features
383  based on a feature selection approach or to use the Mantel test in order to have a crude idea
384  about the global association occurring between the two omics. Importantly, when using the
385  Mantel test, our results suggest that the Canberra distance on metabolome data is the

386  poorest choice for detecting global associations across all our scenarios (Figures 2B; Figures
387  S1-S15). Thus, applying Euclidean distance on transformed microbiome data while applying
388  Euclidean or Manhattan distances on metabolites should constitute the default usage for
389  most cases.

390 Data reduction is often used by practitioners in order to summarize information

391 through a small number of components. Having an efficient method which recapitulates

392  variability across two omics is critical for facilitating subsequent analyses such as

393  visualization or clustering [1]. We considered four different methods exhibiting specific

394 features to summarize omics information and found that in addition to being robust to data
395 normalization, MOFA2 is the best method to recapitulate data variability. In our high

396 dimensional setting MOFA2 explains about 80% of metabolome variance when ILR

397 normalization was considered and remains stable across alpha and CLR transformations
398  (Figure 2D, Figure S16). This result may be explained by the capability of the method to

399 capture complex relationships, as suggested by [37]. Thus, we recommend using MOFA2
400 when researchers want to achieve efficient data reduction. We then applied MOFA2 to our
401 Konzo dataset and found important microbiota and metabolites involved in biologically

402 relevant pathways of gut health, while preserving a great portion of data variability (Figure
403  5A-5B). For example, MOFAZ2 identifies Faecalibacterium prausnitzii as the most negatively
404  contributive microorganisms on the first factor (Figure 5B). Previous studies have shown that
405  Faecalibacterium prausnitzii levels are strongly associated with anti-inflammatory metabolite

406  quantities involved in intestinal health [34, 35]. Similarly, MOFA2 found 2,3-Dihydroxy-2-
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407  methylbutanoic acid with the strongest positive correlation on the first factor, a fatty-acid

408  which has been demonstrated to be related to lipid metabolism pathways [33] (Figure 5A).
409 In practice another important question for researchers is to determine the relationship
410  between microbial communities with a variable of interest [29, 38]. However, the underlying
411  compositional structure of microbiome data is an important challenge for model performance.
412  In this paper we have compared three methods accounting for the compositionality of

413  predictors with different strategies, a linear regression applied on the CLR transformed

414  microbiome data, MiRKAT, and the log-contrast model. Compared to correlations, these
415  methods can incorporate confounding factors which is an important feature in practice. Our
416  main finding is that regardless of the method considered here, better performances are

417  achieved compared to correlations, still widely used in practice [5]. However, the linear log-
418  contrast offers higher power across our simulation scenarios compared to MiRKAT and the
419 linear regression (Figure 3C). Also, one important advantage of the log-contrast model over
420  MIRKAT or the linear regression is to not require a choice of a particular data normalization,
421  which can represent an important challenge for most researchers. This is particularly

422  important since the CLR transformation has been shown to provide still-correlated features
423  while sub-compositionally incoherent, limiting result transferability [23, 24]. This result

424  highlights the need for new compositional data transformations, keeping the original number
425  of features while linearly independent (Table 2). Hopefully, MiRKAT performance is robust
426  across data transformations, with stable power and suitable Type-I error rate control (Figure
427  3C, Figure S23). Additionally, one main difference of the log-contrast or the linear regression
428  over MiRKAT is to provide individual contribution of each microbe. We therefore strongly
429 recommend to use the log-contrast regression when evaluating the association between
430  microorganisms and metabolites. Consistently, out of the 249 metabolites selected by the
431  regression sPLS, the log-contrast model highlights 193 metabolites with significant

432  associations with microbiota in the Konzo dataset. Interestingly, we found that

433  microorganisms exhibit heterogeneous effects across metabolites suggesting different

434  microbial dynamics possibly involved in the disease (Figure S28). Similarly to MDiNe [39],
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435  where authors provided a mechanistic framework to study differential microbial co-

436  occurrence networks, additional work is needed to link microbiome and metabolome from a
437  dynamic perspective at large scale (Table 2; Ongoing work). We argue this aspect is

438  particularly critical in order to pinpoint the underlying biological mechanisms hence facilitating
439  precision medicine applications [40, 41].

