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2 

Abstract: 32 

 33 

 Despite ovarian cancer being the deadliest gynecological malignancy, there has been little 34 

change to therapeutic options and mortality rates over the last three decades. Recent studies 35 

indicate that the composition of the tumor immune microenvironment (TIME) influences patient 36 

outcomes but are limited by a lack of spatial understanding. We performed multiplexed ion beam 37 

imaging (MIBI) on 83 human high-grade serous carcinoma tumors — one of the largest protein-38 

based, spatially-intact, single-cell resolution tumor datasets assembled — and used statistical and 39 

machine learning approaches to connect features of the TIME spatial organization to patient 40 

outcomes. Along with traditional clinical/immunohistochemical attributes and indicators of 41 

TIME composition, we found that several features of TIME spatial organization had significant 42 

univariate correlations and/or high relative importance in high-dimensional predictive models. 43 

The top performing predictive model for patient progression-free survival (PFS) used a 44 

combination of TIME composition and spatial features. Results demonstrate the importance of 45 

spatial structure in understanding how the TIME contributes to treatment outcomes. 46 

Furthermore, the present study provides a generalizable roadmap for spatial analyses of the 47 

TIME in ovarian cancer research.  48 
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Main Text: 49 

INTRODUCTION 50 

High grade serous carcinoma (HGSC) of the ovary, fallopian tube, and peritoneum is the 51 

gynecologic malignancy with the highest mortality rate (1,2). Over the last three decades there 52 

has been little improvement in the survival rate for patients diagnosed with HGSC, due in part to 53 

limited therapeutic options beyond chemotherapy, poor early detection rates, and a limited 54 

understanding of both the pathogenesis and the role of the tumor microenvironment. To further 55 

understand the drivers of HGSC and therapy response, several studies have examined patients 56 

who are disease-free 10 years after initial treatment (3). Long-term survival has been partially 57 

attributed to an enhanced anti-tumor immune response (4,5), indicating a clinical need to further 58 

define the tumor immune microenvironment (TIME) and elucidate its influence on patient 59 

outcomes.  60 

Although HGSC often has a high degree of immune infiltrates, including macrophages 61 

that can compose up to 50% of all immune cells in the TIME (6), immune therapies have had 62 

limited impact on improving outcomes for individuals with HGSC (7). Prior studies of the 63 

HGSC TIME have discovered that selective immune cell infiltration often correlates with 64 

improved patient outcomes. Specifically, infiltration of CD3+ T cells and CD19+ B cells is 65 

associated with an average 62-month and 6-month survival benefit, respectively (8,9). In 66 

contrast, an increased density of CD163+ tumor associated macrophages within the TIME 67 

correlates with worse progression free survival (PFS) (10). Recently, spatial transcriptomics have 68 

proven to be a powerful tool to characterize the architecture of HGSC tumors, but these studies 69 

are currently performed with a limited spatial resolution (i.e., not single cell). These studies are 70 

also limited by their dependence on RNA expression (11–13). On the other hand, single cell 71 
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sequencing of HGSC tumors provides significantly improved resolution of the TIME but is 72 

limited by the lack of associated spatial context (14). Recent studies have demonstrated that, 73 

beyond TIME composition, the spatial organization of the TIME, including the proximity of 74 

macrophages, B cells, and CD4+ T-cells to tumor cells significantly correlates with survival 75 

outcomes (15). However, these studies relied on a limited number of proteins to characterize the 76 

TIME spatial organization and thus were lacking simultaneous cell type identification, and the 77 

associations were not validated with modern large predictive models. Research in other types of 78 

cancer, such as melanoma, has shown that spatial features derived from single-cell image data 79 

are associated with treatment response (16). 80 

In this study, we determined the prognostic power of the TIME’s spatial organization in 81 

explaining and predicting patient outcomes. Towards this end, we examined formalin-fixed 82 

paraffin-embedded (FFPE) tissue samples from 83 HGSC tumors from patients diagnosed with 83 

high grade serous carcinoma of the ovary, fallopian tube, and peritoneum with known outcomes 84 

with a multiplexed ion beam imaging (MIBI) system (17) and identified over 160,000 cells 85 

across 23 cell types. The resulting data set is one of the largest protein-based spatially intact, 86 

single cell analysis of any tumor type. Using survival and recurrence outcomes as an endpoint for 87 

77 (69 primary and 8 recurrent) of the samples that met the inclusion criteria to produce spatial 88 

features, we performed modeling of 6 known clinical/immunohistochemical features (e.g., 89 

BRCA-status), 24 TIME composition features, 69 TIME spatial features, and 117 TIME (spatial) 90 

network features to assess their correlation with and relative importance for predicting patient 91 

outcomes. We found significant univariate correlations and high relative importance in high-92 

dimensional predictive models for several features encoding TIME spatial organization. While 93 

we were unable to reliably predict out-of-sample overall survival (OS) outcomes with these 94 
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features, we consistently predicted out-of-sample PFS, with the best model on average using a 95 

combination of features of the TIME composition and spatial organization. We demonstrate how 96 

moving beyond TIME composition to encode and assess features of TIME spatial organization, 97 

combined with a modern machine learning approach, can be used to improve hypothesis 98 

generation and testing to identify clinically relevant parameters for improving HGSC patient 99 

care.  100 

 101 

RESULTS 102 

Multiplexed imaging, cell segmentation, and phenotyping 103 

We performed multiplexed imaging using a custom MIBI-TOF instrument (17) to 104 

produce a total of 83 images identifying 26 proteins (File D1), which were processed using 105 

Ionpath’s MIBI/O software and corrected (Table S1) and denoised (File D2). Multiplexed 106 

imaging data were preprocessed to remove noise and artifacts as described previously (26) prior 107 

to single-cell segmentation. In this preprocessing step, we used supervised pixel classification to 108 

generate a feature representation map for each image (Fig. 1A). We then applied a widely used 109 

pre-trained model (27) to perform whole-cell segmentation. This process identified about 110 

160,000 cells with each FOV containing an average of ~1934 single cells (s.d=556). The 111 

unsupervised clustering algorithm FlowSOM (28) was then employed, identifying 23 unique cell 112 

clusters (Fig. 1B,C, Fig. 2A). The cell type identity of each cluster was determined by comparing 113 

relative phenotypic marker signal intensities across clusters. 114 

Generating TIME composition features 115 

We first examined the TIME composition of the samples in terms of the relative 116 

frequency of cell types. This composition spanned 24 features of the samples exclusive of spatial 117 
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organization, comprising 23 cell types and the population of unidentified cells. We observed 118 

substantial variation in cell type frequencies across samples (Fig.2B). Tumor cells were the most 119 

prevalent cell type, representing on average 47.8% of the cells in each sample (range 0% to 120 

