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Abstract  21 

Background 22 
The exponential growth of high-throughput sequencing technologies was an incredible 23 
opportunity for researchers to combine different -omics within computational frameworks. In 24 
particular metagenomics and metabolomics data have gained an increasing interest due to 25 
their implication in many complex diseases. However, currently, no standard seems to 26 
emerge for jointly integrating both microbiome and metabolome datasets within statistical 27 
models.  28 
Results 29 
Thus, in this paper we comprehensively benchmarked fifteen different integrative methods to 30 
link microorganisms and metabolites. Methods evaluated in this paper cover most of the 31 
researcher's goals such as global associations, data summarization, individual associations 32 
and feature selection. Through an extensive simulation study and an application to real gut 33 
microbial datasets, we highlighted the best approaches for unraveling complementary 34 
biological processes involved between the two omics. We provided general guidelines for 35 
practitioners depending on the scientific question and the data at-hand. 36 
Conclusion 37 
In summary, we argue that this paper constitutes a promising avenue for establishing 38 
research standards when mutually analyzing metagenomics and metabolomics data, while 39 
providing foundations for future methodological developments. 40 
 41 
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2 

Background 47 

The recent development of high-throughput sequencing technologies has permitted the 48 

generation of omics data at an exponential scale. Combining different high dimensional 49 

biological datasets within computational models represents a wonderful opportunity for 50 

researchers to better understand the underlying biological mechanisms involved in diseases 51 

[1]. In particular, the microorganism-metabolite interactions have gained an increasing 52 

interest due to their potential involvement in a large set of traits. It has been demonstrated 53 

that shifts in the microbiome-metabolome interactions have important implications on 54 

individual health [2, 3]. Indeed, recent studies for cardio-metabolic diseases [4] or autism 55 

spectrum disorders [5] have shown that pathoetiology could be explained by a complex 56 

interplay between microbes and host metabolites [6] or by disruptions in the microbiota-57 

derived metabolite processes [7]. Thus, efficiently incorporating microbiome and metabolome 58 

data within statistical frameworks offers critical insights on the complex relationships 59 

occurring between diet or lifestyle factors on the microbe-metabolite recomposition and 60 

remains an important challenge in order to adequately identify hence target biological 61 

pathways [8]. However, the tremendous amount of available statistical models makes the 62 

choice of the right method a daunting task for many researchers. 63 

The statistical joint integration of microbiome and metabolome data can be achieved 64 

with different integrative strategies. Standard workflows include various types of analysis, 65 

each addressing a specific biological question [2]. Briefly, traditional pipelines include the 66 

detection of global associations, data summarization, individual associations and 67 

identification of core features. Firstly, researchers are often interested in determining whether 68 

a global association is occurring between the two omics. For example, one can look for a 69 

global change in metabolome levels due to a microbial recomposition induced by a specific 70 

diet or lifestyle [2]. Consistent with recent reports, testing for global associations can be 71 

performed using multivariate methods such as the Mantel test [9] or the multivariate 72 

microbiome regression-based kernel association test (MMiRKAT) [10]. This step frequently 73 
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precedes the application of subsequent analyses such as data summarization methods or 74 

the identification of core features [2]. Then, following approaches used for single omics, a 75 

common research objective is to summarize information contents in the two omics, 76 

facilitating the visualization and interpretation of large scale biological data [1]. The presence 77 

of two types of omics allows the exploitation of the intra- and inter- correlation existing 78 

between features of the two datasets. Application of data summarization methods including 79 

Canonical Correlation Analysis (CCA) [11], Partial Least Square (PLS) [12], Redundancy 80 

Analysis (RDA) [13] or more recently Multi-Omics Factor Analysis (MOFA2) [14] is an 81 

important step in order to uncover features explaining a large proportion of data variability. 82 

Indeed, applications of data summarization methods have allowed the identification of 83 

taxonomic groups or metabolites involved in Type 2 diabetes [15]. However, both global 84 

association and data summarization methods fail to provide individual relationships between 85 

one or several microorganisms and metabolites. This aspect remains central to highlight core 86 

features involved in a particular biological context. As an illustration, methods for detecting 87 

individual associations may prove relevant for the identification of bacterial genus associated 88 

with dietary-impacted metabolites [2]. One strategy is to compute a measure of association 89 

between each metabolite-microbiota pair, using either a correlation or a regression model. 90 

Although easily implementable and interpretable, these approaches suffer from lack of power 91 

induced by the number of models fitted, limiting result transferability. An alternative way is to 92 

employ univariate or multivariate feature selection methods to adequately identify key actors 93 

at a large scale. The least absolute shrinkage and selection operator (LASSO) is a method 94 

initially developed to improve predictability while proceeding to feature selection [16]. Indeed, 95 

the LASSO is able to set coefficients to zero, hence facilitating identification of core features. 96 

Consistently with this idea, sparse CCA (sCCA) [17] or sparse Partial Least Square (sPLS) 97 

[18] are multivariate penalized methods summarizing data variability while proceeding to 98 

feature selection. However, due to the complex structure of both microbiome and 99 

metabolome data, standard methods fall short of providing unbiased associations, limiting 100 

the biological interpretation of results. 101 
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On the one hand, because of the sequencing technology, metagenomics data 102 

highlight hard-to-analyze characteristics [19, 20]. Indeed, it is now globally accepted that 103 

microbiome datasets are over-dispersed, zero-inflated, highly correlated, and compositional. 104 

Without adequate transformation the inherent compositionality of the data makes the 105 

application of standard methods incorrect, leading to inconsistent results [19–21]. On the 106 

other hand, metabolomics data shares some of these features, exhibiting over-dispersion 107 

and high correlation structures [21]. Thus, combining these two omics together within 108 

statistical frameworks requires particular attention. Approaches to deal with compositional 109 

data either as an outcome or explanatory variable have already been proposed [20, 22, 23], 110 

covering applications of global association methods, data summarization, individual 111 

associations or identification of core features. Conventional strategies include utilization of 112 

standard methods after suitable data transformations or purely compositional approaches 113 

[24–27]. Subsequently, determining which strategy is the best depending on the research 114 

question remains an open problem with major implications for practitioners. 115 

Despite recent efforts to integrate microbiome and metabolome within unified tools 116 

[28], to our knowledge there is no systematic framework to evaluate integrative methods to 117 

link microbiome with metabolome datasets; constantly pushing researchers to make their 118 

choice without any robust comparison. Thus, in this paper, we comprehensively 119 

benchmarked fifteen different integrative methods to link microorganisms and metabolites, 120 

covering most of the researcher’s aims, such as global associations, data summarization, 121 

individual associations, or feature selection (Figure 1). Our extensive simulation studies 122 

provide insightful lessons on the strengths and limits of methods commonly encountered in 123 

practice. Then, we applied best methods to real data on the gut microbiome and metabolome 124 

for Konzo disease [29], highlighting a complex interplay between the two omics occurring at 125 

different scales. Finally, we provide general guidelines and avenues for future 126 

methodological developments, depending on the data at-hand and the research aims. 127 

 128 

 129 
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Results 130 

SIMULATION SETUP AND BENCHMARKED METHODS 131 

 Taking advantage of the “Normal to Anything” (NORtA) framework, we generated synthetic 132 

microbiome and metabolome datasets mimicking complex data structures and relationships 133 

(See Methods). We produced two simulation settings, a low dimensional and a high 134 

dimensional setting, both representing different scenarios commonly encountered in practice 135 