440 Also, one important contribution of this work is to extensively evaluate feature

441  selection methods. This is particularly critical for researchers in order to accurately select
442  metabolites and microorganisms involved in a specific biological context. Our results point to
443  moderate performance of multivariate feature selection methods with inconsistent

444  performances across scenarios and the data transformations considered (Figures 4C-4F,
445  Figure S25). This result is also observed for univariate feature selection models with

446  compositional outcomes (Figures 4B-4E). The best performances are achieved for methods
447  with compositional predictors, with CODA-LASSO exhibiting stable sparsity results with good
448  classification performances (Figures 4A-4D). Thus, we recommend in practice to use CODA-
449  LASSO for scenarios with microbial predictors, while using the LASSO regression after CLR
450 transforming the microbiome data when these latter are the outcome. Then we applied both
451  regression sPLS and CODA-LASSO on the Konzo dataset. Regression sPLS has permitted
452  the detection of 249 metabolites and 70 microorganisms contributing the most to data

453  variability (Figure 5C). From these 249 metabolites, CODA-LASSO has subsetted the most
454  contributing features, highlighting different microbial dynamics of effects (Figures 5F; Figure
455  S29). Further investigations have shown that Vescimonas fastidiosa was the most interacting
456  microbiota, significantly connected to 138 metabolites. This result is aligned with the model
457  where microorganisms may be connected to a large set of metabolites. This complex

458  microbiome-metabolome crosstalk has been shown to be associated with diseases [6].

459  However, associations found may result in artifact signals since most feature selection

460 methods benchmarked in this paper suffer from lack of sparsity and reliability. This result is
461  aligned with previous reports where authors have shown poor performances of traditional

462  feature selection models [42]. Indeed, most penalized methods are mainly built upon cross-
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463  validation where small perturbations in data may yield drastic changements in results.

464  Similarly to [42] extending sparse multivariate or univariate methods to knockoff framewaork
465  [43] or stability selection [44] should represent interesting avenues for improving both

466  sparsity and reliability for compositional data [45] (Table 2).

467 Although our simulation setup is able to realistically simulate microbiome and

468 metabolome data, our framework suffers from two limitations that we think it is important to
469  mention here. Firstly, the NORtA algorithm is limited in its capability to generate real

470 correlated compositional data. Indeed, as discussed by [46], simulating pure compositional
471 data from a Dirichlet distribution induced only a small correlation between features, which is
472  often unrealistic regarding the biology of the microbial communities and metabolites. We
473  therefore generated compositional microbiome data post-hoc, promoting the correlation,
474  zero-inflation and overdispersion characteristics over a purely compositional structure. This
475  “hard” compositionality disturbed the original data structure but has several advantages

476  especially in the data generating process (DGP). Indeed, through our simulation we are able
477  to control underlying parameters while providing a DGP-agnostic procedure, not promoting
478  one method over another. We argue that this aspect is central in order to provide systematic
479  objective method comparisons. Also, as a parametric framework the NORtA algorithm is
480 limited in its capability to simulate data with a higher number of microorganisms or

481  metabolites than the number of individuals. Thus, as initially mentioned for global association
482  methods, we suggest filtering out core elements using either an univariate or a multivariate
483  method before using models assuming a sample size bigger than the number of features.
484 To summarize, in this paper we provide an extensive benchmark of integrative

485  computational methods for incorporating metagenomics and metabolomics data. We hope
486  this work will represent a great opportunity for the multi-omics community in order to improve
487  research standards and practices. This aspect is central for scientific discovery and

488  reproducibility.