91.6%). The next most common cell types on average were neuroepithelial cells (mean 6.4%, 121 

range 0% to 61.5%; vs. tumor cell percentage, Pearson correlation coefficient r=-0.328, false 122 

discovery rate adjusted two-sided p=0.012). All other cell types varied from 0% to 3.3% of the 123 

cells on average, though these percentages could vary dramatically between samples, often in 124 

relation to tumor cell percentage. Other cell types with false discovery rate adjusted significant 125 

correlation coefficients with tumor cell percentages were CD8+ T cells (r=-0.311, p=0.013), 126 

CD4+ T cells  (r=-0.379, p<0.001), NK/NKT cells  (r=-0.303, p=0.014), CD56+CD45- cells (r=-127 

0.401, p<0.001), vascular endothelial cells (r=-0.29, p=0.018), B cells  (r=-0.339, p=0.009), 128 

monocytes (r=-0.288, p=0.018), CD11clow immune cells (r=-0.28, p=0.021), neutrophils  129 

 (r=-0.257, p=0.036), and CD11c+ epithelial cells (r=0.328, p=0.009). All other cell types did 130 

not have significant correlations (File D3). Some cell types such as dendritic cells (DC) and 131 

CD11c
low

 immune cells were always rare, if present in a sample. 132 

We excluded some samples from further analysis based on cell type percentages and two 133 

exclusion criteria (Fig. S1). Unidentified cells represented on average 16.7% of the cells in each 134 

sample (range 0.5% to 92.6%; r=-0.498, p<0.001). Samples 26 and 45 were excluded because 135 

they were outliers with unidentified cell percentages over 65%. Samples 27 and 29 were 136 

excluded because they had no identified tumor cells (sample 45 also met this exclusion criteria). 137 

We determined that samples with a high percentage of unidentified cells or no identified tumor 138 

cells were unable to produce spatial features about the interactions between cells of different 139 

types, and in particular interactions with tumor cells. In the two cases in which there were two 140 
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samples from the same patient, we chose to keep the sample with a lower unidentified cell 141 

percentage in the final analysis, thus excluding samples 19 and 35. This choice ensured that our 142 

final dataset included at most one sample from each patient in the analysis linking generated 143 

features to patient outcomes. In total, we excluded 6 samples from the final analysis, leading to a 144 

final dataset of 77 samples.  145 

Most cell types were not represented across all images in the final dataset (Fig. 2C). 146 

Tumor cells were identified in every sample, and vascular endothelial cells, M1 macrophages, 147 

CD163+ cells, and Fibroblast cells were identified in almost every sample. Some cell types were 148 

rarer, particularly M2 macrophages, non-leukocyte derived neural cells, lymphatic endothelial 149 

cells, and dendritic cells were identified in fewer than half of the samples.  150 

Generating spatial features of the TIME based on nearest neighbor distances 151 

For each sample in the final dataset, we generated a set of 69 features that characterize 152 

each sample’s spatial structure, following the approach from Moldoveanu et al. (2022) (16). 153 

First, we generated the median Euclidean distance from three distinct cell types (“focal cell 154 

types”) that have been reported to be important in the HGSC TIME (tumor cells, M1 155 

macrophages, and vascular endothelial cells) in each sample to their nearest neighbors of each 156 

other cell type. While there have been few studies interrogating the spatial features of the TIME, 157 

previous work indicates that the spatial proximity between cell types correlates with HGSC 158 

survival outcomes (15). Previous results on composition (10,38,39), led us to focus on M1 159 

macrophages and vascular endothelial cells as focal cell types for generating spatial and network 160 

features along with tumor cells in our study. Vascular endothelial cells and M1 macrophages 161 

were also both detected in nearly all (98%, only missing in one sample each respectively) 162 

samples. 163 
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Tumor cells, vascular endothelial cells, M1 macrophages, CD163+ cells, and fibroblasts, 164 

which were some of the most common cell types across samples, were closer (average median 165 

nearest neighbor distance under 90 μm) than other cell types to all three focal cell types (Fig.3A-166 

C). In comparison, the cell types that were in fewer samples (e.g., M2 macrophages, non-167 

leukocyte derived neural cells, lymphatic endothelial cells, dendritic cells) were found on 168 

average further away from the three focal cell types. B cells had the highest mean nearest 169 

neighbor distance across samples to all three focal cell types (197.2 μm to Tumor cells, 190.4 μm 170 

to M1 macrophages, and 174.2 μm to vascular endothelial cells, respectively).  171 

Generating features of the TIME based on spatial network representations 172 

We next created spatial network representations of the samples by connecting spatially 173 

proximate cells using Delaunay triangulation and then trimming edges that were above a 174 

threshold of 50 pixels (~24.4 μm) (Fig. S2A-C). Cells were thus found 15-50 pixels (~7.3-24.4  175 

μm) away from their spatial neighbors in the networks, with some variation in the median 176 

distances between spatial network neighbors based on their cell type (Fig. S3). Using these 177 

spatial network representations, we generated 117 TIME network features for each sample. The 178 

first subset of these features represented the mean size of connected regions of each cell type in 179 

each sample (Fig. S2D). These spatially connected regions in the TIME may indicate the 180 

existence of spatially extended structures of a single cell type (which may indicate the level of 181 

tumor infiltration, per Keren et al. 2018 (30)). Tumor cells were most often found in large, 182 

connected regions with 50% located in regions of 1071 cells or greater. Neuroepithelial cells 183 

were also found in relatively large, connected regions, with 50% found in regions of 226 cells or 184 

greater. Cells of all other types were most often found in relatively small regions ranging from 1 185 

to 14 cells (Fig. S4A). Most regions of any cell type were only 1 or 2 cells large. The largest 186 
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maximum region sizes were for tumor cells (2190 cells), Neuroepithelial cells (1288 cells), 187 

CD11b+ epithelial cells (349 cells), and CD4+ T cells (202 cells), while all other cell types had 188 

maximum region sizes under 200 cells (Fig. S4B). 189 

We used the spatial network representations to compute contact enrichment scores, 190 

following prior work (30) (16) (31) to quantify the extent to which network-neighbors of focal 191 

cell types might differ from what should be expected at random. These scores capture similar 192 

proximity information as the median nearest neighbor distance features, but control for the 193 

proportion of cells of each type by keeping these proportions fixed during computation. 194 

