

1 **Title: The spatial structure of the tumor immune microenvironment can
2 explain and predict patient response in high-grade serous carcinoma**

3
4 **Authors:** Lucy Van Kleunen^{*1}, Mansooreh Ahmadian², Miriam D Post³, Rebecca J Wolsky³,
5 Christian Rickert⁴, Kimberly Jordan⁴, Junxiao Hu⁵, Jennifer K. Richer³, Nicole A. Marjon⁶, Kian
6 Behbakht⁶, Matthew J. Sikora³, Benjamin G. Bitler⁶, Aaron Clauset^{*1,7,8}

7
8 **Running Title: Spatial structure of the tumor microenvironment in HGSC**
9

10 **Affiliations:**

11 ¹ Department of Computer Science, University of Colorado, Boulder, USA

12 ² Department of Biostatistics and Informatics, Colorado School of Public Health, University of
13 Colorado Anschutz Medical Campus, Aurora, CO, USA

14 ³ Department of Pathology, The University of Colorado Anschutz Medical Campus

15 ⁴ Department of Immunology and Microbiology, The University of Colorado Anschutz Medical
16 Campus

17 ⁵ Department of Pediatrics, Cancer Center Biostatistics Core, University of Colorado Anschutz
18 Medical Campus, CO, USA

19 ⁶ Department of OB/GYN, The University of Colorado Anschutz Medical Campus

20 ⁷ BioFrontiers Institute, University of Colorado, Boulder, CO, USA

21 ⁸ Santa Fe Institute, Santa Fe, NM, USA

22

23 *Corresponding authors:

24

25 Lucy Van Kleunen

26 lucy.vankleunen@colorado.edu

27

28 Aaron Clauset

29 aaron.clauset@colorado.edu

30

31 **Conflict of Interest:** The authors declare no potential conflicts of interest.

32 **Abstract:**

33

34 Despite ovarian cancer being the deadliest gynecological malignancy, there has been little
35 change to therapeutic options and mortality rates over the last three decades. Recent studies
36 indicate that the composition of the tumor immune microenvironment (TIME) influences patient
37 outcomes but are limited by a lack of spatial understanding. We performed multiplexed ion beam
38 imaging (MIBI) on 83 human high-grade serous carcinoma tumors — one of the largest protein-
39 based, spatially-intact, single-cell resolution tumor datasets assembled — and used statistical and
40 machine learning approaches to connect features of the TIME spatial organization to patient
41 outcomes. Along with traditional clinical/immunohistochemical attributes and indicators of
42 TIME composition, we found that several features of TIME spatial organization had significant
43 univariate correlations and/or high relative importance in high-dimensional predictive models.
44 The top performing predictive model for patient progression-free survival (PFS) used a
45 combination of TIME composition and spatial features. Results demonstrate the importance of
46 spatial structure in understanding how the TIME contributes to treatment outcomes.
47 Furthermore, the present study provides a generalizable roadmap for spatial analyses of the
48 TIME in ovarian cancer research.

49 **Main Text:**

50 **INTRODUCTION**

51 High grade serous carcinoma (HGSC) of the ovary, fallopian tube, and peritoneum is the
52 gynecologic malignancy with the highest mortality rate (1,2). Over the last three decades there
53 has been little improvement in the survival rate for patients diagnosed with HGSC, due in part to
54 limited therapeutic options beyond chemotherapy, poor early detection rates, and a limited
55 understanding of both the pathogenesis and the role of the tumor microenvironment. To further
56 understand the drivers of HGSC and therapy response, several studies have examined patients
57 who are disease-free 10 years after initial treatment (3). Long-term survival has been partially
58 attributed to an enhanced anti-tumor immune response (4,5), indicating a clinical need to further
59 define the tumor immune microenvironment (TIME) and elucidate its influence on patient
60 outcomes.

61 Although HGSC often has a high degree of immune infiltrates, including macrophages
62 that can compose up to 50% of all immune cells in the TIME (6), immune therapies have had
63 limited impact on improving outcomes for individuals with HGSC (7). Prior studies of the
64 HGSC TIME have discovered that selective immune cell infiltration often correlates with
65 improved patient outcomes. Specifically, infiltration of CD3+ T cells and CD19+ B cells is
66 associated with an average 62-month and 6-month survival benefit, respectively (8,9). In
67 contrast, an increased density of CD163+ tumor associated macrophages within the TIME
68 correlates with worse progression free survival (PFS) (10). Recently, spatial transcriptomics have
69 proven to be a powerful tool to characterize the architecture of HGSC tumors, but these studies
70 are currently performed with a limited spatial resolution (i.e., not single cell). These studies are
71 also limited by their dependence on RNA expression (11–13). On the other hand, single cell

72 sequencing of HGSC tumors provides significantly improved resolution of the TIME but is
73 limited by the lack of associated spatial context (14). Recent studies have demonstrated that,
74 beyond TIME composition, the spatial organization of the TIME, including the proximity of
75 macrophages, B cells, and CD4+ T-cells to tumor cells significantly correlates with survival
76 outcomes (15). However, these studies relied on a limited number of proteins to characterize the
77 TIME spatial organization and thus were lacking simultaneous cell type identification, and the
78 associations were not validated with modern large predictive models. Research in other types of
79 cancer, such as melanoma, has shown that spatial features derived from single-cell image data
80 are associated with treatment response (16).

81 In this study, we determined the prognostic power of the TIME's spatial organization in
82 explaining and predicting patient outcomes. Towards this end, we examined formalin-fixed
83 paraffin-embedded (FFPE) tissue samples from 83 HGSC tumors from patients diagnosed with
84 high grade serous carcinoma of the ovary, fallopian tube, and peritoneum with known outcomes
85 with a multiplexed ion beam imaging (MIBI) system (17) and identified over 160,000 cells
86 across 23 cell types. The resulting data set is one of the largest protein-based spatially intact,
87 single cell analysis of any tumor type. Using survival and recurrence outcomes as an endpoint for
88 77 (69 primary and 8 recurrent) of the samples that met the inclusion criteria to produce spatial
89 features, we performed modeling of 6 known clinical/immunohistochemical features (e.g.,
90 BRCA-status), 24 TIME composition features, 69 TIME spatial features, and 117 TIME (spatial)
91 network features to assess their correlation with and relative importance for predicting patient
92 outcomes. We found significant univariate correlations and high relative importance in high-
93 dimensional predictive models for several features encoding TIME spatial organization. While
94 we were unable to reliably predict out-of-sample overall survival (OS) outcomes with these

95 features, we consistently predicted out-of-sample PFS, with the best model on average using a
96 combination of features of the TIME composition and spatial organization. We demonstrate how
97 moving beyond TIME composition to encode and assess features of TIME spatial organization,
98 combined with a modern machine learning approach, can be used to improve hypothesis
99 generation and testing to identify clinically relevant parameters for improving HGSC patient
100 care.

101

102 **RESULTS**

103 **Multiplexed imaging, cell segmentation, and phenotyping**

104 We performed multiplexed imaging using a custom MIBI-TOF instrument (17) to
105 produce a total of 83 images identifying 26 proteins (File D1), which were processed using
106 Ionpath's MIBI/O software and corrected (Table S1) and denoised (File D2). Multiplexed
107 imaging data were preprocessed to remove noise and artifacts as described previously (26) prior
108 to single-cell segmentation. In this preprocessing step, we used supervised pixel classification to
109 generate a feature representation map for each image (Fig. 1A). We then applied a widely used
110 pre-trained model (27) to perform whole-cell segmentation. This process identified about
111 160,000 cells with each FOV containing an average of ~1934 single cells (s.d=556). The
112 unsupervised clustering algorithm FlowSOM (28) was then employed, identifying 23 unique cell
113 clusters (Fig. 1B,C, Fig. 2A). The cell type identity of each cluster was determined by comparing
114 relative phenotypic marker signal intensities across clusters.

115 **Generating TIME composition features**

116 We first examined the TIME composition of the samples in terms of the relative
117 frequency of cell types. This composition spanned 24 features of the samples exclusive of spatial

118 organization, comprising 23 cell types and the population of unidentified cells. We observed
119 substantial variation in cell type frequencies across samples (Fig.2B). Tumor cells were the most
120 prevalent cell type, representing on average 47.8% of the cells in each sample (range 0% to
121 91.6%). The next most common cell types on average were neuroepithelial cells (mean 6.4%,
122 range 0% to 61.5%; vs. tumor cell percentage, Pearson correlation coefficient $r=-0.328$, false
123 discovery rate adjusted two-sided $p=0.012$). All other cell types varied from 0% to 3.3% of the
124 cells on average, though these percentages could vary dramatically between samples, often in
125 relation to tumor cell percentage. Other cell types with false discovery rate adjusted significant
126 correlation coefficients with tumor cell percentages were CD8+ T cells ($r=-0.311$, $p=0.013$),
127 CD4+ T cells ($r=-0.379$, $p<0.001$), NK/NKT cells ($r=-0.303$, $p=0.014$), CD56+CD45- cells ($r=-$
128 0.401, $p<0.001$), vascular endothelial cells ($r=-0.29$, $p=0.018$), B cells ($r=-0.339$, $p=0.009$),
129 monocytes ($r=-0.288$, $p=0.018$), CD11c^{low} immune cells ($r=-0.28$, $p=0.021$), neutrophils
130 ($r=-0.257$, $p=0.036$), and CD11c+ epithelial cells ($r=0.328$, $p=0.009$). All other cell types did
131 not have significant correlations (File D3). Some cell types such as dendritic cells (DC) and
132 CD11c^{low} immune cells were always rare, if present in a sample.

133 We excluded some samples from further analysis based on cell type percentages and two
134 exclusion criteria (Fig. S1). Unidentified cells represented on average 16.7% of the cells in each
135 sample (range 0.5% to 92.6%; $r=-0.498$, $p<0.001$). Samples 26 and 45 were excluded because
136 they were outliers with unidentified cell percentages over 65%. Samples 27 and 29 were
137 excluded because they had no identified tumor cells (sample 45 also met this exclusion criteria).
138 We determined that samples with a high percentage of unidentified cells or no identified tumor
139 cells were unable to produce spatial features about the interactions between cells of different
140 types, and in particular interactions with tumor cells. In the two cases in which there were two

141 samples from the same patient, we chose to keep the sample with a lower unidentified cell
142 percentage in the final analysis, thus excluding samples 19 and 35. This choice ensured that our
143 final dataset included at most one sample from each patient in the analysis linking generated
144 features to patient outcomes. In total, we excluded 6 samples from the final analysis, leading to a
145 final dataset of 77 samples.

146 Most cell types were not represented across all images in the final dataset (Fig. 2C).

147 Tumor cells were identified in every sample, and vascular endothelial cells, M1 macrophages,
148 CD163+ cells, and Fibroblast cells were identified in almost every sample. Some cell types were
149 rarer, particularly M2 macrophages, non-leukocyte derived neural cells, lymphatic endothelial
150 cells, and dendritic cells were identified in fewer than half of the samples.

151 **Generating spatial features of the TIME based on nearest neighbor distances**

152 For each sample in the final dataset, we generated a set of 69 features that characterize
153 each sample's spatial structure, following the approach from Moldoveanu et al. (2022) (16).
154 First, we generated the median Euclidean distance from three distinct cell types ("focal cell
155 types") that have been reported to be important in the HGSC TIME (tumor cells, M1
156 macrophages, and vascular endothelial cells) in each sample to their nearest neighbors of each
157 other cell type. While there have been few studies interrogating the spatial features of the TIME,
158 previous work indicates that the spatial proximity between cell types correlates with HGSC
159 survival outcomes (15). Previous results on composition (10,38,39), led us to focus on M1
160 macrophages and vascular endothelial cells as focal cell types for generating spatial and network
161 features along with tumor cells in our study. Vascular endothelial cells and M1 macrophages
162 were also both detected in nearly all (98%, only missing in one sample each respectively)
163 samples.

