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ABSTRACT

Preclinical murine models in which primary tumors spontaneously metastasize to distant organs
are valuable tools to study metastatic progression and novel cancer treatment combinations.
Here, we characterize a novel syngeneic murine breast tumor cell line, NT2.5-lung metastasis (-
LM), that provides a model of spontaneously metastatic neu-expressing breast cancer with
quicker onset of widespread metastases after orthotopic mammary implantation in immune-
competent NeuN mice. Within one week of orthotopic implantation of NT2.5-LM in NeuN mice,
distant metastases can be observed in the lungs. Within four weeks, metastases are also
observed in the bones, spleen, colon, and liver. Metastases are rapidly growing, proliferative,
and responsive to HER2-directed therapy. We demonstrate altered expression of markers of
epithelial-to-mesenchymal transition (EMT) and enrichment in EMT-regulating pathways,
suggestive of their enhanced metastatic potential. The new NT2.5-LM model provides more
rapid and spontaneous development of widespread metastases. Besides investigating
mechanisms of metastatic progression, this new model may be used for the rationalized
development of novel therapeutic interventions and assessment of therapeutic responses

targeting distant visceral metastases.
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SUMMARY STATEMENT
We characterize a hew syngeneic, immune-competent murine model of breast cancer (NT2.5-

LM) that yields rapid and widespread metastases, preserves spontaneous metastasis, and

provides a model for studying novel therapeutic interventions.
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INTRODUCTION

Breast cancer remains one of the leading causes of cancer mortality among women worldwide,
with metastatic burden as the major contributor of patient death.(Riggio et al., 2020; Sung et al.,
2021) The development of murine models of breast cancer has provided researchers with the
means to more intricately study tumor initiation, progression, metastasis, and response to
therapies, leading to our current understanding of the complex physiological systems and
molecular mechanisms underlying these processes.(Kim and Baek, 2010; Park et al., 2018)
Various transgenic models of breast cancer that develop spontaneous mammary tumors and
metastases exist.(Green et al., 2000; Chantale T Guy et al., 1992; C T Guy et al., 1992; Lin et
al., 2004; Macleod and Jacks, 1999; Siegel et al., 2003) However, only few of these models
allow for efficient study of the metastatic tumor microenvironment (TME). Syngeneic models of
breast cancer, which involve orthotopic implantation of tumor cells or tumor chunks, are widely
utilized, but often times, these models are either slow-growing or do not develop clinically overt
metastases. Experimental metastasis models, which involve tail vein injection of tumor cells, are
also widely utilized, but these models are limited by lack of resolution in metastatic progression,
and conclusions drawn from these models may be artificial. As such, development of
appropriate mouse models of breast carcinoma that recapitulate metastatic progression in a
pathophysiological and clinically relevant context is necessary.

The immunotolerant MMTV-HER2/Neu (ERBBZ2) transgenic murine model (NeuN)
originally characterized by Guy et al.,(C T Guy et al., 1992) in which FVB/N strain mice express
the non-transforming rat Neu cDNA under control by a mammary tissue-specific promoter, gives
rise to spontaneous mammary tumors between 125 and 300 days. This model yields
spontaneously developing mammary tumors that closely mimic human epidermal growth factor
2-positive (HER2") tumors.(Fry et al., 2017) One caveat of this model is its long latency for
development of both primary and metastatic disease, as well as the lack of penetrance of

metastatic disease. To circumvent these issues, previous efforts have focused on its
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improvement and have led to the development of a syngeneic tumor cell line derivative, known
as NT2.5. The latter model has significantly shortened the time from tumor cell injection to tumor
growth and is capable of establishing widespread distant metastases upon cardiac or tail vein
injections.(R Todd Reilly et al., 2000; Song et al., 2008) Metastases in various organs can be
observed within 3 weeks of NT2.5 tumor cell injection, but this model is also limited by its
inability to recapitulate the process of spontaneous metastasis.

In this study, we report the serial passaging of the original NT2.5 cell line to generate a
new subline called NT2.5-LM, which represents an orthotopic, immunotolerant model of HER2"
breast cancer capable of promoting development of spontaneous metastases. We also perform
an in-depth characterization of the newly established NT2.5-LM cell line at both the genomic

and proteomic levels to establish the foundations for its potential use in preclinical studies.
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102 RESULTS

103  Orthotopic implantation of NT2.5-LM leads to decreased survival, larger mammary

104  tumors, and increased lung metastasis

105 Inthe NT2.5 syngeneic model, NT2.5 cells are implanted in the mammary fat pad of adult

106  female NeuN mice, after which the maximum allowable volume of 1.5 cm® is reached in 4-5
107  weeks,(Brian J. Christmas et al., 2018; R T Reilly et al., 2000a; Sidiropoulos et al., 2022) prior to
108 the establishment of metastatic disease and preventing efficient study of metastatic tumor

109  microenvironments (TMES). To derive a highly metastatic cell line, lung metastases were

110  macro-dissected from the lungs of NT2.5 mammary tumor-bearing NeuN mice, dissociated to
111  single-cell suspensions, and intravenously injected into non-tumor-bearing NeuN mice, after
112  which lung metastases were harvested again and the process repeated. After the third round of
113  harvest, spontaneous lung metastases could be observed 3 weeks following mammary fat pad
114  injection of isolated cells, thus establishing the NT2.5-lung metastasis (-LM) cell line for use.
115 To characterize the phenotype of NT2.5-LM-derived tumors in vivo, we orthotopically
116 injected NT2.5-LM cells into the mammary fat pad of NeuN mice and measured survival, tumor
117  burden, and metastatic burden. When compared to parental NT2.5 controls, mice orthotopically
118 injected with NT2.5-LM cells experienced significantly decreased survival (Fig. 1A) and

119 increased weekly mammary tumor growth rates (Fig. 1B). Despite surgical resection of NT2.5-
120 LM mammary tumors at 12 days post-injection, tumors regrew at 24 days post-injection and
121  reached endpoint criteria faster than NT2.5 mammary tumors (Figs. S1A-B). Necropsy

122  analyses of mice with NT2.5-LM mammary tumors revealed widespread metastases in the

123  heart, lymph nodes, lungs, kidneys, adrenal glands, stomach, colon, spleen, skull, ears, body
124  walls, and teeth (Fig. S2), with high metastatic burden observed in the lungs. Moving forward,
125 we focused on the lungs as a surrogate measure of total metastatic burden. When examining
126  lungs of mice euthanized from 34 to 41 days post-injection, we found a significant increase in

127  the number of lung metastases in the NT2.5-LM model, when compared to the NT2.5 control
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128 (Fig. 1C). NT2.5-LM lung micro-metastases could be observed by H&E staining as early as 7
129  days post-injection, with consistent growth observed at 10, 22, 28, and 35 days post-injection
130  (Fig. 1D).