Moreover, these scores quantify direct interactions between cell types. 195 

Vascular endothelial cells, fibroblasts, and CD56+CD45- cells had fewer contacts with 196 

tumor cells than expected based on random sampling (null expectations), whereas CD11c+ 197 

epithelial cells, CD11b+ epithelial cells, and neuroepithelial cells often had more contacts than 198 

expected. Most other cell types varied across samples with many contact enrichment scores close 199 

to 0,  and thus matching null expectations (Fig. 3D). Most of the cell types showed slightly more 200 

contacts with M1 macrophages than expected at random (contact enrichment scores > 0), with 201 

the exception of tumor cells and neuroepithelial cells, which tended to have fewer (contact 202 

enrichment scores < 0) and other immune cells, B cells, NK/NKT cells, CD56+CD45- cells, non-203 

leukocyte derived neural cells, and dendritic cells which tended to have contact enrichment 204 

scores with M1 macrophages close to 0 (Fig. 3E). Contact enrichment scores with vascular 205 

endothelial cells were also slightly positive for most cell types and negative for tumor cells. 206 

Fibroblasts had more contacts with vascular endothelial cells than expected at random and cell 207 

types with slightly negative or varying vascular endothelial contact enrichment scores included 208 
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CD11c+ epithelial cells, neuroepithelial cells, CD56+CD45- cells, and lymphatic endothelial 209 

cells (Fig.3F).  210 

Finally, we generated assortativity coefficients from the spatial networks, which measure 211 

the extent to which cells tend to be network neighbors with cells of the same type as opposed to 212 

neighbors of any other type. These features capture similar information about large-scale 213 

structure and tumor infiltration as the mean region size, but better account for random variation. 214 

Tumor cells had the highest mean assortativity coefficient (0.37). We did not observe any cells 215 

exhibiting a negative assortativity coefficient (disassortative mixing), in which cells of a given 216 

cell type would be less likely to be network neighbors with same-type cells and more likely to be 217 

neighbors of different-type cells. We did, however, see large variation across samples in the 218 

magnitude of the assortativity coefficient for many cell types. For instance, the tumor cells 219 

displayed a large range of assortativity coefficients, which may indicate that the tumors in some 220 

samples were more infiltrated by other cells (Fig. 4).  221 

Linking in-sample patient outcomes to TIME features in univariate and multivariate Cox 222 

regressions 223 

We next explored the relationship between generated features of the samples and two 224 

time-to-event outcomes: overall survival (OS) and progression-free survival (PFS) (Fig. S5, Fig. 225 

S6). We define OS as the time from initial diagnosis based on tissue biopsy and imaging or a 226 

serum biomarker (CA125) to death. Patient data without observation of death are censored at the 227 

last known patient visit. PFS is defined as the time from initial diagnosis to first known disease 228 

recurrence. Patient data without observation of disease recurrence are censored at death or the 229 

last known patient visit, whichever occurs first. 230 
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We performed Univariate Cox regressions for all the generated TIME composition, 231 

spatial, and network features as well as 6 additional clinical/immunohistochemical features: age, 232 

BRCA mutational status, H3K14Ace status, ATF6 status, DUSP1 status, and CBX2 status (see 233 

Fig. S7 for clinical/immunohistochemical feature distributions). All covariates except BRCA 234 

mutational status and age were first normalized (z-score scaled) so that they had a mean of 0 and 235 

a standard deviation of 1. Results limiting the dataset to only primary tumor samples can be 236 

found in Figure S8 and File D4. 237 

For OS, we found significant univariate results (p<0.05) for 25 features associated with 238 

worse prognosis and 3 features associated with better prognosis (Fig. 5A, see File D5 for full 239 

results). For PFS, we found significant results (p<0.05) for eight features associated with worse 240 

prognosis and three features associated with better prognosis (Fig. 5B, see File D5 for full 241 

results). None of the clinical/immunohistochemical attributes were significant for either outcome 242 

variable.  243 

Of the significant features, a majority were related to proximity between cells of 244 

particular types – median nearest neighbor distance features accounted for 18 of the 28 245 

significant features for OS and two of the 11 significant features for PFS. Contact enrichment 246 

features accounted for five of the 28 significant features for OS and seven of the 11 significant 247 

features for PFS. Relatively fewer of the significant features related to composition or the 248 

tendency for cells of the same type to cluster together – three composition features were 249 

significant for OS and one composition feature was significant for PFS, one mean region size 250 

feature was significant for OS, and none were significant for PFS, and one assortativity 251 

coefficient feature was significant for each of OS and PFS.  252 
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As a robustness check, we trained a set of reduced models, in the form of multivariate 253 

Cox regressions on only the top five features for each outcome variable ranked by p-value, with 254 

and without adjusting for the 6 clinical/immunohistochemical features (Table S2, S3). In the 255 

adjusted multivariate model for OS, none of the five top features remained significant, while in 256 

the reduced model the only feature that remained significant was the median NK/NKT cell 257 

nearest neighbor distance to vascular endothelial cells (Hazard Ratio [HR] =1.66, p=0.009). For 258 

PFS, the only feature that remained significant in the adjusted model was the contact enrichment 259 

score between unidentified cells and M1 macrophages (HR=1.63, p=0.010), while in the reduced 260 

model four of the top five features remained significant while the contact enrichment score 261 

between unidentified cells and M1 macrophages was not significant (HR=1.32, p=0.059). 262 

Predicting out-of-sample patient outcomes using TIME features in random forests 263 

We next evaluated how spatial and/or network features of the tumor microenvironment 264 

could be used together with clinical/immunohistochemical attributes and TIME composition 265 

features to predict patient outcomes out-of-sample. We split both OS and PFS outcome variables 266 

at their respective medians to consider a simple binary classification task of low or high OS or 267 

PFS. We grouped features into 4 categories according to their respective processes of derivation: 268 

(i) clinical/immunohistochemical, (ii) composition, (iii) spatial, and (iv) network features. We 269 

considered all 15 possible combinations of the four feature categories to evaluate what 270 

combination of information produced the best out-of-sample predictive performance (Fig. 6A).  271 

For each model, we repeatedly (N=500) trained a random forest model on a training set 272 

of 70% of the samples, randomly sampled while balancing outcome labels, and evaluated each 273 

model’s predictive accuracy by using the remaining 30% as a test set. We report average out-of-274 

sample predictive performance results, based on the AUC (Area Under the Receiver Operating 275 
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Characteristics curve) statistic (36) across these 500 evaluations. A value of AUC=0.5 indicates a 276 

classification that performs no better or worse than a random guess, while an AUC=1 indicates 277 

perfect performance. 278 

Across these predictive models, we found better-than-random performance on average, 279 

with AUC>0.5 for PFS but not for OS (Fig. 6B, C, Table S4). All models for PFS achieved mean 280 