164 Tumor cells, vascular endothelial cells, M1 macrophages, CD163+ cells, and fibroblasts,
165 which were some of the most common cell types across samples, were closer (average median
166 nearest neighbor distance under 90 μm) than other cell types to all three focal cell types (Fig.3A-
167 C). In comparison, the cell types that were in fewer samples (e.g., M2 macrophages, non-
168 leukocyte derived neural cells, lymphatic endothelial cells, dendritic cells) were found on
169 average further away from the three focal cell types (197.2 μm to Tumor cells, 190.4 μm
170 to M1 macrophages, and 174.2 μm to vascular endothelial cells, respectively).

172 **Generating features of the TIME based on spatial network representations**

173 We next created spatial network representations of the samples by connecting spatially
174 proximate cells using Delaunay triangulation and then trimming edges that were above a
175 threshold of 50 pixels ($\sim 24.4 \mu\text{m}$) (Fig. S2A-C). Cells were thus found 15-50 pixels ($\sim 7.3\text{-}24.4$
176 μm) away from their spatial neighbors in the networks, with some variation in the median
177 distances between spatial network neighbors based on their cell type (Fig. S3). Using these
178 spatial network representations, we generated 117 TIME network features for each sample. The
179 first subset of these features represented the mean size of connected regions of each cell type in
180 each sample (Fig. S2D). These spatially connected regions in the TIME may indicate the
181 existence of spatially extended structures of a single cell type (which may indicate the level of
182 tumor infiltration, per Keren et al. 2018 (30)). Tumor cells were most often found in large,
183 connected regions with 50% located in regions of 1071 cells or greater. Neuroepithelial cells
184 were also found in relatively large, connected regions, with 50% found in regions of 226 cells or
185 greater. Cells of all other types were most often found in relatively small regions ranging from 1
186 to 14 cells (Fig. S4A). Most regions of any cell type were only 1 or 2 cells large. The largest

187 maximum region sizes were for tumor cells (2190 cells), Neuroepithelial cells (1288 cells),
188 CD11b+ epithelial cells (349 cells), and CD4+ T cells (202 cells), while all other cell types had
189 maximum region sizes under 200 cells (Fig. S4B).

190 We used the spatial network representations to compute contact enrichment scores,
191 following prior work (30) (16) (31) to quantify the extent to which network-neighbors of focal
192 cell types might differ from what should be expected at random. These scores capture similar
193 proximity information as the median nearest neighbor distance features, but control for the
194 proportion of cells of each type by keeping these proportions fixed during computation.

195 Moreover, these scores quantify direct interactions between cell types.

196 Vascular endothelial cells, fibroblasts, and CD56+CD45- cells had fewer contacts with
197 tumor cells than expected based on random sampling (null expectations), whereas CD11c+
198 epithelial cells, CD11b+ epithelial cells, and neuroepithelial cells often had more contacts than
199 expected. Most other cell types varied across samples with many contact enrichment scores close
200 to 0, and thus matching null expectations (Fig. 3D). Most of the cell types showed slightly more
201 contacts with M1 macrophages than expected at random (contact enrichment scores > 0), with
202 the exception of tumor cells and neuroepithelial cells, which tended to have fewer (contact
203 enrichment scores < 0) and other immune cells, B cells, NK/NKT cells, CD56+CD45- cells, non-
204 leukocyte derived neural cells, and dendritic cells which tended to have contact enrichment
205 scores with M1 macrophages close to 0 (Fig. 3E). Contact enrichment scores with vascular
206 endothelial cells were also slightly positive for most cell types and negative for tumor cells.
207 Fibroblasts had more contacts with vascular endothelial cells than expected at random and cell
208 types with slightly negative or varying vascular endothelial contact enrichment scores included

209 CD11c+ epithelial cells, neuroepithelial cells, CD56+CD45- cells, and lymphatic endothelial
210 cells (Fig.3F).

211 Finally, we generated assortativity coefficients from the spatial networks, which measure
212 the extent to which cells tend to be network neighbors with cells of the same type as opposed to
213 neighbors of any other type. These features capture similar information about large-scale
214 structure and tumor infiltration as the mean region size, but better account for random variation.
215 Tumor cells had the highest mean assortativity coefficient (0.37). We did not observe any cells
216 exhibiting a negative assortativity coefficient (disassortative mixing), in which cells of a given
217 cell type would be less likely to be network neighbors with same-type cells and more likely to be
218 neighbors of different-type cells. We did, however, see large variation across samples in the
219 magnitude of the assortativity coefficient for many cell types. For instance, the tumor cells
220 displayed a large range of assortativity coefficients, which may indicate that the tumors in some
221 samples were more infiltrated by other cells (Fig. 4).

222 **Linking in-sample patient outcomes to TIME features in univariate and multivariate Cox
223 regressions**

224 We next explored the relationship between generated features of the samples and two
225 time-to-event outcomes: overall survival (OS) and progression-free survival (PFS) (Fig. S5, Fig.
226 S6). We define OS as the time from initial diagnosis based on tissue biopsy and imaging or a
227 serum biomarker (CA125) to death. Patient data without observation of death are censored at the
228 last known patient visit. PFS is defined as the time from initial diagnosis to first known disease
229 recurrence. Patient data without observation of disease recurrence are censored at death or the
230 last known patient visit, whichever occurs first.

231 We performed Univariate Cox regressions for all the generated TIME composition,
232 spatial, and network features as well as 6 additional clinical/immunohistochemical features: age,
233 BRCA mutational status, H3K14Ace status, ATF6 status, DUSP1 status, and CBX2 status (see
234 Fig. S7 for clinical/immunohistochemical feature distributions). All covariates except BRCA
235 mutational status and age were first normalized (z-score scaled) so that they had a mean of 0 and
236 a standard deviation of 1. Results limiting the dataset to only primary tumor samples can be
237 found in Figure S8 and File D4.

238 For OS, we found significant univariate results ($p < 0.05$) for 25 features associated with
239 worse prognosis and 3 features associated with better prognosis (Fig. 5A, see File D5 for full
240 results). For PFS, we found significant results ($p < 0.05$) for eight features associated with worse
241 prognosis and three features associated with better prognosis (Fig. 5B, see File D5 for full
242 results). None of the clinical/immunohistochemical attributes were significant for either outcome
243 variable.

244 Of the significant features, a majority were related to proximity between cells of
245 particular types – median nearest neighbor distance features accounted for 18 of the 28
246 significant features for OS and two of the 11 significant features for PFS. Contact enrichment
247 features accounted for five of the 28 significant features for OS and seven of the 11 significant
248 features for PFS. Relatively fewer of the significant features related to composition or the
249 tendency for cells of the same type to cluster together – three composition features were
250 significant for OS and one composition feature was significant for PFS, one mean region size
251 feature was significant for OS, and none were significant for PFS, and one assortativity
252 coefficient feature was significant for each of OS and PFS.

253 As a robustness check, we trained a set of reduced models, in the form of multivariate
254 Cox regressions on only the top five features for each outcome variable ranked by *p*-value, with
255 and without adjusting for the 6 clinical/immunohistochemical features (Table S2, S3). In the
256 adjusted multivariate model for OS, none of the five top features remained significant, while in
257 the reduced model the only feature that remained significant was the median NK/NKT cell
258 nearest neighbor distance to vascular endothelial cells (Hazard Ratio [HR] = 1.66, *p*=0.009). For
259 PFS, the only feature that remained significant in the adjusted model was the contact enrichment
260 score between unidentified cells and M1 macrophages (HR=1.63, *p*=0.010), while in the reduced
261 model four of the top five features remained significant while the contact enrichment score
262 between unidentified cells and M1 macrophages was not significant (HR=1.32, *p*=0.059).

263 **Predicting out-of-sample patient outcomes using TIME features in random forests**

264 We next evaluated how spatial and/or network features of the tumor microenvironment
265 could be used together with clinical/immunohistochemical attributes and TIME composition
266 features to predict patient outcomes out-of-sample. We split both OS and PFS outcome variables
267 at their respective medians to consider a simple binary classification task of low or high OS or
268 PFS. We grouped features into 4 categories according to their respective processes of derivation:
269 (i) clinical/immunohistochemical, (ii) composition, (iii) spatial, and (iv) network features. We
270 considered all 15 possible combinations of the four feature categories to evaluate what
271 combination of information produced the best out-of-sample predictive performance (Fig. 6A).

272 For each model, we repeatedly (N=500) trained a random forest model on a training set
273 of 70% of the samples, randomly sampled while balancing outcome labels, and evaluated each
274 model's predictive accuracy by using the remaining 30% as a test set. We report average out-of-
275 sample predictive performance results, based on the AUC (Area Under the Receiver Operating

276 Characteristics curve) statistic (36) across these 500 evaluations. A value of AUC=0.5 indicates a
277 classification that performs no better or worse than a random guess, while an AUC=1 indicates
278 perfect performance.

279 Across these predictive models, we found better-than-random performance on average,
280 with AUC>0.5 for PFS but not for OS (Fig. 6B, C, Table S4). All models for PFS achieved mean
281 AUC values over 0.6. The model that best predicted PFS was model eight, with AUC $0.711 \pm$
282 0.10 (mean \pm stddev) based on combining composition and spatial features. This performance
283 was followed closely by model 11 (0.707 ± 0.09) and model 3 (0.703 ± 0.08), which used only
284 spatial and a combination of clinical/immunohistochemical, composition, and spatial features,
285 respectively. Models containing network features performed slightly worse (models 4, 7, 9, 10,
286 12, 13, 14, 15; average AUC= 0.668 ± 0.03) than models with clinical/immunohistochemical
287 features (models 1, 5, 6, 7, 11, 12, 13, 15; average AUC= 0.678 ± 0.03), composition features
288 (models 2, 5, 8, 9, 11, 12, 14, 15, average AUC= 0.690), and spatial features (models 3, 6, 8, 10,
289 11, 13, 14, 15; average AUC= 0.698 ± 0.01). The model containing all features (model 15)
290 achieved an AUC of 0.697 ± 0.09 . All the models predicting OS achieved mean AUC<0.5,
291 indicating that on average the models did not outperform a random guess, i.e., they predicted in
292 the incorrect direction (Fig. 5B). Similar performance results were found for models trained only
293 on primary tumor samples (n=69), although composition features were relatively more helpful in
294 predicting PFS, such that the top three models were model five (0.729 ± 0.09), model two (0.719
295 ± 0.09), and model eight (0.714 ± 0.09) (Fig. S9, Table S5).

296 Using model 15, which was trained on all four feature categories, we generated
297 hypotheses of which particular TIME composition, spatial, and network features were relatively
298 more useful for predicting OS and PFS patient outcomes. We accomplished this goal by

299 calculating and comparing the Gini importance scores (37) for each feature in model 15. We note
300 that importance scores do not indicate the direction of a feature's relationship with a patient's
301 outcome, and instead only indicate its relative utility in predicting the outcome value. We found
302 evidence for a subset of features, spanning all four categories, that were relatively more
303 important for predicting patient outcomes (Fig. 7A,B). Feature importance results limiting the
304 dataset to only primary tumor samples can be found in Figure S10 and File D6.