131 To further illuminate on the phenotypic characteristics of NT2.5-LM metastases, we

132  performed immunohistochemical staining for ERBB2, Ki67, CK5, CK6, AE1/3, and EGFR.

133 NT2.5-LM lung metastases are ERBB2-positive (Fig. 1E), express similarly low levels of AE1/3
134 and EGFR, and are similarly negative for CK5 and CK6, when compared to NT2.5 mammary
135 tumors (Fig. S3). Finally, NT2.5-LM lung metastases are more proliferative, as observed by
136 increased numbers of Ki67+ cells (Figs. 1F-G).

137

138 NT2.5-LMresponds to HER2 directed therapy

139  Patients with HER2" breast cancer demonstrate a response rate of over 35% when treated with
140 HERZ2-directed monoclonal antibody therapy.(Vogel et al., 2002) To characterize the sensitivity
141  of the NT2.5-LM model to a similar type of therapy, NT2.5-LM metastasis-bearing mice were
142  treated with anti-HER2 antibody by intraperitoneal (i.p.) injection once a week and assessed for
143  survival (Fig. S4). Anti-HER2-treated mice showed improved survival when compared to

144  vehicle-treated mice, with a ~35% response rate to therapy (Fig. 2A), similar to that observed in
145  patients treated with single agent therapy.(Vogel et al., 2002) When assessing the anti-HER2
146 treatment effects on lung metastases, we found that treatment did not change the number of
147  lung metastases (Fig. 2B), but it significantly decreased the area of metastases within the lung
148 (Fig. 2C). Together, these data suggest that the new NT2.5-LM model demonstrates clinical
149  relevance with regards to its therapeutic response to anti-HER treatments.

150

151 NT2.5-LM does not exhibit altered mutational landscape compared to parental NT2.5

152  With the increased number of lung metastases in NT2.5-LM model, we hypothesized that there

153  might be differences in the genomic landscape and pathogenic mutational burden between the
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154  NT2.5 and NT2.5-LM tumors. First, we performed whole exome sequencing on the NT2.5 and
155 NT2.5-LM cell lines to identify potential variations in genes with known pathogenic mutations
156 and in genes known to affect proliferation and metastasis. Many pathogenic gene mutations
157  common to breast cancer(Gil Del Alcazar et al., 2022), such as Pten, Brca2, Atm, Cdhl, Chek2,
158 Nfi, Aridla, Pik3ca, and Esrl, revealed no alterations between NT2.5 and NT2.5-LM (Fig. 3A).
159  Of note, NT2.5-LM contained mutations in Brcal and NT2.5 contained mutations in Rad51c, but
160  both were found within intron regions, thus not affecting protein sequence. Since NT2.5-LM is a
161 HER2® cell line, we examined the Erbb2 transcript sequence across both cell lines more

162  thoroughly and found six mutations within the protein coding sequence. However, all six

163  mutations were silent (Fig. 3B). Lastly, we assessed tumor mutational burden, given that it

164  represents another factor that could affect response to therapy. We found 11.45 mutations per
165 megabase in the NT2.5 and 13.45 mutations per megabase in the NT2.5-LM models, with

166  similar distributions of high missense mutations, single nucleotide polymorphisms (SNPs), and
167  tyrosine-to-cytosine and cytosine-to-tyrosine mutations (Figs. 3C-D). Collectively, these data
168  suggest that phenotypic differences between the NT2.5 and NT2.5-LM models are not the result
169  of diversified mutational burden in NT2.5-LM.

170

171  NT2.5-LM exhibits altered signaling indicative of epithelial-to-mesenchymal transition
172 (EMT)

173  Given the non-significant alterations in mutational burden, we sought to explain the differences
174  in pro-metastatic phenotypes by comparing gene expression profiles between NT2.5 and

175 NT2.5-LM. Four NT2.5 tumors and four NT2.5-LM tumors were collected from NeuN mice and
176  subjected to unsorted single-cell RNA sequencing (scRNAseq), yielding approximately 9.6x10°
177  total reads. From Louvain clustering, approximately 10,000 NT2.5 and 9,000 NT2.5-LM cancer
178 cells were identified as Lcn+, Wfd2c+, Cd24a+, Cd276+, Col9al+, Erbb2+,(Berger et al., 2010;

179  Gunduz et al., 2016; Seaman et al., 2017; Sidiropoulos et al., 2022; Yang et al., 2009; Yeo et
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180 al., 2020) subsetted out, and visualized by Principal Component Analysis (PCA) (Fig. 4A). An
181 analysis of the top 25 differentially expressed genes between the two cancer cell clusters

182 revealed an upregulation of genes associated with increased cellular proliferation [Pdgfa,

183  Sox9],(Jansson et al., 2018; Ma et al., 2020; Pinto et al., 2014) invasion and migration [Lrp1,
184  Cd9, Cxcll, Anxal],(Fayard et al., 2009; Moraes et al., 2018; Rappa et al., 2015; Xing et al.,
185 2016; Yang et al., 2019) epithelial-to-mesenchymal transition (EMT) [Vim, Inhba], (Paulin et al.,
186  2022; Yu et al., 2021) and stemness and metastatic potential [S100A4, Nrp2, Aldh2,

187  JunB](Elaimy et al., 2018; Helfman et al., 2005; Qiao et al., 2015; Sundqvist et al., 2018;

188 Yasuoka et al., 2009; Zhang and Fu, 2021) in NT2.5-LM. Concurrently, there was a

189 downregulation of genes associated with decreased cellular proliferation [Cripl],(Ludyga et al.,
190 2013) decreased invasion [Cldn7],(Kominsky et al., 2003; Martin and Jiang, 2009) and

191 decreased epithelial phenotype and polarization [Epcam](Kyung-A Hyun et al., 2016) in NT2.5-
192 LM (Figs. 4B-C). We validated the increased gene expression of Vim and decreased gene
193  expression of Epcam in NT2.5-LM at the protein level by flow cytometry, demonstrating a

194  significant increase in the percentage of Vimentin-positive cells and significant decrease in the
195 percentage of Epcam-positive cells. (Figs. 4D-E).