(Figure 1A). We therefore compared fifteen integrative methods depending on the research 136 

question (Figure 1B). Methods were presented as follows. Firstly, in the global associations 137 

subsection we compared the Mantel test and MMiRKAT with respect to the Type-I error rate 138 

and power. Then, in the data summarization subsection we evaluated four different models 139 

including CCA, PLS, RDA and MOFA2, regarding their capability to recapitulate data 140 

variability across latent factors. Third, in the individual associations subsection we compared 141 

three strategies for performing regression-based approaches between compositional 142 

covariates and metabolites, the clr-linear model, the log-contrast and MiRKAT, respectively. 143 

Approaches were evaluated based on the Type-I error rate and power. Fourth, in 144 

subsections univariate feature-selection for compositional predictors, univariate feature-145 

selection for compositional outcomes and multivariate feature-selection we compared 146 

approaches for identifying core microbes and metabolites, leveraging both univariate and 147 

multivariate feature selection strategies. For univariate frameworks, depending on the nature 148 

of the response, several models were considered. Indeed, when microorganisms are the 149 

explanatory variables, we compared three approaches, the clr-LASSO, the clr-MLASSO and 150 

CODA-LASSO [23]. Consistently, when microorganisms are the response variables, we 151 

evaluated the LASSO, MLASSO, and the sparse Dirichlet regression [27]. Nonetheless, for 152 

multivariate feature selection models, we considered sCCA and sPLS. Approaches were 153 

evaluated based on sparsity and reliability. Details on the methods and their related 154 

performance metrics were provided in the Methods section. Finally, in order to highlight 155 

complementary biological insights provided by methods, best approaches were illustrated in 156 
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the real-data application subsection,  exploiting metagenomics and metabolomics data from 157 

Konzo disease.  158 

 159 

GLOBAL ASSOCIATIONS 160 

A common question in practice for researchers is to find global associations between two 161 

omics datasets [2]. Thus, we compared two multivariate methods detecting associations 162 

occurring at the global level between microbiome and metabolome, the Mantel test [9] and 163 

MMiRKAT [10], respectively. Since these two methods provide frequentist statistical 164 

frameworks i.e., p-values, we systematically evaluated their performance with respect to 165 

Type-I error rate control and power (See Methods). Firstly, when applying on the ILR 166 

transformed microbiome data, the Mantel test provides a good control of Type-I error rate in 167 

the high dimensional scenario while MMiRKAT highlights a slightly more conservative 168 

behavior (Figures 2A-2B). Secondly, MMiRKAT exhibits strikingly higher power than the 169 

Mantel test under our high dimensional scenario. Indeed, at the 0.05 significance threshold 170 

MMiRKAT reaches on average 97% of power against 22% for the Mantel test (Figures 2C). 171 

This difference is however mitigated in the low dimensional setting, where the two methods 172 

exhibit comparable performances (Figures S1-S2) . Importantly, the distance kernel choice 173 

seems to strongly impact the Mantel test power, from single to double, while MMiRKAT 174 

power remains stable across data transformations (Figure 2C). These results were confirmed 175 

in our low dimensional scenario and considering different data normalizations (Figures S3-176 

S15). Interestingly, when the Mantel test was considered, the Canberra distance exhibits the 177 

lowest powers, while no clear distinction could be observed between Euclidean and 178 

Manhattan distance kernels (Figure 2C). This result suggests the Canberra distance as the 179 

poorest choice when using the Mantel test. Collectively, our results suggest comparable 180 

performance for the two methods under the low dimensional setting regarding both Type-I 181 

error rate and power. However, in the high dimensional scenario MMiRKAT is the most 182 

powerful method to find global associations. In addition the method is robust to data 183 

transformation and distance kernels. 184 
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DATA SUMMARIZATION 185 

Instead of measuring one global association, one can be interested in recapitulating 186 

information contained within the two datasets through latent factors, accounting for the 187 

between- within-correlation [30] . Thus, we compared Canonical Correlation Analysis (CCA) 188 

[11], Regression PLS (PLS-Reg) [12], Canonical PLS (PLS-Can) [12], Redundancy Analysis 189 

(RDA) [13], and Multi-Omic Factor Analysis (MOFA2) [14] in our two scenarios with respect 190 

to their capability to summarize explained variance through their components (See Methods). 191 

Generally, regardless of the considered data normalization, in our two scenarios, MOFA2 192 

was the best method, exhibiting larger explained variances, with a modest variability 193 

compared to PLS-Reg, PLS-Can, CCA, and RDA (Figure 2D; Figures S16-S19). Indeed, 194 

when ILR transformed microbiome data were considered, in our high dimensional scenario, 195 

MOFA2 exhibited an average of explained variance of 86% (sd = 1.37) compared to 44% (sd 196 

= 4.35), 14% (sd = 2.03), 21% (sd = 2.34), and 22% (sd = 0.76) for PLS-Reg, PLS-Can, CCA 197 

and RDA, respectively. Surprisingly, except for MOFA2 and the PLS-Reg, where the 198 

explained variances increase (64% to 86% and 41% to 44%, respectively), all the remaining 199 

methods exhibit a smaller explained variance in the high dimensional scenario compared to 200 

the low dimensional setting. Aligned with this result, we investigated the behavior of each 201 

method with respect to the number of associated features and the effect size and found 202 

positive associations in both cases across all methods (Figures S20-S21). Importantly, 203 

method performances may vary depending on the considered data transformation (Figure 204 

2D; Figures S16-S19). Our results pointed to MOFA2 as the best model to summarize data 205 

variability through latent factors. Finally, our findings suggested that the method is versatile 206 

and robust under scenarios commonly encountered in practice.  207 

 208 

INDIVIDUAL ASSOCIATIONS  209 

Studying the relationship between metabolites and microorganisms may represent an 210 

important challenge in order to account for the compositionality induced by microbiome 211 

datasets. Indeed, the perfect correlation brought by the compositionality makes the 212 
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application of standard methods incorrect. This is particularly true when microbiota are 213 

incorporated as covariates [19, 22]. We therefore compared three equivalent strategies in 214 

order to study the global effect of microorganisms on one particular metabolite, the Log-215 

contrast model [22], MiRKAT [10] and a linear regression on the CLR transformed 216 

microbiome (referred to as clr-lm), respectively. Methods were evaluated with respect to their 217 

capability to adequately control false positives while maintaining a good power (See 218 

Methods). Globally, under the null hypothesis, the three methods adequately controlled the 219 

Type-I error rate, with the linear log-contrast model exhibiting a slightly conservative behavior 220 

across the two scenarios (Figures 3A-3B). Then, under the alternative hypothesis, the linear 221 

log-contrast model offers a higher power than MiRKAT or the clr-lm model, on average twice 222 

larger across the data transformations considered in the high dimensional setting (Figure 223 

3C). This result was also confirmed when comparing the log-contrast model to Spearman’s 224 

or Pearson’s correlations, while MiRKAT or the clm-lm model do not exhibit clear advantage 225 

(Figure S22). Indeed, at a 0.05 significance threshold, the log-contrast model offers 52% of 226 

power against 29% for MiRKAT and clr-lm, and 29% and 21% for Pearson’s and Spearman’s 227 

correlations, respectively. This result was confirmed in our low dimensional setting, where 228 

smaller discrepancies can be observed (Figure 3C). However, consistent with results 229 

observed for MMiRKAT, MiRKAT provided a stable power and a good control of Type-I error 230 

rate across data normalizations (Figure S23). Importantly, when evaluating individual 231 

association methods for compositional outcomes, we found no clear superiority of the 232 

Dirichlet regression or the linear regression on the CLR transformed microbiome data over 233 