305 Ranking features by their median Gini importance score across the 500 evaluations, we
306 found that the top ten features for predicting OS included seven contact enrichment network
307 features, two spatial features, and one clinical/immunohistochemical feature: (i) the contact
308 enrichment score between CD8+ T cells and tumor cells, (ii) the contact enrichment score
309 between CD163+ cells and tumor cells, (iii) median monocyte cell nearest neighbor distance to
310 tumor cells, (iv) median CD11c+ epithelial cell nearest neighbor distance to tumor cells, (v) the
311 contact enrichment score between NK/NKT cells and vascular endothelial cells, (vi) the contact
312 enrichment score between CD11b+ epithelial cells and M1 macrophages, (vii) the contact
313 enrichment score between other immune cells and tumor cells, (viii) the contact enrichment score
314 between CD11c+ epithelial cells and vascular endothelial cells, (ix) CBX2 status, and (x) the
315 contact enrichment score between unidentified cells and M1 macrophages (Fig. 7C, File D7).
316 The contact enrichment score between CD8+ T cells and tumor cells were distinguished by a
317 higher median feature importance score.

318 We found that the top ten features for predicting PFS included one contact enrichment
319 network feature, one mean region size network feature, five spatial features, and three
320 composition features: (i) median vascular endothelial cell nearest neighbor distance to tumor
321 cells, (ii) the contact enrichment score between unidentified cells and M1 macrophages, (iii)

322 median vascular endothelial cell nearest neighbor distance to M1 macrophages, (iv) vascular
323 endothelial cell proportion, (v) median B cell nearest neighbor distance to vascular endothelial
324 cells, (vi) CD4+ T cell proportion, (vii) median CD163+ cell nearest neighbor distance to tumor
325 cells, (viii) M1 macrophage proportion, (ix) median CD11c+ epithelial cell nearest neighbor
326 distance to tumor cells, and (x) the CD4+ T cell mean region size (Fig. 7D, File D7). In
327 particular, for PFS the median vascular endothelial cell nearest neighbor distance to tumor cells
328 was consistently ranked as more important across the iterations.

329 In alignment with the in-sample Cox regression results, we found that most of the top ten
330 most important features for predicting out-of-sample patient outcomes (nine for OS and six for
331 PFS) were either median nearest neighbor distances or spatial network contact enrichment
332 scores, and thus related to the spatial proximity between cell types, and in general, features
333 related to spatial proximity were more important (Fig. S11, Fig. S12).

334 **Results related to T cell, macrophage, B cell, and vascular endothelial cell spatial
335 organization**

336 Previous work has indicated that the presence of intratumoral T cells and the presence of
337 T cells in ascites have been shown to correlate with better patient prognosis (8,15,40–42). High
338 CD4+ T cell macrophage interaction has also been shown to significantly correlate with better
339 prognosis when adjusted for clinical/immunohistochemical covariates (15). In our results,
340 patients with NK/NKT and CD4+ T cells closer to M1 macrophages and tumor cells and
341 NK/NKT cells closer to vascular endothelial cells had better OS, and the contact enrichment
342 score between CD8+ T cells and tumor cells was the most important feature for predicting OS.
343 For PFS, the same features were not significantly correlated with prognosis, though NK/NKT
344 cell M1 median nearest neighbor distance was significantly correlated with PFS for only primary

345 tumor samples (HR=1.43, p=0.038). We also saw a significant correlation for CD8+ T cell
346 assortativity (HR 1.34, p=0.034, not significant for only primary tumor samples), and the CD4+
347 T cell mean region size was chosen as an important feature for the random forest predicting PFS
348 and was significantly correlated with PFS for only the primary tumor samples (HR 0.73,
349 p=0.046), indicating that T cell clustering patterns might have been more important for
350 predicting PFS than T cell spatial proximity features.

351 Macrophages compose up to 50% of all immune cells in the TIME and are a highly
352 plastic cell type (6). As opposed to M2-like macrophages, M1-like macrophages are proposed to
353 be anti-tumorigenic and aid the adaptive immune cells in mounting an immune response (43).
354 The M1/M2 ratio of macrophages in the ovarian cancer TIME is prognostic for overall and
355 progression-free survival (10,38,44). For macrophages, our significant results all were related to
356 M1 macrophages rather than related to M2 macrophages. We found that higher median M1
357 macrophage nearest neighbor distance to tumor cells (HR 1.25, p=0.039) or vascular endothelial
358 cells (HR=1.34, p=0.021, not significant for only primary tumor samples) were significantly
359 correlated with worse OS. Median vascular endothelial cell nearest neighbor distance to M1
360 macrophages was also chosen as an important feature by the random forest for predicting PFS.

361 We found, in alignment with previous results (15) that a higher contact enrichment score
362 between B cell and M1 macrophages was significantly correlated with both better OS
363 (HR=0.696, p=0.011) and PFS (HR=0.73, p=0.039), and that a larger median B cell nearest
364 neighbor distance to M1 macrophages was significantly correlated with worse OS (HR=1.40,
365 p=0.016, not significant for only primary tumor samples). Unlike in Steinhart et al. 2021 (15) we
366 differentiated between M1 and M2 macrophages, replicating this result for the former and thus
367 adding further cell type specificity to these findings. These findings highlight that interaction

368 between B cells and M1 macrophages may lead to a better antitumor immune response after
369 chemotherapy treatment potentially through increased macrophage-mediated antigen
370 presentation to the B cells. We generally observed that B cells being further from M1
371 macrophages, vascular endothelial cells, and tumor cells corresponded to worse outcomes -
372 higher median B cell nearest neighbor distance to tumor cells (HR=1.42, p=0.008) or vascular
373 endothelial cells (HR=1.33, p=0.042, not significant for only primary tumor samples) also
374 significantly correlated with worse OS, and median B cell nearest neighbor distance to vascular
375 endothelial cells was also significantly correlated with worse PFS (HR=1.35, p=0.030) and was
376 chosen as an important feature for predicting PFS.

377 A higher density of microvessels in the TIME has also previously been correlated with
378 worse progression-free survival (39), and anti-angiogenic therapies (e.g., anti-VEGF) are a
379 standard of care for ovarian cancer. In our results, OS was significantly correlated (HR=1.23,
380 p=0.073) with the median nearest neighbor distance between vascular endothelial cells and
381 tumor cells, as in a higher median nearest neighbor distance between these cell types conveyed a
382 worse OS. Median vascular endothelial cell nearest neighbor distance to tumor cells was also
383 chosen as the most important feature for predicting PFS.

384

385 **DISCUSSION**

386 The current study provides a roadmap for further hypothesis generation and evaluation in
387 ovarian cancer research, opening a range of possible directions for future work investigating the
388 mechanisms by which TIME spatial organization drives clinical and biological differences.

389 Our results reinforce the importance of considering the spatial structure of the TIME to
390 understand and predict HGSC disease progression and outcomes. We show that features

391 encoding the spatial and network organization of the TIME help predict patient outcomes, and
392 we find that the best predictive model for PFS includes a combination of TIME composition and
393 spatial features. For example, we found several results related to CD163+ cells, e.g., higher
394 median CD163+ cell nearest neighbor distance to M1 macrophages correlated with worse OS
395 (HR=1.31, p=0.022) and higher median CD163+ cell nearest neighbor distance to tumor cells
396 correlated with worse PFS (HR=1.26, p=0.042) and was chosen as an important feature for
397 predicting PFS. CD163 is a scavenger receptor, and its expression is largely restricted to
398 myeloid-derived cells, specifically monocytes and macrophages – it is often upregulated in
399 response to inflammation and is associated with tumor promoting macrophages (45). While
400 CD163+ cells in the ovarian TIME are associated with worse prognosis (10,46,47), our findings
401 show a spatial and context dependency on CD163-mediated activities. Therapeutically, CD163
402 targeting strategies (e.g., OR2805) have shown to be effective in relieving immune suppression
403 and are therefore clinically evaluated in a trial for solid tumors (48), thus representing an
404 opportunity to target the robust HGSC TIME-associated immune suppressive macrophages to
405 potentially improve anti-tumor immune surveillance (49,50).

406 While our results partially align with previous studies, for example in the finding for B
407 cell-M1 macrophage interactions, we did not achieve significance in univariate correlations to
408 patient outcomes for T cell and macrophage proportions as expected. While we did find Hazard
409 Ratio estimates in the expected direction (Hazard Ratio estimates for infiltration by all T cell
410 populations and M1 macrophages were <1), our results were not significant. Notably, increased
411 CD8+ T cells conveyed a Hazard Ratio of 0.74 (p=0.059) and CD8+ T cell proportion (HR 0.68,
412 p=0.035) and CD4+ T cell proportion (HR 0.58, p=0.02) were significantly correlated with
413 improved OS for only the primary tumor samples. The vascular endothelial cell proportion, M1

414 macrophage proportion, and CD4+ T cell proportion were also chosen by the random forest as
415 important features for predicting PFS. We emphasize the importance of differences in the
416 definitions of cell types when comparing our results with previous works. For example, prior
417 literature has suggested that M2 macrophages are typically more prevalent than M1 macrophages
418 in HGSC (51), which contrasts with our results (Fig. 2A). However, if we had included CD163+
419 cells in the M2 macrophage cluster (52,53), then the M2 macrophage count would indeed be
420 higher than the M1 macrophage count alone and present findings in line with the aforementioned
421 study. An explanation for differences with previous studies might be due to differences in cell
422 clustering and phenotyping, pointing to the need for further refinement of consistent markers,
423 particularly so that such results can become relevant in clinical application.

424 Limitations of the imaging technology used in this study affect the significance of our
425 findings. In particular, the FOV size of 500 μm at single-cell resolution might still be a limiting
426 factor for the comprehensive documentation of the clinically relevant spatial organization in the
427 TIME. Despite staining with antibodies to 26 proteins, an average of 14% of cells remained
428 unidentified in the 77 samples included in our final analysis, due to them not expressing any of
429 the phenotypic markers. The spatial organization of the TIME may be better delineated in a more
430 comprehensive higher parameter analysis tailored to identification of cells in HGSC. For
431 example, future work might additionally use functional markers to further characterize CD163+
432 cells. In our analyses we treated the set of unidentified cells as a population and found that they
433 contributed to significant interactions, highlighting an opportunity for future research. For
434 example, the contact enrichment score between unidentified cells and M1 macrophages was
435 significantly associated with worse PFS (HR=1.41, $p=0.01$) and chosen as one of the most
436 important features for predicting both OS and PFS.

437 Our study investigated the relative importance of different types and combinations of
438 clinical/immunohistochemical and TIME features in modeling patient outcomes before treatment
439 via both feature importance values within a random forest model for out-of-sample prediction
440 and coefficient values within Cox regressions on in-sample data. While one tumor sample was
441 from 1996, and aspects of clinical management have improved over the time period during
442 which the samples were generated (e.g., increased testing for BRCA mutation), we assume that
443 better prognosis in this dataset largely is due to differential response to a standard of care
444 treatment, which has not changed substantially since 1996. Cox regressions evaluated on in-
445 sample data can be used to describe observed patterns, but do not provide results about out-of-
446 sample predictive performance relevant for generalizing our results to new patients in clinical
447 contexts. We also primarily report results from univariate analyses which only consider features
448 in isolation and multivariate Cox regressions with all significant features did not converge. Due
449 to the exploratory nature of the study, we report non-adjusted p-values, and we found no
450 significant univariate correlations with false discovery rate adjusted p-values (33).