196 Further investigation into differential pathway regulation was performed by comparing
197 the top 250 differentially expressed genes for overlap with pathways from the

198 'KEGG_2019 Mouse’ database using Gene Set Enrichment Analysis. NT2.5-LM exhibited
199 significant upregulation of the glycolysis pathway and downregulation of oxidative

200 phosphorylation, ECM-receptor interaction, focal adhesion, protein digestion and absorption,
201 and adherens junction pathways (p-adj < 0.05) (Fig. S5, Table S1). Dissolution of adherens
202  junctions and alterations in cell-cell interactions is a hallmark of EMT,(Kalluri and Weinberg,
203  2009; Liu et al., 2016) and these data offer increased EMT as an explanation for the increased
204  metastatic phenotype of NT2.5-LM.

205
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206 NT2.5-LM expresses increased levels of Mena™" — a marker of metastatic potential

207  Our group has performed extensive work on mechanisms of metastatic dissemination and has
208  previously reported that pro-migratory/pro-invasive tumor cells primed for the metastatic journey
209 tend to upregulate the expression of Mena™, a spliced isoform of the actin-regulatory protein
210 mammalian enabled (Mena) that conveys increased metastatic potential. Specifically, previous
211  studies have collectively shown that Mena™ is correlated with increased breast cancer cell
212 migration, invasion, and metastasis,(Borriello et al., 2022; Karagiannis et al., 2016; Philippar et
213 al., 2008; Roussos et al., 2011b; Sharma et al., 2021) and is significantly upregulated in

214  response to cytotoxic treatments.(Karagiannis et al., 2017) In view of observed alterations in
215 various ECM and cell-cell adhesion interaction pathways, (Fig. S5, Table S1), we expected an
216  enrichment of Mena™-positive tumor cells in NT2.5-LM metastatic tumors. Indeed,

217  immunofluorescence analysis of Mena™" revealed significantly increased expression in the

218 metastatic NT2.5-LM tumors, when compared to the NT2.5 mammary tumors (Figs. 5A-B).
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219 DISCUSSION

220  Spontaneously metastatic breast cancer cell lines are valuable tools for studying how metastatic
221  tumors differ from primary tissue tumors in mice, but the time for spontaneous lung metastases
222  to develop after injection of cancer cells into the breast tissue site is prolonged and inconsistent.
223 Inthis study, we generated a more aggressively metastatic breast cancer cell line, NT2.5-LM,
224 that spontaneously metastasizes to distant organs as early as one week post-injection. This not
225  only allows us to study the effects of treatment interventions on metastatic progression in the
226  most biologically accurate setting, but also utilizes surgical removal of the primary tumor early
227  onto ensure that we are not limited by humane endpoints of primary tumor growth.

228 NT2.5-LM exhibited poorer survival, faster primary tumor growth, and more widespread
229 metastases. Because the NT2.5-LM cell line was derived from NT2.5, we sought to understand
230 the differences that would cause it to be more widely metastatic and proliferative compared to
231 the parental cell line. We hypothesized that increased expression of HER2 or a novel mutation
232  inthe ErbB2 gene could be driving increased proliferation. NT2.5-LM did not exhibit new

233  pathogenic mutations in ErbB2, and increased expression of HER2 was not observed by

234  immunohistochemistry. Furthermore, pathways analyses conducted on scRNAseq data

235 demonstrated no significant difference in expression of genes within the ErbB pathway. Thus,
236  change in HERZ2 signaling is not a likely mechanism driving the increased metastatic and

237  proliferative phenotype observed in NT2.5-LM.

238 Other potential mechanisms driving observed differences in NT2.5-LM include the

239  differential regulation of proliferation- and metastasis-promoting pathways. We observed a shift
240  in metabolic pathways with an upregulation of glycolysis and a downregulation of oxidative

241  phosphorylation KEGG pathways, which have been previously implicated in more metastatic
242  cancers,(Ashton et al., 2018; Gaude and Frezza, 2016) supporting our observations that NT2.5-
243 LM is more widely metastatic. We observed a downregulation of ECM receptor interaction, focal

244 junction, and adheres junction pathways, which are interactors in the intravasation and
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245  extravasation processes of metastasis.(Fares et al., 2020) We also identified differential

246  expression of key genes involved in EMT that favored a more mesenchymal phenotype in
247  NT2.5-LM, which could explain the increased number of metastases in lung and other distant
248  organs. Our observed alterations in expression of epithelial markers, mesenchymal markers,
249  cell adhesion pathways, extracellular matrix pathways, and metabolic pathways are

250 characteristic of EMT.(Le Bras et al., 2012; Pal et al., 2022)

251 One interesting alteration associated with the loss of epithelial cell-cell contacts is the

252  increased expression of invasive actin regulatory protein isoform Mena™"

.(Goswami et al.,

253  2009) Mena™'-expressing breast cancer cells participate in a paracrine loop with intratumoral
254  macrophages, which facilitates their translocation to the perivascular niche. Once they reach the
255  vasculature, Mena™-expressing tumor cells associate with perivascular macrophages to

256 intravasate into the blood vessel. These tripartite microanatomical structures composed of

257  endothelial cells, perivascular macrophages, and Mena™V-expressing tumor cells are key

258  prerequisites of metastatic dissemination and have been previously called Tumor

259  Microenvironment of Metastasis (TMEM) doorways.(Borriello et al., 2022; Karagiannis et al.,
260 2017; Philippar et al., 2008; Robinson et al., 2009; Roussos et al., 2011a; Sharma et al., 2021)
261  Of note, NT2.5-LM tumors exhibit increased expression of Mena™", which could explain its

262  highly metastatic nature. As such, this model may be efficiently used in the future to study

263  mechanisms of breast cancer cell dissemination associated with TMEM doorways and Mena™"-
264  dependent pathways.

