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Abstract:

Despite ovarian cancer being the deadliest gynecological malignancy, there has been little
change to therapeutic options and mortality rates over the last three decades. Recent studies
indicate that the composition of the tumor immune microenvironment (TIME) influences patient
outcomes but are limited by a lack of spatial understanding. We performed multiplexed ion beam
imaging (MIBI) on 83 human high-grade serous carcinoma tumors — one of the largest protein-
based, spatially-intact, single-cell resolution tumor datasets assembled — and used statistical and
machine learning approaches to connect features of the TIME spatial organization to patient
outcomes. Along with traditional clinical/immunohistochemical attributes and indicators of
TIME composition, we found that several features of TIME spatial organization had significant
univariate correlations and/or high relative importance in high-dimensional predictive models.
The top performing predictive model for patient progression-free survival (PFS) used a
combination of TIME composition and spatial features. Results demonstrate the importance of
spatial structure in understanding how the TIME contributes to treatment outcomes.
Furthermore, the present study provides a generalizable roadmap for spatial analyses of the

TIME in ovarian cancer research.
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Main Text:
INTRODUCTION

High grade serous carcinoma (HGSC) of the ovary, fallopian tube, and peritoneum is the
gynecologic malignancy with the highest mortality rate (1,2). Over the last three decades there
has been little improvement in the survival rate for patients diagnosed with HGSC, due in part to
limited therapeutic options beyond chemotherapy, poor early detection rates, and a limited
understanding of both the pathogenesis and the role of the tumor microenvironment. To further
understand the drivers of HGSC and therapy response, several studies have examined patients
who are disease-free 10 years after initial treatment (3). Long-term survival has been partially
attributed to an enhanced anti-tumor immune response (4,5), indicating a clinical need to further
define the tumor immune microenvironment (TIME) and elucidate its influence on patient
outcomes.

Although HGSC often has a high degree of immune infiltrates, including macrophages
that can compose up to 50% of all immune cells in the TIME (6), immune therapies have had
limited impact on improving outcomes for individuals with HGSC (7). Prior studies of the
HGSC TIME have discovered that selective immune cell infiltration often correlates with
improved patient outcomes. Specifically, infiltration of CD3+ T cells and CD19+ B cells is
associated with an average 62-month and 6-month survival benefit, respectively (8,9). In
contrast, an increased density of CD163+ tumor associated macrophages within the TIME
correlates with worse progression free survival (PFS) (10). Recently, spatial transcriptomics have
proven to be a powerful tool to characterize the architecture of HGSC tumors, but these studies
are currently performed with a limited spatial resolution (i.e., not single cell). These studies are

also limited by their dependence on RNA expression (11-13). On the other hand, single cell
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4
sequencing of HGSC tumors provides significantly improved resolution of the TIME but is
limited by the lack of associated spatial context (14). Recent studies have demonstrated that,
beyond TIME composition, the spatial organization of the TIME, including the proximity of
macrophages, B cells, and CD4+ T-cells to tumor cells significantly correlates with survival
outcomes (15). However, these studies relied on a limited number of proteins to characterize the
TIME spatial organization and thus were lacking simultaneous cell type identification, and the
associations were not validated with modern large predictive models. Research in other types of
cancer, such as melanoma, has shown that spatial features derived from single-cell image data
are associated with treatment response (16).

In this study, we determined the prognostic power of the TIME’s spatial organization in
explaining and predicting patient outcomes. Towards this end, we examined formalin-fixed
paraffin-embedded (FFPE) tissue samples from 83 HGSC tumors from patients diagnosed with
high grade serous carcinoma of the ovary, fallopian tube, and peritoneum with known outcomes
with a multiplexed ion beam imaging (MIBI) system (17) and identified over 160,000 cells
across 23 cell types. The resulting data set is one of the largest protein-based spatially intact,
single cell analysis of any tumor type. Using survival and recurrence outcomes as an endpoint for
77 (69 primary and 8 recurrent) of the samples that met the inclusion criteria to produce spatial
features, we performed modeling of 6 known clinical/immunohistochemical features (e.g.,
BRCA-status), 24 TIME composition features, 69 TIME spatial features, and 117 TIME (spatial)
network features to assess their correlation with and relative importance for predicting patient
outcomes. We found significant univariate correlations and high relative importance in high-
dimensional predictive models for several features encoding TIME spatial organization. While

we were unable to reliably predict out-of-sample overall survival (OS) outcomes with these
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95 features, we consistently predicted out-of-sample PFS, with the best model on average using a
96  combination of features of the TIME composition and spatial organization. We demonstrate how
97  moving beyond TIME composition to encode and assess features of TIME spatial organization,
98 combined with a modern machine learning approach, can be used to improve hypothesis
99  generation and testing to identify clinically relevant parameters for improving HGSC patient
100  care.
101
102 RESULTS
103  Multiplexed imaging, cell segmentation, and phenotyping
104 We performed multiplexed imaging using a custom MIBI-TOF instrument (17) to
105 produce a total of 83 images identifying 26 proteins (File D1), which were processed using
106  Ionpath’s MIBI/O software and corrected (Table S1) and denoised (File D2). Multiplexed
107  imaging data were preprocessed to remove noise and artifacts as described previously (26) prior
108  to single-cell segmentation. In this preprocessing step, we used supervised pixel classification to
109  generate a feature representation map for each image (Fig. 1A). We then applied a widely used
110  pre-trained model (27) to perform whole-cell segmentation. This process identified about
111 160,000 cells with each FOV containing an average of ~1934 single cells (s.d=556). The
112 unsupervised clustering algorithm FlowSOM (28) was then employed, identifying 23 unique cell
113  clusters (Fig. 1B,C, Fig. 2A). The cell type identity of each cluster was determined by comparing
114 relative phenotypic marker signal intensities across clusters.
115  Generating TIME composition features
116 We first examined the TIME composition of the samples in terms of the relative