451 Although random forests are a popular choice in predictive modeling, in part because of
452 their built-in regularization controls for overfitting and their strong interpretability (34), all
453 machine learning models are potentially vulnerable to overfitting. In our analysis, we did not
454 observe substantially better-than-random out of sample predictive performance on patient OS on
455 average, indicating that the features chosen as relatively important for predicting OS might have
456 been used by the model to overfit (i.e., learn complex rules to fit to the training dataset that do
457 not generalize to predictive performance on unseen data), and thus might be considered with
458 more skepticism than those chosen as relatively important for predicting PFS. We took care to
459 avoid cases in which the data used to evaluate or test the model's accuracy was not fully

460 independent of the data used to train the model, for example by imputing NA values separately
461 in the train and test sets, which is one cause of overfitting. At the same time, our training data
462 were derived from 77 of patients whose corresponding feature sets may not be fully
463 representative of the underlying biology, implying that the reported predictive accuracies should
464 be interpreted cautiously, and more weight should be placed on the inference that some features
465 are relatively more important than others in the prediction of patient outcomes.

466 In comparing categories of features based on their respective processes of derivation, we
467 found that models including features derived from spatial network representations of the TIME
468 performed slightly worse. However, our results do support the continued use of spatial networks
469 in quantifying and evaluating the TIME. Network features were the largest and most diverse
470 category of features we evaluated (N=117), and many of them were irrelevant for predicting
471 patient outcomes, as indicated by low Gini importance scores, thus likely reducing predictive
472 performance for the network feature category as a whole by introducing noise. However, feature
473 importance evaluations indicate that a subset of these network features were among some of the
474 most important features overall for prediction: in particular, the contact enrichment features
475 encoding information about the proximity between cell types were generally ranked as more
476 important than mean region size or assortativity features, which encode cell clustering patterns
477 (Fig. S11, Fig. S12), mirroring a similar finding in the in-sample Cox regression results. Further
478 development and refinement of features derived from spatial network representations of the
479 TIME could potentially improve the development of useful markers.

480 Many of the features identified as important for patient outcome prediction involved the
481 spatial relationship between cells other than tumor cells. While not surprising, this finding
482 strongly emphasizes the importance of investigating cell-cell interactions throughout the TIME.

483 Two overarching goals of such studies would be to (i) identify key cell types that can be directly
484 addressed with targeted therapies, and (ii) to develop methods that more generally help to
485 characterize the TIME prior to patient treatment. For instance, further studies might investigate
486 how the spatial organization of the TIME differs between tumor sites within the same patient,
487 and whether this can drive differential response to treatment between tumor sites (54).
488 Additionally, future work could build on previous studies investigating TIME changes with
489 chemotherapy treatment (55,56) to investigate how the spatial organization of the TIME changes
490 with chemotherapy. Those goals aim to improve individualized patient diagnosis and care while
491 at the same time enhancing our understanding of more general pathways of cancer development
492 and progression.

493

494 MATERIALS AND METHODS

495 Study design

496 We procured formalin-fixed paraffin-embedded tumor samples from patients diagnosed
497 with HGSC of the ovary, fallopian tube, and peritoneum under the University of Colorado's IRB
498 Protocol, COMIRB #17-7788. The tumor samples were examined by a Gynecologic Pathologist
499 (Dr. Miriam Post) and viable tumor areas were selected for generation of the tissue microarray.
500 The total number of tumors on the tissue microarray was 133, which include primary and
501 recurrent HGSC tumors. Further details of the tissue microarray can be found in Watson et al.
502 2019 (18), Jordan et al. 2020 (19), and McMellen et al. 2023 (20). Multiplexed ion beam
503 imaging was performed on 83 tumor specimens. All samples were from patients with cancer of
504 ovary, fallopian tube, and peritoneum diagnosed at a similar stage (IIIC). For 77 (69 primary and
505 8 recurrent) of these samples with sufficient cell type identification to produce spatial features

506 (see Fig. S1), we studied clinical/immunohistochemical features in combination with descriptive
507 (composition, spatial, and network features) features derived from these samples. The study
508 design aims to integrate features that could hypothetically be generated from a patient's biopsy
509 samples before treatment in an exploratory analysis to investigate what features or combination
510 of features could be used to predict patient outcomes and motivate adjustments in treatment.

511 **Clinical/immunohistochemical features**

512 For each sample, we investigated six clinical/immunohistochemical features alone and in
513 combination with features derived from the samples: BRCA mutational status, age, and histology
514 scores for H3K14Ace status, ATF6 status, DUSP1 status, and CBX2 status, calculated by
515 multiplying the intensity of the stain [0-3] by the percentage of that intensity [0-100].

516 BRCA mutational status was included because of its well-established risk and therapeutic
517 implication (21,22). The remaining features were selected and included based on prior work
518 (20,23,24) that demonstrated prognostic value. Age was included because it is a prognostication
519 indicator in terms of OS (25). Figure S7 shows distributions of all the
520 clinical/immunohistochemical features across the final 77 samples analyzed.

521 **MIBI-TOF imaging**

522 Imaging was performed using a custom MIBI-TOF instrument with a Xe^+ primary ion
523 source upgrade (17). A total of 83 images with a field of view size of $500 \times 500 \mu\text{m}$ and a frame
524 size of 1024×1024 pixels were acquired. The beam current was set to 5 nA with a dwell time of 2
525 ms, yielding a resolution of approximately $0.5 \mu\text{m}$ per pixel. Secondary ions were accelerated
526 into the time-of-flight mass spectrometer with a sample bias of 50 V and detected with a
527 temporal resolution of 0.6 ns across a mass range of $1-200 \text{ m/z}^+$.

528 **Low-level image processing**

529 Multiplexed images were extracted and processed using Ionpath's MIBI/O software: The
530 image data was background- and mass-corrected with vendor-provided configuration files, see
531 Table S1. In the next step, the image data was denoised with the filtering parameters provided in
532 File D2.

533 **Low-level image pre-processing**

534 We adopted a custom computational pipeline developed to analyze MIBI data (26). In
535 this framework multi-step low-level image processing is replaced with a single-step pixel
536 classification where each pixel in an image is classified such that all categories of undesired
537 signal are placed in a different class from the desired marker signal and continue the downstream
538 analysis using the generated feature representation map of the marker signal.

539 **Single-cell segmentation**

540 Whole-cell segmentation was done using the pre-trained single-cell segmentation model
541 Mesmer (27). We used the dsDNA channel for nuclear segmentation and the β -tubulin channel to
542 guide identification of cell boundaries.

543 **Cell-type identification**

544 Single-cell data were extracted for all the cells and normalized by the cell size. To assign
545 each cell to a lineage, we used the unsupervised clustering algorithm as implemented in
546 FlowSOM (28) with multiple steps: first we identified the immune cells and non-immune cells
547 using the following markers: CD45, HLA-DR, CD31, Podoplanin, Vimentin, and Keratin. Then,
548 we used the immune markers CD3, CD4, CD8, CD20, CD68, CD56, CD11b, CD11c, CD163,
549 DC-SIGN to identify the immune subsets (See Table S6).

550 **Spatial and network features**

551 We calculated spatial and network features from the sample images following
552 Moldoveanu et al. 2022 (16) using Python version 3.9.12, *SciPy* version 1.7.3 and *NetworkX*
553 version 2.7.1. We calculated the median Euclidean distance in pixels in each sample between
554 cells of three focal cell types: tumor cells, M1 macrophages, and vascular endothelial cells and
555 their nearest neighbor of all other non-focal cell types. In each sample, we examined each of the
556 focal cells of interest and then identified the nearest neighbor of each non-focal cell type using
557 KD Trees (implemented in *SciPy*) and recorded the Euclidean distances. For each sample, we
558 report the median nearest neighbor distance for each combination of non-focal cell type (listed
559 first) and focal cell type.

560 Spatial network representations of the samples were created by connecting spatial
561 neighbors identified using Delaunay triangulation (implemented in *SciPy*) and then trimming
562 edges that were above a threshold of 50 pixels (~24.4 μm). Results were not sensitive to using a
563 higher threshold for trimming edges (100 pixels, ~48.8 μm , Fig. S13-15). Versions of the spatial
564 networks were created in which neighboring cells were only connected if they were of the same
565 cell type and connected regions of the same cell type were identified from these modified
566 networks using the `connected_components` function implemented in *NetworkX*. The mean of
567 the region sizes in each sample were reported for each cell type.

568 Binary attributes were added to each cell in the spatial networks for each cell type, set to
569 1 if the cell was of that type and 0 otherwise. Assortativity coefficients (29) were then calculated
570 using the *NetworkX* function `attribute_assortativity_coefficient` for each of these
571 binary cell type attributes, thus measuring to what extent cells tended to be neighbors with cells
572 of the same type versus any other type. This value is 1 for perfect assortative mixing, in which
573 cells are only neighbors with cells of the same type, 0 when there is no assortative mixing, and

574 negative when there is disassortative mixing, in which cells are typically neighbors with cells of
575 different types.

576 We calculated contact enrichment scores for the three focal cell types of tumor cells, M1
577 macrophages, and vascular endothelial cells and each non-focal cell type. Following a procedure
578 used in prior work (16,30,31), the cell type labels of all cells other than those of the focal cell
579 types were randomized 1000 times. After each shuffle, the number of times that the focal cell
580 type was a neighbor of each non-focal cell type in the spatial network is recorded. These counts
581 represent a null distribution for each non-focal cell type which is then compared to the observed
582 number of contacts, and the z-score is recorded as the contact enrichment score. A negative
583 contact enrichment score thus indicates fewer contacts than expected at random, a contact
584 enrichment score of 0 indicates as many, and a positive contact enrichment score indicates more
585 contacts than expected at random. When a cell type was missing from a sample, we recorded the
586 mean region, contact enrichment and assortativity values as 0 and the median nearest neighbor
587 distances as “NA” for features related to that cell type for the sample. We also report results for
588 both the Cox regression and random forest analyses in the supplementary material when
589 recording these values all as “NA” (See Note S1, File D8, Fig. S16-18).

590 **Statistical analysis**

591 We fit Cox proportional hazards regression models (32) to OS and PFS outcomes using
592 the `coxph` function from the *survival* package (version 3.5-5) in R (version 4.3.1). Univariate
593 regressions were performed with each of the 216 clinical/immunohistochemical, composition,
594 spatial, and network features treated as individual covariates. All covariates except BRCA
595 Mutation and age were z-score normalized before analysis so that coefficients were comparable
596 across different feature scales and any rows with NA values were excluded. A covariate was

597 considered significant if it had a p-value of under 0.05. In the Supplementary Materials (File D5)
598 we report the number of samples considered for each regression, the number of relevant events
599 considered in the time to event analysis (death or recurrence, respectively), the covariate's
600 coefficient in the Cox proportional hazard regression, the corresponding hazard ratio, and the p-
601 value and false discovery rate adjusted p-value (33). Given the exploratory nature of this study,
602 we focused on results that were significant with non-adjusted p-values. Multivariate Cox
603 proportional hazards models were fitted using the `coxphmulti` function. Models with all
604 covariates found to be significant in univariate regressions for both outcome variables did not
605 converge, so we ran multivariate models with the top five features for each outcome variable,
606 ranked by p-value, both adjusted for clinical/immunohistochemical attributes and as a reduced
607 model without an adjustment for clinical/immunohistochemical attributes (Table S2, S3).