Spearman’s or Pearson’s correlations in our low dimensional setting (Figure S24). 234 

Collectively, our results suggest that in order to study the global impact of microorganisms on 235 

individual metabolites, the linear log-contrast model represents the best method compared to 236 

competitor approaches, providing higher power and a suitable control of the Type-I error 237 

rate. 238 

 239 

 240 
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 241 

UNIVARIATE FEATURE-SELECTION FOR COMPOSITIONAL PREDICTORS 242 

Feature selection methods have gained increasing interest from researchers in order to 243 

identify a subset of microbiota associated with a variable of interest [31]. However, due to the 244 

compositionality induced by microbiome data, traditional methods have been shown to lead 245 

to incorrect results [19]. Thus, we compared univariate feature selection methods accounting 246 

for compositional predictors, CODA-LASSO [23], clr-LASSO [23] and clr-MLASSO, 247 

respectively. Firstly, we evaluated whether methods were able to provide sparse sets of 248 

microorganisms across our two scenarios. In our low dimensional setting, CODA-LASSO 249 

highlighted sparser selections, showing average sparsities of 2% against 9% and 14% for 250 

clr-LASSO and clr-MLASSO. This result was consistent in our high dimensional setting, 251 

where CODA-LASSO showed stable sparsities, while the sparsity of clr-LASSO and clr-252 

MLASSO greatly improves (Figures 4A-4D; CODA-LASSO=2%; clr-LASSO=5%; clr-253 

MLASSO=11%). This result suggests that CODA-LASSO tends to provide a stable sparsity 254 

across our two scenarios, selecting only a small proportion of the total microorganism-255 

metabolite interactions compared to the two other methods. Then, we assessed how 256 

accurate the methods are in order to find true associations. In the low dimensional scenario, 257 

clr-LASSO offered slightly higher classification performances, showing average F1-Scores of 258 

43%, compared to 35% and 30% for CODA-LASSO and clr-MLASSO, respectively (Figure 259 

4A). Nonetheless, in the high dimensional scenario, CODA-LASSO provided higher F1-260 

Scores than clr-LASSO or clr-MLASSO, with accurate classification rates on average 1.40 261 

times higher (Figure 4D). Collectively, our results point to CODA-LASSO as a good trade-off 262 

between sparsity and classification performances to accurately select sparse subset of 263 

microbiota associated with metabolites.  264 

 265 

UNIVARIATE FEATURE-SELECTION FOR COMPOSITIONAL OUTCOMES 266 

Finding a subset of metabolites associated with microbiota may bring important insights into 267 

the underlying biological mechanisms involved between the two omics. Thus, consistently 268 
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with the previous subsection, we systematically compared three different methods taking into 269 

account compositional outcomes with respect to sparsity and F1-Score, the sparse Dirichlet 270 

regression [27], LASSO and MLASSO of the CLR transformed microbiome data. Firstly, in 271 

the low dimensional setting, the LASSO offered strikingly sparser solutions, showing sparsity 272 

scores of 8% compared to 40% and 18% for the sparse Dirichlet regression and MLASSO, 273 

respectively (Figure 4C). Except for the sparse Dirichlet regression, where the sparsity was 274 

multiplied by roughly 2 between the two scenarios, LASSO and MLASSO exhibit sparser 275 

selection in the high dimensional setting compared to the low dimensional scenario (Figure 276 

4D). This result suggests that standard methods applied on the CLR transformed 277 

microbiome data seems to provide sparse and consistent solutions across our scenarios. 278 

Moreover, regardless of the scenario considered, F1-Scores remained low across methods 279 

suggesting poor method performances to accurately classify associations between 280 

microorganisms and metabolites (Figures 4C-4D). However, it is worth mentioning that high 281 

F1-Scores achieved by the sparse Dirichlet regression in the low dimensional scenario may 282 

be explained by weak sparsity scores. Taken together, our results point to poor performance 283 

of methods to select accurately metabolites associated with microorganisms; where standard 284 

methods applied on the CLR transformed microbiome data correspond to a better trade-off 285 

between sparsity and classification performances than a purely compositional penalized 286 

method. 287 

 288 

MULTIVARIATE FEATURE-SELECTION  289 

Instead of analyzing each feature independently, exploiting information shared across two 290 

omics may represent an interesting avenue to select the most contributive features [32]. 291 

Thus, we compared three methods taking advantage of both intra- and inter-correlation 292 

occurring between features of the two datasets, the regression sparse PLS, the canonical 293 

sparse PLS [18] and the sparse CCA [17], respectively. Firstly, in our low dimensional setting 294 

the regression sPLS seems to provide high levels of sparsity compared to the two other 295 

methods (Figure 4C). Indeed, the method tends to select about 34% of total features 296 
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compared to 23% or 26% for sCCA or canonical sPLS. This pattern was also observed in our 297 

high dimensional setting, even if an increase of sparsity between the two scenarios has to be 298 

noted (Figures 4C-4F). This result aligns with a too high number of selected features, since 299 

our simulation setup maximally assumes a 10% of associated features. Then, we 300 

investigated whether methods were able to accurately discriminate contributive features from 301 

uninformative ones. In our low dimensional scenario, the regression sPLS offered higher F1-302 

Scores, showing average values of 76% compared to 70% and 60% for the canonical sPLS 303 

and sCCA, respectively (Figures 4C). This result was confirmed in the high dimensional 304 

scenario, even if lower scores across the three methods have to be noted (Figures 4F). For 305 

example, the average F1-Score for the regression sPLS decreased by 63%, while for the 306 

canonical sPLS and sCCA, the decrease is of 53% and 69%, respectively, consistent with 307 

lower classification performance as the dimensionality increases. Then, we investigated 308 

whether methods are sensitive to data transformation. Interestingly, we found that in the low 309 

dimensional scenario CLR transformation offered higher sparsity scores showing equivalent 310 

F1-Scores across methods, while in the high dimensional setting absence of microbiome 311 

data transformation slightly improved both sparsity and F1-Scores (Figure S25). Finally, our 312 

results align with regression sPLS as the preferred choice for selecting features accounting 313 

for between and within omics correlation. However, our findings point to modest levels of 314 

sparsity across the methods suggesting poor method specificity with inconsistencies of 315 

method results across data transformation.  316 

 317 

REAL-DATA APPLICATION  318 

Our systematic evaluation of strategies to jointly analyze microbiome and metabolome data 319 

has permitted the illustration of the best methods depending on the research question. Thus, 320 

through an application on metabolomics and metagenomics data of the Konzo disease [29], 321 

we applied the more appropriate approaches to highlight different biological patterns 322 

occurring between microorganisms and metabolites. We presented the exact workflow in the 323 

Konzo data analysis section and Figure S26. Firstly, we used the Mantel test and found a 324 
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significant global association between the two omics (Spearman's permutation p-value <= 325 

9.9e-5). Then we applied MOFA2 and found that through the fifteen first latent factors, the 326 

model explains 50% and 40% of microbiome and metabolome variability, respectively 327 

(Figure S27). Moreover, the top-10 most contributing features on the first factor highlighted 328 

relevant microbiota or metabolites associated with intestinal health. For example, MOFA2 329 

identifies the 2,3-Dihydroxy-2-methylbutanoic acid, a fatty-acid which has been 330 

demonstrated to be related to lipid metabolism pathways [33] (Figure 5A). Similarly, 331 

Faecalibacterium prausnitzii was identified as the most strongly associated microbiota, 332 

exhibiting a highly negative contribution (Figure 5B). This microbiota has already been 333 

shown to be involved in gut health [34, 35]. Subsequently we used the sPLS regression and 334 

were able to identify 249 metabolites and 70 microorganisms significantly contributing to the 335 

two first components, where clear clusters of microbiota could be observed (Figure 5C). 336 