117  frequency of cell types. This composition spanned 24 features of the samples exclusive of spatial
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118  organization, comprising 23 cell types and the population of unidentified cells. We observed
119  substantial variation in cell type frequencies across samples (Fig.2B). Tumor cells were the most
120  prevalent cell type, representing on average 47.8% of the cells in each sample (range 0% to
121 91.6%). The next most common cell types on average were neuroepithelial cells (mean 6.4%,
122 range 0% to 61.5%; vs. tumor cell percentage, Pearson correlation coefficient 7=-0.328, false
123  discovery rate adjusted two-sided p=0.012). All other cell types varied from 0% to 3.3% of the
124  cells on average, though these percentages could vary dramatically between samples, often in
125  relation to tumor cell percentage. Other cell types with false discovery rate adjusted significant
126  correlation coefficients with tumor cell percentages were CD8+ T cells (r=-0.311, p=0.013),
127  CD4+ T cells (r=-0.379, p<0.001), NK/NKT cells (=-0.303, p=0.014), CD56+CD45- cells (r=-
128  0.401, p<0.001), vascular endothelial cells (=-0.29, p=0.018), B cells (+=-0.339, p=0.009),
129  monocytes (r=-0.288, p=0.018), CD11c°Y immune cells (+=-0.28, p=0.021), neutrophils
130 (=-0.257, p=0.036), and CD11c+ epithelial cells (»=0.328, p=0.009). All other cell types did

131 not have significant correlations (File D3). Some cell types such as dendritic cells (DC) and

132 CDI11¢°Y immune cells were always rare, if present in a sample.

133 We excluded some samples from further analysis based on cell type percentages and two
134  exclusion criteria (Fig. S1). Unidentified cells represented on average 16.7% of the cells in each
135  sample (range 0.5% to 92.6%; r=-0.498, p<0.001). Samples 26 and 45 were excluded because
136  they were outliers with unidentified cell percentages over 65%. Samples 27 and 29 were

137  excluded because they had no identified tumor cells (sample 45 also met this exclusion criteria).
138  We determined that samples with a high percentage of unidentified cells or no identified tumor
139  cells were unable to produce spatial features about the interactions between cells of different

140  types, and in particular interactions with tumor cells. In the two cases in which there were two
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141 samples from the same patient, we chose to keep the sample with a lower unidentified cell
142  percentage in the final analysis, thus excluding samples 19 and 35. This choice ensured that our
143  final dataset included at most one sample from each patient in the analysis linking generated
144  features to patient outcomes. In total, we excluded 6 samples from the final analysis, leading to a
145  final dataset of 77 samples.
146 Most cell types were not represented across all images in the final dataset (Fig. 2C).
147  Tumor cells were identified in every sample, and vascular endothelial cells, M1 macrophages,
148 CD163+ cells, and Fibroblast cells were identified in almost every sample. Some cell types were
149  rarer, particularly M2 macrophages, non-leukocyte derived neural cells, lymphatic endothelial
150  cells, and dendritic cells were identified in fewer than half of the samples.
151  Generating spatial features of the TIME based on nearest neighbor distances
152 For each sample in the final dataset, we generated a set of 69 features that characterize
153  each sample’s spatial structure, following the approach from Moldoveanu et al. (2022) (16).
154  First, we generated the median Euclidean distance from three distinct cell types (“focal cell
155  types”) that have been reported to be important in the HGSC TIME (tumor cells, M1
156  macrophages, and vascular endothelial cells) in each sample to their nearest neighbors of each
157  other cell type. While there have been few studies interrogating the spatial features of the TIME,
158  previous work indicates that the spatial proximity between cell types correlates with HGSC
159  survival outcomes (15). Previous results on composition (10,38,39), led us to focus on M1
160  macrophages and vascular endothelial cells as focal cell types for generating spatial and network
161  features along with tumor cells in our study. Vascular endothelial cells and M1 macrophages
162  were also both detected in nearly all (98%, only missing in one sample each respectively)

163  samples.
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164 Tumor cells, vascular endothelial cells, M1 macrophages, CD163+ cells, and fibroblasts,
165  which were some of the most common cell types across samples, were closer (average median
166  nearest neighbor distance under 90 um) than other cell types to all three focal cell types (Fig.3A-
167  C). In comparison, the cell types that were in fewer samples (e.g., M2 macrophages, non-
168 leukocyte derived neural cells, lymphatic endothelial cells, dendritic cells) were found on
169  average further away from the three focal cell types. B cells had the highest mean nearest
170  neighbor distance across samples to all three focal cell types (197.2 um to Tumor cells, 190.4 um
171 to M1 macrophages, and 174.2 um to vascular endothelial cells, respectively).
172  Generating features of the TIME based on spatial network representations
173 We next created spatial network representations of the samples by connecting spatially
174  proximate cells using Delaunay triangulation and then trimming edges that were above a
175  threshold of 50 pixels (~24.4 um) (Fig. S2A-C). Cells were thus found 15-50 pixels (~7.3-24.4
176  um) away from their spatial neighbors in the networks, with some variation in the median
177  distances between spatial network neighbors based on their cell type (Fig. S3). Using these
178  spatial network representations, we generated 117 TIME network features for each sample. The
179  first subset of these features represented the mean size of connected regions of each cell type in
180  each sample (Fig. S2D). These spatially connected regions in the TIME may indicate the
181  existence of spatially extended structures of a single cell type (which may indicate the level of
182  tumor infiltration, per Keren et al. 2018 (30)). Tumor cells were most often found in large,
183  connected regions with 50% located in regions of 1071 cells or greater. Neuroepithelial cells
184  were also found in relatively large, connected regions, with 50% found in regions of 226 cells or
185  greater. Cells of all other types were most often found in relatively small regions ranging from 1

186  to 14 cells (Fig. S4A). Most regions of any cell type were only 1 or 2 cells large. The largest
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187  maximum region sizes were for tumor cells (2190 cells), Neuroepithelial cells (1288 cells),
188  CDI11b+ epithelial cells (349 cells), and CD4+ T cells (202 cells), while all other cell types had
189  maximum region sizes under 200 cells (Fig. S4B).
190 We used the spatial network representations to compute contact enrichment scores,
191  following prior work (30) (16) (31) to quantify the extent to which network-neighbors of focal
192  cell types might differ from what should be expected at random. These scores capture similar
193  proximity information as the median nearest neighbor distance features, but control for the
194  proportion of cells of each type by keeping these proportions fixed during computation.
195  Moreover, these scores quantify direct interactions between cell types.
196 Vascular endothelial cells, fibroblasts, and CD56+CD45- cells had fewer contacts with
197  tumor cells than expected based on random sampling (null expectations), whereas CD11c+
198  epithelial cells, CD11b+ epithelial cells, and neuroepithelial cells often had more contacts than
199  expected. Most other cell types varied across samples with many contact enrichment scores close
200 to 0, and thus matching null expectations (Fig. 3D). Most of the cell types showed slightly more
201  contacts with M1 macrophages than expected at random (contact enrichment scores > 0), with
202  the exception of tumor cells and neuroepithelial cells, which tended to have fewer (contact
203  enrichment scores < 0) and other immune cells, B cells, NK/NKT cells, CD56+CD45- cells, non-
204  leukocyte derived neural cells, and dendritic cells which tended to have contact enrichment
205  scores with M1 macrophages close to 0 (Fig. 3E). Contact enrichment scores with vascular
206  endothelial cells were also slightly positive for most cell types and negative for tumor cells.
207  Fibroblasts had more contacts with vascular endothelial cells than expected at random and cell