AUC values over 0.6. The model that best predicted PFS was model eight, with AUC 0.711 ± 281 

0.10 (mean ± stddev) based on combining composition and spatial features. This performance 282 

was followed closely by model 11 (0.707 ± 0.09) and model 3 (0.703 ± 0.08), which used only 283 

spatial and a combination of clinical/immunohistochemical, composition, and spatial features, 284 

respectively. Models containing network features performed slightly worse (models 4, 7, 9, 10, 285 

12, 13, 14, 15; average AUC= 0.668±0.03) than models with clinical/immunohistochemical 286 

features (models 1, 5, 6, 7, 11, 12, 13, 15; average AUC=0.678±0.03), composition features 287 

(models 2, 5, 8, 9, 11, 12, 14, 15, average AUC=0.690), and spatial features (models 3, 6, 8, 10, 288 

11, 13, 14, 15; average AUC=0.698±0.01). The model containing all features (model 15) 289 

achieved an AUC of 0.697 ± 0.09. All the models predicting OS achieved mean AUC<0.5, 290 

indicating that on average the models did not outperform a random guess, i.e., they predicted in 291 

the incorrect direction (Fig. 5B). Similar performance results were found for models trained only 292 

on primary tumor samples (n=69), although composition features were relatively more helpful in 293 

predicting PFS, such that the top three models were model five (0.729 ± 0.09), model two (0.719 294 

± 0.09), and model eight (0.714 ± 0.09) (Fig. S9, Table S5). 295 

Using model 15, which was trained on all four feature categories, we generated 296 

hypotheses of which particular TIME composition, spatial, and network features were relatively 297 

more useful for predicting OS and PFS patient outcomes. We accomplished this goal by 298 
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calculating and comparing the Gini importance scores (37) for each feature in model 15. We note 299 

that importance scores do not indicate the direction of a feature’s relationship with a patient’s 300 

outcome, and instead only indicate its relative utility in predicting the outcome value. We found 301 

evidence for a subset of features, spanning all four categories, that were relatively more 302 

important for predicting patient outcomes (Fig. 7A,B). Feature importance results limiting the 303 

dataset to only primary tumor samples can be found in Figure S10 and File D6. 304 

Ranking features by their median Gini importance score across the 500 evaluations, we 305 

found that the top ten features for predicting OS included seven contact enrichment network 306 

features, two spatial features, and one clinical/immunohistochemical feature: (i) the contact 307 

enrichment score between CD8+ T cells and tumor cells, (ii) the contact enrichment score 308 

between CD163+ cells and tumor cells, (iii) median monocyte cell nearest neighbor distance to 309 

tumor cells, (iv) median CD11c+ epithelial cell nearest neighbor distance to tumor cells, (v) the 310 

contact enrichment score between NK/NKT cells and vascular endothelial cells, (vi) the contact 311 

enrichment score between CD11b+ epithelial cells and M1 macrophages, (vii) the contact 312 

enrichment score between other immune cells and tumor cells, (viii) the contact enrichment score 313 

between CD11c+ epithelial cells and vascular endothelial cells, (ix) CBX2 status, and (x) the 314 

contact enrichment score between unidentified cells and M1 macrophages (Fig. 7C, File D7). 315 

The contact enrichment score between CD8+ T cells and tumor cells were distinguished by a 316 

higher median feature importance score.  317 

We found that the top ten features for predicting PFS included one contact enrichment 318 

network feature, one mean region size network feature, five spatial features, and three 319 

composition features: (i) median vascular endothelial cell nearest neighbor distance to tumor 320 

cells, (ii) the contact enrichment score between unidentified cells and M1 macrophages, (iii) 321 
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median vascular endothelial cell nearest neighbor distance to M1 macrophages, (iv) vascular 322 

endothelial cell proportion, (v) median B cell nearest neighbor distance to vascular endothelial 323 

cells, (vi) CD4+ T cell proportion, (vii) median CD163+ cell nearest neighbor distance to tumor 324 

cells, (viii) M1 macrophage proportion, (ix) median CD11c+ epithelial cell nearest neighbor 325 

distance to tumor cells, and (x) the CD4+ T cell mean region size (Fig. 7D,  File D7). In 326 

particular, for PFS the median vascular endothelial cell nearest neighbor distance to tumor cells 327 

was consistently ranked as more important across the iterations. 328 

In alignment with the in-sample Cox regression results, we found that most of the top ten 329 

most important features for predicting out-of-sample patient outcomes (nine for OS and six for 330 

PFS) were either median nearest neighbor distances or spatial network contact enrichment 331 

scores, and thus related to the spatial proximity between cell types, and in general, features 332 

related to spatial proximity were more important (Fig. S11, Fig. S12).  333 

Results related to T cell, macrophage, B cell, and vascular endothelial cell spatial 334 

organization 335 

Previous work has indicated that the presence of intratumoral T cells and the presence of 336 

T cells in ascites have been shown to correlate with better patient prognosis (8,15,40–42). High 337 

CD4+ T cell macrophage interaction has also been shown to significantly correlate with better 338 

prognosis when adjusted for clinical/immunohistochemical covariates (15). In our results, 339 

patients with NK/NKT and CD4+ T cells closer to M1 macrophages and tumor cells and 340 

NK/NKT cells closer to vascular endothelial cells had better OS, and the contact enrichment 341 

score between CD8+ T cells and tumor cells was the most important feature for predicting OS. 342 

For PFS, the same features were not significantly correlated with prognosis, though NK/NKT 343 

cell M1 median nearest neighbor distance was significantly correlated with PFS for only primary 344 
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tumor samples (HR=1.43, p=0.038). We also saw a significant correlation for CD8+ T cell 345 

assortativity (HR 1.34, p=0.034, not significant for only primary tumor samples), and the CD4+ 346 

T cell mean region size was chosen as an important feature for the random forest predicting PFS 347 

and was significantly correlated with PFS for only the primary tumor samples (HR 0.73, 348 

p=0.046), indicating that T cell clustering patterns might have been more important for 349 

predicting PFS than T cell spatial proximity features.  350 

Macrophages compose up to 50% of all immune cells in the TIME and are a highly 351 

plastic cell type (6). As opposed to M2-like macrophages, M1-like macrophages are proposed to 352 

be anti-tumorigenic and aid the adaptive immune cells in mounting an immune response (43). 353 

