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Abstract

Bacterial genome dynamics are vital for understanding the mechanisms underlying microbial adaptation, growth, and
their broader impact on host phenotype. Structural variants (SVs), genomic alterations of 10 base pairs or more, play a
pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While
SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to absence of
clear reference genomes and presence of mixed strains. In response, our proposed method rhea, forgoes reference genomes
and metagenome-assembled genomes (MAGs) by encompassing a single metagenome coassembly graph constructed from
all samples in a series. The log fold change in graph coverage between subsequent samples is then calculated to call SVs
that are thriving or declining throughout the series. We show rhea to outperform existing methods for SV and horizontal
gene transfer (HGT) detection in two simulated mock metagenomes, which is particularly noticeable as the simulated
reads diverge from reference genomes and an increase in strain diversity is incorporated. We additionally demonstrate use
cases for rhea on series metagenomic data of environmental and fermented food microbiomes to detect specific sequence
alterations between subsequent time and temperature samples, suggesting host advantage. Our innovative approach
leverages raw read patterns rather than references or MAGs to include all sequencing reads in analysis, and thus provide
versatility in studying SVs across diverse and poorly characterized microbial communities for more comprehensive insights
into microbial genome dynamics.
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Introduction SV detection methods can be broadly categorized into

three groups: mapping-driven, assembly-driven, and pattern-
Structural variants (SVs), loosely defined as genomic . group pping . .y ’ p
. . driven (Table 1) (37). In mapping-driven approaches, reads
alterations that are 10 base pairs (bps) or longer (12), play R . R
. . .. . . are directly aligned to an established reference genomes or
an important role in driving both evolutionary adaptation .
. . . pangenome of sequences, then unexpected mapping patterns
and heterogeneity in bacterial genomes (31). Bacterial genome K K .
. . . . identify SVs. In assembly-driven approaches, reads are first
dynamics not only influence the ability for the bacteria to grow X R .
. . . assembled into longer sequences (contigs), then aligned to
and adapt to changing environments (32), but can also impact R .
. R . . another contig or reference to detect long scale differences.
the function of the microbial community as a whole and the I tt dri h SV tt defined
n pattern-driven approaches, atterns are pre-define
phenotype of the host (11). In isolate genomics, the goal of p . PP . p i b
.. . . K then search for in sequencing reads. Zeevi et al. developed
SV detection is relatively straightforward: detect long genomic i . > R
. a mapping-driven SV detection approach for metagenomic
differences between a sequence and reference genome that can . X R i
. . . . . N L. short reads to survey SVs associated with host disease risk
be classified as an insertion, deletion, inversion, duplication, . . . X
. e . factors in the human gut microbiome (42). The authors built a
translocation, or any combination of the prior (37). However, i K . K
. . comprehensive database specifically for known microbes in the
in metagenomics, when reference genomes may not be well- . R . X
K . . . L. human gut microbiome and developed an “iterative coverage-
defined and a mixed population of similar strains may exist in i i .
based read assignment” (ICRA) algorithm to repeatedly adjust

the community, detection of SVs becomes more complex (37). . . K R X
read assignments and establish alignments. Their SGV-Finder
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algorithm then scans the coverage of each reference genome for
presence of regions with unexpectedly low (deletions) or high
(duplications) coverage. While this method has been effective
as a comprehensive search for SVs in the human gut microbiome
correlating to expressed phenotypes (24), relying on a confident
database of reference genomes is challenging for communities
that have not been extensively characterized. This pipeline
is additionally restricted to only deletions and duplications
relative to reference genomes in the supplied database.

Table 1. Methods for SV detection in metagenomes, separated
by types: mapping(M)-, assembly(A)-, and pattern(P)-driven. SV
types abbreviations are as follows: Ins: insertion, Del: deletion,
Dup: duplication, Inv: inversion, Trans: translocation, and CI:
complex indel (defined here as an insertion and deletion at the same
location). Input types are short reads (short), long reads (long), or
metagenome-assembled genomes (MAG).

Software Type Detected SV Types Input
SVGFinder (42) M Ins, Dup short
MetaSVs (23) A Ins, Del, Dup, Inv, Trans MAG
MetaCHIP (35) A HGT Ins MAG
PhaseFinder (16) P Inv short
DIVE (1) P MGE Ins, MGE CI short
Rhea P Ins, Del, Dup, CI long

To expand upon the types of SVs detected and leverage
advantages of long read technologies, MetaSVs, an assembly-
driven approach, was designed (23). In this pipeline, long and
short reads combined help to confidently create and classify
metagenome-assembled genomes (MAGs). Each MAG is then
evaluated independently through whole-genome alignment to a
reference MAG or genome with the SV detection tool MUM
& Co (29). Chen et al. utilized MetaSVs to expand upon
characterized SVs in the human gut (notably insertions and
inversions) and demonstrates the value in incorporating long
reads for SV detection (9). However, this assembly-driven
method is still highly dependent on a reference database,
as it is the taxonomic reference-driven classifications that
determine which MAGs get compared to which references.
Additionally, unique MAGs are often not created for subtle
SV differences (18), especially in microbial communities where
similar strains are present (14).