208 types with slightly negative or varying vascular endothelial contact enrichment scores included
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209 CDll1c+ epithelial cells, neuroepithelial cells, CD56+CD45- cells, and lymphatic endothelial
210  cells (Fig.3F).
211 Finally, we generated assortativity coefficients from the spatial networks, which measure

212  the extent to which cells tend to be network neighbors with cells of the same type as opposed to
213  neighbors of any other type. These features capture similar information about large-scale

214  structure and tumor infiltration as the mean region size, but better account for random variation.
215  Tumor cells had the highest mean assortativity coefficient (0.37). We did not observe any cells
216  exhibiting a negative assortativity coefficient (disassortative mixing), in which cells of a given
217  cell type would be less likely to be network neighbors with same-type cells and more likely to be
218 neighbors of different-type cells. We did, however, see large variation across samples in the

219  magnitude of the assortativity coefficient for many cell types. For instance, the tumor cells

220  displayed a large range of assortativity coefficients, which may indicate that the tumors in some
221  samples were more infiltrated by other cells (Fig. 4).

222  Linking in-sample patient outcomes to TIME features in univariate and multivariate Cox
223  regressions

224 We next explored the relationship between generated features of the samples and two
225 time-to-event outcomes: overall survival (OS) and progression-free survival (PFS) (Fig. S5, Fig.
226  S6). We define OS as the time from initial diagnosis based on tissue biopsy and imaging or a
227  serum biomarker (CA125) to death. Patient data without observation of death are censored at the
228 last known patient visit. PFS is defined as the time from initial diagnosis to first known disease
229  recurrence. Patient data without observation of disease recurrence are censored at death or the

230 Ilast known patient visit, whichever occurs first.
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231 We performed Univariate Cox regressions for all the generated TIME composition,
232  spatial, and network features as well as 6 additional clinical/immunohistochemical features: age,
233  BRCA mutational status, H3K14Ace status, ATF6 status, DUSP1 status, and CBX2 status (see
234  Fig. S7 for clinical/immunohistochemical feature distributions). All covariates except BRCA
235 mutational status and age were first normalized (z-score scaled) so that they had a mean of 0 and
236  astandard deviation of 1. Results limiting the dataset to only primary tumor samples can be
237  found in Figure S8 and File D4.
238 For OS, we found significant univariate results (p<0.05) for 25 features associated with
239  worse prognosis and 3 features associated with better prognosis (Fig. SA, see File D5 for full
240  results). For PFS, we found significant results (p<0.05) for eight features associated with worse
241  prognosis and three features associated with better prognosis (Fig. 5B, see File D5 for full
242  results). None of the clinical/immunohistochemical attributes were significant for either outcome
243  variable.
244 Of the significant features, a majority were related to proximity between cells of
245  particular types — median nearest neighbor distance features accounted for 18 of the 28
246  significant features for OS and two of the 11 significant features for PFS. Contact enrichment
247  features accounted for five of the 28 significant features for OS and seven of the 11 significant
248  features for PFS. Relatively fewer of the significant features related to composition or the
249  tendency for cells of the same type to cluster together — three composition features were
250  significant for OS and one composition feature was significant for PFS, one mean region size
251  feature was significant for OS, and none were significant for PFS, and one assortativity

252  coeftficient feature was significant for each of OS and PFS.
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253 As a robustness check, we trained a set of reduced models, in the form of multivariate
254  Cox regressions on only the top five features for each outcome variable ranked by p-value, with
255  and without adjusting for the 6 clinical/immunohistochemical features (Table S2, S3). In the
256  adjusted multivariate model for OS, none of the five top features remained significant, while in
257  the reduced model the only feature that remained significant was the median NK/NKT cell
258 nearest neighbor distance to vascular endothelial cells (Hazard Ratio [HR] =1.66, p=0.009). For
259  PFS, the only feature that remained significant in the adjusted model was the contact enrichment
260  score between unidentified cells and M1 macrophages (HR=1.63, p=0.010), while in the reduced
261  model four of the top five features remained significant while the contact enrichment score
262  between unidentified cells and M1 macrophages was not significant (HR=1.32, p=0.059).
263  Predicting out-of-sample patient outcomes using TIME features in random forests
264 We next evaluated how spatial and/or network features of the tumor microenvironment
265  could be used together with clinical/immunohistochemical attributes and TIME composition
266  features to predict patient outcomes out-of-sample. We split both OS and PFS outcome variables
267  at their respective medians to consider a simple binary classification task of low or high OS or
268 PFS. We grouped features into 4 categories according to their respective processes of derivation:
269 (i) clinical/immunohistochemical, (ii) composition, (ii1) spatial, and (iv) network features. We
270  considered all 15 possible combinations of the four feature categories to evaluate what
271  combination of information produced the best out-of-sample predictive performance (Fig. 6A).
272 For each model, we repeatedly (N=500) trained a random forest model on a training set
273 of 70% of the samples, randomly sampled while balancing outcome labels, and evaluated each
274  model’s predictive accuracy by using the remaining 30% as a test set. We report average out-of-