265 In summary, our findings distinguish NT2.5-LM as a more proliferative and metastatic
266  model of breast cancer for experimental use that also preserves the spontaneous metastatic
267  process within a shorter timeline. Various genetic and epigenetic changes can occur in a cancer
268 cell as it accumulates mutations, proceeds through EMT, interacts with the TME, and forms

269 distant metastases. Our group and others have shown that the addition of epigenetic

270  modulators to various therapies in multiple cancer models has decreased tumor growth and
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271 improved response.(Brian J. Christmas et al., 2018; Kim et al., 2014, Orillion et al., 2017,
272  Sidiropoulos et al., 2022) Moving forward, we envision the use of this NT2.5-LM model to
273 facilitate efficient future studies of novel treatment combinations for metastatic disease and

274  evaluation of different metastatic TME contributions to therapeutic response.
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275 METHODS

276  Cell lines

277  NT2.5-lung metastasis (-LM) cell line was derived from the parental NT2.5 cell line, which was
278  originally derived from the NT2 cell line in the NeuN murine model established by Guy etal.(C T
279  Guyetal., 1992) 1x10° NT2.5 cells were injected intravenously by tail vein in five 8-week-old
280 female NeuN mice. Three weeks after tail vein injection, lung metastases were macro-dissected
281  from all mice, minced on ice, filtered using a 100 um filter, and pooled. The pooled cells were
282  used to repeat the process described above, starting with intravenous injection, and after the
283  third round of lung metastasis harvest, pooled cells were injected into the mammary fat pad of
284  five 8-week-old female NeuN mice for spontaneous lung metastasis formation. After

285  confirmation of spontaneous lung metastasis formation by lung harvest and Hematoxylin and
286  Eosin (H&E) stains, the cell line was propagated in cell culture and named NT2.5-LM. NT2.5
287  cells were derived from spontaneous mammary tumors growing in female NeuN mice and

288 obtained from the Jaffee Lab at Johns Hopkins University.(Jaffee et al., 1998; Machiels et al.,
289 2001; R T Reilly et al., 2000b) Culture conditions for NT2.5-LM and NT2.5 cells are as follows:
290 37°C, 5% CO; in RPMI 1640 (Gibco, cat. 11875-093) supplemented with 20% fetal bovine

291  serum (Gemini, cat. 100-106), 1.2% HEPES (Gibco, cat. 15630-080), 1% L-glutamine (Gibco,
292  cat. 25030-081), 1% MEM non-essential amino acids (Gibco, cat. 11140-050), 0.5%

293  penicillin/streptomycin (Gibco, cat. 15140-122), 1% sodium pyruvate (Sigma, cat. S8636), 0.2%
294  insulin (NovoLog, cat. U-100). Cell lines are tested for mycoplasma every 6 months.

295

296 Mice

297 A syngeneic mouse model of HER2" breast cancer using the NT2.5 cell line was derived from
298 the NeuN transgenic mouse developed by Guy et al.(C T Guy et al., 1992) NeuN transgenic
299  mice overexpress non-transforming rat neu cDNA under the control of a mammary specific

300 promoter and develop spontaneous focal mammary adenocarcinomas after a long latency of
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301 125 days with the majority of mice developing tumors by 300 days. Injection of NT2.5 into NeuN
302 mice leads to development of tumors 100% of the time, since these mice are tolerized to Neu.
303  Mice were kept in pathogen-free conditions and were treated in accordance with institutional
304  and American Association of Laboratory Animal Committee policies. NeuN mice were originally
305 from W. Muller McMaster University, Hamilton, Ontario, Canada and overexpress HER2 via the
306  mouse mammary tumor virus (MMTV) promoter. Colonies are renewed yearly from Jackson
307 labs and bred in-house by brother/sister mating.

308

309  Survival, tumor growth, metastasis growth, necropsy

310 1x10° NT2.5 or NT2.5-LM cells were injected into the mammary fat pad. NT2.5-LM tumors were
311 resected on day 12. Survival endpoint was determined to be mammary tumor volume exceeding
312 1.5 cm?® or morbidity symptoms due to lung metastatic tumor burden, such as breathing, coat
313  condition, activity, and posture. Mammary tumor growth was measured by calipers (£ 0.01 mm)
314  three times a week, with weekly tumor growth determined by calculating the average of

315 differences in tumor volumes per week for each mouse. Lung surface metastases were counted
316 by visual inspection of collected lungs following euthanasia at survival endpoint and before

317 fixation in formalin and paraffin-embedding. Lung sections were taken 40 um apart, for a

318 representative 3 sections per lung. H&E stained sections were scanned and analyzed using
319  either HALO or NDPView.2 to quantify number and tumor area of lung metastases. For

320 necropsy, various tissues were collected at survival endpoint, fixed in formalin, paraffin-

321 embedded, sectioned, stained with H&E, and visualized by light microscopy. Necropsy tissues
322  include heart, lymph nodes, lungs, kidney, adrenal gland, stomach, colon, spleen, skull, ear,
323 body wall, and teeth.