The M1/M2 ratio of macrophages in the ovarian cancer TIME is prognostic for overall and 354 

progression-free survival (10,38,44). For macrophages, our significant results all were related to 355 

M1 macrophages rather than related to M2 macrophages. We found that higher median M1 356 

macrophage nearest neighbor distance to tumor cells (HR 1.25, p=0.039) or vascular endothelial 357 

cells (HR=1.34, p=0.021, not significant for only primary tumor samples) were significantly 358 

correlated with worse OS. Median vascular endothelial cell nearest neighbor distance to M1 359 

macrophages was also chosen as an important feature by the random forest for predicting PFS.  360 

We found, in alignment with previous results (15) that a higher contact enrichment score 361 

between B cell and M1 macrophages was significantly correlated with both better OS 362 

(HR=0.696, p=0.011) and PFS (HR=0.73, p=0.039), and that a larger median B cell nearest 363 

neighbor distance to M1 macrophages was significantly correlated with worse OS (HR=1.40, 364 

p=0.016, not significant for only primary tumor samples). Unlike in Steinhart et al. 2021 (15) we 365 

differentiated between M1 and M2 macrophages, replicating this result for the former and thus 366 

adding further cell type specificity to these findings. These findings highlight that interaction 367 
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between B cells and M1 macrophages may lead to a better antitumor immune response after 368 

chemotherapy treatment potentially through increased macrophage-mediated antigen 369 

presentation to the B cells. We generally observed that B cells being further from M1 370 

macrophages, vascular endothelial cells, and tumor cells corresponded to worse outcomes - 371 

higher median B cell nearest neighbor distance to tumor cells (HR=1.42, p=0.008) or vascular 372 

endothelial cells (HR=1.33, p=0.042, not significant for only primary tumor samples) also 373 

significantly correlated with worse OS, and median B cell nearest neighbor distance to vascular 374 

endothelial cells was also significantly correlated with worse PFS (HR=1.35, p=0.030) and was 375 

chosen as an important feature for predicting PFS.  376 

A higher density of microvessels in the TIME has also previously been correlated with 377 

worse progression-free survival (39), and anti-angiogenic therapies (e.g., anti-VEGF) are a 378 

standard of care for ovarian cancer. In our results, OS was significantly correlated (HR=1.23, 379 

p=0.073) with the median nearest neighbor distance between vascular endothelial cells and 380 

tumor cells, as in a higher median nearest neighbor distance between these cell types conveyed a 381 

worse OS. Median vascular endothelial cell nearest neighbor distance to tumor cells was also 382 

chosen as the most important feature for predicting PFS.  383 

 384 

DISCUSSION 385 

 The current study provides a roadmap for further hypothesis generation and evaluation in 386 

ovarian cancer research, opening a range of possible directions for future work investigating the 387 

mechanisms by which TIME spatial organization drives clinical and biological differences.  388 

Our results reinforce the importance of considering the spatial structure of the TIME to 389 

understand and predict HGSC disease progression and outcomes. We show that features 390 
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encoding the spatial and network organization of the TIME help predict patient outcomes, and 391 

we find that the best predictive model for PFS includes a combination of TIME composition and 392 

spatial features. For example, we found several results related to CD163+ cells, e.g., higher 393 

median CD163+ cell nearest neighbor distance to M1 macrophages correlated with worse OS 394 

(HR=1.31, p=0.022) and higher median CD163+ cell nearest neighbor distance to tumor cells 395 

correlated with worse PFS (HR=1.26, p=0.042) and was chosen as an important feature for 396 

predicting PFS. CD163 is a scavenger receptor, and its expression is largely restricted to 397 

myeloid-derived cells, specifically monocytes and macrophages – it is often upregulated in 398 

response to inflammation and is associated with tumor promoting macrophages (45). While 399 

CD163+ cells in the ovarian TIME are associated with worse prognosis (10,46,47), our findings 400 

show a spatial and context dependency on CD163-mediated activities. Therapeutically, CD163 401 

targeting strategies (e.g., OR2805) have shown to be effective in relieving immune suppression 402 

and are therefore clinically evaluated in a trial for solid tumors (48), thus representing an 403 

opportunity to target the robust HGSC TIME-associated immune suppressive macrophages to 404 

potentially improve anti-tumor immune surveillance (49,50). 405 

While our results partially align with previous studies, for example in the finding for B 406 

cell-M1 macrophage interactions, we did not achieve significance in univariate correlations to 407 

patient outcomes for T cell and macrophage proportions as expected. While we did find Hazard 408 

Ratio estimates in the expected direction (Hazard Ratio estimates for infiltration by all T cell 409 

populations and M1 macrophages were <1), our results were not significant. Notably, increased 410 

CD8+ T cells conveyed a Hazard Ratio of 0.74 (p=0.059) and CD8+ T cell proportion (HR 0.68, 411 

p=0.035) and CD4+ T cell proportion (HR 0.58, p=0.02) were significantly correlated with 412 

improved OS for only the primary tumor samples. The vascular endothelial cell proportion, M1 413 
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macrophage proportion, and CD4+ T cell proportion were also chosen by the random forest as 414 

important features for predicting PFS. We emphasize the importance of differences in the 415 

definitions of cell types when comparing our results with previous works. For example, prior 416 

literature has suggested that M2 macrophages are typically more prevalent than M1 macrophages 417 

in HGSC (51), which contrasts with our results (Fig. 2A). However, if we had included CD163+ 418 

cells in the M2 macrophage cluster (52,53), then the M2 macrophage count would indeed be 419 

higher than the M1 macrophage count alone and present findings in line with the aforementioned 420 

study. An explanation for differences with previous studies might be due to differences in cell 421 

clustering and phenotyping, pointing to the need for further refinement of consistent markers, 422 

particularly so that such results can become relevant in clinical application. 423 

Limitations of the imaging technology used in this study affect the significance of our 424 

findings. In particular, the FOV size of 500 μm at single-cell resolution might still be a limiting 425 

factor for the comprehensive documentation of the clinically relevant spatial organization in the 426 