275  sample predictive performance results, based on the AUC (Area Under the Receiver Operating
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276  Characteristics curve) statistic (36) across these 500 evaluations. A value of AUC=0.5 indicates a
277  classification that performs no better or worse than a random guess, while an AUC=1 indicates
278  perfect performance.
279 Across these predictive models, we found better-than-random performance on average,
280  with AUC>0.5 for PFS but not for OS (Fig. 6B, C, Table S4). All models for PFS achieved mean
281  AUC values over 0.6. The model that best predicted PFS was model eight, with AUC 0.711 +
282  0.10 (mean =+ stddev) based on combining composition and spatial features. This performance
283  was followed closely by model 11 (0.707 & 0.09) and model 3 (0.703 + 0.08), which used only
284  spatial and a combination of clinical/immunohistochemical, composition, and spatial features,
285  respectively. Models containing network features performed slightly worse (models 4, 7, 9, 10,
286 12,13, 14, 15; average AUC= 0.668+0.03) than models with clinical/immunohistochemical
287  features (models 1, 5,6, 7, 11, 12, 13, 15; average AUC=0.678+0.03), composition features
288 (models 2, 5,8,9, 11, 12, 14, 15, average AUC=0.690), and spatial features (models 3, 6, 8, 10,
289 11,13, 14, 15; average AUC=0.698+0.01). The model containing all features (model 15)
290  achieved an AUC of 0.697 + 0.09. All the models predicting OS achieved mean AUC<O0.5,
291  indicating that on average the models did not outperform a random guess, i.¢e., they predicted in
292  the incorrect direction (Fig. 5B). Similar performance results were found for models trained only
293  on primary tumor samples (n=69), although composition features were relatively more helpful in
294  predicting PFS, such that the top three models were model five (0.729 + 0.09), model two (0.719
295  £0.09), and model eight (0.714 + 0.09) (Fig. S9, Table S5).
296 Using model 15, which was trained on all four feature categories, we generated
297  hypotheses of which particular TIME composition, spatial, and network features were relatively

298  more useful for predicting OS and PFS patient outcomes. We accomplished this goal by
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299  calculating and comparing the Gini importance scores (37) for each feature in model 15. We note
300 that importance scores do not indicate the direction of a feature’s relationship with a patient’s
301  outcome, and instead only indicate its relative utility in predicting the outcome value. We found
302 evidence for a subset of features, spanning all four categories, that were relatively more
303 important for predicting patient outcomes (Fig. 7A,B). Feature importance results limiting the
304  dataset to only primary tumor samples can be found in Figure S10 and File D6.
305 Ranking features by their median Gini importance score across the 500 evaluations, we
306  found that the top ten features for predicting OS included seven contact enrichment network
307  features, two spatial features, and one clinical/immunohistochemical feature: (i) the contact
308  enrichment score between CD8+ T cells and tumor cells, (ii) the contact enrichment score
309  between CD163+ cells and tumor cells, (iii)) median monocyte cell nearest neighbor distance to
310  tumor cells, (iv) median CD11c+ epithelial cell nearest neighbor distance to tumor cells, (v) the
311 contact enrichment score between NK/NKT cells and vascular endothelial cells, (vi) the contact
312  enrichment score between CD11b+ epithelial cells and M1 macrophages, (vii) the contact
313  enrichment score between other immune cells and tumor cells, (vii1) the contact enrichment score
314  between CD11c+ epithelial cells and vascular endothelial cells, (ix) CBX2 status, and (x) the
315  contact enrichment score between unidentified cells and M1 macrophages (Fig. 7C, File D7).
316  The contact enrichment score between CD8+ T cells and tumor cells were distinguished by a
317  higher median feature importance score.
318 We found that the top ten features for predicting PFS included one contact enrichment
319 network feature, one mean region size network feature, five spatial features, and three
320 composition features: (i) median vascular endothelial cell nearest neighbor distance to tumor

321  cells, (ii) the contact enrichment score between unidentified cells and M1 macrophages, (ii1)
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322  median vascular endothelial cell nearest neighbor distance to M1 macrophages, (iv) vascular
323  endothelial cell proportion, (v) median B cell nearest neighbor distance to vascular endothelial
324  cells, (vi) CD4+ T cell proportion, (vii) median CD163+ cell nearest neighbor distance to tumor
325  cells, (viii) M1 macrophage proportion, (ix) median CD11c+ epithelial cell nearest neighbor
326  distance to tumor cells, and (x) the CD4+ T cell mean region size (Fig. 7D, File D7). In
327  particular, for PFS the median vascular endothelial cell nearest neighbor distance to tumor cells
328  was consistently ranked as more important across the iterations.
329 In alignment with the in-sample Cox regression results, we found that most of the top ten
330  most important features for predicting out-of-sample patient outcomes (nine for OS and six for
331  PFS) were either median nearest neighbor distances or spatial network contact enrichment
332  scores, and thus related to the spatial proximity between cell types, and in general, features
333  related to spatial proximity were more important (Fig. S11, Fig. S12).
334  Results related to T cell, macrophage, B cell, and vascular endothelial cell spatial
335  organization
336 Previous work has indicated that the presence of intratumoral T cells and the presence of
337 T cells in ascites have been shown to correlate with better patient prognosis (8,15,40—42). High
338 CDA4+ T cell macrophage interaction has also been shown to significantly correlate with better
339  prognosis when adjusted for clinical/immunohistochemical covariates (15). In our results,
340  patients with NK/NKT and CD4+ T cells closer to M1 macrophages and tumor cells and
341  NK/NKT cells closer to vascular endothelial cells had better OS, and the contact enrichment
342  score between CD8+ T cells and tumor cells was the most important feature for predicting OS.
343  For PFS, the same features were not significantly correlated with prognosis, though NK/NKT

344  cell M1 median nearest neighbor distance was significantly correlated with PFS for only primary
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345  tumor samples (HR=1.43, p=0.038). We also saw a significant correlation for CD8+ T cell
346  assortativity (HR 1.34, p=0.034, not significant for only primary tumor samples), and the CD4+
347 T cell mean region size was chosen as an important feature for the random forest predicting PFS
348  and was significantly correlated with PFS for only the primary tumor samples (HR 0.73,
349  p=0.046), indicating that T cell clustering patterns might have been more important for
350 predicting PFS than T cell spatial proximity features.
351 Macrophages compose up to 50% of all immune cells in the TIME and are a highly
352  plastic cell type (6). As opposed to M2-like macrophages, M 1-like macrophages are proposed to
353  be anti-tumorigenic and aid the adaptive immune cells in mounting an immune response (43).
354  The M1/M2 ratio of macrophages in the ovarian cancer TIME is prognostic for overall and
355  progression-free survival (10,38,44). For macrophages, our significant results all were related to
356 M1 macrophages rather than related to M2 macrophages. We found that higher median M1
357  macrophage nearest neighbor distance to tumor cells (HR 1.25, p=0.039) or vascular endothelial
358  cells (HR=1.34, p=0.021, not significant for only primary tumor samples) were significantly
359  correlated with worse OS. Median vascular endothelial cell nearest neighbor distance to M1
360 macrophages was also chosen as an important feature by the random forest for predicting PFS.
361 We found, in alignment with previous results (15) that a higher contact enrichment score
362  between B cell and M1 macrophages was significantly correlated with both better OS
363 (HR=0.696, p=0.011) and PFS (HR=0.73, p=0.039), and that a larger median B cell nearest
364  neighbor distance to M1 macrophages was significantly correlated with worse OS (HR=1.40,
365 p=0.016, not significant for only primary tumor samples). Unlike in Steinhart et al. 2021 (15) we
366  differentiated between M1 and M2 macrophages, replicating this result for the former and thus