MetaCHIP is another MAG-based approach for the slightly
different goal of detecting recent horizontal gene transfer
(HGT) events within a metagenome (36). In an HGT event,
genetic material is exchanged between organisms (28), resulting
in an insertion SV for the recipient microbe. MetaCHIP
effectively evaluates each MAG in the community for a gene
sequence that has more BLASTN (2) hits to genes in a different
MAG than its own. This algorithm, however, can only detect
insertion genes that are highly similar to another MAG, which
resulted in simulation results declining at 25% mutation rate
between donor and recipient.

To entirely avoid reference genomes and MAG creation, two
pattern-driven methods have been developed. PhaseFinder (16)
was created for detection of inversions in bacterial genomes
from genomic or metagenomic data, by detecting regions
flanked by inverted repeats where sequencing reads support
DIVE (1) was developed in 2023 to
identify sequences surrounding genetic diversification such as

both orientations.

transposable elements, within MGE variability hotspots, or
CRISPR repeats, by detecting constant k-mers with diverse
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flanking sequences to define MGE bounding sequences and
transposon arms. While both these methods show how patterns
in raw read can be used to eliminate reference genomes and
MAGsSs, they are limited to only these specific patterns.

Rhea takes a different approach to detect SV patterns within
a microbial community. It constructs a coassembly graph from
all metagenomes in a series that are expected to have similar
communities (i.e. longitudinal time series or cross-sectional
studies where a significant portion of the strains are shared
across samples). Regions of the graph indicative of SVs are
then highlighted, as previously explored for characterization of
genome variants (27; 13). The log fold change in graph coverage
between consecutive steps in the series is then used to reduce
false SV calls made from assembly error, account for shifting
levels of microbe relative abundance, and ultimately permit SV
detection in understudied and complex microbial environments.
Recent work utilizes coassembly graphs for metagenomes to
decompose strain diversity into haplotypes (30), but to the
best of our knowledge, this is the first time coassembly graph
patterns have been used for automated detection of SVs in a

metagenome series.

Methods
Rhea method

Rhea takes as input a series of long-read metagenomic
sequences, expected to be taken from the same source
at different time points or some other step-wise metadata
separation. A single metagenome assembly graph is constructed
by combining all provided samples, then each sample is
separately aligned back to the graph. Change in graph coverage
between subsequent samples and the graph structure are used

to call SVs (Figure 1).

SV definitions

Four types of SVs are detected in rhea: insertions, deletions,
tandem duplications (37), and complex indels (41; 33). An
insertion here is a sequence that has been integrated in
increasing abundance between subsequent steps in the series.
A deletion is the opposite, a subsequence that is declining. A
tandem duplication is a gene sequence that has been repeated,
directly one after another, in increasing presence. A complex
indel as a sequence that has drastically changed between
subsequent steps, showing the signature of a deletion and
insertion at the same location. In this pipeline, SV detection
equates to an increase in abundance of the SV, rather than
simply a novel appearance, and therefore suggests a provided
advantage for the host microbe or the community.

Graph construction and coverage calculations

A single coassembly graph for the series with N samples
is constructed by combining all reads from all samples into
one metaFlye run (19), with --keep-haplotypes parameter
set to true to maintain strain variations. After the graph is
constructed, each sample is separately aligned back to the
graph with minigraph (22). An undirected graph is then built
mimicking the structure of the metaFlye assembly graph where
a single node is drawn for each complementary pair, as seen
in the assembly graph visualization software Bandage “single”
option (38). This graph is defined as G = (V, E) with a set of k
nodes V = {v1,v2..,vr} and a set of edges E. Each edge (e;,;)
is then given a weight equal to the number of edges that appear
between nodes i and j in the metaFlye assembly graph, given
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Fig. 1. (a) To utilize rhea, first, microbiome series data must be collected and long whole genome sequencing reads generated. Then, within rhea, a

coassembly graph of all reads in the series is created with metaFlye. Reads from each sample are then separately aligned to the coassembly graph with

minigraph. Rhea evaluates log fold change in coverage between series steps for SV-specific patterns in the assembly graph to detect structural variants

between steps. (b) Assembly graph patterns detected in rhea, which indicate potential insertions, deletions, complex indels, and tandem duplicates.

Insertions and deletions are detected by observing a triangle where one node has a significantly higher (insertion) or lower (deletion) log fold change.