489

490
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491

492 Conclusions

493 In summary, the present study provides to the multi-omics community one of the largest
494  comprehensive benchmarks of statistical frameworks to jointly integrate metagenomics and
495  metabolomics data. Through an extensive simulation study, we systematically compared
496 fifteen integrative approaches across most of the research questions encountered in

497  practice. We identified the best methods and illustrated their capability to highlight

498 complementary biological processes involved at different scales with an application to

499  microbiome and metabolome data for Konzo disease. Overall, our study provides a robust
500 and replicable comparative framework of integrative methods. We hope this work will serve
501 as a foundation for setting research standards and the development of new efficient

502  statistical models to mutually analyze metagenomics and metabolomics data.
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504  Figure 1 Overview of the simulation setup and integrative methods for analyzing
505 microbiome-metabolome relationships depending on the research question
506  (A) Correlated microbiome and metabolome data were generated using the “Normal to

507  Anything” framework (See Methods). Microbiome data were simulated considering a zero-
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inflated negative binomial distribution, while metabolome datasets follow a negative binomial

distribution. For each dataset, proportions of associated features vary between 1% and 10%,

with association strengths randomly picked from a Gaussian distribution.

(B) Overview of the integrative methods related to the research question.
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Figure 2 Performance of the multivariate methods for both global association and data

summarization in the high dimensional scenario.

When control of Type-I error rate is of interest, we are looking for methods providing

guantiles of observed p-values similar to quantiles of expected p-values, i.e., following the

diagonal line. In other words, the closer the dots to the straight line, the more the method

adequately controls the false positives. Similarly, for power, we are looking for methods

providing high powers. That is, detecting a significant association when we know there is an

association. Explained variance is the data variance contained through latent factors. See

Methods for details on performance metrics. (A) QQ-Plot of the Mantel test applied on the

ILR transformed microbiome and log transformed metabolome data, considering different

distance kernels for metabolites. Here we considered Spearman's method for computing the

global association between the two datasets. (B) QQ-Plot of MMIRKAT applied on the ILR
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525 transformed microbiome and log transformed metabolome data, considering different

526  distance kernels for metabolites. Points below the straight line refer to a conservative

527  behavior in the result section. (C) Power of the Mantel test applied on the ILR transformed
528  microbiome and log transformed metabolome data, considering different distance kernels for
529 metabolites for both the Mantel test and MMIRKAT. P-values <= 0.05 were considered as
530 significant. (D) Proportion of explained variance for the data summarization methods

531  considering the log transformed metabolome and the the alpha transformed and ILR

532 transformed microbiome data.
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535 Figure 3 Performance of the individual association methods for compositional

536 predictors

537  When control of Type-I error rate is of interest, we are looking for methods providing

538 quantiles of observed p-values similar to quantiles of expected p-values, i.e., following the
539 diagonal line. In other words, the closer the dots to the straight line, the more the method
540 adequately controls the false positive. Similarly, for power, we are looking for methods
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541  providing high powers. That is, detecting a significant association when we know there is an
542  association. See Methods for details on performance metrics.

543  QQplots of the individual association methods in (A) the low dimensional scenario and in the
544 (B) high dimensional scenario. (C) Power of the individual association methods across our
545  two main scenarios. P-values <= 0.05 were considered as significant. For the clr-lm method,
546  p-values were combined using ACAT [47] in order to provide similar comparisons with the
547  log-contrast regression and MiRKAT (See Methods). For MiRKAT, we reported Type-I error
548 rate and power using the ILR transformed microbiome data and the log transformed

549 metabolites.
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552  Figure 4 Performance of the feature selection methods for providing sparse and
553 reliable subset of elements across our two scenarios.