Consistently with our benchmark, we used the log-contrast regression in order to identify 337 

metabolites significantly impacted by microbial communities and found that out of the 249 338 

metabolites, 193 are significantly associated with microbial communities (Bonferroni adjusted 339 

p-values <= 2e-04). Then applying CODA-LASSO we detected 234 metabolites with at least 340 

one interaction with microorganisms. Interestingly, every microorganism has been selected 341 

at least once across the 234 metabolites, with an average of 35 microbiota associated 342 

(Figure 5D). For example, the 2,3-Dihydroxy-2-methylbutanoic acid, previously identified by 343 

MOFA2, is associated with 8 microorganisms, mostly involved in gastrointestinal health 344 

(Figure 5E). Finally, we checked whether microorganisms exhibit consistent effects across 345 

metabolites and we observed 5 microbiota highlighting important variability in their effect 346 

(Figure 5F). This result was confirmed at a larger scale by network analysis from log-contrast 347 

regression and CODA-LASSO (Figures S28-S29). Our results from metagenomics and 348 

metabolomics data from Konzo disease highlight complementary biological interactions 349 

between microorganisms and metabolites, where different microbial dynamics seems to be 350 

involved.  351 

 352 
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 353 

 354 

Discussion  355 

The integration of microbiome and metabolome datasets within statistical frameworks has 356 

become an important resource for researchers in order to comprehensively understand the 357 

underlying biological mechanisms involved in diseases. Indeed, recent studies in 358 

inflammatory bowel disease [36] or cardiometabolic traits [4] have highlighted that 359 

pathoetiology may result in disruptions of interactions between microorganisms and host-360 

metabolites interplay or shifts in the microbial-derived metabolite levels. Understanding these 361 

interactions represent therefore a critical avenue for unraveling the biology of complex 362 

phenotypes. However, currently, there are no standards on how to integrate these two omics 363 

together, pushing researchers to constantly reinvent the wheel. Thus, deciding which method 364 

fits best for a specific biological question remains a daunting task, critically limiting the result 365 

interpretations and replicability. In this paper, we extensively benchmarked fifteen existent 366 

integrative methods to study microbiome-metabolome interactions covering most of the 367 

researcher aims: global associations, data summarization, individual associations, and 368 

feature selection (Figure 1). Based on a comprehensive simulation study and a real data 369 

application, we highlighted best methods depending on the research question and data at-370 

hand, providing important insights about statistical good practices (Table 1) and avenues for 371 

future methodological developments (Table 2). 372 

When evaluating global association methods, our results have pointed to important 373 

lessons for practitioners. Indeed, MMiRKAT represents the most promising method 374 

compared to the Mantel test, showing higher power and robustness to data transformations 375 

and distance kernels (Figure 2C). We argue this aspect is particularly relevant since 376 

choosing the right data transformation or distance metric may represent an important 377 

challenge for practitioners. Moreover, MMiRKAT has the possibility to adjust for confounding 378 

factors which is an appealing feature for most phenotypes where bias can be induced by 379 
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certain individual characteristics, such as age, sex or lifestyle [3, 4]. However, one limitation 380 

of MMiRKAT compared to the Mantel test is its incapability to deal with scenarios with a 381 

larger number of features than individuals. We therefore recommend filtering out features 382 

based on a feature selection approach or to use the Mantel test in order to have a crude idea 383 

about the global association occurring between the two omics. Importantly, when using the 384 

Mantel test, our results suggest that the Canberra distance on metabolome data is the 385 

poorest choice for detecting global associations across all our scenarios (Figures 2B; Figures 386 

S1-S15). Thus, applying Euclidean distance on transformed microbiome data while applying 387 

Euclidean or Manhattan distances on metabolites should constitute the default usage for 388 

most cases.  389 

Data reduction is often used by practitioners in order to summarize information 390 

through a small number of components. Having an efficient method which recapitulates 391 

variability across two omics is critical for facilitating subsequent analyses such as 392 

visualization or clustering [1]. We considered four different methods exhibiting specific 393 

features to summarize omics information and found that in addition to being robust to data 394 

normalization, MOFA2 is the best method to recapitulate data variability. In our high 395 

dimensional setting MOFA2 explains about 80% of metabolome variance when ILR 396 

normalization was considered and remains stable across alpha and CLR transformations 397 

(Figure 2D, Figure S16). This result may be explained by the capability of the method to 398 

capture complex relationships, as suggested by [37]. Thus, we recommend using MOFA2 399 

when researchers want to achieve efficient data reduction. We then applied MOFA2 to our 400 

Konzo dataset and found important microbiota and metabolites involved in biologically 401 

relevant pathways of gut health, while preserving a great portion of data variability (Figure 402 

5A-5B). For example, MOFA2 identifies Faecalibacterium prausnitzii as the most negatively 403 

contributive microorganisms on the first factor (Figure 5B). Previous studies have shown that 404 

Faecalibacterium prausnitzii levels are strongly associated with anti-inflammatory metabolite 405 

quantities involved in intestinal health [34, 35]. Similarly, MOFA2 found 2,3-Dihydroxy-2-406 
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methylbutanoic acid with the strongest positive correlation on the first factor, a fatty-acid 407 

which has been demonstrated to be related to lipid metabolism pathways [33] (Figure 5A).  408 

In practice another important question for researchers is to determine the relationship 409 

between microbial communities with a variable of interest [29, 38]. However, the underlying 410 

compositional structure of microbiome data is an important challenge for model performance. 411 

In this paper we have compared three methods accounting for the compositionality of 412 

predictors with different strategies, a linear regression applied on the CLR transformed 413 

microbiome data, MiRKAT, and the log-contrast model. Compared to correlations, these 414 

methods can incorporate confounding factors which is an important feature in practice. Our 415 

main finding is that regardless of the method considered here, better performances are 416 

achieved compared to correlations, still widely used in practice [5]. However, the linear log-417 

contrast offers higher power across our simulation scenarios compared to MiRKAT and the 418 

linear regression (Figure 3C). Also, one important advantage of the log-contrast model over 419 

MiRKAT or the linear regression is to not require a choice of a particular data normalization, 420 

which can represent an important challenge for most researchers. This is particularly 421 

important since the CLR transformation has been shown to provide still-correlated features 422 

while sub-compositionally incoherent, limiting result transferability [23, 24]. This result 423 

highlights the need for new compositional data transformations, keeping the original number 424 

of features while linearly independent (Table 2). Hopefully, MiRKAT performance is robust 425 

across data transformations, with stable power and suitable Type-I error rate control (Figure 426 

3C, Figure S23). Additionally, one main difference of the log-contrast or the linear regression 427 

over MiRKAT is to provide individual contribution of each microbe. We therefore strongly 428 

recommend to use the log-contrast regression when evaluating the association between 429 

microorganisms and metabolites. Consistently, out of the 249 metabolites selected by the 430 

regression sPLS, the log-contrast model highlights 193 metabolites with significant 431 

associations with microbiota in the Konzo dataset. Interestingly, we found that 432 

microorganisms exhibit heterogeneous effects across metabolites suggesting different 433 

microbial dynamics possibly involved in the disease (Figure S28). Similarly to MDiNe [39], 434 
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where authors provided a mechanistic framework to study differential microbial co-435 

occurrence networks, additional work is needed to link microbiome and metabolome from a 436 

dynamic perspective at large scale (Table 2; Ongoing work). We argue this aspect is 437 

particularly critical in order to pinpoint the underlying biological mechanisms hence facilitating 438 

precision medicine applications [40, 41].  439 

Also, one important contribution of this work is to extensively evaluate feature 440 

selection methods. This is particularly critical for researchers in order to accurately select 441 

metabolites and microorganisms involved in a specific biological context. Our results point to 442 

moderate performance of multivariate feature selection methods with inconsistent 443 

performances across scenarios and the data transformations considered (Figures 4C-4F, 444 