Complex indels are noted by a square with one or two outliers; in the case of two outliers, the two outliers must be of opposing sides of the median and

not have an edge between them. Tandem duplicates are detected by a log fold change of a self-loop edge coverage greater than 1.

there exist at least one edge between ¢ and j in the assembly
graph. Each edge (e; ;) thus denotes the existence of overlap
reads that expand directly from w; to v; (or from v; to v;)
without gaps, in either direction (forward or reverse) for the
sequences in ¢ and j. Minigraph alignments are then used to
calculate node and edge coverage for each step in the series.
Node coverage is calculated as the average coverage per base
pair within the node, calculated by summing the coverage for
each base pair divided by the total number of base pairs in the
node. To account for error, all nodes with coverage less than 1,
are set to a coverage of 1. Node coverage is then normalized for
the entire series, by first calculating the median total base pairs
m across samples in the series, then establishing a multiplier
for each sample n = 0..N as bp,, /m, where bp,, is the number of
base pairs in sample n. This multiplier for each step is applied
to all node coverage for each n = 0..N. Edge coverage for
each edge e; ; at each step n in the series is counted as the
number of occurrence a read path covers directly from ¢ to j
or j to ¢ in the read-graph alignment for step n. Each node
in our undirected assembly graph then holds a vector of log
fold change in coverage between subsequent steps in the series,
calculated for each node i as log(ve; ¢, /ves e, ), where ve; ¢,
is the coverage of node ¢ at step n in the series for all steps
n = 1...N. A log fold change vector is also assigned to each
edge (i,7), defined as log(ec(; j), ¢, /€Ci,j),t, ,)» Where ec; ¢,
is the coverage of edge e; ; at step n in the series for all steps
n = 1..N. The log fold change vectors are then used in the next
step to detect SVs and account for assembly error and changes
in genome relative abundance between subsequent samples.

Detected SV graph patterns

Rhea utilizes the graph structure, edge weights, and the log
fold change coverage vectors to call SVs between each pair of
consecutive samples in the series. For insertions and deletions,
each triangle is searched for the pattern of two similar log
fold change values and one that is significantly different for
each step. This is completed by: calculating the median and
standard deviation between the three log fold change, then
labeling any node with a value that is more than one standard
deviation away from the median as an outlier. If the triangle
contains exactly one outlier, then an insertion or deletion is
called, depending on if the outlier value is lower (deletion) or
higher (insertion) than the median. Median is used here rather
than mean to provide robustness against extreme outliers. For
example, in the case of an extreme outlier due to a deletion

from a thriving member in the community, the mean would be
skewed and thus could call all three nodes an outlier; whereas
the median would take the value of one of the non-deletion
nodes and thus, given the two non-deleted nodes carry a similar
value, only the deletion would be an outlier. A similar process is
conducted to search for complex indels. Here, each square (cycle
of length 4) in the graph is searched for outliers. If the square
either has a single outlier or two outliers that do not have an
edge between them (opposites in the square) and one is greater
than the median while the other is smaller, a complex indel is
called. A tandem duplicate can be called under two different
scenarios. The first, a self-duplicate, shown by an edge log fold
change of any self-loop edge greater than 1 for any subsequent
steps in the series. The second is the situation where the
duplicate produces a second node containing a nearly duplicate
sequence and loops between two nodes. This is detected by
searching all edges with weight w > 2 for a log fold change
edge weight greater than 1. If these criteria are met, the node
with the greater log fold change coverage between the two is
then called a tandem duplication if it has not been called for
another SV at the specified step.

Experiments
Simulated HGT events

Rhea was compared to the metagenome HGT detection tool
MetaCHIP by simulating long reads from the simulated HGT
events completed in the HgtSIM manuscript (35). For this
community, 10 strains within class Alphaproteobacteria and
10 strains within class Betaproteobacteria were selected. 1
gene was selected from each Alphaproteobacteria, mutated with
rate m, and inserted randomly into each Betaproteobacteria.
This resulted in a total of 100 HGT events for the community
(Fig 2a). Three long read metagenomic datasets of 500,000
reads were simulated from these reference genomes with
NanoSim (40) v3.1.0 with default parameters: a pre-transfer
community (70) of the 20 reference genomes in equal
abundance, and two separate post-transfer communities with
mutation rate m = 0 and m = 30 (T'l,0, T1ms0), which
include the 10 original Alphaproteobacteria and the 10 HGT-
inserted Betaproteobacteria references in varying abundances
(Fig 2b).
randomly selecting relative quantity between 1 and 5 for each