608 **Predictive analysis**

609 We used a random forest classification model (34) implemented in the R package
610 *randomForest* (version 4.7-1.1), R version 4.3.1 with default hyperparameters (see Note S2).
611 Random forests were chosen as our predictive method because they have been shown to work
612 well on high-dimensional data with a low sample size and can be used to rank features based on
613 importance scores (35).

614 We first investigated what subsets of features, based on all possible combinations of the
615 four feature categories (clinical/immunohistochemical, composition, spatial, and network
616 features), produced the highest expected out-of-sample predictive performance: We repeated 500
617 classification tasks for each of the two outcome variables and 15 models. For each of these
618 classification tasks, 70% of the samples were treated as a training set and 30% were treated as a
619 test set. Data was split randomly for each classification task using the `sample.split` function

620 in the package *caTools* (version 1.18.2) in order to preserve the ratio between outcome labels in
621 the two sets. NA values were imputed separately in the training and test set using the
622 `na.roughfix` function from the *randomForest* package which performs median substitution
623 for numeric variables and mode substitution for factor variables. In the rare cases when a train
624 and test split were selected such that a feature was entirely NA in the test set, we did not use that
625 train-test split and instead re-drew. Predictive performance was calculated for each classification
626 task using the AUC (Area under the receiver operating characteristics curve) statistic, calculated
627 using the `roc` and `auc` functions in the *pROC* package, with the direction parameter set such that
628 positive samples should receive a higher predicted value (version 1.18.2). The AUC statistic was
629 chosen because of its properties of being threshold invariant, scale invariant, and use-case
630 agnostic, hence providing a useful measure by which to compare the general performance of
631 different models (36).

632 Second, we investigated an overall ranking of feature importance from the models
633 including all features. Features were ranked based on their median Gini importance across the
634 500 classification tasks. The Gini importance for a feature indicates the mean decrease in node
635 impurity caused by splitting on that feature during model training, in which higher values
636 indicate that the feature was more useful during the generation of the random forest model. The
637 Gini importance can be biased to provide higher importance values for numeric features as they
638 exhibit more potential split points (37). However, this bias would not have a strong influence on
639 our results because the BRCA mutation status is the only categorical variable in our dataset.
640 Repeating the evaluation 500 times allowed us to explore consistency and variation in the
641 ranking of the features across different train and test splits of the data, which we chose to do

642 based on the small sample size and the expectation that many of the generated features would be
643 highly correlated.

644

645 **Acknowledgements:** We acknowledge philanthropic contributions from Kay L. Dunton
646 Endowed Memorial Professorship In Ovarian Cancer Research, the McClintock-Addlesperger
647 Family, Karen M. Jennison, Don and Arlene Mohler Johnson Family, Michael Intagliata, Duane
648 and Denise Suess, Mary Normandin, and Donald Engelstad. We thank Samreen Anjum for
649 conversations about the predictive modeling. We thank Dr. Angelo's laboratory at Stanford for
650 assistance with MIBI instrument setup and recording time. This work was supported by The
651 American Cancer Society (B Bitler, RSG-19-129-01-DDC), NIH/NCI (B Bitler, R37CA261987
652 and R01CA285446), and Ovarian Cancer Research Alliance (A Clauzet and B Bitler), and the
653 University of Colorado Cancer Center Support Grant (P30CA046934). We also thank the Human
654 Immune Monitoring Shared Resource (RRID:SCR_021985) for their expert assistance with
655 sample preparation and data acquisition.

656

657 **Informed consent statement:** A TMA comprised of serous tumors (COMIRB #17-7788) was
658 used. This protocol is deemed exempt, as it is using previously collected data, and the
659 information is not recorded in a manner that is identifiable. Further, the findings of the study did
660 not alter treatment choices or patient outcomes.

661

662 **Data availability statement:** Data and code used to perform analyses and supplemental data
663 files are available upon request.

664

665 **References**

- 666 1. Lisio M-A, Fu L, Goyeneche A, Gao Z, Telleria C. High-Grade Serous Ovarian Cancer:
667 Basic Sciences, Clinical and Therapeutic Standpoints. IJMS. 2019;20:952.
- 668 2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA A Cancer J
669 Clinicians. 2023;73:17–48.
- 670 3. Hoppenot C, Eckert MA, Tienda SM, Lengyel E. Who are the long-term survivors of high
671 grade serous ovarian cancer? Gynecologic Oncology. 2018;148:204–12.
- 672 4. Garsed DW, Pandey A, Fereday S, Kennedy CJ, Takahashi K, Alsop K, et al. The genomic
673 and immune landscape of long-term survivors of high-grade serous ovarian cancer. Nat
674 Genet. 2022;54:1853–64.
- 675 5. Coscia F, Lengyel E, Duraiswamy J, Ashcroft B, Bassani-Sternberg M, Wierer M, et al.
676 Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and
677 Immunotherapy Target in Ovarian Cancer. Cell. 2018;175:159-170.e16.
- 678 6. Launonen I-M, Lyytikäinen N, Casado J, Anttila EA, Szabó A, Haltia U-M, et al. Single-
679 cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian
680 cancer. Nat Commun. 2022;13:835.
- 681 7. Kandalaft LE, Odunsi K, Coukos G. Immune Therapy Opportunities in Ovarian Cancer.
682 American Society of Clinical Oncology Educational Book. 2020;e228–40.
- 683 8. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al.
684 Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer. N Engl J Med.
685 2003;348:203–13.
- 686 9. Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, et al. CD20+
687 Tumor-Infiltrating Lymphocytes Have an Atypical CD27– Memory Phenotype and

688 Together with CD8+ T Cells Promote Favorable Prognosis in Ovarian Cancer. *Clinical*
689 *Cancer Research*. 2012;18:3281–92.

690 10. Yuan X, Zhang J, Li D, Mao Y, Mo F, Du W, et al. Prognostic significance of tumor-
691 associated macrophages in ovarian cancer: A meta-analysis. *Gynecologic Oncology*.
692 2017;147:181–7.

693 11. Chen J, Wang Y, Ko J. Single-cell and spatially resolved omics: Advances and limitations.
694 *Journal of Pharmaceutical Analysis*. 2023;13:833–5.

695 12. Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. An introduction to spatial
696 transcriptomics for biomedical research. *Genome Med*. 2022;14:68.

697 13. Fang S, Chen B, Zhang Y, Sun H, Liu L, Liu S, et al. Computational Approaches and
698 Challenges in Spatial Transcriptomics. *Genomics, Proteomics & Bioinformatics*.
699 2023;21:24–47.

700 14. Lee J, Yoo M, Choi J. Recent advances in spatially resolved transcriptomics: challenges
701 and opportunities. *BMB Rep*. 2022;55:113–24.

702 15. Steinhart B, Jordan KR, Bapat J, Post MD, Brubaker LW, Bitler BG, et al. The Spatial
703 Context of Tumor-Infiltrating Immune Cells Associates with Improved Ovarian Cancer
704 Survival. *Molecular Cancer Research*. 2021;19:1973–9.

705 16. Moldoveanu D, Ramsay L, Lajoie M, Anderson-Trocme L, Lingrand M, Berry D, et al.
706 Spatially mapping the immune landscape of melanoma using imaging mass cytometry. *Sci
707 Immunol*. 2022;7:eabi5072.

708 17. Greenbaum S, Averbukh I, Soon E, Rizzuto G, Baranski A, Greenwald NF, et al. A
709 spatially resolved timeline of the human maternal–fetal interface. *Nature*. 2023;619:595–
710 605.

711 18. Watson ZL, Yamamoto TM, McMellen A, Kim H, Hughes CJ, Wheeler LJ, et al. Histone
712 methyltransferases EHMT1 and EHMT2 (GLP/G9A) maintain PARP inhibitor resistance in
713 high-grade serous ovarian carcinoma. *Clin Epigenet*. 2019;11:165.

714 19. Jordan KR, Sikora MJ, Slansky JE, Minic A, Richer JK, Moroney MR, et al. The Capacity
715 of the Ovarian Cancer Tumor Microenvironment to Integrate Inflammation Signaling
716 Conveys a Shorter Disease-free Interval. *Clinical Cancer Research*. 2020;26:6362–73.

717 20. McMellen A, Yamamoto TM, Qamar L, Sanders BE, Nguyen LL, Ortiz Chavez D, et al.
718 ATF6-Mediated Signaling Contributes to PARP Inhibitor Resistance in Ovarian Cancer.
719 *Molecular Cancer Research*. 2023;21:3–13.

720 21. Gori S, Barberis M, Bella MA, Buttitta F, Capoluongo E, Carrera P, et al.
721 Recommendations for the implementation of BRCA testing in ovarian cancer patients and
722 their relatives. *Critical Reviews in Oncology/Hematology*. 2019;140:67–72.

723 22. Moschetta M, George A, Kaye SB, Banerjee S. BRCA somatic mutations and epigenetic
724 BRCA modifications in serous ovarian cancer. *Annals of Oncology*. 2016;27:1449–55.

725 23. Sanders BE, Yamamoto TM, McMellen A, Woodruff ER, Berning A, Post MD, et al.
726 Targeting DUSP Activity as a Treatment for High-Grade Serous Ovarian Carcinoma.
727 *Molecular Cancer Therapeutics*. 2022;21:1285–95.

728 24. Wheeler LJ, Watson ZL, Qamar L, Yamamoto TM, Post MD, Berning AA, et al. CBX2
729 identified as driver of anoikis escape and dissemination in high grade serous ovarian cancer.
730 *Oncogenesis*. 2018;7:92.

731 25. Peres LC, Sinha S, Townsend MK, Fridley BL, Karlan BY, Lutgendorf SK, et al. Predictors
732 of survival trajectories among women with epithelial ovarian cancer. *Gynecologic
733 Oncology*. 2020;156:459–66.

734 26. Ahmadian M, Rickert C, Minic A, Wrobel J, Bitler BG, Xing F, et al. A platform-
735 independent framework for phenotyping of multiplex tissue imaging data. Uhlmann V,
736 editor. PLoS Comput Biol. 2023;19:e1011432.

737 27. Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, et al. Whole-cell
738 segmentation of tissue images with human-level performance using large-scale data
739 annotation and deep learning. Nat Biotechnol. 2022;40:555–65.

740 28. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al.
741 FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry
742 data. Cytometry Pt A. 2015;87:636–45.

743 29. Newman MEJ. Mixing patterns in networks. Phys Rev E. 2003;67:026126.

744 30. Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A Structured Tumor-
745 Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion
746 Beam Imaging. Cell. 2018;174:1373-1387.e19.

747 31. Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D, et al.
748 histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data.
749 Nat Methods. 2017;14:873–6.

750 32. Andersen PK, Gill RD. Cox's Regression Model for Counting Processes: A Large Sample
751 Study. Ann Statist [Internet]. 1982 [cited 2023 Jul 31];10. Available from:
752 <https://projecteuclid.org/journals/annals-of-statistics/volume-10/issue-4/Coxs-Regression->
753 Model-for-Counting-Processes--A-Large-Sample/10.1214/aos/1176345976.full

754 33. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
755 Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B
756 (Methodological). 1995;57:289–300.

757 34. Breiman L. Random Forests. *Machine Learning*. 2001;45:5–32.

758 35. Chen X, Ishwaran H. Random forests for genomic data analysis. *Genomics*. 2012;99:323–9.

759 36. Fawcett T. An introduction to ROC analysis. *Pattern Recognition Letters*. 2006;27:861–74.