324

325 Immunohistochemistry
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326  Immunohistochemistry staining was performed at the Oncology Tissue Services Core of Johns
327  Hopkins University. Immunolabeling for ErbB2, Ki67, CK5, CK6, AE1/3 and EGFR was

328 performed on formalin-fixed, paraffin-embedded sections. Briefly, following dewaxing and

329 rehydration, slides were immersed in 1% Tween-20, then heat-induced antigen retrieval was
330 performed in a steamer using Antigen Unmasking Solution (catalog# H-3300, Vector Labs) for
331 25 minutes. Slides were rinsed in PBST, endogenous peroxidase and phosphatase were

332  blocked (Dako, cat. S2003), and then incubated with the following primary antibodies for 45
333  minutes at room temperature: anti-ErbB2 (1:400 dilution; ThermoFisher Scientific, cat. MA5-
334 15050, SF23975824), anti-Ki67 (1:200 dilution; Abcam, cat. Ab16667), anti-EGFR (1:50 dilution;
335 LSBio, cat. LS-B2914-50), anti-CK5 (1:2000 dilution; BioLegend, cat. 905501), anti-CK6 (1:200
336 dilution; Novus Biologicals, cat. NBP2-34358), anti-AE-1/AE-3 (1:200 dilution; Novus

337 Biologicals, cat. NBP2-29429). Slides were then incubated with HRP-conjugated anti-rabbit
338 secondary antibody (Leica Microsystems, cat. PB6119) for 30 minutes at room temperature.
339  Signal detection was conducted with 3,3'-Diaminobenzidine (Sigma-Aldrich, cat. D4293).

340  Counterstaining was conducted with Mayer's hematoxylin.

341

342  Anti-HER2 treatment of mice

343  1x10° NT2.5-LM cells were injected into the mammary fat pad. Mammary tumors were resected
344  onday 12, after which mice were treated with anti-HER2 antibody starting on day 23 to mimic
345 standard therapy treatment with trastuzumab in patients with HER2" breast cancer. Anti-HER2
346  monoclonal antibody (BioXCell, clone 7.16.4) and mouse IgG2a isotype vehicle antibody

347  (BioXCell, clone C1.18.4) were administered at 100 pg/mouse by intraperitoneal (i.p.) injection
348 once a week for three weeks as described.(Brian J Christmas et al., 2018) Following three

349  weeks of treatment, either lung tissues were collected for tumor burden analysis, or

350 maintenance dosing was continued once a week until survival endpoint. For tumor burden

351 analysis, three different levels were taken from formalin-fixed and paraffin-embedded lungs
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352  sectioned 100 um apart. Slides were H&E stained, scanned, and analyzed using HALO to

353  obtain summed lung metastasis counts and percent tumor area.

354

355  Tumor dissociation

356  Following collection, mammary tumors were minced on ice and dissociated using a tumor

357  dissociation kit (Miltenyi Biotec, cat. 130-096-730) and the 37C_m_TDK_2 program on the
358  OctoDissociator (Miltenyi Biotec) per the manufacturer’s instructions. Cell suspensions were
359 filtered using 70 um cell strainers and red blood cells were lysed using ACK lysis buffer (Quality
360 Biological, cat. 118-156-721). To submit for RNA sequencing, dead cells were removed using
361 the MACS Dead Cell Removal Kit (Miltenyi Biotec).

362

363  Flow cytometry

364 NT2.5 and NT2.5-LM cells were cultured for at least two passages, washed with PBS, and

365  stained with Live/Dead Fixable Aqua (ThermoFisher, cat. L10119) for 30 minutes at 4°C, per the
366  manufacturer’s instructions. Cells were fixed and permeabilized for 30 minutes at room

367 temperature using the Foxp3 / Transcription Factor Staining Buffer Set (Life Technologies

368  Corp., cat. 00-5523-00), followed by an Fc receptor block (BD Pharmingen, cat. 553142) for 10
369 minutes at room temperature. Cells were incubated with the following primary antibodies for 30
370  minutes at room temperature: anti-Vimentin (1:100 dilution; Cell Signaling Technology, cat.
371  5741), anti-Epcam (1:100 dilution; Cell Signaling Technology, cat. 93790). Cells were then

372  incubated with FITC-conjugated anti-rabbit secondary antibody (1 pg/mL; BioLegend, cat.

373  406403) for 30 minutes at room temperature. Samples were run on the Attune NxT flow

374  cytometer (Invitrogen) and analyzed using Kaluza software.

375

376  Mena™ Immunofluorescence and Image Analysis
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377  Immunofluorescence staining for Mena™"’ was performed on formalin-fixed, paraffin-embedded
378 (FFPE) sections. Briefly, slides were deparaffinized by melting for 5 minutes at 58°C in an oven
379  equipped with a fan, followed by two Xylene treatments for 20 minutes each. Slides were

380 rehydrated and antigen retrieval was performed in 1 mM EDTA, pH 8.0 for 20 minutes at 97°C
381 in a conventional steamer. Slides were washed with 0.05% PBST and incubated in blocking
382  solution (5% goat serum in 0.05% PBST) for 1 hour at room temperature. Slides were then

383 incubated with anti-Mena™" primary antibody (0.25 ug/mL; in-house developed in the lab of Dr.
384  John S. Condeelis, AE1071, AP-4) overnight at 4°C. After three washes in 0.05% PBST, slides
385  were incubated with Alexa 488-conjugated goat anti-chicken secondary antibody at room

386 temperature for 1 hour. After three washes in 0.05% PBST, slides were incubated with spectral
387  DAPI for 5 minutes and mounted with ProLong Gold Antifade Mountant (Life Technologies, cat.
388 P36930). Slides were imaged using the Pannoramic 250 Flash Il digital whole slide scanner. Up
389 to 10 High-Power Field (HPF) images per mouse, depending on tumor and metastasis burden
390 availability, were captured in TIFF format using Caseviewer v2.4 (3DHISTECH). Further image

391  processing was performed in ImageJ. Single Mena™¥

channels were uploaded, converted to 8-
392  bit, and binarized using intensity thresholding (default method). The DAPI channel confirmed
393 that all HPFs chosen were within necrosis-free areas of the tumors and metastases. The

394 Mena™V* area in each HPF was then expressed as a fraction of the total tumor area, and the
395 mean of all HPFs was calculated for each mouse. For visualization purposes only, images were
396 enhanced in Caseviewer by exclusively using linear image modifications (i.e., brightness and
397  contrast), and the signal was pseudo-colored for optimal representation of fields of interest.