These varying abundances were established by

of the species as input into the NanoSim abundance text file.
MetaCHIP v.1.10.12 was run with GTDB-Tk (8) v2.2.6 with
taxonomy release 207 and -r set to class (c). Rhea v1.0 was
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run with default parameters, metaFlye v2.9.3, and minigraph
v0.20. Simulated HGT insertions were mapped against reported
HGT sequences for both methods using minimap2 (21) v2.24
with default parameters; each HGT insertion sequence was
marked as detected if the sequence had a hit to a reported
HGT insertion.

a HGT insertion simulation for each of the ten Betaproteobacteria

select 1 gene from each Alpha

% & % mutate each with rates m = 0,30

| : insert mutated genes
(g R 8 B B B N N B H
b simulated relative abundance
unique species within class:
- W Alphaproteobacteria
TO: § TI: @8 W Betaproteobacteria

W Betaproteobacteria with HG1s

post-HGTs

c Accuracy comparison: MetaCHIP and Rhea
mutation rate = 0 1 mutation rate = 30 1

08 08
0.6 0.6
04 04
02 02
0 0

recall  precision Fl-score recall  precision Fl-score
W MetaCHIP M Rhea

Fig. 2. (a) HGT simulation process completed in the HgtSIM
publication (35). One gene is randomly selected from each of the 10
Alphaproteobacteria species, mutated with rate m, then inserted into each
Betaproteobacteria. Mutations rates m = 0 and m = 30 are included in
this study. (b) Simulated relative abundances for time points 70 and T'1.
T0 is a simulation of the 20 reference genomes in equal abundance; T'1
is simulated from the 10 original Alphaproteobacteria species and the 10
mutated Betaproteobacteria species in varying abundances (c) Precision,
recall, and F1l-score for MetaCHIP (36) and rhea detected insertions for
the mock community with mutation rates 0 and 30. Time point T1 is
used for MetaCHIP results; change from 70 to T1 is used for rhea.

Simulated SVs

To evaluate the accuracy of rhea for detection of SV types
insertion, deletion, complex indel, and tandem duplication
in comparison with a MAG-based workflow, variants of
each of the 10 microbes in the ZymoBIOMICS Microbial
Community Standard were generated. SURVIVOR (15) v1.0.7
was used to randomly create 20 indels (insertions or deletions)
and 10 tandem duplicates of length 500-2000 base pairs,
with homozygous_ratio=0.5 and Number_haploid=1 in the
parameters file, for each of the 10 reference genomes
independently. Then a custom script introduced 10 random
complex indels of the same length range into each of the
variant strains. The custom script randomly selected a location
along the genome, then performed a deletion and a random
insertion, each within the prescribed length range. Two long
read metagenomic datasets of roughly 500,000 reads were
simulated from these reference genomes with NanoSim: a pre-
transfer community (70) of the original references in their
provided relative abundances and a post-transfer community
(T1), which includes only the variant strain for half of the
species and equal abundance of variant and original strains for
the other half (Fig 3a). For our MAG workflow, reads were
assembled with metaFlye (19) with --keep-haplotypes set to

perpetuity. It is made available under aCC-BY 4.0 International license.

true, contigs were binned with MetaBat (17) v2.15 with default
parameters, and bins were classified with GTDB-Tk. Bins with
the same classification in both simulated samples were analyzed
for SVs with MUM & Co (29) v3.8 with the known reference
genome length for parameter -g. Simulated SV sequences were
mapped against reported SV sequences for both methods using
minimap2. Each simulated SV was marked as detected if the
sequence had a hit to a reported SV sequence with the correct
SV type. Since MUM & Co does not call complex indels, we
considered these correct if both the deletion sequence and the
insertion sequence were returned.

a Simulated relative abundance
time point TO  time point T1

R V RV
BNz W~
W e M se
~y e B sA
r Il cv

e | K

b Recall . Precision
08
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02
0
Ins Del CIL ™D Tns Del CI TD

Recall for specics with MAGs Fl-score
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MAG Rhea [ MAG Rhea MAG Rhea
BS| 09 1.0 | 1.0 09 | 09 09
SA| 07 09 | 0.8 06 | 08 0.7
EC| 00 07|05 09 | 03 08
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Fig. 3. (a) Relative abundance of long reads for two simulated time
points (70, T1) for our ZymoBIOMICS community. Each of the 10
microbes were randomly given 20 indels, 10 tandem duplications, and
10 long complex indels to create a variant strain (15). T0 contains
only the original references (R); T1 introduces the variants (V),
where half the species have variants in equal abundance to their
original reference [Escherichia coli (EC), Lactobacillus fermentum (LF),
Pseudomonas aeruginosa (PA), Salmonella enterica (SE), Cryptococcus
neoformans (CN)], and half the species are dominated by their variants
[Bacillus subtilis (BS), Enterococcus faecalis (EF), Listeria monocytogenes
(LM), Staphylococcus aureus (SA), Saccharomyces cerevisiae (SC)]. (b)
Complete recall, precision, and Fl-score for each of the SV types (Ins:
insertion, Del: deletion, CI: complex indel, TD: tandem duplication) for
both workflows (bar plots) and recall on a subset of 5 species (table). For
the MAG workflow, MAGs were curated for T0 and T1 separately. Then,
Mum & Co called SVs between T0 and T1 MAGs of matching taxonomic
classification. The 5 species selected for the table are the 5 species with
a classified MAG at both time points. The top portion (BS,SA) show
the species where the variant dominates in T1; whereas both the variant
and the original reference are present in T1 for the bottom portion
(EC, PA, SE). The better recall is in bold for each comparison.