554  Method performance was evaluated with respect to sparsity and F1-Score. For the former,
555  we are looking for methods providing low values corresponding to a small proportion of
556  selected features, while for the latter, high values of F1-Scores correspond to better

557 classification performances (See Methods).
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Performance of univariate feature selection methods considering microorganisms as
covariates under our (A) low dimensional and (D) high dimensional scenarios. For CODA-
LASSO under the high dimensional setting performances were calculated on 100 replicates.
Performance of univariate feature selection methods considering metabolites as covariates
under our (B) low dimensional and (E) high dimensional scenarios. For the sparse Dirichlet
regression under the high dimensional setting performances were calculated on 100
replicates. Performance of the multivariate feature selection methods considering the CLR
transformed microbiome and the log transformed metabolome under our (C) low dimensional

and (F) high dimensional scenarios.
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Figure 5 Application of best strategies highlights complementary biological
interactions between microorganisms and metabolites in Konzo data

Top-10 most contributing (A) metabolites and (B) microbiota on the first factor as identified
by MOFAZ2. Positive correlations were identified by a +, while negative correlations were
identified with a - sign (C) Projection of metabolites (red) and microorganisms (blue) into the
2D regression sPLS space. Features with null loadings were removed from the analysis. (D)

Distribution of the number of significant microorganisms found by CODA-LASSO across the

22


https://doi.org/10.1101/2024.01.26.577441
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577441; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

575

576

577

578

available under aCC-BY-NC-ND 4.0 International license.

subset of metabolites identified by the regression sPLS. (E) Log-contrast coefficients for the

2,3-Dihydroxy-2-methylbutanoic acid (F) Violin plot of the variance of log-contrast coefficients

through the subset of microorganisms identified by the regression sPLS. Red dots

correspond to outliers with high coefficient’s variability.
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579 Table 1: Summary of best methods depending on the research question
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580 Table 2: Overview of avenues for future methodological developments to jointly
581 analyze metagenomics and metabolomics data

582

583 Methods

584 Simulation setups

585  Microbiome and Metabolome data were simulated using the “Normal to Anything” approach
586 (NORtA), already used for different multi-omics analyses [39, 46, 48]. An appealing feature
587  of the NORtA algorithm is to provide a framework capable of simulating data from any

588  marginal distribution while specifying arbitrary correlation structures. Thus, we are able to
589  generate synthetic microbiome data respecting: (1) correlation structure, (2) zero-inflation,
590 and (3) over-dispersion, while metabolome was generated similarly removing the zero-

591 inflation property. This is consistent with real-data characteristics [21]. Moreover, we induced
592  compositionality for microbiome data by dividing the count of each microorganism by the
593  sum over all elements in a given individual. Several data transformations for both

594  microbiome and metabolome were evaluated across our scenarios to account for data

595  structure (See subsection Data and Distance Kernel Transformation). In order to evaluate
596 the Type-I error control, we independently generated two datasets under the null hypothesis
597  of no association between microorganisms and metabolites. Under the alternative

598 hypothesis, we varied both the number of associations between microorganisms and

599 metabolites and the strength of associations, mimicking microbiome-metabolome complex
600 interdependence. Methods were compared under two main scenarios, simulating: (1) 25
601 microorganisms and 25 metabolites with 100 individuals and (2) 100 microorganisms and
602 100 metabolites with 500 individuals. Details on the simulation and sensitivity scenarios were
603  provided in the supplementary. Under all scenarios we simulated 1,000 replicates.

604  Simulation setup was summarized in Figure 1.

605

25
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606 Data and Distance Kernel Transformation

607  Most methods used in practice need either a normalization step or a distance-based

608 transformation in order to be applied properly on compositional or over-dispersed data [19].
609 Thus, we considered in our main analyses three data normalizations for microbiome and one
610 data transformation for metabolome data. The choice of data normalization depends on the
611 research objective.

612 In order to take into account the compositionality of microbiome data while keeping
613 the original number of features, we considered the centered log-ratio transformation (CLR)
614  [49] applied on the original count data. This normalization was considered across all the

615  different considered methods. Basically, the CLR transformation computes the log ratio of
616 each microbiota count on the geometric mean for a given individual. Formally, the CLR

617 transformation is given by:

X
CLR(X;) = log J
618 ( J) (Q(X)

619 where Q(X) is the geometric mean over all the microorganisms for one sample. This

)