398

399 Whole exome sequencing (WES)

400 NT2.5and NT2.5-LM cell lines were cultured as described above and sent for whole exome

401 sequencing at the Johns Hopkins Genomics Core. One microgram or more of mouse genomic

402 DNA from each sample was analyzed by whole exome sequencing using the SureSelectXT
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Mouse All Exon kit (Agilent), followed by next generation sequencing using the NovaSeq 6000
S4 flow cell (lllumina) with a 2x150bp paired-end read configuration, per the manufacturer’s
instructions. bcl2fastq v2.15.0 (lllumina) was used to convert BCL files to FASTQ files using
default parameters. Running alignments against the mm10 genome was done by bwa v0.7.7
(mem) along with Piccard-tools1.119 to add read groups and remove duplicate reads. GATK
v3.6.0 base call recalibration steps were used to create a final alignment file. MuTect2 v3.6.0
was used to call somatic variants against a panel of normal using default parameters. snpEFF
(v4.1) was used to annotate the variant calls and to create a clean tab separated table of
variants. IGV v2.13.2 was used to identify breast cancer specific mutations from MuTect2 files.
SnapGene Viewer v.6.2 was used to visually align and determine the mutations between the
two cell lines against the mRNA sequences of selected genes. Annotations were created to

visualize mutational differences.

Single cell RNA sequencing (scRNA-seq)

For library preparation, 10x Genomics Chromium Single Cell 3' RNA-seq kits v3 were used.
Gene expression libraries were prepared per the manufacturer’s instructions. 4 biological
replicates totaling 8 processed tumors were sequenced in 2 batches: Run A - 2 NT2.5 tumors, 2
NT2.5-LM tumors; Run B - 2 NT2.5 tumors, 2 NT2.5-LM tumors. These tumors were taken as a
subset from a larger batch of tumors that include various mouse treatments, with each batch
having an equal assortment of samples from multiple treatment groups to reduce technical
biases. Here, we restrict our analysis to replicates under the vehicle treatment condition.
lllumina HiSegX Ten or NovaSeq were used to generate total reads. Paired-end reads were
processed using CellRanger v3.0.2 and mapped to the mm10 transcriptome with default
settings. ScanPy v1.8.2 and Python v3 was used for quality control and basic filtering.
DoubleDetection v4.2 with Louvain clustering algorithm v0.7.1 was used to find doublets. For

gene filtering, all genes expressed in less than 3 cells within a tumor (NT2.5 and NT2.5-LM)
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429  were removed. Cells expressing less than 200 genes or more than 8,000 genes or having more
430 than 15% mitochondrial gene expression were also removed. Gene expression was total-count
431 normalized to 10,000 reads per cell and log transformed. Highly variable genes were identified
432  using default ScanPy parameters, and the total counts per cell and the percent mitochondrial
433  genes expressed were regressed out. Finally, gene expression was scaled to unit variance and
434  values exceeding 10 standard deviations were removed. Neighborhood graphs were

435  constructed using 10 nearest neighbors and 30 principal components. Tumors were clustered
436  together within cell lines using Louvain clustering (with resolution parameter 0.12) and cancer
437 cells were identified as Lcn+, Wfd2c+, Cd24a+, Cd276+, Col9al+, Erbb2+.(Berger et al., 2010;
438 GlUndiz et al., 2016; Seaman et al., 2017; Sidiropoulos et al., 2022; Yang et al., 2009; Yeo et
439  al., 2020) All other cell clusters and doublets were removed. There were ~10,000 NT2.5 cancer
440  cells and ~9,000 NT2.5-LM cancer cells, and these were combined by total raw count

441 normalization to 10,000 reads, with log transformation and batch correction on cell lines via
442  ComBat. The 250 top differentially expressed genes in the cancer clusters from each cell line
443  were identified using the Wilcoxon rank-sum test and compared for overlap with pathways from
444  the 'KEGG_2019 Mouse’ database using GSEAPY (Gene Set Enrichment Analysis in Python).
445

446  Statistics

447  For survival curves, Mantel-Cox log rank tests were used. For tumor growth rate, metastasis
448  counts, and lung metastasis volumes, Mann Whitney tests were used. For quantification of

449  immunohistochemistry staining, Welch'’s T-tests were used. For flow cytometry, unpaired t-tests
450  were used. For immunofluorescence staining of tumor and metastatic tissues, Mann Whitney U-
451 tests were used. To aid in statistical choice, data were tested for normality using D’Agostino-
452  Pearson omnibus normality tests, Anderson-Darling tests, Shapiro-Wilk normality tests, and
453  Kolmogorov-Smirnov normality tests.

454
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FIGURE LEGENDS

Figure 1: NT2.5-LM leads to decreased survival, larger mammary tumors, and increased
lung metastasis. (A) 1x10°> NT2.5 or NT2.5-LM cells were injected into the mammary fat pad of
NeuN mice (NT2.5, n=10; NT2.5-LM, n=7). After surgical resection of NT2.5-LM tumor-bearing
mice at 12 days post-injection (dpi), mice were allowed to reach humane survival endpoint with
tumor volume exceeding 1.5 cm®. (B) Mammary tumor sizes of mice in (A) were measured at
least 3x a week by calipers, averaged, and used to calculate differences in average weekly
tumor growth rate. (C) At survival endpoint of mice in (A), the number of surface metastases
was counted by visual inspection. (D) H&E staining of lungs in NT2.5-LM tumor-bearing mice
collected at 7, 10, 22, 28, and 35 days post-injection (dpi). Black arrows point to lung
metastases. Scale bars as shown. (E) Immunohistochemistry (IHC) staining of Erbb2 and (F)
Ki67 in NT2.5 mammary tumors (top) and NT2.5-LM lung metastases (bottom) collected at 35
days post-injection. Scale bars as shown. (G) Percentage of Ki67+ cells from 10 regions of
interest (ROIs) were counted from Ki67 IHC staining in (F). Statistics used: Mantel-Cox Log-
rank test for (A), Mann-Whitney U-test for (B-D), Welch'’s T-test for (G), *p < 0.05, **p < 0.01,