Cheese rind ripening
PacBio HiFi
metagenomic reads from cheese rinds throughout ripening

To evaluate rhea on a real microbiome,

were taken from a previous study (34). One rhea run for
“Cheese C” was completed with the 5 corresponding samples
in temporal order and parameter --type set to pacbio-
hifi. The assembly graph connected component that showed
interesting evolutionary patterns was classified with GTDB-
Tk (8) “classify-wf” with default parameters, and is referred to
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as the Halomonas subgraph per this taxonomic classification.
Mobile genetic element (MGE) contigs and putative hosts
were established in the original publication utilizing Hi-
C sequencing technology, overlap read coverage, and the
viralAssociatePipeline (6). To determine which of these contigs
showed signatures in our Halomonas subgraph, BLAST (2)
was run for all MGE contigs with a putative host, against
the extracted Halomonas subgraph sequences as reference with
default parameters. MGE contigs were considered to have their
signatures present in the graph if a hit with query coverage
> 5% was reported. One subsection of the Halomonas subgraph
was selected for further investigate as it showed a change
in dominating graph path over time. Nodes within this path
were characterized with SeqScreen-Nano (3) v4.1 with default
parameters and provided SeqScreen databases v21.4.

Hot spring microbial mat sequencing

Microbial mat plugs were extracted from Mushroom Spring,
Yellowstone National Park, USA on July 30, 2009 across a series
of temperatures: 50°C, 55°C, 60°C, 65°C. DNA was quantified
using the Qubit 3.0 Fluorometric Quantitation dsDNA High
Sensitivity kit (ThermoFisher Scientific, Waltham, MA, USA)
and stored for future use at -80°C. DNA extractions were
analyzed using the Genomic DNA ScreenTape Analysis kit on
the 4150 TapeStation System (both from Agilent, Santa Clara,
CA, USA). Size selection using AMPure XP beads (Beckman
Coulter, San Jose, CA, USA) increased DNA fragment length
from a mean of 2kb up to 6kb with high recovery of DNA.
Size selected DNA was prepped for sequencing using the Oxford
Nanopore Technologies (ONT) 1D Genomic DNA by Ligation
library preparation kit (SQK-LSK109,
Technologies, Oxford, UK). Libraries were then sequenced
using the ONT MinION sequencer using one FLO-MIN106D R9
Version Rev D flow cell per temperature sample. Sequencing

Oxford Nanopore

was run on a MacBook Pro (model A1502, Apple) using
ONT’s MinKNOW software. Automatic basecalling through
this software was turned off. Sequencing runs lasted between
24-44 hours. Basecalling was completed using the ONT software
Guppy (https://github.com/nanoporetech/pyguppyclient.git)
with default parameters.

Hot spring microbial mat analysis

Rhea was run on Oxford Nanopore Technologies (ONT) reads
from a hot spring microbial mat for 4 unique temperatures
(see above) to asses an environmental microbiome with a high-
level of complex microbial interactions (5; 26). Basecalled
sequences were listed in order of increasing temperature with
the --collapse parameter set to true. MAGs were also curated
for reads from the 60°C sample by metaFlye assembly with
--keep-haplotypes set to true and contigs binned with MetaBat
2 (17). Each read was then aligned back to the set of MAGs with
minimap2 with default parameters. Reads with an alignment
to a MAG contig of > 80% of length were considered to
be included in MAGs, mimicking the pipeline of a previous
manuscript (4). Kraken 2 (39) v2.1.1 was additionally run with
the Kraken 2 default parameters and RefSeq indexes released
on May 17, 2021 for all raw reads in this sample.