367  adding further cell type specificity to these findings. These findings highlight that interaction
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368  between B cells and M1 macrophages may lead to a better antitumor immune response after
369  chemotherapy treatment potentially through increased macrophage-mediated antigen
370  presentation to the B cells. We generally observed that B cells being further from M1
371  macrophages, vascular endothelial cells, and tumor cells corresponded to worse outcomes -
372  higher median B cell nearest neighbor distance to tumor cells (HR=1.42, p=0.008) or vascular
373  endothelial cells (HR=1.33, p=0.042, not significant for only primary tumor samples) also
374  significantly correlated with worse OS, and median B cell nearest neighbor distance to vascular
375  endothelial cells was also significantly correlated with worse PFS (HR=1.35, p=0.030) and was
376  chosen as an important feature for predicting PFS.
377 A higher density of microvessels in the TIME has also previously been correlated with
378  worse progression-free survival (39), and anti-angiogenic therapies (e.g., anti-VEGF) are a
379  standard of care for ovarian cancer. In our results, OS was significantly correlated (HR=1.23,
380 p=0.073) with the median nearest neighbor distance between vascular endothelial cells and
381  tumor cells, as in a higher median nearest neighbor distance between these cell types conveyed a
382  worse OS. Median vascular endothelial cell nearest neighbor distance to tumor cells was also
383  chosen as the most important feature for predicting PFS.
384
385 DISCUSSION
386 The current study provides a roadmap for further hypothesis generation and evaluation in
387  ovarian cancer research, opening a range of possible directions for future work investigating the
388  mechanisms by which TIME spatial organization drives clinical and biological differences.
389 Our results reinforce the importance of considering the spatial structure of the TIME to

390  understand and predict HGSC disease progression and outcomes. We show that features
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391  encoding the spatial and network organization of the TIME help predict patient outcomes, and
392  we find that the best predictive model for PFS includes a combination of TIME composition and
393  spatial features. For example, we found several results related to CD163+ cells, e.g., higher
394  median CD163+ cell nearest neighbor distance to M1 macrophages correlated with worse OS
395 (HR=1.31, p=0.022) and higher median CD163+ cell nearest neighbor distance to tumor cells
396  correlated with worse PFS (HR=1.26, p=0.042) and was chosen as an important feature for
397 predicting PFS. CD163 is a scavenger receptor, and its expression is largely restricted to
398 myeloid-derived cells, specifically monocytes and macrophages — it is often upregulated in
399  response to inflammation and is associated with tumor promoting macrophages (45). While
400 CD163+ cells in the ovarian TIME are associated with worse prognosis (10,46,47), our findings
401  show a spatial and context dependency on CD163-mediated activities. Therapeutically, CD163
402 targeting strategies (e.g., OR2805) have shown to be effective in relieving immune suppression
403 and are therefore clinically evaluated in a trial for solid tumors (48), thus representing an
404  opportunity to target the robust HGSC TIME-associated immune suppressive macrophages to
405 potentially improve anti-tumor immune surveillance (49,50).
406 While our results partially align with previous studies, for example in the finding for B
407  cell-M1 macrophage interactions, we did not achieve significance in univariate correlations to
408 patient outcomes for T cell and macrophage proportions as expected. While we did find Hazard
409 Ratio estimates in the expected direction (Hazard Ratio estimates for infiltration by all T cell
410  populations and M1 macrophages were <1), our results were not significant. Notably, increased
411  CD8+ T cells conveyed a Hazard Ratio of 0.74 (p=0.059) and CD8+ T cell proportion (HR 0.68,
412  p=0.035) and CD4+ T cell proportion (HR 0.58, p=0.02) were significantly correlated with

413  improved OS for only the primary tumor samples. The vascular endothelial cell proportion, M1
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414  macrophage proportion, and CD4+ T cell proportion were also chosen by the random forest as
415  important features for predicting PFS. We emphasize the importance of differences in the
416  definitions of cell types when comparing our results with previous works. For example, prior
417  literature has suggested that M2 macrophages are typically more prevalent than M1 macrophages
418 in HGSC (51), which contrasts with our results (Fig. 2A). However, if we had included CD163+
419  cells in the M2 macrophage cluster (52,53), then the M2 macrophage count would indeed be
420  higher than the M1 macrophage count alone and present findings in line with the aforementioned
421  study. An explanation for differences with previous studies might be due to differences in cell
422  clustering and phenotyping, pointing to the need for further refinement of consistent markers,
423  particularly so that such results can become relevant in clinical application.
424 Limitations of the imaging technology used in this study affect the significance of our
425  findings. In particular, the FOV size of 500 um at single-cell resolution might still be a limiting
426  factor for the comprehensive documentation of the clinically relevant spatial organization in the
427  TIME. Despite staining with antibodies to 26 proteins, an average of 14% of cells remained
428  unidentified in the 77 samples included in our final analysis, due to them not expressing any of
429  the phenotypic markers. The spatial organization of the TIME may be better delineated in a more
430 comprehensive higher parameter analysis tailored to identification of cells in HGSC. For
431  example, future work might additionally use functional markers to further characterize CD163+
432  cells. In our analyses we treated the set of unidentified cells as a population and found that they
433  contributed to significant interactions, highlighting an opportunity for future research. For
434  example, the contact enrichment score between unidentified cells and M1 macrophages was
435  significantly associated with worse PFS (HR=1.41, p=0.01) and chosen as one of the most