Figure S25). This result is also observed for univariate feature selection models with 445 

compositional outcomes (Figures 4B-4E). The best performances are achieved for methods 446 

with compositional predictors, with CODA-LASSO exhibiting stable sparsity results with good 447 

classification performances (Figures 4A-4D). Thus, we recommend in practice to use CODA-448 

LASSO for scenarios with microbial predictors, while using the LASSO regression after CLR 449 

transforming the microbiome data when these latter are the outcome. Then we applied both 450 

regression sPLS and CODA-LASSO on the Konzo dataset. Regression sPLS has permitted 451 

the detection of 249 metabolites and 70 microorganisms contributing the most to data 452 

variability (Figure 5C). From these 249 metabolites, CODA-LASSO has subsetted the most 453 

contributing features, highlighting different microbial dynamics of effects (Figures 5F; Figure 454 

S29). Further investigations have shown that Vescimonas fastidiosa was the most interacting 455 

microbiota, significantly connected to 138 metabolites. This result is aligned with the model 456 

where microorganisms may be connected to a large set of metabolites. This complex 457 

microbiome-metabolome crosstalk has been shown to be associated with diseases [6]. 458 

However, associations found may result in artifact signals since most feature selection 459 

methods benchmarked in this paper suffer from lack of sparsity and reliability. This result is 460 

aligned with previous reports where authors have shown poor performances of traditional 461 

feature selection models [42]. Indeed, most penalized methods are mainly built upon cross-462 
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validation where small perturbations in data may yield drastic changements in results. 463 

Similarly to [42] extending sparse multivariate or univariate methods to knockoff framework 464 

[43] or stability selection [44] should represent interesting avenues for improving both 465 

sparsity and reliability for compositional data [45] (Table 2).  466 

 Although our simulation setup is able to realistically simulate microbiome and 467 

metabolome data, our framework suffers from two limitations that we think it is important to 468 

mention here. Firstly, the NORtA algorithm is limited in its capability to generate real 469 

correlated compositional data. Indeed, as discussed by [46], simulating pure compositional 470 

data from a Dirichlet distribution induced only a small correlation between features, which is 471 

often unrealistic regarding the biology of the microbial communities and metabolites. We 472 

therefore generated compositional microbiome data post-hoc, promoting the correlation, 473 

zero-inflation and overdispersion characteristics over a purely compositional structure. This 474 

“hard” compositionality disturbed the original data structure but has several advantages 475 

especially in the data generating process (DGP). Indeed, through our simulation we are able 476 

to control underlying parameters while providing a DGP-agnostic procedure, not promoting 477 

one method over another. We argue that this aspect is central in order to provide systematic 478 

objective method comparisons. Also, as a parametric framework the NORtA algorithm is 479 

limited in its capability to simulate data with a higher number of microorganisms or 480 

metabolites than the number of individuals. Thus, as initially mentioned for global association 481 

methods, we suggest filtering out core elements using either an univariate or a multivariate 482 

method before using models assuming a sample size bigger than the number of features.  483 

To summarize, in this paper we provide an extensive benchmark of integrative 484 

computational methods for incorporating metagenomics and metabolomics data. We hope 485 

this work will represent a great opportunity for the multi-omics community in order to improve 486 

research standards and practices. This aspect is central for scientific discovery and 487 

reproducibility. 488 

 489 

 490 
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 491 

Conclusions 492 

In summary, the present study provides to the multi-omics community one of the largest 493 

comprehensive benchmarks of statistical frameworks to jointly integrate metagenomics and 494 

metabolomics data. Through an extensive simulation study, we systematically compared 495 

fifteen integrative approaches across most of the research questions encountered in 496 

practice. We identified the best methods and illustrated their capability to highlight 497 

complementary biological processes involved at different scales with an application to 498 

microbiome and metabolome data for Konzo disease. Overall, our study provides a robust 499 

and replicable comparative framework of integrative methods. We hope this work will serve 500 

as a foundation for setting research standards and the development of new efficient 501 

statistical models to mutually analyze metagenomics and metabolomics data.  502 

 503 

Figure 1 Overview of the simulation setup and integrative methods for analyzing 504 

microbiome-metabolome relationships depending on the research question  505 

(A) Correlated microbiome and metabolome data were generated using the “Normal to 506 

Anything” framework (See Methods). Microbiome data were simulated considering a zero-507 
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inflated negative binomial distribution, while metabolome datasets follow a negative binomial 508 

distribution. For each dataset, proportions of associated features vary between 1% and 10%, 509 

with association strengths randomly picked from a Gaussian distribution. 510 

(B) Overview of the integrative methods related to the research question.  511 

 512 

Figure 2 Performance of the multivariate methods for both global association and data 513 

summarization in the high dimensional scenario.  514 

When control of Type-I error rate is of interest, we are looking for methods providing 515 

quantiles of observed p-values similar to quantiles of expected p-values, i.e., following the 516 

diagonal line. In other words, the closer the dots to the straight line, the more the method 517 

adequately controls the false positives. Similarly, for power, we are looking for methods 518 

providing high powers. That is, detecting a significant association when we know there is an 519 

association. Explained variance is the data variance contained through latent factors. See 520 

Methods for details on performance metrics. (A) QQ-Plot of the Mantel test applied on the 521 

ILR transformed microbiome and log transformed metabolome data, considering different 522 

distance kernels for metabolites. Here we considered Spearman's method for computing the 523 

global association between the two datasets. (B) QQ-Plot of MMiRKAT applied on the ILR 524 
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transformed microbiome and log transformed metabolome data, considering different 525 

distance kernels for metabolites. Points below the straight line refer to a conservative 526 

behavior in the result section. (C) Power of the Mantel test applied on the ILR transformed 527 

microbiome and log transformed metabolome data, considering different distance kernels for 528 

metabolites for both the Mantel test and MMiRKAT. P-values <= 0.05 were considered as 529 

significant. (D) Proportion of explained variance for the data summarization methods 530 

considering the log transformed metabolome and the the alpha transformed and ILR 531 

transformed microbiome data. 532 

 533 

 534 

Figure 3 Performance of the individual association methods for compositional 535 

predictors 536 

When control of Type-I error rate is of interest, we are looking for methods providing 537 

quantiles of observed p-values similar to quantiles of expected p-values, i.e., following the 538 

diagonal line. In other words, the closer the dots to the straight line, the more the method 539 

adequately controls the false positive. Similarly, for power, we are looking for methods 540 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.26.577441doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577441
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

providing high powers. That is, detecting a significant association when we know there is an 541 

association. See Methods for details on performance metrics.  542 

QQplots of the individual association methods in (A) the low dimensional scenario and in the 543 