Results

Simulated HGT insertions

Two simulation experiments were conducted with a community
of strains within Alphaproteobacteria and Betaproteobacteria

rhea | 5

classes to evaluate HGT detection accuracy: one with mutation
rates m = 0 and the other with m = 30. For the HGT
insertions with m = 0, rhea delivered comparable recall to
MetaCHIP (0.73 to 0.74) and improved precision (1.0 to 0.77)
(Fig 2c). The only non-insertion SV that rhea called was a
single complex indel, which was due to two insertions sequences
in close genomic proximity. Given the two inserted sequences
were still detected as sequences of increasing abundance, this
was still considered this an accurate call. Although results
for MetaCHIP and rhea for m = 0 were relatively similar,
a large discrepancy was observed for mutation rate m = 30.
Here, the accuracy for rhea stays consistent to that of no
mutations (0.76 recall and 1.0 precision), yet MetaCHIP is not
able to detect any of the HGT insertions. This caveat is also
highlighted in the MetaCHIP manuscript; the inserted sequence
is required to be present in another MAG (putative donor) in
the community for MetaCHIP to be able to detect the HGT
insertion. Additionally, MetaCHIP returned a total of 13 false
positive insertions, while rhea did not report any false positives.

Simulated structural variants

A single simulated experiment was conducted to evaluate rhea
in comparison to a MAG-based workflow for a variety of SVs.
This experiment contained two mock time points (70 and T1),
where T0 contains only the references in the ZymoBIOMICS
Microbial Community Standard and 71 contains a mix
of original references and simulated variants. For the 400
simulated SVs, rhea greatly outperformed the MAG workflow in
terms of recall (Fig 3). While rhea detected 71, 68, 63, and 72 of
the simulated insertions, deletions, complex indels, and tandem
duplications respectively, the MAG workflow only identified 19,
23, 0, and 25, respectively. This discrepancy was largely due to
the inability to curate independent MAGs for low abundant
species and SV distinctions.

MAGs were classified for 5 of the 10 species at both T0 and
T1, limiting the MAG-based workflow to only attempt to call
SVs for these species. Of the 5 species, 2 (B. subtilis, S. aureus)
were from species where the SV-containing strain dominated
in sample T1, while 3 (E. coli, P. aeruginosa, S. enterica)
contained both the original and the SV-containing strains in
T1. Accuracy results between rhea and MAG pipelines proved
comparable for insertions, deletions, and tandem duplicates
when only the SV-strain was present in post-transfer sample
T1. However, when both the original and SV-strains were
present, only one MAG was curated for the species, leaving
many of the SV graph nodes unbinned and thus impossible to
detect. Since the SV caller used in the MAG workflow does
not call complex indels, we considered a complex indel to be
detected if both the insertion and deletion for the complex indel
was reported; however, this was not the case for any of the 50.
For the two low abundant fungi present in only 2% relative
abundance, MAGs were not created at either time point, while
rhea was able to detect SVs for these species with similar recall
to the more abundant bacteria. Even with the reduced potential
to call SVs with a MAG-based workflow, this process resulted
in 21 false positive SVs call while rhea only elicit 17.

Of the 125 SVs that were not detected by rhea, roughly 50%
were not detected in the assembly graph, roughly 40% were in
the graph but resolved into longer nodes rather than partaking
in SV graph patterns, and the remaining 10% were called as
the wrong SV type.
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Cheese ripening temporal series

To demonstrate rhea’s ability to extract interesting microbial
evolutionary patterns within a microbiome over time, PacBio
HiFi metagenomic sequences taken from a cheese rind over
the course of ripening were used as input (34). A total of 5
samples were included from sampling weeks 2, 3, 4, 9, and
13, creating 4 pairs of change (C1-4). Evaluating the assembly
graph coverage visuals produced by rhea and Bandage (38),
one connected component stood out for displaying significant
graph complexity and diversity in coverage, implying a
disproportionately large number of SVs. Rhea SV results
indicated roughly 20% of SVs in the community to be contained
in this subgraph (Fig 4a). This connected component was then
classified by GTDB-Tk under genus Halomonas and further
exploration was pursued.

a SV count throughout cheese ripening € Log fold change in Halomonas assembly subgraph

Full microbiome 5 Halomonas 4

150 \ 30 J
_— < 100 20 9 ripening week:
50 Ko
— 0 0
Cl €2 C3 C4 Cl C2 C3 C4

—— insertions complex indels
e deletions  —e— tandem duplications

E){} —
U )

Omim=e?

b MGE contigs host: Halomonas
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*
60 e, 9
40 MGE contigs I |
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Fig. 4. (a) SV counts detected by rhea for pairs of subsequent
samples throughout cheese ripening (C1-4) for the entire community and
exclusively the extracted Halomonas subgraph. (b) Previously established
MGE contigs for 3 selected time points, described as either with (green)
or without (red) Halomonas host by viralAssociationPipeline (vAP) per
original publication’s findings. Grey boxes signify the MGE contigs that
had a BLAST hit of > 5% query coverage to our Halomonas subgraph. (c)
Rhea and Bandage generated visual for the log fold change in coverage for
the Halomonas subgraph. Left shows the complete Halomonas subgraph
between weeks 4 and 9 (C8), selected for showing a general decrease in
abundance yet an increase in abundance for several subsequences. Right
zooms in on a small portion of the subgraph containing an interesting
evolutionary pattern, where the log fold change in coverage graph is shown
for each pair of subsequent time points (C1-4). The graph node marked
with a * indicates the node containing the predicted type I restriction-

modification system.