****p < 0.0001.

Figure 2: NT2.5-LM responds to HER2-directed therapy. (A) 1x10°> NT2.5-LM cells were
injected into the mammary fat pad of NeuN mice. After surgical resection of NT2.5-LM tumor-
bearing mice at 12 days post-injection (dpi), treatment with vehicle or anti-HER2 monoclonal
antibody (100 pg/mouse, 1x/week, intraperitoneal injection) began at 23 dpi (n=12 per treatment
group) and continued until survival endpoint at 70 dpi. (B) 1x10°> NT2.5-LM cells were injected
into the mammary fat pad of NeuN mice, tumors were surgically resected at 12 dpi, and anti-
HER?2 treatment (100 pg/mouse, 1x/week, intraperitoneal injection) began at 23 dpi (n=10 per
treatment group). Lungs were collected at 38 dpi. Three different levels were taken from

formalin-fixed and paraffin-embedded lungs sectioned 100 um apart. Slides were H&E stained,
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518 scanned, and analyzed using HALO to obtain summed lung metastasis counts and (C) percent
519 tumor area over normal lung tissue. Two mice in the vehicle group were removed due to

520 inconsistencies between HALO results and physical examination of H&E slides. Statistics used:
521 Mantel-Cox Log-rank test for (A), Mann-Whitney U-test for (B-C), ns = not-significant, **p < 0.01.
522

523  Figure 3: NT2.5-LM does not exhibit altered mutational landscape compared to parental
524  NT2.5. (A) Alignment of NT2.5 and NT2.5-LM whole exome sequencing reads to the mm10
525 genome reveal cell line-specific and —overlapping mutations common in breast cancer. (B)

526  Erbb2 transcript sequence with identified mutation sites in NT2.5 and NT2.5-LM. All mutations
527  were identified to be silent mutations. Nucleotide numbering is based on DNA reference

528 sequence NM_001003817.1. Note that the version number of this reference sequence may be
529 frequently updated. (C) Distributions of mutation classifications, variant types, single nucleotide
530 variant (SNV) classes, and top 10 mutated genes for NT2.5 and (D) NT2.5-LM are shown.

531

532  Figure 4: NT2.5-LM exhibits altered signaling indicative of increased EMT. (A) Four NT2.5
533  and four NT2.5-LM mammary tumors were collected from NeuN mice, dissociated to single cell
534  suspensions, and sent for unsorted single-cell RNA sequencing. Cancer cell clusters were

535 annotated as Lcn+, Wfd2c+, Cd24a+, Cd276+, Col9al+, Erbb2+, and subsetted out for PCA
536 visualization. (B) Top 25 significantly up- and down-regulated genes in NT2.5-LM. (C) Violin
537 plots of key metastasis-related genes identified in (B). (D) Flow cytometry staining of epithelial-
538 to-mesenchymal transition (EMT) related genes identified in (C) in NT2.5 and NT2.5-LM cell
539 lines for Vimentin and (E) Epcam. Statistics used: Unpaired T-test for (D-E), ****p < 0.0001.
540

541  Figure 5: NT2.5-LM expresses increased levels of Mena™’ — a marker of metastatic

542  potential. (A) Representative immunofluorescence images of Mena™ (red) and DAPI (blue)

543  staining in NT2.5 mammary tumor (top), and NT2.5-LM lung metastases (bottom) collected 34-
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544 41 days post-injection (dpi). Middle column and right column panels correspond to dotted

545  square in left column panels. Scale bars as shown. (B) Quantification of Mena™"

staining from
546  NT2.5 mammary tumor (n=6) and NT2.5-LM lung metastases (n=6) by averaging signal

547  intensity from up to 10 regions of interest (ROIs) in each sample. Statistics used: Mann-Whitney
548  U-test for (B), **p < 0.01.

549

550  Figure S1: Tumor growth in NT2.5-LM model. (A) 1x10°> NT2.5 or NT2.5-LM cells were

551 injected into the mammary fat pad of NeuN mice (NT2.5, n=10; NT2.5-LM, n=7). Mammary
552  tumor volumes (mm?®) were averaged across all mice within the same group. Surgical resection
553  of NT2.5-LM tumor-bearing mice at 12 days post-injection (dpi) is depicted by a red arrow.

554  Mammary tumors regrew in NT2.5-LM at 24 dpi. Data shown until first mouse death recorded at
555 33 dpi. (B) Mammary tumor volumes (mm?) of individual mice shown in (A) until required

556  euthanasia of mice.

557

558  Figure S2: Necropsy of NT2.5-LM metastases-bearing tissues. Upon euthanasia of NT2.5-
559 LM mice, various tissues were collected, fixed, sectioned, stained with H&E, and evaluated for
560 the presence of metastases. Tissues shown include (A) heart [scale bars: 1000 um], (B) lymph
561 nodes [scale bars: 50 um, 1000 um], (C) lungs [scale bar: 2500 um], (D) kidney [scale bar: 500
562 umj, (E) adrenal gland [scale bar: 500 um], (F) stomach [scale bars: 500 um, 1000 um], (G)
563  colon [scale bars: 400 um, 2500 um], (H) spleen [scale bar: 250 um], (1) skull [scale bar: 2500
564  umy], (J) ear [scale bar: 5000 um], (K) body wall [scale bar: 2500 um], and (L) teeth [scale bars:
565 50 pm, 750 pm].

566

567  Figure S3: Immunohistochemistry (IHC) of NT2.5 mammary tumors and NT2.5-LM lung

568 metastases. Staining of EGFR, AE1/3, CK5, and CK6 in NT2.5 mammary tumors (left) and
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569 NT2.5-LM lung metastases (right) collected at 35 days post-injection. Scale bars are 280 um
570 and 60 um (zoomed-in panels).

571

572  Figure S4: Anti-HER2 treatment scheme for NT2.5-LM. 1x10°> NT2.5-LM cells were

573  orthotopically injected in the mammary fat pad. Mammary tumors were surgically resected 12
574  days post-injection (dpi). Anti-HER2 monoclonal antibody treatment of 100 pg/mouse

575  administered intraperitoneally once a week for three weeks began at 23 dpi. After three weeks
576 of anti-HER2 treatment, maintenance dosage for survival experiments were given once a week.
577  For metastatic burden analysis, lungs were collected at 38 dpi for subsequent analysis.