TIME. Despite staining with antibodies to 26 proteins, an average of 14% of cells remained 427 

unidentified in the 77 samples included in our final analysis, due to them not expressing any of 428 

the phenotypic markers. The spatial organization of the TIME may be better delineated in a more 429 

comprehensive higher parameter analysis tailored to identification of cells in HGSC. For 430 

example, future work might additionally use functional markers to further characterize CD163+ 431 

cells. In our analyses we treated the set of unidentified cells as a population and found that they 432 

contributed to significant interactions, highlighting an opportunity for future research. For 433 

example, the contact enrichment score between unidentified cells and M1 macrophages was 434 

significantly associated with worse PFS (HR=1.41, p=0.01) and chosen as one of the most 435 

important features for predicting both OS and PFS.  436 
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Our study investigated the relative importance of different types and combinations of 437 

clinical/immunohistochemical and TIME features in modeling patient outcomes before treatment 438 

via both feature importance values within a random forest model for out-of-sample prediction 439 

and coefficient values within Cox regressions on in-sample data. While one tumor sample was 440 

from 1996, and aspects of clinical management have improved over the time period during 441 

which the samples were generated (e.g., increased testing for BRCA mutation), we assume that 442 

better prognosis in this dataset largely is due to differential response to a standard of care 443 

treatment, which has not changed substantially since 1996. Cox regressions evaluated on in-444 

sample data can be used to describe observed patterns, but do not provide results about out-of-445 

sample predictive performance relevant for generalizing our results to new patients in clinical 446 

contexts. We also primarily report results from univariate analyses which only consider features 447 

in isolation and multivariate Cox regressions with all significant features did not converge. Due 448 

to the exploratory nature of the study, we report non-adjusted p-values, and we found no 449 

significant univariate correlations with false discovery rate adjusted p-values (33). 450 

Although random forests are a popular choice in predictive modeling, in part because of 451 

their built-in regularization controls for overfitting and their strong interpretability (34), all 452 

machine learning models are potentially vulnerable to overfitting. In our analysis, we did not 453 

observe substantially better-than-random out of sample predictive performance on patient OS on 454 

average, indicating that the features chosen as relatively important for predicting OS might have 455 

been used by the model to overfit (i.e., learn complex rules to fit to the training dataset that do 456 

not generalize to predictive performance on unseen data), and thus might be considered with 457 

more skepticism than those chosen as relatively important for predicting PFS. We took care to 458 

avoid cases in which the data used to evaluate or test the model’s accuracy was not fully 459 
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independent of the data used to train the model, for example by imputing NA values separately 460 

in the train and test sets, which is one cause of overfitting. At the same time, our training data 461 

were derived from 77 of patients whose corresponding feature sets may not be fully 462 

representative of the underlying biology, implying that the reported predictive accuracies should 463 

be interpreted cautiously, and more weight should be placed on the inference that some features 464 

are relatively more important than others in the prediction of patient outcomes. 465 

In comparing categories of features based on their respective processes of derivation, we 466 

found that models including features derived from spatial network representations of the TIME 467 

performed slightly worse. However, our results do support the continued use of spatial networks 468 

in quantifying and evaluating the TIME. Network features were the largest and most diverse 469 

category of features we evaluated (N=117), and many of them were irrelevant for predicting 470 

patient outcomes, as indicated by low Gini importance scores, thus likely reducing predictive 471 

performance for the network feature category as a whole by introducing noise. However, feature 472 

importance evaluations indicate that a subset of these network features were among some of the 473 

most important features overall for prediction: in particular, the contact enrichment features 474 

encoding information about the proximity between cell types were generally ranked as more 475 

important than mean region size or assortativity features, which encode cell clustering patterns 476 

(Fig. S11, Fig. S12), mirroring a similar finding in the in-sample Cox regression results. Further 477 

development and refinement of features derived from spatial network representations of the 478 

TIME could potentially improve the development of useful markers. 479 

Many of the features identified as important for patient outcome prediction involved the 480 

spatial relationship between cells other than tumor cells. While not surprising, this finding 481 

strongly emphasizes the importance of investigating cell-cell interactions throughout the TIME. 482 
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Two overarching goals of such studies would be to (i) identify key cell types that can be directly 483 

addressed with targeted therapies, and (ii) to develop methods that more generally help to 484 

characterize the TIME prior to patient treatment. For instance, further studies might investigate 485 

how the spatial organization of the TIME differs between tumor sites within the same patient, 486 

and whether this can drive differential response to treatment between tumor sites (54). 487 

Additionally, future work could build on previous studies investigating TIME changes with 488 

chemotherapy treatment (55,56) to investigate how the spatial organization of the TIME changes 489 

with chemotherapy. Those goals aim to improve individualized patient diagnosis and care while 490 

at the same time enhancing our understanding of more general pathways of cancer development 491 

and progression. 492 

 493 

MATERIALS AND METHODS 494 

Study design 495 

We procured formalin-fixed paraffin-embedded tumor samples from patients diagnosed 496 

with HGSC of the ovary, fallopian tube, and peritoneum under the University of Colorado’s IRB 497 

Protocol, COMIRB #17-7788. The tumor samples were examined by a Gynecologic Pathologist 498 

(Dr. Miriam Post) and viable tumor areas were selected for generation of the tissue microarray. 499 

The total number of tumors on the tissue microarray was 133, which include primary and 500 

recurrent HGSC tumors. Further details of the tissue microarray can be found in Watson et al. 501 

2019 (18), Jordan et al. 2020 (19), and McMellen et al. 2023 (20). Multiplexed ion beam 502 

imaging was performed on 83 tumor specimens. All samples were from patients with cancer of 503 

ovary, fallopian tube, and peritoneum diagnosed at a similar stage (IIIC). For 77 (69 primary and 504 

8 recurrent) of these samples with sufficient cell type identification to produce spatial features 505 
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(see Fig. S1), we studied clinical/immunohistochemical features in combination with descriptive 506 

(composition, spatial, and network features) features derived from these samples. The study 507 

design aims to integrate features that could hypothetically be generated from a patient’s biopsy 508 

samples before treatment in an exploratory analysis to investigate what features or combination 509 

of features could be used to predict patient outcomes and motivate adjustments in treatment. 510 

Clinical/immunohistochemical features 511 

For each sample, we investigated six clinical/immunohistochemical features alone and in 512 

combination with features derived from the samples: BRCA mutational status, age, and histology 513 

scores for H3K14Ace status, ATF6 status, DUSP1 status, and CBX2 status, calculated by 514 

multiplying the intensity of the stain [0-3] by the percentage of that intensity [0-100]. 515 

BRCA mutational status was included because of its well-established risk and therapeutic 516 

implication (21,22). The remaining features were selected and included based on prior work 517 