First, the ability for viral and plasmid mobile genetic
elements (MGEs) to show signatures in the Halomonas
subgraph was evaluated. In the original publication for
the cheese samples, MGE contigs and putative hosts were
established via Hi-C sequencing technology and overlap read
coverage with the viralAssociatePipeline (6) for sampling weeks
2, 4, and 13. Their results showed Halomonas to be host for 0,
6, and 17 MGE contigs, respectively. A BLAST (2) comparison
of all MGE contigs against the Halomonas subgraph, showed
all putative Halomonas MGE contigs to display signatures
in our Halomonas subgraph (hit with more than 5% query
coverage), despite previous host connections being defined via
Hi-C sequencing and our graph being constructed solely on
long-read sequences. An additional 4, 2, and 3 MGE contigs
showed signature in the Halomonas subgraph without having
a previous description of a Halomonas host for the time point

perpetuity. It is made available under aCC-BY 4.0 International license.

for each of the 3 included sampling weeks respectively (Fig
4b), which may be false positives or novel host discovery.
Finally, one striking section of the Halomonas subgraph was
selected for gene function analysis (Fig 4c). Here, a newly
emerged path (displayed lower option) shows an increase in
coverage over time up until stabilizing by week 9, suggesting an
evolutionary advantage over the alternative path (top option).
Gene function predictions returned by SeqScreen (3) showed
the newly dominating path to contain a type I restriction-
modification system that was not expressed in the alternative
sequence. This suggests an evolutionary advantage due to phage
protection in the Halomonas strains, which is unsurprising
given the increasing number of phage interactions detected
throughout ripening for Halomonas. Exploratory analysis here
demonstrates a novel approach produced by rhea to extract
genomic subsequences that suggest an evolutionary advantage,
gain insight into MGE hosts, and infer microbial interactions.

Hot spring microbial mat temperature series

Lastly, to assess an environmental sample with complex
interactions, rhea was run on a temperature series of samples
taken from the Mushroom Spring microbial mat in Yellowstone
National Park, USA. Samples were collected from 4 different
portions of the mat with temperatures 50°C, 55°C, 60°C,
and 65°C. Rhea detected SVs between subsequent temperature
increases (Table 2). An extraordinarily large number of SVs
were detected in the hot spring microbial mat, averaging 8.9
million per consecutive pair, as opposed to an average of 317
per pair in the cheese microbiome. The vast quantity of SVs
is particularly noticeable for complex indels, as counts for this
type was observed to be over an order of magnitude greater than
the other SV types observed. The number of detected complex
indels increased with the first two temperature increases (over
8 million and 22 million, respectively), but then fewer are
detected with the last temperature increase (over 3 million).
While this decrease implies more stability at these higher
temperatures, a closer look at the coassembly graph and
alignments could confirm this pattern is true signal rather than
a result of decreased average read length in the 65°C sample.
Previous research closely analysed two Synechococcus isolates
from these mats and showed a large number of diverse insertion
sequence (IS) activity occurring within the two strains (26).
Our findings suggest there is far more transposon and gene
exchange occurring in microbial mats that has yet to discovered,
and likely many uncharacterized novel bacterial strains. Further
research is needed to confirm these suspicions and additionally
detect the gene functions for the thriving SVs to give insight
into evolutionary drivers for these extremophiles.

Table 2. Sample and SV statistics for hot spring microbial mat
temperature series. SV counts shown represent the number of SV
detected between the sample listed in the row and the previous row.
SV types abbreviations are as follows: Ins: insertion, Del: deletion,
TD: tandem duplication, and CI: complex indel.

Sample Reads Bps Ins Del TD CI
(million) (billion) (10%) (10%) (10%) (10%)

50°C 3.6 7.5

55°C 2.4 6.2 224 232 0.21 8616

60°C 3.4 7.7 220 239 0.38 22217

65°C 2.9 3.7 212 242 0.19 3611
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One sample (60°C) was selected to assess read inclusion
rate of alternative workflows for this community rife in
unknown microbes. To evaluate a reference-based taxonomic
classification method, reads were classified by Kraken2 with
default database, where 42% of the reads were left unclassified.
To evaluate a MAG creation workflow, MAGs were created
with MetaFlye contigs and MetaBat2 binning, where roughly
30% of raw reads did not map to a binned contig. Use of rhea
allowed for the inclusion of all sequenced reads to distinguish
subsequences and genomic context specific to high temperature
environments and give insight into the evolutionary history of
these active and uncharacterized microbes within hot spring
microbal mats.