578

579  Figure S5: Differential pathway regulation in NT2.5-LM compared to NT2.5 cancer cells.
580  Unsupervised pathways analysis from single cell RNA sequencing datasets by comparing top
581 250 differentially expressed genes with overlap in pathways from ‘KEGG_2019_Mouse’

582  database using Gene Set Enrichment Analysis. Top 20 pathways in NT2.5-LM that are (A)
583  down-regulated and (B) up-regulated compared to NT2.5 are shown.

584

585 Table S1: Differential pathways in NT2.5-LM compared to NT2.5 cancer cells. All

586  unsupervised pathways analysis from single cell RNA sequencing datasets by comparing top
587 250 differentially expressed genes with overlap in pathways from ‘KEGG_2019 Mouse’

588 database using Gene Set Enrichment Analysis.

589

590

591
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Figure 1
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Figure 1: NT2.5-LM leads to decreased survival, larger mammary tumors, and increased lung
metastasis. (A) 1x10% NT2.5 or NT2.5-LM cells were injected into the mammary fat pad of NeuN mice
(NT2.5, n=10; NT2.5-LM, n=7). After surgical resection of NT2.5-LM tumor-bearing mice at 12 days post-
injection (dpi), mice were allowed to reach human survival endpoint with tumor volume exceeding 1.5 cm3.
(B) Mammary tumor sizes of mice in (A) were measured at least 3x a week by calipers, averaged, and used
to calculate differences in average weekly tumor growth rate. (C) At survival endpoint of mice in (A), the
number of surface metastases was counted by visual inspection. (D) H&E staining of lungs in NT2.5-LM
tumor-bearing mice collected at 7, 10, 22, 28, and 35 days post-injection (dpi). Black arrows point to lung
metastases. Scale bars as shown. (E) Immunohistochemistry (IHC) staining of Erbb2 and (F) Ki67 in NT2.5
mammary tumors (top) and NT2.5-LM lung metastases (bottom) collected at 35 days post-injection. Scale
bars as shown. (G) Percentage of Ki67+ cells from 10 regions of interest (ROls) were counted from Ki67
IHC staining in (F). Statistics used: Mantel-Cox Log-rank test for (A), Mann-Whitney U-test for (B-D),
Welch’s T-test for (G), *p < 0.05, **p < 0.01, ****p < 0.0001.
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Figure 2: NT2.5-LM responds to HER2-directed therapy. (A) 1x105 NT2.5-LM cells were injected into the
mammary fat pad of NeuN mice. After surgical resection of NT2.5-LM tumor-bearing mice at 12 days post-
injection (dpi), treatment with vehicle or anti-HER2 monoclonal antibody (100 ug/mouse, 1x/week,
intraperitoneal injection) began at 23 dpi (n=12 per treatment group) and continued until survival endpoint at
70 dpi. (B) 1x105 NT2.5-LM cells were injected into the mammary fat pad of NeuN mice, tumors were
surgically resected at 12 dpi, and anti-HER2 treatment (100 pg/mouse, 1x/week, intraperitoneal injection)
began at 23 dpi (n=10 per treatment group). Lungs were collected at 38 dpi. Three different levels were
taken from formalin-fixed and paraffin-embedded lungs sectioned 100 um apart. Slides were H&E stained,
scanned, and analyzed using HALO to obtain summed lung metastasis counts and (C) percent tumor area
over normal lung tissue. Two mice in the vehicle group were removed due to inconsistencies between
HALO results and physical examination of H&E slides. Statistics used: Mantel-Cox Log-rank test for (A),
Mann-Whitney U-test for (B-C), ns = not-significant, **p < 0.01.
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Figure 3: NT2.5-LM does not exhibit altered mutational landscape compared to parental NT2.5. (A)
Alignment of NT2.5 and NT2.5-LM whole exome sequencing reads to the mm10 genome reveal cell line-
specific and —overlapping mutations common in breast cancer. Note: all found were in intronic regions. (B)
Erbb2 transcript sequence with identified mutation sites in NT2.5 and NT2.5-LM. All mutations were
identified to be silent mutations. Nucleotide numbering is based on DNA reference sequence
NM_001003817.1. Note that the version number of this reference sequence may be frequently updated. (C)
Distributions of mutation classifications, variant types, single nucleotide variant (SNV) classes, and top 10
mutated genes for NT2.5 and (D) NT2.5-LM are shown.
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Figure 4: NT2.5-LM exhibits altered signaling indicative of increased EMT. (A) Four NT2.5 and four
NT2.5-LM mammary tumors were collected from NeuN mice, dissociated to single cell suspensions, and
sent for unsorted single-cell RNA sequencing. Cancer cell clusters were annotated as Lcn+, Wfd2c+,
Cd24a+, Cd276+, Col9a1+, Erbb2+, and subsetted out for PCA visualization. (B) Top 25 significantly up-
and down-regulated genes in NT2.5-LM. (C) Violin plots of key metastasis-related genes identified in (B).
(D) Flow cytometry staining of epithelial-to-mesenchymal transition (EMT) related genes identified in (C) in
NT2.5 and NT2.5-LM cell lines for Vimentin and (E) Epcam. Statistics used: Unpaired T-test for (D-E), ****p
< 0.0001.


https://doi.org/10.1101/2024.01.25.577282
http://creativecommons.org/licenses/by-nc-nd/4.0/

<

Jowny Alewwew
Q'CIN

sisejselsw 3un|
W1-SCIN

%
[ )
[ ]
T AR jaar e |
(%) easy +ANIeUS|\
o

NT2.5-LM

NT2.5

lung met

tumor

Figure 5



Figure 5: NT2.5-LM expresses increased levels of Mena'NV — a marker of metastatic potential. (A)
Representative immunofluorescence images of MenaV (red) and DAPI (blue) staining in NT2.5 mammary
tumor (top), and NT2.5-LM lung metastases (bottom) collected 34-41 days post-injection (dpi). Middle
column and right column panels correspond to dotted square in left column panels. Scale bars as shown.
(B) Quantification of MenaNV staining from NT2.5 mammary tumor (n=6) and NT2.5-LM lung metastases
(n=6) by averaging signal intensity from up to 10 regions of interest (ROls) in each sample. Statistics used:
Mann-Whitney U-test for (B), **p < 0.01.