436  important features for predicting both OS and PFS.
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437 Our study investigated the relative importance of different types and combinations of
438 clinical/immunohistochemical and TIME features in modeling patient outcomes before treatment
439  via both feature importance values within a random forest model for out-of-sample prediction
440 and coefficient values within Cox regressions on in-sample data. While one tumor sample was
441  from 1996, and aspects of clinical management have improved over the time period during
442  which the samples were generated (e.g., increased testing for BRCA mutation), we assume that
443  better prognosis in this dataset largely is due to differential response to a standard of care
444  treatment, which has not changed substantially since 1996. Cox regressions evaluated on in-
445  sample data can be used to describe observed patterns, but do not provide results about out-of-
446  sample predictive performance relevant for generalizing our results to new patients in clinical
447  contexts. We also primarily report results from univariate analyses which only consider features
448 in isolation and multivariate Cox regressions with all significant features did not converge. Due
449  to the exploratory nature of the study, we report non-adjusted p-values, and we found no
450  significant univariate correlations with false discovery rate adjusted p-values (33).
451 Although random forests are a popular choice in predictive modeling, in part because of
452  their built-in regularization controls for overfitting and their strong interpretability (34), all
453  machine learning models are potentially vulnerable to overfitting. In our analysis, we did not
454  observe substantially better-than-random out of sample predictive performance on patient OS on
455  average, indicating that the features chosen as relatively important for predicting OS might have
456  been used by the model to overfit (i.e., learn complex rules to fit to the training dataset that do
457  not generalize to predictive performance on unseen data), and thus might be considered with
458  more skepticism than those chosen as relatively important for predicting PFS. We took care to

459  avoid cases in which the data used to evaluate or test the model’s accuracy was not fully
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460 independent of the data used to train the model, for example by imputing NA values separately
461 in the train and test sets, which is one cause of overfitting. At the same time, our training data
462  were derived from 77 of patients whose corresponding feature sets may not be fully
463 representative of the underlying biology, implying that the reported predictive accuracies should
464  be interpreted cautiously, and more weight should be placed on the inference that some features
465 are relatively more important than others in the prediction of patient outcomes.
466 In comparing categories of features based on their respective processes of derivation, we
467  found that models including features derived from spatial network representations of the TIME
468  performed slightly worse. However, our results do support the continued use of spatial networks
469 in quantifying and evaluating the TIME. Network features were the largest and most diverse
470  category of features we evaluated (N=117), and many of them were irrelevant for predicting
471  patient outcomes, as indicated by low Gini importance scores, thus likely reducing predictive
472  performance for the network feature category as a whole by introducing noise. However, feature
473  importance evaluations indicate that a subset of these network features were among some of the
474  most important features overall for prediction: in particular, the contact enrichment features
475  encoding information about the proximity between cell types were generally ranked as more
476  important than mean region size or assortativity features, which encode cell clustering patterns
477  (Fig. S11, Fig. S12), mirroring a similar finding in the in-sample Cox regression results. Further
478  development and refinement of features derived from spatial network representations of the
479  TIME could potentially improve the development of useful markers.
480 Many of the features identified as important for patient outcome prediction involved the
481  spatial relationship between cells other than tumor cells. While not surprising, this finding

482  strongly emphasizes the importance of investigating cell-cell interactions throughout the TIME.
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483  Two overarching goals of such studies would be to (1) identify key cell types that can be directly
484  addressed with targeted therapies, and (ii) to develop methods that more generally help to
485  characterize the TIME prior to patient treatment. For instance, further studies might investigate
486  how the spatial organization of the TIME differs between tumor sites within the same patient,
487  and whether this can drive differential response to treatment between tumor sites (54).
488  Additionally, future work could build on previous studies investigating TIME changes with
489  chemotherapy treatment (55,56) to investigate how the spatial organization of the TIME changes
490  with chemotherapy. Those goals aim to improve individualized patient diagnosis and care while
491  at the same time enhancing our understanding of more general pathways of cancer development
492  and progression.
493
494 MATERIALS AND METHODS
495  Study design
496 We procured formalin-fixed paraffin-embedded tumor samples from patients diagnosed
497  with HGSC of the ovary, fallopian tube, and peritoneum under the University of Colorado’s IRB
498  Protocol, COMIRB #17-7788. The tumor samples were examined by a Gynecologic Pathologist
499  (Dr. Miriam Post) and viable tumor areas were selected for generation of the tissue microarray.
500  The total number of tumors on the tissue microarray was 133, which include primary and
501  recurrent HGSC tumors. Further details of the tissue microarray can be found in Watson et al.
502 2019 (18), Jordan et al. 2020 (19), and McMellen et al. 2023 (20). Multiplexed ion beam
503 imaging was performed on 83 tumor specimens. All samples were from patients with cancer of
504  ovary, fallopian tube, and peritoneum diagnosed at a similar stage (IIIC). For 77 (69 primary and

505 8 recurrent) of these samples with sufficient cell type identification to produce spatial features
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506 (see Fig. S1), we studied clinical/immunohistochemical features in combination with descriptive
507  (composition, spatial, and network features) features derived from these samples. The study
508 design aims to integrate features that could hypothetically be generated from a patient’s biopsy
509 samples before treatment in an exploratory analysis to investigate what features or combination
510  of features could be used to predict patient outcomes and motivate adjustments in treatment.
511  Clinical/immunohistochemical features
512 For each sample, we investigated six clinical/immunohistochemical features alone and in
513  combination with features derived from the samples: BRCA mutational status, age, and histology
514  scores for H3K14Ace status, ATF6 status, DUSP1 status, and CBX2 status, calculated by
515  multiplying the intensity of the stain [0-3] by the percentage of that intensity [0-100].
516 BRCA mutational status was included because of its well-established risk and therapeutic
517  implication (21,22). The remaining features were selected and included based on prior work
518  (20,23,24) that demonstrated prognostic value. Age was included because it is a prognostication
519  indicator in terms of OS (25). Figure S7 shows distributions of all the
520 clinical/immunohistochemical features across the final 77 samples analyzed.
521  MIBI-TOF imaging
522 Imaging was performed using a custom MIBI-TOF instrument with a Xe" primary ion
523  source upgrade (17). A total of 83 images with a field of view size of 500x500 pum and a frame
524  size of 1024x1024 pixels were acquired. The beam current was set to 5 nA with a dwell time of 2
525 ms, yielding a resolution of approximately 0.5 um per pixel. Secondary ions were accelerated
526  into the time-of-flight mass spectrometer with a sample bias of 50 V and detected with a
527  temporal resolution of 0.6 ns across a mass range of 1-200 m/z".