760 37. Nembrini S, König IR, Wright MN. The revival of the Gini importance? Valencia A, editor. *Bioinformatics*. 2018;34:3711–8.

761 38. Macciò A, Gramignano G, Cherchi MC, Tanca L, Melis L, Madeddu C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. *Sci Rep*. 2020;10:6096.

762 39. Rubatt JM, Darcy KM, Hutson A, Bean SM, Havrilesky LJ, Grace LA, et al. Independent prognostic relevance of microvessel density in advanced epithelial ovarian cancer and associations between CD31, CD105, p53 status, and angiogenic marker expression: A Gynecologic Oncology Group study. *Gynecologic Oncology*. 2009;112:469–74.

763 40. Pinto MP, Balmaceda C, Bravo ML, Kato S, Villarroel A, Owen GI, et al. Patient inflammatory status and CD4+/CD8+ intraepithelial tumor lymphocyte infiltration are predictors of outcomes in high-grade serous ovarian cancer. *Gynecologic Oncology*. 2018;151:10–7.

764 41. Mhawech-Fauceglia P, Wang D, Ali L, Lele S, Huba MA, Liu S, et al. Intraepithelial T cells and tumor-associated macrophages in ovarian cancer patients. *Cancer Immunity*. 2013;13.

765 42. Lieber S, Reinartz S, Raifer H, Finkernagel F, Dreyer T, Bronger H, et al. Prognosis of ovarian cancer is associated with effector memory CD8⁺ T cell accumulation in ascites, CXCL9 levels and activation-triggered signal transduction in T cells. *OncoImmunology*. 2018;7:e1424672.

780 43. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated
781 macrophages as treatment targets in oncology. *Nat Rev Clin Oncol.* 2017;14:399–416.

782 44. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, et al. A high M1/M2 ratio of tumor-
783 associated macrophages is associated with extended survival in ovarian cancer patients.
784 2014;

785 45. Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger
786 receptor CD163 expression in human monocytes and macrophages by pro- and
787 antiinflammatory stimuli. *Journal of Leukocyte Biology.* 2000;67:97–103.

788 46. No JH, Moon JM, Kim K, Kim Y-B. Prognostic Significance of Serum Soluble CD163
789 Level in Patients with Epithelial Ovarian Cancer. *Gynecol Obstet Invest.* 2013;75:263–7.

790 47. Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T, et al. Expression of M2-Polarized
791 Macrophages is Associated with Poor Prognosis for Advanced Epithelial Ovarian Cancer.
792 *Technol Cancer Res Treat.* 2013;12:259–67.

793 48. OncoResponse, Inc. A Phase 1-2 Study of OR2805, a Monoclonal Antibody Targeting
794 CD163, Alone and in Combination With Anticancer Agents in Subjects With Advanced
795 Malignancies [Internet]. clinicaltrials.gov; 2022 Sep. Report No.: NCT05094804. Available
796 from: <https://clinicaltrials.gov/study/NCT05094804>

797 49. Chen T, Chen J, Zhu Y, Li Y, Wang Y, Chen H, et al. CD163, a novel therapeutic target,
798 regulates the proliferation and stemness of glioma cells via casein kinase 2. *Oncogene.*
799 2019;38:1183–99.

800 50. Probst P, Simmons R, Dinh H, Zuck M, Wall V, Bouchlaka M, et al. 271 Development of
801 OR2805, an anti-CD163 antibody derived from an elite responder to checkpoint inhibitor

802 therapy that relieves immunosuppression caused by M2c macrophages. *J Immunother*
803 *Cancer*. 2021;9:A294–A294.

804 51. Schweer D, McAtee A, Neupane K, Richards C, Ueland F, Kolesar J. Tumor-Associated
805 Macrophages and Ovarian Cancer: Implications for Therapy. *Cancers*. 2022;14:2220.

806 52. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets:
807 cancer as a paradigm. *Nat Immunol*. 2010;11:889–96.

808 53. Sulahian TH, Högger P, Wahner AE, Wardwell K, Goulding NJ, Sorg C, et al. Human
809 monocytes express CD163, which is upregulated by IL-10 and identical to p155. *Cytokine*.
810 2000;12:1312–21.

811 54. Masoodi T, Siraj S, Siraj AK, Azam S, Qadri Z, Parvathareddy SK, et al. Genetic
812 heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched
813 distant metastases. *Br J Cancer*. 2020;122:1219–30.

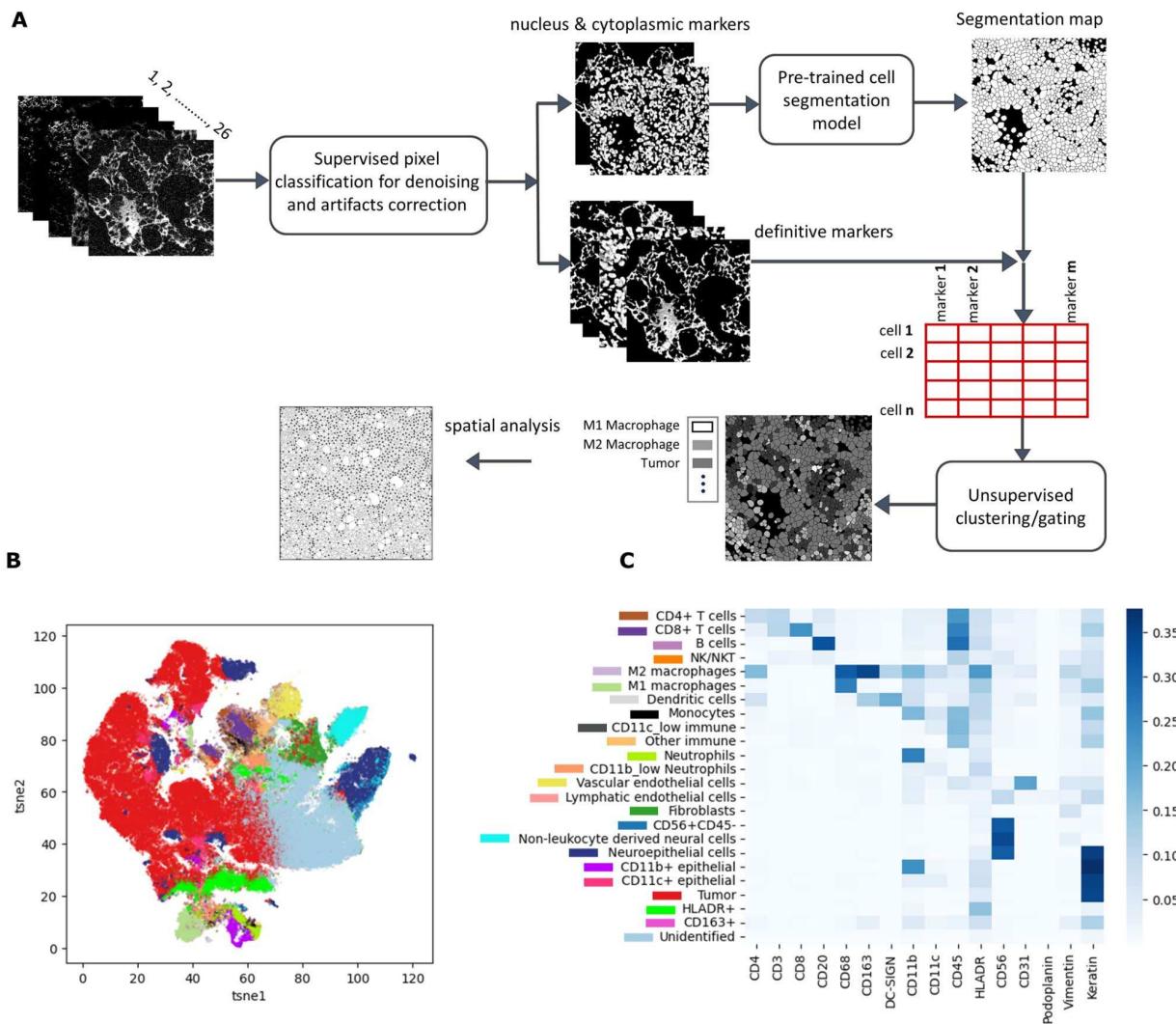
814 55. Mesnage SJL, Auguste A, Genestie C, Dunant A, Pain E, Drusch F, et al. Neoadjuvant
815 chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-
816 L1) expression in epithelial ovarian cancer (EOC). *Annals of Oncology*. 2017;28:651–7.

817 56. Cao G, Hua D, Li J, Zhang X, Zhang Z, Zhang B, et al. Tumor immune microenvironment
818 changes are associated with response to neoadjuvant chemotherapy and long-term survival
819 benefits in advanced epithelial ovarian cancer: A pilot study. *Front Immunol*.
820 2023;14:1022942.