620 transformation projects the simplex onto a D compositional subspace under a zero-sum
621  constraint [24, 50]. By keeping the original number of features the CLR transformation is a
622  one-one transformation, facilitating result interpretation which is an appealing feature in
623  practice. We therefore considered the CLR transformation as the reference normalization
624  when individual associations or feature selection are of interest. However, the CLR

625 transformation does not ensure independence between features and sub-compositionality
626  coherence. This latter represents a major limitation for distance-based methods due to

627  singular covariance matrices. Thus, when distance between features is of interest we

628  considered the isometric log-ratio (ILR) [25] and alpha transformation [24]. Intuitively, these
629  two transformations project the original D-dimensional space into an independent D-1 quasi-
630 orthogonal space, the main difference laying into the transformation used. The ILR

631 transformation projects the original data onto a Euclidean space. Formally:
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D—1

] =1 Xi
ILR(X;) =/ i ) los(5 =)

632

633  While the alpha transformation is a Box-Cox type transformation, where the transformed data
634 follow a multivariate distribution after a suitable alpha-transformation [24].

635  This facilitates the use of traditional multivariate methods. We therefore considered the ILR
636 and alpha transformations when evaluating global associations, and data summarization

637 methods, since the correspondence with the original features does not really matter.

638  Moreover, since the metabolome data have been shown to be log-normally distributed we
639  applied a natural log transform on the original count data [51].

640 Also, we applied different distance kernel transformations before performing some
641  global association or individual association analyses, highlighting different patterns of

642 relationships occurring among features. Briefly, we considered Euclidean, Canberra and

643  Manhattan distances on metabolome matrices of original and log transformed counts, while
644  considering the Euclidean distance on original and transformed microbiome data.

645 Interestingly, as presented by [19], the Euclidean distance applied on CLR transformed data
646  corresponds to the Aitchison distance. This latter has been shown superior to the Bray-Curtis
647  dissimilarity, representing a true linear relationship, while more stable to data subsetting or
648  aggregating [52], and will be considered as our reference method here. All data and distance
649  kernel transformations depending on the method used were summarized in Table S1.

650

651

652 Statistical Analyses

653 Let's assume X and Y, a matrix of microbiome and metabolome, collected on the same set of
654  samples, of size n x p and n x g, where n is the number of samples, p the number of

655  microbiota and g the numbers of metabolites, respectively. Xij represents the jth

656 microorganism in the ith sample, with j = 1,2,.., p, while Yik is the kth metabolite in the ith

657 sample, where k=1,2,...,q. For the sake of simplicity we considered the case where p=g.
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658
659 Global Associations

660 In this paper we refer to global association methods, the statistical approaches providing

661 global associations between microbiome and metabolome data (Figure 1). We considered
662  two general methods, the Mantel test [9] and MMIRKAT [10], respectively.

663  The Mantel test [9] is a statistical framework measuring global correlation between two

664  datasets measuring on the same set of samples. Traditionally, the Mantel test is applied on
665  distance or dissimilarity matrices. Here we considered three different distance kernels

666  applied on the metabolome dataset, Euclidean, Canberra and Manhattan distances. Also, we
667 applied the Euclidean distance on the original and transformed microbiome matrix, since this
668  projection leads to more natural interpretations [52] (Table S1). The Mantel test was applied
669  considering either Pearson’s or Spearman’s correlation. P-values were obtained empirically
670 based on permutations using 10,000 replicates. The Mantel test was performed using the
671 vegan R package.

672 MMIRKAT is the multivariate extension of MiRKAT providing global association

673  between a distance-transformed microbiome dataset and a low dimensional continuous

674  multivariate phenotype [10]. Consistent with distance kernels used in the Mantel test, we
675 considered Euclidean, Canberra and Manhattan distances applied on the original and

676  transformed microbiome data, while the entire original or log transformed metabolome matrix
677  was considered as the outcome (Table S1). MMIRKAT was applied using the MiRKAT R

678 package.

679

680 Data Summarization

681 In this benchmark, we considered 4 distinct data summarization methods, encompassing
682 CCA, PLS, RDA, and MOFAZ2. Briefly, all these methods seek to summarize data information

683  through latent factors.