Computational usage

All software analysis was completed on a Ubuntu 22.04 LTS
system with 15 threads. The /usr/bin/time command was used
to gather time and memory statistics. Reported CPU (central
processing unit) time was calculated by summing the user and
the system time; RAM (random access memory) requirements
were determined using the maximum resident set size.

Table 3. Computational usages for rhea experiments.

reads base pairs User+sys RAM
study (million) (billion) time (h) (GB)
HgtSIM (m0) 1.0 4.0 13 26
HgtSIM (m30) 1.0 4.0 13 26
ZymoBIOMICS 1.0 4.0 13 26
Cheese 1.8 23.1 154 47
Discussion

Here we present rhea, a novel method for detecting structural
variants (SVs) between consecutive samples in long-read
metagenome series data. Rhea leverages sequence information
from the entire metagenomic community and avoids need for a
reference database or MAG creation by analyzing structural
motifs and change in alignment coverage on a combined
coassembly graph. This permits SV detection for intra-species
variations, low abundance genomes, and novel organisms. Our
simulated results of recent HGT events and SVs in two mock
communities show rhea to outperform existing methods. Use
of rhea on a cheese rind microbiome with samples taken
throughout ripening allowed us to infer MGE hosts that
align with Hi-C sequencing and additionally suggest recently
transferred genes with a suspected evolutionary advantage
for the host. Use of rhea for a varying temperature series
of samples from a hot spring microbial mat allowed us to
include reads that would likely have been removed in alternative
workflows, as strain-level diversity prevents sequences from
being incorporated in MAGs and lack of isolate reference
genomes prevent use of reference-based approaches. While
extracting evolutionary insights from this complex community
still provides a significant challenge, rhea introduces a first step
in logically parsing these metagenomic sequences.

Methods for identifying significant changes throughout a
metagenome series is an active area of research (43). Currently,
a common approach is to first simplify each metagenome into
a profile that can be logically aligned and compared, such
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as taxonomic classification relative abundance, gene function
presence, and counts of short sub-sequences (k-mers) (10).
Yet, each of these strategies either oversimplifies potentially
important sequences of microbial communities or is biased
by a reference database (20; 25). Rhea results contain input
data for the interactive visual software package Bandage (38),
for exploration of changes in graph coverage throughout
a metagenome series. This tool provides researchers with
an efficient method to investigate sequence-level fluctuations
while maintaining genome context, to ultimately extract
sequences of interest (Fig 4c). It is important to note that
metagenomic sequences simply provide a snapshot of the
microbial community at the time of sampling, and thus
oscillating fluctuations that take place between samples may
not be detected.

Currently, rhea is only able to detect insertion, deletion,
tandem duplication, and complex indel SV types between
two metagenomes of similar microbes. The method could
theoretically be expanded to inversions and translocations,
however, we anticipate the need to maintain node directionality
(whether the sequence is read forward or reverse) in the
evaluated coassembly graph. Rhea could also be expanded to
detect more complex patterns of multiple overlapping SVs or
short read sequences, but further experimentation is required.

Rhea has so far only been evaluated for SV detection over
the course of microbiome series data. The idea of constructing a
coassembly graph and comparing the coverage between samples
could be expanded beyond series data and used for different
types of studies, such as cohort comparison analyses and MGE
host detection. As the number of reads included in the study
increases, methods of downsampling sequences to generate
the graph or an alternate graph construction methods could
be considered. Alternative graphs, could also be explored in
attempt to improve sensitivity for SV detection, given that
results in our mock ZymoBIOMICS community still collapsed
nearly a quarter of simulated SVs. However, alternative
graph structures could also create two unique connected
components for microbes that have undergone significant
structural variations, which would prevent the current detection
algorithm within rhea to call such SVs. Further analysis could
help determine at which diversity levels SVs are collapsed in a
single node or separated into unique connected components,
to provide genome similarity requirement guidelines for SV
detection capability within rhea.

In lieu of metagenome-specific methods, metagenomes
are often construed to fit methods and models developed
for genome analyses. Yet this simplification overlooks
inherent complexities of dynamic and interdependent microbial
ecosystems (7). By viewing these communities holistically and
acknowledging their intricate interplay and co-evolution, we
can discover nuanced patterns, novel relationships, and a
deeper understanding of the collective behaviors throughout the
community. Developed to embody this ideology, rhea is a novel
technique to pinpoint microbial heterogeneity and evolution by
capturing the full essence of these diverse and interconnected
ecosystems.

Data availability

Rhea and all associate code are available on GitHub
(https://github.com/treangenlab/rhea). Scripts, simulations,
complete results, and hot spring long reads are available on
OSF under project FVHWS.
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