528 Low-level image processing
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529 Multiplexed images were extracted and processed using lonpath’s MIBI/O software: The
530 image data was background- and mass-corrected with vendor-provided configuration files, see
531  Table S1. In the next step, the image data was denoised with the filtering parameters provided in
532  File D2.
533 Low-level image pre-processing
534 We adopted a custom computational pipeline developed to analyze MIBI data (26). In
535  this framework multi-step low-level image processing is replaced with a single-step pixel
536 classification where each pixel in an image is classified such that all categories of undesired
537  signal are placed in a different class from the desired marker signal and continue the downstream
538 analysis using the generated feature representation map of the marker signal.
539  Single-cell segmentation
540 Whole-cell segmentation was done using the pre-trained single-cell segmentation model
541  Mesmer (27). We used the dsDNA channel for nuclear segmentation and the B-tubulin channel to
542  guide identification of cell boundaries.
543  Cell-type identification
544 Single-cell data were extracted for all the cells and normalized by the cell size. To assign
545  each cell to a lineage, we used the unsupervised clustering algorithm as implemented in
546  FlowSOM (28) with multiple steps: first we identified the immune cells and non-immune cells
547  using the following markers: CD45, HLA-DR, CD31, Podoplanin, Vimentin, and Keratin. Then,
548  we used the immune markers CD3, CD4, CDS§, CD20, CD68, CD56, CD11b, CDl11¢c, CD163,
549  DC-SIGN to identify the immune subsets (See Table S6).

550  Spatial and network features
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551 We calculated spatial and network features from the sample images following
552  Moldoveanu et al. 2022 (16) using Python version 3.9.12, SciPy version 1.7.3 and NetworkX
553  wversion 2.7.1. We calculated the median Euclidean distance in pixels in each sample between
554  cells of three focal cell types: tumor cells, M1 macrophages, and vascular endothelial cells and
555  their nearest neighbor of all other non-focal cell types. In each sample, we examined each of the
556  focal cells of interest and then identified the nearest neighbor of each non-focal cell type using
557 KD Trees (implemented in SciPy) and recorded the Euclidean distances. For each sample, we
558  report the median nearest neighbor distance for each combination of non-focal cell type (listed
559 first) and focal cell type.
560 Spatial network representations of the samples were created by connecting spatial
561  neighbors identified using Delaunay triangulation (implemented in SciPy) and then trimming
562  edges that were above a threshold of 50 pixels (~24.4 um). Results were not sensitive to using a
563  higher threshold for trimming edges (100 pixels, ~48.8 um, Fig. S13-15). Versions of the spatial
564  networks were created in which neighboring cells were only connected if they were of the same
565 cell type and connected regions of the same cell type were identified from these modified
566  networks using the connected components function implemented in NetworkX. The mean of
567  the region sizes in each sample were reported for each cell type.
568 Binary attributes were added to each cell in the spatial networks for each cell type, set to
569 1 if the cell was of that type and 0 otherwise. Assortativity coefficients (29) were then calculated
570  using the NetworkX function attribute assortativity coefficient for each of these
571  binary cell type attributes, thus measuring to what extent cells tended to be neighbors with cells
572  of the same type versus any other type. This value is 1 for perfect assortative mixing, in which

573  cells are only neighbors with cells of the same type, 0 when there is no assortative mixing, and
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574  negative when there is disassortative mixing, in which cells are typically neighbors with cells of
575  different types.
576 We calculated contact enrichment scores for the three focal cell types of tumor cells, M1
577  macrophages, and vascular endothelial cells and each non-focal cell type. Following a procedure
578  used in prior work (16,30,31), the cell type labels of all cells other than those of the focal cell
579  types were randomized 1000 times. After each shuffle, the number of times that the focal cell
580  type was a neighbor of each non-focal cell type in the spatial network is recorded. These counts
581  represent a null distribution for each non-focal cell type which is then compared to the observed
582  number of contacts, and the z-score is recorded as the contact enrichment score. A negative
583  contact enrichment score thus indicates fewer contacts than expected at random, a contact
584  enrichment score of 0 indicates as many, and a positive contact enrichment score indicates more
585  contacts than expected at random. When a cell type was missing from a sample, we recorded the
586  mean region, contact enrichment and assortativity values as 0 and the median nearest neighbor
587  distances as “NA” for features related to that cell type for the sample. We also report results for
588  both the Cox regression and random forest analyses in the supplementary material when
589  recording these values all as “NA” (See Note S1, File D8, Fig. S16-18).
590  Statistical analysis
591 We fit Cox proportional hazards regression models (32) to OS and PFS outcomes using
592  the coxph function from the survival package (version 3.5-5) in R (version 4.3.1). Univariate
593  regressions were performed with each of the 216 clinical/immunohistochemical, composition,
594  spatial, and network features treated as individual covariates. All covariates except BRCA
595  Mutation and age were z-score normalized before analysis so that coefficients were comparable

596  across different feature scales and any rows with NA values were excluded. A covariate was
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597  considered significant if it had a p-value of under 0.05. In the Supplementary Materials (File D5)
598  we report the number of samples considered for each regression, the number of relevant events
599  considered in the time to event analysis (death or recurrence, respectively), the covariate’s
600 coefficient in the Cox proportional hazard regression, the corresponding hazard ratio, and the p-
601  value and false discovery rate adjusted p-value (33). Given the exploratory nature of this study,
602  we focused on results that were significant with non-adjusted p-values. Multivariate Cox
603  proportional hazards models were fitted using the coxphmulti function. Models with all
604  covariates found to be significant in univariate regressions for both outcome variables did not
605 converge, so we ran multivariate models with the top five features for each outcome variable,
606 ranked by p-value, both adjusted for clinical/immunohistochemical attributes and as a reduced
607  model without an adjustment for clinical/immunohistochemical attributes (Table S2, S3).
608 Predictive analysis
609 We used a random forest classification model (34) implemented in the R package
610  randomForest (version 4.7-1.1), R version 4.3.1 with default hyperparameters (see Note S2).
611  Random forests were chosen as our predictive method because they have been shown to work
612  well on high-dimensional data with a low sample size and can be used to rank features based on
613  importance scores (35).
614 We first investigated what subsets of features, based on all possible combinations of the
615  four feature categories (clinical/immunohistochemical, composition, spatial, and network
616  features), produced the highest expected out-of-sample predictive performance: We repeated 500
617  classification tasks for each of the two outcome variables and 15 models. For each of these
618 classification tasks, 70% of the samples were treated as a training set and 30% were treated as a