28
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684 CCA initially proposed by [11] summarizes the relationship between two datasets by
685 finding linear combinations of the two matrices maximizing the correlation. CCA was

686  performed using the CCA R package.

687 Unlike CCA, PLS seeks for linear combinations maximizing the covariance between
688 the two datasets [12]. Also, in PLS directionality of effect of one matrix on the other can be
689 taken into account, leading to two general forms of PLS, regression and canonical,

690 respectively [13]. Thus, canonical PLS and regression PLS were applied with the mixOmics
691 R package.

692 Moreover, RDA is a two-step procedure, combining multivariate linear regression and
693 PCA[13]. In the first step, a multivariate linear regression is fitted between each element of
694  the matrix of responses and the matrix of predictors. Then a PCA is applied on the matrix of
695  predicted values. RDA was performed using the vegan R package.

696 Finally, MOFAZ2 is an unsupervised multi-omics framework able to untangle sources
697  of variability shared by different omics [14]. MOFAZ2 is a Bayesian probabilistic model able to
698 find latent factors linking two omics by putting priors on model parameters. We applied

699 MOFA2 using the related R package MOFAZ2 with default parameters.

700 Except for MOFA2 where the best number of latent factors were chosen by the

701  model, we kept all the components corresponding to the minimal number of features

702  observed in one dataset.

703

704

705
706 Individual associations

707  When individual relationships are of interest, we consider different regression models taking

708 into account the compositionality induced by microbiome data as predictors.

29
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709 Indeed, for microbiota that are explanatory variables, we fitted 3 different models, a
710 log-linear regression on the CLR transformed microbiome, a log-contrast model [22] and
711  MIRKAT [10].

712

713 Formally the log-linear model of the CLR transformed microbiome (referred to as clr-
714  Im in the Result section) is given by:

E(Y;| X35, B5) = Bo + X358 + €,V(4, k)

* . *
717  where Y is the log transformed metabolome matrix and X the CLR transformed

716

718  microbiome data. Although the compositionality in the microbiome data is taken into account
719  using the CLR transformation, the previous model is not robust to the subset of

720  microorganisms, not preserving the sub-compositionality feature of microbiome data. Thus,
721  the log-contrast model by imposing a zero-sum constraint on regression coefficient

722  preserves the scale invariance property needed to ensure the sub-compositionality

723  characteristic of microbiome data [22]. Formally, the model is given by:

724

p

E(YplX:,8)=X:f+e, )y Bi=0
725 Jj=1
726  Under the log-contrast framework, following [22] we applied the global significance F-testin
727  order to determine whether there is an association between at least one microorganism and
728  agiven metabolite. The log-contrast model was performed using the Compositional R
729  package. Aligned with the idea of global association, MiRKAT is a statistical framework
730  exploiting semi-parametric kernel machine regression framework in order to summarize
731  microbiome relationships [10]. One major feature of MiRKAT compared to other approaches
732  is permitting the use of several distance kernels at the same time. This is particularly

733  appealing since it is often unclear in practice which kernel is the more suitable. In our
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734  context, we considered Euclidean, Canberra and Manhattan distances either on original or
735 transformed microbiome data, while considering the original or log transformed metabolome
736  as outcome. MiRKAT was applied with the MiRKAT R package.

737
738 Feature Selection: Univariate

739  Adapted from [23] we considered two different models accounting for compositional

740  predictors, when fitting models with metabolites as outcomes. Firstly, we considered the
741  CLR-LASSO, performing the CLR transformation on microbiome data before fitting a

742 univariate or multivariate LASSO log-linear regression [16]. We referred to as LASSO and

743  MLASSO in the Results section. Formally for a metabolite k, the LASSO log-linear model is

744  given by:
n P b
> Wi =D XuB)+2) I8l
745 =1 7=1 j=1
746

. * . . *
747  with Y is the log transformed metabolome matrix and X the CLR transformed

748  microbiome data. Best penalty parameters A were chosen using a 10-fold cross-validation
749  through a 10 step grid-search from 0.01 to 1. LASSO or MLASSO models were fitted using
750 the gimnet R package.