(20,23,24) that demonstrated prognostic value. Age was included because it is a prognostication 518 

indicator in terms of OS (25). Figure S7 shows distributions of all the 519 

clinical/immunohistochemical features across the final 77 samples analyzed.  520 

MIBI-TOF imaging 521 

Imaging was performed using a custom MIBI-TOF instrument with a Xe+ primary ion 522 

source upgrade (17). A total of 83 images with a field of view size of 500×500 µm and a frame 523 

size of 1024×1024 pixels were acquired. The beam current was set to 5 nA with a dwell time of 2 524 

ms, yielding a resolution of approximately 0.5 µm per pixel. Secondary ions were accelerated 525 

into the time-of-flight mass spectrometer with a sample bias of 50 V and detected with a 526 

temporal resolution of 0.6 ns across a mass range of 1-200 m/z+. 527 

Low-level image processing 528 
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Multiplexed images were extracted and processed using Ionpath’s MIBI/O software: The 529 

image data was background- and mass-corrected with vendor-provided configuration files, see 530 

Table S1. In the next step, the image data was denoised with the filtering parameters provided in 531 

File D2. 532 

Low-level image pre-processing 533 

We adopted a custom computational pipeline developed to analyze MIBI data (26). In 534 

this framework multi-step low-level image processing is replaced with a single-step pixel 535 

classification where each pixel in an image is classified such that all categories of undesired 536 

signal are placed in a different class from the desired marker signal and continue the downstream 537 

analysis using the generated feature representation map of the marker signal.  538 

Single-cell segmentation  539 

Whole-cell segmentation was done using the pre-trained single-cell segmentation model 540 

Mesmer (27). We used the dsDNA channel for nuclear segmentation and the β-tubulin channel to 541 

guide identification of cell boundaries.  542 

Cell-type identification  543 

Single-cell data were extracted for all the cells and normalized by the cell size. To assign 544 

each cell to a lineage, we used the unsupervised clustering algorithm as implemented in 545 

FlowSOM (28) with multiple steps: first we identified the immune cells and non-immune cells 546 

using the following markers: CD45, HLA-DR, CD31, Podoplanin, Vimentin, and Keratin. Then, 547 

we used the immune markers CD3, CD4, CD8, CD20, CD68, CD56, CD11b, CD11c, CD163, 548 

DC-SIGN to identify the immune subsets (See Table S6).  549 

Spatial and network features 550 
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We calculated spatial and network features from the sample images following 551 

Moldoveanu et al. 2022 (16) using Python version 3.9.12, SciPy version 1.7.3 and NetworkX 552 

version 2.7.1. We calculated the median Euclidean distance in pixels in each sample between 553 

cells of three focal cell types: tumor cells, M1 macrophages, and vascular endothelial cells and 554 

their nearest neighbor of all other non-focal cell types. In each sample, we examined each of the 555 

focal cells of interest and then identified the nearest neighbor of each non-focal cell type using 556 

KD Trees (implemented in SciPy) and recorded the Euclidean distances. For each sample, we 557 

report the median nearest neighbor distance for each combination of non-focal cell type (listed 558 

first) and focal cell type. 559 

Spatial network representations of the samples were created by connecting spatial 560 

neighbors identified using Delaunay triangulation (implemented in SciPy) and then trimming 561 

edges that were above a threshold of 50 pixels (~24.4 μm). Results were not sensitive to using a 562 

higher threshold for trimming edges (100 pixels, ~48.8 μm, Fig. S13-15). Versions of the spatial 563 

networks were created in which neighboring cells were only connected if they were of the same 564 

cell type and connected regions of the same cell type were identified from these modified 565 

networks using the connected_components function implemented in NetworkX. The mean of 566 

the region sizes in each sample were reported for each cell type.  567 

Binary attributes were added to each cell in the spatial networks for each cell type, set to 568 

1 if the cell was of that type and 0 otherwise. Assortativity coefficients (29) were then calculated 569 

using the NetworkX function attribute_assortativity_coefficient for each of these 570 

binary cell type attributes, thus measuring to what extent cells tended to be neighbors with cells 571 

of the same type versus any other type. This value is 1 for perfect assortative mixing, in which 572 

cells are only neighbors with cells of the same type, 0 when there is no assortative mixing, and 573 
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negative when there is disassortative mixing, in which cells are typically neighbors with cells of 574 

different types.  575 

We calculated contact enrichment scores for the three focal cell types of tumor cells, M1 576 

macrophages, and vascular endothelial cells and each non-focal cell type. Following a procedure 577 

used in prior work (16,30,31), the cell type labels of all cells other than those of the focal cell 578 

types were randomized 1000 times. After each shuffle, the number of times that the focal cell 579 

type was a neighbor of each non-focal cell type in the spatial network is recorded. These counts 580 

represent a null distribution for each non-focal cell type which is then compared to the observed 581 

number of contacts, and the z-score is recorded as the contact enrichment score. A negative 582 

contact enrichment score thus indicates fewer contacts than expected at random, a contact 583 

enrichment score of 0 indicates as many, and a positive contact enrichment score indicates more 584 

contacts than expected at random. When a cell type was missing from a sample, we recorded the 585 

mean region, contact enrichment and assortativity values as 0 and the median nearest neighbor 586 

distances as “NA” for features related to that cell type for the sample. We also report results for 587 

both the Cox regression and random forest analyses in the supplementary material when 588 

recording these values all as “NA” (See Note S1, File D8, Fig. S16-18).  589 

Statistical analysis 590 

We fit Cox proportional hazards regression models (32) to OS and PFS outcomes using 591 

the coxph function from the survival package (version 3.5-5) in R (version 4.3.1). Univariate 592 

regressions were performed with each of the 216 clinical/immunohistochemical, composition, 593 

spatial, and network features treated as individual covariates. All covariates except BRCA 594 

Mutation and age were z-score normalized before analysis so that coefficients were comparable 595 

across different feature scales and any rows with NA values were excluded. A covariate was 596 
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considered significant if it had a p-value of under 0.05. In the Supplementary Materials (File D5) 597 

we report the number of samples considered for each regression, the number of relevant events 598 

considered in the time to event analysis (death or recurrence, respectively), the covariate’s 599 

coefficient in the Cox proportional hazard regression, the corresponding hazard ratio, and the p-600 

value and false discovery rate adjusted p-value (33). Given the exploratory nature of this study, 601 

we focused on results that were significant with non-adjusted p-values. Multivariate Cox 602 

proportional hazards models were fitted using the coxphmulti function. Models with all 603 

covariates found to be significant in univariate regressions for both outcome variables did not 604 

converge, so we ran multivariate models with the top five features for each outcome variable, 605 

ranked by p-value, both adjusted for clinical/immunohistochemical attributes and as a reduced 606 

model without an adjustment for clinical/immunohistochemical attributes (Table S2, S3). 607 