619 test set. Data was split randomly for each classification task using the sample.split function
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620 in the package caTools (version 1.18.2) in order to preserve the ratio between outcome labels in
621  the two sets. NA values were imputed separately in the training and test set using the
622 na.roughfix function from the randomForest package which performs median substitution
623  for numeric variables and mode substitution for factor variables. In the rare cases when a train
624  and test split were selected such that a feature was entirely NA in the test set, we did not use that
625 train-test split and instead re-drew. Predictive performance was calculated for each classification
626  task using the AUC (Area under the receiver operating characteristics curve) statistic, calculated
627  using the roc and auc functions in the pROC package, with the direction parameter set such that
628  positive samples should receive a higher predicted value (version 1.18.2). The AUC statistic was
629 chosen because of its properties of being threshold invariant, scale invariant, and use-case
630  agnostic, hence providing a useful measure by which to compare the general performance of
631  different models (36).
632 Second, we investigated an overall ranking of feature importance from the models
633  including all features. Features were ranked based on their median Gini importance across the
634 500 classification tasks. The Gini importance for a feature indicates the mean decrease in node
635 impurity caused by splitting on that feature during model training, in which higher values
636 indicate that the feature was more useful during the generation of the random forest model. The
637  Gini importance can be biased to provide higher importance values for numeric features as they
638  exhibit more potential split points (37). However, this bias would not have a strong influence on
639  our results because the BRCA mutation status is the only categorical variable in our dataset.
640 Repeating the evaluation 500 times allowed us to explore consistency and variation in the

641  ranking of the features across different train and test splits of the data, which we chose to do
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642  based on the small sample size and the expectation that many of the generated features would be
643  highly correlated.
644
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825  Fig 1. Cell segmentation and phenotyping. (A) Computational pipeline used for single-cell
826  segmentation and cellular phenotyping of the MIBI imaging data. The process starts with pixel
827  classification, where a pixel classifier distinguishes between two classes: Class I for desired

828  signals and Class II for noise and artifacts. The classifier's output produces feature representation
829  maps with pixel values scaled from 0 to 1. A pretrained single-cell segmentation model is used
830 for cell segmentation. Subsequently, marker expression within cell boundaries is quantified using

831  the Class I feature representation maps. This data is organized into a single-cell information
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38
table, with cells listed in rows and marker expression levels in columns. Finally, unsupervised
clustering algorithms utilize this single-cell information data to identify distinct cell types. (B)
tSNE representation of the marker expression data of about 160k cells from the ovarian cancer
tissue of 83 patients. Cell types were identified by clustering (represented in different colors). (C)
Average marker expression per cluster is shown for the identified cell types, with colors

indicating their corresponding cluster in the tSNE representation.
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839  Fig 2. TIME composition across samples. (A) Cell type counts across all 83 samples. (B) Cell

840  type percentages summarized across the 83 original samples, sorted by decreasing tumor cell
841  percentage. (C) Counts of the final 77 samples included in the analysis in which each of the cell

842  types were found.
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844

Fig 3. Median nearest neighbor distance (spatial) and contact enrichment (network)

features relative to three focal cell types. (A-C) Median nearest neighbor distance for each

845

other cell type to tumor cells, M1 macrophages, or vascular endothelial cells (um). (D-F) Contact

846

enrichment scores relative to tumor cells, M1 macrophages, or vascular endothelial cells for each

847

of the other cell types. Positive scores indicate more contacts than expected at random, 0 the

848

same number, and negative scores fewer contacts than expected at random. All bar plots show

849

features aggregated across samples in which the relevant cell type is found. Cell types are

850

indicated on the x-axis and the number of samples in which this cell type is found is shown in

851


https://doi.org/10.1101/2024.01.26.577350
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577350; this version posted January 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

41
852  parentheses. Samples are excluded from the features calculated relative to M1 macrophages and
853  wvascular endothelial cells respectively when samples are missing the respective focal cel 1 type.
854  In all subplots cell types are ordered based on how commonly they were found across samples in

855  descending order.


https://doi.org/10.1101/2024.01.26.577350
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577350; this version posted January 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

42
856
Assortativity Coefficients
HLADR+ A (46)
CD11b_low Neutrophils - (69)
CD11c+ epithelial | (67)
Neutrophils A (45)
CD11b+ epithelial - (51)
Non-leukocyte derived neural cells A (27)
Neuroepithelial cells (46)
Other immune A (56)
CD11c low immune - (30)
Monocytes - (56)
CD163+ cells A (74)
Dendritic cells - (23)
M1 macrophages - (74)
M2 macrophages - (24)
B cells - (43)
Unidentified A (77)
Tumor A (77)
Fibroblast (72)
Lymphatic endothelial cells A (24)
Vascular endothelial cells - (76)
CD56+CD45- (31)
NK/NKT A (46)
CD4+ T cells A (68)
CD8+ T cells - (63)
0.0 0.2 0.4 0.6 0.8 1.0
857

858  Fig 4. Assortativity coefficient (network) features. Assortativity coefficients for each cell type
859 indicating their tendency to cluster with cells of the same type rather than cells of a different
860 type, aggregated across samples including that cell type (the number of which is indicated in

861  parentheses).
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Fig 5. Univariate Cox regression results. Covariates found to be significant in Univariate Cox

regressions for (A) OS and (B) PFS outcomes. Covariates are listed in descending order by

hazard ratio. Hazard ratios are displayed with 95% confidence intervals, and a hazard ratio of 1 is

indicated with a dashed line.
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868  Fig 6. Random forest predictive performance results. (A) 15 models were trained and

869  evaluated with different combinations of four feature categories, as shown here. Predictive

870  performance results, based on the AUC statistic are displayed for the 15 models summarized
871  across 500 iterations of training and evaluation for (B) OS and (C) PFS outcomes. A red dashed

872  line is displayed at an AUC value of 0.5, which represents the cut-off above which the model

873  performs better than a random guess.
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Fig 7. Aggregate feature importance results. Gini importance scores, aggregated across 500

random forest training runs for the model including all features, sorted by median importance

score and colored by feature type for (A) OS and (B) PFS outcomes. (C-D) Top ten features by

median importance score for each outcome across 500 random forest training runs, colored by

feature type.
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