751 Then, consistently with the log-contrast model, we applied the coda-LASSO

752  considering a log-linear response of the metabolome level. Briefly, the coda-LASSO is a
753  penalized log-contrast model, permitting to select only the most contributive features, with a
754  zero-sum constraint on regression coefficients, ensuring scale invariance, a property needed
755  for compositional data. The model considered in the coda-LASSO framework is a direct

756  extension of the model initially proposed by [53]. This latter fits a two-stage model on all

757  possible log-ratios between each pair of microbiota, leading to sparse solutions. The R
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758  package coda4microbiome with the default parameters were used when applying coda-
759 LASSO.

760 Then, following the same rationale, when fitting models with microorganisms as
761  outcomes, we considered two different approaches, adjusting a univariate or multivariate
762  LASSO linear model on the CLR transformed microorganisms or taking advantage of the
763  sparse Dirichlet regression framework [27]. For the former, the model for the jth

764  microorganism is given by:
n P P
2
D (X =D YaB) + 1) |8l
i=1 k=1 =1

%*
766  where X is the CLR transformed microbiome data. Here we considered the original and

765

767 the log transformed metabolome signal as explanatory variables. In the sparse Dirichlet

768  regression we used a multinomial dirichlet distribution. These models are direct extensions of
769  the original LASSO model assuming X following a Dirichlet distribution [27]. Consistently with
770 the methodology used in LASSO, best penalty parameters were chosen from a 0.1 step grid-
771  search between 0.01 and 1 using a 10-fold cross-validation. Sparse Dirichlet regression

772  framework was applied using the MGLM R package.

773

774 Feature Selection: Multivariate

775  Sparse Canonical Correlation Analysis (SCCA) [17] and sparse Partial Least Squares (sPLS)
776  [18] are two penalized extensions of CCA and PLS permitting to summarize data information
777  through latent factors while proceeding to feature selection.

778 For sCCA we used L1 penalty on the two datasets, only keeping features contributing
779  on the two first components. Best penalty parameters were found using 25 permutation-

780 based samples considering a 0.1-step grid search from 0.01 to 1. sSCCA were performed

781  using the PMA R package.

782 Consistently, canonical and regression sPLS were tuned using a 10-fold cross

783  validation, considering a 5 step grid search ranging from 5 to 25 in our low dimensional
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784  setting and from 10 to 50 in our high dimensional scenario. We maximally kept two

785  components in order to select the most contributive features. sPLS were applied using the
786  mixOmics R package. For both sCCA and sPLS, features on the two first components with
787  non-null loadings were considered as informative variables hence were kept to compute the
788  performance metrics.

789

790 P-value combinations

791  In order to provide fair comparisons across our individual association methods with

792  compositional predictors, we combined p-values using the Aggregated Cauchy-based test
793  (ACAT) [47] when CLR-Im was considered. Indeed, for a large number of microbiota and
794  metabolites, applying univariate methods can lead to p x g possible correlations, limiting the
795  statistical power due to multiplicity. Similarly to the log-contrast model or MiRKAT, in practice
796  one can be interested in having the global association between one metabolite and several
797  microorganisms. Thus, in order to provide a powerful method controlling the Type-I error rate
798  well, we combined p-values for all microorganisms in a given metabolite using ACAT [47],
799  resulting from p p-values. We argue that this approach may result in more detected signals,
800 since the multiplicity burden is drastically reduced. Briefly, ACAT is a method combining p-
801 values through a Cauchy distribution.

802 Formally for one metabolite, the aggregated p-values across the p microbiota can be

803  approximated by:

804
T
arctan( =~
o5 _ 2rctan(y)
805 T
P
T = ij tan({0.5 — p; }r)
806 where =1 .

807  One important feature of ACAT compared to other aggregation methods, such as Fisher’s

808 method, is that the method can efficiently control the Type-I error rate even in presence of
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809 correlated p-values, while maintaining good power [47]. Also, the method does not require
810 any resampling step, facilitating its application to large datasets.