821

822 Figures

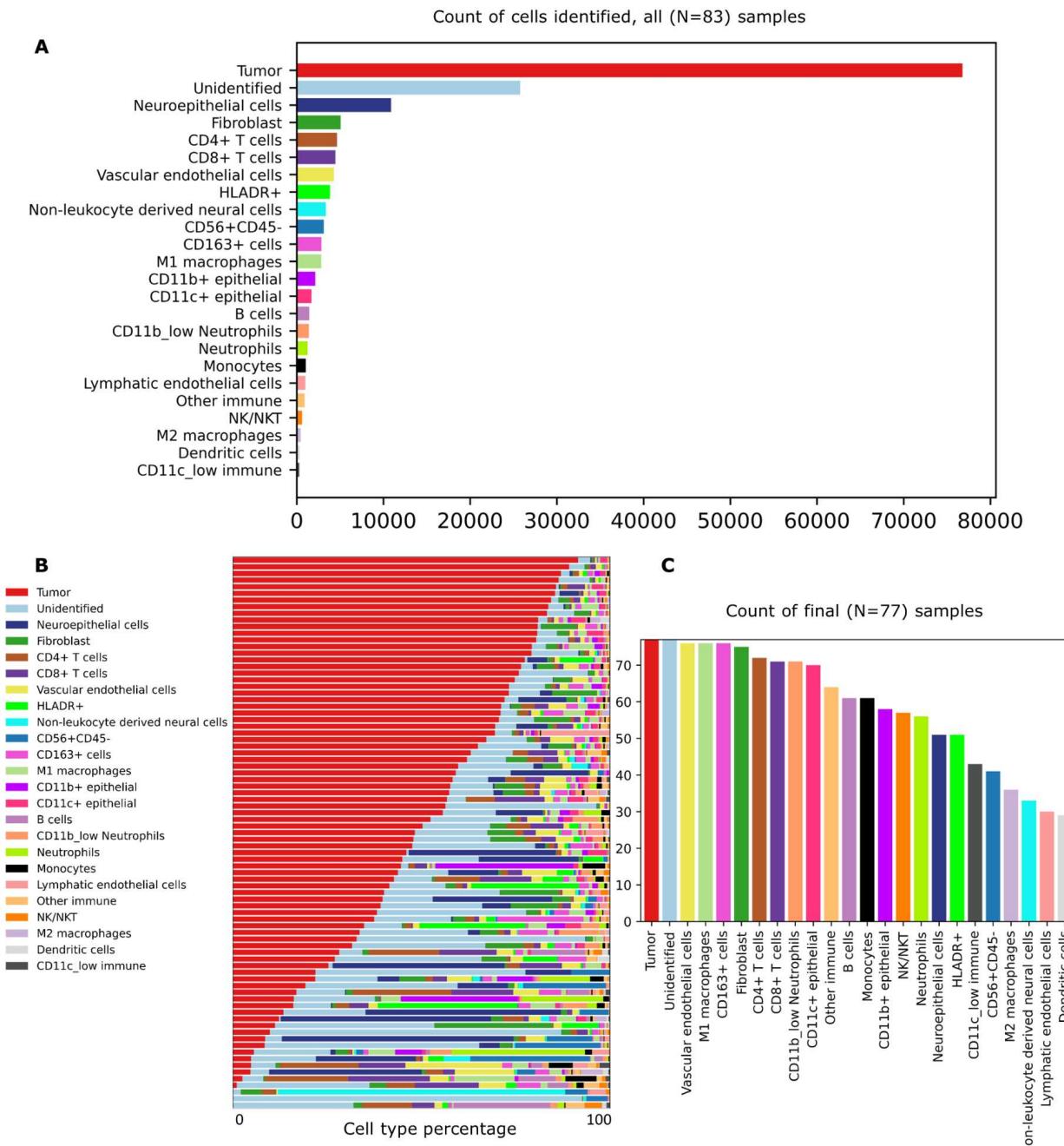
823



824

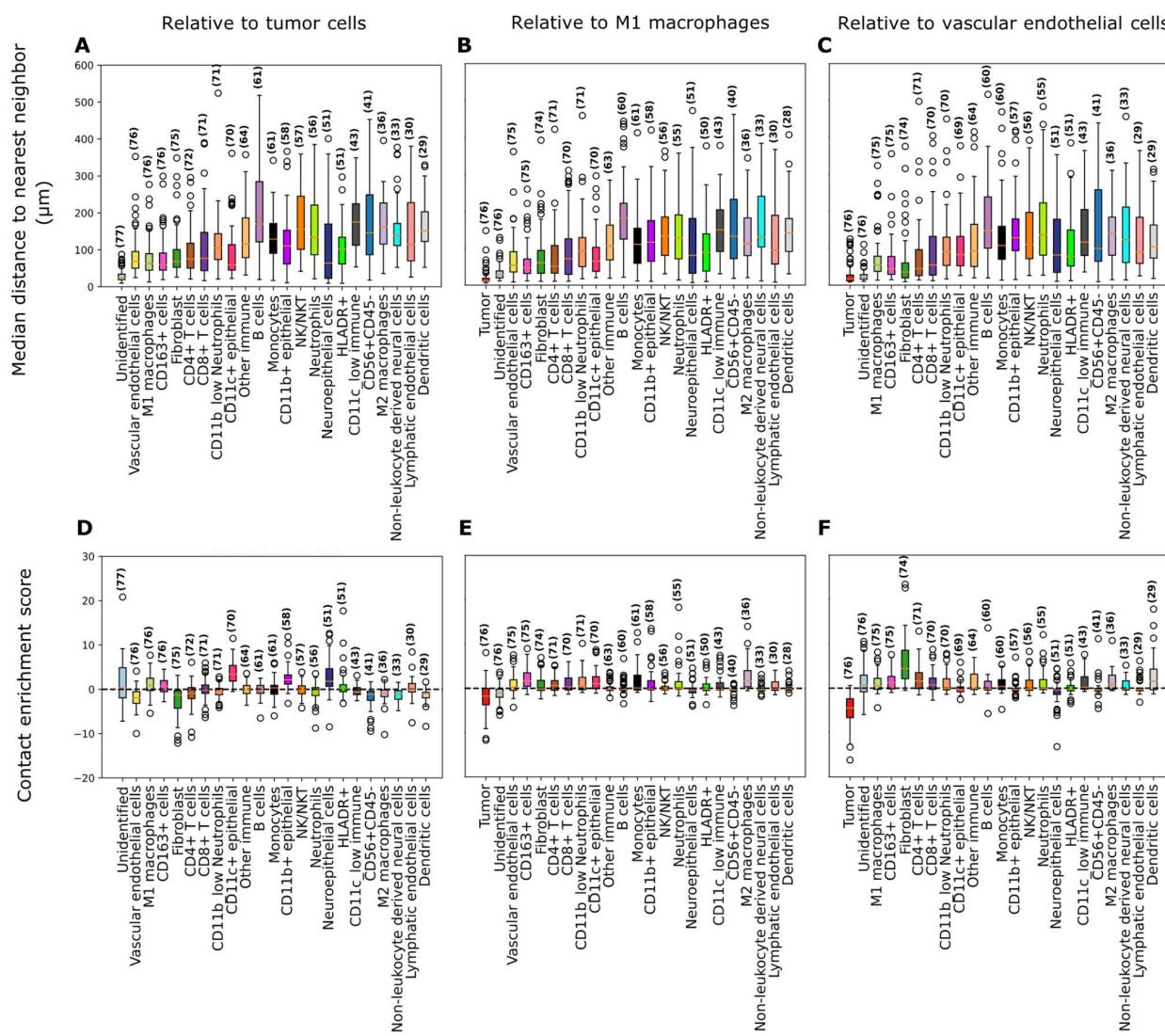
825 **Fig 1. Cell segmentation and phenotyping.** (A) Computational pipeline used for single-cell
826 segmentation and cellular phenotyping of the MIBI imaging data. The process starts with pixel
827 classification, where a pixel classifier distinguishes between two classes: Class I for desired
828 signals and Class II for noise and artifacts. The classifier's output produces feature representation
829 maps with pixel values scaled from 0 to 1. A pretrained single-cell segmentation model is used
830 for cell segmentation. Subsequently, marker expression within cell boundaries is quantified using
831 the Class I feature representation maps. This data is organized into a single-cell information

832 table, with cells listed in rows and marker expression levels in columns. Finally, unsupervised
833 clustering algorithms utilize this single-cell information data to identify distinct cell types. (B)
834 tSNE representation of the marker expression data of about 160k cells from the ovarian cancer
835 tissue of 83 patients. Cell types were identified by clustering (represented in different colors). (C)
836 Average marker expression per cluster is shown for the identified cell types, with colors
837 indicating their corresponding cluster in the *tSNE* representation.



838

839 **Fig 2. TIME composition across samples.** (A) Cell type counts across all 83 samples. (B) Cell
 840 type percentages summarized across the 83 original samples, sorted by decreasing tumor cell
 841 percentage. (C) Counts of the final 77 samples included in the analysis in which each of the cell
 842 types were found.



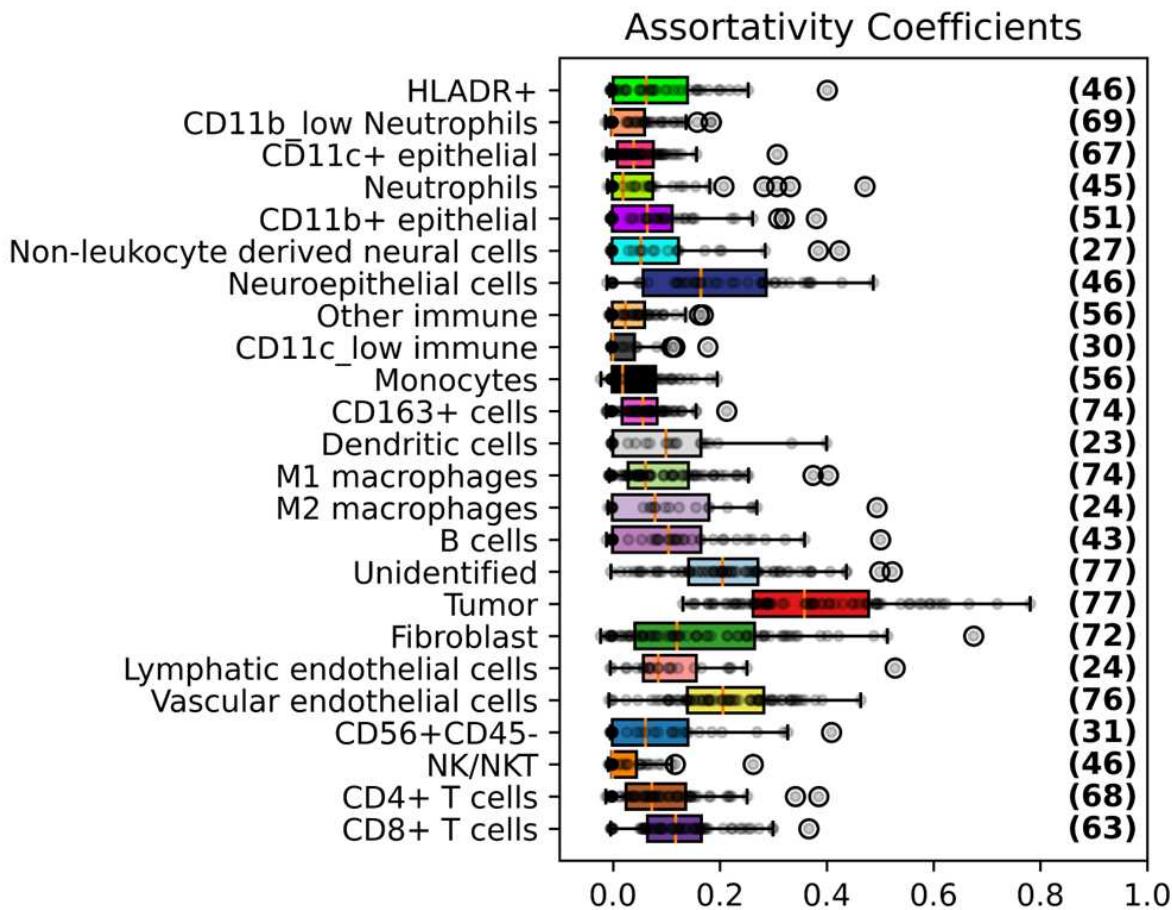
843
844

Fig 3. Median nearest neighbor distance (spatial) and contact enrichment (network)

845 **features relative to three focal cell types.** (A-C) Median nearest neighbor distance for each
846 other cell type to tumor cells, M1 macrophages, or vascular endothelial cells (μm). (D-F) Contact
847 enrichment scores relative to tumor cells, M1 macrophages, or vascular endothelial cells for each
848 of the other cell types. Positive scores indicate more contacts than expected at random, 0 the
849 same number, and negative scores fewer contacts than expected at random. All bar plots show
850 features aggregated across samples in which the relevant cell type is found. Cell types are
851 indicated on the x-axis and the number of samples in which this cell type is found is shown in