(B) high dimensional scenario. (C) Power of the individual association methods across our 544 

two main scenarios. P-values <= 0.05 were considered as significant. For the clr-lm method, 545 

p-values were combined using ACAT [47] in order to provide similar comparisons with the 546 

log-contrast regression and MiRKAT (See Methods). For MiRKAT, we reported Type-I error 547 

rate and power using the ILR transformed microbiome data and the log transformed 548 

metabolites. 549 

 550 

 551 

Figure 4 Performance of the feature selection methods for providing sparse and 552 

reliable subset of elements across our two scenarios.  553 

Method performance was evaluated with respect to sparsity and F1-Score. For the former, 554 

we are looking for methods providing low values corresponding to a small proportion of 555 

selected features, while for the latter, high values of F1-Scores correspond to better 556 

classification performances (See Methods).  557 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.26.577441doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.26.577441
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Performance of univariate feature selection methods considering microorganisms as 558 

covariates under our (A) low dimensional and (D) high dimensional scenarios. For CODA-559 

LASSO under the high dimensional setting performances were calculated on 100 replicates. 560 

Performance of univariate feature selection methods considering metabolites as covariates 561 

under our (B) low dimensional and (E) high dimensional scenarios. For the sparse Dirichlet 562 

regression under the high dimensional setting performances were calculated on 100 563 

replicates. Performance of the multivariate feature selection methods considering the CLR 564 

transformed microbiome and the log transformed metabolome under our (C) low dimensional 565 

and (F) high dimensional scenarios.  566 

 567 

Figure 5 Application of best strategies highlights complementary biological 568 

interactions between microorganisms and metabolites in Konzo data  569 

Top-10 most contributing (A) metabolites and (B) microbiota on the first factor as identified 570 

by MOFA2. Positive correlations were identified by a +, while negative correlations were 571 

identified with a - sign (C) Projection of metabolites (red) and microorganisms (blue) into the 572 

2D regression sPLS space. Features with null loadings were removed from the analysis. (D) 573 

Distribution of the number of significant microorganisms found by CODA-LASSO across the 574 
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subset of metabolites identified by the regression sPLS. (E) Log-contrast coefficients for the 575 

2,3-Dihydroxy-2-methylbutanoic acid (F) Violin plot of the variance of log-contrast coefficients 576 

through the subset of microorganisms identified by the regression sPLS. Red dots 577 

correspond to outliers with high coefficient’s variability.  578 

Scientific Question Research Aim Best Method Pros Cons 

Is there any relationship 

between 

microorganisms and 

metabolites at a global 

level?  

 

Global associations 

MMiRKAT Robust to data 

normalization and 

distance kernels 

Allow adjustment for 

covariates 

Unable to deal with 

scenarios with higher 

number of features than 

individuals 

Are microbiome and 

metabolome datasets 

summarizable through a 

limited number of 

components?  

Data summarization MOFA2 Robust to data 

normalization and 

distance kernels 

Running time  

 

Can we identify 

associations between 

metabolites and 

species?  

 

 

Individual associations 

Log-contrast  

 

Compositional and sub-

compositional 

consistent 

No need to data 

transformation 

Allow adjustment for 

covariates 

Limited to few families 

of generalized linear 

models 

 

 

 

 

 

 

 

 

Can we identify core 

microorganisms and 

metabolites? 

Feature selection 

(univariate) 

CODA-LASSO  

(compositional 

covariates) 

Compositional and sub-

compositional coherent 

No need to data 

transformation 

Allow adjustment for 

covariates 

Limited to few families 

of generalized linear 

models 

LASSO 

(compositional 

outcomes) 

Flexible framework 

Allow adjustment for 

covariates 

Need a suitable data 

transformation 

Feature selection 

(multivariate) 

sPLS Flexible framework 

Efficiently account for 

within- between- 

Tuning parameters 
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Table 1: Summary of best methods depending on the research question 579 

Objective Methods and Limits Methodological avenues 

Data normalization - CLR: provides still-

correlated features in 

the original space 

- ILR; Alpha: are 

“black-box” 

transformations 

providing 

uncorrelated features 

in a restricted space 

Data normalizations 

providing uncorrelated 

features in the original space 

for facilitating result 

interpretation 

Mechanistic interpretation - Log-contrast; 

CODA-LASSO: 

unable to provide a 

mechanistic view of 

modifications 

between microbiome 

and metabolome 

data 

Network-based model to 

jointly study the 

modifications of 

microorganism and 

metabolite co-occurrence 

networks [39] 

Feature selection -  CODA-LASSO; 

Sparse Dirichlet; 

sPLS; sCCA: lack of 

sparse solutions   

Extension to knockoff 

framework [43] or stability 

selection [44] for improving 

feature selection 

performances 

correlation  
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Table 2: Overview of avenues for future methodological developments to jointly 580 

analyze metagenomics and metabolomics data 581 

 582 

Methods  583 

Simulation setups 584 

Microbiome and Metabolome data were simulated using the “Normal to Anything” approach 585 

(NORtA), already used for different multi-omics analyses [39, 46, 48]. An appealing feature 586 

of the NORtA algorithm is to provide a framework capable of simulating data from any 587 

marginal distribution while specifying arbitrary correlation structures. Thus, we are able to 588 

generate synthetic microbiome data respecting: (1) correlation structure, (2) zero-inflation, 589 

and (3) over-dispersion, while metabolome was generated similarly removing the zero-590 

inflation property. This is consistent with real-data characteristics [21]. Moreover, we induced 591 

compositionality for microbiome data by dividing the count of each microorganism by the 592 

sum over all elements in a given individual. Several data transformations for both 593 

microbiome and metabolome were evaluated across our scenarios to account for data 594 

structure (See subsection Data and Distance Kernel Transformation). In order to evaluate 595 

the Type-I error control, we independently generated two datasets under the null hypothesis 596 

of no association between microorganisms and metabolites. Under the alternative 597 

hypothesis, we varied both the number of associations between microorganisms and 598 

metabolites and the strength of associations, mimicking microbiome-metabolome complex 599 

interdependence. Methods were compared under two main scenarios, simulating: (1) 25 600 

microorganisms and 25 metabolites with 100 individuals and (2) 100 microorganisms and 601 

100 metabolites with 500 individuals. Details on the simulation and sensitivity scenarios were 602 

provided in the supplementary. Under all scenarios we simulated 1,000 replicates. 603 

Simulation setup was summarized in Figure 1. 604 

 605 
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Data and Distance Kernel Transformation  606 

Most methods used in practice need either a normalization step or a distance-based 607 

transformation in order to be applied properly on compositional or over-dispersed data [19]. 608 

Thus, we considered in our main analyses three data normalizations for microbiome and one 609 

data transformation for metabolome data. The choice of data normalization depends on the 610 

research objective. 611 

In order to take into account the compositionality of microbiome data while keeping 612 

the original number of features, we considered the centered log-ratio transformation (CLR) 613 

[49] applied on the original count data. This normalization was considered across all the 614 

different considered methods. Basically, the CLR transformation computes the log ratio of 615 

each microbiota count on the geometric mean for a given individual. Formally, the CLR 616 

transformation is given by: 617 

 618 

where  is the geometric mean over all the microorganisms for one sample. This 619 

transformation projects the simplex onto a D compositional subspace under a zero-sum 620 

constraint [24, 50]. By keeping the original number of features the CLR transformation is a 621 

one-one transformation, facilitating result interpretation which is an appealing feature in 622 

practice. We therefore considered the CLR transformation as the reference normalization 623 

when individual associations or feature selection are of interest. However, the CLR 624 

transformation does not ensure independence between features and sub-compositionality 625 

coherence. This latter represents a major limitation for distance-based methods due to 626 

singular covariance matrices. Thus, when distance between features is of interest we 627 

considered the isometric log-ratio (ILR) [25] and alpha transformation [24]. Intuitively, these 628 

two transformations project the original D-dimensional space into an independent D-1 quasi-629 

orthogonal space, the main difference laying into the transformation used. The ILR 630 

transformation projects the original data onto a Euclidean space. Formally: 631 
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 632 