811

812 Performance Metrics

813  Since all the methods considered in this benchmark exploit different statistical concepts, the
814  outputs cannot be directly compared. Consequently, we opted for several performance

815 metrics depending on the research question.

816 Indeed, for global and individual association methods, we systematically evaluated
817  model performance through Type-I error control and power, since the considered methods
818 are frequentist frameworks. Briefly, Type-I error control assesses whether a method provides
819 agood control of false positives at a given significance threshold. In other words, under the
820 null hypothesis of no association, at a significance threshold equals to 0.05 we maximally
821  expect 5% of false positives for a method that performs well. Type-I error control was

822  evaluated using the quantile-quantile plot of the -log10 of p-values. Similarly, the power is the
823  capability of a method to detect a significant signal (at a given significance threshold) when
824  we know that there is an association. In practice, researchers want methods maximizing the
825  power while accurately controlling the Type-I error.

826 Data summarization methods were compared based on the proportion of the

827  explained variance. We refer to explained variance, the amount of data variability kept by
828 latent factors built by methods.

829 Moreover, inspired from [42] when univariate and multivariate feature selection

830 methods were evaluated, we considered sparsity and reliability as primary performance

831 metrics. For univariate methods sparsity corresponds to the total number of relevant

832  associations found by the method (here with coefficients different from zero), while reliability
833 is the capability of a method to accurately discriminate true from false associations between
834  two features. However, we adapted both sparsity and reliability calculation when considering

835 multivariate feature selection methods. Indeed, sparsity was computed by the total number of

34
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836  nonzero coefficients on the total number of features while reliability was adapted to capture
837 the model performance to keep true contributive variables within the two datasets. Reliability
838 was evaluated using the F1-Score (harmonic mean of the precision and recall). In practice,
839 researchers are looking for sparse methods with high F1-Score. Performance metrics

840 depending on the considered method were summarized in Figure 1. Technical details on the
841 performance metric calculation and adaptations were provided in the supplementary.

842  Methods.

843

844 Konzo data analysis workflow

845 Stool samples collected from individuals from study populations in Masi-Manimba (n = 65)
846  and Kahemba (n = 106) regions of the Democratic Republic of the Congo were used for

847  metagenomics and metabolomics assessment, where a proportion of the cohort is affected
848  with Konzo. Shotgun metagenomics sequencing was performed on DNA extracted from

849  ~250mg of stool with the goal of generating ~50 million reads per sample. Data was

850 analyzed following similar methodology as described previously using Kracken2 and

851  Bracken for taxonomic classifications [29] . Additionally, stool was analyzed by the company
852  Metabolon, harnessing their large in-house repository of rigorously tested and validated

853  metabolites that are used as reference, to detect metabolites present in the samples.

854  Analysis was performed on the 1,098 microorganisms and 1,340 metabolites across the 171
855 individuals unconditionally of the disease status. Microbiome data at the genus level were
856  normalized using the CLR transformation while metabolome data were log transformed. The
857  workflow was as follows 1) global association, 2) data summarization 3) univariate and

858  multivariate feature selection and 4) individual associations. Moreover, we considered

859  microorganisms as explanatory variables and the microorganisms as outcomes. For global
860 associations, since the number of features exceeds the number of individuals, we performed
861 the Mantel test instead of MMIRKAT. We further discussed this aspect in the Discussion

862  section. Then, we applied MOFA2 in order to detect the most contributing microorganisms
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863  and metabolites on the first component. Following the same methodology as presented in
864 the Method section, we extracted the core microorganisms and metabolites using the
865  regression sPLS, keeping only the features with nonzero loadings on the two first

866  components. We finally applied the log-contrast and CODA-LASSO in order to highlight

867  contributions of microorganisms on metabolites. We summarized the workflow in Figure S26.
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