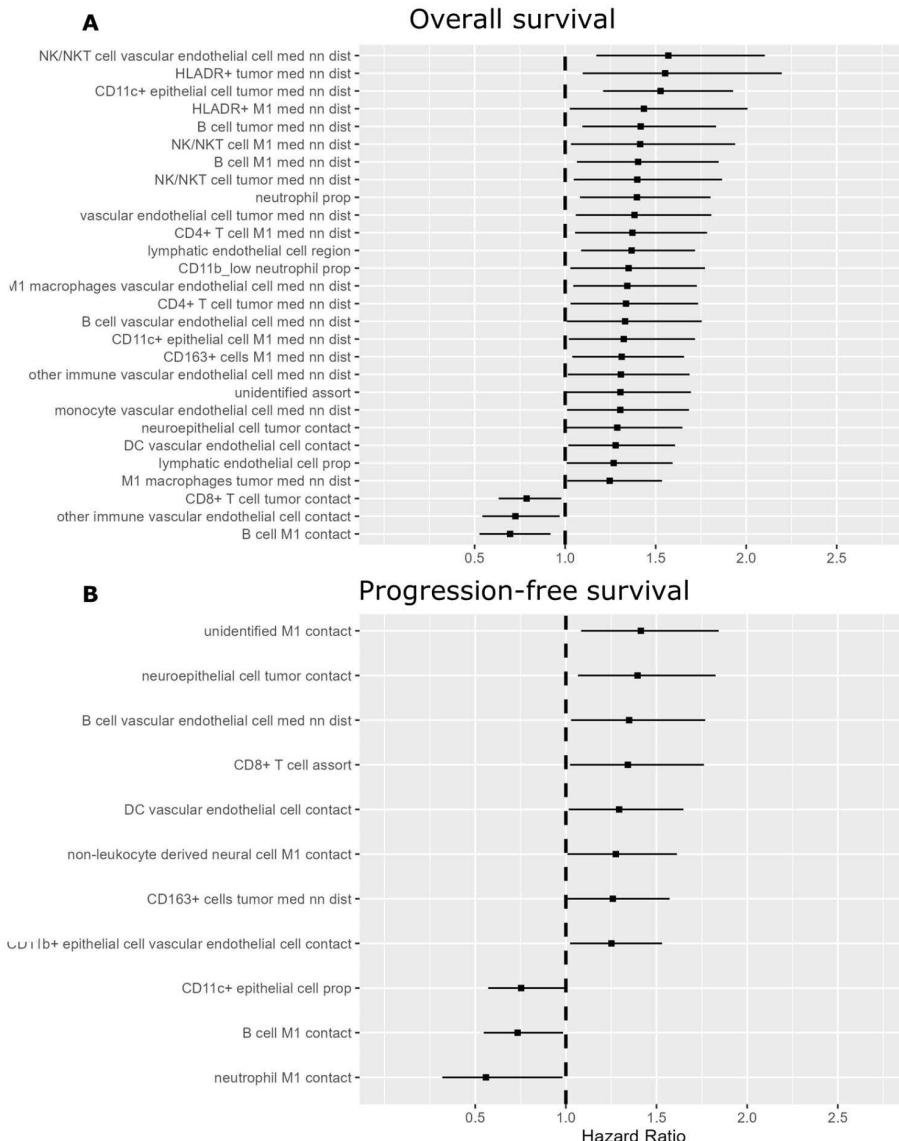
852 parentheses. Samples are excluded from the features calculated relative to M1 macrophages and
853 vascular endothelial cells respectively when samples are missing the respective focal cel 1 type.
854 In all subplots cell types are ordered based on how commonly they were found across samples in
855 descending order.

856

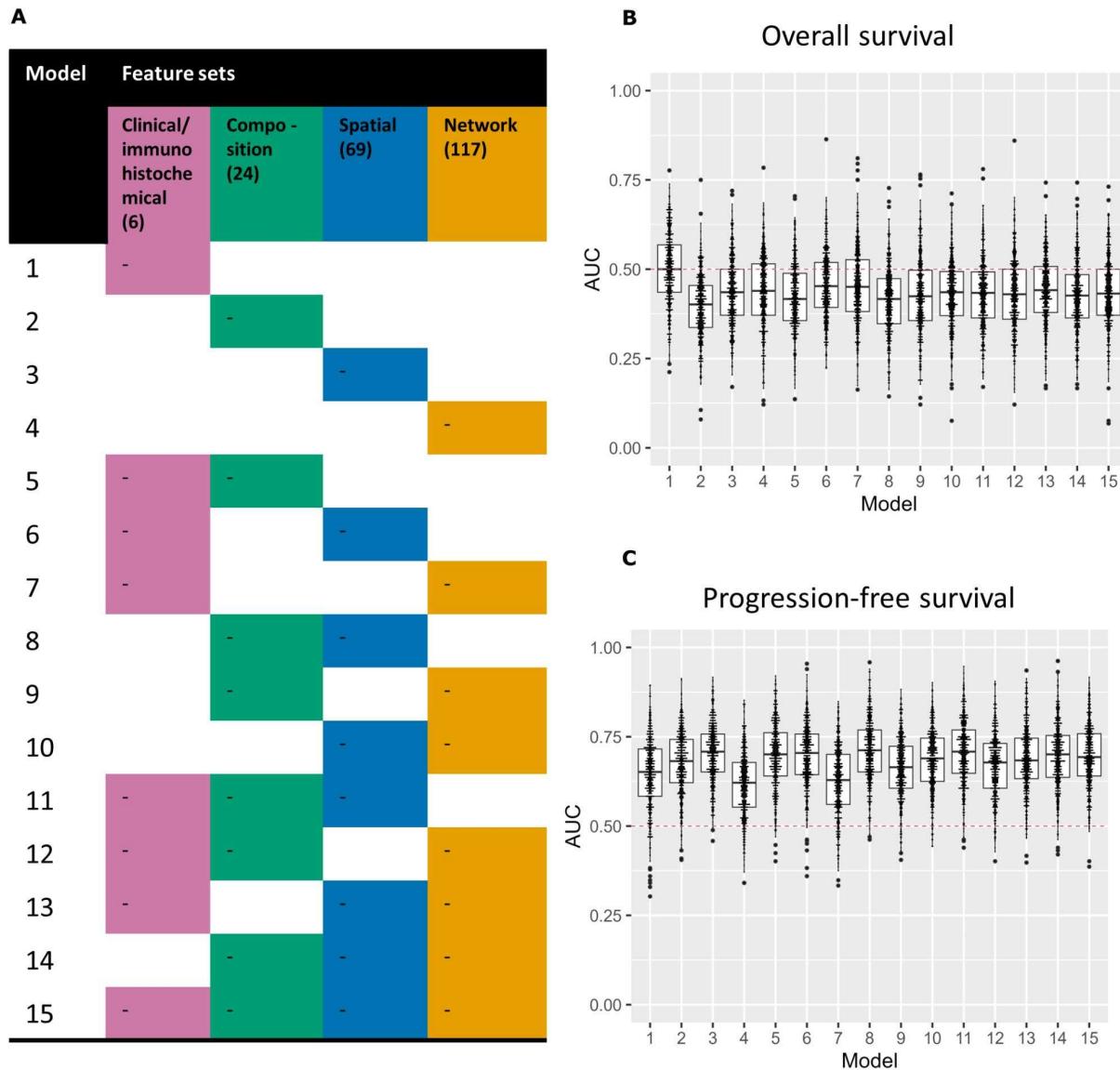


857

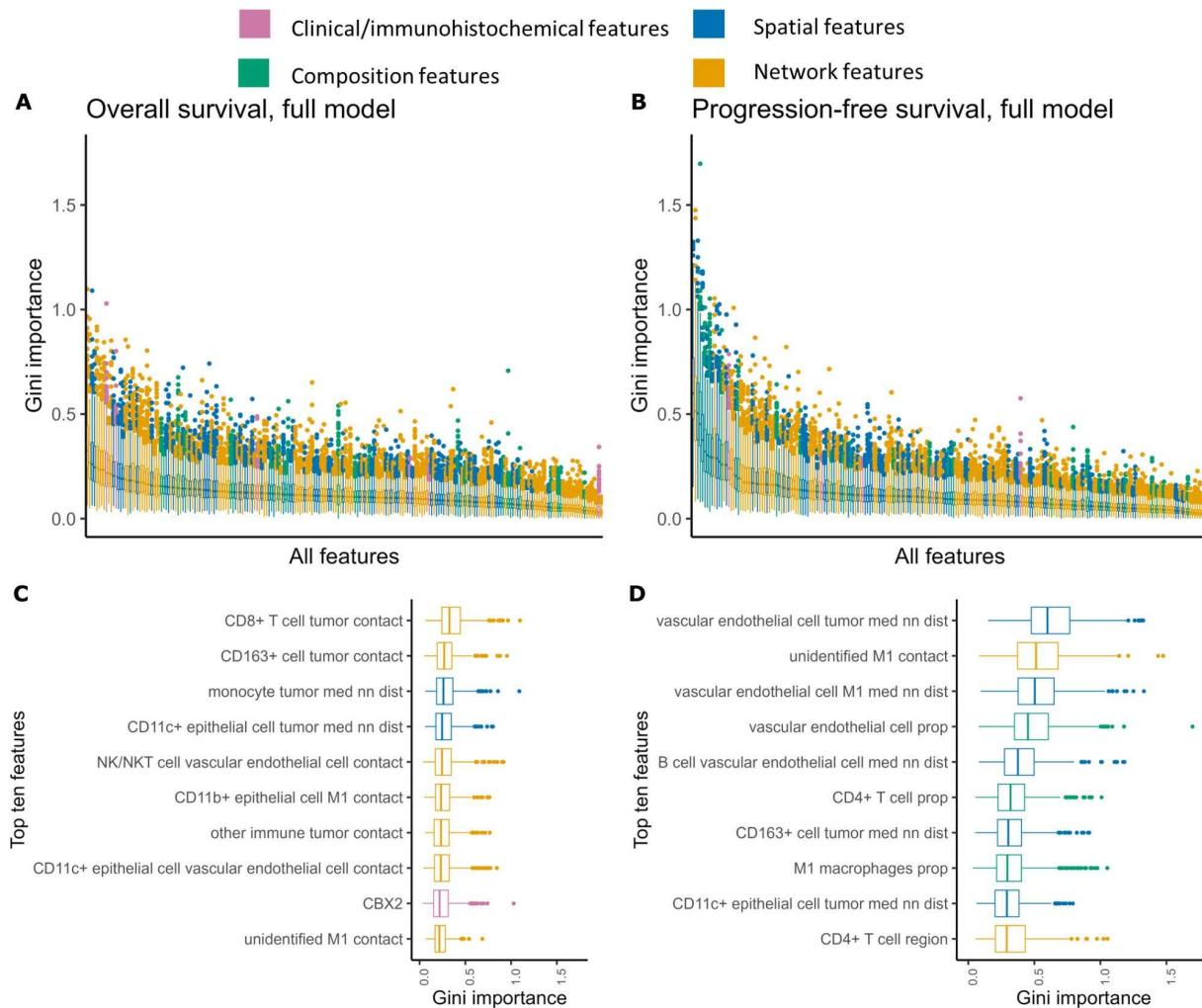
858 **Fig 4. Assortativity coefficient (network) features.** Assortativity coefficients for each cell type
859 indicating their tendency to cluster with cells of the same type rather than cells of a different
860 type, aggregated across samples including that cell type (the number of which is indicated in
861 parentheses).



862
863 **Fig 5. Univariate Cox regression results.** Covariates found to be significant in Univariate Cox
864 regressions for (A) OS and (B) PFS outcomes. Covariates are listed in descending order by
865 hazard ratio. Hazard ratios are displayed with 95% confidence intervals, and a hazard ratio of 1 is
866 indicated with a dashed line.



867
868 **Fig 6. Random forest predictive performance results.** (A) 15 models were trained and
869 evaluated with different combinations of four feature categories, as shown here. Predictive
870 performance results, based on the AUC statistic are displayed for the 15 models summarized
871 across 500 iterations of training and evaluation for (B) OS and (C) PFS outcomes. A red dashed
872 line is displayed at an AUC value of 0.5, which represents the cut-off above which the model
873 performs better than a random guess.



874

875 **Fig 7. Aggregate feature importance results.** Gini importance scores, aggregated across 500
876 random forest training runs for the model including all features, sorted by median importance
877 score and colored by feature type for (A) OS and (B) PFS outcomes. (C-D) Top ten features by
878 median importance score for each outcome across 500 random forest training runs, colored by
879 feature type.