While the alpha transformation is a Box-Cox type transformation, where the transformed data 633 

follow a multivariate distribution after a suitable alpha-transformation [24].  634 

This facilitates the use of traditional multivariate methods. We therefore considered the ILR 635 

and alpha transformations when evaluating global associations, and data summarization 636 

methods, since the correspondence with the original features does not really matter. 637 

Moreover, since the metabolome data have been shown to be log-normally distributed we 638 

applied a natural log transform on the original count data [51]. 639 

Also, we applied different distance kernel transformations before performing some 640 

global association or individual association analyses, highlighting different patterns of 641 

relationships occurring among features. Briefly, we considered Euclidean, Canberra and 642 

Manhattan distances on metabolome matrices of original and log transformed counts, while 643 

considering the Euclidean distance on original and transformed microbiome data. 644 

Interestingly, as presented by [19], the Euclidean distance applied on CLR transformed data 645 

corresponds to the Aitchison distance. This latter has been shown superior to the Bray-Curtis 646 

dissimilarity, representing a true linear relationship, while more stable to data subsetting or 647 

aggregating [52], and will be considered as our reference method here. All data and distance 648 

kernel transformations depending on the method used were summarized in Table S1. 649 

 650 

 651 

Statistical Analyses 652 

Let’s assume X and Y, a matrix of microbiome and metabolome, collected on the same set of 653 

samples, of size n x p and n x q, where n is the number of samples, p the number of 654 

microbiota and q the numbers of metabolites, respectively. Xij represents the jth 655 

microorganism in the ith sample, with j = 1,2,.., p, while Yik is the kth metabolite in the ith 656 

sample, where k=1,2,...,q. For the sake of simplicity we considered the case where p=q.  657 
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 658 

Global Associations 659 

In this paper we refer to global association methods, the statistical approaches providing 660 

global associations between microbiome and metabolome data (Figure 1). We considered 661 

two general methods, the Mantel test [9] and MMiRKAT [10], respectively. 662 

The Mantel test [9] is a statistical framework measuring global correlation between two 663 

datasets measuring on the same set of samples. Traditionally, the Mantel test is applied on 664 

distance or dissimilarity matrices. Here we considered three different distance kernels 665 

applied on the metabolome dataset, Euclidean, Canberra and Manhattan distances. Also, we 666 

applied the Euclidean distance on the original and transformed microbiome matrix, since this 667 

projection leads to more natural interpretations [52] (Table S1). The Mantel test was applied 668 

considering either Pearson’s or Spearman’s correlation. P-values were obtained empirically 669 

based on permutations using 10,000 replicates. The Mantel test was performed using the 670 

vegan R package.  671 

MMiRKAT is the multivariate extension of MiRKAT providing global association 672 

between a distance-transformed microbiome dataset and a low dimensional continuous 673 

multivariate phenotype [10]. Consistent with distance kernels used in the Mantel test, we 674 

considered Euclidean, Canberra and Manhattan distances applied on the original and 675 

transformed microbiome data, while the entire original or log transformed metabolome matrix 676 

was considered as the outcome (Table S1). MMiRKAT was applied using the MiRKAT R 677 

package.  678 

 679 

Data Summarization 680 

In this benchmark, we considered 4 distinct data summarization methods, encompassing 681 

CCA, PLS, RDA, and MOFA2. Briefly, all these methods seek to summarize data information 682 

through latent factors.  683 
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CCA initially proposed by [11] summarizes the relationship between two datasets by 684 

finding linear combinations of the two matrices maximizing the correlation. CCA was 685 

performed using the CCA R package.  686 

Unlike CCA, PLS seeks for linear combinations maximizing the covariance between 687 

the two datasets [12]. Also, in PLS directionality of effect of one matrix on the other can be 688 

taken into account, leading to two general forms of PLS, regression and canonical, 689 

respectively [13]. Thus, canonical PLS and regression PLS were applied with the mixOmics 690 

R package.  691 

Moreover, RDA is a two-step procedure, combining multivariate linear regression and 692 

PCA [13]. In the first step, a multivariate linear regression is fitted between each element of 693 

the matrix of responses and the matrix of predictors. Then a PCA is applied on the matrix of 694 

predicted values. RDA was performed using the vegan R package.  695 

Finally, MOFA2 is an unsupervised multi-omics framework able to untangle sources 696 

of variability shared by different omics [14]. MOFA2 is a Bayesian probabilistic model able to 697 

find latent factors linking two omics by putting priors on model parameters. We applied 698 

MOFA2 using the related R package MOFA2 with default parameters.  699 

Except for MOFA2 where the best number of latent factors were chosen by the 700 

model, we kept all the components corresponding to the minimal number of features 701 

observed in one dataset.  702 

 703 

 704 

 705 

Individual associations 706 

When individual relationships are of interest, we consider different regression models taking 707 

into account the compositionality induced by microbiome data as predictors.  708 
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Indeed, for microbiota that are explanatory variables, we fitted 3 different models, a 709 

log-linear regression on the CLR transformed microbiome, a log-contrast model [22] and 710 

MiRKAT [10].  711 

 712 

Formally the log-linear model of the CLR transformed microbiome (referred to as clr-713 

lm in the Result section) is given by: 714 

 715 

  716 

where  is the log transformed metabolome matrix and the CLR transformed 717 

microbiome data. Although the compositionality in the microbiome data is taken into account 718 

using the CLR transformation, the previous model is not robust to the subset of 719 

microorganisms, not preserving the sub-compositionality feature of microbiome data. Thus, 720 

the log-contrast model by imposing a zero-sum constraint on regression coefficient 721 

preserves the scale invariance property needed to ensure the sub-compositionality 722 

characteristic of microbiome data [22]. Formally, the model is given by:  723 

 724 

 725 

Under the log-contrast framework, following [22] we applied the global significance F-test in 726 

order to determine whether there is an association between at least one microorganism and 727 

a given metabolite. The log-contrast model was performed using the Compositional R 728 

package. Aligned with the idea of global association, MiRKAT is a statistical framework 729 

exploiting semi-parametric kernel machine regression framework in order to summarize 730 

microbiome relationships [10]. One major feature of MiRKAT compared to other approaches 731 

is permitting the use of several distance kernels at the same time. This is particularly 732 

appealing since it is often unclear in practice which kernel is the more suitable. In our 733 
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context, we considered Euclidean, Canberra and Manhattan distances either on original or 734 

transformed microbiome data, while considering the original or log transformed metabolome 735 

as outcome. MiRKAT was applied with the MiRKAT R package. 736 

 737 

Feature Selection: Univariate 738 

Adapted from [23] we considered two different models accounting for compositional 739 

predictors, when fitting models with metabolites as outcomes. Firstly, we considered the 740 

CLR-LASSO, performing the CLR transformation on microbiome data before fitting a 741 

univariate or multivariate LASSO log-linear regression [16]. We referred to as LASSO and 742 

MLASSO in the Results section. Formally for a metabolite k, the LASSO log-linear model is 743 

given by:  744 

  745 

 746 

with  is the log transformed metabolome matrix and the CLR transformed 747 

microbiome data. Best penalty parameters  were chosen using a 10-fold cross-validation 748 

through a 10 step grid-search from 0.01 to 1. LASSO or MLASSO models were fitted using 749 

the glmnet R package.  750 

Then, consistently with the log-contrast model, we applied the coda-LASSO 751 

considering a log-linear response of the metabolome level. Briefly, the coda-LASSO is a 752 

penalized log-contrast model, permitting to select only the most contributive features, with a 753 

zero-sum constraint on regression coefficients, ensuring scale invariance, a property needed 754 

for compositional data. The model considered in the coda-LASSO framework is a direct 755 

extension of the model initially proposed by [53]. This latter fits a two-stage model on all 756 

possible log-ratios between each pair of microbiota, leading to sparse solutions. The R 757 
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package coda4microbiome with the default parameters were used when applying coda-758 