Predictive analysis  608 

We used a random forest classification model (34) implemented in the R package 609 

randomForest (version 4.7-1.1), R version 4.3.1 with default hyperparameters (see Note S2). 610 

Random forests were chosen as our predictive method because they have been shown to work 611 

well on high-dimensional data with a low sample size and can be used to rank features based on 612 

importance scores (35). 613 

We first investigated what subsets of features, based on all possible combinations of the 614 

four feature categories (clinical/immunohistochemical, composition, spatial, and network 615 

features), produced the highest expected out-of-sample predictive performance: We repeated 500 616 

classification tasks for each of the two outcome variables and 15 models. For each of these 617 

classification tasks, 70% of the samples were treated as a training set and 30% were treated as a 618 

test set. Data was split randomly for each classification task using the sample.split function 619 
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in the package caTools (version 1.18.2) in order to preserve the ratio between outcome labels in 620 

the two sets. NA values were imputed separately in the training and test set using the 621 

na.roughfix function from the randomForest package which performs median substitution 622 

for numeric variables and mode substitution for factor variables. In the rare cases when a train 623 

and test split were selected such that a feature was entirely NA in the test set, we did not use that 624 

train-test split and instead re-drew. Predictive performance was calculated for each classification 625 

task using the AUC (Area under the receiver operating characteristics curve) statistic, calculated 626 

using the roc and auc functions in the pROC package, with the direction parameter set such that 627 

positive samples should receive a higher predicted value (version 1.18.2). The AUC statistic was 628 

chosen because of its properties of being threshold invariant, scale invariant, and use-case 629 

agnostic, hence providing a useful measure by which to compare the general performance of 630 

different models (36).  631 

Second, we investigated an overall ranking of feature importance from the models 632 

including all features. Features were ranked based on their median Gini importance across the 633 

500 classification tasks. The Gini importance for a feature indicates the mean decrease in node 634 

impurity caused by splitting on that feature during model training, in which higher values 635 

indicate that the feature was more useful during the generation of the random forest model. The 636 

Gini importance can be biased to provide higher importance values for numeric features as they 637 

exhibit more potential split points (37). However, this bias would not have a strong influence on 638 

our results because the BRCA mutation status is the only categorical variable in our dataset. 639 

Repeating the evaluation 500 times allowed us to explore consistency and variation in the 640 

ranking of the features across different train and test splits of the data, which we chose to do 641 
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based on the small sample size and the expectation that many of the generated features would be 642 

highly correlated.  643 
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Figures 822 

 823 

 824 

Fig 1. Cell segmentation and phenotyping. (A) Computational pipeline used for single-cell 825 

segmentation and cellular phenotyping of the MIBI imaging data. The process starts with pixel 826 

classification, where a pixel classifier distinguishes between two classes: Class I for desired 827 

signals and Class II for noise and artifacts. The classifier's output produces feature representation 828 

maps with pixel values scaled from 0 to 1. A pretrained single-cell segmentation model is used 829 

for cell segmentation. Subsequently, marker expression within cell boundaries is quantified using 830 

the Class I feature representation maps. This data is organized into a single-cell information 831 
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table, with cells listed in rows and marker expression levels in columns. Finally, unsupervised 832 

clustering algorithms utilize this single-cell information data to identify distinct cell types. (B) 833 

tSNE representation of the marker expression data of about 160k cells from the ovarian cancer 834 

tissue of 83 patients. Cell types were identified by clustering (represented in different colors). (C) 835 

Average marker expression per cluster is shown for the identified cell types, with colors 836 

indicating their corresponding cluster in the tSNE representation. 837 
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 838 

Fig 2. TIME composition across samples. (A) Cell type counts across all 83 samples. (B) Cell 839 

type percentages summarized across the 83 original samples, sorted by decreasing tumor cell 840 

percentage. (C) Counts of the final 77 samples included in the analysis in which each of the cell 841 

types were found.  842 
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 843 

Fig 3. Median nearest neighbor distance (spatial) and contact enrichment (network) 844 

features relative to three focal cell types. (A-C) Median nearest neighbor distance for each 845 

other cell type to tumor cells, M1 macrophages, or vascular endothelial cells (μm). (D-F) Contact 846 

enrichment scores relative to tumor cells, M1 macrophages, or vascular endothelial cells for each 847 

of the other cell types. Positive scores indicate more contacts than expected at random, 0 the 848 

same number, and negative scores fewer contacts than expected at random. All bar plots show 849 

features aggregated across samples in which the relevant cell type is found. Cell types are 850 

indicated on the x-axis and the number of samples in which this cell type is found is shown in 851 
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parentheses. Samples are excluded from the features calculated relative to M1 macrophages and 852 

vascular endothelial cells respectively when samples are missing the respective focal cel l type. 853 

In all subplots cell types are ordered based on how commonly they were found across samples in 854 

descending order.   855 
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 856 

 857 

Fig 4. Assortativity coefficient (network) features. Assortativity coefficients for each cell type 858 

indicating their tendency to cluster with cells of the same type rather than cells of a different 859 

type, aggregated across samples including that cell type (the number of which is indicated in 860 

parentheses).  861 
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 862 

Fig 5. Univariate Cox regression results. Covariates found to be significant in Univariate Cox 863 

regressions for (A) OS and (B) PFS outcomes. Covariates are listed in descending order by 864 

hazard ratio. Hazard ratios are displayed with 95% confidence intervals, and a hazard ratio of 1 is 865 

indicated with a dashed line. 866 
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 867 

Fig 6. Random forest predictive performance results. (A) 15 models were trained and 868 

evaluated with different combinations of four feature categories, as shown here. Predictive 869 

performance results, based on the AUC statistic are displayed for the 15 models summarized 870 

across 500 iterations of training and evaluation for (B) OS and (C) PFS outcomes. A red dashed 871 

line is displayed at an AUC value of 0.5, which represents the cut-off above which the model 872 

performs better than a random guess.  873 
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 874 

Fig 7. Aggregate feature importance results. Gini importance scores, aggregated across 500 875 

random forest training runs for the model including all features, sorted by median importance 876 

score and colored by feature type for (A) OS and (B) PFS outcomes. (C-D) Top ten features by 877 

median importance score for each outcome across 500 random forest training runs, colored by 878 

feature type.  879 
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