LASSO. 759 

Then, following the same rationale, when fitting models with microorganisms as 760 

outcomes, we considered two different approaches, adjusting a univariate or multivariate 761 

LASSO linear model on the CLR transformed microorganisms or taking advantage of the 762 

sparse Dirichlet regression framework [27]. For the former, the model for the jth 763 

microorganism is given by: 764 

 765 

where  is the CLR transformed microbiome data. Here we considered the original and 766 

the log transformed metabolome signal as explanatory variables. In the sparse Dirichlet 767 

regression we used a multinomial dirichlet distribution. These models are direct extensions of 768 

the original LASSO model assuming X following a Dirichlet distribution [27]. Consistently with 769 

the methodology used in LASSO, best penalty parameters were chosen from a 0.1 step grid-770 

search between 0.01 and 1 using a 10-fold cross-validation. Sparse Dirichlet regression 771 

framework was applied using the MGLM R package. 772 

 773 

Feature Selection: Multivariate 774 

Sparse Canonical Correlation Analysis (sCCA) [17] and sparse Partial Least Squares (sPLS) 775 

[18] are two penalized extensions of CCA and PLS permitting to summarize data information 776 

through latent factors while proceeding to feature selection.  777 

For sCCA we used L1 penalty on the two datasets, only keeping features contributing 778 

on the two first components. Best penalty parameters were found using 25 permutation-779 

based samples considering a 0.1-step grid search from 0.01 to 1. sCCA were performed 780 

using the PMA R package.  781 

Consistently, canonical and regression sPLS were tuned using a 10-fold cross 782 

validation, considering a 5 step grid search ranging from 5 to 25 in our low dimensional 783 
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setting and from 10 to 50 in our high dimensional scenario. We maximally kept two 784 

components in order to select the most contributive features. sPLS were applied using the 785 

mixOmics R package. For both sCCA and sPLS, features on the two first components with 786 

non-null loadings were considered as informative variables hence were kept to compute the 787 

performance metrics.  788 

 789 

P-value combinations 790 

In order to provide fair comparisons across our individual association methods with 791 

compositional predictors, we combined p-values using the Aggregated Cauchy-based test 792 

(ACAT) [47] when CLR-lm was considered. Indeed, for a large number of microbiota and 793 

metabolites, applying univariate methods can lead to p x q possible correlations, limiting the 794 

statistical power due to multiplicity. Similarly to the log-contrast model or MiRKAT, in practice 795 

one can be interested in having the global association between one metabolite and several 796 

microorganisms. Thus, in order to provide a powerful method controlling the Type-I error rate 797 

well, we combined p-values for all microorganisms in a given metabolite using ACAT [47], 798 

resulting from p p-values. We argue that this approach may result in more detected signals, 799 

since the multiplicity burden is drastically reduced. Briefly, ACAT is a method combining p-800 

values through a Cauchy distribution.  801 

Formally for one metabolite, the aggregated p-values across the p microbiota can be 802 

approximated by: 803 

 804 

  805 

where .  806 

One important feature of ACAT compared to other aggregation methods, such as Fisher’s 807 

method, is that the method can efficiently control the Type-I error rate even in presence of 808 
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correlated p-values, while maintaining good power [47]. Also, the method does not require 809 

any resampling step, facilitating its application to large datasets.  810 

 811 

Performance Metrics 812 

Since all the methods considered in this benchmark exploit different statistical concepts, the 813 

outputs cannot be directly compared. Consequently, we opted for several performance 814 

metrics depending on the research question.  815 

Indeed, for global and individual association methods, we systematically evaluated 816 

model performance through Type-I error control and power, since the considered methods 817 

are frequentist frameworks. Briefly, Type-I error control assesses whether a method provides 818 

a good control of false positives at a given significance threshold. In other words, under the 819 

null hypothesis of no association, at a significance threshold equals to 0.05 we maximally 820 

expect 5% of false positives for a method that performs well. Type-I error control was 821 

evaluated using the quantile-quantile plot of the -log10 of p-values. Similarly, the power is the 822 

capability of a method to detect a significant signal (at a given significance threshold) when 823 

we know that there is an association. In practice, researchers want methods maximizing the 824 

power while accurately controlling the Type-I error.  825 

Data summarization methods were compared based on the proportion of the 826 

explained variance. We refer to explained variance, the amount of data variability kept by 827 

latent factors built by methods.  828 

Moreover, inspired from [42] when univariate and multivariate feature selection 829 

methods were evaluated, we considered sparsity and reliability as primary performance 830 

metrics. For univariate methods sparsity corresponds to the total number of relevant 831 

associations found by the method (here with coefficients different from zero), while reliability 832 

is the capability of a method to accurately discriminate true from false associations between 833 

two features. However, we adapted both sparsity and reliability calculation when considering 834 

multivariate feature selection methods. Indeed, sparsity was computed by the total number of 835 
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nonzero coefficients on the total number of features while reliability was adapted to capture 836 

the model performance to keep true contributive variables within the two datasets. Reliability 837 

was evaluated using the F1-Score (harmonic mean of the precision and recall). In practice, 838 

researchers are looking for sparse methods with high F1-Score. Performance metrics 839 

depending on the considered method were summarized in Figure 1. Technical details on the 840 

performance metric calculation and adaptations were provided in the supplementary. 841 

Methods. 842 

 843 

Konzo data analysis workflow 844 

 Stool samples collected from individuals from study populations in Masi-Manimba (n = 65) 845 

and Kahemba (n = 106) regions of the Democratic Republic of the Congo were used for 846 

metagenomics and metabolomics assessment, where a proportion of the cohort is affected 847 

with Konzo. Shotgun metagenomics sequencing was performed on DNA extracted from 848 

~250mg of stool with the goal of generating ~50 million reads per sample. Data was 849 

analyzed following similar methodology as described previously using Kracken2 and 850 

Bracken for taxonomic classifications [29] . Additionally, stool was analyzed by the company 851 

Metabolon, harnessing their large in-house repository of rigorously tested and validated 852 

metabolites that are used as reference, to detect metabolites present in the samples. 853 

Analysis was performed on the 1,098 microorganisms and 1,340 metabolites across the 171 854 

individuals unconditionally of the disease status. Microbiome data at the genus level were 855 

normalized using the CLR transformation while metabolome data were log transformed. The 856 

workflow was as follows 1) global association, 2) data summarization 3) univariate and 857 

multivariate feature selection and 4) individual associations. Moreover, we considered 858 

microorganisms as explanatory variables and the microorganisms as outcomes. For global 859 

associations, since the number of features exceeds the number of individuals, we performed 860 

the Mantel test instead of MMiRKAT. We further discussed this aspect in the Discussion 861 

section. Then, we applied MOFA2 in order to detect the most contributing microorganisms 862 
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and metabolites on the first component. Following the same methodology as presented in 863 

the Method section, we extracted the core microorganisms and metabolites using the 864 

regression sPLS, keeping only the features with nonzero loadings on the two first 865 

components. We finally applied the log-contrast and CODA-LASSO in order to highlight 866 

contributions of microorganisms on metabolites. We summarized the workflow in Figure S26. 867 
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